Science.gov

Sample records for factor inhibit hepatocellular

  1. mTOR inhibition improves fibroblast growth factor receptor targeting in hepatocellular carcinoma

    PubMed Central

    Scheller, T; Hellerbrand, C; Moser, C; Schmidt, K; Kroemer, A; Brunner, S M; Schlitt, H J; Geissler, E K; Lang, S A

    2015-01-01

    Background: Systemic therapy has proven only marginal effects in hepatocellular carcinoma (HCC) so far. The aim of this study was to evaluate the effect of targeting fibroblast growth factor receptor (FGFR) on tumour and stromal cells in HCC models. Methods: Human and murine HCC cells, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), hepatic stellate cells (HSCs), human HCC samples, FGFR inhibitor BGJ398 and mammalian target of rapamycin (mTOR) inhibitor rapamycin were used. Effects on growth, motility, signalling and angiogenic markers were determined. In vivo subcutaneous and syngeneic orthotopic tumour models were used. Results: In tumour cells and ECs, targeting FGFR showed significant inhibitory effects on signalling and motility. Minor effects of FGFR inhibition were observed on VSMCs and HSCs, which were significantly enhanced by combining FGFR and mTOR blockade. In vivo daily (5 mg kg−1) treatment with BGJ398 led to a significant growth inhibition in subcutaneous tumour models, but only a combination of FGFR and mTOR blockade impaired tumour growth in the orthotopic model. This was paralleled by reduced tumour cell proliferation, vascularisation, pericytes and increased apoptosis. Conclusions: Targeting FGFR with BGJ398 affects tumour cells and ECs, whereas only a combination with mTOR inhibition impairs recruitment of VSMCs and HSCs. Therefore, this study provides evidence for combined FGFR/mTOR inhibition in HCC. PMID:25688743

  2. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition.

    PubMed

    Schmidt, Benjamin; Wei, Lan; DePeralta, Danielle K; Hoshida, Yujin; Tan, Poh Seng; Sun, Xiaochen; Sventek, Janelle P; Lanuti, Michael; Tanabe, Kenneth K; Fuchs, Bryan C

    2016-03-15

    A recent gene expression classification of hepatocellular carcinoma (HCC) includes a poor survival subclass termed S2 representing about one-third of all HCC in clinical series. S2 cells express E-cadherin and c-myc and secrete AFP. As the expression of fibroblast growth factor receptors (FGFRs) differs between S2 and non-S2 HCC, this study investigated whether molecular subclasses of HCC predict sensitivity to FGFR inhibition. S2 cell lines were significantly more sensitive (p < 0.001) to the FGFR inhibitors BGJ398 and AZD4547. BGJ398 decreased MAPK signaling in S2 but not in non-S2 cell lines. All cell lines expressed FGFR1 and FGFR2, but only S2 cell lines expressed FGFR3 and FGFR4. FGFR4 siRNA decreased proliferation by 44% or more in all five S2 cell lines (p < 0.05 for each cell line), a significantly greater decrease than seen with knockdown of FGFR1-3 with siRNA transfection. FGFR4 knockdown decreased MAPK signaling in S2 cell lines, but little effect was seen with knockdown of FGFR1-3. In conclusion, the S2 molecular subclass of HCC is sensitive to FGFR inhibition. FGFR4-MAPK signaling plays an important role in driving proliferation of a molecular subclass of HCC. This classification system may help to identify those patients who are most likely to benefit from inhibition of this pathway. PMID:26481559

  3. MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor

    PubMed Central

    Xiao, Yao; Tian, Qinggang; He, Jiantai; Huang, Ming; Yang, Chao; Gong, Liansheng

    2016-01-01

    MicroRNAs (miRs) have been demonstrated to play key roles in the development and progression of hepatocellular carcinoma (HCC). However, the regulatory mechanism of miR-503 in HCC has not been fully uncovered. In this study, we found that miR-503 was significantly downregulated in HCC tissues compared to nontumorous liver tissues. Moreover, lower miR-503 levels were associated with the malignant progression of HCC, and the expression of miR-503 was also decreased in several common HCC cell lines compared to normal human liver cell line THLE-3. Overexpression of miR-503 inhibited proliferation but induced apoptosis of LM3 and HepG2 cells. Bioinformatical analysis and luciferase reporter assay further identified insulin-like growth factor 1 receptor (IGF-1R) as a novel target of miR-503 in 293T cells. Moreover, overexpression of miR-503 led to a significant decrease in the protein levels of IGF-1R, while knockdown of miR-503 enhanced its protein levels in LM3 and HepG2 cells. Besides, overexpression of IGF-1R reversed the effects of miR-503-mediated HCC cell proliferation and apoptosis, indicating that IGF-1R acts as a downstream effector of miR-503 in HCC cells. Furthermore, IGF-1R was found to be significantly upregulated in HCC tissues compared to nontumorous liver tissues. In addition, the mRNA levels of IGF-1R were inversely correlated to the miR-503 levels in the HCC tissues. Thus, we demonstrate that miR-503 inhibits the proliferation and induces the apoptosis of HCC cells, partly at least, by directly targeting IGF-1R, and suggest that IGF-1R may serve as a promising target for the treatment of HCC. PMID:27366090

  4. IL-6, a risk factor for hepatocellular carcinoma: FLLL32 inhibits IL-6-induced STAT3 phosphorylation in human hepatocellular cancer cells.

    PubMed

    Liu, Yan; Fuchs, James; Li, Chenglong; Lin, Jiayuh

    2010-09-01

    Hepatocellular carcinoma (HCC) is one of the most common human cancers and the patients' five-year survival rate is very low. Growing evidence indicates that interleukin-6 (IL-6) is a risk factor for HCC. High serum IL-6 may promote HCC development in hepatitis B patients. Therefore, IL-6 could be considered a HCC biomarker and blockade of IL-6 pathway may be a promising therapeutic alternative for HCC. STAT3 is major pathway to mediate signal from IL-6 to the nucleus, where different genes associated with proliferation and apoptosis are regulated. We previous reported that IL-6 induces cell survival upon drug treatment in HCC cells and inhibition of IL-6/STAT3 pathway using anti-IL-6 antibody or STAT3 small-molecule inhibitor LLL12 reduces this effect. Here we summarized the recent studies of IL-6 in HCC and showed another STAT3 small-molecule inhibitor FLLL32 also blocked IL-6-induced STAT3 activation in HCC cells. FLLL32 is a novel curcumin analogue, which has been described to suppress the constitutive activation of STAT3 in pancreatic and breast cancer cells in vitro and vivo. We demonstrated that FLLL32 blocked IL-6-induced STAT3 phosphorylation and nuclear translocation. PMID:20818158

  5. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    SciTech Connect

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si; Wu, Weibing; Dong, Ling; Shen, Xizhong; Zhang, Songwen; Gu, Jianxin; Xue, Ruyi

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFR in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.

  6. Inhibition of nuclear factor κB transcription activity drives a synergistic effect of cisplatin and oridonin on HepG2 human hepatocellular carcinoma cells.

    PubMed

    Dong, Xinjun; Liu, Feiyan; Li, Mianli

    2016-04-01

    Activation of nuclear factor κB (NF-κB) by cisplatin and other chemotherapeutics is responsible, at least in part, for the development of drug resistance in the treatment of hepatocellular carcinoma. Therefore, a combination of chemotherapeutics with NF-κB inhibitors could overcome resistance of cancer cells. Oridonin is a diterpenoid isolated from Rabdosia rubescens that can block the NF-κB signaling cascades. In this study, we investigated the synergistic effect of oridonin and cisplatin on human hepatocellular carcinoma HepG2 cells. Cell apoptosis and mitochondrial membrane potential loss were examined using Hoechst 33258 and rhodamine-123 staining, followed by flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB subunits was detected by real-time PCR and western blot. The activity of caspase 3 and 9 was measured using the Caspase Activity Kit. Electrophoretic mobility shift assay and the enzyme-linked immunosorbent assay-based kit were used to assess the DNA-binding activity of NF-κB. We found a synergistic antitumor effect between cisplatin and oridonin on HepG2 cells both in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induces apoptosis and regulates the expression and activity of several key apoptosis-related proteins. Furthermore, the combination treatment not only downregulates nuclear translocation of p50 and p65, but more significantly, decreases the transcription activity of all NF-κB subunits to a greater degree than either agent alone. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of transcription activity of NF-κB and the resulting increased apoptosis. PMID:26704389

  7. Insulin-like growth factor binding protein-1 inhibits cancer cell invasion and is associated with poor prognosis in hepatocellular carcinoma

    PubMed Central

    Dai, Bin; Ruan, Bai; Wu, Juan; Wang, Jianlin; Shang, Runze; Sun, Wei; Li, Xia; Dou, Kefeng; Wang, Desheng; Li, Yu

    2014-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1) plays an important role in the development and progression of cancer. However, the expression of IGFBP-1 remains equivocal, and little is known about its clinicopathological significance and prognostic value in hepatocellular carcinoma (HCC). In this study, we evaluated the expression of IGFBP-1 in 90 paired HCC tissues and adjacent non-cancerous liver tissues and analyzed its clinical and prognostic significance. The results showed that IGFBP-1 was detected in cytoplasm as well as cell nucleus, and down-regulated in HCC tissues compared to the adjacent non-cancerous liver tissues. The decreased expression of IGFBP-1 was correlated with tumor differentiation, liver cirrhosis, microvascular invasion or metastasis, TNM stage and poor survival. Moreover, low levels of IGFBP-1 may be an independent prognostic indicator for the survival of patients with HCC. We also evaluated its function by adding recombinant IGFBP-1 to the cultured HCC cell lines HepG2 and MHCC97-H. The result of the invasion chamber assay showed that IGFBP-1 could inhibit the invasion of HepG2 and MHCC97-H. MMP-9 secretion by these cells was significantly decreased when the cells were treated with IGFBP-1. Our results suggest that IGFBP-1 inhibits the invasion and metastasis of HCC cells and that IGFBP-1 may be useful as a valuable marker for the prognosis of patients with HCC. PMID:25337205

  8. MicroRNA-608 acts as a prognostic marker and inhibits the cell proliferation in hepatocellular carcinoma by macrophage migration inhibitory factor.

    PubMed

    Wang, Kejia; Liang, Qing; Wei, Li; Zhang, Wei; Zhu, Ping

    2016-03-01

    Human hepatocellular carcinoma (HCC) is one of the most prevalent malignancies in the world. Research on HCC has recently focused on microRNAs (miRNAs) that play crucial roles in cancer development and progression of HCC. In this study, we aimed to analyze the expression and function of a metastasis-associated microRNA-608 (miR-608) in HCC. Samples of human HCC and matched adjacent normal tissues were surgically removed, and miR-608 expression and the pathological characteristics of HCC were investigated. In this study, we found that miR-608 expression was significantly reduced in HCC and its expression levels were highly associated with tumor size, differentiation, clinical stage, and overall and disease-free survival of HCC. Overexpression of miR-608 in HCC cell lines HepG2 and SK-Hep-1 inhibited cell proliferation by G1 arrest. Macrophage migration inhibitory factor (MIF), a potential target gene of miR-608, was inversely correlated with miR-608 expression in HCC tissues and cell lines. Furthermore, we demonstrated that MIF was directly regulated by miR-608 and the restoration of MIF expression reversed the inhibitory effects of miR-608 on HCC cell proliferation. Taken together, these findings collectively demonstrate that miR-608 exerts its anti-cancer function by directly targeting MIF in HCC, indicating a potential novel prognostic biomarker and therapeutic target for HCC. PMID:26474589

  9. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma

    PubMed Central

    Yasui, Kohichiroh; Konishi, Chika; Gen, Yasuyuki; Endo, Mio; Dohi, Osamu; Tomie, Akira; Kitaichi, Tomoko; Yamada, Nobuhisa; Iwai, Naoto; Nishikawa, Taichiro; Yamaguchi, Kanji; Moriguchi, Michihisa; Sumida, Yoshio; Mitsuyoshi, Hironori; Tanaka, Shinji; Arii, Shigeki; Itoh, Yoshito

    2015-01-01

    EVI1 (ecotropic viral integration site 1) is one of the most aggressive oncogenes associated with myeloid leukemia. We investigated DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines using a high-density oligonucleotide microarray. We found that a novel amplification at the chromosomal region 3q26 occurs in the HCC cell line JHH-1, and that MECOM (MDS1 and EVI1 complex locus), which lies within the 3q26 region, was amplified. Quantitative PCR analysis of the three transcripts transcribed from MECOM indicated that only EVI1, but not the fusion transcript MDS1–EVI1 or MDS1, was overexpressed in JHH-1 cells and was significantly upregulated in 22 (61%) of 36 primary HCC tumors when compared with their non-tumorous counterparts. A copy number gain of EVI1 was observed in 24 (36%) of 66 primary HCC tumors. High EVI1 expression was significantly associated with larger tumor size and higher level of des-γ-carboxy prothrombin, a tumor marker for HCC. Knockdown of EVI1 resulted in increased induction of the cyclin-dependent kinase inhibitor p15INK4B by transforming growth factor (TGF)-β and decreased expression of c-Myc, cyclin D1, and phosphorylated Rb in TGF-β-treated cells. Consequently, knockdown of EVI1 led to reduced DNA synthesis and cell viability. Collectively, our results suggest that EVI1 is a probable target gene that acts as a driving force for the amplification at 3q26 in HCC and that the oncoprotein EVI1 antagonizes TGF-β-mediated growth inhibition of HCC cells. PMID:25959919

  10. Hepatocellular carcinoma: epidemiology and risk factors

    PubMed Central

    Kew, Michael C

    2014-01-01

    Hepatocellular carcinoma is one of the major malignant tumors in the world today. The number of new cases of the tumor increases year by year, and hepatocellular carcinoma almost always runs a fulminant course and carries an especially grave prognosis. It has a low resectability rate and a high recurrence rate after surgical intervention, and responds poorly to anticancer drugs and radiotherapy. Hepatocellular carcinoma does not have a uniform geographical distribution: rather, very high incidences occur in Eastern and Southeastern Asia and in sub-Saharan Black Africans. In these regions and populations, the tumor shows a distinct shift in age distribution toward the younger ages, seen to greatest extent in sub-Saharan Black Africans. In all populations, males are more commonly affected. The most common risk factors for hepatocellular carcinoma in resource-poor populations with a high incidence of the tumor are chronic hepatitis B virus infection and dietary exposure to the fungal hepatocarcinogen aflatoxin B1. These two causative agents act either singly or synergistically. Both the viral infection and exposure to the fungus occur from early childhood, and the tumor typically presents at an early age. Chronic hepatitis C virus infection is an important cause of hepatocellular carcinoma in resource-rich countries with a low incidence of the tumor. The infection is acquired in adulthood and hepatocellular carcinoma occurs later than it does with hepatitis B virus-induced tumors. In recent years, obesity and the metabolic syndrome have increased markedly in incidence and importance as a cause of hepatocellular carcinoma in some resource-rich regions. Chronic alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, frequently in association with alcohol-induced cirrhosis. Excessive iron accumulation in hereditary hemochromatosis and dietary iron overload in the Black African population and membranous obstruction of the inferior cava

  11. Hepatocellular Carcinoma: Risk Factors, Diagnosis and Treatment

    PubMed Central

    Janevska, Dafina; Chaloska-Ivanova, Viktorija; Janevski, Vlado

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most often primary cancer of the liver and is one if the leading cause of cancer-related death worldwide. The incidence of HCC has geographic distribution with the highest levels in countries with developing economies. Patients with hepatocellular carcinoma have poor prognosis despite the achievements in surgery techniques and other therapeutic procedures and it is a reason why continuous attention should be paid to this issue. This article provides an overview of this disease based on an extensive review of relevant literature. The article summarizes the current risk factors, diagnosis, staging and the management of HCC. PMID:27275318

  12. Prognostic factors for hepatocellular carcinoma recurrence

    PubMed Central

    Colecchia, Antonio; Schiumerini, Ramona; Cucchetti, Alessandro; Cescon, Matteo; Taddia, Martina; Marasco, Giovanni; Festi, Davide

    2014-01-01

    The recurrence of hepatocellular carcinoma, the sixth most common neoplasm and the third leading cause of cancer-related mortality worldwide, represents an important clinical problem, since it may occur after both surgical and medical treatment. The recurrence rate involves 2 phases: an early phase and a late phase. The early phase usually occurs within 2 years after resection; it is mainly related to local invasion and intrahepatic metastases and, therefore, to the intrinsic biology of the tumor. On the other hand, the late phase occurs more than 2 years after surgery and is mainly related to de novo tumor formation as a consequence of the carcinogenic cirrhotic environment. Since recent studies have reported that early and late recurrences may have different risk factors, it is clinically important to recognize these factors in the individual patient as soon as possible. The aim of this review was, therefore, to identify predicting factors for the recurrence of hepatocellular carcinoma, by means of invasive and non-invasive methods, according to the different therapeutic strategies available. In particular the role of emerging techniques (e.g., transient elastography) and biological features of hepatocellular carcinoma in predicting recurrence have been discussed. In particular, invasive methods were differentiated from non-invasive ones for research purposes, taking into consideration the emerging role of the genetic signature of hepatocellular carcinoma in order to better allocate treatment strategies and surveillance follow-up in patients with this type of tumor. PMID:24876717

  13. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. PMID:27521890

  14. [Hepatocellular carcinoma: occurrence, risk factors, biomarkers].

    PubMed

    Fehér, János; Lengyel, Gabriella

    2010-06-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Primary hepatocellular carcinoma can be found most frequently (80-90 %) in patients with liver cirrhosis. The most frequent causes of liver cirrhosis are chronic hepatitis B and C virus infections and chronic alcohol consumption. The occurrence of hepatocellular carcinoma is about 3-15 % in patients with alcoholic liver disease. Other predisposing causes can be: non-alcoholic steatohepatitis (NASH), obesity, diabetes mellitus, autoimmune hepatitis, intrahepatic biliary inflammations (primary biliary cirrhosis, primary sclerosing cholangitis), copper and iron metabolic diseases (Wilson-disease, haemochromatosis), congenital alpha-1-antitripsin deficiency. The causative role of hepatitis B és C viruses have been well established in the pathogenesis of liver cancer. Other pathogenic factors are smoking, and different chemical agents. Treatment options for these patients have previously been limited to best supportive care and palliative therapy. Beside surgical treatment (resection, liver transplantation) the invasive radiologic therapy also has been widely used. The effectiveness of targeted therapy with monoclonal antibodies or small-molecule kinase inhibitors has now been demonstrated for the treatment of different tumors. In year 2007, sorafenib, a multitargeted kinase inhibitor was introduced to clinical practice and found to prolong survival significantly for patients with advanced HCC. PMID:20494888

  15. Risk Factors for Hepatocellular Carcinoma in India

    PubMed Central

    Kar, Premashis

    2014-01-01

    Hepatocellular carcinoma (HCC) is an important cause of death all over the world, more so in Asia and Africa. The representative data on epidemiology of HCC in India is very scanty and cancer is not a reportable disease in India and the cancer registries in India are mostly urban. 45 million people who are suffering from chronic Hepatitis B virus (HBV) infection and approximately 15 million people who are afflicted with chronic Hepatitis C virus (HCV) infection in India. HBV and HCV infection is considered an important etiologic factor in HCC. Positive association between HCC and consumption of alcohol where alcohol contribute as a cofactor for hepatotoxins and hepatitis viruses. Aflatoxin contamination in the diets, Hepatitis B virus infection and liver cirrhosis in Andhra Pradesh, India and direct chronic exposure to aflatoxins was shown to cause liver cirrhosis. Cirrhosis of liver of any cause lead to develop about 70%–90% of HCC. Aflatoxin interact synergistically with Hepatitis B virus (HBV)/Hepatitis C virus (HCV) infection which increase the risk of HCC. HBV infection, HBV infection with Aflatoxin exposure, viral infection and alcohol consumption leading to overt cirrhosis of the liver, alcohol consumption leading to cirrhosis of the liver with viral infection are the predominant risk factor for the development of HCC. HCV and alcohol are also associated with HCC in India. Indians develop diabetes at younger age, Asians have strong genetic susceptibility for type II diabetes. Diabetes mellitus is identified as a risk factor for HCC. Prevention of viral infection by universal vaccination against hepatitis virus, HCC surveillance program, preventing alcoholic liver diseases, fungal contamination of grains and ground crops to prevent basically Aflatoxin exposure are important measures to prevent liver diseases and HCC among those at risk. PMID:25755609

  16. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma

    PubMed Central

    Santhekadur, Prasanna K; Rajasekaran, Devaraja; Siddiq, Ayesha; Gredler, Rachel; Chen, Dong; Schaus, Scott E; Hansen, Ulla; Fisher, Paul B; Sarkar, Devanand

    2012-01-01

    The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer’s disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a

  17. Novel roles of TMEM100: inhibition metastasis and proliferation of hepatocellular carcinoma

    PubMed Central

    Hua, Dong; Xiao, Shuai; Yang, Lianyue

    2015-01-01

    Transmembrane protein 100 (TMEM100) was activated by ALK1/TGF-β signaling. We found that TMEM100 was decreased in hepatocellular carcinoma (HCC) tissues and in highly metastatic cell lines. Overexpressed of TMEM100 inhibited invasion, migration and proliferation. Low levels of TMEM100 were associated with cirrhosis, tumor size, Tumor nodule number, TNM stage, BCLC stage, Edmondson-Steiner Stage and vein invasion. Furthermore, TMEM100 was an independent risk factor for overall survival (P = 0.03) and disease-free survival (P = 0.019). The current findings suggest that TMEM100 functions as a tumor suppressor in HCC metastasis and proliferation. PMID:25978032

  18. Risk factors of hepatocellular carcinoma--current status and perspectives.

    PubMed

    Gao, Jing; Xie, Li; Yang, Wan-Shui; Zhang, Wei; Gao, Shan; Wang, Jing; Xiang, Yong-Bing

    2012-01-01

    Hepatocellular carcinoma is a common disorder worldwide which ranks 5th and 7th most common cancer among men and women. In recent years, different incidence trends have been observed in various regions, but the reasons are not completely understood. However, due to the great public efforts in HCC prevention and alternation of lifestyle, the roles of some well documented risk factors played in hepatocarcinogenesis might have changed. This paper summarizes both the environmental and host related risk factors of hepatocellular carcinoma including well established risk factors such as hepatitis virus infection, aflatoxin and alcohol, as well as possible risk factors such as coffee drinking and other dietary agents. PMID:22631642

  19. MiR-940 inhibits hepatocellular carcinoma growth and correlates with prognosis of hepatocellular carcinoma patients.

    PubMed

    Yuan, Bo; Liang, Yasha; Wang, Duoning; Luo, Fengming

    2015-07-01

    Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death in China. Deregulation of microRNA (miRNA) contributes to HCC development by influencing cell growth, apoptosis, migration or invasion. It has been proved that miR-940 plays important roles in various cancers. Here we investigated the role of miR-940 in HCC. We found that miR-940 was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-940 expression in HCC tissues significantly correlated with the reduced patient's survival rate. Overexpression of miR-940 inhibited HCC cell line growth and induced cell apoptosis, and vice versa. Estrogen-related receptor gamma (ESRRG) was targeted by miR-940, and suppression of ESRRG inhibited HCC cell lines growth and induced cell apoptosis. In conclusion, we found that a lower level of miR-940 in HCC promoted cellular proliferation via ESRRG, which may lead to the short survival period of HCC patients. PMID:25940592

  20. MiR-940 inhibits hepatocellular carcinoma growth and correlates with prognosis of hepatocellular carcinoma patients

    PubMed Central

    Yuan, Bo; Liang, Yasha; Wang, Duoning; Luo, Fengming

    2015-01-01

    Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death in China. Deregulation of microRNA (miRNA) contributes to HCC development by influencing cell growth, apoptosis, migration or invasion. It has been proved that miR-940 plays important roles in various cancers. Here we investigated the role of miR-940 in HCC. We found that miR-940 was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-940 expression in HCC tissues significantly correlated with the reduced patient’s survival rate. Overexpression of miR-940 inhibited HCC cell line growth and induced cell apoptosis, and vice versa. Estrogen-related receptor gamma (ESRRG) was targeted by miR-940, and suppression of ESRRG inhibited HCC cell lines growth and induced cell apoptosis. In conclusion, we found that a lower level of miR-940 in HCC promoted cellular proliferation via ESRRG, which may lead to the short survival period of HCC patients. PMID:25940592

  1. Therapeutic inhibition of phospholipase D1 suppresses hepatocellular carcinoma.

    PubMed

    Xiao, Junjie; Sun, Qi; Bei, Yihua; Zhang, Ling; Dimitrova-Shumkovska, Jasmina; Lv, Dongchao; Yang, Yuefeng; Cao, Yan; Zhao, Yingying; Song, Meiyi; Song, Yang; Wang, Fei; Yang, Changqing

    2016-07-01

    Hepatocellular carcinoma (HCC) represents a leading cause of deaths worldwide. Novel therapeutic targets for HCC are needed. Phospholipase D (PD) is involved in cell proliferation and migration, but its role in HCC remains unclear. In the present study, we show that PLD1, but not PLD2, was overexpressed in HCC cell lines (HepG2, Bel-7402 and Bel-7404) compared with the normal human L-02 hepatocytes. PLD1 was required for the proliferation, migration and invasion of HCC cells without affecting apoptosis and necrosis, and PLD1 overexpression was sufficient to promote those effects. By using HCC xenograft models, we demonstrated that therapeutic inhibition of PLD1 attenuated tumour growth and epithelial-mesenchymal transition (EMT) in HCC mice. Moreover, PLD1 was found to be highly expressed in tumour tissues of HCC patients. Finally, mTOR (mechanistic target of rapamycin) and Akt (protein kinase B) were identified as critical pathways responsible for the role of PLD1 in HCC cells. Taken together, the present study indicates that PLD1 activation contributes to HCC development via regulation of the proliferation, migration and invasion of HCC cells, as well as promoting the EMT process. These observations suggest that inhibition of PLD1 represents an attractive and novel therapeutic modality for HCC. PMID:27129182

  2. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    SciTech Connect

    Wu Xiaofeng; Fan Jia; E-mail: jiafan99@yahoo.com; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-04-20

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment.

  3. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    PubMed

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  4. Xanthohumol Inhibits Notch Signaling and Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Kunnimalaiyaan, Selvi; Gamblin, T. Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC) remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN), a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3) and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1). XN concentrations of 5μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC. PMID:26011160

  5. Dysregulated serum response factor triggers formation of hepatocellular carcinoma

    PubMed Central

    Ohrnberger, Stefan; Thavamani, Abhishek; Braeuning, Albert; Lipka, Daniel B; Kirilov, Milen; Geffers, Robert; Authenrieth, Stella E; Römer, Michael; Zell, Andreas; Bonin, Michael; Schwarz, Michael; Schütz, Günther; Schirmacher, Peter; Plass, Christoph; Longerich, Thomas; Nordheim, Alfred

    2015-01-01

    The ubiquitously expressed transcriptional regulator serum response factor (SRF) is controlled by both Ras/MAPK (mitogen-activated protein kinase) and Rho/actin signaling pathways, which are frequently activated in hepatocellular carcinoma (HCC). We generated SRF-VP16iHep mice, which conditionally express constitutively active SRF-VP16 in hepatocytes, thereby controlling subsets of both Ras/MAPK- and Rho/actin-stimulated target genes. All SRF-VP16iHep mice develop hyperproliferative liver nodules that progresses to lethal HCC. Some murine (m)HCCs acquire Ctnnb1 mutations equivalent to those in human (h)HCC. The resulting transcript signatures mirror those of a distinct subgroup of hHCCs, with shared activation of oncofetal genes including Igf2, correlating with CpG hypomethylation at the imprinted Igf2/H19 locus. Conclusion: SRF-VP16iHep mHCC reveal convergent Ras/MAPK and Rho/actin signaling as a highly oncogenic driver mechanism for hepatocarcinogenesis. This suggests simultaneous inhibition of Ras/MAPK and Rho/actin signaling as a treatment strategy in hHCC therapy. (Hepatology 2015;61:979–989) PMID:25266280

  6. MTBP inhibits migration and metastasis of hepatocellular carcinoma.

    PubMed

    Bi, Qian; Ranjan, Atul; Fan, Rui; Agarwal, Neeraj; Welch, Danny R; Weinman, Steven A; Ding, Jie; Iwakuma, Tomoo

    2015-04-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with increasing incidence. Despite curative surgical resection and advanced chemotherapy, its survival rate remains low. The presence of microvascular invasion and occult metastasis is one of the major causes for this poor outcome. MDM2 Binding Protein (MTBP) has been implicated in the suppression of cell migration and cancer metastasis. However, clinical significance of MTBP, particularly in human cancer, is poorly understood. Specifically, clinical relevance of MTBP in human HCC has never been investigated. Here we demonstrated that expression of MTBP was significantly reduced in human HCC tissues compared to adjacent non-tumor tissues. MTBP expression was negatively correlated with capsular/vascular invasion and lymph node metastasis. Overexpression of MTBP resulted in the suppression of the migratory and metastatic potential of HCC cells, while its downregulation increased the migration. Consistent with the previous report, MTBP endogenously bound to alpha-actinin 4 (ACTN4) and suppressed ACTN4-mediated cell migration in multiple HCC cell lines. However, MTBP also inhibited migratory potential of PLC/PRF/5 HCC cells whose migration was not altered by manipulation of ACTN4 expression. These results suggest that mechanisms behind MTBP-mediated migration suppression may not be limited to the pathway involving ACTN4 in certain cellular contexts. Additionally, as a potential mechanism for reduced MTBP expression in tumors, we found that MTBP expression was increased following the treatment with histone deacetylase inhibitors (HDIs). Our study, for the first time, provides clinical relevance of MTBP in the suppression of HCC metastasis. PMID:25759210

  7. MTBP inhibits migration and metastasis of hepatocellular carcinoma

    PubMed Central

    Bi, Qian; Ranjan, Atul; Fan, Rui; Agarwal, Neeraj; Welch, Danny R.; Weinman, Steven A.

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with increasing incidence. Despite curative surgical resection and advanced chemotherapy, its survival rate remains low. The presence of microvascular invasion and occult metastasis is one of the major causes for this poor outcome. MDM2 Binding Protein (MTBP) has been implicated in the suppression of cell migration and cancer metastasis. However, clinical significance of MTBP, particularly in human cancer, is poorly understood. Specifically, clinical relevance of MTBP in human HCC has never been investigated. Here we demonstrated that expression of MTBP was significantly reduced in human HCC tissues compared to adjacent non-tumor tissues. MTBP expression was negatively correlated with capsular/vascular invasion and lymph node metastasis. Overexpression of MTBP resulted in the suppression of the migratory and metastatic potential of HCC cells, while its downregulation increased the migration. Consistent with the previous report, MTBP endogenously bound to alpha-actinin 4 (ACTN4) and suppressed ACTN4-mediated cell migration in multiple HCC cell lines. However, MTBP also inhibited migratory potential of PLC/PRF/5 HCC cells whose migration was not altered by manipulation of ACTN4 expression. These results suggest that mechanisms behind MTBP-mediated migration suppression may not be limited to the pathway involving ACTN4 in certain cellular contexts. Additionally, as a potential mechanism for reduced MTBP expression in tumors, we found that MTBP expression was increased following the treatment with histone deacetylase inhibitors (HDIs). Our study, for the first time, provides clinical relevance of MTBP in the suppression of HCC metastasis. PMID:25759210

  8. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice

    PubMed Central

    HONG, ZAI-FA; ZHAO, WEN-XIU; YIN, ZHEN-YU; XIE, CHENG-RONG; XU, YA-PING; CHI, XIAO-QIN; ZHANG, SHENG; WANG, XIAO-MIN

    2016-01-01

    Natural killer (NK) cells have been demonstrated to inhibit tumor growth. However, the role of NK cells in the inhibition of hepatocellular carcinoma metastasis is not well understood. The present study aimed to investigate the roles that NK cells may serve in inhibiting hepatocellular carcinoma metastasis. The role of isolated NK cells in the inhibition, proliferation, migration and invasion of the hepatoma cell line, MHCC97-H, was examined in vitro. Additionally, the survival rate of NK cells labeled with carboxyfluorescein diacetate-succinimidyl ester was assessed in vivo. An orthotopic implantation model was used to evaluate the role of NK cells in suppressing MHCC97-H cells in vivo. The effect of interleukin (IL)-2 stimulation on the tumor-inhibitory role of the NK cells was measured indirectly by analyzing the expression of various NK cell receptors and activated NK cell markers. It was observed that the NK cells inhibited the proliferation, migration and invasion of the MHCC97-H cells in vitro. Furthermore, the NK cells demonstrated long-term survival in the livers of the nude mice, and inhibited lung metastasis of hepatocellular carcinoma in vivo. However, liver tumor growth was not inhibited by the NK cells. IL-2 was identified to enhance the tumor-inhibitory effect of NK cells. The present study concludes that IL-2 may enhance the antitumor activity of the NK cells, and thereby inhibit the metastases of hepatocellular carcinoma in mice. PMID:26998115

  9. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility

    PubMed Central

    Liu, Yiming; Zhang, Xiaodi; Sun, Ting; Jiang, Junchang; Li, Ying; Chen, Mingliang; Wei, Zhen; Jiang, Weiqin; Zhou, Linfu

    2016-01-01

    Golgi phosphoprotein 2 (GP73) is highly expressed in hepatocellular carcinoma (HCC) cells, where it serves as a biomarker and indicator of disease progression. We used MTS assays, anchorage-independent cell colony formation assays and a xenograft tumor model to show that GP73-specific siRNAs inhibit HCC proliferation in HepG2, SMMC-7721, and Huh7 cell lines and in vivo. Following GP73 silencing, levels of p-Rb, a factor related to metastasis, were reduced, but cell cycle progression was unaffected. Our results suggest that GP73 silencing may not directly suppress proliferation, but may instead inhibit cell motility. Results from proliferation assays suggest GP73 reduces expression of epithelial mesenchymal transition (EMT)-related factors and promotes cell motility, while transwell migration and invasion assays indicated a possible role in metastasis. Immunofluorescence co-localization microscopy and immunoblotting showed that GP73 decreases expression of N-cadherin and E-cadherin, two key factors in EMT, which may in turn decrease intracellular adhesive forces and promote cell motility. This study confirmed that GP73 expression leads to increased expression of EMT-related proteins and that GP73 silencing reduces HCC cell migration in vitro. These findings suggest that GP73 silencing through siRNA delivery may provide a novel low-toxicity therapy for the inhibition of tumor proliferation and metastasis. PMID:26870893

  10. mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat.

    PubMed

    Peng, Xingang; Zhang, Donghui; Li, Zhengling; Fu, Meili; Liu, Haiyan

    2016-09-01

    Histone deacetylases (HDACs) hyper-activity in hepatocellular carcinoma (HCC) is often associated with patients' poor prognosis. Our previous study has shown that resminostat, a novel HDAC inhibitor (HDACi), activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway in HCC cells. Here we explored the potential resminostat resistance factor by focusing on mammalian target of rapamycin (mTOR). We showed that AZD-2014, a novel mTOR kinase inhibitor, potentiated resminostat-induced cytotoxicity and proliferation inhibition in HCC cells. Molecularly, AZD-2014 enhanced resminostat-induced mPTP apoptosis pathway activation in HCC cells. Inhibition of this apoptosis pathway, by the caspase-9 specific inhibitor Ac-LEHD-CHO, the mPTP blockers (sanglifehrin A/cyclosporine A), or by shRNA-mediated knockdown of mPTP component cyclophilin-D (Cyp-D), significantly attenuated resminostat plus AZD-2014-induced cytotoxicity and apoptosis in HCC cells. Significantly, mTOR shRNA knockdown or kinase-dead mutation (Asp-2338-Ala) also sensitized HCC cells to resminostat, causing profound cytotoxicity and apoptosis induction. Together, these results suggest that mTOR could be a primary resistance factor of resminostat. Targeted inhibition of mTOR may thus significantly sensitize HCC cells to resminostat. PMID:27311860

  11. Eupolyphaga sinensis walker displays inhibition on hepatocellular carcinoma through regulating cell growth and metastasis signaling.

    PubMed

    Zhang, Yanmin; Zhan, Yingzhuan; Zhang, Dongdong; Dai, Bingling; Ma, Weina; Qi, Junpeng; Liu, Rui; He, Langchong

    2014-01-01

    Tumor growth and metastasis are responsible for most cancer patients' deaths. Here, we report that eupolyphaga sinensis walker has an essential role in resisting hepatocellular carcinoma growth and metastasis. Compared with proliferation, colony formation, transwell assay and transplantable tumor in nude mouse in vitro and vivo, eupolyphaga sinensis walker extract (ESWE) showed good inhibition on the SMMC-7721 cell growth and metastasis. Using genome-wide microarray analysis, we found the down-regulated growth and metastasis factors, and selected down-regulated genes were confirmed by real-time PCR. Knockdown of a checkpoint PKCβ by siRNA significantly attenuated tumor inhibition and metastasis effects of ESWE. Moreover, our results indicate ESWE inhibits HCC growth by not only downregulating the signaling of PKCβ, Akt, m-TOR, Erk1/2, MEK-2, Raf and JNK-1, but also increasing cyclin D1 protein levels and decreasing amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins. At the same time, ESWE reduced MMP2, MMP9 and CXCR4, PLG, NFκB and P53 activities. Overall, our studies demonstrate that ESWE is a key factor in growth and metastasis signaling inhibitor targeting the PKC, AKT, MAPK signaling and related metastasis signaling, having potential in cancer therapy. PMID:24980220

  12. Hedgehog inhibition reduces angiogenesis by downregulation of tumoral VEGF-A expression in hepatocellular carcinoma

    PubMed Central

    Pinter, Matthias; Sieghart, Wolfgang; Schmid, Monika; Dauser, Bernhard; Prager, Gerald; Dienes, Hans Peter; Trauner, Michael

    2013-01-01

    Background Dysregulation and activation of Hedgehog (Hh) signalling may contribute to tumorigenesis, angiogenesis, and metastatic seeding in several solid tumours. Objective We investigated the impact of Hh inhibition on tumour growth and angiogenesis using in-vitro and in-vivo models of hepatocellular carcinoma (HCC). Methods The effect of the Hh pathway inhibitor GDC-0449 on tumour growth was investigated using an orthotopic rat model. Effects on angiogenesis were determined by immunohistochemical staining of von Willebrand factor antigen and by assessing the mRNA expression of several angiogenic factors. In vitro, HCC cell lines were treated with GDC-0449 and evaluated for viability and expression of vascular endothelial growth factor (VEGF). Endothelial cells were evaluated for viability, migration, and tube formation. Results In the orthotopic HCC model, GDC-0449 significantly decreased tumoral VEGF expression which was accompanied by a significant reduction of microvessel density and tumour growth. In HCC cells, GDC-0449 had no effect on cell growth but significantly reduced target gene regulation and VEGF expression while having no direct effect on endothelial cell viability, migration, and tube formation. Conclusions Hh inhibition with GDC-0449 downregulates tumoral VEGF production in vitro and reduces tumoral VEGF expression, angiogenesis, and tumour growth in an orthotopic HCC model. PMID:24917971

  13. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis.

    PubMed

    Piccioni, Flavia; Fiore, Esteban; Bayo, Juan; Atorrasagasti, Catalina; Peixoto, Estanislao; Rizzo, Manglio; Malvicini, Mariana; Tirado-González, Irene; García, Mariana G; Alaniz, Laura; Mazzolini, Guillermo

    2015-08-01

    Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment. PMID:25882295

  14. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma.

    PubMed

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568

  15. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma

    PubMed Central

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568

  16. Recent insights on risk factors of hepatocellular carcinoma

    PubMed Central

    Abdel-Hamid, Nabil Mohie

    2009-01-01

    Hepatocellular carcinoma (HCC) is a disease prevalent in many populations worldwide. It initiates many economic and health problems in management modalities and leads to increasing mortality rates. Worldwide, trials have attempted to discover specific early markers for detection and prediction of the disease, hoping to set a more precise strategy for liver cancer prevention. Unfortunately, many economic, cultural and disciplinary levels contribute to confounding preventive strategies. Many risk factors contribute to predisposition to HCC, which can present individually or simultaneously. Previous articles discussed many risk factors for hepatocellular carcinogenesis; however, most of them didn't consider collectively the most recent data relating to causes. In this article, the pathogenesis and risk factors of HCC are discussed. Most of the intermediary steps of HCC involve molecular and transcriptional events leading to hepatocyte malignant transformation. These steps are mainly triggered by hepatitis B, C or transfusion-transmitted virus, either alone, or with other factors. Diabetes seems to be a major contributing risk factor. Schistosomiasis, a blood infestation, mostly affects Nile basin inhabitants leading to bladder, renal and hepatic cancers. Alcoholism, food and water pollutants and some drugs can also lead to HCC. Additionally, some hereditary diseases, as hemochromatosis, α-1-antitrypsin deficiency and tyrosinaemia are known to lead to the development of HCC, if not well managed. PMID:21160959

  17. Inhibition of VEGF165/VEGFR2-dependent signaling by LECT2 suppresses hepatocellular carcinoma angiogenesis

    PubMed Central

    Chen, Chi-Kuan; Yu, Wen-Hsuan; Cheng, Tsu-Yao; Chen, Min-Wei; Su, Chia-Yi; Yang, Yi-Chieh; Kuo, Tsang-Chih; Lin, Ming-Tsan; Huang, Ya-Chi; Hsiao, Michael; Hua, Kuo-Tai; Hung, Mien-Chie; Kuo, Min-Liang

    2016-01-01

    Hepatocellular carcinoma (HCC) relies on angiogenesis for growth and metastasis. Leukocyte cell-derived chemotaxin 2 (LECT2) is a cytokine and preferentially expressed in the liver. Previous studies have found that LECT2 targets to both immune and tumor cells to suppress HCC development and vascular invasion. Although LECT2 did not affect HCC cells growth in vitro, it still suppressed HCC xenografts growth in immune-deficient mice, suggesting other cells such as stroma cells may also be targeted by LECT2. Here, we sought to determine the role of LECT2 in tumor angiogenesis in HCC patients. We found that LECT2 expression inhibited tumor growth via angiogenesis in the HCC xenograft model. Specifically, we demonstrated that recombinant human LECT2 protein selectively suppressed vascular endothelial growth factor (VEGF)165-induced endothelial cell proliferation, migration, and tube formation in vitro and in vivo. Mechanistically, LECT2 reduced VEGF receptor 2 tyrosine phosphorylation and its downstream extracellular signal-regulated kinase and AKT phosphorylation. Furthermore, LECT2 gene expression correlated negatively with angiogenesis in HCC patients. Taken together, our findings demonstrate that LECT2 inhibits VEGF165-induced HCC angiogenesis through directly binding to VEGFR2 and has broad applications in treating VEGF-mediated solid tumors. PMID:27507763

  18. A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery

    PubMed Central

    Zou, Yu; Guo, Chuan-Gen; Yang, Zheng-Gang; Sun, Jun-Hui; Zhang, Min-Ming; Fu, Cai-Yun

    2016-01-01

    Introduction Hepatocellular carcinoma is currently the second leading cause of cancer-related deaths worldwide with an increasing incidence. Objective The objective of this study is to investigate the effect of vascular endothelial growth factor small interfering RNA (VEGF-siRNA) on rabbit VX2 carcinoma cell viability in vitro and the effect of transarterial embolization (TAE)-mediated VEGF-siRNA delivery on the growth of rabbit VX2 liver-transplanted model in vivo. Methods Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot technologies were used to detect the expression level of VEGF. TAE and computed tomography scan were used to deliver the VEGF-siRNA and detect the tumor volume in vivo, respectively. Microvessel density was detected by immunohistochemistry with CD34 antibody. A biochemical autoanalyzer was used to evaluate the hepatic and renal toxicity. Results The designed VEGF-siRNAs could effectively decrease the expression levels of VEGF mRNA and protein in vitro and in vivo. In vitro, the viability of rabbit VX2 carcinoma cells was reduced by 38.5%±7.3% (VEGF-siRNA no 1) and 30.0%±5.8% (VEGF-siRNA no 3) at 48 hours after transfection. Moreover, in rabbit VX2 liver-transplanted model, the growth ratios of tumors at 28 days after TAE-mediated siRNA delivery were 155.18%±19.42% in the control group, 79.67%±19.63% in the low-dose group, and 36.09%±15.73% in the high-dose group, with significant differences among these three groups. Microvessel density dropped to 34.22±4.01 and 22.63±4.07 in the low-dose group and high-dose group, respectively, compared with the control group (57.88±5.67), with significant differences among these three groups. Furthermore, inoculation of VX2 tumor into the liver itself at later stage induced significant increase in alanine aminotransferase and aspartate aminotransferase, indicating an obvious damage of liver functions, while treatment of VX2 tumor via TAE

  19. Hepatocellular carcinoma--epidemiological trends and risk factors.

    PubMed

    Schütte, Kerstin; Bornschein, Jan; Malfertheiner, Peter

    2009-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide with about 600,000 patients dying from the disease annually. In 70-90%, HCC develops on the background of chronic liver cirrhosis or inflammation. Risk factors and etiologies vary among geographical regions. In regions with a high incidence the majority of cases are related to HBV and HCV hepatitis. In developed countries, in addition to virus-related HCC, high consumption of alcohol as well as non-alcoholic fatty liver disease often in the context of metabolic syndromes are the prevalent causes. Improvement in clinical management of patients with liver cirrhosis and the control of related complications are the key for the rising incidence of HCC. This review gives an overview on epidemiological trends and risk factors and their mechanisms involved in the hepatocarcinogenesis. Knowledge of these factors will help to improve current concepts for prevention, screening and treatment of this disease. PMID:19546545

  20. FOXA2 suppresses the metastasis of hepatocellular carcinoma partially through matrix metalloproteinase-9 inhibition.

    PubMed

    Wang, Jian; Zhu, Chang-Peng; Hu, Ping-Fang; Qian, Hui; Ning, Bei-Fang; Zhang, Qing; Chen, Fei; Liu, Jiao; Shi, Bin; Zhang, Xin; Xie, Wei-Fen

    2014-11-01

    The forkhead box transcription factor A2 (FOXA2) is a member of the hepatocyte nuclear factor family and plays an important role in liver development and metabolic homeostasis, but its role in the metastasis of hepatocellular carcinoma (HCC) has not been evaluated. In this study, we found that the expression of FOXA2 was decreased in 68.1% (49/72) of human HCC tissues compared with their paired non-cancerous adjacent tissues. Clinicopathological analysis revealed that reduced FOXA2 expression was correlated with aggressive characteristics (venous invasion, poor differentiation, high tumor node metastasis grade). FOXA2 level was even lower in portal vein tumor thrombus compared with primary tumor tissues and correlated with epithelial-mesenchymal transition in HCC cells. Overexpression of FOXA2 inhibited migration and invasion of Focus cells, whereas knockdown of FOXA2 in HepG2 showed the opposite effect. Moreover, upregulation of FOXA2 suppressed HCC metastasis to bone, brain and lung in two distinct mouse models. Finally, we proved that FOXA2 repressed the transcription of matrix metalloproteinase (MMP)-9 and exerted its antimetastasis effect partially through downregulation of MMP-9. In conclusion, our findings indicate that FOXA2 plays a critical role in HCC metastasis and may serve as a novel therapeutic target for HCC. PMID:25142974

  1. BCL6B expression in hepatocellular carcinoma and its efficacy in the inhibition of liver damage and fibrogenesis

    PubMed Central

    Wu, Panyisha; Kong, Rong; Xu, Jiang; Zhang, Lufei; Yang, Qifan; Xie, Qingsong; Zhang, Linshi; Zhou, Xiaohu; Chen, Linghui; Xie, Haiyang; Zhou, Lin; Zheng, Shusen

    2015-01-01

    B cell CLL/lymphoma 6 member B (BCL6B) is expressed in many normal tissues but expressed at very low levels in cancer tissues. It was reported that BCL6B inhibits hepatocellular carcinoma (HCC) metastases, but the exact role of BCL6B in HCC remains to be investigated. BCL6B expression was significantly decreased in HCC tissues compared with paired non-cancer tissues. Low BCL6B expression in tumors was correlated with shorter overall survival in patients, and multivariate Cox regression analysis revealed that BCL6B expression was an independent prognostic factor for human HCC patients. Moreover, a positive correlation between BCL6B expression and hepatic cirrhosis was found in an analysis of HCC clinicopathological characteristics. BCL6B expression was increased in rat fibrotic liver samples in response to liver injury. BCL6B transgenic rats were less susceptible to hepatocellular damage, inflammation and fibrosis. In vitro studies demonstrated that BCL6B inhibited the activation of hepatic stellate cells though upregulation of hepatocyte growth factor. In addition, transcriptomic microarray analysis was performed to explore the mechanisms in which BCL6B confers protection from tumorigenesis. In conclusion, BCL6B plays a pivotal role as a prognostic biomarker for HCC, and the restoration of BCL6B may be a novel strategy as an anti-fibrogenic therapy for human HCC. PMID:25970780

  2. The Role of Hypoxia Inducible Factor-1 in Hepatocellular Carcinoma

    PubMed Central

    Luo, Dongjun; Wang, Zhongxia; Wu, Junyi; Jiang, Chunping

    2014-01-01

    Hypoxia is a common feature of many solid tumors, including hepatocellular carcinoma (HCC). Hypoxia can promote tumor progression and induce radiation and chemotherapy resistance. As one of the major mediators of hypoxic response, hypoxia inducible factor-1 (HIF-1) has been shown to activate hypoxia-responsive genes, which are involved in multiple aspects of tumorigenesis and cancer progression, including proliferation, metabolism, angiogenesis, invasion, metastasis and therapy resistance. It has been demonstrated that a high level of HIF-1 in the HCC microenvironment leads to enhanced proliferation and survival of HCC cells. Accordingly, overexpression, of HIF-1 is associated with poor prognosis in HCC. In this review, we described the mechanism by which HIF-1 is regulated and how HIF-1 mediates the biological effects of hypoxia in tissues. We also summarized the latest findings concerning the role of HIF-1 in the development of HCC, which could shed light on new therapeutic approaches for the treatment of HCC. PMID:25101278

  3. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells.

    PubMed

    Peng, Xing-Chen; Wang, Ming; Chen, Xu-Xia; Liu, Jing; Xiao, Gui-Hua; Liao, Hong-Li

    2014-10-01

    The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer. PMID:24997628

  4. Prognostic value of peritumoral heat-shock factor-1 in patients receiving resection of hepatocellular carcinoma

    PubMed Central

    Zhang, J-B; Guo, K; Sun, H-C; Zhu, X-D; Zhang, B; Lin, Z-H; Zhang, B-H; Liu, Y-K; Ren, Z-G; Fan, J

    2013-01-01

    Background: The cross-talk of hepatocellular carcinoma (HCC) cells and abnormal metabolic signals in peritumoral microenvironment modifies our knowledge of hepatocarcinogenesis. As an indispensable modulator of various stresses, the clinical significance of heat-shock transcription factor-1 (HSF1) in HCC microenvironment has never been defined. Methods: Hepatocellular carcinoma and matched peritumoral liver tissues (n=332) were semiquantitatively analysed for HSF1 expression, followed by correlation with clinicopathological parameters (patient outcomes). Moreover, the effects of HSF1 deficiency in L02 on monocarboxylate transporter-4 (MCT4) and HCC cells' colonisation and proliferation were investigated. Results: High expression of HSF1 in peritumoral tissue but not in HCC tissue was associated with poorer overall survival (OS) and time to recurrence (TTR), especially early recurrence (ER), which was further reconfirmed in validation cohort. Multivariate analysis showed that prognostic performance of peritumoral HSF1 was independent of other clinicopathological factors (hazard ratio for OS=2.60, P=0.002, for TTR=2.52, P<0.001). Notably, downregulation of HSF1 in L02 decreased MCT4 expression significantly. The supernatant from L02-shRNA-HSF1 in hypoxia, NOT normoxia condition, inhibited HCC cell colonisation and proliferation. Moreover, the combination of peritumoral HSF1 and MCT4 was the best predictor for ER and OS. Conclusion: High peritumoral HSF1 expression can serve as a sensitive ‘readout' for high-risk HCC ER, and could be a potential metabolic intervention target following curative resection. PMID:24002609

  5. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways

    PubMed Central

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  6. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways.

    PubMed

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  7. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma.

    PubMed

    Giannelli, Gianluigi; Villa, Erica; Lahn, Michael

    2014-04-01

    Hepatocellular carcinoma arises in patients as a consequence of long-standing preexisting liver illnesses, including viral hepatitis, alcohol abuse, or metabolic disease. In such preexisting liver diseases, TGF-β plays an important role in orchestrating a favorable microenvironment for tumor cell growth and promoting epithelial-mesenchymal transition (EMT). TGF-β signaling promotes hepatocellular carcinoma progression by two mechanisms: first, via an intrinsic activity as an autocrine or paracrine growth factor and, second, via an extrinsic activity by inducing microenvironment changes, including cancer-associated fibroblasts, T regulatory cells, and inflammatory mediators. Although there is an increasing understanding on how TGF-β signaling is associated with tumor progression in hepatocellular carcinoma, it is not clear whether TGF-β signaling is limited to a certain subgroup of patients with hepatocellular carcinoma or is a key driver of hepatocellular carcinoma during the entire tumorigenesis of hepatocellular carcinoma. Inhibitors of the TGF-β signaling have been shown to block hepatocellular carcinoma growth and progression by modulating EMT in different experimental models, leading to the clinical investigation of the TGF-β inhibitor LY2157299 monohydrate in hepatocellular carcinoma. Preliminary results from a phase II clinical trial have shown improved clinical outcome and also changes consistent with a reduction of EMT. PMID:24638984

  8. Risk Factors for the Development of Hepatocellular Carcinoma in Thailand

    PubMed Central

    Chitapanarux, Taned; Phornphutkul, Kannika

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. The incidence of HCC is on the rise in Thailand, where it has become the most common malignancy in males and the third most common in females. Here, we review some of the risk factors that have contributed to this increase in HCC incidence in the Thai population. Hepatitis B virus (HBV) is the main etiologic risk factor for HCC, followed by hepatitis C virus (HCV). Patients with HBV genotype C have a higher positive rate of hepatitis B early antigen (HBeAg) and progress to cirrhosis and HCC earlier than genotype B. For HCV patients, 16% developed HCC associated cirrhosis by year 5 after diagnosis, and the cumulative risk for death from HCC at year 10 was 60%. Dietary exposure to the fungal hepatocarcinogen aflatoxin B1 has been shown to interact synergistically with HBV infection to increase the risk of early onset HCC. Chronic alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, frequently in association with alcohol-induced cirrhosis. In recent years, obesity and metabolic syndrome have markedly increased the incidence of HCC and are important causes of HCC in some resource-rich regions. PMID:26623264

  9. The Epidemiological Investigation on the Risk Factors of Hepatocellular Carcinoma

    PubMed Central

    Niu, Jianjun; Lin, Yong; Guo, Zhinan; Niu, Mu; Su, Chenghao

    2016-01-01

    Abstract Incidence of hepatocellular carcinoma (HCC) ranked the fifth in male and ninth in the female counterparts, and 50% of incidence HCC cases were occurred in China with high hepatitis B virus (HBV) prevalence. HCC has seriously compromised the health status of general population in China. A case–control study of 314 HCC cases and 346 controls was conducted in Xiamen, which is an epidemic area in China for both hepatitis B infection and HCC. Face-to-face interview was conducted to gather information on demographic characteristics as well as exposure of environmental factors. Commercial enzyme-linked immunosorbent assay kits were used to determine the status of serological markers of HBV infection. Odds ratios and 95% confidence intervals were estimated by using unconditional logistic regression. Multivariate unconditional logistic regression analysis was applied to evaluate the potential interactions of variables or confounders. As expected, HBV and alcohol intake still are the major risk factors of HCC. Liver disease history and passive smoking are also associated with elevated HCC risk. Indoor air pollution and pesticide exposure have newly identified as risk factors of HCC. Fruit and tea intake can significantly lower the HCC risk. The application of HBV vaccine and reduction on alcohol intake should be further promoted in high-risk population. Fruit and tea can be served as chemoprevention in daily life due to their high accessibility. PMID:26871825

  10. [Role of environmental factors in the etiology of hepatocellular carcinoma].

    PubMed

    Tornai, István

    2010-07-11

    Chronic B and C virus hepatitis (HBV and HCV) are the most important risk factors in the development of hepatocellular carcinoma (HCC). About 40-50% of HCC is induced by these two chronic viral infections. Prevalence of HCC is slowly increasing in the United States and in Western-Europe, whereas alcohol consumption is gradually decreasing in the majority of these countries. However, the most important environmental risk factor for HCC is still the heavy long-term alcohol use. The risk of cirrhosis and HCC increases linearly, wherever ethanol intake is greater than 60 g/day for men and women. Aflatoxin, which contaminates grains, mostly in China and Africa, is a well-known mycotoxin. Since geographical distribution of aflatoxin as well as HBV overlaps with each other, they have a synergistic effect on inducing HCC. Cigarette smoking has also hepatocarcinogenic effect, which is significantly enhanced by the concomitant alcohol use or chronic viral hepatitis. Obesity, non-alcoholic fatty liver and steatohepatitis as well as diabetes mellitus together also form a significant risk for HCC, due to the gradually increasing number of patients. Insulin resistance and oxidative stress are the major pathogenetic mechanisms leading to hepatic cell injury in these patients. Oral contraceptive drugs may also play a role in the development of HCC. The long-term exposure to organic solvents is also a risk factor for HCC. Dietary antioxidants, selenium, statins and coffee drinking have protective effect against HCC. PMID:20570793

  11. Hepatoma-Derived Growth Factor: Its Possible Involvement in the Progression of Hepatocellular Carcinoma

    PubMed Central

    Enomoto, Hirayuki; Nakamura, Hideji; Liu, Weidong; Nishiguchi, Shuhei

    2015-01-01

    The development of hepatocellular carcinoma (HCC) is an important complication of viral infection induced by hepatitis virus C, and our major research theme is to identify a new growth factor related to the progression of HCC. HDGF (hepatoma-derived growth factor) is a novel growth factor that belongs to a new gene family. HDGF was initially purified from the conditioned medium of a hepatoma cell line. HDGF promotes cellular proliferation as a DNA binding nuclear factor and a secreted protein acting via a receptor-mediated pathway. HDGF is a unique multi-functional protein that can function as a growth factor, angiogenic factor and anti-apoptotic factor and it participates in the development and progression of various malignant diseases. The expression level of HDGF may be an independent prognostic factor for predicting the disease-free and overall survival in patients with various malignancies, including HCC. Furthermore, the overexpression of HDGF promotes the proliferation of HCC cells, while a reduction in the HDGF expression inhibits the proliferation of HCC cells. This article provides an overview of the characteristics of HDGF and describes the potential role of HDGF as a growth-promoting factor for HCC. PMID:26101867

  12. Non-viral factors contributing to hepatocellular carcinoma

    PubMed Central

    Hamed, Manal A; Ali, Sanaa A

    2013-01-01

    Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide, accounting for over half a million deaths per year. The geographic pattern of HCC incidence is parallel to exposure to viral etiologic factors. Its incidence is increasing, ranging between 3% and 9% annually depending on the geographical location, and variability in the incidence rates correspond closely to the prevalence and pattern of the primary etiologic factors. Chronic infections with hepatitis B viruses or hepatitis C viruses have both been recognized as human liver carcinogens with a combined attributable fraction of at least 75% of all HCC cases. Multiple non-viral factors have been implicated in the development of HCC. Increased body mass index and diabetes with subsequent development of non-alcoholic steatohepatitis represent significant risk factors for HCC. Other non-viral causes of HCC include iron overload syndromes, alcohol use, tobacco, oral contraceptive, aflatoxin, pesticides exposure and betel quid chewing, a prevalent habit in the developing world. Wilson disease, α-1 antitrypsin deficiency, Porphyrias, autoimmune hepatitis, Schistosoma japonicum associated with positive hepatitis B surface antigen, and thorotrast-ray are also contributing hepatocellualar carcinoma. In addition, primary biliary cirrhosis, congestive liver disease and family history of liver cancer increase the risk of HCC incident. In conclusion, clarification of relevant non-viral causes of HCC will help to focus clinicians on those risk factors that are modifiable. The multilevel preventative approach will hopefully lead to a reduction in incidence of non-viral HCC, and a decrease in the patient morbidity and mortality as well as the societal economic burden associated with HCC. PMID:23805355

  13. Sox17 inhibits hepatocellular carcinoma progression by downregulation of KIF14 expression.

    PubMed

    Yang, Tao; Li, Xiao-Na; Li, Li; Wu, Qi-Mei; Gao, Peng-Zhi; Wang, Hong-Lei; Zhao, Wei

    2014-11-01

    Sox17, an antagonist of canonical Wnt/β-catenin signaling, inhibits several malignant carcinogenesis and progression. However, little is known about Sox17 in hepatocellular carcinoma (HCC). Here, we found that Sox17 is downregulated in HCC tissue. Furthermore, Sox17 inhibits cell proliferation and migration in HCC. KIF14, a member of kinesin superfamily protein (KIFs), is an oncogene in a variety of malignant tumors including HCC. We demonstrated that Sox17 is negatively related to KIF14 expression in HCC tissue and Sox17 inhibits HCC cell proliferation and migration by transcriptional downregulation of KIF14 expression. Our results may provide a strategy for blocking HCC carcinogenesis and progression. PMID:25106407

  14. Downregulation of FOXP1 Inhibits Cell Proliferation in Hepatocellular Carcinoma by Inducing G1/S Phase Cell Cycle Arrest.

    PubMed

    Wang, Xin; Sun, Ji; Cui, Meiling; Zhao, Fangyu; Ge, Chao; Chen, Taoyang; Yao, Ming; Li, Jinjun

    2016-01-01

    Forkhead box P1 (FOXP1) belongs to a family of winged-helix transcription factors that are involved in the processes of cellular proliferation, differentiation, metabolism, and longevity. FOXP1 can affect cell proliferation and migratory ability in hepatocellular carcinoma (HCC) in vitro. However, little is known about the mechanism of FOXP1 in the proliferation of HCC cells. This study aimed to further explore the function of FOXP1 on the proliferation of HCC cells as well as the relevant mechanism involved. Western blot analysis, tumor xenograft models, and flow cytometry analysis were performed to elucidate the function of FOXP1 in the regulation of cell proliferation in human HCC. We observed that silencing FOXP1 significantly suppressed the growth ability of HCC cells both in vitro and in vivo. In addition, knockdown of FOXP1 induced G1/S phase arrest, and the expression of total and phosphorylated Rb (active type) as well as the levels of E2F1 were markedly decreased at 24 h; however, other proteins, including cyclin-dependent kinase (CDK) 4 and 6 and cyclin D1 did not show noticeable changes. In conclusion, downregulation of FOXP1 inhibits cell proliferation in hepatocellular carcinoma by inducing G1/S phase cell cycle arrest, and the decrease in phosphorylated Rb is the main contributor to this G1/S phase arrest. PMID:27618020

  15. Prognostic factors of hepatocellular carcinoma patients treated by transarterial chemoembolization.

    PubMed

    Xiao, Jun; Li, Guojian; Lin, Shuhan; He, Ke; Lai, Hao; Mo, Xianwei; Chen, Jiansi; Lin, Yuan

    2014-01-01

    We aim to investigate the clinical characteristics and prognostic factors of Hepatocellular Carcinoma (HCC) patients treated by transarterial chemoembolization (TACE) in Chinese cohort. A total of 2,493 HCC patients treated by TACE were included in this retrospective study. Patients were divided into the younger group (n=1,877) or the elderly group (n=616) based upon their ages (cut-off value of 60 y/o). Chi-square test or Wilcoxon rank-sum test was used to compare patients' characteristics. Univariate and multivariate analysis were used to determine prognostic factors. When compared with the younger group, the elderly group had lower male/female ratio and family liver disease history ratio, as well as advanced stage or Child-Pugh grade B patients. The median survival time was 8 months and 27 months for the younger and the elderly group, respectively. The 1-, 2-, and 3-year survival rates in the younger group and the elderly group were 31.82%, 12.5%, 6.53%, and 84.66%, 53.28%, 28.39%, respectively. Multivariate analysis showed that HBV infection, AFP value, TNM stage, Child-Pugh class, portal vein tumor thrombus (PVTT) and tumor number were independent prognostic factors for the younger patients; the elderly ones had similar independent prognostic factors except for HBV infection. The elderly group had lower male/female ratio and family history ratio, as well as advanced stage or Child-Pugh grade B patients. The elderly seems to have better prognosis than the younger ones, which is probably related to the fact that the elderly have lower tumor burden and better liver function. PMID:24696728

  16. 125I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma

    PubMed Central

    Hu, Peng-Hui; Pan, Lan-Hong; Wong, Patrick Ting-Yat; Chen, Wen-Hui; Yang, Yan-Qing; Wang, Hong; Xiang, Jun-Jian; Xu, Meng

    2016-01-01

    AIM: To investigate the inhibitory efficacy of 125I-labeled anti-basic fibroblast growth factor (bFGF) monoclonal antibody (mAb) in hepatocellular carcinoma (HCC). METHODS: bFGF mAb was prepared by using the 1G9B9 hybridoma cell line with hybridization technology and extracted from ascites fluid through a Protein G Sepharose affinity column. After labeling with 125I through the chloramine-T method, bFGF mAb was further purified by a Sephadex G-25 column. Gamma radiation counter GC-1200 detected radioactivity of 125I-bFGF mAb. The murine H22 HCC xenograft model was established and randomized to interventions with control (phosphate-buffered saline), 125I-bFGF mAb, 125I plus bFGF mAb, bFGF mAb, or 125I. The ratios of tumor inhibition were then calculated. Expression of bFGF, fibroblast growth factor receptor (FGFR), platelet-derived growth factor, and vascular endothelial growth factor (VEGF) mRNA was determined by quantitative reverse transcriptase real-time polymerase chain reaction. RESULTS: The purified bFGF mAb solution was 8.145 mg/mL with a titer of 1:2560000 and was stored at -20 °C. After coupling, 125I-bFGF mAb was used at a 1: 1280000 dilution, stored at 4 °C, and its specific radioactivity was 37 MBq/mg. The corresponding tumor weight in the control, 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 1.88 ± 0.25, 1.625 ± 0.21, 1.5 ± 0.18, 1.41 ± 0.16, and 0.98 ± 0.11 g, respectively. The tumor inhibition ratio in the 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 13.6%, 20.2%, 25.1%, and 47.9%, respectively. Growth of HCC xenografts was inhibited significantly more in the 125I-bFGF mAb group than in the other groups (P < 0.05). Expression of bFGF and FGFR mRNA in the 125I-bFGF mAb group was significantly decreased in comparison with other groups (P < 0.05). Groups under interventions revealed increased expression of VEGF mRNA (except for 125I group) compared with the control group. CONCLUSION: 125I-bFGF m

  17. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30.

    PubMed

    Guo, Zhigui; Cao, Manqing; You, Abin; Gao, Junrong; Zhou, Hongyuan; Li, Huikai; Cui, Yunlong; Fang, Feng; Zhang, Wei; Song, Tianqiang; Li, Qiang; Zhu, Xiaolin; Sun, Huichuan; Zhang, Ti

    2016-04-01

    We previously found that a low dose of sorafenib had a prometastatic effect on hepatocellular carcinoma (HCC), which was caused by downregulation of TIP30 expression. More recently, metformin has been shown to have potential as a preventive and therapeutic agent for different cancers, including HCC. This study evaluated whether the combination of sorafenib and metformin is sufficient to revert the expression of TIP30, thereby simultaneously reducing lung metastasis and improving survival. Our data show that the combination of sorafenib and metformin inhibits proliferation and invasion in vitro, prolongs median survival, and reduces lung metastasis of HCC in vivo. This effect is closely associated with the upregulation of TIP30, partly through activating AMP-activated protein kinase. Thioredoxin, a prometastasis factor, is negatively regulated by TIP30 and plays an essential role during the process of HCC metastasis. Overall, our results suggest that metformin might be a potent enhancer for the treatment of HCC by using sorafenib. PMID:26752068

  18. Macro- and micro-environmental factors in clinical hepatocellular cancer.

    PubMed

    Pancoska, Petr; Carr, Brian I

    2014-04-01

    We previously developed a network phenotyping strategy (NPS), a graph theory-based transformation of clinical practice data, for recognition of two primary subgroups of hepatocellular cancer (HCC), called S and L, which differed significantly in their tumor masses. In the current study, we have independently validated this result on 641 HCC patients from another continent. We identified the same HCC subgroups with mean tumor masses 9 cm x n (S) and 22 cm x n (L), P<10(-14). The means of survival distribution (not available previously) for this new cohort were also significantly different (S was 12 months, L was 7 months, P<10(-5)). We characterized nine unique reference patterns of interactions between tumor and clinical environment factors, identifying four subtypes for S and five subtypes for L phenotypes, respectively. In L phenotype, all reference patterns were portal vein thrombosis (PVT)-positive, all platelet/alpha fetoprotein (AFP) levels were high, and all were chronic alcohol consumers. L had phenotype landmarks with worst survival. S phenotype interaction patterns were PVT-negative, with low platelet/AFP levels. We demonstrated that tumor-clinical environment interaction patterns explained how a given parameter level can have a different significance within a different overall context. Thus, baseline bilirubin is low in S1 and S4, but high in S2 and S3, yet all are S subtype patterns, with better prognosis than in L. Gender and age, representing macro-environmental factors, and bilirubin, prothrombin time, and AST levels representing micro-environmental factors, had a major impact on subtype characterization. Clinically important HCC phenotypes are therefore represented by complete parameter relationship patterns and cannot be replaced by individual parameter levels. PMID:24787292

  19. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1.

    PubMed

    Tian, Zhijie; Jiang, Hequn; Liu, Ying; Huang, Yong; Xiong, Xin; Wu, Hongwei; Dai, Xiaozhen

    2016-05-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. PMID:27090017

  20. Baicalein inhibits hepatocellular carcinoma cells through suppressing the expression of CD24.

    PubMed

    Han, Zhengquan; Zhu, Shengming; Han, Xiao; Wang, Zian; Wu, Shiwu; Zheng, Rongsheng

    2015-12-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer death and is the most common type of liver cancer. Current therapies for hepatocellular carcinoma are still rather limited and novel therapeutic strategies are required. Baicalein, extracted from Scutellaria baicalensis, has anticancer effects on HCC in vitro and vivo. However, the detailed mechanisms are not well studied yet. In the present study, we evaluated anticancer effects of purified botanical extracts on HCC cells using high-throughput screening and investigated the effects of baicalein on HCC cells using proliferation and apoptosis assays, RT-PCR, and Western blot. Transfection was used to explore the underlying mechanisms of these effects. Our results showed that baicalein is the most efficient botanical extract in a HCC cell line as compared with the other 13 extracts. Baicalein significantly decreased the expression of c-Myc, a crucial regulator of cell proliferation, apoptosis and cellular transformation, in dose- and time-dependent manners in HCC cells. Moreover, baicalein inhibited HCC cell proliferation and induced apoptosis. The mRNA and protein expressions of CD24 were downregulated by baicalein in HCC cells and ectopic overexpression of CD24 reversed baicalein-induced inhibition of cell proliferation and survival. Taken together, our results demonstrate efficient anticancer effects of baicalein on HCC cells and indicate that baicalein suppresses cell growth and cell survival through downregulation of CD24. PMID:26548344

  1. TCP10L acts as a tumor suppressor by inhibiting cell proliferation in hepatocellular carcinoma

    SciTech Connect

    Zuo, Jie; Cai, Hao; Wu, Yanhua; Ma, Haijie; Jiang, Wei; Liu, Chao; Han, Dingding; Ji, Guoqing; Yu, Long

    2014-03-28

    Highlights: • TCP10L was down-regulated in clinical hepatocellular carcinoma (HCC). • Expression of TCP10L correlated significantly with tumor size and Milan criteria. • Overexpression of TCP10L attenuated growth of HCC cells both in vitro and in vivo. • Knocking down TCP10L promoted cell proliferation and tumorigenesis of HCC cells. - Abstract: TCP10L (T-complex 10 (mouse)-like) has been identified as a liver and testis-specific gene. Although a potential transcriptional suppression function of TCP10L has been reported previously, biological function of this gene still remains largely elusive. In this study, we reported for the first time that TCP10L was significantly down-regulated in clinical hepatocellular carcinoma (HCC) samples when compared to the corresponding non-tumorous liver tissues. Furthermore, TCP10L expression was highly correlated with advanced cases exceeding the Milan criteria. Overexpression of TCP10L in HCC cells suppressed colony formation, inhibited cell cycle progression through G0/G1 phase, and attenuated cell growth in vivo. Consistently, silencing of TCP10L promoted cell cycle progression and cell growth. Therefore, our study has revealed a novel suppressor role of TCP10L in HCC, by inhibiting proliferation of HCC cells, which may facilitate the diagnosis and molecular therapy in HCC.

  2. Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target

    PubMed Central

    Lin, Daniel; Wu, Jennifer

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the growing epidemic of obesity. There have been no effective therapeutic options in the advanced disease setting beyond sorafenib, a multi-targeted tyrosine kinase inhibitor that showed significant survival benefit. Because of this, there is an urgent need to search for novel pathways in sorafenib experienced patients. This review will focus on the role of hypoxia and hypoxia-inducible factor alpha (HIF-1α) in cancer development, specifically in HCC. We will discuss the biology of HIF-1α, the pathways with which it interacts, and the function of HIF-1α in HCC. Furthermore, we will review studies highlighting the relevance of HIF-1α in the clinical setting, as well as the pre-clinical data supporting its further investigation. Finally, we will conclude with a discussion of the potential role of a HIF-1α mRNA antagonist for the treatment of HCC, and hypothesize the ways in which such an inhibitor may be best utilized in the management of advanced HCC. Hypoxia plays a significant role in the development of HCC. HIF-1α is a key transcription factor involved in the hypoxic response of cancer cells. It activates transcription of genes responsible for angiogenesis, glucose metabolism, proliferation, invasion and metastasis in HCC. Its involvement in multiple, essential tumor pathways makes it an attractive potential therapeutic target in HCC. PMID:26576101

  3. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway

    PubMed Central

    Ku, Chung-Yu; Wang, Ying-Ren; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2015-01-01

    Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC. PMID:25978354

  4. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma.

    PubMed

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T; Ott, Katherine C; Lin, Shin; Capoccia, Benjamin J; Subramanian, Vijay; Hiebsch, Ronald R; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Frazier, William A; Lin, Yiing; Chapman, William C

    2015-05-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  5. Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells.

    PubMed

    Weifeng, Tan; Feng, Shen; Xiangji, Luo; Changqing, Su; Zhiquan, Qiu; Huazhong, Zeng; Peining, Yan; Yong, Yu; Mengchao, Wu; Xiaoqing, Jiang; Wan-Yee, Lau

    2011-01-15

    Artemisinin (ART) is isolated from the medicinal plant Artemisia annua L. To determine its effects on the invasion and metastasis of tumors, the human hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC-7721 were treated with different concentrations of ART. Starting at 12.5μM, ART had inhibitory effects in migration and invasion assays that increased at higher concentrations. The inhibitory effect also became stronger with time, from 24 to 72h. ART significantly inhibited the in vivo metastatic abilities of the HepG2 HCC cell line. ART inhibited the invasion and metastasis of HCC cells both in vitro and in vivo by reducing the level of the MMP2 metalloproteinase, and by inducing the TIMP2 protein. ART activated Cdc42, which enhanced E-cadherin activity, resulting in greater cell-cell adhesion, and significantly reduced metastasis. PMID:20739158

  6. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma

    PubMed Central

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T.; Ott, Katherine C.; Lin, Shin; Capoccia, Benjamin J.; Subramanian, Vijay; Hiebsch, Ronald R.; Upadhya, Gundumi A.; Mohanakumar, Thalachallour; Frazier, William A.; Lin, Yiing; Chapman, William C.

    2016-01-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  7. The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway.

    PubMed

    Lin, Chan-Chan; Zhou, Jing-Ping; Liu, Yun-Peng; Liu, Jing-Jing; Yang, Xiao-Ning; Jazag, Amarsanaa; Zhang, Zhi-Ping; Guleng, Bayasi; Ren, Jian-Lin

    2012-01-01

    Pokemon (POK erythroid myeloid ontogenic factor), which belongs to the POK protein family, is also called LRF, OCZF and FBI-1. As a transcriptional repressor, Pokemon assumes a critical function in cellular differentiation and oncogenesis. Our study identified an oncogenic role for Pokemon in human hepatocellular carcinoma (HCC). We successfully established human HepG2 and Huh-7 cell lines in which Pokemon was stably knocked down. We demonstrated that Pokemon silencing inhibited cell proliferation and migration. Pokemon knockdown inhibited the PI3K/Akt and c-Raf/MEK/ERK pathways and modulated the expression of various cell cycle regulators in HepG2 and Huh-7 cells. Therefore, Pokemon may also be involved in cell cycle progression in these cells. We confirmed that Pokemon silencing suppresses hepatocellular carcinoma growth in tumor xenograft mice. These results suggest that Pokemon promotes cell proliferation and migration in hepatocellular carcinoma and accelerates tumor development in an Akt- and ERK-signaling-dependent manner. PMID:23300578

  8. Downregulation of tetrahydrobiopterin inhibits tumor angiogenesis in BALB/c-nu mice with hepatocellular carcinoma

    PubMed Central

    Dai, Youguo; Cui, Jin; Gan, Ping; Li, Weiming

    2016-01-01

    Hepatocellular carcinoma (HCC) is a highly vascular tumor, and treatment options for patients of advanced-stage are limited. Nitric oxide (NO), which is derived from endothelial nitric oxide synthase (eNOS), provides crucial signals for angiogenesis in the tumor microenvironment. Tetrahydrobiopterin (BH4) is an essential cofactor eNOS and represents a critical determinant of NO production. To examine whether treatment of 2,4-diamino-6-hydroxypyrimidine (DAHP) inhibits angiogenesis of HCC, BALB/c-nu mice were injected with HepG-2 cells with DAHP. Supplemental DAHP treatment decreased K-ras mRNA transcripts, inhibition of phosphorylation of eNOS and Akt, inhibition of guanosine triphosphate cyclohydrolase (GTPCH), and decreased significantly NO synthesis, and then inhibited angiogenesis, compared with the results observed in the saline group. Histopathology demonstrated angiogenesis and tumor formation were significantly inhibited in HCC. DAHP downregulates GTPCH protein expression, corresponding to decreased levels of BH4 and the contents of NO. In addition, DAHP downregulates eNOS and Akt protein expression, corresponding to decreased eNOS phosphorylation at Ser1177 and Akt phosphorylation, compared with the saline control. We suggest that DAHP, recognized as a specific competitive inhibitor of GTPCH, can decrease tumor BH4 and NO by the inhibition of the wild-type Ras-PI3K/Akt pathway, and then inhibiting angiogenesis, and may provide a novel and promising way to target BH4 synthetic pathways to inhibit angiogenesis and to control potential progression of HCC. Whether DAHP has a therapeutic potential will require more direct testing in humans. PMID:27279530

  9. AR-42 induces apoptosis in human hepatocellular carcinoma cells via HDAC5 inhibition

    PubMed Central

    Zhang, Mingming; Pan, Yida; Dorfman, Robert G.; Chen, Zhaogui; Liu, Fuchen; Zhou, Qian; Huang, Shan; Zhang, Jun; Yang, Dongqin; Liu, Jie

    2016-01-01

    Histone deacetylases (HDACs) play critical roles in apoptosis and contribute to the proliferation of cancer cells. AR-42 is a novel Class I and II HDAC inhibitor that shows cytotoxicity against various human cancer cell lines. The present study aims to identify the target of AR-42 in hepatocellular carcinoma (HCC) as well as evaluate its therapeutic efficacy. We found that HDAC5 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. CCK8 and colony-formation assays showed that HDAC5 overexpression promotes proliferation in HCC cell lines. Treatment with AR-42 decreased HCC cell growth and increased caspase-dependent apoptosis, and this was rescued by HDAC5 overexpression. We demonstrated that AR-42 can inhibit the deacetylation activity of HDAC5 and its downstream targets in vitro and in vivo. Taken together, these results demonstrate for the first time that AR-42 targets HDAC5 and induces apoptosis in human hepatocellular carcinoma cells. AR-42 therefore shows potential as a new drug candidate for HCC therapy. PMID:26993777

  10. miR-128 modulates hepatocellular carcinoma by inhibition of ITGA2 and ITGA5 expression

    PubMed Central

    Zhao, Xiaohua; Wu, Yingfen; Lv, Zhiping

    2015-01-01

    Dysregulation of miRNAs is a common feature in human cancers, but this phenomenon has not been studied extensively in hepatocellular carcinoma (HCC). miR-128 has been found to be downregulated in cancer. However its role in HCC remains unclear. miR-128 was underexpressed in HCC tissues and cell lines compared with their normal controls. Additionally, ITGA2 and ITGA5 were predicted as the target genes of miR-128. ITGA2 and ITGA5 were inversely correlated with the expression of miR-128 in HCC cells. Importantly, we demonstrate that the overexpression of miR-128 significantly inhibits HCC cell metastasis and stem-cell like properties via ITGA2 and ITGA5. Our results suggest the existence of a novel miR-128-ITGA pathway and indicate that miR-128 acts as a tumor suppressor during hepatocellular carcinogenesis. These results may provide a promising alternative strategy for the therapeutic treatment of HCC. PMID:26550456

  11. Lidamycin inhibits tumor initiating cells of hepatocellular carcinoma Huh7 through GSK3β/β-catenin pathway.

    PubMed

    Chen, Yi; Yu, Dongke; Zhang, Caixia; Shang, Boyang; He, Hongwei; Chen, Jinjing; Zhang, Hao; Zhao, Wuli; Wang, Zhen; Xu, Xiaoyu; Zhen, Yongsu; Shao, Rong-guang

    2015-01-01

    Recently, tumor initiating cells are considered as the central role of tumorigenicity in hepatocellular carcinoma. Enediyne anticancer antibiotic lidamycin with great potential antitumor activity is currently evaluated in Phase II clinical trials. In this study, we evaluated the effect of lidamycin on tumor initiating cells of hepatocellular carcinoma Huh7 and identified the potential mechanism. Flow cytometry analysis and sorting assay, surface marker assay, sphere formation assay, and aldefluor assay were used to evaluate the effect of lidamycin on Huh7 tumor initiating cells in vitro. To investigate the potential mechanism, the activity of GSK3β/β-catenin pathway was detected by Western blot and T cell factors transcriptional activity assay. Subcutaneous tumor model in nude mice was used to observe in vivo effect of lidamycin on Huh7 cells. Lidamycin decreased the proportion of EpCAM+ cells and the expression of EpCAM protein. Lidamycin inhibited sphere formation of sorted EpCAM+ cells in 7 d, and of parental cells in three serial passages. The population of aldehyde dehydrogenase-positive cells was reduced by lidamycin. In addition, lidamycin restrained tumor volume and incidence in vivo. Lidamycin activated GSK3β, and degraded the activity of β-catenin. Consequently, transcriptional activity of β-catenin/T cell factors was decreased. In brief, these results suggest that lidamycin suppressed Huh7 tumor initiating cells via GSK3β/β-catenin pathway. These findings reveal the potential mechanism of lidamycin on tumor initiating cells and the benefit for further clinical evaluation. PMID:23857500

  12. Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts.

    PubMed

    Wei, Wei; Wu, Song; Wang, Xiaolin; Sun, Chris Kin-Wai; Yang, Xiaoyang; Yan, Xinrui; Chua, Mei-Sze; So, Samuel

    2014-07-30

    The molecular co-chaperone CDC37 is over-expressed in hepatocellular carcinoma (HCC) cells, where it functions with HSP90 to regulate the activity of protein kinases in multiple oncogenic signaling pathways that contribute towards hepatocarcinogenesis. Disruption of these signaling pathways via inhibition of HSP90/CDC37 interaction is therefore a rational therapeutic approach. We evaluated the anti-tumor effects of celastrol, pristimerin, and two novel derivatives (cel-D2, and cel-D7) on HCC cell lines in vitro and on orthotopic HCC patient-derived xenografts in vivo. All four compounds preferentially inhibited viability of HCC cells in vitro,and significantly inhibited the growth of three orthotopic HCC patient-derived xenografts in vivo; with the novel derivatives cel-D2 and cel-D7 exhibiting lower toxicity. All four compounds also induced cell apoptosis; and promoted degradation and inhibited phosphorylation of protein kinases in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways. We demonstrated that HSP90/CDC37 antagonists are potentially broad spectrum agents that might be beneficial for treating the heterogeneous subtypes of HCC, either as monotherapy, or in combination with other chemotherapeutic agents. PMID:25051375

  13. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  14. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma.

    PubMed

    Cheng, Shaobing; Jiang, Xu; Ding, Chaofeng; Du, Chengli; Owusu-Ansah, Kwabena Gyabaah; Weng, Xiaoyu; Hu, Wendi; Peng, Chuanhui; Lv, Zhen; Tong, Rongliang; Xiao, Heng; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2016-01-01

    Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC. PMID:27556459

  15. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma

    PubMed Central

    Cheng, Shaobing; Jiang, Xu; Ding, Chaofeng; Du, Chengli; Owusu-Ansah, Kwabena Gyabaah; Weng, Xiaoyu; Hu, Wendi; Peng, Chuanhui; Lv, Zhen; Tong, Rongliang; Xiao, Heng; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2016-01-01

    Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2’s potential role as a therapeutic target in HCC. PMID:27556459

  16. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression

    PubMed Central

    Zhang, Yi; Seng, Jing-Jing; Zhang, Hua-Peng; Ma, Xiu-Xian; Zhang, Gong; Li, Jie; Yan, Bing; Tang, Hong-Wei; Li, Shan-Shan; Wang, Li-Dong; Zhang, Shui-Jun

    2016-01-01

    Bromodomain 4 (BRD4) is an epigenetic regulator that, when inhibited, has anti-cancer effects. In this study, we investigated whether BRD4 could be a target for treatment of human hepatocellular carcinoma (HCC). We show that BRD4 is over-expressed in HCC tissues. Suppression of BRD4, either by siRNA or using JQ1, a pharmaceutical BRD4 inhibitor, reduced cell growth and induced apoptosis in HCC cell lines while also slowing HCC xenograft tumor growth in mice. JQ1 treatment induced G1 cell cycle arrest by repressing MYC expression, which led to the up-regulation of CDKN1B (P27). JQ1 also de-repressed expression of the pro-apoptotic BCL2L11 (BIM). Moreover, siRNA knockdown of BIM attenuated JQ1-triggered apoptosis in HCC cells, suggesting an essential role for BIM in mediating JQ1 anti-HCC activity. PMID:26575167

  17. Liver transplantation for hepatocellular carcinoma - factors influencing outcome and disease-free survival

    PubMed Central

    Fahrner, René; Dondorf, Felix; Ardelt, Michael; Dittmar, Yves; Settmacher, Utz; Rauchfuß, Falk

    2015-01-01

    Hepatocellular carcinoma is one of the leading causes of cancer-related death worldwide. Liver transplantation can be a curative treatment in selected patients. However, there are several factors that influence disease-free survival after transplantation. This review addresses the pre-, intra- and postoperative factors that influence the risk of tumor recurrence after liver transplantation. PMID:26576092

  18. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma.

    PubMed

    Vallianou, Ioanna; Dafou, Dimitra; Vassilaki, Niki; Mavromara, Penelope; Hadzopoulou-Cladaras, Margarita

    2016-09-01

    Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC. PMID:27477312

  19. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma

    PubMed Central

    Fu, Li; Xu, Weiqi; Liu, Dabin; Liang, Qiaoyi; Zhang, Xiang; Xu, Lixia; Guan, Xin-Yuan; Wu, Bin; Sung, Joseph J.Y.; Yu, Jun

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies but the molecular genetic basis of this disease remains unclear. By using genome-wide methylation profiling analysis, we identified CLDN3 as an epigenetically regulated gene in cancer. Here, we investigated its function and clinical relevance in human HCC. CLDN3 downregulation occurred in 87/114 (76.3%) of primary HCCs, where it was correlated significantly with shorter survival of HCC patients (P=0.021). Moreover, multivariate cyclooxygenase regression analysis showed that CLDN3 was an independent prognostic factor for overall survival (P=0.014). Absent expression of CLDN3 was also detected in 67% of HCC cell lines, which was significantly associated with its promoter hypermethylation. Ectopic expression of CLDN3 in HCC cells could inhibit cell motility, cell invasiveness, and tumor formation in nude mice. Mechanistic investigations suggested through downregulation of GSK3B, CTNNB1, SNAI2, and CDH2, CLDN3 could significantly suppress metastasis by inactivating the Wnt/β-catenin-epithelial mesenchymal transition (EMT) axis in HCC cells. Collectively, our findings demonstrated that CLDN3 is an epigenetically silenced metastasis suppressor gene in HCC. A better understanding of the molecular mechanism of CLDN3 in inhibiting liver cancer cell metastasis may lead to a more effective management of HCC patients with the inactivation of CLDN3. PMID:25277196

  20. Ginsenoside Rh2 inhibits hepatocellular carcinoma through β-catenin and autophagy

    PubMed Central

    Yang, Zhiqing; Zhao, Tingting; Liu, Hongli; Zhang, Leida

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common liver cancer, with a very poor prognosis. There is an urgent need for an effective therapy for HCC. Ginsenoside Rh2 (GRh2) has been shown to significantly inhibit growth of some types of cancer, whereas its effects on HCC have not been examined. Here, we treated human HCC cells with different doses of GRh2, and found that GRh2 dose-dependently reduced HCC viability, in either CCK-8 assay or MTT assay. The effects of GRh2 on the cancer stem cells (CSCs)-like cells were determined by aldefluor flow cytometry and by tumor sphere formation, showing that GRh2 dose-dependently decreased the number of these CSCs-like cells in HCC. Autophagy-associated protein and β-catenin level were measured in GRh2-treated HCC cells by Western blot, showing that GRh2 increased autophagy and inhibited β-catenin signaling. Expression of short hairpin small interfering RNA (shRNA) for Atg7 in HCC cells completely abolished the effects of GRh2 on β-catenin and cell viability, while overexpression of β-catenin abolished the effects of GRh2 on autophagy and cell viability. Together, our data suggest that GRh2 may inhibit HCC cell growth, possibly through a coordinated autophagy and β-catenin signaling. PMID:26783250

  1. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling

    PubMed Central

    Ke, Xiquan; Zhao, Yan; Lu, Xinlan; Wang, Zhe; Liu, Yuanyuan; Ren, Mudan; Lu, Guifang; Zhang, Dan; Sun, Zhenguo; Xu, Zhipeng; Song, Jee Hoon; Cheng, Yulan; Meltzer, Stephen J.; He, Shuixiang

    2015-01-01

    Thymoquinone (TQ) has been reported to possess anti-tumor activity in various types of cancer. However, its effects and molecular mechanism of action in hepatocellular carcinoma (HCC) are still not completely understood. We observed that TQ inhibited tumor cell growth in vitro, where treatment with TQ arrested the cell cycle in G1 by upregulating p21 and downregulating cyclinD1 and CDK2 expression; moreover, TQ induced apoptosis by decreasing expression of Bcl-2 and increasing expression of Bax. Simultaneously, TQ demonstrated a suppressive impact on the Notch pathway, where overexpression of NICD1 reversed the inhibitory effect of TQ on cell proliferation, thereby attenuating the repressive effects of TQ on the Notch pathway, cyclinD1, CDK2 and Bcl-2, and also diminishing upregulation of p21 and Bax. In a xenograft model, TQ inhibited HCC growth in nude mice; this inhibitory effect in vivo, as well as of HCC cell growth in vitro, was associated with a discernible decline in NICD1 and Bcl-2 levels and a dramatic rise in p21 expression. In conclusion, TQ inhibits HCC cell growth by inducing cell cycle arrest and apoptosis, achieving these effects by repression of the Notch signaling pathway, suggesting that TQ represents a potential preventive or therapeutic agent in HCC patients. PMID:26416455

  2. N-all-trans-retinoyl-L-proline inhibits metastatic potential of hepatocellular carcinoma cells.

    PubMed

    Wu, Xing Zhong; Shi, Peng-Chen; Hu, Ping; Chen, Yi; Ding, Sheng-Song

    2006-08-01

    Tumor metastasis is usually a serious problem in tumor patients because of the lack of therapeutic approaches. A new compound, N-all-trans-retinoyl-L-proline (ATRP), has been developed and its metastasis inhibition activity has been studied. Low concentrations of ATRP have already been found to inhibit hepatocellular carcinoma cells (HCC) in a dose- and time-dependent manner by inducing the expression of p27(kip). We found that ATRP inhibited metastasis-associated behaviors in Hep3B cells, such as cell migration, invasion, collagen adhesion and gelatinase expression, more significantly than retinoic acid. Further, such inhibitory activities were observed in the regulation of cellular surface fucosylated epitope functions, such as binding of ulex europaeus lectin, expression of Lewis x, y and b, and activity of alpha1,3 fucosyltransferase. Hep3B cells pretreated with ATRP showed a significantly reduced incidence of experimental intrahepatic metastasis in nude mice. We conclude that ATRP is an alternative inhibitor and potential therapeutic agent for HCC metastasis with a different mechanism of action from ATRP. PMID:16806999

  3. MNT inhibits the migration of human hepatocellular carcinoma SMMC7721 cells

    SciTech Connect

    Wu, Jian; Zhou, Qi; Wang, Yafeng; Zhou, Xiangbing; Li, Jiaping

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer MNT is a member of the Myc/Max/Mad network that plays a role in cell proliferation. Black-Right-Pointing-Pointer Our study further emphasized the role of MNT in migration inhibition of SMMC7721 cells. Black-Right-Pointing-Pointer MNT might be a promising target for HCC chemotherapy. -- Abstract: Max binding protein (MNT) is a member of the Myc/Max/Mad network that plays a role in cell proliferation, differentiation and apoptosis. We previously observed that MNT was differentially expressed in hepatocellular carcinoma (HCC) and interacted with Nck1 by 2-DE. Nck family adaptor proteins function to couple tyrosine phosphorylation signals, regulate actin cytoskeletal reorganization and lead to cell motility. In order to investigate the regulatory role of MNT in HCC migration, we used transient transfection with a MNT expressing vector to overexpress MNT protein in SMMC7721 cells, and MNT siRNA to knockdown MNT expression. Rho Family Small GTPase activation assay, Western blots and transwell assay were used to determine the migration potential of cells. We found that knockdown of MNT expression might promote SMMC7721 cell migration, while the overexpressed MNT could significantly inhibit cell migration. It further emphasized the role of MNT in inhibition of cell migration that might be a promising target for HCC chemotherapy.

  4. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway

    PubMed Central

    Yang, Zhao; Liu, Shengwu; Zhu, Mingao; Zhang, Hong; Wang, Ji; Xu, Qian; Lin, Kaisu; Zhou, Xiumin; Tao, Min; Li, Chong; Zhu, Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Particularly, a large number of patients with CRC also have liver metastasis. Currently, there are just a few targeted drugs against these two kinds of tumors which can only benefit a very small population of patients. Therefore, the need of more effective therapeutic drugs or strategies for these two types of cancers is urgent. PS341 (Bortezomib) is the first proteasome inhibitor drug which has been approved in clinical treatment for multiple myeloma. Here we demonstrated that PS341 negatively regulated HCC and CRC both in vitro and in vivo, including the inhibition of cell proliferation, epithelial-mesenchymal transition (EMT), the expression of stemness-related genes, cell migration and invasiveness. Mechanically, PS341 upregulated the expression of FOXO3, which inhibited the transcriptional activation of CTNNB1. The downregualtion of CTNNB1 led to apoptosis, cell cycle arrest, and the inhibition of migration, invasion, self-renewal and tumor formation of these two cancer types. In sum, our findings shed light on the PS341 mediated targeted therapy against both HCC and CRC in the future. PMID:26915315

  5. Novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor as treatment for hepatocellular carcinoma.

    PubMed

    Nakao, Keisuke; Tanaka, Shinji; Miura, Tomoya; Sato, Kota; Matsumura, Satoshi; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2015-08-01

    We previously identified Aurora B kinase as the only independent factor predictive of the aggressive recurrence of hepatocellular carcinoma (HCC). In this preclinical study, JNJ-28841072, a novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor, was evaluated for treatment of HCC. In vitro and in vivo effects of JNJ-28841072 were analyzed using human HCC cell cultures and xenograft models. An orthotopic liver xenograft model was used for the pharmacobiological effects on Aurora kinase and vascularization in hepatic tumors. JNJ-28841072 suppressed in vitro phosphorylation of histone H3 with induction of cell polyploidy and death in a dose-dependent manner (IC50  = 0.8-1.2 μM). In s.c. human HCC xenografts, remarkable inhibition of tumor growth was observed after JNJ-28841072 treatment (P = 0.0005). In orthotopic liver xenografts, the treatment with JNJ-28841072 significantly suppressed in vivo phosphorylation of histone H3 (P = 0.0008), vessel formation (P = 0.018), normoxic area (P = 0.0001), and hepatoma growth (P = 0.038). Our preclinical studies indicate that JNJ-28841072 is a promising novel therapeutic approach for the treatment of HCC. It might be worthy of evaluation in further studies. PMID:26011703

  6. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress.

    PubMed

    Zhai, Bo; Hu, Fengli; Yan, Haijiang; Zhao, Dali; Jin, Xin; Fang, Taishi; Pan, Shangha; Sun, Xueying; Xu, Lishan

    2015-01-01

    Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC. PMID:26381511

  7. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress

    PubMed Central

    Zhai, Bo; Hu, Fengli; Yan, Haijiang; Zhao, Dali; Jin, Xin; Fang, Taishi; Pan, Shangha; Sun, Xueying; Xu, Lishan

    2015-01-01

    Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC. PMID:26381511

  8. MicroRNA-200a inhibits epithelial-mesenchymal transition in human hepatocellular carcinoma cell line

    PubMed Central

    Zhong, Chong; Li, Ming-Yi; Chen, Zhi-Yuan; Cheng, Hai-Kun; Hu, Ming-Li; Ruan, Yue-Lu; Guo, Rong-Ping

    2015-01-01

    Objective: Our study investigated the role of microRNA (miR)-200a and its molecular targets in hepatocellular carcinoma (HCC) cells. Methods: An inhibitor of miR-200a was transiently transfected into the hepatocellular carcinoma cell line, MHCC-97L. The effect of this transfection on mRNA levels of epithelial-mesenchymal transition (EMT)-related genes was measured by fluorescence-based quantitative real-time polymerase chain reaction (qRT-PCR). Further, protein levels of EMT-related genes, cell proliferation and apoptosis-related markers were assessed by Western blot analysis in these transfected cells. MTT and wound-healing assay were used to evaluate the proliferation and migration of MHCC-97L cells in presence and in absence of miR-200a inhibitor. Results: Compared with miR-NC control group, qRT-PCR results in anti-miR-200a group revealed a significant reduction in the mRNA levels of E-cadherin, with a concomitant increasing in vimentin mRNA level (all P < 0.05). Western blot results showed higher E-cadherin and Caspase-3 protein expressions in anti-miR-200a group compared to miR-NC group (P < 0.05). In addition, vimentin and Ki-67 protein expression was found sharply decreased in anti-miR-200a group compared to miR-NC group (P < 0.05). Consistent with this, wound-healing and MTT assay showed that migration and proliferation capacity of MHCC-97L cells in anti-miR-200a group is significantly increased compared with miR-NC group (both P < 0.05). Conclusion: Our study reveals an important role of miR-200a in inhibiting EMT, proliferation and migration in HCC cells, suggesting the possibility of miR-200a-based therapeutics in HCC. PMID:26617701

  9. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells.

    PubMed

    Bu, Yang; Jia, Qing-An; Ren, Zheng-Gang; Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-11-24

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  10. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells

    PubMed Central

    Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-01-01

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  11. PARTIAL PURIFICATION AND CHARACTERIZATION OF A HEPATOCYTE GROWTH FACTOR PRODUCED BY RAT HEPATOCELLULAR CARCINOMA CELLS

    EPA Science Inventory

    Serum-free medium conditioned by confluent cultures of JM1 or JM2 rat hepatocellular carcinoma cells stimulated DNA synthesis in primary cultures of adult rat hepatocytes in a dose-dependent, saturable manner and in the absence of epidermal growth factor. The hepatotrophic activi...

  12. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of {beta}-catenin

    SciTech Connect

    Wang, Xiaojun; Chen, Ji; Li, Feng; Lin, Yanting; Zhang, Xiaoping; Lv, Zhongwei; Jiang, Jiaji

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer miR-214 is frequently downregulated in human HCC cell lines and tissues. Black-Right-Pointing-Pointer miR-214 overexpression inhibits HCC cell growth in vitro and in vivo. Black-Right-Pointing-Pointer miR-214 directly targets {beta}-catenin 3 Prime -UTR in HCC cells. Black-Right-Pointing-Pointer miR-214 regulates {beta}-catenin downstream signaling molecules. -- Abstract: Mounting evidence has shown that microRNAs (miRNAs) are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. Recent profile studies of miRNA expression have documented a deregulation of miRNA (miR-214) in hepatocellular carcinoma (HCC). However, its potential functions and underlying mechanisms in hepatocarcinogenesis remain largely unknown. Here, we confirmed that miR-214 is significantly downregulated in HCC cells and specimens. Ectopic overexpression of miR-214 inhibited proliferation of HCC cells in vitro and tumorigenicity in vivo. Further studies revealed that miR-214 could directly target the 3 Prime -untranslated region (3 Prime -UTR) of {beta}-catenin mRNA and suppress its protein expression. Similar to the restoring miR-214 expression, {beta}-catenin downregulation inhibited cell growth, whereas restoring the {beta}-catenin expression abolished the function of miR-214. Moreover, miR-214-mediated reduction of {beta}-catenin resulted in suppression of several downstream genes including c-Myc, cyclinD1, TCF-1, and LEF-1. These findings indicate that miR-214 serves as tumor suppressor and plays substantial roles in inhibiting the tumorigenesis of HCC through suppression of {beta}-catenin. Given these, miR-214 may serve as a useful prognostic or therapeutic target for treatment of HCC.

  13. Luteoloside Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma Cells by Inhibition of NLRP3 Inflammasome

    PubMed Central

    Lu, Jun; Zheng, Yuan-lin; Wu, Dong-mei; Li, Meng-qiu; Hu, Bin; Zhang, Zi-feng; Cheng, Wei; Shan, Qun

    2014-01-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC. PMID:24587153

  14. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    SciTech Connect

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei; Fan, Junhua; Xu, Jing

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  15. miR-663a inhibits hepatocellular carcinoma cell proliferation and invasion by targeting HMGA2.

    PubMed

    Huang, Weizhen; Li, Jun; Guo, Xiaohong; Zhao, Yingchu; Yuan, Xia

    2016-07-01

    Hepatocellular carcinoma (HCC) is a highly aggressive solid malignancy throughout the world. Dysregulation of miRNAs play essential roles in HCC progression via aberrant regulation of cell proliferation, apoptosis, as well as metastasis. miR-663a is a poorly investigated miRNA. Whether miR-663a regulates HCC development remains unknown. The aim of the study was to explore the role of miR-663a in HCC development. To determine the expression level of miR-663a in HCC, we analyzed the data from GSE21362 and TCGA. The results showed that miR-663a was significantly down-regulated in HCC tissue compared with adjacent non-tumor tissue. Gain of function and loss of function assays revealed that miR-663a distinctly inhibited cell proliferation, migration and invasion. Mechanistic investigations demonstrated that miR-663a modulated cell functions through targeting and suppressing high mobility group A2 (HMGA2). In addition, overexpression of HMGA2 remarkably attenuated the tumor repressive effect of miR-663a. Taken together, miR-663a inhibits HCC cell proliferation and motility by targeting HMGA2. PMID:27261623

  16. Inhibition of mTOR promotes hyperthermia sensitivity in SMMC-7721 human hepatocellular carcinoma cell line

    PubMed Central

    WANG, QING-LIANG; LIU, BO; LI, XIAO-JIE; HU, KUN-PENG; ZHAO, KUN; YE, XIAO-MING

    2016-01-01

    The mammalian target of rapamycin (mTOR) is a critical mediator of the phosphoinositide 3-kinase/protein kinase B/mTOR signaling pathway, and mTOR activity is induced following heat shock. Thermotherapy is used to treat hepatocellular carcinoma (HCC). However, the role of mTOR in modulating thermosensitivity in HCC has yet to be elucidated. In the present study, the antisense plasmid pEGFP-C1-mTOR was transfected into SMMC-7721 cells, and the expression levels of mTOR were analyzed by reverse transcription-polymerase chain reaction and western blot analysis. The thermal responses of the transfected cells were also examined. The results revealed that SMMC-7721 cells were sensitive to heat treatment, and cell viability was significantly inhibited following hyperthermia treatment (P<0.01). The mRNA and protein expression levels of mTOR decreased post-transfection. Cell proliferation, colony-forming ability and motility were all significantly decreased following hyperthermia treatment in the transfected cells. Flow cytometry analysis demonstrated that apoptosis was significantly increased following treatment (P<0.01). The number of cells in S phase was increased, and the cell cycle was arrested in S phase. In conclusion, inhibition of mTOR increased the thermosensitivity of SMMC-7721 cells by increasing cellular apoptosis and inducing S phase arrest. PMID:26998020

  17. miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma

    PubMed Central

    Liu, Yahui; Zhang, Wei; Liu, Kai; Liu, Songyang; Ji, Bai; Wang, Yingchao

    2016-01-01

    Accumulating evidence suggests that miR-138 expression was frequently downregulated in different cancer types and involves in the progression of tumorigenesis. However, the biological role and molecular mechanism of miR-138 involvement in hepatocellular carcinoma (HCC) still remains largely unknown. Therefore, in the present study, we investigated the role of miR-138 in the progression of HCC. We found that miR-138 expression levels were significantly downregulated in HCC tissues and cell lines compared with the corresponding noncancerous liver tissues and normal hepatic cell line. In addition, we also found that enforced expression of miR-138 inhibited proliferation, colony formation, migration and invasion in HCC cells. Using a luciferase reporter assay, SOX9 was confirmed as a direct target of miR-138. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay showed that overexpression of miR-138 in HCC cells significantly inhibited SOX9 expression on mRNA level and protein level. Furthermore, SOX9 expression was significantly upregulated in HCC tissues and cell lines, and its mRNA expression is negative correlated with miR-138 expression in clinical HCC tissues (r=-0.689, P<0.01). Of note, downregulation of SOX9 performed similar effects with overexpression of miR-138. These findings suggested that miR-138 functioned as a tumor suppressor in HCC partially via repressing SOX9 expression. PMID:27347323

  18. Reexpression of ARHI inhibits tumor growth and angiogenesis and impairs the mTOR/VEGF pathway in hepatocellular carcinoma

    SciTech Connect

    Zhao, Xiaohai; Li, Jinfeng; Zhuo, Jianxin; Cai, Liuxin

    2010-12-17

    Research highlights: {yields} Reconstitution of ARHI suppresses the growth of HCC xenografts. {yields} ARHI reexpression impairs tumor angiogenesis in vivo. {yields} Inhibition of the mTOR/VEGF signaling by forced expression of ARHI. {yields} Manipulating ARHI may be of therapeutic benefit in treatment of ARHI-negative HCCs. -- Abstract: The Ras-related tumor suppressor gene aplasia Ras homolog member I (ARHI) is frequently downregulated in many types of cancer, including hepatocellular carcinoma (HCC). In this study, we sought to explore the therapeutic implications of ARHI reconstitution in the treatment of HCC. We generated stable cell lines overexpressing ARHI in Hep3B and SK-Hep1 cells, both of which lack endogenous ARHI. The effects of ARHI reexpression on tumor growth and angiogenesis were assessed. Given the key role of mammalian target of rapamycin (mTOR) signaling in HCC progression, we also tested whether ARHI overexpression affected the mTOR pathway. Forced expression of ARHI resulted in a significant inhibition of the proliferation of both Hep3B and SK-Hep1 cells compared to control cells (P < 0.01). Cell cycle analysis revealed a G0-G1 arrest induced by ARHI reexpression. Moreover, ARHI reexpression significantly retarded Hep3B xenograft growth in vivo, and caused a marked reduction in tumor angiogenesis assessed by CD31-stained microvessel count. Western blot analysis of the xenografts showed that ARHI overexpression substantially reduced the phosphorylation of two mTOR substrates, S6K1 and 4E-BP1, indicative of an inactivation of the mTOR pathway. Accompanying with the mTOR inactivation, the angiogenic factors, hypoxia-inducible factor 1 alpha and vascular endothelial growth factor, were significantly downregulated. These data highlighted an important role for ARHI in controlling HCC growth and angiogenesis, therefore offering a possible therapeutic strategy against this malignancy.

  19. Membrane IL1α Inhibits the Development of Hepatocellular Carcinoma via Promoting T- and NK-cell Activation.

    PubMed

    Lin, Dandan; Lei, Lei; Liu, Yonghao; Zhang, Yinsheng; Hu, Bo; Bao, Guangming; Song, Yuan; Jin, Ziqi; Liu, Chunliang; Mei, Yu; Sandikin, Dedy; Wu, Yan; Zhao, Lixiang; Yu, Xiao; Liu, Haiyan

    2016-06-01

    Hepatocellular carcinoma is a worldwide health problem with limited treatment options and poor prognosis. Inflammation associated with liver injury and hepatocyte regeneration can lead to fibrosis, cirrhosis, and eventually, hepatocellular carcinoma. IL1α is one of the most important inflammatory cytokines involved in inflammation and tumor development. IL1α presents as multiple forms in vivo, including precursor, propiece, membrane, and secreted forms, and their functions have been thought to be different. The role of membrane IL1α in hepatocellular carcinoma tumorigenesis is still not clear. Here, we examined the functions of membrane IL1α in murine hepatocellular carcinoma models. We found that membrane IL1α potently inhibited hepatocellular carcinoma tumor growth. Further studies showed that membrane IL1α promoted T- and natural killer (NK)-cell activation in vivo IFNγ production by CD8(+) T and NK cells was also increased as a result of membrane IL1α expression. Moreover, the cytotoxicity of the CTL and NK cells was also enhanced by membrane IL1α expression. Furthermore, in vitro studies demonstrated that membrane IL1α could directly activate T cells and NK cells in a cell contact-dependent manner. Conversely, depletion of both CD8(+) T and NK cells suppressed the antitumor activity of membrane IL1α. Our studies demonstrated that membrane IL1α could promote antitumor immune responses through activation of T and NK cells. Thus, our findings provide new insights of IL1α functions during hepatocellular carcinoma development. Cancer Res; 76(11); 3179-88. ©2016 AACR. PMID:27206848

  20. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    PubMed Central

    2011-01-01

    Background Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis. PMID:21205319

  1. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway.

    PubMed

    Wu, Jinsheng; Han, Jingli; Hou, Benxin; Deng, Chengwei; Wu, Huanliang; Shen, Liangfang

    2016-05-01

    Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma. PMID:26935987

  2. 3'3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling.

    PubMed

    Li, Wen-Xue; Chen, Li-Ping; Sun, Min-Ying; Li, Jun-Tao; Liu, Hua-Zhang; Zhu, Wei

    2015-09-15

    Late stage hepatocellular carcinoma (HCC) usually has a low survival rate because it has high potential of metastases and there is no effective cure. 3'3-Diindolylmethane (DIM) is the major product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables. DIM has been proved to exhibit anticancer properties. In this study, we explored the effects and molecular mechanisms of anti-metastasis of DIM on HCC cells both in vitro and in vivo. We chose two HCC cell lines SMMC-7721 and MHCC-97H that have high potential of invasion. The results showed that DIM inhibited the proliferation, migration and invasion of these two cell lines in vitro. In addition, in vivo study demonstrated that DIM significantly decreased the volumes of SMMC-7721 orthotopic liver tumor and suppressed lung metastasis in nude mice. Focal Adhesion Kinase (FAK) is found over activated in HCC cells. We found that DIM decreased the level of phospho-FAK (Tyr397) both in vitro and in vivo. DIM inhibition of phospho-FAK (Tyr397) led to down-regulation of MMP2/9 and decreased potential of metastasis. DIM also repressed the migration and invasion induced by vitronectin through inactivation of FAK pathway and down-regulation of MMP2/9 in vitro. We also found that pTEN plays a role in down-regulation of FAK by DIM. These results demonstrated that DIM blocks HCC cell metastasis by suppressing tumor cell migration and invasion. The anti-metastasis effect of DIM could be explained to be its down-regulated expression and activation of MMP2/9 partly induced by up-regulation of pTEN and inhibition of phospho-FAK (Tyr397). PMID:26068982

  3. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells.

    PubMed

    Fu, Meili; Wan, Fuqiang; Li, Zhengling; Zhang, Fenghua

    2016-03-01

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation-inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. PMID:26773495

  4. FCN2 inhibits epithelial-mesenchymal transition-induced metastasis of hepatocellular carcinoma via TGF-β/Smad signaling.

    PubMed

    Yang, Guangchao; Liang, Yingjian; Zheng, Tongsen; Song, Ruipeng; Wang, Jiabei; Shi, Huawen; Sun, Boshi; Xie, Changming; Li, Yuejin; Han, Jihua; Pan, Shangha; Lan, Yaliang; Liu, Xirui; Zhu, Mingxi; Wang, Yan; Liu, Lianxin

    2016-08-10

    Hepatocellular carcinoma (HCC) is currently still a major cause of cancer-related deaths. Identifying early metastatic biomarkers and therapeutic targets for HCC is of great importance. Emerging evidence suggest that epithelial-mesenchymal transitions (EMTs) play important roles in tumor metastasis and recurrence. Understanding molecular mechanisms that regulate the EMT process is crucial for improving HCC. In this study, we find Ficolin-2 (FCN2) plays an essential role in metastasis and EMT of HCC. FCN2 expression is downregulated in HCC cells and tissues. Low level of FCN2 in HCCs is correlated with aggressive metastatic features, and would be a prognostic factor for overall disease-free survival of HCC patients. Ectopic expression of FCN2 markedly inhibits HCC cells migration, invasion as well as EMT in vitro and in vivo. Moreover, TGF-β is found contribute to the function of FCN2 in suppressing metastasis and EMT of HCC. Collectively, our data suggest that FCN2 may have prognostic value in HCC metastasis. Additionally, the FCN2/ TGF-β/EMT axis identified in this study provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC. PMID:27177473

  5. Factors Impacting the Child with Behavioral Inhibition

    ERIC Educational Resources Information Center

    Hornbuckle, Suzanne R.

    2010-01-01

    Various factors influence the developmental course of the behaviorally inhibited child. These factors include reciprocating, contextual factors, such as the child's own traits, the environment, the maternal characteristics, and the environment. Behaviorally inhibited children show physiological and behavioral signs of fear and anxiety when…

  6. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells.

    PubMed

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  7. Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway.

    PubMed

    Dong, Shuying; Kong, Jian; Kong, Jinge; Shen, Qiang; Kong, Fandong; Sun, Wenbing; Zheng, Lemin

    2015-01-01

    Accumulating evidences have reported that caffeine has anticancer effects at high blood concentrations. However, whether caffeine has anticancer effects on human hepatocellular carcinoma (HCC) cells at low concentration, especially at physiologically applicable concentration (< 412 μM) is still not well understood. In this study, HCC cell lines HepG2 and Huh7 were used. The cells were incubated with varying concentrations of caffeine (0, 50, 100, 200, 400 or 600 μM). MTT assay was used to investigate the proliferation ability in vitro. Migration and invasion abilities were determined by wound healing assay and transwell assay. The molecular changes were detected by western blot. An ectopic nude mice model which the mice were gavaged with caffeine was used to reveal the anticancer effects of caffeine on HepG2 cells in vivo. Results showed that caffeine could inhibit the proliferation, migration and invasion significantly at physiologically applicable concentration in vitro. Also the associated molecular changes of cancer progression were observed. In animal experiment, the mice gavaged with caffeine also performanced reduced tumor burden in vivo. Moreover, the interrelated protein expression was also observed in vivo which was coincident with the results in vitro. All in all, this observation indicated that caffeine may suppress the progression of HCC through Akt signaling pathway. This makes caffeine a potential candidate for treating HCC which will be a safer and more effective treatment by giving for a long time at physiologically applicable concentration. PMID:25666502

  8. miR-449a inhibits proliferation and invasion by regulating ADAM10 in hepatocellular carcinoma

    PubMed Central

    Liu, Songyang; Liu, Kai; Zhang, Wei; Wang, Yingchao; Jin, Zhe; Jia, Baoxing; Liu, Yahui

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play a crucial role in tumor procession. It has been demonstrated that miR-449a expression was downregulated and served as tumor suppressor in many types of tumor. However, the biological function and molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) still remains largely unknown. Therefore, the aims of this study were to investigate biological role and molecular mechanism of miR-449a in HCC by a serial of molecular experiments. Here, we demonstrated that miR-449a expression was downregulated in HCC tissues and cell lines compared with the adjacent nontumor tissues and normal hepatic cell line. Ectopic expression of miR-449a suppressed HCC cell proliferation, colony formation, migration and invasion. Moreover, A Disintegrin And Metalloproteinases 10 (ADAM10) was identified as a direct target gene of miR-449a in HCC cell. ADAM10 expression was upregulated in HCC tissues and cell lines, and was negatively correlated with the expression level of miR-449a in HCC tissues. Interesting, overexpression of ADAM10 attenuated the inhibition effect of miR-449a-mediated HCC cell proliferation, colony formation, migration and invasion. These results suggested that miR-449a might function as a tumor suppressor miRNA, at least in part, through regulating ADAM10 expression in HCC.

  9. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; Shiau, Chung-Wai; Cheng, Ann-Lii; Chen, Kuen-Feng

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  10. Inhibition of wnt/β-catenin Signaling in Hepatocellular Carcinoma by an Antipsychotic Drug Pimozide

    PubMed Central

    Fako, Valerie; Yu, Zhipeng; Henrich, Curtis J.; Ransom, Tanya; Budhu, Anuradha S.; Wang, Xin W.

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common forms of malignant cancers in the world, yet very few effective systemic treatments for HCC patients exist. Thus, the development of new treatment modalities presents a great need. The wnt/β-catenin signaling pathway is highly activated in stem cell-like aggressive HCC, which is associated with chemoresistance and poor survival in HCC patients. In a previous study, we found that an FDA-approved psychiatric drug, pimozide (PMZ), has anti-cancer properties in HCC cell lines that express epithelial cell adhesion molecule (EpCAM), a hepatic stem cell marker that is a functional down-stream target of the wnt/β-catenin pathway. In this study, we demonstrate that PMZ effectively inhibits cell growth of HCC cells by disrupting the wnt/β-catenin signaling pathway and reducing EpCAM expression. Thus, PMZ may be a useful molecular entity that could be repurposed as an anti-cancer therapy for treatment of HCC. PMID:27313491

  11. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    PubMed Central

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  12. MicroRNA Gene Polymorphisms and Environmental Factors Increase Patient Susceptibility to Hepatocellular Carcinoma

    PubMed Central

    Chu, Yin-Hung; Hsieh, Ming-Ju; Chiou, Hui-Ling; Liou, Yi-Sheng; Yang, Chen-Chieh; Yang, Shun-Fa; Kuo, Wu-Hsien

    2014-01-01

    Background Micro RNAs (miRNAs) are small RNA fragments that naturally exist in the human body. Through various physiological mechanisms, miRNAs can generate different functions for regulating RNA protein levels and balancing abnormalities. Abnormal miRNA expression has been reported to be highly related to several diseases and cancers. Single-nucleotide polymorphisms (SNPs) in miRNAs have been reported to increase patient susceptibility and affect patient prognosis and survival. We adopted a case-control research design to verify the relationship between miRNAs and hepatocellular carcinoma. Methodology/Principal Findings A total of 525 subjects, including 377 controls and 188 hepatocellular carcinoma patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and real-time PCR were used to analyze miRNA146a (rs2910164), miRNA149 (rs2292832), miRNA196 (rs11614913), and miRNA499 (rs3746444) genetic polymorphisms between the control group and the case group. The results indicate that people who carry the rs3746444 CT or CC genotypes may have a significantly increased susceptibility to hepatocellular carcinoma (adjusted odds ratio [AOR] = 2.84, 95% confidence interval [CI] = 1.88–4.30). In addition, when combined with environmental risk factors, such as smoking and alcohol consumption, interaction effects were observed between gene polymorphisms and environmental factors (odds ratio [OR] = 4.69, 95% CI = 2.52–8.70; AOR = 3.38, 95% CI = 1.68–6.80). Conclusions These results suggest that a significant association exists between miRNA499 SNPs and hepatocellular carcinoma. Gene-environment interactions of miRNA499 polymorphisms, smoking, and alcohol consumption might alter hepatocellular carcinoma susceptibility. PMID:24587132

  13. RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma.

    PubMed

    Shang, Runze; Wang, Jianlin; Sun, Wei; Dai, Bin; Ruan, Bai; Zhang, Zhuochao; Yang, Xisheng; Gao, Yuan; Qu, Shibin; Lv, Xing; Tao, Kaishan; Wang, Lin; Dou, Kefeng; Wang, Desheng

    2016-04-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC. PMID:26546438

  14. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription

    PubMed Central

    Wu, Wei; Yang, Jun-Ling; Wang, Yi-Lang; Wang, Han; Yao, Min; Wang, Li; Gu, Juan-Juan; Cai, Yin; Shi, Yun; Yao, Deng-Fu

    2016-01-01

    AIM To interfere with the activation of nuclear factor-κB (NF-κB) with metformin and explore its effect in reversing multidrug resistance (MDR) of hepatocellular carcinoma (HCC) cells. METHODS Expression of P-glycoprotein (P-gp) and NF-κB in human HepG2 or HepG2/adriamycin (ADM) cells treated with pCMV-NF-κB-small interference RNA (siRNA) with or without metformin, was analyzed by Western blot or fluorescence quantitative PCR. Cell viability was tested by CCK-8 assay. Cell cycle and apoptosis were measured by flow cytometry and Annexin-V-PE/7-AnnexinV apoptosis detection double staining assay, respectively. RESULTS P-gp overexpression in HepG2 and HepG2/ADM cells was closely related to mdr1 mRNA (3.310 ± 0.154) and NF-κB mRNA (2.580 ± 0.040) expression. NF-κB gene transcription was inhibited by specific siRNA with significant down-regulation of P-gp and enhanced HCC cell chemosensitivity to doxorubicin. After pretreatment with metformin, HepG2/ADM cells were sensitized to doxorubicin and P-gp was decreased through the NF-κB signaling pathway. The synergistic effect of metformin and NF-κB siRNA were found in HepG2/ADM cells with regard to proliferation inhibition, cell cycle arrest and inducing cell apoptosis. CONCLUSION Metformin via silencing NF-κB signaling could effectively reverse MDR of HCC cells by down-regulating MDR1/P-gp expression.

  15. CTNNA3 is a tumor suppressor in hepatocellular carcinomas and is inhibited by miR-425

    PubMed Central

    Liu, Fang-E; Chen, Xue-Mei; Zhao, Jing; Lin, Song; Liu, Zhi-Zhen; Zhang, Hu-Qin

    2016-01-01

    Hepatocellular carcinoma (HCC) is a common and leading cause of death worldwide. Here, we identified that a cell-cell adhesion gene, CTNNA3, is a tumor suppressor in HCC. CTNNA3 inhibited the proliferation, migration and invasion of HCC cell lines. In these cells, CTNNA3 inhibited Akt signal, and in turn decreased the proliferating cell nuclear antigen (PCNA) and the matrix metallopeptidase MMP-9, and increased the cell cycle inhibitor p21Cip1/Waf1. Meanwhile, CTNNA3 is inhibited by miR-425 in HCC. The miR-425 directly bound to the 3′UTR of CTNNA3 and inhibited its expression. The tumor suppressor function of CTNNA3 and the oncogenic function of miR-425 were further confirmed in HCC cell xenograft in nude mice. The miR-425/CTNNA3 axis may provide insights into the mechanisms underlying HCC, and contribute to potential therapeutic strategy of HCC. PMID:26882563

  16. Chromatin assembly factor 1, subunit A (P150) facilitates cell proliferation in human hepatocellular carcinoma

    PubMed Central

    Xu, Meng; Jia, Yuli; Liu, Zhikui; Ding, Linglong; Tian, Run; Gu, Hua; Wang, Yufeng; Zhang, Hongyong; Tu, Kangsheng; Liu, Qingguang

    2016-01-01

    Several studies have revealed that the abnormal expression of chromatin assembly factor 1, subunit A (P150) (CHAF1A) was involved in the development of some types of malignant tumors. However, CHAF1A expression and its role in hepatocellular carcinoma (HCC) remain poorly characterized. In this study, we first investigated CHAF1A expression in six cell lines and 116 pairs of HCC and matched normal tumor-adjacent tissues to evaluate the clinicopathological characteristics of CHAF1A in HCC. Then, we detected the proliferation and apoptosis in HCC cells. In addition, a subcutaneous tumor model in nude mice was performed to evaluate tumor growth in vivo. We found that the expression of CHAF1A was significantly higher in HCC tissues than that in adjacent nontumor tissues (P<0.01). Clinical analysis indicated that CHAF1A expression was significantly correlated with the tumor–node–metastasis stage, tumor number, and tumor differentiation in HCC tissues (P<0.05, respectively). We also found that CHAF1A may potentially function as a poor prognostic indicator for 5-year overall and disease-free survival in patients with HCC (P<0.05, respectively). The elevated expression of CHAF1A was also observed in HCC cell lines compared with that in normal LO2 hepatic cell line (P<0.01). HCC cancer cells exhibited inhibition of cell growth, reduction in colony-formation ability, increased cell apoptosis rate, and impaired tumorigenicity in nude mice after CHAF1A knockdown. Collectively, we propose that CHAF1A by potentially mediating cancer cell proliferation plays an important role in promoting the development of HCC and may serve as a potential therapeutic target in HCC. PMID:27445493

  17. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT

    PubMed Central

    Chen, Xuejiao; Wu, Lili; Liu, Weihui; Habib, Nagy A.; Bie, Ping; Xia, Feng

    2016-01-01

    Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα) is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA) to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT), glutamic-oxalacetic transaminase (AST), indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT) and suppression of epidermal growth factor receptor (EGFR), EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo. PMID:27050434

  18. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT.

    PubMed

    Huan, Hongbo; Wen, Xudong; Chen, Xuejiao; Wu, Lili; Liu, Weihui; Habib, Nagy A; Bie, Ping; Xia, Feng

    2016-01-01

    Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα) is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA) to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT), glutamic-oxalacetic transaminase (AST), indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT) and suppression of epidermal growth factor receptor (EGFR), EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo. PMID:27050434

  19. Inhibition of microRNA-126 promotes the expression of Spred1 to inhibit angiogenesis in hepatocellular carcinoma after transcatheter arterial chemoembolization: in vivo study

    PubMed Central

    Ji, Jian-Song; Xu, Min; Song, Jing-Jing; Zhao, Zhong-Wei; Chen, Min-Jiang; Chen, Wei-Qian; Tu, Jian-Fei; Yang, Xiao-Ming

    2016-01-01

    MicroRNA-126 (miR-126) has been found to promote angiogenesis, but the underlying mechanisms are still unclear. So, we conducted this study to explore the effect of miR-126 expression on angiogenesis in hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). The expression levels of miR-126 and sprouty-related, EVH1 domain containing protein (Spred)1 in surgically resected HCC tissue, HCC tissue with TACE + operation, and tumor-adjacent tissues were determined by quantitative real-time polymerase chain reaction. The expression levels of miR-126, Spred1, and vascular endothelial growth factor were found by quantitative real-time polymerase chain reaction and Western blot. The microvessel density (MVD) of tumor tissues was determined by immunohistochemical staining. The miR-126 and Spred1 expressions in HCC tissue with TACE + operation were elevated and decreased, respectively, as compared to those in surgically resected HCC tissues and tumor-adjacent tissues (all P<0.001), which indicated that the expression of Spred1 was negatively correlated with miR-126 (P<0.001, r=−0.6224). Based on the bioinformatics analysis and luciferase reporter gene activity detection, Spred1 was found to target miR-126 (P<0.001). Inhibition of miR-126 expression reduces the degree of weight loss and tumor size in TACE model rats. The MVD in TACE + operation group was increased compared to that in the control group; inhibition of miR-126 expression had a reversal effect, to a certain extent, on MVD increase after TACE (all P<0.05). Inhibition of miR-126 expression increased Spred1 expression and decreased vascular endothelial growth factor expression (P<0.01). In summary, this study unveiled the potential mechanism by which miR-126 regulates angiogenesis in HCC tissues through embolization treatment by targeting Spred1, and also showed that the feasibility of TACE with the miR-126 inhibitor has a certain value in the medical treatment of HCC. PMID:27499630

  20. Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt.

    PubMed

    Deng, Li-Juan; Hu, Li-Ping; Peng, Qun-Long; Yang, Xiao-Lin; Bai, Liang-Liang; Yiu, Anita; Li, Yong; Tian, Hai-Yan; Ye, Wen-Cai; Zhang, Dong-Mei

    2014-08-01

    Hellebrigenin, one of bufadienolides belonging to cardioactive steroids, was found in skin secretions of toads and plants of Helleborus and Kalanchoe genera. In searching for natural constituents with anti-hepatoma activities, we found that hellebrigenin, isolated from traditional Chinese medicine Venenum Bufonis, potently reduced the viability and colony formation of human hepatocellular carcinoma cells HepG2, and went on to explore the underlying molecular mechanisms. Our results demonstrated that hellebrigenin triggered DNA damage through DNA double-stranded breaks and subsequently induced cell cycle G2/M arrest associated with up-regulation of p-ATM (Ser(1981)), p-Chk2 (Tyr(68)), p-CDK1 (Tyr(15)) and Cyclin B1, and down-regulation of p-CDC25C (Ser(216)). It was also found that hellebrigenin induced mitochondrial apoptosis, characterized by Bax translocation to mitochondria, disruption of mitochondrial membrane potential, release of cytochrome c into cytosol and sequential activation of caspases and PARP. In addition, Akt expression and phosphorylation were inhibited by hellebrigenin, whereas Akt silencing with siRNA significantly blocked cell cycle arrest but enhanced apoptosis induced by hellebrigenin. Activation of Akt by human insulin-like growth factor I (hIGF-I) could obviously attenuate hellebrigenin-induced cell death. In summary, our study is the first to report the efficacy of hellebrigenin against HepG2 and elucidated its molecular mechanisms including DNA damage, mitochondria collapse, cell cycle arrest and apoptosis, which will contribute to the development of hellebrigenin into a chemotherapeutic agent in the treatment of liver cancer. PMID:24954031

  1. Ascochlorin, an isoprenoid antibiotic inhibits growth and invasion of hepatocellular carcinoma by targeting STAT3 signaling cascade through the induction of PIAS3.

    PubMed

    Dai, Xiaoyun; Ahn, Kwang Seok; Kim, Chulwon; Siveen, Kodappully Sivaraman; Ong, Tina H; Shanmugam, Muthu K; Li, Feng; Shi, Jizhong; Kumar, Alan Prem; Wang, Ling Zhi; Goh, Boon Cher; Magae, Junji; Hui, Kam M; Sethi, Gautam

    2015-04-01

    Deregulated activation of oncogenic transcription factors such as signal transducer and activator of transcription 3 (STAT3) plays a pivotal role in proliferation and survival of hepatocellular carcinoma (HCC). Thus, agents which can inhibit STAT3 activation may have an enormous potential for treatment of HCC patients. Hence, in the present report, we investigated the effect of ascochlorin (ASC), an isoprenoid antibiotic on STAT3 activation cascade in various HCC cell lines and orthotopic mouse model. We observed that ASC could substantially inhibit both constitutive and IL-6/EGF inducible STAT3 activation as well as reduce its DNA binding ability. ASC increased the expression of protein inhibitor of activated STAT3 (PIAS3) which could bind to STAT3 DNA binding domain and thereby down-regulate STAT3 activation. Deletion of PIAS3 gene by siRNA abolished the ability of ASC to inhibit STAT3 activation and induce apoptosis in HCC cells. ASC also modulated the expression of diverse STAT3-regulated oncogenic gene products. Finally, when administered intraperitoneally, ASC also inhibited tumor growth in an orthotopic HCC mouse model and reduced STAT3 activation in tumor tissues. Overall our results indicate that ASC mediates its anti-tumor effects predominantly through the suppression of STAT3 signaling cascade, and can form the basis of novel therapy for HCC patients. PMID:25624051

  2. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Chen, Xun; Tan, Miduo; Xie, Zhiqin; Feng, Bin; Zhao, Zhijian; Yang, Kaiqing; Hu, Chen; Liao, Ni; Wang, Taoli; Chen, Dongliang; Xie, Feng; Tang, Caixi

    2016-07-01

    Capsaicin, which is the pungent ingredient of red hot chili peppers, has been reported to possess anticancer activity, including that against hepatocellular carcinoma. However, the precise molecular mechanisms by which capsaicin exerts its anticancer effects remain poorly understood. Herein, we have tested the involvement of autophagy in the capsaicin mechanism of action in human hepatocellular carcinoma. HepG2 cancer cells were treated with different doses of capsaicin (50, 100 and 200μmol/L) for 6, 12, and 24 h. Flow cytometry and Caspase-3 activity assay were performed to determine cell apoptosis. Immunofluorescence was performed to visualize LC3-positive puncta. Western blotting was used to detect the expression of the hallmarks of apoptosis and autophagy. Capsaicin can induce apoptosis in HepG2 cells. The expression levels of CL-PARP and Bcl-2 were significantly increased. In line with the apoptosis, capsaicin can trigger autophagy in HepG2 cells. Capsaicin increased LC3-II and beclin-1 expression and GFP-LC3-positive autophagosomes. Pharmacological or genetic inhibition of autophagy further sensitized HepG2 cells to capsaicin-induced apoptosis. Mechanistically, capsaicin upregulated the Stat3 activity which contributed to autophagy. Importantly, we found that capsaicin triggered reactive oxygen species (ROS) generation in hepatoma cells and that the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Moreover, NAC abrogated the effects of capsaicin on Stat3-dependent autophagy. In this study, we demonstrated that capsaicin increased the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3)-dependent autophagy through the generation of ROS signaling pathways in human hepatoma. Inhibiting autophagy could enhance capsaicin-induced apoptosis in human hepatocellular carcinoma. PMID:27043357

  3. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1. PMID:23258989

  4. Aflatoxins as risk factors for hepatocellular carcinoma in humans.

    PubMed

    Wogan, G N

    1992-04-01

    On a global basis, primary liver cancer (PLC) is a very prevalent form of cancer. Wide variation of PLC incidence in different areas of the world suggests the involvement of environmental factors in its etiology. Two major classes of risk factors have been identified. Extensive evidence indicates the importance of infection by the hepatitis B virus as a major risk factor for PLC. Because many organic chemicals induce liver cancer in experimental animals, those to which human exposure is known to occur are also of interest with respect to their possible involvement as risk factors for PLC. Particular emphasis has been placed on aflatoxins because of the frequency with which they occur as food contaminants, together with their potency as liver carcinogens for a large number of experimental animals, including subhuman primates. Other mycotoxins, notably sterigmatocystin and fumonisin, also are relatively potent carcinogens for the liver of animals, but little is known about human exposure to them. Epidemiological surveys carried out over the past 25 years in Asia and Africa have revealed a strong statistical association between aflatoxin ingestion and PLC incidence. The combined experimental and epidemiological evidence has led to designation of aflatoxins as human carcinogens according to International Agency for Cancer Research criteria. Collectively, current evidence strongly suggests that PLC is of multifactorial origin, with probable interactions between viral and chemical agents in populations concurrently exposed to both classes of risk factors. Recently developed methods that permit individual monitoring of aflatoxin exposure, hepatitis B virus infection, and genetic damage caused by these agents are being applied in the design of molecular and biochemical epidemiological studies of the etiology of the disease. Application of this methodology may contribute to elucidation of the relative importance of interacting etiological agents in different populations

  5. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    PubMed

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  6. Recombinant vascular basement-membrane-derived multifunctional peptide inhibits angiogenesis and growth of hepatocellular carcinoma

    PubMed Central

    Wu, You-Hua; Cao, Jian-Guo; Xiang, Hong-Lin; Xia, Hong; Qin, Yong; Huang, A-Ji; Xiao, Di; Xu, Fang

    2009-01-01

    AIM: To investigate the anti-angiogenic and anti-tumor activities of recombinant vascular basement membrane-derived multifunctional peptide (rVBMDMP) in hepatocellular carcinoma (HCC). METHODS: HepG2, Bel-7402, Hep-3B, HUVE-12 and L-02 cell lines were cultured in vitro and the inhibitory effect of rVBMDMP on proliferation of cells was detected by MTT assay. The in vivo antitumor efficacy of rVBMDMP on HCC was assessed by HepG2 xenografts in nude mice. Distribution of rVBMDMP, mechanism by which the growth of HepG2 xenografts is inhibited, and microvessel area were observed by proliferating cell nuclear antigen (PCNA) and CD31 immunohistochemistry. RESULTS: MTT assay showed that rVBMDMP markedly inhibited the proliferation of human HCC (HepG2, Bel-7402, Hep-3B) cells and human umbilical vein endothelial (HUVE-12) cells in a dose-dependent manner, with little effect on the growth of L-02 cells. When the IC50 was 4.68, 7.65, 8.96, 11.65 and 64.82 μmol/L, respectively, the potency of rVBMDMP to HepG2 cells was similar to 5-fluorouracil (5-FU) with an IC50 of 4.59 μmol/L. The selective index of cytotoxicity to HepG2 cells of rVBMDMP was 13.8 (64.82/4.68), which was higher than that of 5-FU [SI was 1.9 (8.94/4.59)]. The VEGF-targeted recombinant humanized monoclonal antibody bevacizumab (100 mg/L) did not affect the proliferation of HepG2, Bel-7402, Hep-3B and L-02 cells, but the growth inhibitory rate of bevacizumab (100 mg/L) to HUVE-12 cells was 87.6% ± 8.2%. Alternis diebus intraperitoneal injection of rVBMDMP suppressed the growth of HepG2 xenografts in a dose-dependent manner. rVBMDMP (1, 3, 10 mg/kg) decreased the tumor weight by 12.6%, 55.9% and 79.7%, respectively, compared with the vehicle control. Immunohistochemical staining of rVBMDMP showed that the positive area rates (2.2% ± 0.73%, 4.5% ± 1.3% and 11.5% ± 3.8%) in rVBMDMP treated group (1, 3, 10 mg/kg) were significantly higher than that (0.13% ± 0.04%) in the control group (P < 0.01). The positive

  7. Effect of halofuginone on the inhibition of proliferation and invasion of hepatocellular carcinoma HepG2 cell line

    PubMed Central

    Huo, Sibo; Yu, Huiqiu; Li, Chusheng; Zhang, Jiayu; Liu, Tongjun

    2015-01-01

    Primary liver cancer is a common cancer and the mortality of liver cancer ranks the second of all malignancy-related deaths in China. The most common primary liver cancer is hepatocellular carcinoma, accounting for approximately 90% of the total. Because liver is the largest parenchymatous organ in the body undertaking all kinds of important metabolic functions, liver cancer inevitably causes greater harms and its treatment is extremely difficult. Currently, there are still no effective drugs for the treatment of patients with advanced inoperable liver cancer. We observed the strong inhibitory activity of halofuginone on HepG2 cell growth and the cell cycle and apoptosis assays showed that halofuginone arrested the cell cycle and inhibited the induction. And we found that halofuginone inhibits tumor cell cycle possibly by up-regulating p15 and p21 of expression. Then, we found that the proportion of cleaved PARP, caspase-3, 8 and 9 in HepG2 cells increased after halofuginone treatment. And the results showed that halofuginone down-regulated Mcl-1 and c-IAP1 expression. Finally, our results showed halofuginone regulated the activities of JNK and MEK/ERK signaling pathways in hepatocellular carcinoma cells. In summary, this study shows that halofuginone can inhibit the in vitro growth, arrest the cell cycle and induce the apoptosis of HepG2 cells. Its mechanisms of action may be related to the regulation of associated protein expression, up-regulation of JNK, and inhibition of MEK/ERK signaling pathway. PMID:26884857

  8. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions.

    PubMed

    Wilson, Garrick K; Tennant, Daniel A; McKeating, Jane A

    2014-12-01

    Hypoxia inducible transcription factors (HIFs) activate diverse pathways that regulate cellular metabolism, angiogenesis, proliferation, and migration, enabling a cell to respond to a low oxygen or hypoxic environment. HIFs are regulated by oxygen-dependent and independent signals including: mitochondrial dysfunction, reactive oxygen species, endoplasmic reticular stress, and viral infection. HIFs have been reported to play a role in the pathogenesis of liver disease of diverse aetiologies. This review explores the impact of HIFs on hepatocellular biology and inflammatory responses, highlighting the therapeutic potential of targeting HIFs for an array of liver pathologies. PMID:25157983

  9. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  10. Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    PubMed Central

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    Background The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis. Methodology/Principal Findings Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment. Conclusions NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis. PMID:22363545

  11. Inhibition of protein kinase C by isojacareubin suppresses hepatocellular carcinoma metastasis and induces apoptosis in vitro and in vivo

    PubMed Central

    Yuan, Xing; Chen, Hao; Li, Xia; Dai, Ming; Zeng, Huawu; Shan, Lei; Sun, Qingyan; Zhang, Weidong

    2015-01-01

    Targeted inhibition of protein kinase C (PKC) inhibits hepatocellular carcinoma (HCC) proliferation and metastasis. We previously reported the cytotoxicity of a series of synthetic phenyl-substituted polyoxygenated xanthone derivatives against human HCC. In the current study, the most potent natural product, isojacareubin (ISJ), was synthesized, and its cellular-level antihepatoma activities were evaluated. ISJ significantly inhibited cell proliferation and was highly selective for HCC cells in comparison to nonmalignant QSG-7701 hepatocytes. Moreover, ISJ exhibited pro-apoptotic effects on HepG2 hepatoma cells, as well as impaired HepG2 cell migration and invasion. Furthermore, ISJ was a potent inhibitor of PKC, with differential actions against various PKC isotypes. ISJ selectively inhibited the expression of aPKC (PKCζ) in the cytosol and the translocation of cytosolic PKCζ to membrane site. ISJ also directly interacted with cPKC (PKCα) and nPKC (PKCδ, PKCε and PKCμ) and thereby inhibited the early response of major MAPK phosphorylation and the late response of HCC cell invasion and proliferation. In a hepatoma xenograft model, ISJ pretreatment resulted in significant antihepatoma activity in vivo. These findings identify ISJ as a promising lead compound for the development of new antihepatoma agents and may guide the search for additional selective PKC inhibitors. PMID:26245668

  12. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model.

    PubMed

    Siveen, Kodappully Sivaraman; Ahn, Kwang Seok; Ong, Tina H; Shanmugam, Muthu K; Li, Feng; Yap, Wei Ney; Kumar, Alan Prem; Fong, Chee Wai; Tergaonkar, Vinay; Hui, Kam M; Sethi, Gautam

    2014-04-15

    Angiogenesis is one of the key hallmarks of cancer. In this study, we investigated whether γ-tocotrienol can abrogate angiogenesis-mediated tumor growth in hepatocellular carcinoma (HCC) and if so, through what molecular mechanisms. We observed that γ-tocotrienol inhibited vascular endothelial growth factor (VEGF)-induced migration, invasion, tube formation and viability of HUVECs in vitro. Moreover, γ-tocotrienol reduced the number of capillary sprouts from matrigel embedded rat thoracic aortic ring in a dose-dependent manner. Also, in chick chorioallantoic membrane assay, γ-tocotrienol significantly reduced the blood vessels formation. We further noticed that γ-tocotrienol blocked angiogenesis in an in vivo matrigel plug assay. Furthermore, γ-tocotrienol inhibited VEGF-induced autophosphorylation of VEGFR2 in HUVECs and also suppressed the constitutive activation of AKT/mammalian target of rapamycin (mTOR) signal transduction cascades in HUVECs as well as in HCC cells. Interestingly, γ-tocotrienol was also found to significantly reduce the tumor growth in an orthotopic HCC mouse model and inhibit tumor-induced angiogenesis in HCC patient xenografts through the suppression of various biomarkers of proliferation and angiogenesis. Taken together, our findings strongly suggest that γ-tocotrienol might be a promising anti-angiogenic drug with significant antitumor activity in HCC. PMID:24722367

  13. Triptolide Inhibits Invasion and Tumorigenesis of Hepatocellular Carcinoma MHCC-97H Cells Through NF-κB Signaling.

    PubMed

    Wang, Haiji; Ma, Duanye; Wang, Chenghong; Zhao, Shanna; Liu, Chengbiao

    2016-01-01

    BACKGROUND We investigated whether the plant-derived agent triptolide (TPL) could effectively inhibit the growth and invasion of human hepatocellular carcinoma (HCC) cells. MATERIAL AND METHODS MHCC-97H cells were treated with various concentration of TPL for various times. To detect the effect of NF-κB on TPL-induced signal pathways, MHCC-97H cells were transfected with p65 siRNA or p65 cDNA, then treated with TPL. We detected cell survival and apoptosis by MTT, soft-agar colony formation assay, flow cytometry, and TUNEL assay. Cell migration and invasion was determined by Matrigel invasion and a wound-healing assay. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-9 activity was detected by ELISA. Western blot and real-time PCR (RT-PCR) assays were used to detect p65 and MMP-9 protein and mRNA expression. A subcutaneously implanted tumor model of MHCC-97H cells in nude mice was used to assess the effects of TPL on tumorigenesis in vivo. RESULTS We showed that TPL treatment significantly suppressed growth and induced apoptosis of MHCC-97H cells in a dose- and time-dependent manner in vitro. Furthermore, TPL treatment inhibited invasion in vitro and inhibited the growth and lung metastasis of MHCC-97H cells in vivo. NF-κB and MMP-9 were inactivated with TPL treatment. Overexpression of p65 restored MMP-9 activity and inhibited the TPL anti-tumor effect on MHCC-97H cells. Knockdown of p65 blocked MMP-9 activation and enhanced TPL-induced cell apoptosis and survival inhibition, and TPL inhibition of migration and invasion in vitro. CONCLUSIONS TPL treatment inhibited MHCC-97H cell growth, invasion, and metastasis in vitro and vivo, suggesting that TPL could be developed as a potential therapeutic agent for the treatment of HCC. PMID:27239780

  14. Triptolide Inhibits Invasion and Tumorigenesis of Hepatocellular Carcinoma MHCC-97H Cells Through NF-κB Signaling

    PubMed Central

    Wang, Haiji; Ma, Duanye; Wang, Chenghong; Zhao, Shanna; Liu, Chengbiao

    2016-01-01

    Background We investigated whether the plant-derived agent triptolide (TPL) could effectively inhibit the growth and invasion of human hepatocellular carcinoma (HCC) cells. Material/Methods MHCC-97H cells were treated with various concentration of TPL for various times. To detect the effect of NF-κB on TPL-induced signal pathways, MHCC-97H cells were transfected with p65 siRNA or p65 cDNA, then treated with TPL. We detected cell survival and apoptosis by MTT, soft-agar colony formation assay, flow cytometry, and TUNEL assay. Cell migration and invasion was determined by Matrigel invasion and a wound-healing assay. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-9 activity was detected by ELISA. Western blot and real-time PCR (RT-PCR) assays were used to detect p65 and MMP-9 protein and mRNA expression. A subcutaneously implanted tumor model of MHCC-97H cells in nude mice was used to assess the effects of TPL on tumorigenesis in vivo. Results We showed that TPL treatment significantly suppressed growth and induced apoptosis of MHCC-97H cells in a dose- and time-dependent manner in vitro. Furthermore, TPL treatment inhibited invasion in vitro and inhibited the growth and lung metastasis of MHCC-97H cells in vivo. NF-κB and MMP-9 were inactivated with TPL treatment. Overexpression of p65 restored MMP-9 activity and inhibited the TPL anti-tumor effect on MHCC-97H cells. Knockdown of p65 blocked MMP-9 activation and enhanced TPL-induced cell apoptosis and survival inhibition, and TPL inhibition of migration and invasion in vitro. Conclusions TPL treatment inhibited MHCC-97H cell growth, invasion, and metastasis in vitro and vivo, suggesting that TPL could be developed as a potential therapeutic agent for the treatment of HCC. PMID:27239780

  15. miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway.

    PubMed

    Qadir, Ximena V; Han, Chang; Lu, Dongdong; Zhang, Jinqiang; Wu, Tong

    2014-08-01

    miRNAs have recently been implicated in hepatocarcinogenesis, although the actions and mechanisms of individual miRNAs remain incompletely understood. We examined the biological functions and molecular mechanisms of miR-185 in hepatocellular carcinoma (HCC). The expression of miR-185 is decreased in human HCC tissues compared with the nonneoplastic liver parenchyma. Quantitative RT-PCR showed a reduction of miR-185 in human HCC cells compared with primary hepatocytes. miR-185 overexpression in human HCC cells inhibited cell proliferation and invasion in vitro and prevented tumor growth in SCID mice. miR-185 overexpression inhibited DNMT1 3' untranslated region luciferase reporter activity in HCC cells; this effect was abolished when the miR-185 binding site was mutated. miR-185 mimic or overexpression decreased the level of DNMT1 protein in HCC cells. These findings establish DNMT1 as a bona fide target of miR-185 in HCC cells. The role of DNMT1 in miR-185-induced inhibition of HCC growth was further supported by the fact that DNMT1 overexpression prevented miR-185-induced inhibition of HCC cell proliferation/invasion. miR-185 mimic or overexpression reduced PTEN promoter DNA methylation and enhanced PTEN expression, leading to the inhibition of Akt phosphorylation; these effects were partially reversed by DNMT1 overexpression. These results provide novel evidence that miR-185 inhibits HCC cell growth by targeting DNMT1, leading to PTEN induction and Akt inhibition. Thus, reactivation or induction of miR-185 may represent a novel therapeutic strategy for HCC treatment. PMID:24911372

  16. miR-185 Inhibits Hepatocellular Carcinoma Growth by Targeting the DNMT1/PTEN/Akt Pathway

    PubMed Central

    Qadir, Ximena V.; Han, Chang; Lu, Dongdong; Zhang, Jinqiang; Wu, Tong

    2015-01-01

    miRNAs have recently been implicated in hepatocarcinogenesis, although the actions and mechanisms of individual miRNAs remain incompletely understood. We examined the biological functions and molecular mechanisms of miR-185 in hepatocellular carcinoma (HCC). The expression of miR-185 is decreased in human HCC tissues compared with the nonneoplastic liver parenchyma. Quantitative RT-PCR showed a reduction of miR-185 in human HCC cells compared with primary hepatocytes. miR-185 overexpression in human HCC cells inhibited cell proliferation and invasion in vitro and prevented tumor growth in SCID mice. miR-185 overexpression inhibited DNMT1 3′ untranslated region luciferase reporter activity in HCC cells; this effect was abolished when the miR-185 binding site was mutated. miR-185 mimic or overexpression decreased the level of DNMT1 protein in HCC cells. These findings establish DNMT1 as a bona fide target of miR-185 in HCC cells. The role of DNMT1 in miR-185–induced inhibition of HCC growth was further supported by the fact that DNMT1 overexpression prevented miR-185–induced inhibition of HCC cell proliferation/invasion. miR-185 mimic or overexpression reduced PTEN promoter DNA methylation and enhanced PTEN expression, leading to the inhibition of Akt phosphorylation; these effects were partially reversed by DNMT1 overexpression. These results provide novel evidence that miR-185 inhibits HCC cell growth by targeting DNMT1, leading to PTEN induction and Akt inhibition. Thus, reactivation or induction of miR-185 may represent a novel therapeutic strategy for HCC treatment. PMID:24911372

  17. Factors Inhibiting Hispanic Parents' School Involvement

    ERIC Educational Resources Information Center

    Smith, Jay; Stern, Kenneth; Shatrova, Zhanna

    2008-01-01

    Factors inhibiting Hispanic parental involvement in non-metropolitan area schools were studied. With the mandates of No Child Left Behind intensifying the need to improve the academic achievement of all at-risk groups of students in American schools, and with the relatively new phenomenon of large numbers of Hispanics settling in non-metropolitan…

  18. The role of psychosocial factors in the progression of hepatocellular carcinoma.

    PubMed

    Steel, J; Carney, M; Carr, B I; Baum, A

    2004-01-01

    The number of deaths per year from hepatocellular carcinoma (HCC) exceeds 250000, placing it sixth as the cause of death from cancer worldwide. The primary etiology of most cases of HCC in the US is hepatitis B and/or C. Extensive research has demonstrated that the relationship between hepatitis B infection and the progression to HCC is mediated by the immune system. A substantial, but unrelated literature, describes the relationship between psychosocial factors (e.g., stress, psychiatric morbidity), immune system reactivity, and disease progression in patients with cancer. However, the role of these factors in the progression of HBV-HCC has not been explored. An understanding of the relationship among virology, immunology, and behavior in the development and recurrence of HCC may provide alternative methods for secondary prevention of HCC (e.g., behavioral) until a vaccine and/or pharmacological treatments are developed, feasible, and affordable. PMID:14729010

  19. KU-0060648 inhibits hepatocellular carcinoma cells through DNA-PKcs-dependent and DNA-PKcs-independent mechanisms

    PubMed Central

    Wei, Mu-Xin; Tang, Min; Ruan, Ting-Yan; Xu, Jun-Ying; Zhou, Xiao-zhong; Chen, Gang; Lu, Pei-Hua

    2016-01-01

    Here we tested anti-tumor activity of KU-0060648 in preclinical hepatocellular carcinoma (HCC) models. Our results demonstrated that KU-0060648 was anti-proliferative and pro-apoptotic in established (HepG2, Huh-7 and KYN-2 lines) and primary human HCC cells, but was non-cytotoxic to non-cancerous HL-7702 hepatocytes. DNA-PKcs (DNA-activated protein kinase catalytic subunit) is an important but not exclusive target of KU-0060648. DNA-PKcs knockdown or dominant negative mutation inhibited HCC cell proliferation. On the other hand, overexpression of wild-type DNA-PKcs enhanced HepG2 cell proliferation. Importantly, KU-0060648 was still cytotoxic to DNA-PKcs-silenced or -mutated HepG2 cells, although its activity in these cells was relatively weak. Further studies showed that KU-0060648 inhibited PI3K-AKT-mTOR activation, independent of DNA-PKcs. Introduction of constitutively-active AKT1 (CA-AKT1) restored AKT-mTOR activation after KU-0060648 treatment in HepG2 cells, and alleviated subsequent cytotoxicity. In vivo, intraperitoneal (i.p.) injection of KU-0060648 significantly inhibited HepG2 xenograft growth in nude mice. AKT-mTOR activation was also inhibited in xenografted tumors. Finally, we showed that DNA-PKcs expression was significantly upregulated in human HCC tissues. Yet miRNA-101, an anti-DNA-PKcs miRNA, was downregulated. Over-expression of miR-101 in HepG2 cells inhibited DNA-PKcs expression and cell proliferation. Together, these results indicate that KU-0060648 inhibits HCC cells through DNA-PKcs-dependent and -independent mechanisms. PMID:26933997

  20. Estrogen Represses Hepatocellular Carcinoma (HCC) Growth via Inhibiting Alternative Activation of Tumor-associated Macrophages (TAMs)*

    PubMed Central

    Yang, Weiwei; Lu, Yan; Xu, Yichen; Xu, Lizhi; Zheng, Wei; Wu, Yuanyuan; Li, Long; Shen, Pingping

    2012-01-01

    Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC. PMID:22908233

  1. Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3

    PubMed Central

    Subramaniam, Aruljothi; Shanmugam, Muthu K; Ong, Tina H; Li, Feng; Perumal, Ekambaram; Chen, Luxi; Vali, Shireen; Abbasi, Taher; Kapoor, Shweta; Ahn, Kwang Seok; Kumar, Alan Prem; Hui, Kam M; Sethi, Gautam

    2013-01-01

    BACKGROUND AND PURPOSE Aberrant activation of STAT3 is frequently encountered and promotes proliferation, survival, metastasis and angiogenesis in hepatocellular carcinoma (HCC). Here, we have investigated whether emodin mediates its effect through interference with the STAT3 activation pathway in HCC. EXPERIMENTAL APPROACH The effect of emodin on STAT3 activation, associated protein kinases and apoptosis was investigated using various HCC cell lines. Additionally, we also used a predictive tumour technology to analyse the effects of emodin. The in vivo effects of emodin were assessed in an orthotopic mouse model of HCC. KEY RESULTS Emodin suppressed STAT3 activation in a dose- and time-dependent manner in HCC cells, mediated by the modulation of activation of upstream kinases c-Src, JAK1 and JAK2. Vanadate treatment reversed emodin-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase and emodin induced the expression of the tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Interestingly, silencing of the SHP-1 gene by siRNA abolished the ability of emodin to inhibit STAT3 activation. Finally, when administered i.p., emodin inhibited the growth of human HCC orthotopic tumours in male athymic nu/nu mice and STAT3 activation in tumour tissues. CONCLUSIONS AND IMPLICATIONS Emodin mediated its effects predominantly through inhibition of the STAT3 signalling cascade and thus has a particular potential for the treatment of cancers expressing constitutively activated STAT3. PMID:23848338

  2. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma

    PubMed Central

    Ge, Chao; Chen, Lijuan; Fang, Tao; Li, Hong; Tian, Hua; Liu, Junxi; Chen, Taoyang; Jiang, Guoping; Xie, Haiyang; Cui, Ying; Yao, Ming; Li, Jinjun

    2015-01-01

    In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC. PMID:26327240

  3. Bufalin inhibits migration and invasion in human hepatocellular carcinoma SK-Hep1 cells through the inhibitions of NF-kB and matrix metalloproteinase-2/-9-signaling pathways.

    PubMed

    Chen, Ya-Yin; Lu, Hsu-Feng; Hsu, Shu-Chun; Kuo, Chao-Lin; Chang, Shu-Jen; Lin, Jen-Jyh; Wu, Ping-Ping; Liu, Jia-You; Lee, Ching-Hsiao; Chung, Jing-Gung; Chang, Jin-Biou

    2015-01-01

    Metastasis plays an important role in mortality of cancer patients. Migration and invasion are the major characteristics of tumor metastasis. The induction of matrix metalloproteinases (MMPs) such as MMP-2 and -9 are particularly important for the invasiveness of various cancer cells. Bufalin, a class of toxic steroids, was purified from the skin glands of Bufo gargarizans or Bufo melanostictus; it is known to inhibit proliferation of human cancer cells. In this study, we investigated the antiinvasive mechanisms of bufalin in the human hepatocellular cancer cell line SK-Hep1. Bufalin significantly reduced serum-induced cell invasion and migration. Furthermore, bufalin markedly inhibited MMP-2 and -9 activity, mRNA expression and protein levels in SK-Hep1 cells. Bufalin attenuated phosphoinisitide-3-kinase (PI3K) and phosphorylation of AKT which was associated with reduced levels of nuclear factor kappa B (NF-κB). Bufalin also suppressed protein levels of FAK and Rho A, VEGF, MEKK3, MKK7, and uPA and it diminished NF-κB translocation. Based on these observations, we propose that bufalin is acts as an antiinvasive agent by inhibiting MMP-2 and -9 and involving PI3K/AKT and NF-κB pathways. Bufalin is a potential therapeutic agent that may have efficacy in preventing the invasion and metastasis of malignant liver tumors. PMID:23949904

  4. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3.

    PubMed

    Wang, Qin; Cheng, Feng; Ma, Ting-Ting; Xiong, Hai-Yu; Li, Zi-Wei; Xie, Chang-Li; Liu, Cui-Ying; Tu, Zhi-Guang

    2016-04-01

    Hepatocellular carcinoma is the third most common cause of cancer death worldwide. Novel early detection biomarkers and efficacious therapy strategies are needed. Macrophages recruited from circulation monocytes are the major component of solid cancer and play an important role in the carcinogenesis. Whether overexpression of L-12 in monocytes could induce the phenotype directional differentiation into tumoricidal M1 macrophages and inhibit HCC growth in tumor microenvironment was investigated in this study. For the establishment of the monocyte/IL-12 and polarization of M1-like macrophage, the IL-12 overexpressing recombinant monocyte/IL-12 cells were established by infecting with pAd5F35-CMV/IL-12 adenovirus and co-cultured with HCC SMMC-7721 and Hep3B cells. It was found that the phenotype of monocyte/IL-12 polarized to M1-like macrophages with CD197high IL-12high CD206low IL-10low, and decreased expression of TGF-β, VEGF-A, and MMP-9. In order to explore the mechanism underlying the macrophages polarization, we detected the Stat-3 pathway and its downstream transcription factor c-myc, and found that the p-Stat-3 and c-myc were down-regulated. To evaluate the effects of monocyte/IL-12 on inhibiting HCC growth, various assays including CCK8, flow cytometry, colony-forming and Transwell assays in vitro, and xenograft mouse models and immunohistochemical analyses in vivo were used to detect the HCC growth and relative markers. Treated with IL-12 overexpressing monocytes, the xenograft tumor growth was significantly inhibited in vivo. These results have proven that IL-12-overexpressed monocytes could directionally differentiate to M1-like macrophages through downregulation of Stat-3 and result in the inhibition of HCC growth. PMID:27003285

  5. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma

    PubMed Central

    Li, Peng; Wang, Kun; Feng, Liang; Liu, Yi-Fei; Huang, Hua; Guo, Yi-Bing; Mao, Qin-Sheng; Xue, Wan-Jiang

    2016-01-01

    Methylation of the Ras-association domain family 10 (RASSF10) promoter region correlates with clinicopathological characteristics and poor prognosis in several human cancers. Here, we examined RASSF10 expression in hepatocellular carcinoma (HCC) and its role in hepatocarcinogenesis. RASSF10 mRNA and protein levels were downregulated in both HCC cell lines and patient tissue samples. In patient tissues, low RASSF10 levels correlated with hepatocirrhosis, poor tumor differentiation, tumor thrombus and Barcelona Clinic Liver Cancer stage, and were indicative of increased tumor recurrence and reduced patient survival. Low RASSF10 expression was associated with promoter hypermethylation, which was in turn associated with polycyclic aromatic hydrocarbon and aflatoxin B1 exposure, but not DNA methyltransferase expression. Overexpression of RASSF10 in HCC cell lines suppressed cell growth and colony formation, and induced apoptosis by up- or down-regulating specific Bcl-2 family proteins. RASSF10 overexpression increased pro-apoptotic Bax and Bad levels, but decreased anti-apoptotic Bcl-2 and Bcl-xl expression. Overexpression also inhibited tumor formation in nude mice and reduced cell migration and invasion by inhibiting the epithelial-mesenchymal transition. RASSF10 knockdown promoted cell growth. Our results show that RASSF10 is frequently hypermethylated and down-regulated in HCC and can potentially serve as a useful biomarker predictive of HCC patient prognosis. PMID:26701853

  6. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma.

    PubMed

    Wang, Fei; Feng, Ying; Li, Peng; Wang, Kun; Feng, Liang; Liu, Yi-Fei; Huang, Hua; Guo, Yi-Bing; Mao, Qin-Sheng; Xue, Wan-Jiang

    2016-01-26

    Methylation of the Ras-association domain family 10 (RASSF10) promoter region correlates with clinicopathological characteristics and poor prognosis in several human cancers. Here, we examined RASSF10 expression in hepatocellular carcinoma (HCC) and its role in hepatocarcinogenesis. RASSF10 mRNA and protein levels were downregulated in both HCC cell lines and patient tissue samples. In patient tissues, low RASSF10 levels correlated with hepatocirrhosis, poor tumor differentiation, tumor thrombus and Barcelona Clinic Liver Cancer stage, and were indicative of increased tumor recurrence and reduced patient survival. Low RASSF10 expression was associated with promoter hypermethylation, which was in turn associated with polycyclic aromatic hydrocarbon and aflatoxin B1 exposure, but not DNA methyltransferase expression. Overexpression of RASSF10 in HCC cell lines suppressed cell growth and colony formation, and induced apoptosis by up- or down-regulating specific Bcl-2 family proteins. RASSF10 overexpression increased pro-apoptotic Bax and Bad levels, but decreased anti-apoptotic Bcl-2 and Bcl-xl expression. Overexpression also inhibited tumor formation in nude mice and reduced cell migration and invasion by inhibiting the epithelial-mesenchymal transition. RASSF10 knockdown promoted cell growth. Our results show that RASSF10 is frequently hypermethylated and down-regulated in HCC and can potentially serve as a useful biomarker predictive of HCC patient prognosis. PMID:26701853

  7. LINC01225 promotes occurrence and metastasis of hepatocellular carcinoma in an epidermal growth factor receptor-dependent pathway

    PubMed Central

    Wang, X; Zhang, W; Tang, J; Huang, R; Li, J; Xu, D; Xie, Y; Jiang, R; Deng, L; Zhang, X; Chai, Y; Qin, X; Sun, B

    2016-01-01

    The long noncoding RNAs (lncRNAs) have long been clarified to participate in hepatocellular carcinoma (HCC) as a biomarker. We carried out the present study in order to identify HCC-related lncRNAs and elucidate the functional roles in the development and progression of HCC. Our previous study has provided that LINC01225 may be an HCC-related gene. Here, we verified that LINC01225 was upregulated in HCC. Knockdown of LINC01225 resulted in inhibited cell proliferation and invasion with activated apoptosis and cell cycle arrest in vitro. Overexpression of LINC01225 in LINC01225 knockdown cells presented that attenuated cell proliferation and invasion were restored and enhanced. Subcutaneous and tail vein/intraperitoneal injection xenotransplantation model in vivo validated reduced tumor progression and metastasis. Investigation of mechanism found that LINC01225 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR, and subsequently fine tune the EGFR/Ras/Raf-1/MEK/MAPK signaling pathway. Analysis with clinicopathological information suggested a high expression of LINC01225 is positively associated with poor prognosis. We also proved that LINC01225 was stably expressed in serum and can act as a novel biomarker in predicting the diagnosis of HCC. As a conclusion, LINC01225 plays a crucial role in HCC and can act as a biomarker for the diagnosis and prognosis of HCC. PMID:26938303

  8. Targeting stromal cells for the treatment of platelet-derived growth factor C-induced hepatocellular carcinogenesis.

    PubMed

    Campbell, Jean S; Johnson, Melissa M; Bauer, Renay L; Hudkins, Kelly L; Gilbertson, Debra G; Riehle, Kimberly J; Yeh, Matthew M; Alpers, Charles E; Fausto, Nelson

    2007-11-01

    Non-invasive therapies for the treatment of hepatocellular carcinoma (HCC) would be of great benefit to public health. To this end, we have developed a platelet-derived growth factor-C (PDGF-C) transgenic (Tg) mouse model, which mimics many aspects of human liver carcinogenesis. Specifically, overexpression of PDGF-C results in liver fibrosis, which is preceded by activation and proliferation of hepatic stellate cells, and is followed by the development of dysplastic lesions and angiogenesis, and progression to HCCs by 8 months of age. Here, we show that PDGF-C overexpression induces the proliferation of endothelial-like cells that are present in tumors and adjacent non-neoplastic parenchyma. The protein tyrosine kinase inhibitor, imatinib (Gleevec), decreases the proliferation of non-parenchymal cells (NPC) in vitro and in vivo, with concomitant inhibition of Akt. In vivo treatment with imatinib also blocks the expression of CD34 in PDGF-C Tg mice. Decreased NPC proliferation and CD34 expression correlated with lower levels of active ERK1/2 and total levels of PDGF receptor alpha (PDGFRalpha). In summary, the small molecule inhibitor imatinib attenuates stromal cell proliferation in PDGF-C-induced HCC, which coincides with decreased expression of both CD34 and PDGFRalpha, and activated Akt. Our findings suggest that imatinib may be efficacious in the treatment of hepatocarcinogenesis, particularly when neovascularization is present. PMID:17999742

  9. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice.

    PubMed

    Yang, Fangfang; Li, Jingmin; Zhu, Jinhui; Wang, Dong; Chen, Shaoshui; Bai, Xianyong

    2015-05-01

    Hydroxysafflor yellow A (HSYA), a flavonoid derived and isolated from traditional Chinese medicine Carthamus tinctorius L., possesses anti-tumor activity. However, its effects on hepatocellular carcinoma (HCC) have not been investigated. The proliferation and metastasis of HCC are dependent on angiogenesis, which also strongly links with several signal transduction pathways associated with cell proliferation and apoptosis. This study aimed to explore the effect of HSYA on vasculogenesis and to determine its molecular mechanism by investigating the expression of ERK/MAPK (p-c-Raf, c-Raf, p-ERK1/2, ERK1/2) and NF-κB (p65, IκB and p-IκB) signaling pathway in H22 tumor-bearing mice. The results showed that HSYA could considerably suppress tumor growth by inhibiting secretion of angiogenesis factors (vascular endothelial growth factor A, basic fibroblast growth factor) and vascular endothelial growth factor receptor1. At the moleculcould block ERK1/2 phosphorylation and then restrain the activation of NF-κB and its nuclear translocation by down-regulating the expression of p65 in the nucleus, up-regulating p65 level in the cytoplasm, inhibiting IκB phosphorylation and cytoplasmic degradation of IκB-α. Finally, we demonstrate that HSYA could suppress mRNA expression levels of cell proliferation-related genes (cyclinD1, c-myc, c-Fos) compared with negative control group. And best of all, HSYA could improve spleen/thymus indexes, which was evaluated as the marker of protective effect on the immune system. Our findings support HSYA as a promising candidate for the prevention and treatment of HCC. PMID:25720342

  10. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma

    PubMed Central

    El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC. PMID:26973407

  11. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics

    PubMed Central

    Dhanasekaran, Renumathy; Limaye, Alpna; Cabrera, Roniel

    2012-01-01

    Hepatocellular carcinoma (HCC) is a common malignancy in developing countries and its incidence is on the rise in the developing world. The epidemiology of this cancer is unique since its risk factors, including hepatitis C and B, have been clearly established. The current trends in the shifting incidence of HCC in different regions of the world can be explained partly by the changing prevalence of hepatitis. Early detection offers the only hope for curative treatment for patients with HCC, hence effective screening strategies for high-risk patients is of utmost importance. Liver transplantation and surgical resection remains the cornerstone of curative treatment. But major advances in locoregional therapies and molecular-targeted therapies for the treatment of advanced HCC have occurred recently. In this review, current trends in the worldwide epidemiology, surveillance, diagnosis, standard treatments, and the emerging therapies for HCC are discussed. PMID:24367230

  12. Bile duct invasion can be an independent prognostic factor in early stage hepatocellular carcinoma

    PubMed Central

    Jang, Ye-Rang; Kim, Hyeyoung; Lee, Jeong-Moo; Yi, Nam-Joon; Suh, Kyung-Suk

    2015-01-01

    Backgrounds/Aims In hepatocellular carcinoma (HCC), bile duct invasion occurs far more rarely than vascular invasion and is not well characterized. In addition, the pathologic finding of bile duct invasion is not considered an independent prognostic factor for HCC following surgery. In this study, we determined the characteristics of HCC with bile duct invasion, and assessed the clinical significance of bile duct invasion. Methods We retrospectively reviewed the medical records of 363 patients who underwent hepatic resection for HCC at Seoul National University Hospital (SNUH) from January 2009 to December 2011. Preoperative, operative, and pathological data were collected. The risk factors for recurrence and survival were analyzed. Subsequently, the patients were divided into 2 groups according to disease stage (American Joint Committee on Cancer/International Union Against Cancer 7th edition): early stage (T1 and 2) and advanced stage (T3 and 4) group; and risk factors in the sub-groups were analyzed. Results Among 363 patients, 13 showed bile duct invasion on pathology. Patients with bile duct invasion had higher preoperative total bilirubin levels, greater microvascular invasion, and a higher death rate than those without bile duct invasion. In multivariate analysis, bile duct invasion was not an independent prognostic factor for survival for the entire cohort, but, was an independent prognostic factor for early stage. Conclusions Bile duct invasion accompanied microvascular invasion in most cases, and could be used as an independent prognostic factor for survival especially in early stage HCC (T1 and T2). PMID:26693236

  13. Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma.

    PubMed

    Chen, Liping; Zhang, Qi; Chang, Wenjun; Du, Yan; Zhang, Hongwei; Cao, Guangwen

    2012-09-01

    Hepatocellular carcinoma (HCC), a malignancy caused mainly by chronic infection with hepatitis B virus (HBV) and/or hepatitis C virus (HCV), is a highly fatal disease. Apart from clinical parameters like venous invasion and multinodularity, viral and host inflammation-related factors are important predictors of HCC prognosis after surgical treatment. The factors of prognostic value can be detected in the specimens of HCC patients. In preoperative peripheral blood, high HBV DNA and the genotypes and mutations of HBV or HCV, high neutrophil-to-lymphocyte ratio and high concentrations of macrophage migration inhibitory factor and osteopontin predict poor prognosis. In tumours, high ratios of neutrophil-to-CD8(+) T cell and Treg-to-CD8(+) T cell, high expression of pro-angiogenic factors such as hypoxia-inducible factor-1α and cell growth/survival factors such as CD24 and activation of inflammatory signalling pathways such as Wnt/β-catenin, nuclear factor-kappa B and signal transducer and activator of transcription 3 predict early recurrence. In peritumoural hepatic tissues, high HBV DNA, HBV mutations, high densities of macrophages, activated stellates and mast cells, high expression of macrophage colony-stimulating factor/its receptor and placental growth factor, Th1/Th2-like cytokine shift, inflammation-related signature and activation of carcinogenesis-related pathways predict late recurrence. Further studies should be focused on the development of a robust strategy by integrating the viral factors, inflammatory factors and clinical factors of complementary prognostic value to ensure high validity of the assessment for postoperative HCC prognosis. PMID:22325840

  14. PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge of heparanase after liver resection.

    PubMed

    Liao, Bo-Yi; Wang, Zheng; Hu, Jie; Liu, Wei-Feng; Shen, Zao-Zhuo; Zhang, Xin; Yu, Lei; Fan, Jia; Zhou, Jian

    2016-03-01

    Phosphomannopentaose sulfate (PI-88), an effective inhibitor of heparanase (HPSE), exhibited anti-recurrence and anti-metastasis activity in preliminary clinical trials of hepatocellular carcinoma (HCC); however, the underlying mechanisms remain uncertain. Our aim was to reveal the mechanism by which PI-88 inhibits recurrence and intrahepatic metastasis. A tissue microarray containing samples from 352 HCC patients was used to determine HPSE expression. We performed enzyme-linked immunosorbent assay (ELISA) to detect plasma levels of HPSE in 40 HCC patients. We also used quantitative polymerase chain reaction, western blot analysis, and immunohistochemical staining to assess HPSE expression of HCC cell lines and tissues. The in vitro effects of PI-88 were examined by cell proliferation and migration assays. In vivo PI-88 activity was assessed using murine orthotopic HCC models. Intratumoral HPSE was an independent prognostic marker for postsurgical overall survival (P = 0.001) and time to recurrence (P < 0.001) of HCC patients with hepatectomy. Elevated levels of HPSE were detected both in postsurgical plasma of HCC patients and an orthotopic mouse model after hepatectomy. PI-88 inhibited tumor recurrence and metastasis after liver resection in the mouse model. In vitro expression of HPSE was up-regulated by overexpression of early growth response 1 (EGR1), which is induced after hepatectomy. Up-regulation of HPSE enhanced the sensitivity of HCC cells to PI-88 and the inhibitive effect of PI-88 on cell proliferation and migration. Our data show that PI-88 effectively inhibits postoperative recurrence and intrahepatic metastasis of HCC, providing an experimental basis for the clinical application of PI-88 in HCC patients who have undergone hepatectomy. PMID:26415733

  15. 1, 25(OH)2D3 Inhibits Hepatocellular Carcinoma Development Through Reducing Secretion of Inflammatory Cytokines from Immunocytes

    PubMed Central

    Guo, Jian; Ma, Zhenhua; Ma, Qingyong; Wu, Zheng; Fan, Ping; Zhou, Xiaojie; Chen, Lulu; Zhou, Shuang; Goltzman, David; Miao, Dengshun; Wu, Erxi

    2014-01-01

    Epidemiological and clinical studies have indicated that low vitamin D activity is not only associated with an increased cancer risk and a more aggressive tumor growth, but also connected with an aggravated liver damage caused by chronic inflammation. Meanwhile, increasing evidence has demonstrated that 1,25(OH)2D3 (the most biologically active metabolite of vitamin D) can inhibit inflammatory response in some chronic inflammatory associated cancer, which is considered to have the anti-tumor potency. However, the interaction between 1,25(OH)2D3 and inflammation during hepatocellular carcinoma (HCC) initiation and progression is not yet clear. Here, we report an anti-tumorigenesis effect of 1,25(OH)2D3 via decreasing inflammatory cytokine secretion in HCC and hypothesize the possible underlying mechanism. Firstly, we show that the enhanced tumor growth is associated with elevated inflammatory cytokine IL-6 and TNF-α in 1α(OH)ase gene-knockout mice. Secondly, 1,25(OH)2D3 can inhibit vitamin D receptor (VDR) shRNA interfered tumor cell growth through decreasing inflammatory cytokine secretion in vitro and in vivo. Finally, using p27kip1 gene knock-out mouse model, we demonstrate that the effect of 1,25(OH)2D3 in inhibiting immune cell related inflammatory cytokine secretion, exerts in a p27kip1 gene dependent way. Collectively, 1,25(OH)2D3 inhibits HCC development through up-regulating the expression of p27kip1 in immune cell and reducing inflammatory cytokine production. PMID:23992309

  16. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP.

    PubMed

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-03-20

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically. PMID:25788268

  17. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP

    PubMed Central

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-01-01

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 μM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically. PMID:25788268

  18. B cell CLL/lymphoma 6 member B inhibits hepatocellular carcinoma metastases in vitro and in mice.

    PubMed

    Wang, Jia; Dong, Ling; Xu, Lixia; Chu, Eagle S H; Chen, Yangchao; Shen, Jiayun; Li, Xiaoxing; Wong, Chi Chun; Sung, Joseph J Y; Yu, Jun

    2014-12-28

    B cell CLL/lymphoma 6 member B (BCL6B) is a novel tumor suppressor silenced in human cancer. In this study, we investigated the functional role and underlying mechanisms of BCL6B in hepatocellular carcinoma (HCC). BCL6B was expressed in normal HCC tissues, but its expression was suppressed in 6 out of 9 HCC cell lines. Loss of BCL6B expression was associated with promoter hypermethylation. Ectopic expression of BCL6B in HepG2 and Huh7 cell lines inhibited colony formation (P <0.05), cell viability (P <0.01), and tumorigenicity in nude mice (P <0.05). BCL6B expression also induced apoptosis (P <0.05), an effect associated with activation of the caspase cascade and cleavage of PARP. Stable expression of BCL6B in MHCC97L cells suppressed cell migration (P <0.05) and invasion (P <0.05), and significantly reduced the incidence and severity of lung metastasis in an orthotopic HCC mouse model. The anti-metastatic effect of BCL6B was mediated by up-regulation of cell adhesion gene E-cadherin, OB-cadherin, HIV-1 Tat interactive protein 2, and transient receptor potential cation channel, subfamily M, member 1; and down-regulation of angiogenesis gene VEGFA. BCL6B functions as a tumor suppressor that inhibits HCC metastases in vitro and in vivo. PMID:25218345

  19. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2)

    PubMed Central

    Madsen, Andre; Bozickovic, Olivera; Bjune, Jan-Inge; Mellgren, Gunnar; Sagen, Jørn V.

    2015-01-01

    The ability of the anti-diabetic drug metformin to inhibit anabolic processes including gluconeogenesis and lipogenesis is partly attributable to activation of the AMP-activated protein kinase (AMPK) pathway. The p160 steroid receptor coactivator 2 (SRC-2) is a key regulator of cellular metabolism and drives expression of the gluconeogenic enzyme glucose-6-phosphatase (G6Pc). Here, we uncovered a role for SRC-2 in the metabolic reprogramming imposed by metformin. In FaO cells, metformin dose-dependently reduced mRNA expression of SRC-2. Microarray analysis of metformin-treated cells revealed an overrepresentation of downregulated genes involved in biosynthesis of lipids and cholesterol. Several metformin-regulated genes including fatty acid synthase (FASN) were validated as transcriptional targets of SRC-2 with promoters characterized by sterol regulatory element (SRE) binding protein (SREBP) recognition sequences. Transactivation assays of the FASN promoter confirmed that SRC-2 is a coactivator of SREBP-1. By suppressing SRC-2 at the transcriptional level, metformin impeded recruitment of SRC-2 and RNA polymerase II to the G6Pc promoter and to SREs of mutual SRC-2/SREBP-1 target gene promoters. Hepatocellular fat accretion was reduced by metformin or knock-down of both SRC-2 and SREBP-1. Accordingly we propose that metformin inhibits glucose and lipid biosynthesis partly by downregulating SRC-2 gene expression. PMID:26548416

  20. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models.

    PubMed

    Wang, Kaifeng; Fan, Yaohua; Chen, Gongying; Wang, Zhengrong; Kong, Dexin; Zhang, Peng

    2016-05-27

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. PMID:27107695

  1. MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells

    PubMed Central

    LIU, ZHENYU; WANG, JINGJIE; MAO, YUQING; ZOU, BING; FAN, XIAOMING

    2016-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs 18–25 nucleotides in length, which play important roles in the regulation of cancer progression through gene silencing. miRNA (miR)-101 has been suggested to be associated with hepatocellular carcinoma (HCC). However, the detailed role of miR-101 in HCC metastasis and the underlying mechanism remain largely unclear. The present study demonstrated that the expression of miR-101 was significantly reduced in HCC tissues compared with that in matched normal adjacent tissues. miR-101 was also found to be downregulated in four HCC cell lines compared with its expression in a normal liver cell line. Vascular endothelial growth factor (VEGF)-C was further identified as a direct target of miR-101, and the protein expression of VEGF-C was downregulated by miR-101 in HepG2 HCC cells. Furthermore, the overexpression of miR-101 and the knockdown of VEGF-C significantly inhibited HepG2 cell migration and invasion, while restoration of VEGF-C reversed the inhibitory effect of miR-101 overexpression on HepG2 cell migration and invasion. Finally, the expression of VEGF-C was notably increased in HCC tissues and cell lines. These findings suggest that miR-101 exerts a suppressive effect on HCC cell migration and invasion, at least in part through the direct inhibition of VEGF-C protein expression. Therefore, the miR-101/VEGF-C axis may serve as a potential therapeutic target for HCC metastasis. PMID:26870229

  2. Telomerase Inhibition Decreases Alpha-Fetoprotein Expression and Secretion by Hepatocellular Carcinoma Cell Lines: In Vitro and In Vivo Study

    PubMed Central

    Tahtouh, Roula; Azzi, Anne-Sophie; Alaaeddine, Nada; Chamat, Soulaima; Bouharoun-Tayoun, Hasnaa; Wardi, Layal; Raad, Issam; Sarkis, Riad; Antoun, Najibe Abou; Hilal, George

    2015-01-01

    Alpha-fetoprotein (AFP) is a diagnostic marker for hepatocellular carcinoma (HCC). A direct relationship between poor prognosis and the concentration of serum AFP has been observed. Telomerase, an enzyme that stabilizes the telomere length, is expressed by 90% of HCC. The aim of this study was to investigate the effect of telomerase inhibition on AFP secretion and the involvement of the PI3K/Akt/mTOR signaling pathway. Proliferation and viability tests were performed using tetrazolium salt. Apoptosis was determined through the Annexin V assay using flow cytometry. The concentrations of AFP were measured using ELISA kits. The AFP mRNA expression was evaluated using RT-PCR, and cell migration was evaluated using a Boyden chamber assay. The in vivo effect of costunolide on AFP production was tested in NSG mice. Telomerase inhibition by costunolide and BIBR 1532 at 5 and 10 μM decreased AFP mRNA expression and protein secretion by HepG2/C3A cells. The same pattern was obtained with cells treated with hTERT siRNA. This treatment exhibited no apoptotic effect. The AFP mRNA expression and protein secretion by PLC/PRF/5 was decreased after treatment with BIBR1532 at 10 μM. In contrast, no effect was obtained for PLC/PRF/5 cells treated with costunolide at 5 or 10 μM. Inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP concentration. In contrast, the MAPK/ERK pathway appeared to not be involved in HepG2/C3A cells, whereas ERK inhibition decreased the AFP concentration in PLC/PRF/5 cells. Modulation of the AFP concentration was also obtained after the inhibition or activation of PKC. Costunolide (30 mg/kg) significantly decreased the AFP serum concentration of NSG mice bearing HepG2/C3A cells. Both the inhibition of telomerase and the inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP production of HepG2/C3A and PLC/PRF/5 cells, suggesting a relationship between telomerase and AFP expression through the PI3K/Akt/mTOR pathway PMID:25822740

  3. Telomerase inhibition decreases alpha-fetoprotein expression and secretion by hepatocellular carcinoma cell lines: in vitro and in vivo study.

    PubMed

    Tahtouh, Roula; Azzi, Anne-Sophie; Alaaeddine, Nada; Chamat, Soulaima; Bouharoun-Tayoun, Hasnaa; Wardi, Layal; Raad, Issam; Sarkis, Riad; Antoun, Najibe Abou; Hilal, George

    2015-01-01

    Alpha-fetoprotein (AFP) is a diagnostic marker for hepatocellular carcinoma (HCC). A direct relationship between poor prognosis and the concentration of serum AFP has been observed. Telomerase, an enzyme that stabilizes the telomere length, is expressed by 90% of HCC. The aim of this study was to investigate the effect of telomerase inhibition on AFP secretion and the involvement of the PI3K/Akt/mTOR signaling pathway. Proliferation and viability tests were performed using tetrazolium salt. Apoptosis was determined through the Annexin V assay using flow cytometry. The concentrations of AFP were measured using ELISA kits. The AFP mRNA expression was evaluated using RT-PCR, and cell migration was evaluated using a Boyden chamber assay. The in vivo effect of costunolide on AFP production was tested in NSG mice. Telomerase inhibition by costunolide and BIBR 1532 at 5 and 10 μM decreased AFP mRNA expression and protein secretion by HepG2/C3A cells. The same pattern was obtained with cells treated with hTERT siRNA. This treatment exhibited no apoptotic effect. The AFP mRNA expression and protein secretion by PLC/PRF/5 was decreased after treatment with BIBR1532 at 10 μM. In contrast, no effect was obtained for PLC/PRF/5 cells treated with costunolide at 5 or 10 μM. Inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP concentration. In contrast, the MAPK/ERK pathway appeared to not be involved in HepG2/C3A cells, whereas ERK inhibition decreased the AFP concentration in PLC/PRF/5 cells. Modulation of the AFP concentration was also obtained after the inhibition or activation of PKC. Costunolide (30 mg/kg) significantly decreased the AFP serum concentration of NSG mice bearing HepG2/C3A cells. Both the inhibition of telomerase and the inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP production of HepG2/C3A and PLC/PRF/5 cells, suggesting a relationship between telomerase and AFP expression through the PI3K/Akt/mTOR pathway. PMID:25822740

  4. Ectopic Expression of MiR-125a Inhibits the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting MMP11 and VEGF

    PubMed Central

    Du, Rui; Fan, Rui; Gao, Liucun; Jin, Jiang; Liang, Shuhui; Chen, Zheng; Xu, Guanghui; Nie, Yongzhan; Wu, Kaichun; Liu, Jie; Shi, Yongquan; Ding, Jie; Fan, Daiming

    2012-01-01

    Background Studies have been shown that miR-125a plays an important role in carcinogenesis, however, the role of miR-125a in hepatocellular carcinoma (HCC) remains elusive. Methodology/Principal Real time-PCR (qRT-PCR) was performed to test the significance of miR-125a in HCC. Ectopic expression of miR-125a was used to test the influences of miR-125a on proliferation and metastasis of HCC cells in vitro and in vivo. Predicted target genes of miR-125a were determined by dual-luciferase reporting, qRT-PCR, and western blot (WB) analyses. Then immunohistochemical staining (IHC) was used to detect the expression of target genes, and the correlations and prognostic values of miR-125a and its target genes were also investigated. Conclusions/Significance Decreased miR-125a was observed in both HCC tissues and cell lines, and associated with patients’ aggressive pathologic features. Up-regulating miR-125a significantly inhibited the malignant phenotypes by repressing the expression of matrix metalloproteinase 11 (MMP11) and vascular endothelial growth factor A (VEGF-A) both in vitro and in vivo. Furthermore, miR-125a expression was inversely correlated with both MMP11 and VEGF-A expression in HCC tissues. Inhibiting miR-125a could increase both MMP11 and VEGF-A expression, and RNA interference targeting MMP11 or VEGF-A mRNA could rescue the loss of miR-125a functions. MiR-125a inhibits the proliferation and metastasis of HCC by targeting MMP11 and VEGF-A. Up-regulation of miR-125a might be a promising approach and a prognostic marker for HCC. PMID:22768249

  5. Impact of non-oncological factors on tumor recurrence after liver transplantation in hepatocellular carcinoma patients

    PubMed Central

    Gu, Xiang-Qian; Zheng, Wei-Ping; Teng, Da-Hong; Sun, Ji-San; Zheng, Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary neoplasm of the liver and is one of the leading causes of cancer-related death worldwide. Liver transplantation (LT) has become one of the best curative therapeutic options for patients with HCC, although tumor recurrence after LT is a major and unaddressed cause of mortality. Furthermore, the factors that are associated with recurrence are not fully understood, and most previous studies have focused on the biological properties of HCC, such as the number and size of the HCC nodules, the degree of differentiation, the presence of hepatic vascular invasion, elevated serum levels of alpha-fetoprotein, and the tumor stage outside of the Milan criteria. Thus, little attention has been given to factors that are not directly related to HCC (i.e., “non-oncological factors”), which have emerged as predictors of tumor recurrence. This review was performed to assess the effects of non-oncological factors on tumor recurrence after LT. The identification of these factors may provide new research directions and clinical strategies for the prophylaxis and surveillance of tumor recurrence after LT, which can help reduce recurrence and improve patient survival. PMID:26973413

  6. Predictive Factor of Local Recurrence after Balloon-Occluded TACE with Miriplatin (MPT) in Hepatocellular Carcinoma

    PubMed Central

    Ishikawa, Toru; Abe, Satoshi; Inoue, Ryousuke; Sugano, Tomoyuki; Watanabe, Yuhsuke; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Nemoto, Takeo; Takeda, Keiko; Yoshida, Toshiaki

    2014-01-01

    Background Miriplatin (MPT) is a novel platinum complex used in TACE that shows promise for the treatment of hepatocellular carcinoma (HCC). However, rapid washout has been reported in some cases. Therefore, various methods of administration with MPT have been attempted to increase its therapeutic efficacy. One hopeful method is balloon-occluded TACE (B-TACE), but the therapeutic efficacy of B-TACE with MPT has not been evaluated. Aim To investigate the treatment outcomes and factors involved in local recurrence after B-TACE with MPT in HCC. Methods This study included 51 patients (55 nodules) with HCC lesions equal or less than 5 cm in diameter who underwent B-TACE with MPT between January 2012 and June 2013. Local recurrence after B-TACE with MPT and factors associated with local recurrence were evaluated. Results The overall local recurrence rate was 11.1% at 6 months and 26.2% at 12 months. The local recurrence rate did differ significantly depending on CT values immediately after B-TACE with MPT. Multivariate analysis also showed that the CT value after B-TACE with MPT was the only factor related to local recurrence after B-TACE. Conclusions B-TACE with MPT achieves relatively good local control of HCC. The plain CT value immediately after B-TACE with MPT is a predictive factor for local recurrence. In patients with unsatisfactory CT values, locoregional therapy or additional treatment is required. PMID:25047920

  7. Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9

    PubMed Central

    LIU, JIE; WEN, XIAOJUN; LIU, BIN; ZHANG, QINGYU; ZHANG, JINGJING; MIAO, HUILAI; ZHU, RUNZHI

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most malignant types of tumor worldwide with a high rate of mortality. Diosmetin (DIOS) exhibits various activities, including anticancer activities. However, the role of DIOS in the metastasis of HCC, and its underlying molecular mechanism, remain to be fully elucidated. In the present study, the antimetastatic effects of DIOS were investigated in SK-HEP-1 and MHcc97H HCC cell lines. Cell proliferation, wound healing, motility, invasion and adhesion capacities were examined to evaluate the inhibitory effect of DIOS on the metastasis of HCC cells. Cell viability was detected using an MTT assay in order to verify the inhibitory effect of DIOS on the proliferation of HCC cells. Cell migration was assessed using would healing and motility assays in order to verify the inhibitory effect of DIOS on the migration of HCC cells. Cell invasion and adhesion assays were performed in order to verify the inhibitory effect of DIOS on the invasion and adhesion of HCC cells. Matrix metalloproteinase (MMP)-2/9, proteins of the mitogen-activated protein kinase (MAPK) pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 MAPK) and protein kinase C-δ were detected in order to verify the potential molecular mechanisms of DIOS in the inhibition of the metastasis of HCC cells. DIOS was observed to inhibit the metastasis of SK-HEP-1 and MHcc97H cells by downregulating the expression of MMP-2/9 via the PKC/MAPK/MMP pathways. DIOS also inhibited the migration and invasion of the HCC cells, and may serve as a potential candidate agent for the prevention of HCC metastasis. PMID:26847170

  8. Lipid-lowering agents inhibit hepatic steatosis in a non-alcoholic steatohepatitis-derived hepatocellular carcinoma mouse model.

    PubMed

    Orime, Kazuki; Shirakawa, Jun; Togashi, Yu; Tajima, Kazuki; Inoue, Hideaki; Nagashima, Yoji; Terauchi, Yasuo

    2016-02-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with various metabolic disorders, and the therapeutic strategies for treating NAFLD and non-alcoholic steatohepatitis (NASH) have not been fully established. In the present study, we examined whether lipid-lowering agents inhibited the progression of NAFLD and tumorigenesis in a non-alcoholic steatohepatitis-derived hepatocellular carcinoma model mouse (STAM mice) generated by streptozotocin injection and a high-fat diet. Seven-week-old STAM mice were divided into groups fed a high-fat diet (Ctl) or a high-fat diet supplemented with ezetimibe (Ez), fenofibrate (Ff), rosuvastatin (Rs), ezetimibe plus fenofibrate (EF), or ezetimibe plus rosuvastatin (ER) for 4 weeks. At the end of the experiments, an oral glucose tolerance test, an insulin tolerance test, biochemical analyses using serum and liver, and a histological analysis of liver were performed in 11-week-old STAM mice. The lipid-lowering agents did not affect the body weight or the casual blood glucose levels in any of the groups. The serum triglyceride level was significantly decreased by Ff, Rs, and EF. Glucose tolerance was improved by Ez and Ff, but none of these agents improved insulin sensitivity. A histochemical analysis revealed that the lipid-lowering agents, with the exception of Rs, significantly inhibited the progression of hepatic steatosis. Nonetheless, no significant changes in the incidence of hepatic tumors were observed in any of the groups. Lipid-lowering agents inhibited the progression of hepatic steatosis without suppressing tumorigenesis in STAM mice. Our data has implications for the mechanism underlying steatosis-independent hepatic tumorigenesis in mice. PMID:26724391

  9. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma.

    PubMed

    Lv, Xiufang; Zhao, Fengbo; Huo, Xisong; Tang, Weidong; Hu, Baoying; Gong, Xiu; Yang, Juan; Shen, Qiujin; Qin, Wenxin

    2016-07-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC. PMID:27262566

  10. BAG3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas

    PubMed Central

    Kong, De-Hui; Li, Si; Du, Zhen-Xian; Liu, Chuan; Liu, Bao-Qin; Li, Chao; Zong, Zhi-Hong; Wang, Hua-Qin

    2016-01-01

    Bcl-2 associated athanogene 3 (BAG3) contains multiple protein-binding motifs to mediate potential interactions with chaperons and/or other proteins, which is possibly ascribed to the multifaceted functions assigned to BAG3. The current study demonstrated that BAG3 directly interacted with glucose 6 phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). BAG3 suppressed the PPP flux, de novo DNA synthesis and cell growth in hepatocellular carcinomas (HCCs). The growth defect of HCCs with forced BAG3 expression can be rescued by enforced G6PD expression. However, BAG3 elevation did not cause a reduction in cellular NADPH concentrations, another main product of G6PD. In addition, supplement of nucleosides alone was sufficient to recover the growth defect mediated by BAG3 elevation. Collectively, the current study established a tumor suppressor-like function of BAG3 via direct interaction with G6PD in HCCs at the cellular level. PMID:26621836

  11. Inhibition of galactosamine cytotoxicity in an in vivo/in vitro hepatocellular toxicity model

    SciTech Connect

    MacDonald, J.R.; Thayer, K.J.; White, C.

    1987-06-30

    A combined in vivo/in vitro model of galactosamine hepatotoxicity was employed to test whether previously reported cytoprotective actions of cystamine administration on galactosamine-induced hepatic injury in vivo could be attributed to a direct action of cystamine on toxicant-challenged hepatocytes. In this model, male Sprague-Dawley rats received a 400 mg/kg galactosamine challenge via intraperitoneal injection 1 hr prior to portal vein cannulation for hepatocyte isolation. Isolated cells are established in monolayer culture and galactosamine-induced cellular injury is then expressed over the ensuing 24-48 hr in culture. Consistent with the biochemical basis of galactosamine-induced hepatocellular injury in vivo, cytotoxicity could be prevented by in vitro uridine treatments within 3 hr of the in vivo galactosamine challenge, but not when added 12 hr later. Cystamine, in contrast, exhibited a cytoprotective effect even when added to cultures 12 hr after the in vivo toxicant challenge. Post-toxicant cytoprotection by cystamine in vitro was concentration dependent and did not produce an alteration of hepatocyte nonprotein sulfhydryl content. Post-toxicant cytoprotection by uridine and cystamine in this in vivo/in vitro model of toxicity were fully consistent with in vivo protection from galactosamine-induced necrosis by these agents. This model eliminates potential extrahepatic mechanisms for cystamine's hepatoprotective effect and demonstrates a direct cytoprotective action on galactosamine-challenged hepatocytes.

  12. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells

    PubMed Central

    García-Vilas, Javier A.; Quesada, Ana R.; Medina, Miguel A.

    2015-01-01

    Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis. PMID:25620570

  13. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells.

    PubMed

    García-Vilas, Javier A; Quesada, Ana R; Medina, Miguel A

    2015-01-01

    Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis. PMID:25620570

  14. [Plasma Biomarkers as Predictive Factors for Advanced Hepatocellular Carcinoma with Sorafenib].

    PubMed

    Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Matsukiyo, Yasushi; Kogame, Michio; Shinohara, Mie; Kikuchi, Yoshinori; Igarashi, Yoshinori; Sumino, Yasukiyo

    2016-07-01

    We examined plasma biomarkers as predictive factors for advanced hepatocellular carcinoma(ad-HCC)patients treated with sorafenib. We analyzed a-fetoprotein(AFP), AFP-L3, des-g-carboxy prothrombin(DCP), neutrophil-to-lymphocyte ratio(NLR), platelet-to-lymphocyte ratio(PLR), and vascular endothelial growth factor(VEGF)before sorafenib therapy, and changes in AFP-L3, NLR, PLR, and VEGF 1 month after sorafenib therapy in 16 patients. High AFP-L3(hazard ratio: 1.058, 95%CI: 1.019-1.098, p=0.003)and high NLR(hazard ratio: 1.475, 95%CI: 1.045-2.082, p=0.027)were significantly associated with poor prognosis in ad-HCC patients treated with sorafenib. There were no significant differences in changes in AFP-L3, NLR, PLR, and VEGF 1 month after sorafenib therapy. We suggest that AFP-L3 and NLR levels before sorafenib therapy in patients with ad-HCC are an important predictive factor for the therapeutic effect of sorafenib and patient survival. PMID:27431630

  15. Dual Effects of Cellular Immunotherapy in Inhibition of Virus Replication and Prolongation of Survival in HCV-Positive Hepatocellular Carcinoma Patients

    PubMed Central

    Wang, Nanya; Tian, Huimin; Jin, Haofan; Zhao, Hengjun; Niu, Chao; He, Hua; Ge, Tingwen; Han, Wei; Hu, Jifan; Li, Dan; Han, Fujun; Xu, Jianting; Ding, Xiao; Chen, Jingtao; Li, Wei; Cui, Jiuwei

    2016-01-01

    Immune cells play an important role in the development and progression of hepatitis C virus (HCV) and hepatocellular carcinoma (HCC). We conducted a retrospective study to evaluate the influence of adoptive cellular immunotherapy (CIT) on viral load and progression-free survival (PFS) for HCC patients infected with HCV. Patients (n = 104) were divided into a control group (conventional therapy, n = 73) and study group (combination of CIT and conventional therapy, n = 31). Autologous mononuclear cells were induced into natural killer, γδT, and cytokine-induced killer cells and infused intravenously to study group patients. More patients had shown viral load decrease or were stable in study group (100% versus 75%) (p = 0.014). The median PFS of the study group and control group was 16 and 10 months, respectively (p = 0.0041), and only CIT was an independent prognostic factor for PFS (hazard ratio, 0.422; p = 0.005). Three patients developed transient moderate fever after infusion, and there were no significant differences in alanine aminotransferase and aspartate aminotransferase levels before and after treatment in both groups. Our results show that CIT contributes to improvement of prognosis and inhibition of viral replication in HCV-related HCC patients, without impairment of liver function. PMID:27069936

  16. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition

    PubMed Central

    Wang, Tong-Hong; Lin, Yong-Shiang; Chen, Ying; Yeh, Chau-Ting; Huang, Yen-lin; Hsieh, Tsung-Han; Shieh, Tzong-Ming; Hsueh, Chuen; Chen, Tse-Ching

    2015-01-01

    Increasing evidence indicates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes, including cell growth, differentiation, apoptosis, and cancer progression. However, the function of lncRNAs in the progression of hepatocellular carcinoma (HCC) remains largely unknown. We performed a comprehensive microarray analysis of lncRNA expression in human HCC samples. After validation in 108 HCC specimens, we identified a differentially expressed novel tumor suppressive lncRNA termed amine oxidase, copper containing 4, pseudogene (AOC4P). The level of AOC4P expression was significantly downregulated in 68% of HCC samples and negatively correlated with advanced clinical stage, capsule invasion and vessel invasion. Low AOC4P expression correlated with poor prognostic outcomes, serving as an independent prognostic factor for HCC. In vitro functional assays indicated that AOC4P overexpression significantly reduced cell proliferation, migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT). RNA immunoprecipitation assays demonstrated that AOC4P binds to vimentin and promotes its degradation. Animal model experiments confirmed the ability of AOC4P to suppress tumor growth and metastasis. Taken together, our findings suggest that AOC4P lncRNA acts as an HCC tumor suppressor by enhancing vimentin degradation and suppressing the EMT. By clarifying the mechanisms underlying HCC progression, these findings promote the development of novel therapeutic strategies for HCC. PMID:26160837

  17. Expression of nuclear factor-κB in hepatocellular carcinoma and its relation with the X protein of hepatitis B virus

    PubMed Central

    Guo, Shuang-Ping; Wang, Wen-Liang; Zhai, Yu-Qiang; Zhao, Yi-Ling

    2001-01-01

    AIM: In this study we investigated the relationship of the X protein of HBV and nuclear factor-κB (NF-κB) and the expression of NF-κB in human hepatocellular carcinoma tissues. METHODS: Immunohistochemistry SP method was used to detect the expression of NF-κB and the X protein of HBV in human hepatocellular carcinoma tissues of 52 cases. Gene transfection mediated by lipofectamine was used to transfect the eukaryotic expression vector pCDNA3-1-HBX of HBV x gene into human hepatocellular carcinoma cell line HCC-9204 and NF-κB was detected. RESULTS: NF-κB was widely expressed in human hepatocellular carcinoma tissues in a total of 52 cases and its expression was related to the X protein of HBV. NF-κB was localized both in the cytoplasm and the nuclei of hepatocellular carcinoma cells in 11 cases which were positive for the X protein of HBV while in 41 cases negative for the X protein of HBV, NF-κB was only localized in the cytoplasm of hepatocellular carcinoma cells but translocated to the nuclei of hepatocellular carcinoma cells after the eukaryotic expression vector pCDNA3-1-HBX was transfected into HCC-9204 cells. CONCLUSION: This study strongly suggests that the nuclear factor NF-κB is widely expressed in hepatocellular carcinoma tissues in different styles according to the expression of the X protein of HBV. NF-κB is abnormally activated in hepatocellular carcinoma, which is probably related to the X protein of HBV. The X protein of HBV can activate NF-κB to translocate into nuclei of hepatocellular carcinoma cells. PMID:11819787

  18. Dioscorea nipponica Attenuates Migration and Invasion by Inhibition of Urokinase-Type Plasminogen Activator through Involving PI3K/Akt and Transcriptional Inhibition of NF-[Formula: see text]B and SP-1 in Hepatocellular Carcinoma.

    PubMed

    Hsieh, Ming-Ju; Yeh, Chao-Bin; Chiou, Hui-Ling; Hsieh, Ming-Chang; Yang, Shun-Fa

    2016-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. In our previous studies, we have reported that Dioscorea nipponica Makino extract (DNE) has anti-metastasis effects on human oral cancer cells. However, the effect of DNE on hepatoma metastasis have not been thoroughly investigated and remains poorly understood. To determine the effects of DNE on the migration and invasion in HCC cells we used a wound healing model, Boyden chamber assays, gelatin/casein zymography and Western blotting. Transcriptional levels of matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) were detected by real-time PCR and promoter assays. In this study, DNE treatment significantly inhibited the migration/invasion capacities of Huh7 cell lines. The results of gelatin/casein zymography and Western blotting revealed that the activities and protein levels of the MMP-9 and u-PA were inhibited by DNE. Tests of the mRNA levels, real-time PCR, and promoter assays evaluated the inhibitory effects of DNE on u-PA expression in human hepatoma cells. A chromatin immunoprecipitation (ChIP) assay showed not only that DNE inhibits u-PA expression, but also the inhibitory effects were associated with the down-regulation of the transcription factors of NF-[Formula: see text]B and SP-1 signaling pathways. Western blot analysis also showed that DNE inhibits PI3K and phosphorylation of Akt. In conclusion, these results show that u-PA expression may be a potent therapeutic target in the DNE-mediated suppression of HCC invasion/migration. DNE may have potential use as a chemo-preventive agent against liver cancer metastasis. PMID:26916922

  19. Adjuvant sorafenib therapy in patients with resected hepatocellular carcinoma: evaluation of predictive factors.

    PubMed

    Zhang, Wei; Zhao, Gang; Wei, Kai; Zhang, Qingxiang; Ma, Weiwei; Wu, Qiang; Zhang, Ti; Kong, Dalu; Li, Qiang; Song, Tianqiang

    2015-04-01

    Currently there is no predictor for survival after adjuvant sorafenib in patients with hepatocellular carcinoma (HCC) who have undergone curative resection. Thirty-eight patients who underwent curative resection of HCC received adjuvant sorafenib therapy between August 2009 and March 2012. Clinicopathological parameters including patient factors, tumor factors, liver background, and inflammatory factors (before surgery and dynamic changes after sorafenib therapy) were evaluated to identify predictors for overall survival (OS) and recurrence-free survival (RFS). The recurrence rate, mortality rate, and clinicopathological data were also compared. Increased NLR after sorafenib (HR = 3.199, 95 % CI 1.365-7.545, P = 0.008), increased GGT after sorafenib (HR = 3.204, 95 % CI 1.333-7.700, P = 0.009), and the presence of portal vein thrombosis (HR = 2.381, 95 % CI 1.064-5.328, P = 0.035) were risk factors related to RFS. By contrast, increased NLR after sorafenib was the only independent risk factor related to OS (HR = 4.647, 95 % CI 1.266-17.053, P = 0.021). Patients with increased NLR or increased GGT after sorafenib had a higher incidence of recurrence and death. Patients who had increased NLR tended to have higher preoperative levels of NLR and GGT. There were no differences in clinicopathological factors in patients with increased GGT and decreased GGT. In conclusion, increased NLR predicted a worse OS and RFS in patients with HCC who underwent curative resection with adjuvant sorafenib therapy. Increased GGT predicted a worse OS. NLR and GGT can be monitored dynamically before and after sorafenib therapy. PMID:25750040

  20. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  1. CDKN3 expression is negatively associated with pathological tumor stage and CDKN3 inhibition promotes cell survival in hepatocellular carcinoma

    PubMed Central

    Dai, Wei; Miao, Huilai; Fang, Shuo; Fang, Tao; Chen, Nianping; Li, Mingyi

    2016-01-01

    Aberrant expression of CDKN3 may be involved in carcinogenesis of liver cancer. The effect of CDKN3 on tumorigenesis and the molecular mechanisms involved have not been fully elucidated. Immunohistochemistry was performed to detect CDKN3 expression levels in tumor tissues. CDKN3 siRNA was used to knockdown CDKN3 in QGY7701 hepatocellular carcinoma (HCC) cells. Colony formation assay was used to measure the clonogenic capacity of the tumor cells. Cell viability was determined by MTT assay. Logistic regression was performed to analyze the association between CDKN3 expression level and the HCC clinical pathology index. The CDKN3 expression level was significantly decreased in HCC tumor tissues compared with normal liver tissue and liver cirrhosis tissue. Additionally, CDKN3 expression was negatively-associated with the pathological stage of the tumor. Inhibition of CKDN3 promoted the clonogenic capacity and chemotherapeutic tolerance in HCC tissues compared with controls. Knockdown of CDKN3 resulted in downregulation of p53 and p21 protein levels, whereas, AKT serine/threonine kinase 1 expression was upregulated. Thus, CDKN3 expression may reduce the survival of tumor cells and alter the sensitivity to therapeutic agents via the AKT/P53/P21 signaling pathway. Therefore, CDKN3 may be involved in tumor differentiation and self-renewal. PMID:27314282

  2. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma

    PubMed Central

    Yan, Yingcai; Xie, Minjie; Zhang, Linshi; Zhou, Xiaohu; Xie, Haiyang; Zhou, Lin; Zheng, Shusen; Wang, Weilin

    2016-01-01

    Hepatocellular carcinoma (HCC) is rapidly becoming one of the most prevalent cancers worldwide and is a prominent source of mortality. Ras-related associated with diabetes (RRAD), one of the first members of the 35–39 kDa class of novel Ras-related GTPases, is linked to several types of cancer, although its function in HCC remains unclear. In this study, we observed that RRAD was downregulated in HCC compared with adjacent normal tissues. This change was associated with a poor prognosis. Furthermore, knockdown of RRAD in SK-Hep-1 cells facilitated cell proliferation, accelerated the G1/S transition during the cell cycle, induced cell migration, and reduced apoptosis. In contrast, overexpression of RRAD in Huh7 cells had the opposite effects. Moreover, we demonstrated that RRAD induced cell proliferation through regulation of the cell cycle by downregulating cyclins and cyclin-dependent kinases. RRAD induced tumor cell apoptosis through the mitochondrial apoptosis pathway. In addition, we confirmed that knockdown of RRAD promoted aerobic glycolysis by upregulating glucose transporter 1, whereas overexpression of RRAD inhibited aerobic glycolysis. In conclusion, RRAD plays a pivotal role as a potential tumor suppressor in HCC. An improved understanding of the roles of RRAD in tumor metabolism may provide insights into its potential as a novel molecular target in HCC therapy. PMID:27418837

  3. Wnt/β-catenin signaling inhibits FBXW7 expression by upregulation of microRNA-770 in hepatocellular carcinoma.

    PubMed

    Wu, Wen-Jie; Shi, Jia; Hu, Gang; Yu, Xin; Lu, Han; Yang, Ming-Liang; Liu, Bin; Wu, Zhi-Xiang

    2016-05-01

    FBXW7 (F-box and WD repeat domain-containing 7) is the F-box protein component of a Skp1-Cul1-F-box protein-type (SCF-type) ubiquitin ligase. Previous studies have shown that FBXW7 serves as a tumor suppressor and is frequently downregulated in many types of human neoplasms. However, the molecular mechanisms for its downregulation remain poorly understood. Hyperactivation of Wnt/β-catenin signaling pathway is viewed as crucial for tumorigenesis, including hepatocellular carcinoma (HCC). In the present study, we show that protein levels, but not message RNA, of FBXW7 were suppressed by Wnt3a treatment or transfection of a constitutively activated β-catenin in HCC cells. Besides, microRNA-770 was identified as an important downstream target of Wnt/β-catenin signaling, to inhibit FBXW7 expression through targeting its 3'-untranslated region. Thus, our results suggest a previously unknown Wnt/β catenin-miR-770-FBXW7 molecular network in the HCC development. PMID:26602384

  4. Carboxylic Derivatives of Vitamin K2 Inhibit Hepatocellular Carcinoma Cell Growth through Caspase/Transglutaminase-Related Signaling Pathways.

    PubMed

    Qin, Xian-Yang; Fujii, Shinya; Shimizu, Akitaka; Kagechika, Hiroyuki; Kojima, Soichi

    2015-01-01

    Chemoprevention of hepatocellular carcinoma (HCC) is one of the most challenging aspects of medical research. Vitamin K2 (VK2) has been suggested for its chemopreventive role in treatment of HCC, while inconsistent results in clinical trials have been reported. The present study was initiated to add to our insight into the anti-HCC cell proliferative effect of VK2 and its derivatives from a viewpoint of chemical structure. No significant effect was observed with original VK2, while VK2 derivatives bearing both isoprene units and a carboxyl-terminated side chain dose-dependently inhibited the growth of HCC cells without affecting normal liver cells. Loss-of-function analyses revealed that the anti-HCC cell activity by the VK2 derivatives was not mediated by a VK2 binding protein Bcl-2 homologous antagonist/killer (Bak) but rather associated with caspase/transglutaminase-related signaling pathways. Further studies on the carboxylic derivatives of VK2 bearing isoprene structural units introduced in this study might shed new light on the systemic treatment and prevention of HCC. PMID:26440634

  5. MicroRNA-150 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting the GAB1-ERK axis.

    PubMed

    Sun, Wei; Zhang, Zhuochao; Wang, Jianlin; Shang, Runze; Zhou, Liang; Wang, Xing; Duan, Juanli; Ruan, Bai; Gao, Yuan; Dai, Bin; Qu, Shibin; Liu, Wei; Ding, Rui; Wang, Lin; Wang, Desheng; Dou, Kefeng

    2016-03-01

    MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC. PMID:26871477

  6. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity.

    PubMed

    Gu, Dishui; Jin, Haojie; Jin, Guangzhi; Wang, Cun; Wang, Ning; Hu, Fangyuan; Luo, Qin; Chu, Wei; Yao, Ming; Qin, Wenxin

    2016-08-28

    The asialoglycoprotein receptor (ASGR), which is expressed mainly in hepatocytes, is downregulated in poorly differentiated hepatocellular carcinoma (HCC). Here we investigated the role of ASGR1 in HCC metastasis as well as the possible underlying molecular mechanisms. We found that ASGR1 was downregulated in HCC tissue compared with adjacent non-tumorous liver tissue and that lower ASGR1 expression was associated with higher TNM stage and poorer prognosis in HCC patients. ASGR1 overexpression inhibited hepatoma cell migration and invasion in vitro and in vivo, while ASGR1 knockdown had the opposite effects. Furthermore, ASGR1 interacted directly with human longevity assurance homolog 2 of yeast LAG1 (LASS2). Knockdown of LASS2 attenuated the inhibitory effects of ASGR1 on hepatoma cell migration and invasion in vitro. ASGR1 decreased V-ATPase activity in hepatoma cells, and this was reversed by LASS2 knockdown. Finally, HCC patients with low LASS2 levels had poor prognosis, while those with high ASGR1 and LASS2 levels had better prognosis. Thus, ASGR1 may act as a potential metastasis suppressor in HCC, and the combination of ASGR1 and LASS2 may help predict the prognosis of HCC patients. PMID:27241665

  7. RNA interference-mediated hTERT inhibition enhances TRAIL-induced apoptosis in resistant hepatocellular carcinoma cells.

    PubMed

    Zhang, Ru-Gang; Zhao, Jing-Jing; Yang, Liu-Qin; Yang, Shi-Ming; Wang, Rong-Quan; Chen, Wen-Sheng; Peng, Gui-Yong; Fang, Dian-Chun

    2010-04-01

    TRAIL has been reported to induce apoptosis in a variety of tumor cell types including hepato-cellular carcinoma (HCC) cell lines. However, considerable numbers of HCC cells, especially some highly malignant tumors, show resistance to TRAIL-induced apoptosis. The molecular mechanisms that regulate sensitivity versus resistance of tumor cells to TRAIL-induced apoptosis remain poorly defined. It has been shown that human telomerase catalytic subunit (hTERT) is overexpressed in human HCCs. In this study, we investigated the effects and the mechanisms of hTERT RNAi on the TRAIL-induced apoptosis of HCC cells that exhibit resistance to TRAIL. Our results indicate that hTERT RNAi sensitizes TRAIL-resistant HCC cells to TRAIL-induced apoptosis. hTERT RNAi-mediated sensitization to TRAIL-induced apoptosis is accompanied up-regulation of procaspases-8 and -9, inhibition of telomerase activity and loss of telomere length. Our results suggest that hTERT RNAi overcame the resistance of the HCC cells against TRAIL, at least in part, via the mitochondrial type II apoptosis pathway and telomerase-dependent pathway. PMID:20204286

  8. MicroRNA-150 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting the GAB1-ERK axis

    PubMed Central

    Shang, Runze; Zhou, Liang; Wang, Xing; Duan, Juanli; Ruan, Bai; Gao, Yuan; Dai, Bin; Qu, Shibin; Liu, Wei; Ding, Rui; Wang, Lin; Wang, Desheng; Dou, Kefeng

    2016-01-01

    MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC. PMID:26871477

  9. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma

    PubMed Central

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D.

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore, the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models. PMID:26701727

  10. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma.

    PubMed

    Yang, Shuqun; Luo, Chonglin; Gu, Qingyang; Xu, Qiang; Wang, Guan; Sun, Hongye; Qian, Ziliang; Tan, Yexiong; Qin, Yuxin; Shen, Yuhong; Xu, Xiaowei; Chen, Shu-Hui; Chan, Chi-Chung; Wang, Hongyang; Mao, Mao; Fang, Douglas D

    2016-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery. In order to identify new therapeutic targets for HCC, whole-exome sequencing (WES) was performed on more than 60 HCC PDX models. Among them, four models exhibited protein-altering mutations in JAK1 (Janus Kinase 1) gene. To explore the transforming capability, these mutations were then introduced into HEK293FT and Ba/F3 cells. The results demonstrated that JAK1S703I mutation was able to activate JAK-STAT (Signal Transducer and Activator of Transcription) signaling pathway and drive cell proliferation in the absence of cytokine stimulation in vitro. Furthermore,the sensitivity to the treatment of a JAK1/2 inhibitor, ruxolitinib, was observed in JAK1S703I mutant PDX model, but not in other non-activating mutant or wild type models. Pharmacodynamic analysis showed that phosphorylation of STAT3 in the Ruxolitinib-treated tumor tissues was significantly suppressed. Collectively, our results suggested that JAK1S703I is an activating mutation for JAK-STAT signaling pathway in vitro and in vivo, and JAK-STAT pathway might represent a new therapeutic approach for HCC treatment. Monotherapy using a more potent and specific JAK1 inhibitor and combinatory therapy should be further explored in JAK1 mutant PDX models. PMID:26701727

  11. Inhibition of Hageman factor (factor XII) by popcorn inhibitor.

    PubMed

    Kambhu, S A; Ratnoff, O D; Everson, B

    1985-05-01

    A protein derived from sweet corn or popcorn inhibits the enzymatic activity of the carboxy-terminal fragment of Hageman factor (HFf) and of ellagic acid-activated Hageman factor (HF, factor XII). Not clarified is whether the inhibitor is directed at the active site of HF. Filtration of normal plasma or purified HF through columns of popcorn inhibitor bound to agarose gels demonstrated that HF was bound to these gels and could then be eluted by buffers containing 2.0 mol/L sodium chloride. The eluted HF was in the precursor form. Thus, popcorn inhibitor appeared to attach to a point on the carboxy-terminal HFf that was distinct from the enzymatically active site of this clotting factor. PMID:3989356

  12. Emerging role of insulin-like growth factor-binding protein 7 in hepatocellular carcinoma.

    PubMed

    Akiel, Maaged; Rajasekaran, Devaraja; Gredler, Rachel; Siddiq, Ayesha; Srivastava, Jyoti; Robertson, Chadia; Jariwala, Nidhi Himanshu; Fisher, Paul B; Sarkar, Devanand

    2014-01-01

    Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed "IGFBP-related proteins" that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy. PMID:27508172

  13. Prognostic factors after hepatic resection for the single hepatocellular carcinoma larger than 5 cm

    PubMed Central

    Noh, Ji Hyun; Kim, Tae-Seok; Ahn, Keun Soo; Kim, Yong Hoon

    2016-01-01

    Purpose This study aimed to determine which factors affect the prognosis of hepatectomy for hepatocellular carcinoma (HCC) larger than 5 cm, including the prognostic difference between tumor sizes from 5–10 cm and larger than 10 cm. Methods The medical records of 114 patients who underwent hepatectomy for single HCC larger than 5 cm were reviewed and analyzed retrospectively. Results In the analysis of the entire cohort of 114 patients, the 5-year overall and diseases-free survival rates were 50% and 29%, respectively. In a comparison of survival rates between groups, tumor sizes of 5 to 10 cm and larger than 10 cm, the overall and disease-free survival rates were not significantly different, respectively (54% vs. 41%, P = 0.433 and 33% vs. 23%, P = 0.083). On multivariate analysis, positive hepatitis B, high prothrombin induced by vitamin K absence or antagonist-II levels over 200 mIU/mL, and vascular invasion (micro- and macrovascular invasion) were independent prognostic factors for recurrence after hepatic resection. However, tumor size larger than 10 cm was not significant for recurrence after resection. Conclusion This study shows that surgical resection of solitary HCC larger than 5 cm showed favorable overall survival. And there is no survival difference with tumors between 5–10 cm and larger than 10 cm.

  14. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells

    PubMed Central

    Peng, Jian-long; Wang, Shi-jie; Geng, Jie-jie; Liu, Ji-de; Feng, Fei; Song, Fei; Li, Ling; Zhu, Ping; Jiang, Jian-li; Chen, Zhi-nan

    2016-01-01

    CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression. PMID:26882566

  15. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma.

    PubMed

    Tsang, Chi Man; Cheung, Kenneth Chat Pan; Cheung, Yuk Chun; Man, Kwan; Lui, Vivian Wai-Yan; Tsao, Sai Wah; Feng, Yibin

    2015-03-01

    Hepatocellular carcinoma (HCC) is an invasive cancer with a high rate of recurrence and metastasis. Agents with anti-proliferative as well as anti-metastatic activity will be ideal for effective treatment. Here, we demonstrated that berberine, an isoquinoline alkaloid, harbored potent anti-metastatic and anti-proliferative activities in vivo. Using an orthotopic model of HCC (MHCC-97L), which spontaneously develops lung metastases (one of the most common sites of HCC metastasis), we found that berberine treatment (10mg/kg/2days) significantly reduced lung metastasis from the liver tumors by ~85% (quantitated by bioluminescence emitted from lung metastases). Histological examination also confirmed the reduced incidence and number of lung metastases in berberine-treated mice. Furthermore, berberine effectively suppressed extra-tumor invasion of the primary HCC implant into the surrounding normal liver tissue, illustrating its potent anti-metastatic action in vivo. Consistent with previous reports in other cancer, berberine's anti-tumor activity was accompanied by suppression of cellular proliferation, invasiveness and HIF-1α/VEGF signaling. Strikingly, further mechanistic investigation revealed that berberine exerted profound inhibitory effect on the expression of Id-1, which is a key regulator for HCC development and metastasis. Berberine could suppress the transcription level of Id-1 through inhibiting its promotor activity. Specific downregulation of Id-1 by knocking down its RNA transcripts in HCC cells inhibited cellular growth, invasion and VEGF secretion, demonstrating the functional relevance of Id-1 downregulation induced by berberine. Lastly, berberine's anti-proliferative and anti-invasive activities could be partially rescued by Id-1 overexpression in HCC models, revealing a novel anti-cancer/anti-invasive mechanism of berberine via Id-1 suppression. PMID:25496992

  16. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells.

    PubMed

    Fu, Zhi-Guang; Wang, Li; Cui, Hong-Yong; Peng, Jian-Long; Wang, Shi-Jie; Geng, Jie-Jie; Liu, Ji-D; Feng, Fei; Song, Fei; Li, Ling; Zhu, Ping; Jiang, Jian-Li; Chen, Zhi-Nan

    2016-02-23

    CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression. PMID:26882566

  17. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    SciTech Connect

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  18. Glycogen synthase kinase-3β regulates tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis via the NF-κB pathway in hepatocellular carcinoma

    PubMed Central

    FU, KAI; PAN, HUAZHENG; LIU, SHIHAI; LV, JING; WAN, ZHAOJUN; LI, JIAO; SUN, QING; LIANG, JUN

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for its ability to selectively induce apoptosis in malignant cells. However, human hepatocellular carcinoma (HCC) cells display resistance to TRAIL-induced cell death. The present study investigated whether TRAIL-induced apoptosis in HCC cells was enhanced by the administration of an inhibitor of glycogen synthase kinase-3β (GSK-3β) or by short hairpin RNA-mediated inhibition of GSK-3β. The results of the current study demonstrated that inhibition of GSK-3β significantly impairs the expression of the nuclear factor-κB (NF-κB) target genes Bcl-xL and clAP2 in HCC cells (P<0.05). This indicates that GSK-3β may regulate NF-κB target genes involved in cell survival. Furthermore, knockdown of Bcl-xL significantly enhanced the sensitizing effect of GSK-3β inhibitor on TRAIL-induced apoptosis (P<0.05). Overall, the present study provides a rationale for further exploration of GSK-3β inhibition combined with TRAIL as a novel treatment for HCC. PMID:26788169

  19. Predictive factors of contrast-enhanced ultrasonography for the response to transarterial chemoembolization in hepatocellular carcinoma

    PubMed Central

    Park, Kil Hyo; Kwon, Soon Ha; Lee, Yong Sub; Jang, Jae Young; Lee, Sae Hwan; Kim, Sang Gyune; Cha, Sang-Woo; Kim, Young Seok; Cho, Young Deok; Kim, Hong Soo; Kim, Boo Sung; Kim, Yong Jae

    2015-01-01

    Background/Aims The predictive role of contrast-enhanced ultrasonography (CEUS) before performing transarterial chemoembolization (TACE) has not been determined. We assessed the possible predictive factors of CEUS for the response to TACE. Methods Seventeen patients with 18 hepatocellular carcinoma (HCC) underwent TACE. All of the tumors were studied with CEUS before TACE using a second-generation ultrasound contrast agent (SonoVue®, Bracco, Milan, Italy). The tumor response to TACE was classified with a score between 1 and 4 according to the remaining enhancing-tumor percentage based on modified response evaluation criteria in solid tumors (mRECIST): 1, enhancing tumor <25%; 2, 25%≤enhancing tumor<50%; 3, 50%≤enhancing tumor<75%; and 4, enhancing tumor≥75%). A score of 1 was defined as a "good response" to TACE. The predictive factors for the response to TACE were evaluated during CEUS based on the maximum tumor diameter, initial arterial enhancing time, arterial enhancing duration, intensity of arterial enhancement, presence of a hypoenhanced pattern, and the feeding artery to the tumor. Results The median tumor size was 3.1 cm. The distribution of tumor response scores after TACE in all tumors was as follows: 1, n=11; 2, n=4; 3, n=2; and 4, n=1. Fifteen tumors showed feeding arteries. The presence of a feeding artery and the tumor size (≤5 cm) were the predictive factors for a good response (P=0.043 and P=0.047, respectively). Conclusions The presence of a feeding artery and a tumor size of less than 5 cm were the predictive factors for a good response of HCC to TACE on CEUS. PMID:26157753

  20. Molecular imaging of hepatocellular carcinoma xenografts with epidermal growth factor receptor targeted affibody probes.

    PubMed

    Zhao, Ping; Yang, Xiaoyang; Qi, Shibo; Liu, Hongguang; Jiang, Han; Hoppmann, Susan; Cao, Qizhen; Chua, Mei-Sze; So, Samuel K; Cheng, Zhen

    2013-01-01

    Hepatocellular carcinoma (HCC) is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%-20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR) has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET) or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo. PMID:23710458

  1. Decaprenyl diphosphate synthase subunit 2 as a prognosis factor in hepatocellular carcinoma

    PubMed Central

    Huang, Wei; Gao, Fei; Li, Kang; Wang, Wen; Lai, Ya-Rou; Tang, Shao-Hui; Yang, Dong-Hua

    2015-01-01

    AIM: To investigate the involvement of decaprenyl diphosphate synthase subunit 2 (PDSS2) in development and progression of human hepatocellular carcinoma (HCC). METHODS: PDSS2 protein expression was examined in well- and poorly differentiated HCC tumor samples. The levels of PDSS2 expression were compared with clinical features and prognosis of HCC patients. The effects of PDSS2 on cell proliferation, cell cycle, apoptosis, cell migration, and invasion in HCC HepG2 cells were also investigated. RESULTS: PDSS2 was downregulated in poorly differentiated cancer samples compared with well-differentiated tumor samples, and the expression level was markedly lower in HCC tissues than in histologically normal tissue adjacent to the cancer. Reduced protein expression was negatively associated with the status of HCC progression. In addition, overexpression of PDSS2 dramatically suppressed cell proliferation and colony formation, and induced apoptosis in HepG2 cells by inducing G1-phase cell-cycle arrest. The migration and invasion capabilities of HepG2 cells were significantly decreased following PDSS2 overexpression. CONCLUSION: Decreased PDSS2 expression is an unfavorable prognostic factor for HCC, and PDSS2 has potent anticancer activity in HCC tissues and HepG2 cells. PMID:25780306

  2. Upregulation of heat shock factor 1 transcription activity is associated with hepatocellular carcinoma progression

    PubMed Central

    LI, SHULIAN; MA, WANLI; FEI, TENG; LOU, QIANG; ZHANG, YAQIN; CUI, XIUKUN; QIN, XIAOMING; ZHANG, JUN; LIU, GUANGCHAO; DONG, ZHENG; MA, YUANFANG; SONG, ZHENGSHUN; HU, YANZHONG

    2014-01-01

    Heat shock factor 1 (HSF1) is associated with tissue-specific tumorigenesis in a number of mouse models, and has been used a as prognostic marker of cancer types, including breast and prostatic cancer. However, its role in human hepatocellular carcinoma (HCC) is not well understood. Using immunoblotting and immunohistochemical staining, it was identified that HSF1 and its serine (S) 326 phosphorylation, a biomarker of HSF1 activation, are significantly upregulated in human HCC tissues and HCC cell lines compared with their normal counterparts. Cohort analyses indicated that upregulation of the expression of HSF1 and its phospho-S326 is significantly correlated with HCC progression, invasion and patient survival prognosis (P<0.001); however, not in the presence of a hepatitis B virus infection and the expression of alpha-fetoprotein and carcinoembryonic antigen. Knockdown of HSF1 with shRNA induced the protein expression of tumor suppressor retinoblastoma protein, resulting in attenuated plc/prf5 cell growth and colony formation in vitro. Taken together, these data markedly support that HSF1 is a potential prognostic marker and therapeutic target for the treatment of HCC. PMID:25199534

  3. miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma

    PubMed Central

    Sun, Lei; Yao, Hong; Lu, Baoling; Zhu, Liying

    2015-01-01

    Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC. PMID:26287602

  4. HBV is a risk factor for poor patient prognosis after curative resection of hepatocellular carcinoma

    PubMed Central

    Li, Zhonghu; Zhao, Xin; Jiang, Peng; Xiao, Senlin; Wu, Guo; Chen, Kai; Zhang, Xi; Liu, Hui; Han, Xiuguo; Wang, Shuguang; Li, Xiaowu

    2016-01-01

    Abstract Controversy exists regarding pathological factors affecting the prognosis of hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV-HCC). Their postoperative clinical behaviors and the exact HBV Deoxyribonucleic Acid (DNA) thresholds that distinguish good and poor prognoses are unknown. This study aimed to compare clinicopathological, pre- and postoperative clinical factors and overall and recurrence-free survival (RFS) between HBV-HCC patients and nonhepatitis B and nonhepatitis C HCC (NBC-HCC) patients to determine the optimal prognostic HBV DNA threshold. Data from 1440 patients with HBV-HCC and NBC-HCC who underwent curative hepatectomy were retrospectively analyzed. Liver function in the HBV-HCC group was significantly worse than in the NBC-HCC group. Compared with NBC-HCC patients, HBV-HCC patients had significantly more vascular invasion and advanced HCC. The HBV-HCC patients also had significantly worse liver function and more complications. Further survival analysis showed significantly lower overall and RFS rates and a higher early recurrence rate in the HBV-HCC group. Univariate analysis indicated that HBV was a risk factor for overall and RFS. Finally, X-tile analysis revealed that the optimal HBV DNA cutoff points for predicting RFS and overall survival in HCC patients were 10,100 and 12,800 IU/mL, respectively. After hepatectomy for HCC, HBV-HCC patients had more complications and a worse prognosis than NBC-HCC patients. Antiviral therapy should be considered before hepatectomy in patients with high (more than approximately 104 IU/mL) HBV DNA levels. PMID:27495026

  5. Infiltrative Hepatocellular Carcinoma: Assessment of Factors Associated With Outcomes in Patients Undergoing Hepatectomy.

    PubMed

    Yan, Xiaopeng; Fu, Xu; Deng, Min; Chen, Jun; He, Jian; Shi, Jiong; Qiu, Yudong

    2016-05-01

    Data on infiltrative hepatocellular carcinoma (iHCC) receiving hepatectomy are unclear. Our study assessed the outcomes, effects of anatomical resection, and prognostic factors in a cohort of Chinese patients with iHCC undergoing hepatectomy.Data from 47 patients with iHCC undergoing hepatectomy were analyzed in a retrospective study. Independent prognostic factors of overall survival (OS) and recurrence-free survival (RFS) were identified using univariate and multivariate analyses. Correlations between microvascular invasion (MVI) and clinicopathological features were assessed using the χ test, Student t test, or the Mann-Whitney U test. Survival outcomes were estimated using the Kaplan-Meier method.The median OS was 27.37 months and the 1-year RFS rate were 61.7%. Alpha-fetoprotein (AFP) level was not a specific parameter in iHCC patients undergoing hepatectomy. Anatomic resection was significantly associated with increased RFS (P = 0.007). Patients showing MVI were observed with decreased RFS (P < 0.001). A high lactate dehydrogenase (LDH) level was significantly associated with decreased OS and RFS (P = 0.003 and P = 0.020, respectively). MVI was shown correlated with the levels of aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), and LDH. Subgroup analysis indicated that in mild MVI group, survival outcome was significantly more favorable in patients with high LDH level (P = 0.019).iHCC patients are related with higher MVI rate and patients may still derive survival benefit from anatomic resection at early and intermediate stages. MVI classification could be used to identify iHCC patients with a poorer survival, especially those with a high preoperative LDH level. PMID:27175659

  6. Frequency, Risk Factors and Survival Associated with an Intrasubsegmental Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma

    PubMed Central

    Tateishi, Ryosuke; Shiina, Shuichiro; Akahane, Masaaki; Sato, Jiro; Kondo, Yuji; Masuzaki, Ryota; Nakagawa, Hayato; Asaoka, Yoshinari; Goto, Tadashi; Otomo, Kuni; Omata, Masao; Yoshida, Haruhiko; Koike, Kazuhiko

    2013-01-01

    Background In the treatment of hepatocellular carcinoma (HCC), hepatic resection has the advantage over radiofrequency ablation (RFA) in terms of systematic removal of a hepatic segment. Methods We enrolled 303 consecutive patients of a single naïve HCC that had been treated by RFA at The University of Tokyo Hospital from 1999 to 2004. Recurrence was categorized as either intra- or extra-subsegmental as according to the Couinaud's segment of the original nodule. To assess the relationship between the subsegments of the original and recurrent nodules, we calculated the kappa coefficient. We assessed the risk factors for intra- and extra-subsegmental recurrence independently using univariate and multivariate Cox proportional hazard regression. We also assessed the impact of the mode of recurrence on the survival outcome. Results During the follow-up period, 201 patients in our cohort showed tumor recurrence distributed in a total of 340 subsegments. Recurrence was categorized as exclusively intra-subsegmental, exclusively extra-subsegmental, and simultaneously intra- and extra-subsegmental in 40 (20%), 110 (55%), and 51 (25%) patients, respectively. The kappa coefficient was measured at 0.135 (95% CI, 0.079–0.190; P<0.001). Multivariate analysis revealed that of the tumor size, AFP value and platelet count were all risk factors for both intra- and extra-subsegmental recurrence. Of the patients in whom recurrent HCC was found to be exclusively intra-subsegmental, extra-subsegmental, and simultaneously intra- and extra-subsegmental, 37 (92.5%), 99 (90.8%) and 42 (82.3%), respectively, were treated using RFA. The survival outcomes after recurrence were similar between patients with an exclusively intra- or extra-subsegmental recurrence. Conclusions The effectiveness of systematic subsegmentectomy may be limited in the patients with both HCC and chronic liver disease who frequently undergo multi-focal tumor recurrence. PMID:23593129

  7. Transarterial Chemoembolization for Hepatocellular Carcinomas with Central Bile Duct Invasion: Safety, Prognosis, and Predictive Factors

    SciTech Connect

    Choi, Jin Woo; Chung, Jin Wook; Cho, Yun Ku; Kim, Yoon Jun; Yoon, Jung-Hwan; Kim, Hyo-Cheol; Jae, Hwan Jun

    2015-08-15

    PurposeTo assess the safety and effectiveness of transarterial chemoembolization (TACE) of patients who have hepatocellular carcinomas (HCCs) with central bile duct invasion.Materials and MethodsThe institutional review board approved this retrospective study and waived informed consent. Fifty-three patients, initially treated with TACE for HCCs with central bile duct invasion from January 1999 to September 2012, were included. Clinical, laboratory, and survival data were reviewed. Complications and hospitalization length were evaluated using the χ{sup 2} test, Fisher’s exact test, and logistic regression analysis. Survival was analyzed using the Kaplan–Meier method with log-rank test and Cox proportional hazard model.ResultsSeven patients experienced TACE-related major complications (severe post-embolization syndrome in 3, non-fatal sepsis in 3, and secondary bacterial peritonitis in 1). The overall major complication rate was 13.2 %, but there were no permanent adverse sequelae or deaths within 30 days. Serum total bilirubin ≥3.0 mg/dL was the only significant risk factor for long hospitalization [hazard ratio (HR) = 4.341, p = .022]. The median survival was 12.2 months. Extrahepatic metastasis (HR = 6.145, p < .001), international normalized ratio (PT-INR) ≥1.20 (HR = 4.564, p < .001), vascular invasion (HR = 3.484, p = .001), and intermediate tumor enhancement (HR = 2.417, p = .019) were significantly associated with shorter survival.ConclusionTACE can be a safe and effective treatment for patients who have HCCs with central bile duct invasion. In particular, long-term survival can be expected if patients have strongly enhancing tumors without poor prognostic factors such as extrahepatic metastasis, PT-INR prolongation, and vascular invasion.

  8. A double suicide gene system driven by vascular endothelial growth factor promoter selectively kills human hepatocellular carcinoma cells

    PubMed Central

    WU, KAI; YANG, LIUCHENG; HUANG, ZONGHAI; ZHAO, HAIJUN; WANG, JIANJUN; XU, SHUAI

    2016-01-01

    The aim of the present study was to investigate the selective killing effect on hepatocellular carcinoma (HCC) cells of an adenovirus (Ad)-mediated cytosine deaminase (CD) in combination with thymidine kinase (TK) suicide gene system, driven by the vascular endothelial growth factor promoter (VEGFp), in vitro and in vivo. A double suicide gene system with VEGFp, named Ad-VEGFp-CDglyTK, was constructed and transfected into human HCC cells (BEL-7402 or HepG2; the latter cell type is deficient in VEGF) and human umbilical vein vascular endothelial cells (HUVEC). Green fluorescent protein expression was detected by fluoroscopy to verify transfection efficiency, and CDglyTK gene expression was detected by reverse transcription-polymerase chain reaction (PCR). The selective killing effect of Ad-VEGFp-CDglyTK was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry (FCM) in vitro and by xenograft studies in vivo. PCR revealed that the transgenic CDglyTK gene was expressed in BEL-7402 cells and HUVEC, but not in HepG2 cells. The cell survival rate significantly decreased in line with increasing concentrations of the prodrugs, ganciclovir (GCV) alone, 5-fluorocytosine (5-FC) alone or a combination of the two, in HUVEC and BEL-7402 cells with the transfected CDglyTK gene, but not in untransfected HUVEC or BEL-7402 cells, or in transfected or untransfected HepG2 cells. This result was additionally confirmed by FCM. GCV and 5-FC inhibited the HUVEC and BEL-7402 cells containing the transfected CDglyTK gene and also inhibited adjacent unmodified cells via the ‘bystander effect’. No similar results were observed in HepG2 cells. Compared with the control group, tumors with the transfected CDglyTK gene were smaller and the microvessel density of the tumor tissue was significantly decreased. It was concluded that a combination TK/GCV and CD/5-FC suicide gene system driven by VEGFp may provide a promising treatment strategy for HCC

  9. Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for hepatocellular carcinoma

    PubMed Central

    Moshiri, Farzaneh; Callegari, Elisa; D'Abundo, Lucilla; Corrà, Fabio; Lupini, Laura; Sabbioni, Silvia

    2014-01-01

    Aim We evaluated the capability of “microRNA sponges” in sequestering and inhibiting the over-expressed miR-221 in HCC cell lines. Background Advanced hepatocellular carcinoma (HCC) is a serious public health problem, with no effective cure at present. It has been demonstrated that the deregulation of microRNAs expression contributes to tumorigenesis. In HCC, miR-221 was shown to be up-regulated in more than 70% of the cases and was associated with higher tumor stage, metastasis and a shorter time to recurrence after surgery, suggesting an important pathogenic role. A tumor promoting function of miR-221 was proved in a transgenic mouse model, which was predisposed to the development of liver cancers. These findings suggested that miR-221 could represent a potential target for anti-tumor approaches. Material and Methods Novel adeno and adeno-associated viral vectors (AAVs) were developed: they were genetically modified to drive the expression of multiple binding sites for miR-221, the “miR-221 sponge”, which was designed to sequester miR-221 cellular molecules. Results Analysis of viral vectors activity in HCC cells revealed their capability to reduce miR-221 endogenous levels, which was accompanied by the increase in CDKN1B/ p27 protein, a known target of miR-221. An increase in apoptosis was also measured in Hep3B cells after infection with any of the two viral vectors in comparison with control vectors, with stronger effects induced by adenovirus compared to AAV vectors. Conclusion The depletion of oncogenic microRNAs represents a potential anti-cancer approach that needs to be tested for safety and efficacy. Here, we describe the development of novel “miR-221 sponge” vectors, which can reduce miR-221 activity in vitro and may be used for in vivo delivery. PMID:25436097

  10. Current and Future Treatment Strategies for Patients with Advanced Hepatocellular Carcinoma: Role of mTOR Inhibition.

    PubMed

    Finn, Richard S

    2012-11-01

    Hepatocellular carcinoma (HCC) is a common cancer that has the third highest cancer-related mortality rate worldwide. Although potentially curable by transplantation if detected early, the majority of cases are diagnosed at an advanced stage of disease for which limited treatment options are available. The only proven systemic therapy for advanced HCC is sorafenib, a multi-kinase inhibitor that has demonstrated modest efficacy and reasonable tolerability in patients with advanced HCC. Five years after the approval of sorafenib, no other agent has been proven to be beneficial in the first- or second-line setting in advanced HCC. While molecular studies have highlighted various potential targets in HCC, the mammalian target of rapamycin (mTOR) has emerged as an exciting target for cancer therapy including HCC. Laboratory data have linked the phosphatidylinositol 3-kinase/AKT/mTOR axis to various oncogenic processes, including survival and angiogenesis. Historically, mTOR inhibitors have been used for their immunosuppressive properties, but more recently they have been approved as anticancer agents. Retrospective HCC studies suggest that the inclusion of mTOR inhibition as part of an immunosuppressant regimen after transplantation may reduce HCC recurrence compared with other immunosuppressive agents such as calcineurin inhibitors. More recently, single-arm, phase I/II studies have shown that mTOR inhibitors also have activity as monotherapy in cases of recurrent HCC or de novo advanced HCC. This article will review the rationale for targeting the mTOR pathway in HCC, and the currently available clinical data supporting its development for HCC. PMID:24159589

  11. miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1.

    PubMed

    Wang, Wenyao; Zhang, Hongfei; Wang, Lichao; Zhang, Shaojun; Tang, Miao

    2016-05-13

    microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interfering RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3'-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC. PMID:27049311

  12. Prognostic factors for survival after transarterial chemoembolization combined with microwave ablation for hepatocellular carcinoma

    PubMed Central

    Ni, Jia-Yan; Sun, Hong-Liang; Chen, Yao-Ting; Luo, Jiang-Hong; Chen, Dong; Jiang, Xiong-Ying; Xu, Lin-Feng

    2014-01-01

    AIM: To analyze prognostic factors for survival after transarterial chemoembolization (TACE) combined with microwave ablation (MWA) for hepatocellular carcinoma (HCC). METHODS: Clinical data of 86 patients who underwent TACE combined with MWA between January 2006 and December 2013 were retrospectively analyzed in this study. Survival curves were detected using log-rank test. Univariate analysis was performed using log-rank test with respect to 13 prognostic factors affecting survival. All statistically significant prognostic factors identified by univariate analysis were entered into a Cox proportion hazards regression model to identify independent predictors of survival. P values were two-sided and P < 0.05 was considered statistically significant. RESULTS: Median follow-up time was 47.6 mo, and median survival time of enrolled patients was 21.5 mo. The 1-, 2-, 3- and 5-year overall survival rates were 72.1%, 44.1%, 31.4% and 13.9%, respectively. Tumor size(χ2 = 14.999, P = 0.000), Barcelona Clinic Liver Cancer (BCLC) stage (χ2 = 29.765, P = 0.000), Child-Pugh class (χ2 = 51.820, P = 0.000), portal vein tumor thrombus (PVTT) (χ2 = 43.086, P = 0.000), arterio-venous fistula (χ2 = 29.791, P = 0.000), MWA therapy times (χ2 = 12.920, P = 0.002), Eastern Cooperative Oncology Group (ECOG) score (χ2 = 28.660, P = 0.000) and targeted drug usage (χ2 = 10.901, P = 0.001) were found to be significantly associated with overall survival by univariate analysis. Multivariate analysis identified that tumor size (95%CI: 1.608-4.962, P = 0.000), BCLC stage (95%CI: 1.016-2.208, P = 0.020), PVTT (95%CI: 2.062-9.068, P = 0.000), MWA therapy times (95%CI: 0.402-0.745, P = 0.000), ECOG score (95%CI: 1.012-3.053, P = 0.045) and targeted drug usage (95%CI: 1.335-3.143, P = 0.001) were independent prognostic factors associated with overall survival. CONCLUSION: Superior performance status, MWA treatment and targeted drug were favorable factors, and large HCC, PVTT and advanced BCLC

  13. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  14. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    SciTech Connect

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong Xu, Ling

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  15. Secondary School Students' Views of Inhibiting Factors in Seeking Counselling

    ERIC Educational Resources Information Center

    Chan, Stephanie; Quinn, Philip

    2012-01-01

    This study examines secondary school students' perceptions of inhibiting factors in seeking counselling. Responses to a questionnaire completed by 1346 secondary school students were analysed using quantitative and qualitative methods. Exploratory factor analysis highlighted that within 21 pre-defined inhibiting factors, items loaded strongly on…

  16. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    SciTech Connect

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi . E-mail: sqwang@nic.bmi.ac.cn

    2006-04-07

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G{sub 1} phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.

  17. Frequency of and Predictive Factors for Vascular Invasion after Radiofrequency Ablation for Hepatocellular Carcinoma

    PubMed Central

    Asaoka, Yoshinari; Tateishi, Ryosuke; Nakagomi, Ryo; Kondo, Mayuko; Fujiwara, Naoto; Minami, Tatsuya; Sato, Masaya; Uchino, Koji; Enooku, Kenichiro; Nakagawa, Hayato; Kondo, Yuji; Shiina, Shuichiro; Yoshida, Haruhiko; Koike, Kazuhiko

    2014-01-01

    Background Vascular invasion in patients with hepatocellular carcinoma (HCC) is representative of advanced disease with an extremely poor prognosis. The detailed course of its development has not been fully elucidated. Methods We enrolled 1057 consecutive patients with HCC who had been treated with curative intent by radiofrequency ablation (RFA) as an initial therapy from 1999 to 2008 at our department. We analyzed the incidence rate of and predictive factors for vascular invasion. The survival rate after detection of vascular invasion was also analyzed. Results During a mean follow-up period of 4.5 years, 6075 nodules including primary and recurrent lesions were treated by RFA. Vascular invasion was observed in 97 patients. The rate of vascular invasion associated with site of original RFA procedure was 0.66% on a nodule basis. The incidence rates of vascular invasion on a patient basis at 1, 3, and 5 years were 1.1%, 5.9%, and 10.4%, respectively. Univariate analysis revealed that tumor size, tumor number, alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin (DCP), and Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein were significant risk predictors of vascular invasion. In multivariate analysis, DCP was the most significant predictor for vascular invasion (compared with a DCP of ≤100 mAu/mL, the hazard ratio was 1.95 when DCP was 101–200 mAu/mL and 3.22 when DCP was >200 mAu/mL). The median survival time after development of vascular invasion was only 6 months. Conclusion Vascular invasion occurs during the clinical course of patients initially treated with curative intent. High-risk patients may be identified using tumor markers. PMID:25397677

  18. Gastroduodenal Complications After Concurrent Chemoradiation Therapy in Patients With Hepatocellular Carcinoma: Endoscopic Findings and Risk Factors

    SciTech Connect

    Chon, Young Eun; Seong, Jinsil; Kim, Beom Kyung; Cha, Jihye; Kim, Seung Up; Park, Jun Yong; Ahn, Sang Hoon; Han, Kwang-Hyub; Chon, Chae Yoon; Shin, Sung Kwan; Kim, Do Young

    2011-12-01

    Purpose: Concurrent chemoradiation therapy (CCRT) is useful in advanced hepatocellular carcinoma (HCC), but little is known about radiation-induced gastroduodenal complications following therapy. To determine risk factors, we investigated the prevalence and patterns of gastroduodenal complications following CCRT using endoscopy. Methods and Materials: Enrolled in the study were 123 patients treated with CCRT for unresectable HCC between January 1998 and December 2005. Radiation-induced gastroduodenal complications were defined as radiation gastritis/duodenitis, radiation gastric/duodenal ulcer, or other gastroduodenal toxicity associated with radiation, based on Common Terminology Criteria for Adverse Events (CTCAE 3.0). Serious gastroduodenal complications were defined as events occurring within 12 months from completion of CCRT, those requiring prompt therapeutic intervention, or symptoms equivalent to Grade 3 or 4 radiation-related gastroduodenal toxicity, including nausea or vomiting, based on CTCAE 3.0. Results: A month after completion of CCRT, 65 (52.8%) patients displayed endoscopic evidence of radiation-induced gastroduodenal complications. Radiation gastric and duodenal ulcers were found in 32 (26.0%) and 20 (16.3%) patients, respectively; radiation gastritis and duodenitis were found in 50 (40.7%) and 42 (34.1%) patients, respectively. Radiation-related bleeding was observed in 13 patients (10.6%). Serious gastroduodenal complications occurred in 18 patients (14.6%) and were significantly more frequent in patients with liver cirrhosis than in those without cirrhosis (p = 0.043). There were no radiation-related deaths. Conclusions: Endoscopically detectable radiation-induced gastroduodenal complications were common in HCC following CCRT. Although serious complications were uncommon, the frequency was higher in patients with liver cirrhosis; thus, these patients should be closely monitored when receiving CCRT.

  19. Prognostic role of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma undergoing liver transplantation.

    PubMed

    Zhang, Wei; Kim, Richard; Quintini, Cristiano; Hashimoto, Koji; Fujiki, Masato; Diago, Teresa; Eghtesad, Bijan; Miller, Charles; Fung, John; Tan, Ann; Menon, K V Narayanan; Aucejo, Federico

    2015-01-01

    Vascular endothelial growth factor (VEGF) is pivotal in the development of hepatocellular carcinoma (HCC). Studies have demonstrated the prognostic value of circulating VEGF levels in patients undergoing liver resection or locoregional therapy (LRT) for HCC. We investigated the significance of preoperative plasma VEGF levels in patients with HCC undergoing liver transplantation (LT) at a Western transplant center. Pre-LT plasma VEGF levels were measured with an enzyme-linked immunoassay for 164 patients with HCC undergoing LT. The preoperative plasma VEGF level was correlated with clinicopathological variables and overall and recurrence-free post-LT survival. A higher pre-LT plasma VEGF level was significantly associated with pre-LT LRT (P = 0.01), multiple tumors (P = 0.02), a total tumor diameter ≥ 5 cm (P = 0.01), bilobar tumor distribution (P = 0.03), tumor vascular invasion (VI; P < 0.001), and HCC beyond the Milan criteria (P < 0.001). Patients with a plasma VEGF level > 44 pg/mL had significantly worse overall and disease-free survival than those with VEGF levels ≤ 44 pg/mL (P = 0.04 and P = 0.02, respectively). In a multivariate analysis, a plasma VEGF level > 44 pg/mL was independently associated with tumor VI (P < 0.001) and recurrence-free survival (hazard ratio = 2.12, 95% confidence interval = 1.08-4.14, P = 0.03). In conclusion, in patients with chronic end-stage liver disease and HCC, a pre-LT plasma VEGF level > 44 pg/mL may be a predictor of tumor VI and recurrence-free post-LT survival. PMID:25283528

  20. Factors Associated with Outcomes and Response to Therapy in Patients with Infiltrative Hepatocellular Carcinoma

    PubMed Central

    Mehta, Neil; Fidelman, Nicholas; Sarkar, Monika; Yao, Francis Y.

    2014-01-01

    Background & Aims Infiltrative hepatocellular carcinoma (iHCC) is characterized by its indistinct borders and lack of a typical pattern of contrast enhancement. There are few published data on iHCC. We assessed outcomes, effects of treatment, and prognostic factors in a large cohort of patients with iHCC. Methods We analyzed data from 155 patients (median age 60 years; 79% male; median level of α-fetoprotein [AFP] 347 ng/mL; median model for end-stage liver disease score [MELD] 13) with iHCC, based on contrast-enhanced computed tomography or magnetic resonance imaging, from 2002 to 2010 at the University of California, San Francisco Medical Center. All imaging study results were independently reviewed by 2 investigators. Results Most of the patients had tumors of Barcelona Clinic Liver Cancer stage C (70%) or D (22%). The median maximum tumor diameter was 11.3 cm; 41% of lesions were hypovascular, 82% had macrovascular invasion, and 52% had extra-hepatic metastases. Median survival was 4.0 months, and rates of survival at 6 and 12 months were 30% and 10%, respectively. On multivariate analysis, predictors of 6-month mortality were Child-Pugh class B or C cirrhosis; lack of tumor-directed therapy with chemoembolization (TACE), radiofrequency ablation, or sorafenib; AFP level >1000 ng/mL; female sex; MELD score; and maximum tumor diameter. The percentages of patients surviving 6 and 12 months were 17% and 2% for those that received no therapy (n=109), 73% and 36% for those that received sorafenib (n=11), and 45% and 17% for those that that received TACE (n=18) (all P values <.01). Conclusions iHCC is a radiographically distinct and advanced form of HCC with a poor prognosis. Therapy with TACE or sorafenib appears to prolong survival and requires further investigation. PMID:23333661

  1. Differentiation therapy of hepatocellular carcinoma by inhibiting the activity of AKT/GSK-3β/β-catenin axis and TGF-β induced EMT with sophocarpine.

    PubMed

    Zhang, Ping-Ping; Wang, Pei-Qin; Qiao, Chun-Ping; Zhang, Qing; Zhang, Jun-Ping; Chen, Fei; Zhang, Xin; Xie, Wei-Fen; Yuan, Zong-Li; Li, Zhao-Shen; Chen, Yue-Xiang

    2016-06-28

    Hepatocellular carcinoma progression is thought to be driven by cancer stem cells (CSCs). No clinical trial has, as yet, shown convincing long-term disease free survival results for the majority of patients in HCC. So it is important to discover new anti-cancer agents. In our study, we chose sophocarpine, which is derived from the foxtail-like sophora herb, for its efficacy to inhibit HCC including CSCs and potential mechanism study. Our results show that sophocarpine could not only reduce HCC cell viability, eliminate HCC and reverse hepatoma cells malignant phenotype, but also reduce the ratio of CSCs and inhibit the sphere formation of CSCs in vitro. In vivo, sophocarpine significantly displayed antitumor effects in subcutaneous xenograft HCC models and orthotopic transplantation tumor models. Further studies showed that sophocarpine could exert anti-tumor effects partly via downregulating the activity of the cancer stem cell related pathways and inhibiting EMT induced by TGF-β. PMID:26945965

  2. The phospholipase A2 activity of peroxiredoxin 6 promotes cancer cell death induced by tumor necrosis factor alpha in hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Lu, Di; Zhuang, Runzhou; Wei, Xuyong; Xie, Haiyang; Wang, Chao; Zhu, Yangbo; Wang, Jianguo; Zhong, Cheng; Zhang, Xuanyu; Wei, Qiang; He, Zenglei; Zhou, Lin; Zheng, Shusen

    2016-09-01

    In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α. In conclusion, PRDX6 inhibited the carcinogenesis of HCC, and the iPLA2 activity of PRDX6 promoted cancer cell death induced by TNF-α. © 2015 Wiley Periodicals, Inc. PMID:26293541

  3. microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma.

    PubMed

    Zhang, Lei; Yu, Zhaoxiang; Xian, Yao; Lin, Xiaobo

    2016-02-01

    microRNAs (miRNAs) function as oncogenes or tumor suppressors in human cancers by targeting mRNAs for degradation and/or translational repression. miR-497 has been proposed as a tumor suppressive miRNA and its deregulation is observed in human cancers. However, the prognostic value of miR-497 and its underlying molecular pathways involved in the initiation and development of hepatocellular carcinoma (HCC) are poorly investigated. In the present study, we found that the mean level of miR-497 in HCC tissues was lower than that in adjacent nontumor tissues. Clinical data indicated that low expression of miR-497 was prominently associated with adverse prognostic features of HCC including high serum alpha-fetoprotein (AFP) level, large tumor size, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) stage. Furthermore, miR-497 was an independent prognostic factor for indicating both 5-year overall survival and disease-free survival of HCC patients. Gain- and loss-of-function studies showed that miR-497 reduced cell proliferation and induced apoptosis in HCC cells. Yes-associated protein 1 (YAP1) was identified as a direct target of miR-497 in HCC. An inverse correlation between YAP1 and miR-497 expression was observed in HCC tissues. Notably, YAP1 knockdown abrogated the effects of miR-497 deletion on HCC cells with decreased cell proliferation and increased apoptosis. In conclusion, we report that miR-497 is a potent prognostic indicator and may suppress tumor growth of HCC by targeting YAP1. PMID:27239437

  4. Lycopene Enriched Tomato Extract Inhibits Hypoxia, Angiogenesis, and Metastatic Markers in early Stage N-Nitrosodiethylamine Induced Hepatocellular Carcinoma.

    PubMed

    Bhatia, Nisha; Gupta, Prachi; Singh, Baljinder; Koul, Ashwani

    2015-01-01

    Targeting altered pathways during initial stage of hepatocellular carcinoma (HCC) development is viewed as an effective and promising strategy to control this disease. Present study investigated the potential effect of lycopene-enriched tomato extract (LycT) on hypoxia-induced factor (HIF)-1α, HOX, VEGF, CD31, matrix metalloproteinase (MMP)-2, MMP-9, and alpha fetoprotein (AFP)expression during initial stages of N-nitrosodiethylamine (NDEA) induced HCC. Female Balb/c mice (8-10 wk) were assigned to 4 groups: control, NDEA (200 mg NDEA i.p./kg body weight, cumulative), LycT (5 mg lycopene orally/kg body weight; 3 times a week), and LycT + NDEA. LycT treatment began 2 wk before NDEA administration and continued until the end of the 10 wk study. The onset of HCC by NDEA was associated with significant alteration in serum biochemical markers [alanine transaminases (ALT), aspartate transaminases (AST), and alkaline phosphatases (ALP), lactate dehydrogenase (LDH), urea, A/G ratio, and bilirubin] and in liver histopathology. LycT treatment significantly reduced the levels of these markers. LycT treatment to NDEA mice also led to significant reduction in protein levels of AFP, HIF-1α, VEGF, CD31, MMP-2, and MMP-9 in comparison with NDEA group alone. These parameters are important biomarkers of hypoxia, angiogenesis, and metastasis, which reflect the advanced disease stage. The study provides evidence that prophylactic dietary supplementation with LycT may counteract HCC progression and/or protect against disease onset. PMID:26474105

  5. Tumor Factors Associated with Clinical Outcomes in Patients with Hepatitis B Virus Infection and Hepatocellular Carcinoma

    PubMed Central

    Siripongsakun, Surachate; Stanford-Moore, Gaelen; Hsu, Leeyen; Chang, Patrick Weijen; Blatt, Lawrence Mitchell

    2012-01-01

    Background and aims: Hepatitis B virus (HBV) infection is a common cause of hepatocellular carcinoma (HCC) in the United States. This study evaluated the impact of surveillance and treatment on HBV-infected HCC patients and identified factors associated with survival. Methods: From 1981 to 2010, 166 hepatitis B surface antigen (HBsAg)-positive HCC patients were evaluated. Fifty-eight patients had HCC detected by surveillance, while 108 patients presented with HCC. Results: Compared to patients detected by surveillance, those presenting with HCC had more symptoms (65.7% vs 41.4%; P=.002), were more frequently outside of Milan criteria (73.7% vs 29.6%; P<.001), more often presented with diffuse tumors (23.2% vs 1.9%; P<.001), and had a shortened median survival time (9.5 months vs 18.7 months; P=.003). Patients who presented with diffuse tumors were younger and more often male (P=.002-.007), had a higher alpha-fetoprotein (AFP) level (P=.023), and had a median survival time of only 1.68 months. By multivariate analysis, factors that were significantly associated with mortality included diffuse tumors (hazard ratio [HR], 6.30; 95% confidence interval [CI], 3.14-12.66; P<.001), being outside of Milan criteria (HR, 2.02; 95% CI, 1.26-3.23; P=.005), albumin level (HR per 1 standard deviation decrease, 1.4; 95% CI, 1.15-1.72; P=.001), AFP level (HR per 1 log standard deviation increase, 1.38; 95% CI, 1.13-1.67; P=.001), and receiving liver transplantation versus other treatments (HR, 0.08-0.38; 95% CI, 0.03-0.87; P<.001 to P=.022). Conclusion: In the United States, HBV-related HCC is a common malignancy, especially among Asian immigrants. Identification of HBsAgpositive subjects and routine HCC surveillance are essential for improving survival in these patients. PMID:24693270

  6. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells.

    PubMed

    Sharma, Bal Krishan; Kolhe, Ravindra; Black, Stephen M; Keller, Jonathan R; Mivechi, Nahid F; Satyanarayana, Ande

    2016-01-01

    Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50-70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction

  7. Clinical significance of vascular endothelial growth factor in hepatitis C related hepatocellular carcinoma in Egyptian patients

    PubMed Central

    Atta, Mohamed Magdi El-Sadek Ali; Atta, Hazem Mahmoud; Gad, Magdy Abdel-Mawgoud; Rashed, Laila Ahmad; Said, Ebada M; Hassanien, Sharaf El-Sayed Ali; Kaseb, Ahmed O

    2016-01-01

    Background and aims Several angiogenic factors are involved in the development and progression of hepatocellular carcinoma (HCC), a hypervascular tumor. Vascular endothelial growth factor (VEGF) is a primary driving force for angiogenesis, and its overexpression has been reported in HCC. However, the significance of plasma and tissue VEGF levels in HCC in Egyptian patients with chronic hepatitis C (CHC) infection is understudied. The aim of this study was to evaluate the role of VEGF (measured in plasma and liver tissue) in patients with hepatitis C virus-related HCC and to assess its significance in the diagnosis and prognosis of HCC. Materials and methods A total of 90 subjects were studied. Among 90 subjects, 60 with CHC were examined and were subdivided into two groups: 30 patients with CHC-related HCC (HCC group) and 30 patients with CHC without HCC (non-HCC group). Thirty apparently healthy subjects served as the control group. VEGF was estimated in plasma by enzyme-linked immunosorbent assay and its expression in liver tissue was evaluated by real-time polymerase chain reaction. VEGF expression level and its relationship to tumor parameters, patients’ liver function profile, and patients’ clinical parameters were also investigated. Results Plasma VEGF levels in the HCC group were significantly higher than those of the non-HCC group, and both groups had significantly higher plasma VEGF levels than did the control group. Liver tissue VEGF expression was significantly higher in the HCC group than in the non-HCC group and positively correlated with plasma VEGF in the HCC group. The plasma VEGF levels were positively correlated with patients’ age, aspartate aminotransferase levels, serum alpha-fetoprotein levels, the presence of portal vein thrombosis, and the number of hepatic focal lesions in the HCC group. However, plasma VEGF levels were not significantly correlated with the Child-Pugh score, alanine aminotransferase levels, the size of focal lesions

  8. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Berk, P D

    1986-01-01

    Several studies suggest that a portion of hepatocellular nonesterified fatty acid uptake may be carrier mediated. To further investigate this process, initial rates (Vo) of [14C]oleate uptake into rat hepatocytes, isolated by collagenase perfusion and incubated at 37 degrees C with oleate in the presence of bovine serum albumin, were studied as a function of the concentration of unbound [14C]oleate in the medium. Vo was saturable with increasing unbound oleate concentration (Km = 8.3 X 10(-8) M; Vmax = 197 pmol per min per 5 X 10(4) hepatocytes) and was not inhibited by up to 40 microM sulfobromophthalein, taurocholate, or cholic acid. Oleate uptake was sodium dependent. Vo was significantly diminished when Li+, K+, choline, or sucrose were substituted for Na+ in the incubation medium and was reduced 46% by 1 mM ouabain. Uptake was also markedly reduced after exposure of cells to metabolic inhibitors (e.g., 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, antimycin, KCN). To evaluate the physiologic significance of the previously isolated rat liver plasma membrane fatty acid-binding protein, the effect of an antibody directed against this protein on hepatocellular [14C]oleate uptake was examined. Preincubation of hepatocytes with the IgG fraction of this antiserum inhibited Vo of [14C]oleate by up to 65% in dose-related fashion, without altering Vo for [35S]sulfobromophthalein, [14C]taurocholate, or [3H]cholate. These data indicate that at least a portion of hepatocellular oleate uptake is energy dependent, sodium linked, and mediated by a specific liver plasma membrane-fatty acid-binding protein. PMID:3459144

  9. MicroRNA-548a-5p promotes proliferation and inhibits apoptosis in hepatocellular carcinoma cells by targeting Tg737

    PubMed Central

    Zhao, Ge; Wang, Ting; Huang, Qi-Ke; Pu, Meng; Sun, Wei; Zhang, Zhuo-Chao; Ling, Rui; Tao, Kai-Shan

    2016-01-01

    AIM: To investigate whether Tg737 is regulated by microRNA-548a-5p (miR-548a-5p), and correlates with hepatocellular carcinoma (HCC) cell proliferation and apoptosis. METHODS: Assays of loss of function of Tg737 were performed by the colony formation assay, CCK assay and cell cycle assay in HCC cell lines. The interaction between miR-548a-5p and its downstream target, Tg737, was evaluated by a dual-luciferase reporter assay and quantitative real-time polymerase chain reaction. Tg737 was then up-regulated in HCC cells to evaluate its effect on miR-548a-5p regulation. HepG2 cells stably overexpressing miR-548a-5p or miR-control were also subcutaneously inoculated into nude mice to evaluate the effect of miR-548a-5p up-regulation on in vivo tumor growth. As the final step, the effect of miR-548a-5p on the apoptosis induced by cisplatin was evaluated by flow cytometry. RESULTS: Down-regulation of Tg737, which is a target gene of miR-548a-5p, accelerated HCC cell proliferation, and miR-548a-5p promoted HCC cell proliferation in vitro and in vivo. Like the down-regulation of Tg737, overexpression of miR-548a-5p in HCC cell lines promoted cell proliferation, increased colony forming ability and hampered cell apoptosis. In addition, miR-548a-5p overexpression increased HCC cell growth in vivo. MiR-548a-5p down-regulated Tg737 expression through direct contact with its 3’ untranslated region (UTR), and miR-548a-5p expression was negatively correlated with Tg737 levels in HCC specimens. Restoring Tg737 (without the 3’UTR) significantly hampered miR-548a-5p induced cell proliferation, and rescued the miR-548a-5p induced cell proliferation inhibition and apoptosis induced by cisplatin. CONCLUSION: MiR-548a-5p negatively regulates the tumor inhibitor gene Tg737 and promotes tumorigenesis in vitro and in vivo, indicating its potential as a novel therapeutic target for HCC. PMID:27340352

  10. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells

    PubMed Central

    MENG, XUE-QIN; ZHANG, WEI; ZHANG, FENG; YIN, SHENG-YONG; XIE, HAI-YANG; ZHOU, LIN; ZHENG, SHU-SEN

    2016-01-01

    The aim of the present study was to investigate the effect of solanine on promoting human hepatocellular carcinoma HepG2 cells to produce reactive oxygen species (ROS), and the molecular mechanisms leading to tumor cell apoptosis. Solanine was administered to HepG2 cells in vitro. A selection of probes targeting various cellular localizations of ROS were used to detect ROS expression using flow cytometry. The expression levels of apoptosis-associated proteins, including apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin binding protein 2 (TBP-2), and proliferation-associated proteins, including histone deacetylase 1 (HDAC1), were detected using western blotting. The percentage of cells undergoing apoptosis was measured using an Annexin V-fluorescein isothiocyanate/propidium iodide assay, and cell morphology was examined using Wright's stain followed by inverted microscopy analysis. ROS detection probes 2′,7′-dichlorofluorescin diacetate and dihydrorhodamine 123 identified that abundant ROS, including hydroxyl radical (OH−) and hydrogen peroxide (H2O2), were produced in the cytoplasm and mitochondria of the solanine-treated HepG2 cells compared with the control cells (P<0.05). Superoxide anion specific probes dihydroethidium and MitoSOX™ demonstrated that there were no significant alterations in the HepG2 cells following solanine treatment compared with the control cells (P>0.05). Western blotting results revealed that solanine upregulated the expression levels of ASK1 and TBP-2 and enhanced their kinase activities, whereas solanine decreased the expression level of the proliferation-associated protein, HDAC1. The cell apoptotic rate was significantly increased (P<0.0001) in the solanine-treated HepG2 cells compared with the control cells. (P<0.05). Overall, the study indicated that solanine induces HepG2 cells to produce ROS, mainly OH− and H2O2, in a mitochondria-dependent and -independent manner. In addition, solanine stimulates the expression

  11. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation.

    PubMed

    Wu, Ning; Zhang, Yu-Ling; Wang, Hai-Tian; Li, Da-Wei; Dai, Hui-Juan; Zhang, Qi-Qi; Zhang, Jiang; Ma, Yong; Xia, Qiang; Bian, Jian-Min; Hang, Hua-Lian

    2016-05-01

    Mesenchymal stem cells (MSCs) hold promise as cellular vehicles for the delivery of therapeutic gene products because they can be isolated, expanded, and genetically modified in vitro and possess tumor-oriented homing capacity in vivo. (1) Hepatocyte nuclear factor 4α (HNF4α) is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis (HCC). (2,3) We have previously demonstrated that overexpression of HNF4α activates various hepatic-specific genes and enhances MSC differentiation. (4) However, the extent that overexpression of HNF4α in MSCs influences HCC progression has yet to be examined. Here we sought to investigate what effect MSCs overexpressing HNF4α (MSC-HNF4α) have on human hepatoma cells in vitro and in vivo. Conditioned medium collected from in vitro MSC-HNF4α cultures significantly inhibited hepatoma cell growth and metastasis compared with controls. Additionally, nude mice administered MSC-HNF4α exhibited significantly smaller tumors compared with controls in vivo. Immunoblot analysis of HCC cells treated with MSC-HNF4α displayed downregulated β-catenin, cyclinD1, c-Myc, MMP2 and MMP9. Taken together, our results demonstrate that MSC-HNF4α inhibits HCC progression by reducing hepatoma cell growth and metastasis through downregulation of the Wnt/β-catenin signaling pathway. PMID:27124543

  12. Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Chen, Jie; Liu, Chibo

    2013-06-01

    To study the antitumor effect of glycyrrhiza polysaccharide (GPS) on human hepatocellular carcinoma cells and its mechanism, GPS was extracted and identified with phenol-sulfuric acid assay, Limulus amebocytes lysate assay, gel permeation chromatography, and infrared spectroscopy analysis. To study its antitumor function, 4-5-week-old imprinting control region mice were subcutaneously implanted with H22 cells and intragastrically subjected to 1 ml GPS (25, 50, and 75 mg/kg/day), 150 mg/kg cyclophosphamide in a dose of 150 mg/kg, or equal volume of phosphate buffered saline as control. Tumor weights were detected 10 days later. Apoptosis of intraperitoneally cultured and GPS-treated H22 cells was identified by flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide. In vitro, the function of GPS on cell proliferation was applied on BEL7402 cells and confirmed by 4,6-diamidino-z-phenylindole staining. Assessment of the effect of GPS on P53 gene was analyzed by real-time PCR and Western blot, and the effects of GPS on phosphatidylinositol-3 kinase (PI3K), AKT, p-PI3K, and p-AKT were analyzed by Western blot. We extracted the GPS, and it dose-dependently inhibited the tumorigenicity of hepatocellular carcinoma cells in nude mice. GPS treatment resulted in a significant (P<0.05) dose-dependent increase in the number of apoptotic cells in vivo and a significant (P<0.05) dose-dependent decrease in hepatocellular carcinoma cell proliferation in vitro. GPS modified multiple key enzymes (p-PI3K, p-AKT, and P53) in P53/PI3K/AKT signaling pathways on DNA or protein levels. Taken together, we extracted the GPS successfully and our findings suggest that GPS functions as a tumor suppressor through influencing the P53/PI3K/AKT pathway in the carcinogenesis of hepatocellular carcinoma and may have therapeutic implications for the clinical management of hepatocellular carcinoma patients. PMID:23580179

  13. RY10-4 Inhibits the Proliferation of Human Hepatocellular Cancer HepG2 Cells by Inducing Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhang, Xuenong; Wang, Yanyan; Han, Shishi; Xiang, Huiyao; Peng, Yan; Wu, Yinghua; Pan, Songwei; Zhang, Ye; Ruan, Jinlan

    2016-01-01

    This study aimed to investigate the anti-tumor activity of RY10-4, a small molecular that was designed and synthesized based on the structure of protoapigenone. A previous screening study showed that RY10-4 possessed anti-proliferative effects against HepG2 human hepatocellular carcinoma cells. However, the full range of RY10-4 anti-cancer effects on liver tumors and the underlying mechanisms have not been identified. Herein, employing flow cytometry, and Western blot analysis, we demonstrate that RY10-4 can induce cell cycle arrest, intracellular reactive oxygen species (ROS) production and apoptosis in HepG2 cells. In HepG2 cell xenograft tumor model, RY10-4 significantly inhibited the growth of tumors and induced apoptosis in tumor cells, with little side effects. Moreover, RY10-4 caused the suppression of STAT3 activation, which may be involved the apoptosis induction. In addition, RY10-4 inhibited the proliferation of Hep3B and HuH-7 human hepatocellular carcinoma cells in a concentration-dependent manner. Taken together, our results suggest that RY10-4 has a great potential to develop as chemotherapeutic agent for liver cancer. PMID:26974964

  14. Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway.

    PubMed

    Mao, Jie; Wang, Duowei; Wang, Zhuo; Tian, Wei; Li, Xianjing; Duan, Jingjing; Wang, Yun; Yang, Hongbao; You, Linjun; Cheng, Yan; Bian, Jinsong; Chen, Zhen; Yang, Yong

    2016-09-28

    Combretastatin A-1 phosphate (CA1P) is a microtubule polymerization inhibitor that binds to the colchicine-binding site of tubulin. We demonstrated that CA1P has outstanding anti-cancer activity against hepatocellular carcinoma (HCC) in vitro and in vivo. As determined by fluorescence staining and western blots (WBs), CA1P induced reactive oxygen species (ROS) accumulation and apoptosis in HepG2 cells with a down-regulation of Mcl-1. Additional studies indicated that CA1P induced microtubule depolymerization-mediated AKT inactivation, which resulted in GSK-3β activation, Wnt/β-Catenin pathway inhibition, and Mcl-1 down-regulation. The induction of HepG2 cell apoptosis by CA1P was prevented by a GSK-3β-specific inhibitor. Furthermore, immunohistochemistry studies on hepatocellular carcinoma mouse models showed that CA1P had activity against tumor-associated macrophages (TAMs). CA1P induced TAM apoptosis in vitro through the same mechanism observed with HepG2 cells, and it eliminated TAMs in the tumor microenvironment (TME) in vivo. In TME, the expression of TGF-β and TNF-α was also altered. The adoptive transfer of macrophages partly rescued the growth of tumor inhibited by CA1P. These findings indicate that CA1P has great potential to impact both cancer cells and the microenvironment, and our results should accelerate the application of CA1P for HCC therapy in clinic. PMID:27349166

  15. Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Tumor progression locus 2 (TPL2), a serine threonine kinase, functions as a critical regulator of inflammatory pathways and mediates oncogenic events. The potential role of Tpl2 in nonalcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) development remains unkn...

  16. Association of Serum Level of Growth Differentiation Factor 15 with Liver Cirrhosis and Hepatocellular Carcinoma

    PubMed Central

    Gao, Lei; Niu, Yuqiang; Chi, Xiaojing; Cheng, Min; Si, Youhui; Wang, Maorong; Zhong, Jin; Niu, Junqi; Yang, Wei

    2015-01-01

    Hepatocellular carcinoma (HCC) and liver cirrhosis are associated with high mortality worldwide. Currently, alpha-fetoprotein (AFP) is used as a standard serum marker for the detection of HCC, but its sensitivity and specificity are unsatisfactory, and optimal diagnostic markers for cirrhosis are lacking. We previously reported that growth differentiation factor 15 (GDF15) was significantly induced in HCV-infected hepatocytes. This study aimed to investigate GDF15 expression and its correlation with hepatitis virus-related liver diseases. A total of 412 patients with various liver diseases were studied. Healthy and Mycobacterium tuberculosis-infected subjects were included as controls. Serum and tissue GDF15 levels were measured. Serum GDF15 levels were significantly increased in patients with HCC (6.66±0.67 ng/mL, p<0.0001) and cirrhosis (6.51±1.47 ng/mL, p<0.0001) compared with healthy controls (0.31±0.01 ng/mL), though the GDF15 levels in HBV and HCV carriers were moderately elevated (1.34±0.19 ng/mL and 2.13±0.53 ng/mL, respectively). Compared with HBV or HCV carriers, GDF15 had a sensitivity of 63.1% and a specificity of 86.6% at the optimal cut-off point of 2.463 ng/mL in patients with liver cirrhosis or HCC. In HCC patients, the area under the receiver operating curve was 0.84 for GDF15 and 0.76 for AFP, but 0.91 for the combined GDF15 and AFP. Serum GDF15 levels did not significantly differ between the high-AFP and low-AFP groups. GDF15 protein expression in HCC was significantly higher than that in the corresponding adjacent paracarcinomatous tissue and normal liver. Using a combination of GDF15 and AFP will improve the sensitivity and specificity of HCC diagnosis. Further research and the clinical implementation of serum GDF15 measurement as a biomarker for HCC and cirrhosis are recommended. PMID:25996938

  17. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  18. Hyperglycemia is a significant prognostic factor of hepatocellular carcinoma after curative therapy

    PubMed Central

    Hosokawa, Takanori; Kurosaki, Masayuki; Tsuchiya, Kaoru; Matsuda, Shuya; Muraoka, Masaru; Suzuki, Yuichiro; Tamaki, Nobuharu; Yasui, Yutaka; Nakata, Toru; Nishimura, Takashi; Suzuki, Shoko; Ueda, Ken; Nakanishi, Hiroyuki; Itakura, Jun; Takahashi, Yuka; Izumi, Namiki

    2013-01-01

    AIM: To evaluate whether metabolic factors are related to distant recurrence of hepatocellular carcinoma (HCC) and survival after curative treatment. METHODS: This retrospective study included 344 patients whose HCC was treated curatively by radiofrequency ablation (RFA) therapy. The mean age was 67.6 years and the mean observation period was 4.04 years. The etiological background of liver disease was hepatitis B virus infection in 30, hepatitis C virus infection in 278, excessive alcohol drinking in 9, and other in 27 patients. The Child-Pugh classification grade was A (n = 307) or B (n = 37). The number of HCC nodules was one in 260, two in 61, and three in 23 patients. For surveillance of HCC recurrence after curative therapy with RFA, patients were radiologically evaluated every 3 mo. Factors associated with distant recurrence of HCC or survival were studied. RESULTS: Inadequate maintenance of blood glucose in diabetic patients was associated with higher incidence of distant recurrence. The 1-, 2-, and 3-year recurrence rates were significantly higher in diabetic patients with inadequate maintenance of blood glucose compared with the others: 50.6% vs 26.8%, 83.5% vs 54.4%, and 93.8% vs 73.0%, respectively (P = 0.0001). Inadequate maintenance of blood glucose was an independent predictor of distant recurrence [adjusted relative risk 1.97 (95%CI, 1.33-2.91), (P = 0.0007)] after adjustment for other risk factors, such as number of HCC nodules [2.03 (95%CI, 1.51-2.73), P < 0.0001] and initial level of serum alpha fetoprotein (AFP) [1.43 (95%CI, 1.04-1.97), P = 0.028]. Obesity was not an independent predictor of recurrence. The incidence of distant recurrence did not differ between diabetic patients with adequate maintenance of blood glucose and non-diabetic patients. Among 232 patients who had HCC recurrence, 138 had a second recurrence. The 1-, 2-, and 3-year rates of second recurrence were significantly higher in diabetic patients with inadequate maintenance of

  19. Inhibition of phospholipid methylation by a cytosolic factor.

    PubMed Central

    Alvarez Chiva, V; Mato, J M

    1984-01-01

    Rat liver cytosol contains a heat-stable factor which inhibits phospholipid methylation by rat liver microsomes. The effect of this factor on lipid methylation was dose- and pH-dependent. This factor has an Mr of approx. 3200 as estimated by gel filtration. It could not be extracted by chloroform/methanol (2:1, v/v), and its action was inhibited by incubation with subtilisin. PMID:6712636

  20. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  1. Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: a role for autocrine motility factor receptor.

    PubMed

    Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  2. Percutaneous radiofrequency ablation for early hepatocellular carcinoma: Risk factors for survival

    PubMed Central

    Kikuchi, Luciana; Menezes, Marcos; Chagas, Aline L; Tani, Claudia M; Alencar, Regiane SSM; Diniz, Marcio A; Alves, Venâncio AF; D’Albuquerque, Luiz Augusto Carneiro; Carrilho, Flair José

    2014-01-01

    AIM: To evaluate outcomes of radiofrequency ablation (RFA) therapy for early hepatocellular carcinoma (HCC) and identify survival- and recurrence-related factors. METHODS: Consecutive patients diagnosed with early HCC by computed tomography (CT) or magnetic resonance imaging (MRI) (single nodule of ≤ 5 cm, or multi- (up to 3) nodules of ≤ 3 cm each) and who underwent RFA treatment with curative intent between January 2010 and August 2011 at the Instituto do Câncer do Estado de São Paulo, Brazil were enrolled in the study. RFA of the liver tumors (with 1.0 cm ablative margin) was carried out under CT-fluoro scan and ultrasonic image guidance of the percutaneous ablation probes. Procedure-related complications were recorded. At 1-mo post-RFA and 3-mo intervals thereafter, CT and MRI were performed to assess outcomes of complete response (absence of enhancing tissue at the tumor site) or incomplete response (enhancing tissue remaining at the tumor site). Overall survival and disease-free survival rates were estimated by the Kaplan-Meier method and compared by the log rank test or simple Cox regression. The effect of risk factors on survival was assessed by the Cox proportional hazard model. RESULTS: A total of 38 RFA sessions were performed during the study period on 34 patients (age in years: mean, 63 and range, 49-84). The mean follow-up time was 22 mo (range, 1-33). The study population showed predominance of male sex (76%), less severe liver disease (Child-Pugh A, n = 26; Child-Pugh B, n = 8), and single tumor (65%). The maximum tumor diameters ranged from 10 to 50 mm (median, 26 mm). The initial (immediately post-procedure) rate of RFA-induced complete tumor necrosis was 90%. The probability of achieving complete response was significantly greater in patients with a single nodule (vs patients with multi-nodules, P = 0.04). Two patients experienced major complications, including acute pulmonary edema (resolved with intervention) and intestinal perforation

  3. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    PubMed Central

    Lu, Yiyu; Shen, Ting; Yang, Hua; Gu, Weiguang

    2016-01-01

    Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation. PMID:27213353

  4. Expression of hypoxia-inducible factor 3α in hepatocellular carcinoma and its association with other hypoxia-inducible factors

    PubMed Central

    LIU, PING; FANG, XIEFAN; SONG, YANG; JIANG, JIAN-XIN; HE, QIAN-JIN; LIU, XIANG-JIE

    2016-01-01

    The functional role of hypoxia-inducible factor (HIF)-3α in the development of hepatocellular carcinoma (HCC) is not yet fully understood. The aim of the present study was to elucidate the association between HIF-3α expression and the clinicopathological features as well as prognosis of HCC patients. In addition, we investigated the association between HIF-3α expression and the expression of HIF-1α and HIF-2α in tumor tissues. The protein levels of HIF-3α were determined using immunohistochemical analysis of paraffin sections of 126 paired HCC and peritumoral tissues. PLC/PRF/5 cells, a human HCC cell line, were transfected with HIF-1α and HIF-2α vectors and HIF-3α mRNA and protein expression was detected using quantitative polymerase chain reaction and western blot analysis, respectively. The expression of HIF-3α was upregulated in 46.0% (58/126) and downregulated in 42.9% (54/126) of tumor tissues, respectively, when compared to peritumoral tissues. HIF-3α protein expression was not associated with peripheral blood vessel invasion, overall survival, or disease-free survival in HCC patients (P>0.05). In HCC tissues, the levels of HIF-3α protein were positively correlated with HIF-2α, but not with HIF-1α expression in HCC tissues. HIF-3α was upregulated in PLC/PRF/5 and Hep3B cells overexpressed with HIF-1α or HIF-2α. The hypoxic microenvironment of liver cancer did not lead to elevated HIF-3α protein expression, indicating that HIF-3α is regulated differently from HIF-1α in vivo. The correlation between HIF-3α and HIF-2α expression at the cellular and tissue levels indicated that HIF-3α may be a target gene of HIF-2α. The hypoxic microenvironment did not lead to elevation of HIF-3α protein expression in liver cancer; thus, HIF-3α may be a target gene of HIF-2α. PMID:27284334

  5. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Zhang, Wen-Guang; Li, Chuan-Fei; Liu, Min; Chen, Xiao-Feng; Shuai, Kai; Kong, Xin; Lv, Lin; Mei, Zhe-Chuan

    2016-08-10

    Aquaporin 9 (AQP9) is the main aquaglyceroporin in the liver. Few studies have been performed regarding the role of AQP9 in hepatocellular carcinoma (HCC). Here, we report the expression and function of AQP9 in HCC tissues and cell lines. We found that AQP9 mRNA and protein levels were down-regulated in HCC tissues and human hepatoma cell lines compared to the para-cancer normal liver tissues and normal hepatocyte line, respectively. In a human HCC SMMC-7721 cell line, over-expression of AQP9 suppressed cell invasion in vitro and xenograft tumor growth in vivo. AQP9 over-expression increased the expression of E-cadherin and decreased the expression of N-cadherin in SMMC-7721 cells and xenografted tumors, which was correlated with decreased levels of phosphoinositide 3-kinase (PI3K) and p-Akt. Conversely, using siRNA to knock down AQP9 over-expression could reverse the phenotype caused by AQP9 over-expression. Our findings suggest that AQP9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. PMID:27216981

  6. Behavioural inhibition: is it a risk factor for anxiety?

    PubMed

    Lahat, Ayelet; Hong, Melanie; Fox, Nathan A

    2011-06-01

    Behavioural inhibition is a stable temperamental trait that is identifiable during infancy and toddlerhood and is characterized by fearful reactivity to novelty. Children identified as behaviourally inhibited have been shown to be at increased risk for developing anxiety disorders such as social phobia. The current review addresses the link between behavioural inhibition and the risk for developing anxiety disorders. Research suggests that this risk may be modulated by a number of extrinsic and intrinsic factors. Extrinsic factors include particular parental beliefs, parenting styles, and childrearing contexts. Intrinsic factors include executive function capacities such as attention bias, attention shifting, inhibitory control, and self-monitoring. In the present paper we review the contribution of these factors to the development of anxiety in behaviourally inhibited children. PMID:21923226

  7. Beyond Behavioral Inhibition: Etiological Factors in Childhood Anxiety

    ERIC Educational Resources Information Center

    Manassis, Katharina; Hudson, Jennifer L.; Webb, Alicia; Albano, Anne Marie

    2004-01-01

    Theoretical models of childhood anxiety have emphasized temperamental vulnerability, principally behavioral inhibition, and its interaction with various environmental factors promoting anxiety (for example, overprotective parenting, insecure attachment, life stress). Although clearly establishing the importance of both nature and nurture in…

  8. Contemporary management of fibrolamellar hepatocellular carcinoma: diagnosis, treatment, outcome, prognostic factors, and recent developments.

    PubMed

    Kassahun, Woubet Tefera

    2016-01-01

    Fibrolamellar hepatocellular carcinoma (FL-HCC) is a malignant liver tumor which is thought to be a variant of conventional hepatocellular carcinoma (HCC). It accounts for a small proportion of HCC cases and occurs in a distinctly different group of patients which are young and usually not in the setting of chronic liver disease. The diagnosis of FL-HCC requires the integration of clinical information, imaging studies, and histology. In terms of the treatment options, the only potentially curative treatment option for patients who have resectable disease is surgery either liver resection (LR) or liver transplantation (LT). When performed in a context of aggressive therapy, long-term outcomes after surgery, particularly liver resection for FL-HCC, were favorable. The clinical outcome of patients with unresectable disease is suboptimal with median survival of less than 12 months. The aim of this review is to update the available evidence on diagnosis, treatment options, outcome predictors, and recent developments of patients with this rare disease and to provide a summarized overview of the available literature. PMID:27215576

  9. Novel synthetic biscoumarins target tumor necrosis factor-α in hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Keerthy, Hosadurga Kumar; Mohan, Chakrabhavi Dhananjaya; Sivaraman Siveen, Kodappully; Fuchs, Julian E; Rangappa, Shobith; Sundaram, Mahalingam S; Li, Feng; Girish, Kesturu S; Sethi, Gautam; Basappa; Bender, Andreas; Rangappa, Kanchugarakoppal Subbegowda

    2014-11-14

    TNF is a pleotropic cytokine known to be involved in the progression of several pro-inflammatory disorders. Many therapeutic agents have been designed to counteract the effect of TNF in rheumatoid arthritis as well as a number of cancers. In the present study we have synthesized and evaluated the anti-cancer activity of novel biscoumarins in vitro and in vivo. Among new compounds, BIHC was found to be the most cytotoxic agent against the HepG2 cell line while exhibiting less toxicity toward normal hepatocytes. Furthermore, BIHC inhibited the proliferation of various hepatocellular carcinoma (HCC) cells in a dose- and time-dependent manner. Subsequently, using in silico target prediction, BIHC was predicted as a TNF blocker. Experimental validation was able to confirm this hypothesis, where BIHC could significantly inhibit the recombinant mouse TNF-α binding to its antibody with an IC50 of 16.5 μM. Furthermore, in silico docking suggested a binding mode of BIHC similar to a ligand known to disrupt the native, trimeric structure of TNF, and also validated with molecular dynamics simulations. Moreover, we have demonstrated the down-regulation of p65 phosphorylation and other NF-κB-regulated gene products upon BIHC treatment, and on the phenotypic level the compound shows inhibition of CXCL12-induced invasion of HepG2 cells. Also, we demonstrate that BIHC inhibits infiltration of macrophages to the peritoneal cavity and suppresses the activity of TNF-α in vivo in mice primed with thioglycollate broth and lipopolysaccharide. We comprehensively validated the TNF-α inhibitory efficacy of BIHC in an inflammatory bowel disease mice model. PMID:25231984

  10. The systemic inflammatory response as a prognostic factor for advanced hepatocellular carcinoma with extrahepatic metastasis

    PubMed Central

    AINO, HAJIME; SUMIE, SHUJI; NIIZEKI, TAKASHI; KUROMATSU, RYOKO; TAJIRI, NOBUYOSHI; NAKANO, MASAHITO; SATANI, MANABU; OKAMURA, SHUSUKE; SHIMOSE, SHIGEO; MIYAHARA, KENSUKE; TORIMURA, TAKUJI

    2016-01-01

    Several indices have been proposed to evaluate the systemic inflammatory response (SIR), which has been reported to be a useful prognostic factor in various types of cancer. We investigated the usefulness of the Glasgow Prognostic Score (GPS), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic factors in patients with advanced hepatocellular carcinoma (HCC) with extrahepatic metastasis (stage IVB). Between April, 1997 and March, 2013, a total of 434 HCC patients who developed extrahepatic metastasis were enrolled in the present study. The GPS was defined on the basis of pretreatment C-reactive protein (CRP) and albumin (Alb) levels, and the subjects were grouped according to GPS 0–2. The NLR was calculated as the neutrophil count/lymphocyte count, and the PLR was calculated as the platelet count/lymphocyte count. A comparative examination was performed using a survival analysis with approximate median values to determine the cut-off value for both ratios. The median survival time (MST) of the 434 patients overall was 7.3 months, with cumulative survival rates of 31.8, 14.5 and 7.7% at 1, 2 and 3 years, respectively. The patient backround was as follows: The male:female ratio was 363:71, with a median age of 67.0 years (range, 15.0–92.0 years). Hepatitis B virus patients:hepatitis C virus patients:non-B, non-C hepatitis patients = 75:303:56. Child-Pugh class A:B:C = 218:153:63. As regards T stage, ≤T2:T3:T4 = 60:190:181. The median white blood cell count was 4,650/l (range, 1,400-20,500/l); the platelet count was 11.1×104/µl (range, 3.1×104-45.5×104/µl); the aspartate aminotransferase level was 40.0 U/l (range, 7.0–338.0 U/l) and the alanine aminotransferase level 64.5 U/l (range, 16.0–407.0 U/l); the α-fetoprotein level was 622.1 ng/ml (range, 1.5–3,311,794.0 ng/ml); and the des-gamma-carboxyprothrombin level was 1,285.0 mAU/ml (range, 8.0->75,000 mAU/ml). The principal sites of metastasis included the lungs

  11. The iron chelator Dp44mT inhibits hepatocellular carcinoma metastasis via N-Myc downstream-regulated gene 2 (NDRG2)/gp130/STAT3 pathway

    PubMed Central

    Liang, Yingjian; Hong, Xuehui; Lu, Zhaoyang; Song, Xuan; Song, Ruipeng; Yang, Haiyan; Sun, Boshi; Bhatta, Nishant; Meng, Xianzhi; Pan, Shangha; Jiang, Hongchi; Liu, Lianxin

    2014-01-01

    Here we showed that hepatocellular carcinoma (HCC) cell lines with high metastatic potential had low levels of NDRG2. The iron chelator Dp44mT up-regulated NDRG2, suppressed epithelial-mesenchymal transition (EMT) and inhibited tumor metastasis in HCC having high metastatic potential. Also Dp44mT attenuated the TGF-β1-induced EMT in HCC having low metastatic potential. In agreement, silencing endogenous NDRG2 with shNDRG2 in HCC cells attenuated the effect of Dp44mT. We showed that the NDRG2/gp130/STAT3 pathway can mediate Dp44mT effects. In agreement, we found that a combination of NDRG2 expression and p-STAT3 levels is a strong predictor of prognosis in HCC patients. We suggest that up-regulation of NDRG2 by Dp44mT is a promising therapeutic approach in HCC. PMID:25261367

  12. [Over-expression of miR-141 inhibits the proliferation, invasion and migration of hepatocellular carcinoma MHCC-97H cells].

    PubMed

    Yao, Bowen; Xue, Yumo; Liu, Zhikui; Xu, Meng; Tu, Kangsheng; Wang, Jun

    2016-08-01

    Objective To observe the expression level of miR-141 in tumor tissues of human hepatocellular carcinoma (HCC) and determine the effect of miR-141 level on cell proliferation, invasion and migration of MHCC-97H cells by upregulation of miR-141. Methods We checked the miR-141 expression level in HCC by real-time quantitative PCR and analyzed the relationship between the expression level of miR-141 and clinical pathological indicators as well as survival rate. MHCC-97H cells were transiently transfected with miR-141 mimics which were artificially synthesized. The proliferation of MHCC-97H cells was detected by MTT assay. Transwell(TM) assay was performed to examine the invasion and migration of MHCC-97H cells. The expression of erythropoietin-producing hepatocellular receptor A2 (EphA2), which was the potential downstream target, was determined by Western blotting and immunohistochemistry. Results The expression level of miR-141 in HCC tissues was significantly lower than that in the adjacent normal tissues, and it was obviously associated with TNM stage, portal vein infiltration and Edmondson degree. Patients in the lower miR-141 group had a worse 3-year survival than those in higher miR-141 group. Overexpression of miR-141 in MHCC-97H cells significantly suppressed cell proliferation, invasion and migration, and inhibited the protein expression of EphA2. Correlation analysis showed that miR-141 level was negatively correlated with EphA2 expression level. Conclusion miR-141 is down-regulated in HCC tissues and it is negatively correlated with EphA2 expression. Its low expression is correlated with the malignant clinical pathological features. miR-141 overexpression down-regulates EphA2 expression and subsequently inhibits the proliferation, invasion and migration of HCC cells. PMID:27412940

  13. Prognostic significance of serum insulin-like growth factor-1 in patients with hepatocellular carcinoma following transarterial chemoembolization

    PubMed Central

    LIU, SHENG; LIU, YANHUA; JIANG, XUEWEN

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an effective survival factor that is involved in the development and progression of various tumors. The aim of the present study was to investigate whether baseline serum IGF-1 levels are associated with time to progression (TTP) and overall survival (OS) in patients with hepatocellular carcinoma (HCC) who have undergone transarterial chemoembolization (TACE). A total of 145 patients with HCC who underwent TACE as an initial treatment were enrolled in the study. Baseline serum IGF-1 levels were detected using enzyme-linked immunosorbent assay (ELISA) kits. The patients were followed up for a median follow-up period of 47 months (range, 10.6–69.3 months). During the follow-up, 98 patients (76.6%) experienced disease progression and 59 patients (46.1%) succumbed. The serum IGF-1 level was found to be significantly associated with hepatitis infection status, Child-Pugh class, bilirubin level, tumor size and nodularity, vascular invasion and the Barcelona Clinic Liver Cancer (BCLC) stage. Multivariate analysis was conducted, which indicated that BCLC stage, vascular invasion and serum IGF-1 were independent risk factors for disease progression. When clinical factors were examined as potential independent risk factors for OS, only advanced BCLC stage and low serum IGF-1 levels were found to be significantly associated with poorer OS. These results suggest that serum IGF-1 may serve as a predictor of the prognosis of patients with HCC undergoing TACE. PMID:26893654

  14. Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells

    PubMed Central

    Matsushima-Nishiwaki, Rie; Toyoda, Hidenori; Nagasawa, Tomoaki; Yasuda, Eisuke; Chiba, Naokazu; Okuda, Seiji; Maeda, Atsuyuki; Kaneoka, Yuji; Kumada, Takashi; Kozawa, Osamu

    2016-01-01

    Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway. PMID:27046040

  15. Factor VII promotes hepatocellular carcinoma progression through ERK-TSC signaling

    PubMed Central

    Tsai, M-C; Chen, K-D; Wang, C-C; Huang, K-T; Wu, C-H; Kuo, I-Y; Chen, L-Y; Hu, T-H; Goto, S; Nakano, T; Dorling, A; McVey, J H; Chen, C-L; Lin, C-C

    2015-01-01

    We previously demonstrated PAR2 starts upstreamed with tissue factor (TF) and factor VII (FVII), inhibited autophagy via mTOR signaling in HCC. However, the mechanism underlying for merging functions of PAR2 with the coagulation system in HCC progression remained unclear. The present study aimed to investigate the role of TF, FVII and PAR2 in tumor progression of HCC. The expressions of TF, FVII and PAR2 from HCC specimens were evaluated by immunohistochemical stains and western blotting. We found that the expression of FVII, but not TF and PAR2, directly related to the vascular invasion and the clinical staging. Importantly, a lower level of FVII expression was significantly associated with the longer disease-free survival. The addition of FVII but not TF induced the expression of PAR2 and phosphorylation of ERK1/2, whereas knockdown of FVII decreased PAR2 expression and ERK1/2 phosphorylation in HCC cell lines. Furthermore, levels of phosphor-TSC2 (Ser664) were increased after treatment with FVII and PAR2 agonist whereas these were significantly abolished in the presence of a potent and specific MEK/ERK inhibitor U0126. Moreover, mTOR knockdown highly reduced Hep3B migration, which could be reverted by FVII but not TF and PAR2. These results indicated that FVII/PAR2 signaling through MEK/ERK and TSC2 axis for mTOR activation has potent effects on the migration of HCC cells. In addition, FVII/PAR2 signaling elicits an mTOR-independent signaling, which promotes hepatoma cell migration in consistent with the clinical observations. Our study indicates that levels of FVII, but not TF, are associated with tumor migration and invasiveness in HCC, and provides clues that evaluation of FVII expression in HCC may be useful as a prognostic indicator in patients with HCC and may form an alternative target for further therapy.

  16. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  17. Transcription factor LSF (TFCP2) inhibits melanoma growth.

    PubMed

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C; Kato, Masashi

    2016-01-19

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  18. Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1.

    PubMed

    Liu, Yu; Higashitsuji, Hiroaki; Higashitsuji, Hisako; Itoh, Katsuhiko; Sakurai, Toshiharu; Koike, Kazuhiko; Hirota, Kiichi; Fukumoto, Manabu; Fujita, Jun

    2013-03-01

    Gankyrin (also called p28 or PSMD10) is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It consists of 7 ankyrin repeats and interacts with multiple proteins including Rb, Cdk4, MDM2 and NF-κB. To assess the oncogenic activity in vivo, we produced transgenic mice that overexpress gankyrin specifically in the hepatocytes. Unexpectedly, 5 of 7 F2 transgenic mice overexpressing hepatitis B virus X protein (HBX) promoter-driven gankyrin, and one of 3 founder mice overexpressing serum amyloid P component (SAP) promoter-driven gankyrin developed hepatic vascular neoplasms (hemangioma/hemangiosarcomas) whereas none of the wild-type mice did. Endothelial overgrowth was more frequent in the livers of diethylnitrosamine-treated transgenic mice than wild-type mice. Mouse hepatoma Hepa1-6 cells overexpressing gankyrin formed tumors with more vascularity than parental Hepa1-6 cells in the transplanted mouse skin. We found that gankyrin binds to and sequester factor inhibiting hypoxia-inducible factor-1 (FIH-1), which results in decreased interaction between FIH-1 and hypoxia-inducible factor-1α (HIF-1α) and increased activity of HIF-1 to promote VEGF production. The effects of gankyrin were more prominent under 3% O2 than 1% or 20% O2 conditions. Thus, the present study clarified, at least partly, mechanisms of vascular tumorigenesis, and suggests that gankyrin might play a physiological role in hypoxic responses besides its roles as an oncoprotein. PMID:23376718

  19. 14-3-3ζ promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1α

    PubMed Central

    Shi, Jie; Yu, Hongming; Zhang, Long; Wang, Kang; Liu, Shangrong; Cheng, Shuqun

    2016-01-01

    Portal vein tumor thrombus (PVTT) is a type of intrahepatic metastasis arising from hepatocellular carcinoma (HCC) and is highly correlated with a poor prognosis. Hypoxia is common in solider tumors, including HCC, where it alters the behavior of HCC cells. We asked whether and how hypoxia contributes to PVTT formation. We demonstrated that increased intratumoral hypoxia is strongly associated with PVTT formation in HCC. We also showed that 14-3-3ζ is induced by hypoxia in HCC cells and correlates with PVTT formation in clinical HCC samples. In addition, 14-3-3ζ up-regulates HIF-1α expression by recruiting HDAC4, which prevents HIF-1α acetylation, thereby stabilizing the protein. Under hypoxic conditions in vitro, 14-3-3ζ knockdown inhibits hypoxia-induced HCC invasion by the HIF-1α/EMT pathway. Blockade of 14-3-3ζ in HCC cells reduces PVTT formation and distant lung metastasis in vivo. Moreover, a combination of 14-3-3ζ and HIF-1α expression is more prognostic for HCC patients than either protein alone. These results suggest that the hypoxia/14-3-3ζ/HIF-1α pathway plays an important role in PVTT formation and HCC metastasis. PMID:26910835

  20. Des-γ-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma.

    PubMed

    Zhang, Yu-Sheng; Chu, Jia-Hui; Cui, Shu-Xiang; Song, Zhi-Yu; Qu, Xian-Jun

    2014-01-01

    Des-γ-carboxy prothrombin (DCP) is a prothrombin precursor produced in hepatocellular carcinoma (HCC). Because of deficiency of vitamin K or γ-glutamyl carboxylase in HCC cells, the 10 glutamic acid (Glu) residues in prothrombin precursor did not completely carboxylate to γ-carboxylated glutamic acid (Gla) residues, leaving some Glu residues remained in N-terminal domain. These prothrombin precursors with Glu residues are called DCPs. DCP displays insufficient coagulation activity. Since Liebman reported an elevated plasma DCP in patients with HCC, DCP has been used in the diagnosis of HCC. Recently, its biological malignant potential has been specified to describe DCP as an autologous growth factor to stimulate HCC growth and a paracrine factor to integrate HCC with vascular endothelial cells. DCP was found to stimulate HCC growth through activation of the DCP-Met-JAK1-STAT3 signaling pathway. DCP might increase HCC invasion and metastasis through activation of matrix metalloproteinase (MMPs) and the ERK1/2 MAPK signaling pathway. DCP has also been found to play a crucial role in the formation of angiogenesis. DCP could increase the angiogenic factors released from HCC and vascular endothelial cells. These effects of DCP in angiogenesis might be related to activation of the DCP-KDR-PLC-γ-MAPK signaling pathway. In this article, we summarized recent studies on DCP in biological roles related to cancer progression and angiogenesis in HCC. PMID:25200250

  1. Effects of TGF-beta signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients.

    PubMed

    Serova, Maria; Tijeras-Raballand, Annemilaï; Dos Santos, Célia; Albuquerque, Miguel; Paradis, Valerie; Neuzillet, Cindy; Benhadji, Karim A; Raymond, Eric; Faivre, Sandrine; de Gramont, Armand

    2015-08-28

    Galunisertib (LY2157299) is a selective ATP-mimetic inhibitor of TGF-β receptor (TβR)-I activation currently under clinical investigation in hepatocellular carcinoma (HCC) patients. Our study explored the effects of galunisertib in vitro in HCC cell lines and ex vivo on patient samples. Galunisertib was evaluated in HepG2, Hep3B, Huh7, JHH6 and SK-HEP1 cells as well as in SK-HEP1-derived cells tolerant to sorafenib (SK-Sora) and sunitinib (SK-Suni). Exogenous stimulation of all HCC cell lines with TGF-β yielded downstream activation of p-Smad2 and p-Smad3 that was potently inhibited with galunisertib treatment at micromolar concentrations. Despite limited antiproliferative effects, galunisertib yielded potent anti-invasive properties. Tumor slices from 13 patients with HCC surgically resected were exposed ex vivo to 1 µM and 10 µM galunisertib, 5 µM sorafenib or a combination of both drugs for 48 hours. Galunisertib but not sorafenib decreased p-Smad2/3 downstream TGF-β signaling. Immunohistochemistry analysis of galunisertib and sorafenib-exposed samples showed a significant decrease of the proliferative marker Ki67 and increase of the apoptotic marker caspase-3. In combination, galunisertib potentiated the effect of sorafenib efficiently by inhibiting proliferation and increasing apoptosis. Our data suggest that galunisertib may be active in patients with HCC and could potentiate the effects of sorafenib. PMID:26057634

  2. Effects of TGF-beta signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients

    PubMed Central

    Serova, Maria; Tijeras-Raballand, Annemilaï; Santos, Célia Dos; Albuquerque, Miguel; Paradis, Valerie; Neuzillet, Cindy; Benhadji, Karim A.; Raymond, Eric; Faivre, Sandrine; de Gramont, Armand

    2015-01-01

    Galunisertib (LY2157299) is a selective ATP-mimetic inhibitor of TGF-β receptor (TβR)-I activation currently under clinical investigation in hepatocellular carcinoma (HCC) patients. Our study explored the effects of galunisertib in vitro in HCC cell lines and ex vivo on patient samples. Galunisertib was evaluated in HepG2, Hep3B, Huh7, JHH6 and SK-HEP1 cells as well as in SK-HEP1-derived cells tolerant to sorafenib (SK-Sora) and sunitinib (SK-Suni). Exogenous stimulation of all HCC cell lines with TGF-β yielded downstream activation of p-Smad2 and p-Smad3 that was potently inhibited with galunisertib treatment at micromolar concentrations. Despite limited antiproliferative effects, galunisertib yielded potent anti-invasive properties. Tumor slices from 13 patients with HCC surgically resected were exposed ex vivo to 1 μM and 10 μM galunisertib, 5 μM sorafenib or a combination of both drugs for 48 hours. Galunisertib but not sorafenib decreased p-Smad2/3 downstream TGF-β signaling. Immunohistochemistry analysis of galunisertib and sorafenib-exposed samples showed a significant decrease of the proliferative marker Ki67 and increase of the apoptotic marker caspase-3. In combination, galunisertib potentiated the effect of sorafenib efficiently by inhibiting proliferation and increasing apoptosis. Our data suggest that galunisertib may be active in patients with HCC and could potentiate the effects of sorafenib. PMID:26057634

  3. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling; Li, Fang; Chai, Haiyun; Tao, Xin; Wang, Haili; Ji, Aifang

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeutic gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.

  4. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity

    PubMed Central

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  5. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity.

    PubMed

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  6. Yeast mating pheromone alpha factor inhibits adenylate cyclase.

    PubMed Central

    Liao, H; Thorner, J

    1980-01-01

    The pheromone alpha factor, secreted by Saccharomyces cerevisiae cells of the alpha mating type, serves to synchronize the opposite mating type (a cells) at G1 as a prelude to fusion of the two cell types. We found that, in vitro, alpha factor inhibited the membrane-bound adenylate cyclase of these cells in a dose-dependent manner. Moreover, one class (ste5) of a cell mutants that grow normally at either 23 degrees or 34 degrees C but that are unable to respond to alpha factor or to mate at the higher temperature possessed an adenylate cyclase activity that was not inhibited by alpha factor at 34 degrees C but was fully sensitive to inhibition at 23 degrees C. Furthermore, addition of cyclic AMP to a cell culture medium shortened the period of pheromone-induced G1 arrest. We conclude that inhibition of adenylate cyclase activity by alpha factor may constitute, at least in part, the biochemical mode of action of the pheromone in vivo. PMID:6246513

  7. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  8. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  9. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  10. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma

    PubMed Central

    Haruyama, Yukihiro; Kataoka, Hiroaki

    2016-01-01

    Glypican-3 (GPC3) is a cell surface oncofetal proteoglycan that is anchored by glycosylphosphatidylinositol. Whereas GPC3 is abundant in fetal liver, its expression is hardly detectable in adult liver. Importantly, GPC3 is overexpressed in hepatocellular carcinoma (HCC), and several immunohistochemical studies reported that overexpression predicts a poorer prognosis for HCC patients. Therefore, GPC3 would serve as a useful molecular marker for HCC diagnosis and also as a target for therapeutic intervention in HCC. Indeed, some immunotherapy protocols targeting GPC3 are under investigations; those include humanized anti-GPC3 cytotoxic antibody, peptide vaccine and immunotoxin therapies. When considering the clinical requirements for GPC3-targeting therapy, companion diagnostics to select the appropriate HCC patients are critical, and both immunohistochemical analysis of tissue sections and measurement of serum GPC3 level have been suggested for this purpose. This review summarizes current knowledge regarding the clinical implication of GPC3 detection and targeting in the management of patients with HCC. PMID:26755876

  11. Percutaneous Radiofrequency Ablation and Transcatheter Arterial Chemoembolization for Hypervascular Hepatocellular Carcinoma: Rate and Risk Factors for Local Recurrence

    SciTech Connect

    Murakami, Tomonori Ishimaru, Hideki; Sakamoto, Ichiro; Uetani, Masataka; Matsuoka, Yohjiro; Daikoku, Manabu; Honda, Sumihisa; Koshiishi, Takeshi; Fujimoto, Toshifumi

    2007-07-15

    Purpose. To analyze local recurrence-free rates and risk factors for recurrence following percutaneous radiofrequency ablation (RFA) or transcatheter arterial chemoembolization (TACE) for hypervascular hepatocellular carcinoma (HCC). Methods. One hundred and nine nodules treated by RFA and 173 nodules treated by TACE were included. Hypovascular nodules were excluded from this study. Overall local recurrence-free rates of each treatment group were calculated using the Kaplan-Meier method. The independent risk factors of local recurrence and the hazard ratios were analyzed using Cox's proportional-hazards regression model. Based on the results of multivariate analyses, we classified HCC nodules into four subgroups: central nodules {<=}2 cm or >2 cm and peripheral nodules {<=}2 cm or >2 cm. The local recurrence-free rates of these subgroups for each treatment were also calculated. Results. The overall local recurrence-free rate was significantly higher in the RFA group than in the TACE group (p = 0.013). The 24-month local recurrence-free rates in the RFA and TACE groups were 60.0% and 48.9%, respectively. In the RFA group, the only significant risk factor for recurrence was tumor size >2 cm in greatest dimension. In the TACE group, a central location was the only significant risk factor for recurrence. In central nodules that were {<=}2 cm, the local recurrence-free rate was significantly higher in the RFA group than in the TACE group (p < 0.001). In the remaining three groups, there was no significant difference in local recurrence-free rate between the two treatment methods. Conclusion. A tumor diameter of >2 cm was the only independent risk factor for local recurrence in RFA treatment, and a central location was the only independent risk factor in TACE treatment. Central lesions measuring {<=}2 cm should be treated by RFA.

  12. Small Peptides Blocking Inhibition of Factor Xa and Tissue Factor-Factor VIIa by Tissue Factor Pathway Inhibitor (TFPI)*

    PubMed Central

    Dockal, Michael; Hartmann, Rudolf; Fries, Markus; Thomassen, M. Christella L. G. D.; Heinzmann, Alexandra; Ehrlich, Hartmut; Rosing, Jan; Osterkamp, Frank; Polakowski, Thomas; Reineke, Ulrich; Griessner, Andreas; Brandstetter, Hans; Scheiflinger, Friedrich

    2014-01-01

    Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that inhibits activated factor X (FXa) via a slow-tight binding mechanism and tissue factor-activated FVII (TF-FVIIa) via formation of a quaternary FXa-TFPI-TF-FVIIa complex. Inhibition of TFPI enhances coagulation in hemophilia models. Using a library approach, we selected and subsequently optimized peptides that bind TFPI and block its anticoagulant activity. One peptide (termed compound 3), bound with high affinity to the Kunitz-1 (K1) domain of TFPI (Kd ∼1 nm). We solved the crystal structure of this peptide in complex with the K1 of TFPI at 2.55-Å resolution. The structure of compound 3 can be segmented into a N-terminal anchor; an Ω-shaped loop; an intermediate segment; a tight glycine-loop; and a C-terminal α-helix that is anchored to K1 at its reactive center loop and two-stranded β-sheet. The contact surface has an overall hydrophobic character with some charged hot spots. In a model system, compound 3 blocked FXa inhibition by TFPI (EC50 = 11 nm) and inhibition of TF-FVIIa-catalyzed FX activation by TFPI (EC50 = 2 nm). The peptide prevented transition from the loose to the tight FXa-TFPI complex, but did not affect formation of the loose FXa-TFPI complex. The K1 domain of TFPI binds and inhibits FVIIa and the K2 domain similarly inhibits FXa. Because compound 3 binds to K1, our data show that K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. This mode of action translates into normalization of coagulation of hemophilia plasmas. Compound 3 thus bears potential to prevent bleeding in hemophilia patients. PMID:24275667

  13. Factors Supporting or Inhibiting Innovative Practices in Senior High Schools.

    ERIC Educational Resources Information Center

    Daresh, John C.

    Semistructured interviews were used to query school staffs, administrators, and school board members in this exploratory field study of successful high schools implementing an individualized program. Analysis of results suggest these possible findings regarding factors that may support or inhibit the implementation of innovations: (1) The most…

  14. Overexpression Of Hepatocyte Nuclear Factor-1beta Predicting Poor Prognosis Is Associated With Biliary Phenotype In Patients With Hepatocellular Carcinoma

    PubMed Central

    Yu, Dan-Dan; Jing, Ying-Ying; Guo, Shi-Wei; Ye, Fei; Lu, Wen; Li, Quan; Dong, Yu-Long; Gao, Lu; Yang, Yu-Ting; Yang, Yang; Wu, Meng-Chao; Wei, Li-Xin

    2015-01-01

    Hepatocyte nuclear factor-1beta (HNF-1B) is involved in the hepatobiliary specification of hepatoblasts to cholangiocytes during liver development, and is strongly expressed throughout adult biliary epithelium. The aim of this study was to examine the expression of HNF-1B in different pathologic subtypes of primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (ICC), and the relationship between HNF-1B expression, clinicopathological features and prognosis. We retrospectively investigated 2 cohorts of patients, including 183 HCCs and 69 ICCs. The expression of HNF-1B was examined by immunohistochemistry. We found that HNF-1B expression was associated with pathological subtype of primary tumor, and HNF-1B expression in HCC tissue may be associated with the change of phenotype on recurrence. The HNF-1B expression was positively correlated with biliary/HPC (hepatic progenitor cell) markers expression. Further, multivariable analysis showed that HNF-1B expression was an independent prognostic factor for both overall survival and disease-free survival of HCC patients. However, no correlation between HNF-1B expression and survival was found in ICC patients. In summary, HCC with high HNF-1B expression displayed biliary phenotype and tended to show poorer prognosis. HNF-1B-positive malignant cells could be bipotential cells and give rise to both hepatocytic and cholangiocytic lineages during tumorigenesis. PMID:26311117

  15. MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma

    PubMed Central

    Tomonari, Tetsu; Takeishi, Shunsaku; Taniguchi, Tatsuya; Tanaka, Takahiro; Tanaka, Hironori; Fujimoto, Shota; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-01-01

    The mechanism of resistance of hepatocellular carcinoma (HCC) to sorafenib is unknown and no useful predictive biomarker for sorafenib treatment has been reported. Accordingly, we established sorafenib-resistant HCC cells and investigated the underlying mechanism of resistance to sorafenib. Sorafenib-resistant cell lines were established from the HCC cell line PLC/PRF5 by cultivation under continuous exposure to increasing concentration of sorafenib. The IC50 values of the 2 resistant clones PLC/PRF5-R1 and PLC-PRF5-R2 were 9.2±0.47 μM (1.8-fold) and 25±5.1 μM (4.6-fold) respectively, which were significantly higher than that of parental PLC/PRF5 cells (5.4±0.17 μM) (p < 0.01 respectively), as determined by MTT assay. Western blot analysis of signal transduction-related proteins showed no significant differences in expression of AKT/pAKT, mTOR/pmTOR, or ERK/pERK between the 2 resistant clones versus parent cells, suggesting no activation of an alternative signal transduction pathway. Likewise, when expression of membrane transporter proteins was determined, there were no significant differences in expression levels of BSEP, MDR1, MRP2, BCRP, MRP4 and OCT1 between resistant clones and parent cells. However, the expression levels of MRP3 in the 2 resistant clones were significantly higher than that of parent cells. When MRP3 gene was knocked down by siRNA in PLC-PRF5-R2 cells, the sensitivity of the cells to sorafenib was restored. In the analysis of gene mutation, there was no mutation in the activation segment of Raf1 kinase in the resistant clones. Our data clearly demonstrate that the efflux transporter MRP3 plays an important role in resistance to sorafenib in HCC cells. PMID:26769852

  16. MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma.

    PubMed

    Tomonari, Tetsu; Takeishi, Shunsaku; Taniguchi, Tatsuya; Tanaka, Takahiro; Tanaka, Hironori; Fujimoto, Shota; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-02-01

    The mechanism of resistance of hepatocellular carcinoma (HCC) to sorafenib is unknown and no useful predictive biomarker for sorafenib treatment has been reported. Accordingly, we established sorafenib-resistant HCC cells and investigated the underlying mechanism of resistance to sorafenib. Sorafenib-resistant cell lines were established from the HCC cell line PLC/PRF5 by cultivation under continuous exposure to increasing concentration of sorafenib. The IC50 values of the 2 resistant clones PLC/PRF5-R1 and PLC-PRF5-R2 were 9.2±0.47 μM (1.8-fold) and 25±5.1 μM (4.6-fold) respectively, which were significantly higher than that of parental PLC/PRF5 cells (5.4±0.17 μM) (p < 0.01 respectively), as determined by MTT assay. Western blot analysis of signal transduction-related proteins showed no significant differences in expression of AKT/pAKT, mTOR/pmTOR, or ERK/pERK between the 2 resistant clones versus parent cells, suggesting no activation of an alternative signal transduction pathway. Likewise, when expression of membrane transporter proteins was determined, there were no significant differences in expression levels of BSEP, MDR1, MRP2, BCRP, MRP4 and OCT1 between resistant clones and parent cells. However, the expression levels of MRP3 in the 2 resistant clones were significantly higher than that of parent cells. When MRP3 gene was knocked down by siRNA in PLC-PRF5-R2 cells, the sensitivity of the cells to sorafenib was restored. In the analysis of gene mutation, there was no mutation in the activation segment of Raf1 kinase in the resistant clones. Our data clearly demonstrate that the efflux transporter MRP3 plays an important role in resistance to sorafenib in HCC cells. PMID:26769852

  17. Epidermal growth factor receptor pathway polymorphisms and the prognosis of hepatocellular carcinoma

    PubMed Central

    Wang, Wenjia; Ma, Xiao-Pin; Shi, Zhuqing; Zhang, Pengyin; Ding, Dong-Lin; Huang, Hui-Xing; Saiyin, Hexi Ge; Chen, Tao-Yang; Lu, Pei-Xin; Wang, Neng-Jin; Yu, Hongjie; Sun, Jielin; Zheng, S Lilly; Yu, Long; Xu, Jianfeng; Jiang, De-Ke

    2015-01-01

    The EGFR signaling pathway is important in the control of vital processes in the carcinogenesis of hepatocellular carcinoma (HCC), including cell survival, cell cycle progression, tumor invasion and angiogenesis. In the current study, we aim to assess if genetic variants in the genes of the EGFR signaling pathway are associated with the prognosis of HCC. We genotyped 36 single nucleotide polymorphisms (SNP) in four core genes (EGF, EGFR, VEGF, and VEGFR2) by using DNA from blood samples of 363 HCC patients with surgical resection. The associations between genotypes and overall survival (OS) and disease-free survival (DFS) were estimated using the Kaplan-Meier method. Hazard ratios (HRs) and 95% confident intervals (CIs) were estimated for the multivariate survival analyses by Cox proportional hazards regression models, adjusting for age, gender, family history, HBsAg and AFP. We found that five SNPs in the VEGFR2 gene were significantly associated with clinical outcomes of HCC patients. Among them, four SNPs (rs7692791, rs2305948, rs13109660, rs6838752) were associated with OS (p=0.035, 0.038, 0.029 and 0.028, respectively), and two SNPs (rs7692791 and rs2034965) were associated with DFS (p=0.039 and 0.017, respectively). Particularly, rs7692791 TT genotype was associated with both reduced OS (p=0.037) and DFS (p=0.043). However, only one SNP rs2034965 with the AA genotype was shown to be an independent effect on DFS (p=0.009) in the multivariate analysis. None of the other 31 polymorphisms or 9 haplotypes attained from the four genes was significantly associated with OS or DFS. Our results illustrated the potential use of VEGFR2 polymorphisms as prognostic markers for HCC patients. PMID:25628948

  18. MicroRNA-1207-5p inhibits hepatocellular carcinoma cell growth and invasion through the fatty acid synthase-mediated Akt/mTOR signalling pathway.

    PubMed

    Zhao, Gang; Dong, Lei; Shi, Haitao; Li, Hong; Lu, Xiaolan; Guo, Xiaoyan; Wang, Jinhai

    2016-09-01

    Fatty acid synthase (FASN) has emerged as a unique oncologic target for the treatment of cancers, including hepatocellular carcinoma (HCC). However, effective inhibitors of FASN for cancer treatment are lacking. MicroRNAs (miRNAs) have emerged as novel and endogenic inhibitors of gene expression. In the present study, we aimed to investigate the role of miR‑1207‑5p in HCC and the regulation of FASN through miR‑1207‑5p. The expression of miR-1207-5p was markedly reduced in HCC tissues and cell lines as detected with real‑time quantitative polymerase chain reaction (qPCR). Overexpression of miR-1207-5p significantly suppressed the cell growth and invasion of HCC cells. By contrast, inhibition of miR‑1207‑5p exhibited an opposite effect. Bioinformatics analysis showed that FASN is a predicted target of miR‑1207‑5p which was validated by dual‑luciferase reporter assay, qPCR and western blot analysis. Overexpression of miR‑1207‑5p inhibited the Akt/mTOR signalling pathway, and promotion of this pathway was noted following inhibition of miR‑1207‑5p. Rescue experiments showed that the restoration of FASN expression partially reversed the inhibitory effect of miR‑1207‑5p on cell growth, invasion and Akt phosphorylation. In conclusion, our study suggests that miR‑1207‑5p/FASN plays an important role in HCC, and provides novel insight into developing new inhibitors for FASN for therapeutic interventions for HCC. PMID:27461404

  19. [Hepatocellular carcinoma].

    PubMed

    Colombo, Massimo; Sangiovanni, Angelo

    2016-07-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer death and the first in patients with compensated cirrhosis. Chronic infection with hepatitis B and C, alcohol, smoking, exposure to aflatoxin and metabolic syndrome, associated with diabetes and obesity are the main etiological factors. Regardless of etiology, patients with cirrhosis stand as the category at higher risk of developing HCC, and indeed are the target of surveillance programs aimed to the early diagnosis of HCC, the only chance to reduce HCC-related mortality. This notwithstanding, International Scientific Societies have issued recommendations for the management of HCC, a significant number of patients are treated outside guidelines, due to several reasons. Among queries still unsolved, the impact of biological characterization of HCC, along with the biological profiling of patients at risk of developing HCC represent main challenges for the future. Treatment personalization and multimodal treatment being further challenges. This chapter summarizes the recommendations for surveillance, diagnosis and treatment of HCC and focus on future directions. PMID:27571469

  20. Lentivirally Engineered DC activate AFP-specific T cells which Inhibit Hepatocellular Carcinoma Growth in vitro and in vivo

    PubMed Central

    Liu, Yang; Butterfield, Lisa H.; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2012-01-01

    Alpha-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the antitumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered DC in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and antitumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DC. This study supports the superiority of a full-length antigen lentivirus-based DC vaccine strategy over peptides, and provides new insight into the design of DC-based vaccines. PMID:21491085

  1. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  2. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  3. Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species.

    PubMed

    Liu, Rong-Rong; Lv, Ya-Su; Tang, Yue-Xiao; Wang, Yan-Fang; Chen, Xiao-Ling; Zheng, Xiao-Xiao; Xie, Shang-Zhi; Cai, Ying; Yu, Jun; Zhang, Xian-Ning

    2016-04-26

    Eukaryotic translation initiation factor 5A2 (eIF5A2) has been identified as a critical gene in tumor metastasis. Research has suggested that reactive oxygen species (ROS) serve as signaling molecules in cancer cell proliferation and migration. However, the mechanisms linking eIF5A2 and ROS are not fully understood. Here, we investigated the effects of ROS on the eIF5A2-induced epithelial-mesenchymal transition (EMT) and migration in six hepatocellular carcinoma (HCC) cell lines. Western hybridization, siRNA transfection, transwell migration assays, wound-healing assays, and immunofluorescence analysis were used. The protein levels of eIF5A2 in tumor and adjacent tissue samples from 90 HCC patients with detailed clinical, pathological, and clinical follow-up data were evaluated. Overexpression of eIF5A2 was found in cancerous tissues compared with adjacent tissues. We found that eIF5A2 overexpression in HCC was associated with reduced overall survival. Knockdown of eIF5A2 and intracellular reduction of ROS significantly suppressed the invasion and metastasis of HCC cells. Interestingly, N1-guanyl-1, 7-diaminoheptane (GC7) suppressed the intracellular ROS levels. After blocking the EMT, administration of GC7 or N-acetyl-L-cysteine did not reduce cell migration further. Based on the experimental data, we concluded that inhibition of eIF5A2 alters progression of the EMT to decrease the invasion and metastasis of HCC cells via ROS-related pathways. PMID:27028999

  4. miR-663 overexpression induced by endoplasmic reticulum stress modulates hepatocellular carcinoma cell apoptosis via transforming growth factor beta 1

    PubMed Central

    Huang, Yawei; Liu, Jiatao; Fan, Lulu; Wang, Fang; Yu, Hanqing; Wei, Wei; Sun, Guoping

    2016-01-01

    microRNAs are commonly dysregulated in a number of human cancers, for example, hepatocellular carcinoma (HCC), but the precise mechanism of dysregulation has not been extensively studied. Although previous studies have indicated that HCC cells are resistant to endoplasmic reticulum (ER) stress-induced apoptosis, little is known about the relationship between microRNAs and ER stress-mediated apoptosis resistance. In this study, we have demonstrated for the first time that the expression level of miR-663 was significantly upregulated in HCC cells co-incubated with tunicamycin, an ER stress inducer, as measured by a microRNA-chromatin immunoprecipitation microarray and quantitative real-time polymerase chain reaction; however, the effect of miR-663 on HCC cell apoptosis remains unknown. To investigate the potential involvement of miR-663 in HCC, HepG2 cells were transfected with mimics or inhibitors of miR-663. Consequently, we identified that downregulation of miR-663 suppressed HCC cell proliferation and promoted apoptosis under ER stress. Target gene analysis further predicted that the effects of miR-663 on HCC cells were mediated by directly targeting transforming growth factor beta 1 (TGFB1). Interestingly, the expression levels of TGFB1 changed inversely after downregulation or upregulation of miR-663 by inhibitors or mimics of miR-663 in HepG2 cells. Additionally, TGFB1 knockdown inhibited apoptosis in HepG2 cells. In sum, our study identifies a role for miR-663 as a critical regulator of ER stress-mediated apoptosis resistance in HCC cells via TGFB1. Accordingly, therapies aimed at the miR-663/TGFB1 axis might represent a hopeful strategy to overcome apoptosis resistance in HCC. PMID:27073326

  5. Predictive Factors of Downstaging of Hepatocellular Carcinoma Beyond the Milan Criteria Treated with Intra-arterial Therapies

    SciTech Connect

    Bova, Valentina; Miraglia, Roberto Maruzzelli, Luigi; Vizzini, Giovanni Battista; Luca, Angelo

    2013-04-15

    This study was designed to analyze the clinical results in patients suitable for liver transplantation with hepatocellular carcinoma (HCC) who exceeded Milan criteria, which underwent intra-arterial therapies (IAT), to determine predictive factors of successful downstaging. A total of 277 consecutive patients with cirrhosis and HCC were treated by IAT (transarterial oily chemoembolization, transarterial chemoembolization, transarterial embolization) in a single center. Eighty patients exceed the Milan criteria. Patients with infiltrative HCC, hypovascular HCC, and portal vein thrombosis were excluded, with a final study population of 48 patients. Tumor response to IAT was evaluated with CT and/or MRI according to modified RECIST criteria. Successful downstaging was defined as a reduction in the number and size of viable tumors to within the Milan criteria, and serum alpha-fetoprotein (AFP) <100 ng/mL, for at least 6 months. Nineteen patients (39 %) had their tumors successfully downstaged; 29 patients (61 %) did not. Multivariate analysis showed that AFP level <100 ng/mL and 3-year calculated survival probability using the Metroticket calculator were the only independent predictors of successful downstaging (p < 0.023 and p < 0.049 respectively). Biological characteristics of HCC as AFP levels <100 ng/mL and high 3-year calculated survival probability may predict a good response to downstage after IAT.

  6. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    SciTech Connect

    Tsedensodnom, Orkhontuya; Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R.; Kim, Miran

    2011-04-15

    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  7. Loss of imprinting of the insulin-like growth factor II gene in mouse hepatocellular carcinoma cell lines.

    PubMed

    Ooasa, T; Karasaki, H; Kanda, H; Nomura, K; Kitagawa, T; Ogawa, K

    1998-12-01

    We investigated expression of insulin-like growth factor II (Igf2) in primary cultured hepatocytes, liver epithelial (LE) cell lines derived from normal hepatocytes, and hepatocellular carcinoma (HCC) cell lines from crosses between C3H/HeJ (C3H) and Mus musculus molossinus mice (MSM). Igf2 mRNA was detected by reverse transcriptase-polymerase chain reaction in primary cultured hepatocytes from 5 d after the start of cultivation and in all 12 LE and 16 HCC cell lines. Analysis of the untranslated region of Igf2 exon 6, which contains polymorphic CA repeats, revealed that 13 of the 16 HCC cell lines had biallelic expression, whereas monoallelic expression was retained in the primary cultured hepatocytes and all 12 LE cell lines. The Igf2 transcripts contained exons 1-3 in all the HCC cell lines but only exons 2 and 3 in cultures of hepatocytes and LE cell lines, indicating difference in promoter use. However, the biallelic HCC cell lines did not have larger amounts of Igf2 mRNA and protein than did the monoallelic lines, suggesting that loss of imprinting may not be directly related to the level of Igf2 expression. PMID:9869454

  8. Phosphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria.

    PubMed

    Liu, K; Shi, Y; Guo, X H; Ouyang, Y B; Wang, S S; Liu, D J; Wang, A N; Li, N; Chen, D X

    2014-01-01

    Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma. PMID:24556693

  9. Bilobol inhibits the lipopolysaccharide-induced expression and distribution of RhoA in HepG2 human hepatocellular carcinoma cells

    PubMed Central

    XU, JIN; LI, YUEYING; YANG, XIAOMING; LIU, YALI; CHEN, YONGCHANG; CHEN, MIN

    2015-01-01

    Recent studies have revealed the localization of RhoA protein in the cell nucleus, in addition to its distribution in the cytosol and cell membrane. The results of previous studies by our group indicated that nuclear RhoA expression is increased, or RhoA is transported into the nucleus, when cells become cancerous or damaged. Furthermore, application of the anticancer agent Taxol appeared to reduce nuclear RhoA localization, indicating an association between the nuclear translocation of RhoA and tumor progression. Bilobol is a traditional Chinese medicine ingredient, however, its anticancer effect has remained unclear. The present study aimed to demonstrate the anticarcinogenic action of bilobol against hepatocellular carcinoma, in order to lay the foundations for subsequent research into the mechanisms underlying its anticancer effects. In the present study, HepG2 cells were treated with lipopolysaccharide (LPS), to induce inflammation, and/or bilobol. By performing an ELISA, it was observed that bilobol was able to suppress the inflammation induced by LPS. In addition, immunofluorescence and western blot analyses indicated that bilobol may reduce the expression of RhoA, suppress translocation of RhoA into the nucleus and inhibit the RhoA/Rho-associated protein kinase signaling pathway. In conclusion, the present study revealed the potential anticancer effects of bilobol. PMID:26622605

  10. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma.

    PubMed

    Chen, Jing-Song; Li, Hua-Shu; Huang, Jiong-Qiang; Dong, Shi-Hao; Huang, Zhi-Jie; Yi, Wei; Zhan, Gao-Fang; Feng, Ju-Tao; Sun, Jian-Cong; Huang, Xiao-Hui

    2016-05-28

    Some microRNAs (miRNAs) have been implicated in hepatocellular carcinoma (HCC) development and progression. However, the roles and mechanisms of several miRNAs in HCC remain poorly understood. Here, we report that miR-379-5p, which is down-regulated in HCC tissues and cell lines, is associated with advanced TNM stage and metastasis in HCC. The ectopic overexpression of miR-379-5p inhibited HCC cell migration, invasion, epithelial-to-mesenchymal transition (EMT) and metastasis both in vitro and in vivo. Conversely, miR-379 knockdown increased migration, invasion and EMT in HCC cells. Moreover, miR-379-5p exerted this function by directly targeting focal adhesion kinase (FAK) 3'-UTR and repressing FAK expression, thus leading to suppression of AKT signaling. Furthermore, the tumor suppressive effects of miR-379-5p in HCC cells were reversed by activating AKT signaling or restoring FAK expression. In clinical samples of HCC, miR-379-5p negatively correlated with FAK, which was up-regulated in HCC. Taken together, our findings highlight the important role of miR-379-5p in regulating the EMT and metastasis of HCC by targeting FAK/AKT signaling, suggesting that miR-379-5p may represent a novel potential therapeutic target and prognostic marker for HCC. PMID:26944318

  11. A Peculiar Mutation Spectrum Emerging from Young Peruvian Patients with Hepatocellular Carcinoma

    PubMed Central

    Marchio, Agnès; Bertani, Stéphane; Rojas Rojas, Teresa; Doimi, Franco; Terris, Benoît; Deharo, Eric; Dejean, Anne; Ruiz, Eloy; Pineau, Pascal

    2014-01-01

    Hepatocellular carcinoma usually afflicts individuals in their later years following longstanding liver disease. In Peru, hepatocellular carcinoma exists in a unique clinical presentation, which affects patients around age 25 with a normal, healthy liver. In order to deepen our understanding of the molecular processes ongoing in Peruvian liver tumors, mutation spectrum analysis was carried out on hepatocellular carcinomas from 80 Peruvian patients. Sequencing analysis focused on nine genes typically altered during liver carcinogenesis, i.e. ARID2, AXIN1, BRAF, CTNNB1, NFE2L2, H/K/N-RAS, and TP53. We also assessed the transcription level of factors involved in the control of the alpha-fetoprotein expression and the Hippo signaling pathway that controls contact inhibition in metazoans. The mutation spectrum of Peruvian patients was unique with a major class of alterations represented by Insertions/Deletions. There were no changes at hepatocellular carcinoma-associated mutation hotspots in more than half of the specimens analyzed. Furthermore, our findings support the theory of a consistent collapse in the Hippo axis, as well as an expression of the stemness factor NANOG in high alpha-fetoprotein-expressing hepatocellular carcinomas. These results confirm the specificity of Peruvian hepatocellular carcinoma at the molecular genetic level. The present study emphasizes the necessity to widen cancer research to include historically neglected patients from South America, and more broadly the Global South, where cancer genetics and tumor presentation are divergent from canonical neoplasms. PMID:25502816

  12. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro.

    PubMed

    Li, Jingjing; Dai, Weiqi; Xia, Yujing; Chen, Kan; Li, Sainan; Liu, Tong; Zhang, Rong; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Abudumijiti, Huerxidan; Chen, Rongxia; Zheng, Yuanyuan; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-10-01

    Hepatocellular carcinoma (HCC) is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX), a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas. PMID:26404320

  13. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    PubMed Central

    Li, Jingjing; Dai, Weiqi; Xia, Yujing; Chen, Kan; Li, Sainan; Liu, Tong; Zhang, Rong; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Abudumijiti, Huerxidan; Chen, Rongxia; Zheng, Yuanyuan; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Hepatocellular carcinoma (HCC) is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX), a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas. PMID:26404320

  14. Yin Yang 1-mediated epigenetic silencing of tumour-suppressive microRNAs activates nuclear factor-κB in hepatocellular carcinoma.

    PubMed

    Tsang, Daisy P F; Wu, William K K; Kang, Wei; Lee, Ying-Ying; Wu, Feng; Yu, Zhuo; Xiong, Lei; Chan, Anthony W; Tong, Joanna H; Yang, Weiqin; Li, May S M; Lau, Suki S; Li, Xiangchun; Lee, Sau-Dan; Yang, Yihua; Lai, Paul B S; Yu, Dae-Yeul; Xu, Gang; Lo, Kwok-Wai; Chan, Matthew T V; Wang, Huating; Lee, Tin L; Yu, Jun; Wong, Nathalie; Yip, Kevin Y; To, Ka-Fai; Cheng, Alfred S L

    2016-04-01

    Enhancer of zeste homolog 2 (EZH2) catalyses histone H3 lysine 27 trimethylation (H3K27me3) to silence tumour-suppressor genes in hepatocellular carcinoma (HCC) but the process of locus-specific recruitment remains elusive. Here we investigated the transcription factors involved and the molecular consequences in HCC development. The genome-wide distribution of H3K27me3 was determined by chromatin immunoprecipitation coupled with high-throughput sequencing or promoter array analyses in HCC cells from hepatitis B virus (HBV) X protein transgenic mouse and human cell models. Transcription factor binding site analysis was performed to identify EZH2-interacting transcription factors followed by functional characterization. Our cross-species integrative analysis revealed a crucial link between Yin Yang 1 (YY1) and EZH2-mediated H3K27me3 in HCC. Gene expression analysis of human HBV-associated HCC specimens demonstrated concordant overexpression of YY1 and EZH2, which correlated with poor survival of patients in advanced stages. The YY1 binding motif was significantly enriched in both in vivo and in vitro H3K27me3-occupied genes, including genes for 15 tumour-suppressive microRNAs. Knockdown of YY1 reduced not only global H3K27me3 levels, but also EZH2 and H3K27me3 promoter occupancy and DNA methylation, leading to the transcriptional up-regulation of microRNA-9 isoforms in HCC cells. Concurrent EZH2 knockdown and 5-aza-2'-deoxycytidine treatment synergistically increased the levels of microRNA-9, which reduced the expression and transcriptional activity of nuclear factor-κB (NF-κB). Functionally, YY1 promoted HCC tumourigenicity and inhibited apoptosis of HCC cells, at least partially through NF-κB activation. In conclusion, YY1 overexpression contributes to EZH2 recruitment for H3K27me3-mediated silencing of tumour-suppressive microRNAs, thereby activating NF-κB signalling in hepatocarcinogenesis. PMID:26800240

  15. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Yan, Ming-De; Yao, Chih-Jung; Chow, Jyh-Ming; Chang, Chia-Lun; Hwang, Pai-An; Chuang, Shuang-En; Whang-Peng, Jacqueline; Lai, Gi-Ming

    2015-01-01

    Accumulating evidence has revealed that fucoidan exhibits anti-tumor activities by arresting cell cycle and inducing apoptosis in many types of cancer cells including hepatocellular carcinoma (HCC). Exploring its effect on microRNA expression, we found that fucoidan markedly upregulated miR-29b of human HCC cells. The induction of miR-29b was accompanied with suppression of its downstream target DNMT3B in a dose-dependent manner. The reduction of luciferase activity of DNMT3B 3′-UTR reporter by fucoidan was as markedly as that by miR-29b mimic, indicating that fucoidan induced miR-29b to suppress DNMT3B. Accordingly, the mRNA and protein levels of MTSS1 (metastasis suppressor 1), a target silenced by DNMT3B, were increased after fucoidan treatment. Furthermore, fucoidan also down-regulated TGF-β receptor and Smad signaling of HCC cells. All these effects leaded to the inhibition of EMT (increased E-cadherin and decreased N-cadherin) and prevention of extracellular matrix degradation (increased TIMP-1 and decreased MMP2, 9), by which the invasion activity of HCC cells was diminished. Our results demonstrate the profound effect of fucoidan not only on the regulation of miR-29b-DNMT3B-MTSS1 axis but also on the inhibition of TGF-β signaling in HCC cells, suggesting the potential of using fucoidan as integrative therapeutics against invasion and metastasis of HCC. PMID:26404322

  16. Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition.

    PubMed

    Yu, Su Jong; Yoon, Jung-Hwan; Yang, Jong-In; Cho, Eun Ju; Kwak, Min Sun; Jang, Eun Sun; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Hyo-Suk; Kim, Chung Yong

    2012-02-01

    3-bromopyruvate (3-BP), a hexokinase (HK) II inhibitor, promotes tumor cell death by inducing endoplasmic reticulum (ER) stress in human hepatocellular carcinoma (HCC) cell lines. Protein disulfide isomerase (PDI) is an essential folding catalyst and attenuates ER stress by folding the misfolded proteins. We examined if PDI is expressed in hypoxic HCC cells, and evaluated its inhibition potentiated HK II inhibitor-induced ER stress in hypoxic HCC cells. HCC apoptotic cell death was assessed by DAPI staining and apoptotic signaling pathways were explored by immunoblot analysis. An in vivo model of HCC was established in C3H mice intradermally with implanted MH134 cells. 3-BP with/without a PDI inhibitor (bacitracin) was subsequently administered. The anti-tumor efficacies were evaluated by measuring tumor volumes and quantifying apoptotic cells and microvessel densities (MVDs). HCC cells were found to express PDI in a hypoxia-inducible manner. The simultaneous treatment of bacitracin and 3-BP enhanced 3-BP-induced apoptosis. This enhancement was attributed to increased ER stress and JNK activation compared to the cells treated with just 3-BP. In an in vivo model of HCC, tumor growth was significantly suppressed in mice co-treated with bacitracin and 3-BP, and the percentages of apoptotic cells significantly increased and MVDs significantly decreased. These results demonstrated that PDI was induced in hypoxic HCC tissue and that PDI inhibition enhanced HK II inhibitor-induced anti-tumor efficacy synergistically via augmenting ER stress and anti-angiogenesis in vivo. Thus, blockage of PDI activity in combination with HK II inhibitor may be therapeutically useful in HCCs. PMID:22350012

  17. Prediagnostic plasma testosterone, sex hormone-binding globulin, IGF-I and hepatocellular carcinoma: etiological factors or risk markers?

    PubMed

    Lukanova, Annekatrin; Becker, Susen; Hüsing, Anika; Schock, Helena; Fedirko, Veronika; Trepo, Elisabeth; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Benetou, Vassiliki; Trichopoulos, Dimitrios; Nöthlings, Ute; Tjønneland, Anne; Overvad, Kim; Dossus, Laure; Teucher, Birgit; Boeing, Heiner; Aleksandrova, Krasimira; Palli, Domenico; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Ricceri, Fulvio; Bueno-de-Mesquita, H Bas; Siersema, Peter D; Peeters, Petra H M; Quiros, Jose Ramon; Duell, Eric J; Molina-Montes, Esther; Chirlaque, Maria-Dolores; Gurrea, Aurelio Barricarte; Dorronsoro, Miren; Lindkvist, Björn; Johansen, Dorthe; Werner, Mårten; Sund, Malin; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Rinaldi, Sabina; Romieu, Isabelle; Gunter, Marc J; Riboli, Elio; Jenab, Mazda; Kaaks, Rudolf

    2014-01-01

    Elevated prediagnostic testosterone and insulin-like growth factor I (IGF-I) concentrations have been proposed to increase risk of hepatocellular carcinoma (HCC). However, the metabolism of these hormones is altered as a consequence of liver damage and they may have clinical utility as HCC risk markers. A case-control study was nested within the European Prospective Investigation into Cancer and Nutrition cohort and included 125 incident HCC cases and 247 individually matched controls. Testosterone, sex hormone-binding globulin (SHBG) and IGF-I were analyzed by immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by conditional logistic regression. The area under the receiver operating curves (AUC) was calculated to assess HCC predictive ability of the tested models. After adjustments for epidemiological variables (body mass index, smoking, ethanol intake, hepatitis and diabetes) and liver damage (a score based on albumin, bilirubin, aspartate aminotransaminase, alanine aminotransaminase, gamma-glutamyltransferase and alkaline phosphatase concentrations), only SHBG remained significantly associated with risk [OR for top versus bottom tertile of 3.86 (1.32-11.3), p(trend) = 0.009]. As a single factor SHBG had an AUC of 0.81 (0.75-0.86). A small, but significant increase in AUC was observed when SHBG was added to a model including the liver damage score and epidemiological variables (from 0.89 to 0.91, p = 0.02) and a net reclassification of 0.47% (0.45-0.48). The observed associations of HCC with prediagnostic SHBG, free testosterone and IGF-I concentrations are in directions opposite to that expected under the etiological hypotheses. SHBG has a potential to be tested as prediagnostic risk marker for HCC. PMID:23801371

  18. Tumor Necrosis Factor-α-308 G/A Polymorphisms and Risk of Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Tavakolpour, Soheil; Sali, Shahnaz

    2016-01-01

    Context Hepatocellular carcinoma (HCC) is a common disorder throughout the world that can develop due to various factors, including genetics. Tumor necrosis factor-α (TNF-α) is the most frequently studied cytokine related to the risk of developing HCC, and an association between the 308 position of the TNF-α promoter (TNF-α-308) and HCC risk has been confirmed in various reports. Evidence Acquisition The PubMed, Scopus, and Google Scholar databases were searched through July 12, 2015, for studies on associations between TNF-α-308 and the risk of HCC. To determine this association, odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Results A total of 23 case-control studies were investigated, involving 3,389 cases and 4,235 controls. The overall conclusion was that the A allele was more frequent in case groups compared to control groups (13.4% vs. 8.4%). Thus, the A allele was significantly associated with increased HCC risk (OR = 1.77; 95% CI = [1.26-2.50]; P value < 0.002). In addition to the allelic model, the dominant model (AA + AG vs. GG) was significantly associated with HCC risk (OR = 1.80; CI = [1.29-2.51]; P value < 0.001). In the sensitivity analysis for co-dominant (AA vs. GG) and recessive models (AA vs. AG + GG), no trustworthy associations with the risk of HCC development were observed. Conclusions This meta-analysis indicated that the TNF-α-308 G/A polymorphism is significantly associated with increased susceptibility to HCC. However, to confirm this finding, more studies are needed on TNF-α-308 G/A polymorphisms associated with HCC. PMID:27257425

  19. Referral and Receipt of Treatment for Hepatocellular Carcinoma in United States Veterans: Effect of Patient and Non-Patient Factors

    PubMed Central

    Davila, Jessica A.; Kramer, Jennifer R.; Duan, Zhigang; Richardson, Peter A.; Tyson, Gia L.; Sada, Yvonne H.; Kanwal, Fasiha; El-Serag, Hashem B.

    2014-01-01

    Background The delivery of treatment for hepatocellular carcinoma (HCC) could be influenced by place of HCC diagnosis (hospitalization vs. outpatient), subspecialty referral following diagnosis, as well as physician and facility factors. We conducted a study to examine the effect of patient and non-patient factors on the place of HCC diagnosis, referral, and treatment in Veterans Administration (VA) hospitals in the United States. Methods Using the VA Hepatitis C Clinical Case Registry, we identified HCV-infected patients who developed HCC during 1998–2006. All cases were verified and staged according to Barcelona Clinic Liver Cancer (BCLC) criteria. The main outcomes were place of HCC diagnosis, being seen by a surgeon or oncologist, and treatment. We examined factors related to these outcomes using hierarchical logistic regression. These factors included HCC stage, HCC surveillance, physician specialty, and facility factors, in addition to risk factors, co-morbidity, and liver disease indicators. Results Approximately 37.2% of the 1,296 patients with HCC were diagnosed during hospitalization, 31.0% were seen by a surgeon or oncologist, and 34.3% received treatment. Being seen by a surgeon or oncologist was associated with surveillance (adjusted odds ratio (aOR)=1.47;95%CI:1.20–1.80) and varied by geography (1.74;1.09–2.77). Seeing a surgeon or oncologist was predictive of treatment (aOR=1.43;95%CI:1.24–1.66). There was a significant increase in treatment among patients who received surveillance (aOR=1.37; 95%CI:1.02–1.71), were seen by gastroenterology (1.65;1.21–2.24) or were diagnosed at a transplant facility (1.48;1.15–1.90). Conclusions Approximately 40% of patients were diagnosed during hospitalization. Most patients were not seen by a surgeon or oncologist for treatment evaluation and only 34% received treatment. Only receipt of HCC surveillance was associated with increased likelihood of outpatient diagnosis, being seen by a surgeon or

  20. Microvascular invasion in hepatocellular carcinoma

    PubMed Central

    Ünal, Emre; İdilman, İlkay Sedakat; Akata, Deniz; Özmen, Mustafa Nasuh; Karçaaltıncaba, Muşturay

    2016-01-01

    Microvascular invasion is a crucial histopathologic prognostic factor for hepatocellular carcinoma. We reviewed the literature and aimed to draw attention to clinicopathologic and imaging findings that may predict the presence of microvascular invasion in hepatocellular carcinoma. Imaging findings suggesting microvascular invasion are disruption of capsule, irregular tumor margin, peritumoral enhancement, multifocal tumor, increased tumor size, and increased glucose metabolism on positron emission tomography-computed tomography. In the presence of typical findings, microvascular invasion may be predicted. PMID:26782155

  1. Analysis of Risk Factors Associated with the Development of Hepatocellular Carcinoma in Chronic HBV-Infected Chinese: A Meta-Analysis.

    PubMed

    Lyu, Xiang; Liu, Kui; Chen, Yongdi; Wang, Zhifang; Yao, Jun; Cai, Gaofeng; Jiang, Zhenggang; Wang, Zhengting; Jiang, Jianmin; Gu, Hua

    2016-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC) in China. At present, there still are 9.3 million chronic HBV-infected Chinese. Numerous studies have explored the association between possible factors and hepatocellular carcinoma risk, however, the results remains inconsistent. Therefore, we did this pooled analysis so as to get a precise result. Here, we took the chronic HBV-infected Chinese as the object. We systematically searched for studies evaluating whether the proposed factors changed HCC risk in PubMed, Chinese National Knowledge Infrastructure, VIP database and Wanfang data. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by Review Manager 5.0 and publication bias was determined by Begg's test and Egger's test. In total, 3165 cases and 10,896 controls from 27 studies were included in this meta-analysis. Our results showed that pooled OR with 95% CI for each of the factors investigated were: non-antiviral treatment 2.70 (2.01, 3.62), high HBV DNA levels 2.61 (1.73, 3.94), alcohol consumption 2.19 (1.53, 3.13), a family history of HCC 3.58 (2.53, 5.06) and male gender 2.14 (1.68, 2.73), respectively. Our meta-analysis supports that high HBV DNA levels, non-antiviral treatment, alcohol consumption, a family history of HCC and male gender contributed to the risk of hepatocellular carcinoma in chronic HBV-infected Chinese from currently available evidence. Given the high prevalence of the non-antiviral treatment and alcohol drinking, behavior interventions for the two factors should be tackled first. PMID:27322300

  2. Analysis of Risk Factors Associated with the Development of Hepatocellular Carcinoma in Chronic HBV-Infected Chinese: A Meta-Analysis

    PubMed Central

    Lyu, Xiang; Liu, Kui; Chen, Yongdi; Wang, Zhifang; Yao, Jun; Cai, Gaofeng; Jiang, Zhenggang; Wang, Zhengting; Jiang, Jianmin; Gu, Hua

    2016-01-01

    Hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC) in China. At present, there still are 9.3 million chronic HBV-infected Chinese. Numerous studies have explored the association between possible factors and hepatocellular carcinoma risk, however, the results remains inconsistent. Therefore, we did this pooled analysis so as to get a precise result. Here, we took the chronic HBV-infected Chinese as the object. We systematically searched for studies evaluating whether the proposed factors changed HCC risk in PubMed, Chinese National Knowledge Infrastructure, VIP database and Wanfang data. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by Review Manager 5.0 and publication bias was determined by Begg’s test and Egger’s test. In total, 3165 cases and 10,896 controls from 27 studies were included in this meta-analysis. Our results showed that pooled OR with 95% CI for each of the factors investigated were: non-antiviral treatment 2.70 (2.01, 3.62), high HBV DNA levels 2.61 (1.73, 3.94), alcohol consumption 2.19 (1.53, 3.13), a family history of HCC 3.58 (2.53, 5.06) and male gender 2.14 (1.68, 2.73), respectively. Our meta-analysis supports that high HBV DNA levels, non-antiviral treatment, alcohol consumption, a family history of HCC and male gender contributed to the risk of hepatocellular carcinoma in chronic HBV-infected Chinese from currently available evidence. Given the high prevalence of the non-antiviral treatment and alcohol drinking, behavior interventions for the two factors should be tackled first. PMID:27322300

  3. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition.

    PubMed

    Copur, M Sitki; Obermiller, Angela

    2011-09-01

    Vascular endothelial growth factor (VEGF) signaling is considered to be one of the key factors involved in tumor-associated angiogenesis. Inhibition of angiogenesis has significantly improved anticancer therapy making it one of the cornerstones of treatment for various solid tumors. Several antiangiogenesis inhibitory compounds (eg, bevacizumab, sunitinib, sorafenib) are now widely used in the treatment of patients with colorectal, non-small-cell lung, advanced renal cell, hepatocellular, and breast cancer. One of the most commonly observed side effects of inhibition of VEGF signaling is hypertension, which is dose-dependent and varies in incidence among the different angiogenesis inhibitor drugs. Poorly controlled hypertension not only can lead to cardiovascular events, renal disease, and stroke, but may also necessitate discontinuation of anticancer therapy, thereby potentially limiting overall clinical benefit. In contrast, hypertension induced by VEGF inhibitors has been shown to represent an important pharmacodynamic biomarker of oncologic response. For the practicing oncologist, knowledge and optimal management of this toxicity is essential. Because of the lack of controlled studies on this topic, no clear recommendations are available. In this article, we review the available preclinical and clinical data on the pathogenesis and management of hypertension resulting from anti-VEGF inhibitor therapy and propose a treatment algorithm that our group has now implemented for daily clinical practice. PMID:21855035

  4. Risk Factors and Post-Resection Independent Predictive Score for the Recurrence of Hepatitis B-Related Hepatocellular Carcinoma

    PubMed Central

    Poon, Ronnie Tung-Ping; Fong, Daniel Yee-Tak; Chui, Ada Hang-Wai; Seto, Wai-Kay; Fung, James Yan-Yue; Chan, Albert Chi-Yan; Yuen, John Chi-Hang; Tiu, Randal; Choi, Olivia; Lai, Ching-Lung; Yuen, Man-Fung

    2016-01-01

    Background Independent risk factors associated with hepatitis B (HBV)-related hepatocellular carcinoma (HCC) after resection remains unknown. An accurate risk score for HCC recurrence is lacking. Methods We prospectively followed up 200 patients who underwent liver resection for HBV-related HCC for at least 2 years. Demographic, biochemical, tumor, virological and anti-viral treatment factors were analyzed to identify independent risk factors associated with recurrence after resection and a risk score for HCC recurrence formulated. Results Two hundred patients (80% male) who underwent liver resection for HBV-related HCC were recruited. The median time of recurrence was 184 weeks (IQR 52–207 weeks) for the entire cohort and 100 patients (50%) developed HCC recurrence. Stepwise Cox regression analysis identified that one-month post resection HBV DNA >20,000 IU/mL (p = 0.019; relative risk (RR) 1.67; 95% confidence interval (C.I.): 1.09–2.57), the presence of lymphovascular permeation (p<0.001; RR 2.69; 95% C.I.: 1.75–4.12), microsatellite lesions (p<0.001; RR 2.86; 95% C.I.: 1.82–4.51), and AFP >100ng/mL before resection (p = 0.021; RR 1.63; 95% C.I.: 1.08–2.47) were independently associated with HCC recurrence. Antiviral treatment before resection (p = 0.024; RR 0.1; 95% C.I.: 0.01–0.74) was independently associated with reduced risk of HCC recurrence. A post-resection independent predictive score (PRIPS) was derived and validated with sensitivity of 75.3% and 60.6% and specificity of 55.7% and 79.2%, to predict the 1- and 3-year risks for the HCC recurrence respectively with the hazard ratio of 2.71 (95% C.I.: 2.12–3.48; p<0.001). The AUC for the 1- and 3-year prediction were 0.675 (95% C.I.: 0.6–0.78) and 0.746 (95% C.I.: 0.69–0.82) respectively. Conclusion Several tumor, virological and biochemical factors were associated with a higher cumulative risk of HCC recurrence after resection. PRIPS was derived for more accurate risk assessment

  5. Prognostic factors in patients with hepatitis B virus-related hepatocellular carcinoma undergoing nucleoside analog antiviral therapy

    PubMed Central

    NISHIKAWA, HIROKI; NISHIJIMA, NORIHIRO; ARIMOTO, AKIRA; INUZUKA, TADASHI; KITA, RYUICHI; KIMURA, TORU; OSAKI, YUKIO

    2013-01-01

    In the present era of entecavir (ETV) use for chronic hepatitis B (CHB), the prognostic factors in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. The aims of the present study were to investigate the prognostic factors in patients with HBV-related HCC treated with ETV who underwent curative therapy. A total of 74 HBV-related HCC patients treated with ETV who underwent curative therapy were analyzed. Predictive factors associated with overall survival (OS) and recurrence-free survival (RFS) were examined using univariate and multivariate analysis. Our study population included 49 males and 25 females with a median age of 62 years. The median observation period was 3.4 years (range, 0.2–11.5 years). The 1-, 3- and 5-year cumulative OS rates were 100, 89.8 and 89.8%, respectively. The corresponding RFS rates were 82.8, 52.1 and 25.6%, respectively. In this study, 73 patients (98.6%) achieved an HBV DNA level of <400 copies/ml during the follow-up period. No viral breakthrough hepatitis, as defined by 1 log increase from nadir, was observed during ETV therapy. According to multivariate analysis, only hepatitis B e antigen (HBeAg) positivity was significantly associated with OS [hazard ratio (HR), 0.058; 95% confidence interval (CI), 0.005–0.645; P=0.020)], whereas HCC stage (HR, 0.359; 95% CI, 0.150–0.859; P=0.021), HBeAg positivity (HR, 0.202; 95% CI, 0.088–0.463; P<0.001) and γ-glutamyl transpeptidase ≥50 IU/l (HR, 0.340; 95% CI, 0.152–0.760; P=0.009) were significant predictive factors linked to RFS. In conclusion, HBeAg positivity was significantly associated with OS and RFS in HBV-related HCC patients treated with ETV who underwent curative therapy. In such patients, close observation is required, even after curative therapy for HCC. PMID:24179497

  6. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A

    PubMed Central

    Belyi, Yury; Niggeweg, Ricarda; Opitz, Bastian; Vogelsgesang, Martin; Hippenstiel, Stefan; Wilm, Matthias; Aktories, Klaus

    2006-01-01

    Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an ≈50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila. PMID:17068130

  7. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma.

    PubMed

    Kataoka, Junro; Shiraha, Hidenori; Horiguchi, Shigeru; Sawahara, Hiroaki; Uchida, Daisuke; Nagahara, Teruya; Iwamuro, Masaya; Morimoto, Hiroki; Takeuchi, Yasuto; Kuwaki, Kenji; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yagi, Takahito; Yamamoto, Kazuhide; Okada, Hiroyuki

    2016-05-01

    Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC. PMID:26985715

  8. Microwave ablation of hepatocellular carcinoma as first-line treatment: long term outcomes and prognostic factors in 221 patients.

    PubMed

    Wang, Tao; Lu, Xiao-Jie; Chi, Jia-Chang; Ding, Min; Zhang, Yuan; Tang, Xiao-Yin; Li, Ping; Zhang, Li; Zhang, Xiao-Yu; Zhai, Bo

    2016-01-01

    This retrospective study aimed at evaluating the long-term outcomes and prognostic factors of microwave ablation (MWA) as a first-line treatment for hepatocellular carcinoma (HCC). 221 consecutive patients receiving MWA in our center between October 11, 2010 and December 31, 2013 were enrolled. Technique effectiveness was evaluated one month post-ablation. Initial complete ablation (CA1(st)) was gained in 201 (90.95%) patients, secondary CA (CA2(nd)) in 8 (3.62%) patients and the remaining 12 (5.43%) patients suffered from incomplete ablation (IA2(nd)) after two sessions of MWA. Patients with tumor size >5 cm were less likely to gain CA1(st). Procedure-related complications were recorded and no procedure-related death occurred. 22 (10.4%) complications occurred with 8 (3.8%) being major ones. Tumor characteristics (size, number, location) do not significantly influence complication rates. After a median follow-up of 41.0 (ranging 25.0-63.5) months, the median RFS and OS was 14.0 months (95% CI: 9.254-18.746) and 41.0 months (95% CI: 33.741-48.259) respectively. Multivariate analysis identified two significant prognosticators (levels of alpha fetal protein [AFP] and gamma-glutamyl transpeptidase [GGT]) of RFS and five significant prognosticators (tumor number, tumor size, AFP, GGT and recurrence type) of OS. In conclusion, MWA provides high technique effectiveness rate and is well tolerated in patients with HCC as a first-line treatment. PMID:27620527

  9. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma

    PubMed Central

    KATAOKA, JUNRO; SHIRAHA, HIDENORI; HORIGUCHI, SHIGERU; SAWAHARA, HIROAKI; UCHIDA, DAISUKE; NAGAHARA, TERUYA; IWAMURO, MASAYA; MORIMOTO, HIROKI; TAKEUCHI, YASUTO; KUWAKI, KENJI; ONISHI, HIDEKI; NAKAMURA, SHINICHIRO; TAKAKI, AKINOBU; NOUSO, KAZUHIRO; YAGI, TAKAHITO; YAMAMOTO, KAZUHIDE; OKADA, HIROYUKI

    2016-01-01

    Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC. PMID:26985715

  10. Interplay between microRNA-17-5p, insulin-like growth factor-II through binding protein-3 in hepatocellular carcinoma

    PubMed Central

    Habashy, Danira Ashraf; El Tayebi, Hend Mohamed; Fawzy, Injie Omar; Hosny, Karim Adel; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    AIM To investigate the effect of microRNA on insulin-like growth factor binding protein-3 (IGFBP-3) and hence on insulin-like growth factor-II (IGF-II) bioavailability in hepatocellular carcinoma (HCC). METHODS Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mirVana miRNA Isolation Kit. microRNA-17-5p (miR-17-5p) expression was mimicked and antagonized in HuH-7 cell lines using HiPerFect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cDNA followed by quantification of miR-17-5p and IGFBP-3 expression using TaqMan real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3’UTR of IGFBP-3. Free IGF-II protein was measured in transfected HuH-7 cells using IGF-II ELISA kit. RESULTS Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where miR-17-5p was extensively underexpressed in HCC tissues (P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients (P = 0.0041) compared to healthy donors. Forcing miR-17-5p expression in HuH-7 cell lines showed a significant downregulation of IGFBP-3 mRNA expression (P = 0.0267) and a significant increase in free IGF-II protein (P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of miR-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone (P = 0.0474). CONCLUSION These data suggest that regulating IGF-II bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of mi

  11. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma.

    PubMed

    Chen, Mei-Chuan; Huang, Hui-Hsuan; Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  12. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma

    PubMed Central

    Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)—a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound—demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  13. Sodium orthovanadate inhibits growth of human hepatocellular carcinoma cells in vitro and in an orthotopic model in vivo.

    PubMed

    Wu, Yaohua; Ma, Yong; Xu, Zhilin; Wang, Dawei; Zhao, Baolei; Pan, Huayang; Wang, Jizhou; Xu, Dongsheng; Zhao, Xiaoyang; Pan, Shangha; Liu, Lianxin; Dai, Wenjie; Jiang, Hongchi

    2014-08-28

    The transition metal vanadium is widely distributed in the environment and exhibits various biological and physiological effects in the human body. As a well known vanadium compound, sodium orthovanadate (SOV) has shown promising antineoplastic activity in several human cancers. However, the effects of SOV on liver cancer are still unknown. In this study, for the first time, we showed that SOV could effectively suppress proliferation, induce G2/M cell cycle arrest and apoptosis, and diminish the mitochondrial membrane potential (MMP) of HCC cells in vitro. In addition, our in vitro results were recapitulated in vivo, showing that SOV exhibited a dose-dependent inhibition of growth of human HCC in an orthotopic model, evidenced by the reduction in tumor size, proliferation index and microvessel density, and increase in cell apoptosis. Most important, we found that SOV could inhibit autophagy in HCC cells in vitro and in vivo, which plays a prodeath role. Thus, our findings suggest that SOV could effectively suppress the growth of human HCC through the regulations of proliferation, cell cycle, apoptosis and autophagy, and thus may act as a potential therapeutic agent in HCC treatment. PMID:24858025

  14. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells

    PubMed Central

    LIU, WEIWEI; XU, CHUANMING; WAN, HUIFANG; LIU, CHUNJU; WEN, CAN; LU, HONGFEI; WAN, FUSHENG

    2014-01-01

    MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor. PMID:24919811

  15. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma.

    PubMed

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban; Anders, Robert A; Xu, Yang

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. PMID:26482853

  16. Clinical Presentation, Risk Factors, and Treatment Modalities of Hepatocellular Carcinoma: A Single Tertiary Care Center Experience

    PubMed Central

    AlZunaitan, Mohammed; Al Ghobain, Mohammed; Al Muaikeel, Mohamed; Al Olayan, Ashwaq; Azzumeea, Fahad; AlAlwan, Abduljaleel; AlGhamdi, Hamdan

    2016-01-01

    Objective. To investigate the risk factors, clinical characteristics, treatment modalities, and outcomes in Saudi patients with HCC and propose points for early detection of the disease. Methods. Patients were stratified according to underlying risk factors for the development of HCC. Barcelona Clinic Liver Cancer (BCLC) was used for cancer staging. Treatment was classified into surgical resection/liver transplantation; locoregional ablation therapy; transarterial embolization; systemic chemotherapy; and best supportive care. Results. A total of 235 patients were included. Males had higher tumor size and incidence of portal vein thrombosis. Viral hepatitis was a risk factor in 75.7%. The most common BCLC stages were B (34.5%) and A (33.6%), and the most common radiological presentation was a single nodule of less than 5 cm. Metastases were present in 13.2%. Overall, 77 patients (32.8%) underwent a potentially curative treatment as the initial therapy. The most commonly utilized treatment modality was chemoembolization with 113 sessions in 71 patients. The overall median survival was 15.97 ± 27.18 months. Conclusion. HCC in Saudi Arabia is associated with high prevalence of HCV. Potentially curative therapies were underutilized in our patients. Cancer stage BCLC-B was the most frequent (34.5%) followed by BCLC-A (33.6%). The overall median survival was shorter than other studies. PMID:27525001

  17. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    SciTech Connect

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  18. Presentation of hepatocellular antigens

    PubMed Central

    Grakoui, Arash; Crispe, Ian Nicholas

    2016-01-01

    The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology. PMID:26924525

  19. Factors determining long-term outcomes of hepatocellular carcinoma within the Milan criteria: liver transplantation versus locoregional therapy

    PubMed Central

    Kim, Jung Hee; Sinn, Dong Hyun; Gwak, Geum-Youn; Choi, Gyu-Seong; Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Kim, Ki Yeon; Kim, Kyunga; Paik, Yong-Han; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon

    2016-01-01

    Abstract Patients with hepatocellular carcinoma (HCC) satisfying the Milan criteria are candidates for liver transplantation (LT), but locoregional therapies could be another options for them. A total of 1859 treatment-naïve HCC patients fulfilling the Milan criteria were analyzed. Survival tree analysis was performed to generate survival nodes with similar survival risks in 1729 non-LT group, and compared with the survival of 130 patients who received LT. Among patients who did not receive LT, survival tree analysis classified patients into 6 nodes according to Child-Pugh (CP) score, serum alphafetoprotein (AFP) levels, tumor size, and age, with different mortality risks (5-year survival rate of 87.3%, 77.5%, 65.8%, 64.7%, 44.0%, and 28.7% for nodes 1–6, respectively; P < 0.001). The overall survival of patients in nodes 1 (CP score 5 with AFP levels <5 ng/mL) and 2 (CP score 5 with maximal tumor size <2.5 cm) were comparable with that of patients who received LT (both P > 0.05), but the survival rates of patients in nodes 3 to 6 were worse than that of LT (P < 0.05 for all). In each survival node, survival differed slightly according to initial treatment modality for patients who did not receive LT. For patients who received LT, tumor stage at the time of LT was associated with long-term outcome. Certain groups of non-LT patients showed survival rates that were similar to the survival rates of LT patients. CP score, AFP levels, tumor size, and age were baseline factors that can help estimate the long-term outcomes of non-LT treatment. In addition, tumor stage at the time of LT and specific initial treatment modality in non-LT patients affected the long-term outcomes. These factors can help estimate the long-term outcomes of HCC patients diagnosed within the Milan criteria. PMID:27583916

  20. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    PubMed

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  1. Inhibition of enterovirus 71 entry by transcription factor XBP1

    SciTech Connect

    Jheng, Jia-Rong; Lin, Chiou-Yan; Horng, Jim-Tong; Lau, Kean Seng

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  2. Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53.

    PubMed

    Rogalska, Aneta; Sliwinska, Agnieszka; Kasznicki, Jacek; Drzewoski, Jozef; Marczak, Agnieszka

    2016-01-01

    Type 2 diabetes mellitus patients are at increased risk of many forms of malignancies, especially of the pancreas, colon and hepatocellular cancer. Unfortunately, little is known of the possible interaction between antidiabetic drugs and anticancer agents. The present study investigates the influence of metformin (MET) and sitagliptin (SITA) on the in vitro anticancer activity of the microtubule depolymerization inhibitor agent epothilone A (EpoA). Hepatocellular liver carcinoma cell line (HepG2) viability and apoptosis were determined by the MTT test and by double staining with PO-PRO-1 and 7-aminoactinomycin D, respectively, after treatment with EpoA, metformin or sitagliptin. The levels of nuclear factor NF-κB and p53 were evaluated in the presence and absence of inhibitors. While EpoA and MET inhibited HepG2 cell proliferation, SITA did not. EpoA and SITA induced higher p53 levels than MET. All tested drugs increased the level of NF-κB. Only MET enhanced the proapoptotic effect of EpoA. The EpoA+MET combination evoked the highest cytotoxic effect on HepG2 cells and led to apoptosis independent of p53, decreasing the level of NF-κB. These findings support the link between NF-κB and p53 in the modulation of apoptotic effects in HepG2 cells treated by EpoA. Our studies indicate that the combination of EpoA and MET applied in subtoxic doses has a stronger cytotoxic effect on liver cancer cells than each of the compounds alone. The therapeutic advantages of the combination of EpoA with MET may be valuable in the treatment of patients with diabetes mellitus type 2 (T2DM) and liver cancer. PMID:27039825

  3. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions

    PubMed Central

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  4. miR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1

    PubMed Central

    Wang, Congren; Wang, Xuejin; Su, Zijian; Fei, Hongjiang; Liu, Xiaoyu; Pan, Qunxiong

    2015-01-01

    MicroRNA (miRNA)-25 is a small non-coding RNA that has been implicated in the tumorigenesis of many cancers, but little is known on the role of miR-25 in HCC metastasis. We hereby found that miR-25 was significantly upregulated in clinical HCC tissues compared with normal liver tissues. We also revealed that miR-25 dramatically stimulates HCC cell growth and activates the epithelial-mesenchymal transition (EMT). MiR-25 is activated by the WNT/β-catenin signaling pathway, and exerts its pro-metastatic function by directly inhibiting the Rho GDP dissociation inhibitor alpha (RhoGDI1). Downregulation of RhoGDI1 enhances expression of Snail, thereby promoting EMT. MiR-25 levels are positively correlated with β-catenin expression, whereas negatively correlated with the level of RhoGDI1 in HCC. Our findings provide new insights into the role of miR-25 in HCC metastasis, and implicate the potential application of miR-25 in HCC therapy. PMID:26460549

  5. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  6. Epigenetic modulation of insulin-like growth factor-II overexpression by hepatitis B virus X protein in hepatocellular carcinoma

    PubMed Central

    Liu, Xu You; Tang, Shao Hui; Wu, Sheng Lan; Luo, Yu Hong; Cao, Ming Rong; Zhou, Hong Ke; Jiang, Xiang Wu; Shu, Jian Chang; Bie, Cai Qun; Huang, Si Min; Zheng, Zhan Hong; Gao, Fei

    2015-01-01

    Hepatitis B virus X protein (HBx) is involved in the pathogenesis of hepatocellular carcinoma (HCC). Overexpression of the transcripts from the P3 and P4 promoters of the insulin-like growth factor-II (IGF-II) gene is observed in HCC. The present study investigated the involvement of HBx in IGF-II overexpression and its epigenetic regulation. Firstly, the effects of HBx on P3 and P4 mRNA expression, the methylation status of the P3 and P4 promoters, and MBD2 expression were analyzed in human HCC cells and HCC samples. Next, interaction between HBx and MBD2 or CBP/p300 was assessed by co-immunoprecipitation, and HBx-mediated binding of MBD2 and CBP/p300 to the P3 and P4 promoters and the acetylation of the corresponding histones H3 and H4 were evaluated by quantitative chromatin immunoprecipitation. Finally, using siRNA knockdown, we investigated the roles of MBD2 and CBP/p300 in IGF-II overexpression and its epigenetic regulation. Our results showed that HBx promotes IGF-II expression via inducing the hypomethylation of the P3 and P4 promoters, and that HBx increases MBD2 expression, directly interacts with MBD2 and CBP/p300, and elevates their recruitment to the hypomethylated P3 and P4 promoters with increased acetylation levels of the corresponding histones H3 and H4. Further results showed that endogenous MBD2 and CBP/p300 are necessary for HBx-induced IGF-II overexpression and that CBP/p300 presence and CBP/p300-mediated acetylation of histones H3 and H4 are partially required for MBD2 binding and its demethylase activity. These data suggest that HBx induces MBD2-HBx-CBP/p300 complex formation via interaction with MBD2 and CBP/p300, which contributes to the hypomethylation and transcriptional activation of the IGF-II-P3 and P4 promoters and that CBP/p300-mediated acetylation of histones H3 and H4 may be a rate-limiting step for the hypomethylation and activation of these two promoters. This study provides an alternative mechanism for understanding the

  7. Soluble Vascular Endothelial Growth Factor Receptor-2 as a Predictive Factor for Progression of Illness in Chronic Liver Diseases and Hepatocellular Carcinoma.

    PubMed

    Ratnasari, Neneng; Nurdjanah, Siti; Sadewa, Ahmad Hamim; Hakimi, Mohammad; Yano, Yoshihiko

    2015-01-01

    Angiogenesis is generally induced in the process of necro-inflammation and regeneration in chronic liver diseases (CLD). Whereas VEGF is a major humoral factor in relation to neo-vascularization, the receptor, VEGFR-2, is located in hepatocytes and sinusoid endothelial cells. The aim in this study is to investigate the significance of soluble form of VEGFR-2 (sVEGFR-2) in various CLDs. A cross sectional study was conducted from 2010 to 2013 at Dr. Sardjito Hospital Yogyakarta, Indonesia. 149 patients with chronic hepatitis (CH), liver cirrhosis (LC) or hepatocellular carcinoma (HCC) were enrolled in this study. sVEGFR-2 serum was examined using Quantikine®HS kit human immunoassay. Data were analyses by STATA (P value <0.05). The median of sVEGFR-2 was decreased according to the disease progression (LC: 7014.95 pg/mL; CH: 8805.15 pg/mL; healthy subject: 9785.2 pg/mL). However, sVEGFR-2 in HCC (8043.73 pg/mL) was significantly higher than that in LC (P= 0.0059). Based on AUROC analyses, the clinical cut-off point of sVEGFR-2 with >80% sensitivity was used (CH-LC ≤7236.7, LC-HCC ≥7215). The odds ratio (OR) LC to HCC was 5.87 and CH to LC was 4.63. The significant correlations were showed significantly between sVEGFR-2 with MELD and ALT in LC, and with APRI and FIB-4 in CH. In conclusion, the serum sVEGFR-2 could be used as a predictive factor progressing CH to LC, but not HCC. PMID:27323788

  8. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma

    PubMed Central

    WU, YAN-HUI; AI, XI; LIU, FU-YAO; LIANG, HUI-FANG; ZHANG, BI-XIANG; CHEN, XIAO-PING

    2016-01-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC. PMID:26648552

  9. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives.

    PubMed

    Shafreen, Raja Mohamed Beema; Raja Mohamed, Beema Shafreen; Muthamil, Subramanian; Subramanian, Muthamil; Pandian, Shunmugiah Karutha; Shunmugiah, Karutha Pandian

    2014-08-01

    Candida albicans is an important opportunistic fungal pathogen, responsible for biofilm associated infections in immunocompromised patients. The aim of the present study was to investigate the antibiofilm properties of novel levofloxacin derivatives on C. albicans biofilms. The levofloxacin derivatives at their Biofilm Inhibitory Concentrations (BIC) were able to inhibit the biofilms of C. albicans, the yeast-to-hyphal transition and were also able to disrupt their mature biofilms. Furthermore, Real-time PCR analysis showed that the expression of ergosterol biosynthesis pathway gene (ERG11) and the efflux pump-encoding genes (CDR1 and MDR1) was decreased upon treatment with the levofloxacin derivatives. The total ergosterol content quantified using UV spectrophotomer showed decrease in ergosterol in the presence of levofloxacin derivatives. Overall, levofloxacin derivatives (6a, 6c and 7d) are capable of inhibiting C. albicans virulence factors. Therefore, these compounds with potential therapeutic implications can be used as new strategy to treat biofilm-related candidal infections. PMID:24723295

  10. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom.

    PubMed

    Kong, Yi; Shao, Yu; Chen, Hao; Ming, Xin; Wang, Jin-Bin; Li, Zhi-Yu; Wei, Ji-Fu

    2013-01-01

    Centipedes have been used as traditional medicine for thousands of years in China. Centipede venoms consist of many biochemical peptides and proteins. Factor Xa (FXa) is a serine endopeptidase that plays the key role in blood coagulation, and has been used as a new target for anti-thrombotic drug development. A novel FXa inhibitor, a natural peptide with the sequence of Thr-Asn-Gly-Tyr-Thr (TNGYT), was isolated from the venom of Scolopendra subspinipes mutilans using a combination of size-exclusion and reverse-phase chromatography. The molecular weight of the TNGYT peptide was 554.3 Da measured by electrospray ionization mass spectrometry. The amino acid sequence of TNGYT was determined by Edman degradation. TNGYT inhibited the activity of FXa in a dose-dependent manner with an IC50 value of 41.14 mg/ml. It prolonged the partial thromboplastin time and prothrombin time in both in vitro and ex vivo assays. It also significantly prolonged whole blood clotting time and bleeding time in mice. This is the first report that an FXa inhibiting peptide was isolated from centipedes venom. PMID:24273471

  11. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway.

    PubMed

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  12. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway

    PubMed Central

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0–15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5–5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  13. p27{sup Kip1} inhibits tissue factor expression

    SciTech Connect

    Breitenstein, Alexander; Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C.

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  14. Inhibition of expression of monocyte interleukin-1 by inhibitors of Hageman factor (factor XII).

    PubMed

    Ratnoff, O D; Voytus, J A; Toossi, Z

    1995-02-01

    In an earlier study, activated species of Hageman factor (factor XII) induced elaboration of interleukin-1 by human monocytes. These observations did not address whether Hageman factor participated in endotoxin-induced release of interleukin-1. To examine this question, the release of interleukin-1 by endotoxin-stimulated human mononuclear cells was measured in the presence of popcorn inhibitor, a specific inhibitor of Hageman factor. In the experiments herein described, popcorn inhibitor sharply decreased the release of interleukin-1 by human mononuclear cells that were incubated with endotoxin. This observation suggests that Hageman factor may play a role in the elaboration of interleukin-1 by human mononuclear cells. Conforming with this view, the addition of antiserum directed against Hageman factor inhibited the release of interleukin-1 from endotoxin-stimulated mononuclear cells. PMID:7844472

  15. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    NASA Astrophysics Data System (ADS)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  16. Epidermal growth factor receptor inhibition in metastatic anal cancer.

    PubMed

    Rogers, Jane E; Ohinata, Aki; Silva, Ninoska N; Mehdizadeh, Amir; Eng, Cathy

    2016-09-01

    Metastatic squamous cell carcinoma (SCCA) anal cancer is relatively rare. With limited data, cisplatin plus 5-fluorouracil has traditionally been utilized in the first-line setting. Treatment beyond front-line cisplatin progression is not well defined. Epidermal growth factor receptor (EGFR) is highly overexpressed in SCCA anal cancer and EGFR inhibition may represent a potential treatment target for this population in need. Our case series evaluated metastatic SCCA anal cancer patients who received an EGFR monoclonal antibody as second-line or third-line therapy. Data collected consisted of demographics, previous treatment, metastatic disease sites, localized therapy received, regimen received, first radiographic result, progression-free survival, and overall survival. A total of 17 patients were included, with most (76%) patients receiving an EGFR monoclonal antibody in the second-line setting. Common regimens identified combined cetuximab or panitumumab with a fluoropyrimidine plus platinum (35%), carboplatin plus paclitaxel (29%), or cisplatin plus vinorelbine (18%). Thirty-five percent of patients achieved a response and 24% had stable disease. The overall median progression-free survival and overall survival were 7.3 and 24.7 months, respectively. Compared with our large retrospective study in the front-line metastatic anal cancer setting, our study suggests that anti-EGFR therapy in combination with certain chemotherapy derived additional benefit in the refractory setting. In the metastatic setting, there is a need to discover effective therapies. We present a diverse metastatic SCCA anal cancer patient population who received cetuximab or panitumumab with chemotherapy in the second-line or third-line setting. Our case series strengthens the concept of EGFR inhibition in metastatic SCCA anal cancer. PMID:27272412

  17. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells

    PubMed Central

    Yan, Yihe; Liang, Zhihai; Du, Qiang; Yang, Muqing; Geller, David A.

    2016-01-01

    Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor gene induced by interferon-γ (IFNγ) and plays an important role in the cell death of hepatocellular carcinoma (HCC). HCC tumors evade death in part by downregulating IRF-1 expression, yet the molecular mechanisms accounting for IRF-1 suppression in HCC have not yet been characterized. Previous studies have shown that microRNA-23a (miR-23a) can suppress apoptosis by targeting IRF-1. Therefore, we hypothesized that miR-23a promotes HCC growth by down-regulating IRF-1. For the in vivo studies, 7 cases of resected HCC and adjacent liver samples were analyzed. For the in vitro studies, IRF-1 mRNA and protein were examined in HepG2 and Huh-7 HCC cells after IFNγ stimulation by real-time PCR and western blotting, respectively. To determine the role of miR-23a in regulating IRF-1, HepG2 cells were transfected with an miR-23a mimic or inhibitor, and IRF-1 expression was examined. Binding of miR-23a was assessed by cloning the 528-bp human IRF-1 3′-untranslated region (3′UTR) into luciferase reporter plasmid pMIR-IRF-1-3′UTR. The results showed that IRF-1 mRNA expression was down-regulated in the human HCC tumor tissues compared to that in the adjacent background liver tissues. IFNγ-induced IRF-1 protein was less in the HepG2 tumor cells compared to that in the primary human hepatocytes. miR-23a expression was inversely correlated with IRF-1, and addition of the miR-23a inhibitor increased basal IRF-1 mRNA and protein. Likewise, the miR-23a mimic downregulated IFNγ-induced IRF-1 protein expression, while the miR-23a inhibitor increased IRF-1. Furthermore, the miR-23a mimic repressed IRF-1-3′UTR reporter activity, while the miR-23a inhibitor increased the reporter activity. These results demonstrated that IRF-1 expression is downregulated in human HCC tumors compared to that noted in the background liver. miR-23a downregulates the expression of IRF-1 in HCC cells, and the IRF-1 3′UTR has an miR-23a

  18. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells.

    PubMed

    Yan, Yihe; Liang, Zhihai; Du, Qiang; Yang, Muqing; Geller, David A

    2016-08-01

    Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor gene induced by interferon-γ (IFNγ) and plays an important role in the cell death of hepatocellular carcinoma (HCC). HCC tumors evade death in part by downregulating IRF-1 expression, yet the molecular mechanisms accounting for IRF-1 suppression in HCC have not yet been characterized. Previous studies have shown that microRNA-23a (miR-23a) can suppress apoptosis by targeting IRF-1. Therefore, we hypothesized that miR-23a promotes HCC growth by downregulating IRF-1. For the in vivo studies, 7 cases of resected HCC and adjacent liver samples were analyzed. For the in vitro studies, IRF-1 mRNA and protein were examined in HepG2 and Huh-7 HCC cells after IFNγ stimulation by real-time PCR and western blotting, respectively. To determine the role of miR-23a in regulating IRF-1, HepG2 cells were transfected with an miR-23a mimic or inhibitor, and IRF-1 expression was examined. Binding of miR-23a was assessed by cloning the 528-bp human IRF-1 3'-untranslated region (3'UTR) into luciferase reporter plasmid pMIR-IRF-1-3'UTR. The results showed that IRF-1 mRNA expression was downregulated in the human HCC tumor tissues compared to that in the adjacent background liver tissues. IFNγ-induced IRF-1 protein was less in the HepG2 tumor cells compared to that in the primary human hepatocytes. miR-23a expression was inversely correlated with IRF-1, and addition of the miR-23a inhibitor increased basal IRF-1 mRNA and protein. Likewise, the miR-23a mimic downregulated IFNγ-induced IRF-1 protein expression, while the miR-23a inhibitor increased IRF-1. Furthermore, the miR-23a mimic repressed IRF-1-3'UTR reporter activity, while the miR-23a inhibitor increased the reporter activity. These results demonstrated that IRF-1 expression is downregulated in human HCC tumors compared to that noted in the background liver. miR-23a downregulates the expression of IRF-1 in HCC cells, and the IRF-1 3'UTR has an miR‑23a binding

  19. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. PMID:25526895

  20. Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*

    PubMed Central

    Singleton, Rachelle S.; Trudgian, David C.; Fischer, Roman; Kessler, Benedikt M.; Ratcliffe, Peter J.; Cockman, Matthew E.

    2011-01-01

    The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower Km value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate. PMID:21808058

  1. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  2. Hepatocellular carcinoma.

    PubMed

    Buendia, Marie-Annick; Neuveut, Christine

    2015-02-01

    The hepatitis B virus (HBV) is a widespread human pathogen that causes liver inflammation, cirrhosis, and hepatocellular carcinoma (HCC). Recent sequencing technologies have refined our knowledge of the genomic landscape and pathogenesis of HCC, but the mechanisms by which HBV exerts its oncogenic role remain controversial. In a prevailing view, inflammation, liver damage, and regeneration may foster the accumulation of genetic and epigenetic defects leading to cancer onset. However, a more direct and specific contribution of the virus is supported by clinical and biological observations. Among genetically heterogeneous HCCs, HBV-related tumors display high genomic instability, which may be attributed to the ability of HBV to integrate its DNA into the host cell genome, provoking chromosomal alterations and insertional mutagenesis of cancer genes. The viral transactivator HBx may also participate in transformation by deregulating diverse cellular machineries. A better understanding of the complex mechanisms linking HBV to HCC will improve prevention and treatment strategies. PMID:25646384

  3. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma

    PubMed Central

    Zhang, Weijian; Zhou, Lina; Yin, Peiyuan; Wang, Jinbing; Lu, Xin; Wang, Xiaomei; Chen, Jianguo; Lin, Xiaohui; Xu, Guowang

    2015-01-01

    Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease development and drug treatment and reveal the nature of biological processes at metabolic level. To extract important information in a systematic time dimension rather than at isolated time points, a weighted method based on the means and variations along the time points was proposed and first applied to previously published rat model data. The method was subsequently extended and applied to prospective metabolomics data analysis of hepatocellular carcinoma (HCC). Permutation was employed for noise filtering and false discovery rate (FDR) was used for parameter optimization during the feature selection. Long-term elevated serum bile acids were identified as risk factors for HCC development. PMID:25757957

  4. Atypical β-Catenin Activated Child Hepatocellular Tumor

    PubMed Central

    Unlu, Havva Akmaz; Karakus, Esra; Yazal Erdem, Arzu; Yakut, Zeynep Ilerisoy

    2015-01-01

    Hepatocellular adenomas are a benign, focal, hepatic neoplasm that have been divided into four subtypes according to the genetic and pathological features. The β-catenin activated subtype accounts for 10-15% of all hepatocellular adenomas and specific magnetic resonance imaging features have been defined for different hepatocellular adenomas subtypes. The current study aimed to report the magnetic resonance imaging features of a well differentiated hepatocellular carcinoma that developed on the basis of β-catenin activated hepatocellular adenomas in a child. In this case, atypical diffuse steatosis was determined in the lesion. In the literature, diffuse steatosis, which is defined as a feature of the hepatocyte nuclear factor-1α-inactivated hepatocellular adenomas subtype, has not been previously reported in any β-catenin activated hepatocellular adenomas case. Interlacing magnetic resonance imaging findings between subtypes show that there are still many mysteries about this topic and larger studies are warranted. PMID:26157702

  5. Atypical β-Catenin Activated Child Hepatocellular Tumor.

    PubMed

    Turan, Aynur; Unlu, Havva Akmaz; Karakus, Esra; Yazal Erdem, Arzu; Yakut, Zeynep Ilerisoy

    2015-06-01

    Hepatocellular adenomas are a benign, focal, hepatic neoplasm that have been divided into four subtypes according to the genetic and pathological features. The β-catenin activated subtype accounts for 10-15% of all hepatocellular adenomas and specific magnetic resonance imaging features have been defined for different hepatocellular adenomas subtypes. The current study aimed to report the magnetic resonance imaging features of a well differentiated hepatocellular carcinoma that developed on the basis of β-catenin activated hepatocellular adenomas in a child. In this case, atypical diffuse steatosis was determined in the lesion. In the literature, diffuse steatosis, which is defined as a feature of the hepatocyte nuclear factor-1α-inactivated hepatocellular adenomas subtype, has not been previously reported in any β-catenin activated hepatocellular adenomas case. Interlacing magnetic resonance imaging findings between subtypes show that there are still many mysteries about this topic and larger studies are warranted. PMID:26157702

  6. Hepatitis D and hepatocellular carcinoma

    PubMed Central

    Abbas, Zaigham; Abbas, Minaam; Abbas, Sarim; Shazi, Lubna

    2015-01-01

    Hepatitis D virus (HDV) is a defective circular shape single stranded HDV RNA virus with two types of viral proteins, small and large hepatitis D antigens, surrounded by hepatitis B surface antigen. Superinfection with HDV in chronic hepatitis B is associated with a more threatening form of liver disease leading to rapid progression to cirrhosis. In spite of some controversy in the epidemiological studies, HDV infection does increase the risk of hepatocellular carcinoma (HCC) compared to hepatitis B virus (HBV) monoinfection. Hepatic decompensation, rather than development of HCC, is the first usual clinical endpoint during the course of HDV infection. Oxidative stress as a result of severe necroinflammation may progress to HCC. The large hepatitis D antigen is a regulator of various cellular functions and an activator of signal transducer and activator of transcription (STAT)3 and the nuclear factor kappa B pathway. Another proposed epigenetic mechanism by which HCC may form is the aberrant silencing of tumor suppressor genes by DNA Methyltransferases. HDV antigens have also been associated with increased histone H3 acetylation of the clusterin promoter. This enhances the expression of clusterin in infected cells, increasing cell survival potential. Any contribution of HBV DNA integration with chromosomes of infected hepatocytes is not clear at this stage. The targeted inhibition of STAT3 and cyclophilin, and augmentation of peroxisome proliferator-activated receptor γ have a potential therapeutic role in HCC. PMID:25914778

  7. Liver cancer - hepatocellular carcinoma

    MedlinePlus

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. Hepatocellular ...

  8. Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinases (MMPs) in Lewis Tumor-Bearing Mice

    PubMed Central

    Huang, Tse-Hung; Chiu, Yi-Han; Chan, Yi-Lin; Chiu, Ya-Huang; Wang, Hang; Huang, Kuo-Chin; Li, Tsung-Lin; Hsu, Kuang-Hung; Wu, Chang-Jer

    2015-01-01

    Fucoidan, a heparin-like sulfated polysaccharide, is rich in brown algae. It has a wide assortment of protective activities against cancer, for example, induction of hepatocellular carcinoma senescence, induction of human breast and colon carcinoma apoptosis, and impediment of lung cancer cells migration and invasion. However, the anti-metastatic mechanism that fucoidan exploits remains elusive. In this report, we explored the effects of fucoidan on cachectic symptoms, tumor development, lung carcinoma cell spreading and proliferation, as well as expression of metastasis-associated proteins in the Lewis lung carcinoma (LLC) cells-inoculated mice model. We discovered that administration of fucoidan has prophylactic effects on mitigation of cachectic body weight loss and improvement of lung masses in tumor-inoculated mice. These desired effects are attributed to inhibition of LLC spreading and proliferation in lung tissues. Fucoidan also down-regulates expression of matrix metalloproteinases (MMPs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and vascular endothelial growth factor (VEGF). Moreover, the tumor-bearing mice supplemented with fucoidan indeed benefit from an ensemble of the chemo-phylacticity. The fact is that fucoidan significantly decreases viability, migration, invasion, and MMPs activities of LLC cells. In summary, fucoidan is suitable to act as a chemo-preventative agent for minimizing cachectic symptoms as well as inhibiting lung carcinoma metastasis through down-regulating metastatic factors VEGF and MMPs. PMID:25854641

  9. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile

    PubMed Central

    Al-Horani, Rami A.; Karuturi, Rajesh; Lee, Michael; Afosah, Daniel K.

    2016-01-01

    Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants. PMID:27467511

  10. Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model

    PubMed Central

    Iwamoto, Hideki; Nakamura, Toru; Koga, Hironori; Izaguirre-Carbonell, Jesus; Kamisuki, Shinji; Sugawara, Fumio; Abe, Mitsuhiko; Iwabata, Kazuki; Ikezono, Yu; Sakaue, Takahiko; Masuda, Atsutaka; Yano, Hirohisa; Ohta, Keisuke; Nakano, Masahito; Shimose, Shigeo; Shirono, Tomotake; Torimura, Takuji

    2015-01-01

    “Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC. PMID:27119112

  11. Survivin in survival of hepatocellular carcinoma.

    PubMed

    Su, Changqing

    2016-09-01

    Survivin is an anti-apoptotic protein belonging to the inhibitor of apoptosis protein (IAP) family. It is involved in the regulation of important physiological and pathological processes in cells and functions to inhibit cell apoptosis and promote cell proliferation. Normally and terminally differentiated tissues are nearly negative for survivin. In contrast, survivin is highly expressed in most human tumor tissues, including hepatocellular carcinoma (HCC). The abnormal overexpression of survivin is closely related to the malignant biological behaviors of tumors. During the development and progression of HCC, the high level of survivin expression promotes cancer cell proliferation, inhibits cancer cell apoptosis, induces tumor stromal angiogenesis, reduces the sensitivity of cancer cells to radiotherapy and chemotherapy, and ultimately affects the prognosis of patients with HCC. Survivin expression is regulated by a large number of factors. The latest discovery indicated that the transcription factor octamer-binding transcription factor 4 (OCT4) enhances the expression of survivin though cyclin D1 (CCND1), which, in part, accounts for tumor cell proliferation, recurrence and metastasis. Survivin plays key roles in HCC, which renders it an ideal target for the treatment of HCC. The present article reviews the research progress on the relationship between survivin and HCC and on the HCC treatment strategies targeting survivin. PMID:26118774

  12. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma

    PubMed Central

    Pivonello, Claudia; Negri, Mariarosaria; De Martino, Maria Cristina; Napolitano, Maria; de Angelis, Cristina; Provvisiero, Donatella Paola; Cuomo, Gaia; Auriemma, Renata Simona; Simeoli, Chiara; Izzo, Francesco; Colao, Annamaria; Hofland, Leo J.; Pivonello, Rosario

    2016-01-01

    Deregulation of mTOR and IGF pathways is frequent in hepatocellular carcinoma (HCC), thus mTOR and IGF1R represent suitable therapeutic targets in HCC. The aim of this study was to evaluate the effects of mTOR inhibitors (mTORi) and OSI-906, blocker of IGF1R/IR, on HCC cell proliferation, viability, migration and invasion, and alpha-fetoprotein (α-FP) secretion. In HepG2 and HuH-7 we evaluated, the expression of mTOR and IGF pathway components; the effects of Sirolimus, Everolimus, Temsirolimus and OSI-906 on cell proliferation; the effects of Sirolimus, OSI-906, and their combination, on cell secretion, proliferation, viability, cell cycle, apoptosis, invasion and migration. Moreover, intracellular mechanisms underlying these cell functions were evaluated in both cell lines. Our results show that HepG2 and HuH-7 present with the same mRNA expression profile with high levels of IGF2. OSI-906 inhibited cell proliferation at high concentration, while mTORi suppressed cell proliferation in a dose-time dependent manner in both cell lines. The co-treatment showed an additive inhibitory effect on cell proliferation and viability. This effect was not related to induction of apoptosis, but to G0/G1 phase block. Moreover, the co-treatment prevented the Sirolimus-induced AKT activation as escape mechanism. Both agents demonstrated to be differently effective in inhibiting α-FP secretion. Sirolimus, OSI-906, and their combination, blocked cell migration and invasion in HuH-7. These findings indicate that, co-targeting of IGF1R/IR and mTOR pathways could be a novel therapeutic approach in the management of HCC, in order to maximize antitumoral effect and to prevent the early development of resistance mechanisms. PMID:26756219

  13. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma.

    PubMed

    Pivonello, Claudia; Negri, Mariarosaria; De Martino, Maria Cristina; Napolitano, Maria; de Angelis, Cristina; Provvisiero, Donatella Paola; Cuomo, Gaia; Auriemma, Renata Simona; Simeoli, Chiara; Izzo, Francesco; Colao, Annamaria; Hofland, Leo J; Pivonello, Rosario

    2016-03-01

    Deregulation of mTOR and IGF pathways is frequent in hepatocellular carcinoma (HCC), thus mTOR and IGF1R represent suitable therapeutic targets in HCC. The aim of this study was to evaluate the effects of mTOR inhibitors (mTORi) and OSI-906, blocker of IGF1R/IR, on HCC cell proliferation, viability, migration and invasion, and alpha-fetoprotein (α-FP) secretion. In HepG2 and HuH-7 we evaluated, the expression of mTOR and IGF pathway components; the effects of Sirolimus, Everolimus, Temsirolimus and OSI-906 on cell proliferation; the effects of Sirolimus, OSI-906, and their combination, on cell secretion, proliferation, viability, cell cycle, apoptosis, invasion and migration. Moreover, intracellular mechanisms underlying these cell functions were evaluated in both cell lines. Our results show that HepG2 and HuH-7 present with the same mRNA expression profile with high levels of IGF2. OSI-906 inhibited cell proliferation at high concentration, while mTORi suppressed cell proliferation in a dose-time dependent manner in both cell lines. The co-treatment showed an additive inhibitory effect on cell proliferation and viability. This effect was not related to induction of apoptosis, but to G0/G1 phase block. Moreover, the co-treatment prevented the Sirolimus-induced AKT activation as escape mechanism. Both agents demonstrated to be differently effective in inhibiting α-FP secretion. Sirolimus, OSI-906, and their combination, blocked cell migration and invasion in HuH-7. These findings indicate that, co-targeting of IGF1R/IR and mTOR pathways could be a novel therapeutic approach in the management of HCC, in order to maximize antitumoral effect and to prevent the early development of resistance mechanisms. PMID:26756219

  14. Impact Factors for Microinvasion in Patients With Hepatocellular Carcinoma: Possible Application to the Definition of Clinical Tumor Volume

    SciTech Connect

    Wang Minhua; Ji Yuan; Zeng Zhaochong; Tang Zhaoyou; Fan Jia; Zhou Jian; Zeng Mengsu; Bi Aihong; Tan Yunshan

    2010-02-01

    Purpose: To evaluate the degree of invasion of hepatocellular carcinoma (HCC) microscopically that will provide a potential application for gross tumor volume to clinical tumor volume (GTV-to-CTV) expansion. Methods and Materials: From January 2002 to January 2006, 149 HCC patients were selected from those who had undergone surgical resection. Pathology slides and clinical data of all patients were reviewed, including platelet counts, serum alpha-fetoprotein (AFP) levels, degree of liver cirrhosis, tumor size, capsular status, portal vein invasion, TNM stage, and histologic tumor grade. The distance between the tumor margin (or fibrous capsule) and the invasive lesions was measured by senior pathologists. Results: Of these 149 patients, 79 (53.0%) patients presented with tumor microinvasion between 0.5 and 4 mm. This degree of microinvasion was inversely correlated with lower platelet counts and positively correlated with higher AFP levels, larger tumor sizes, portal vein invasion, and advanced TNM stage. Microinvasion distances less than or equal to 2 mm were found in 96.1% of patients (74/77) with tumor dimensions less than or equal to 5 cm and in 94.5% of patients (85/90) with AFP levels less than 400 mug/l. Conclusions: Based on our study findings, GTV-to-CTV expansions of 4 mm for HCC are required to conceal the gross tumor and any microscopic disease with 100% accuracy. Tumor size and AFP levels are the simplest indicators for determining the GTV-to-CTV distance for HCC.

  15. Nonalcoholic steatohepatitis and hepatocellular carcinoma: Brazilian survey

    PubMed Central

    Cotrim, Helma P.; Oliveira, Claudia P.; Coelho, Henrique Sérgio M.; Alvares-da-Silva, Mario R.; Nabuco, Leticia; Parise, Edison Roberto; Ivantes, Claúdia; Martinelli, Ana LC; Galizzi-Filho, João; Carrilho, Flair J.

    2016-01-01

    OBJECTIVE: The majority of cases of hepatocellular carcinoma have been reported in individuals with cirrhosis due to chronic viral hepatitis and alcoholism, but recently, the prevalence has become increasingly related to nonalcoholic steatohepatitis around the world. The study aimed to evaluate the clinical and histophatological characteristics of hepatocellular carcinoma in Brazilians' patients with nonalcoholic steatohepatitis at the present time. METHODS: Members of the Brazilian Society of Hepatology were invited to complete a survey regarding patients with hepatocellular carcinoma related to nonalcoholic steatohepatitis. Patients with a history of alcohol intake (>20 g/day) and other liver diseases were excluded. Hepatocellular carcinoma diagnosis was performed by liver biopsy or imaging methods according to the American Association for the Study of Liver Diseases' 2011 guidelines. RESULTS: The survey included 110 patients with a diagnosis of hepatocellular carcinoma and nonalcoholic fatty liver disease from nine hepatology units in six Brazilian states (Bahia, Minas Gerais, Rio de Janeiro, São Paulo, Paraná and Rio Grande do Sul). The mean age was 67±11 years old, and 65.5% were male. Obesity was observed in 52.7% of the cases; diabetes, in 73.6%; dyslipidemia, in 41.0%; arterial hypertension, in 60%; and metabolic syndrome, in 57.2%. Steatohepatitis without fibrosis was observed in 3.8% of cases; steatohepatitis with fibrosis (grades 1-3), in 27%; and cirrhosis, in 61.5%. Histological diagnosis of hepatocellular carcinoma was performed in 47.2% of the patients, with hepatocellular carcinoma without cirrhosis accounting for 7.7%. In total, 58 patients with cirrhosis had their diagnosis by ultrasound confirmed by computed tomography or magnetic resonance imaging. Of these, 55% had 1 nodule; 17%, 2 nodules; and 28%, ≥3 nodules. CONCLUSIONS: Nonalcoholic steatohepatitis is a relevant risk factor associated with hepatocellular carcinoma in patients with and

  16. Hepatocellular carcinoma.

    PubMed

    Edwards, J T; Macdonald, G A

    2000-05-01

    The incidence of hepatocellular carcinoma (HCC) appears to be declining in Taiwan and potentially in other high-prevalence areas as a consequence of vaccination for hepatitis B virus (HBV). However, there is evidence that the incidence of HCC is increasing in North America and Europe. This appears to be related to the increasing prevalence and duration of hepatitis C virus (HCV) infection in these countries. There is also growing evidence to support an increase in the risk of HCC in patients with HCV who are coinfected with occult HBV (patients who have lost HBV surface antigen but still have detectable HBV DNA either in blood or liver). Occult HBV infection in patients with HCV may be more common than previously thought, and HCC that occurs in this setting appears to have a worse prognosis. There is continuing interest in the effect of interferon therapy on the incidence of HCC in patients with HCV. Several studies from Japan have shown a benefit in patients without cirrhosis, although there are a number of potentially confounding variables that may partly explain these results. Prospective randomized studies are needed to investigate this important question. The molecular biology of HCC and the events of malignant transformation in the liver continue to be areas of intense study. Recently, there has been considerable interest in telomeres, the repeat units on the ends of chromosomes, and the enzyme that maintains these, telomerase. Telomeres shorten with each cell division and can be used to determine the number of divisions a cell has undergone. Eventually they reach a critical length, with further loss resulting in cellular senescence. Telomerase restores telomere length and may help malignant cells escape senescence. Nearly all HCCs have telomerase activity and assessments of telomeres and telomerase may be clinically useful. PMID:17023886

  17. Histopathology of hepatocellular carcinoma

    PubMed Central

    Schlageter, Manuel; Terracciano, Luigi Maria; D’Angelo, Salvatore; Sorrentino, Paolo

    2014-01-01

    Hepatocellular carcinoma (HCC) is currently the sixth most common type of cancer with a high mortality rate and an increasing incidence worldwide. Its etiology is usually linked to environmental, dietary or life-style factors. HCC most commonly arises in a cirrhotic liver but interestingly an increasing proportion of HCCs develop in the non-fibrotic or minimal fibrotic liver and a shift in the underlying etiology can be observed. Although this process is yet to be completely understood, this changing scenario also has impact on the material seen by pathologists, presenting them with new diagnostic dilemmas. Histopathologic criteria for diagnosing classical, progressed HCC are well established and known, but with an increase in detection of small and early HCCs due to routine screening programs, the diagnosis of these small lesions in core needle biopsies poses a difficult challenge. These lesions can be far more difficult to distinguish from one another than progressed HCC, which is usually a clear cut hematoxylin and eosin diagnosis. Furthermore lesions thought to derive from progenitor cells have recently been reclassified in the WHO. This review summarizes recent developments and tries to put new HCC biomarkers in context with the WHOs reclassification. Furthermore it also addresses the group of tumors known as combined hepatocellular-cholangiocellular carcinomas. PMID:25473149

  18. A comparison of the risk factors of intrahepatic recurrence, early recurrencen, and multiple recurrences after resection for single nodular hepatocellular carcinoma

    PubMed Central

    An, Hyun Joon; Shin, Woo Young; Ahn, Seung-Ik

    2015-01-01

    Backgrounds/Aims Intrahepatic recurrence is one of the most important causes of compromised prognosis after surgical resection of hepatocellular carcinoma (HCC). This retrospective study was designed to identify and compare the risks of recurrence, early recurrence and multiple recurrences in a single patient population. Methods A series of 92 consecutive patients, who received resection for single nodular HCC at our institute from January 2007 to December 2013, were enrolled in this study. The patients were divided into recurrent and non-recurrent groups; the recurrent group was further divided into subgroups by applying two criteria: early and late recurrence (with a cutoff of 18 months), and single and multiple (≥2) recurrence. The potential risk factors were compared using univariate and multivariate analyses. The subgroup analysis was performed to determine the effects of different cut-off values on the analysis. Results 41 recurrences (44.6%) occurred during a mean follow-up of 42.4 months. The Child-Pugh score, and the portal vein invasion were found to be independent risk factors of recurrence, but differentiation was the only independent risk factor of early recurrence. The serum alpha-fetoprotein, tumor size, tumor necrosis, and hemorrhage were found to be the risk factors of multiple recurrences according to the univariate analysis, but lacked significance according to the multivariate analysis. When the cutoffs for early and multiple recurrences were changed to ≤10 months and >3 nodules, respectively, different risk factors were identified. Conclusions Our results implicated that different factors can predict the recurrence, timing, and multiplicity of an HCC recurrence. Further studies should be conducted to prove the complex relationships between tumor burden, invasiveness, and underlying liver cirrhosis for initial tumors, and the timing and multiplicity of recurrent HCC. PMID:26379729

  19. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling

    PubMed Central

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis. PMID:27398151

  20. Early Risk Factors and Developmental Pathways to Chronic High Inhibition and Social Anxiety Disorder in Adolescence

    PubMed Central

    Essex, Marilyn J.; Klein, Marjorie H.; Slattery, Marcia J.; Goldsmith, H. Hill; Kalin, Ned H.

    2009-01-01

    Objective Evidence suggests that chronic high levels of behavioral inhibition are a precursor of social anxiety disorder (SAD). This study identified the early risk factors for and developmental pathways to chronic high inhibition among school-age children and its association with SAD by adolescence. Method A community sample of 238 children was followed from birth to Grade 9. Mothers, children, and teachers reported on children's behavioral inhibition from Grades 1 to 9. Lifetime history of psychiatric disorders was available for the subset of 60 (25%) children who participated in an intensive laboratory assessment at Grade 9. Four early risk factors were assessed: female gender; exposure to maternal stress during the infancy and preschool periods and at child age 4.5 years; early manifestation of behavioral inhibition, and elevated afternoon salivary cortisol levels. Results All four risk factors predicted higher and more chronic inhibition from Grade 1 to Grade 9, and together, defined two developmental pathways. The first pathway in female children was partially mediated by early evidence of behavioral inhibition and elevated cortisol levels at age 4.5 years. The second pathway began with exposure to early maternal stress and was also partially mediated by childhood cortisol levels. By Grade 9, chronic high inhibition was associated with a lifetime history of SAD. Conclusions Chronic high levels of behavioral inhibition are associated with SAD by adolescence. The identification of two developmental pathways suggests the potential importance of considering both sets of risk factors in developing preventive interventions for SAD. PMID:19917594

  1. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    PubMed Central

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  2. The collagen triple helix repeat containing 1 facilitates hepatitis B virus-associated hepatocellular carcinoma progression by regulating multiple cellular factors and signal cascades.

    PubMed

    Zhang, Rui; Cao, Yanhua; Bai, Lan; Zhu, Chengliang; Li, Rui; He, Hui; Liu, Yingle; Wu, Kailang; Liu, Fang; Wu, Jianguo

    2015-12-01

    Hepatitis B virus (HBV) infection is one of the major causes of acute and chronic liver diseases, fulminant hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HCC accounts for more than 85% of primary liver cancers and is the seventh most common cancer and the third leading cause of cancer-related deaths. However, the mechanism by which HBV induces HCC is largely unknown. Collagen triple helixes repeat containing 1 (CTHRC1) is a secreted protein and has characteristics of a circulating hormone with potentially broad implications for cell metabolism and physiology. CTHRC1 is associated with human cancers, but its effect on HCC is unknown. Here, we revealed that CTHRC1 expression is highly correlated with HCC progression in HBV-infected patients, and demonstrated that HBV stimulates CTHRC1 expression by activating nuclear factor-kappa B (NF-κB) and cAMP response element binding protein (CREB), through extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/c-JNK) pathway. In addition, CTHRC1 activates hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) through regulating phosphoinosmde-3-kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR) pathway. More interestingly, CTHRC1 enhances colony formation, migration, and invasion of hepatoma cells by regulating p53 and stimulating matrix metalloproteinase-9 (MMP-9) expression. In addition, knock-down of CTHRC1 results in the repression of HBV-associated carcinogenesis in nude mice. Thus, we revealed a novel mechanism by which HBV facilitates HCC development through activating the oncoprotein CTHRC1, which in turn enhances HBV-related HCC progression by stimulates colony formation, migration, and invasion of hepatoma cells through regulating multiple cellular factors and signal cascades. PMID:25263696

  3. Nutrition and Hepatocellular Cancer

    PubMed Central

    Schütte, Kerstin; Schulz, Christian; Malfertheiner, Peter

    2016-01-01

    Background Hepatocellular carcinoma (HCC) significantly contributes to the global burden of cancer. Liver cancer is the third most frequent cause of cancer-related death with HCC representing more than 90% of primary liver cancers. The majority of patients are not only affected by the malignant disease but do also suffer from chronic liver disease. Therefore, several factors impact on the prognosis of patients with HCC, including tumor-related factors, liver function and patient-related factors such as performance status and other comorbidities. The nutritional status is of high significance for the patients' performance status, the tolerance of tumor-targeting therapy and the prognosis of cancer of any type and is specially referenced in HCC. This overview is on current concepts on the role of nutritional factors in hepatocarcinogenesis and the role of nutrition in patients affected by HCC. Summary Nutritional status and composition of diet are relevant factors related to the risk of HCC. They also have an important role concerning the prognosis of patients with HCC. Besides risk factors, several macro- and micronutrient components have been found to be inversely correlated with the risk of HCC. To prevent disease progression to liver cirrhosis or HCC in patients with nonalcoholic steatohepatitis, it is crucial to optimize the metabolic state Key Message and Practical Implication Evidence from well-designed prospective interventional trials with the aim to reduce the HCC incidence or to prolong survival in patients with HCC based on nutritional modification is still to be generated. PMID:27403413

  4. Risk factors for hepatocellular carcinoma may impair the performance of biomarkers: a comparison of AFP, DCP, and AFP-L3.

    PubMed

    Volk, Michael L; Hernandez, Jose C; Su, Grace L; Lok, Anna S; Marrero, Jorge A

    2007-01-01

    Current surveillance strategies for hepatocellular carcinoma (HCC) are applied uniformly in patients with cirrhosis, regardless of their cancer risk. The aim of this study was to compare the performance characteristics of the biomarkers alpha-fetoprotein (AFP), des-gamma carboxyprothrombin (DCP), and lectin-bound AFP (AFP-L3) in the diagnosis of HCC, and to determine the effect of risk factors for HCC on test performance. Eighty-four patients with HCC and 169 patients with cirrhosis were enrolled and their serum analyzed for total AFP, AFP-L3 and DCP. Receiver-operating characteristic (ROC) curves were constructed to determine the performance characteristics. DCP was significantly better than total AFP or AFP-L3 in differentiating HCC from cirrhosis, with a sensitivity of 86% and specificity of 93%. When subjects were divided into two groups by their risk for HCC, all 3 markers had a lower sensitivity and area under the ROC curve in the high-risk group compared to the low-risk group. In conclusion, DCP has the best performance characteristics of all 3 serum markers for the diagnosis of HCC. Serum biomarkers may be less sensitive and specific in the highest risk patients. PMID:17522429

  5. Poisson indicator and Fano factor for probing dynamic disorder in single-molecule enzyme inhibition kinetics.

    PubMed

    Chaudhury, Srabanti

    2014-09-01

    We consider a generic stochastic model to describe the kinetics of single-molecule enzyme inhibition reactions in which the turnover events correspond to conversion of substrate into a product by a single enzyme molecule in the presence of an inhibitor. We observe that slow fluctuations between the active and inhibited state of the enzyme or the enzyme substrate complex can induce dynamic disorder, which is manifested in the measurement of the Poisson indicator and the Fano factor as functions of substrate concentrations for different inhibition reactions. For a single enzyme molecule inhibited by the product, we derive a single-molecule Michaelis-Menten equation for the reaction rate, which shows a dependence on the substrate concentration similar to the ensemble enzymatic catalysis rate as obtained from bulk experimental results. The measurement of Fano factor is shown to be able to discriminate reactions following different inhibition mechanisms and also extract kinetic rates. PMID:25122511

  6. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  7. Effects of interactions between environmental factors and KIF1B genetic variants on the risk of hepatocellular carcinoma in a Chinese cohort

    PubMed Central

    Chen, Jun-Hu; Wang, Yan-Yan; Lv, Wei-Biao; Gan, Yu; Chang, Wei; Tian, Na-Na; Huang, Xiao-Hui; Liu, Li; Yu, Xin-Fa; Chen, Si-Dong

    2016-01-01

    AIM: To examine the effect of the potential interaction between KIF1B variants (rs17401966 and rs3748578) and environmental factors on the risk of hepatocellular carcinoma (HCC) in a high-risk region in China. METHODS: Three hundred and six patients with HCC and 306 hospital-based control participants residing in the Shunde region of Guangdong Province, China were enrolled. Clinical characteristics were collected by reviewing the complete medical histories from the patient archives, and epidemiological data were collected using a questionnaire and clinical examination. Two single nucleotide polymorphisms (SNPs) of KIF1B (rs17401966 and rs3748578) were chosen for the current study. All subjects were genotyped using a TaqMan real-time polymerase chain reaction. Multiplicative and additive logistic regression models were used to evaluate various gene-environment interactions. RESULTS: Smoking, frequent consumption of raw freshwater fish, hepatitis B virus (HBV) infection, and a family history of HCC were important risk factors for HCC in this population. Chronic infection with HBV was the most important environmental risk factor for HCC [odds ratio (OR) = 12.02; 95% confidence interval (95%CI): 6.02-24.00]. No significant association was found between the KIF1B variants alone and the risk of HCC. Nevertheless, a significant additive effect modification was observed between rs17401966 and alcohol consumption (P for additive interaction = 0.0382). Compared with non-drinkers carrying either the AG or GG genotype of rs17401966, individuals classified as alcohol consumers with the AA genotype of rs17401966 had a significantly increased risk of HCC (OR = 2.36; 95%CI: 1.49-3.74). CONCLUSION: The gene-environment interaction between the KIF1B rs17401966 variant and alcohol consumption may contribute to the development of HCC in Chinese individuals. PMID:27122668

  8. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike; Dietrich, Cornelia

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  9. Psychological Factors that Promote and Inhibit Pathological Gambling

    ERIC Educational Resources Information Center

    Morasco, Benjamin J.; Weinstock, Jeremiah; Ledgerwood, David M.; Petry, Nancy M.

    2007-01-01

    This paper describes qualitative data regarding psychological factors that may affect gambling behavior among treatment-seeking pathological gamblers. Participants (n = 84) diagnosed with pathological gambling were treated in a clinical trial examining the efficacy of cognitive behavioral therapy (CBT). Qualitative data were collected from…

  10. Behavioral Inhibition as a Risk Factor for the Development of Childhood Anxiety Disorders: A Longitudinal Study.

    PubMed

    Muris, Peter; van Brakel, Anna M L; Arntz, Arnoud; Schouten, Erik

    2011-04-01

    This longitudinal study examined the additive and interactive effects of behavioral inhibition and a wide range of other vulnerability factors in the development of anxiety problems in youths. A sample of 261 children, aged 5 to 8 years, 124 behaviorally inhibited and 137 control children, were followed during a 3-year period. Assessments took place on three occasions to measure children's level of behavioral inhibition, anxiety disorder symptoms, other psychopathological symptoms, and a number of other vulnerability factors such as insecure attachment, negative parenting styles, adverse life events, and parental anxiety. Results obtained with Structural Equation Modeling indicated that behavioral inhibition primarily acted as a specific risk factor for the development of social anxiety symptoms. Furthermore, the longitudinal model showed additive as well as interactive effects for various vulnerability factors on the development of anxiety symptoms. That is, main effects of anxious rearing and parental trait anxiety were found, whereas behavioral inhibition and attachment had an interactive effect on anxiety symptomatology. Moreover, behavioral inhibition itself was also influenced by some of the vulnerability factors. These results provide support for dynamic, multifactorial models for the etiology of child anxiety problems. PMID:21475710

  11. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43

    PubMed Central

    Cho, Yuri; Yoon, Jung-Hwan; Yoo, Jeong-ju; Lee, Minjong; Lee, Dong Hyeon; Cho, Eun Ju; Lee, Jeong-Hoon; Yu, Su Jong; Kim, Yoon Jun; Kim, Chung Yong

    2015-01-01

    Fucoidan is a traditional Chinese medicine suggested to possess anti-tumor effects. In this study the anti-metastatic effects of fucoidan were investigated in vitro in human hepatocellular carcinoma (HCC) cells (Huh-7 and SNU-761) under normoxic and hypoxic conditions and in vivo using a distant liver metastasis model involving injection of MH134 cells into spleen via the portal vein. Its ability to protect hepatocytes against bile acid (BA)-induced apoptosis was investigated in primary hepatocytes. Fucoidan was found to suppress the invasion of HCC cells through up-regulation of p42/44 MAPK-dependent NDRG-1/CAP43 and partly, under normoxic conditions, through up-regulation of p42/44 MAPK-dependent VMP-1 expression. It also significantly decreased liver metastasis in vivo. As regards its hepatoprotective effect, fucoidan decreased BA-induced hepatocyte apoptosis as shown by the attenuation of caspase-8, and -7 cleavages and suppression of the mobilization of caspase-8 and Fas associated death domain (FADD) into the death-inducing signaling complex. In summary, fucoidan displays inhibitory effects on proliferation of HCC cells and protective effects on hepatocytes. The results suggest fucoidan is a potent suppressor of tumor invasion with hepatoprotective effects. PMID:26713269

  12. Eukaryotic elongation factor-1α 2 knockdown inhibits hepatocarcinogenesis by suppressing PI3K/Akt/NF-κB signaling

    PubMed Central

    Qiu, Fu-Nan; Huang, Yi; Chen, Dun-Yan; Li, Feng; Wu, Yan-An; Wu, Wen-Bing; Huang, Xiao-Li

    2016-01-01

    AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms. METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot. RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion. CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling. PMID:27122673

  13. Changes in plasma vascular endothelial growth factor at 8 weeks after sorafenib administration as predictors of survival for advanced hepatocellular carcinoma

    PubMed Central

    Tsuchiya, Kaoru; Asahina, Yasuhiro; Matsuda, Shuya; Muraoka, Masaru; Nakata, Toru; Suzuki, Yuichiro; Tamaki, Nobuharu; Yasui, Yutaka; Suzuki, Shoko; Hosokawa, Takanori; Nishimura, Takashi; Ueda, Ken; Kuzuya, Teiji; Nakanishi, Hiroyuki; Itakura, Jun; Takahashi, Yuka; Kurosaki, Masayuki; Enomoto, Nobuyuki; Izumi, Namiki

    2014-01-01

    Background A new predictive biomarker for determining prognosis in patients with hepatocellular carcinoma (HCC) who receive sorafenib is required, because achieving a reduction in tumor size with sorafenib is rare, even in patients who have a favorable prognosis. Vascular endothelial growth factor (VEGF) receptor is a sorafenib target. In the current study, the authors examined changes in plasma VEGF concentrations during sorafenib treatment and determined the clinical significance of VEGF as a prognostic indicator in patients with HCC. Methods Plasma VEGF concentrations were serially measured in 63 patients with advanced HCC before and during sorafenib treatment. A plasma VEGF concentration that decreased >5% from the pretreatment level at 8 weeks was defined as a “VEGF decrease.” An objective tumor response was determined using modified Response Evaluation Criteria in Solid Tumors 1 month after the initiation of therapy and every 3 months thereafter. Results Patients who had a VEGF decrease at week 8 (n = 14) had a longer median survival than those who did not have a VEGF decrease (n = 49; 30.9 months vs 14.4 months; P = .038). All patients who had a VEGF decrease survived for >6 months, and the patients who had both a VEGF decrease and an α-fetoprotein response (n = 6) survived during the observation period (median, 19.7 months; range, 6.5-31.0 months). In univariate analyses, a VEGF decrease, radiologic findings classified as progressive disease, and major vascular invasion were associated significantly with 1-year survival; and, in multivariate analysis, a VEGF decrease was identified as an independent factor associated significantly with survival. Conclusions A plasma VEGF concentration decrease at 8 weeks after starting sorafenib treatment may predict favorable overall survival in patients with advanced HCC. PMID:24122122

  14. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  15. Is exposure to Agent Orange a risk factor for hepatocellular cancer?—A single-center retrospective study in the U.S. veteran population

    PubMed Central

    Hazratjee, Nyla; Opris, Dan; Agrawal, Sangeeta; Markert, Ronald

    2016-01-01

    Background Approximately 15% to 35% of those with chronic hepatitis C (CHC) related cirrhosis will develop hepatocellular cancer (HCC). With this burden increasing across the globe, identification of risk factors for HCC has become imperative. Exposure to Agent Orange has been implicated as a possible risk factor for liver cancer in a study from the Republic of Korea. However, there has been no study in U.S. veterans with CHC and cirrhosis that has evaluated exposure to Agent Orange as a risk factor for HCC. We conducted a retrospective study of U.S. military veterans diagnosed with CHC and cirrhosis over a period of 14 years to evaluate potential risk factors for HCC including exposure to Agent Orange. Methods We retrospectively reviewed 390 patients with confirmed CHC-related cirrhosis between 2000 and 2013 and identified patients with HCC. We compared demographic, laboratory, and other clinical characteristics of patients with and without HCC. Results The mean age of the cohort was 51 years (SD =7.5), with the majority being male (98.5%). Seventy-nine of 390 (20.2%) patients developed HCC, diagnosed on average 8 (SD =4.8) years after diagnosis of CHC. Nearly half (49.4%) were Childs A, 40.5% were Childs B, and 10.1% were Childs C. HCC patients were more likely to be African American than non-HCC patients (40.5% vs. 25.4%, P=0.009) and to be addicted to alcohol (86.1% vs. 74.3%, P=0.027). A trend toward significance was seen in the HCC group for exposure to Agent Orange (16.5% vs. 10.0%, P=0.10) and smoking addiction (88.6% vs. 80.7%, P=0.10). Consequently, race, alcohol addiction, Agent Orange exposure, and smoking addiction were included in the multivariable logistic regression (MLR) analysis. Alcohol addiction [odds ratio (OR) =2.17; 95% confidence interval (CI), 1.07–4.43] and African American race (OR =2.07; 95% CI, 1.22–3.51) were found to be the only two definitive independent risk factors for HCC in our sample. Conclusions African American race and

  16. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    PubMed Central

    2009-01-01

    Background The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. Methods The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. Results IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. Conclusion These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC. PMID:19821965

  17. Social Support as a Factor Inhibiting Teenage Risk-Taking: Views of Students, Parents and Professionals

    ERIC Educational Resources Information Center

    Abbott-Chapman, Joan; Denholm, Carey; Wyld, Colin

    2008-01-01

    A large-scale study conducted in Tasmania, Australia, of teenage risk-taking across 26 potentially harmful risk activities has examined a range of factors that encourage or inhibit risk-taking. Among these factors, the degree of social and professional support the teenage students say they would access for personal, study or health problems has…

  18. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl

    2009-03-13

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  19. Identification of 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma.

    PubMed

    Kant, Rajni; Yen, Chia-Hung; Lu, Chung-Kuang; Lin, Ying-Chi; Li, Jih-Heng; Chen, Yi-Ming Arthur

    2016-01-01

    Glycine N-methyltransferase (GNMT) expression is vastly downregulated in hepatocellular carcinomas (HCC). High rates of GNMT knockout mice developed HCC, while overexpression of GNMT prevented aflatoxin-induced carcinogenicity and inhibited liver cancer cell proliferation. Therefore, in this study, we aimed for the identification of a GNMT inducer for HCC therapy. We established a GNMT promoter-driven luciferase reporter assay as a drug screening platform. Screening of 324 pure compounds and 480 crude extracts from Chinese medicinal herbs resulted in the identification of Paeonia lactiflora Pall (PL) extract and the active component 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (PGG) as a GNMT inducer. Purified PL extract and PGG induced GNMT mRNA and protein expression in Huh7 human hepatoma cells and in xenograft tumors. PGG and PL extract had potent anti-HCC effects both in vitro and in vivo. Furthermore, PGG treatment induced apoptosis in Huh7 cells. Moreover, PGG treatment sensitized Huh7 cells to sorafenib treatment. Therefore, these results indicated that identifying a GNMT enhancer using the GNMT promoter-based assay might be a useful approach to find drugs for HCC. These data also suggested that PGG has therapeutic potential for the treatment of HCC. PMID:27153064

  20. Identification of 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma

    PubMed Central

    Kant, Rajni; Yen, Chia-Hung; Lu, Chung-Kuang; Lin, Ying-Chi; Li, Jih-Heng; Chen, Yi-Ming Arthur

    2016-01-01

    Glycine N-methyltransferase (GNMT) expression is vastly downregulated in hepatocellular carcinomas (HCC). High rates of GNMT knockout mice developed HCC, while overexpression of GNMT prevented aflatoxin-induced carcinogenicity and inhibited liver cancer cell proliferation. Therefore, in this study, we aimed for the identification of a GNMT inducer for HCC therapy. We established a GNMT promoter-driven luciferase reporter assay as a drug screening platform. Screening of 324 pure compounds and 480 crude extracts from Chinese medicinal herbs resulted in the identification of Paeonia lactiflora Pall (PL) extract and the active component 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (PGG) as a GNMT inducer. Purified PL extract and PGG induced GNMT mRNA and protein expression in Huh7 human hepatoma cells and in xenograft tumors. PGG and PL extract had potent anti-HCC effects both in vitro and in vivo. Furthermore, PGG treatment induced apoptosis in Huh7 cells. Moreover, PGG treatment sensitized Huh7 cells to sorafenib treatment. Therefore, these results indicated that identifying a GNMT enhancer using the GNMT promoter-based assay might be a useful approach to find drugs for HCC. These data also suggested that PGG has therapeutic potential for the treatment of HCC. PMID:27153064

  1. Inhibition of doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by sorafenib--the role of extracellular signal-regulated kinase counteraction.

    PubMed

    Manov, Irena; Pollak, Yulia; Broneshter, Rinata; Iancu, Theodore C

    2011-09-01

    A multikinase inhibitor of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, sorafenib, is increasingly being used in the management of hepatocellular carcinoma, and its combination with conventional chemotherapeutics has stimulated particular interest. Although the combination of sorafenib with doxorubicin (DOX) is presently being investigated in a phase III randomized trial, little is known about the molecular mechanisms of their interaction. Because DOX causes cell death through upregulation of the MEK/ERK pathway, and sorafenib has an opposite influence on the same cascade, we hypothesized that co-treatment with these drugs may lead to an antagonistic effect. DOX treatment arrested proliferation and induced autophagic cell death in Hep3B cells, whereas apoptotic changes were not conspicuous. Sorafenib alone affected viability and caused massive mitochondrial degradation. However, when added together with DOX, sorafenib facilitated cell cycle progression, increased survival, and reduced autophagy. To evaluate the molecular mechanisms of this phenomenon, we examined the expression of ERK1/2, protein kinase B (Akt), and cyclin D1, as well as the members of Bcl-2 family. ERK1/2 activation induced by DOX was suppressed by sorafenib. Similarly, ERK targeting with the selective inhibitor U0126 impaired DOX-induced toxicity. Treatment with sorafenib, either alone or in combination with DOX, resulted in Akt activation. The role of sorafenib-induced degradation of cyclin D1 in the suppression of DOX efficiency is discussed. In conclusion, MEK/ERK counteraction, stimulation of survival via Akt and dysregulation of cyclin D1 could contribute to the escape from DOX-induced autophagy and thus promote cancer cell survival. The use of MEK/ERK inhibitors in combination with chemotherapeutics, intended to enhance anticancer efficacy, requires the consideration of possible antagonistic effects. PMID:21790999

  2. Expression of microRNA-195 is transactivated by Sp1 but inhibited by histone deacetylase 3 in hepatocellular carcinoma cells.

    PubMed

    Zhao, Na; Li, Siwen; Wang, Ruizhi; Xiao, Manhuan; Meng, Yu; Zeng, Chunxian; Fang, Jian-Hong; Yang, Jine; Zhuang, Shi-Mei

    2016-07-01

    MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcription start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells. PMID:27179445

  3. Paracrine Factors of Human Fetal MSCs Inhibit Liver Cancer Growth Through Reduced Activation of IGF-1R/PI3K/Akt Signaling

    PubMed Central

    Yulyana, Yulyana; Ho, Ivy A W; Sia, Kian Chuan; Newman, Jennifer P; Toh, Xin Yi; Endaya, Berwini B; Chan, Jerry K Y; Gnecchi, Massimiliano; Huynh, Hung; Chung, Alexander Y F; Lim, Kiat Hon; Leong, Hui Sun; Iyer, Narayanan Gopalakrishna; Hui, Kam Man; Lam, Paula Y P

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. The multikinase inhibitor sorafenib only demonstrated marginal improvement in overall survival for advanced disease prompted the search for alternative treatment options. Human mesenchymal stem cells (MSCs) have the ability to home to tumor cells. However, its functional roles on the tumor microenvironment remain controversial. Herein, we showed that conditioned media derived from human fetal MSC (CM-hfMSCs) expressed high level of the insulin growth factor binding proteins IGFBPs and can sequester free insulin-like growth factors (IGFs) to inhibit HCC cell proliferation. The inhibitory effect of IGFBPs on IGF signaling was further evident from the reduction of activated IGF-1R and PI3K/Akt, leading eventually to the induction of cell cycle arrest. We also demonstrated that CM-hfMSCs could enhance the therapeutic efficacy of sorafenib and sunitinib. To the best of our knowledge, this is the first report to show that CM-hfMSCs has a tumor-specific, antiproliferative effect that is not observed with normal human hepatocyte cells and patient-derived matched normal tissues. Our results thus suggest that CM-hfMSCs can provide a useful tool to design alternative/adjuvant treatment strategies for HCC, especially in related function to potentiate the effects of chemotherapeutic drugs. PMID:25619723

  4. Inhibition of thrombin and factor Xa by Fucus evanescens fucoidan and its modified analogs.

    PubMed

    Lapikova, E S; Drozd, N N; Tolstenkov, A S; Makarov, V A; Zvyagintseva, T N; Shevchenko, N M; Bakunina, I U; Besednova, N N; Kuznetsova, T A

    2008-09-01

    Specimens of fucoidan extracted from Fucus evanescens were purified from protein and polyphenols, deacetylated and depolymerized by fucoidanase for evaluation of their biological activity. Deacetylation did not modify the capacity of fucoidan to inhibit thrombin and factor Xa, while purification from protein and polyphenols reduced this capacity. Depolymerization of fucoidan increased its capacity to inhibit thrombin mainly through heparin cofactor II. All the studied specimens formed complexes with protamine sulfate. PMID:19240852

  5. Selective inhibition of the hypoxia-inducible factor prolyl hydroxylase PHD3 by Zn(II).

    PubMed

    Na, Yu-Ran; Woo, Dustin J; Choo, Hyunah; Chung, Hak Suk; Yang, Eun Gyeong

    2015-07-01

    We report herein that Zn(II) selectively inhibits the hypoxia-inducible factor prolyl hydroxylase PHD3 over PHD2, and does not compete with Fe(II). Independent of the oligomer formation induced by Zn(II), inhibition of the activity of PHD3 by Zn(II) involves Cys42 and Cys52 residues distantly located from the active site. PMID:26051901

  6. Epidermal growth factor receptor inhibition in lung cancer: status 2012.

    PubMed

    Hirsch, Fred R; Jänne, Pasi A; Eberhardt, Wilfried E; Cappuzzo, Federico; Thatcher, Nick; Pirker, Robert; Choy, Hak; Kim, Edward S; Paz-Ares, Luis; Gandara, David R; Wu, Yi-Long; Ahn, Myung-Ju; Mitsudomi, Tetsuya; Shepherd, Frances A; Mok, Tony S

    2013-03-01

    Lung cancer is the most common cause of cancer deaths. Most patients present with advanced-stage disease, and the prognosis is generally poor. However, with the understanding of lung cancer biology, and development of molecular targeted agents, there have been improvements in treatment outcomes for selected subsets of patients with non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have demonstrated significantly improved tumor responses and progression-free survival in subsets of patients with advanced NSCLC, particularly those with tumors harboring activating EGFR mutations. Testing for EGFR mutations is a standard procedure for identification of patients who will benefit from first-line EGFR TKIs. For patients with advanced NSCLC and no activating EGFR mutations (EGFR wild-type) or no other driving oncogenes such as ALK-gene rearrangement, chemotherapy is still the standard of care. A new generation of EGFR TKIs, targeting multiple receptors and with irreversible bindings to the receptors, are in clinical trials and have shown encouraging effects. Research on primary and acquired resistant mechanisms to EGFR TKIs are ongoing. Monoclonal antibodies (e.g. cetuximab), in combination with chemotherapy, have demonstrated improved outcomes, particularly for subsets of NSCLC patients, but further validations are needed. Novel monoclonal antibodies are combined with chemotherapy, and randomized comparative studies are ongoing. This review summarizes the current status of EGFR inhibitors in NSCLC in 2012 and some of the major challenges we are facing. PMID:23370315

  7. Advances in managing hepatocellular carcinoma.

    PubMed

    Reataza, Marielle; Imagawa, David K

    2014-06-01

    Multiple modalities for treatment of hepatocellular carcinoma are available, depending on tumor size and number. Surgical resection remains the gold standard, so long as the residual liver function reserve is sufficient. In patients with advanced cirrhosis, liver transplantation is the preferred option, as these patients may not have adequate hepatic reserve after resection. Salvage liver transplantation has also become an option for a select few patients who recur after surgical resection. Ablative techniques have been used for palliation as well as to either completely destroy the tumor, act as an adjunct to resection, or downstage the tumor to meet Milan criteria such that a patient may be a candidate for liver transplantation. Radiofrequency ablation, microwave ablation, chemoembolization, radioembolization, and irreversible electroporation have all been used in this capacity. Currently, sorafenib is the only US Food and Drug Administration-approved chemotherapeutic for hepatocellular carcinoma. The efficacy of sorafenib, in combination with other agents, transarterial chemoembolization, and surgical resection is currently being investigated. Sunitinib and brivanib, tyrosine kinase inhibitors, have failed as potential first- or second-line options for chemotherapy. Bevacizumab in combination with erlotinib is also currently being studied. Final analysis for ramucirumab and axitinib are pending. Tivantinib, a selective mesenchymal-epithelial transition factor (MET) inhibitor, is also undergoing clinical trials for efficacy in MET-high tumors. This review serves to emphasize the current and new technologies emerging in the treatment of hepatocellular carcinoma. PMID:24810646

  8. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  9. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization.

    PubMed

    Wu, Yao-Ming; Liu, Chiung-Hui; Huang, Miao-Juei; Lai, Hong-Shiee; Lee, Po-Huang; Hu, Rey-Heng; Huang, Min-Chuan

    2013-09-01

    Altered glycosylation is a hallmark of cancer. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates with advanced tumor stage, metastasis, and poor survival. Enforced expression of C1GALT1 was sufficient to enhance cell proliferation, whereas RNA interference-mediated silencing of C1GALT1 was sufficient to suppress cell proliferation in vitro and in vivo. Notably, C1GALT1 attenuation also suppressed hepatocyte growth factor (HGF)-mediated phosphorylation of the MET kinase in hepatocellular carcinoma cells, whereas enforced expression of C1GALT1 enhanced MET phosphorylation. MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. In support of these results, we found that the expression level of phospho-MET and C1GALT1 were associated in primary hepatocellular carcinoma tissues. Mechanistic investigations showed that MET was decorated with O-glycans, as revealed by binding to Vicia villosa agglutinin and peanut agglutinin. Moreover, C1GALT1 modified the O-glycosylation of MET, enhancing its HGF-induced dimerization and activation. Together, our results indicate that C1GALT1 overexpression in hepatocellular carcinoma activates HGF signaling via modulation of MET O-glycosylation and dimerization, providing new insights into how O-glycosylation drives hepatocellular carcinoma pathogenesis. PMID:23832667

  10. Cold-water extracts of Grifola frondosa and its purified active fraction inhibit hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Lin, Chia-Hung; Chang, Ching-Yao; Lee, Kuan-Rong; Lin, Hui-Ju; Lin, Wu-Chou; Chen, Ter-Hsin; Wan, Lei

    2016-07-01

    Mushrooms are used in traditional Chinese medicine to treat a variety of diseases. Grifola frondosa (GF) is an edible mushroom indigenous to many Asian countries with a large fruiting body characterized by overlapping caps. In particular, GF is known for its anti-tumor activity, which has been targeted by scientific and clinical research. This study aimed to investigate the effects of the cold-water extract of GF (GFW) and its active fraction (GFW-GF) on autophagy and apoptosis, and the underlying mechanisms in vitro and in vivo Our results revealed that GFW and GFW-GF inhibited phosphatidylinositol 3-kinase (PI3K) and stimulated c-Jun N-terminal kinase (JNK) pathways, thereby inducing autophagy. We also demonstrated that GFW and GFW-GF inhibited proliferation, induced cell cycle arrest, and apoptosis in Hep3B hepatoma cells. GFW and GFW-GF markedly arrested cells in S phase and promoted cleavage of caspase-3 and -9. In addition, GFW and GFW-GF decreased the expression levels of the anti-apoptotic proteins protein kinase B and extracellular signal-regulated kinase. We also found that GFW significantly inhibited tumor growth in nude mice implanted with Hep3B cells. Our work demonstrates that GF and its active fraction inhibit hepatoma growth by inducing autophagy and apoptosis. PMID:27013543

  11. Inhibition by CāINH of Hageman Factor Fragment Activation of Coagulation, Fibrinolysis, and Kinin Generation

    PubMed Central

    Schreiber, Alan D.; Kaplan, Allen P.; Austen, K. Frank

    1973-01-01

    Highly purified inhibitor of the first component of complement (CāINH) was shown to inhibit the capacity of active Hageman factor fragments to initiate kinin generation, fibrinolysis, and coagulation. The inhibition of prealbumin Hageman factor fragments observed was dependent upon the time of interaction of the fragments with CāINH and not to an effect upon kallikrein or plasmin generated. The inhibition of the coagulant activity of the intermediate sized Hageman factor fragment by CāINH was not due to an effect on PTA or other clotting factors. The inhibition by CāINH of both the prealbumin and intermediate sized Hageman factor fragments occurred in a dose response fashion. The CāINH did not appear to be consumed when the activity of the Hageman factor fragments was blocked, although the fragments themselves could no longer be recovered functionally or as a protein on alkaline disc gel electrophoretic analysis. These results suggest that the CāINH may have an enzymatic effect on the fragments or that an additional site on CāINH is involved in Cā inactivation. Images PMID:4703226

  12. Cytoplasmic and/or Nuclear Expression of β-Catenin Correlate with Poor Prognosis and Unfavorable Clinicopathological Factors in Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Chen, Jiang; Liu, Jinghua; Jin, Renan; Shen, Jiliang; Liang, Yuelong; Ma, Rui; Lin, Hui; Liang, Xiao; Yu, Hong; Cai, Xiujun

    2014-01-01

    Background The β-catenin is an important effector in WNT/β-catenin signaling pathway, which exerts a crucial role in the development and progression of hepatocellular carcinoma (HCC). Some researchers have suggested that the overexpression of β-catenin in cytoplasm and/or nucleus was closely correlated to metastasis, poor differentiation and malignant phenotype of HCC while some other researchers hold opposite point. So far, no consensus was obtained on the prognostic and clinicopathological significance of cytoplasmic/nuclear β-catenin overexpression for HCCs. Methods Systematic strategies were applied to search eligible studies in all available databases. Subgroup analyses, sensitivity analyses and multivariate analysis were performed. In this meta-analysis, we utilized either fixed- or random-effects model to calculate the pooled odds ratios (OR) and its 95% confidence intervals (CI). Results A total of 22 studies containing 2334 cases were enrolled in this meta-analysis. Pooled data suggested that accumulation of β-catenin in cytoplasm and/or nucleus significantly correlated with poor 1-, 3- and 5-year OS and RFS. Moreover, nuclear accumulation combined with cytoplasmic accumulation of β-catenin tended to be associated with dismal metastasis and vascular invasion while cytoplasmic or nuclear expression alone showed no significant effect. Besides, no significant association was observed between cytoplasmic and/or nuclear β-catenin expression and poor differentiation grade, advanced TNM stage, liver cirrhosis, tumor size, tumor encapsulation, AFP and etiologies. Additional subgroup analysis by origin suggested that the prognostic value and clinicopathological significance of cytoplasmic and/or nuclear β-catenin expression was more validated in Asian population. Multivariate analyses of factors showed that cytoplasmic and/or nuclear β-catenin expression, as well as TNM stage, metastasis and tumor size, was an independent risk factors for OS and RFS

  13. Expression of Cyclooxygenase-2 and Transforming Growth Factor-beta1 in HCV-Induced Chronic Liver Disease and Hepatocellular Carcinoma

    PubMed Central

    El-Bassiouny, Azza E.I.; Zoheiry, Mona M.K.; Nosseir, Mona M.F.; El-Ahwany, Eman G.; Ibrahim, Raafat A.; El-Bassiouni, Nora E.I.

    2007-01-01

    Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-beta1) were modulated in a variety of viral infections, but there is a paucity of data about their role in the pathologic process of cirrhosis and/or hepatocellular carcinoma (HCC) following chronic hepatitis C virus (HCV) infection. The material of the current study included 50 cases of chronic hepatitis C (CHC) without cirrhosis, 30 cases of CHC with cirrhosis, and 30 cases of HCC with HCV admitted to the Gastroenterology and Hepatology Department of Theodor Bilharz Research Institute, Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were included in the study as normal controls. Laboratory investigations, serologic markers for viral hepatitis, and serum alpha fetoprotein levels (alpha-FP) were done for all cases of the study. Immunohistochemistry using primary antibodies against both factors revealed weak to faint immunoreactivity to COX-2 and TGF-beta1 in normal hepatic tissue (< 30% and < 50% of the cells, respectively). COX-2 expression was upregulated in patients with CHC with and without cirrhosis, yet 80% of positively stained cirrhotic cases showed marked staining intensity. Higher COX-2 expression was observed in well-differentiated HCC cases (80%) with marked staining intensity (75%) compared with advanced HCC tumors (P < .001). TGF-beta1 was expressed in the hepatocytes of all cases of CHC with and without cirrhosis as well as in 67% of HCC cases. Extensive cytoplasmic expression was detected in 52%, 93.3%, and 46.6% of CHC patients without cirrhosis, patients with cirrhosis, and patients with HCC, respectively. A positive correlation was observed between hepatic expression of COX-2 and TGF-beta1 (r = 0.67, P < .05); however, no correlation was detected between the latter and grade of HCC differentiation (r = 0.33, P > .05). Conclusion These findings may suggest that TGF-beta1 plays a role in hepatic cell damage following HCV infection thus stressing

  14. Expression of Wilms' tumor suppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor 4 and hepatocellular function.

    PubMed

    Berasain, Carmen; Herrero, José-Ignacio; García-Trevijano, Elena R; Avila, Matías A; Esteban, Juan Ignacio; Mato, José M; Prieto, Jesús

    2003-07-01

    The Wilms' tumor suppressor WT1 is a transcriptional regulator present in the fetal but not in the mature liver. Its expression and functional role in liver diseases remains unexplored. In this study, we analyzed WT1 expression by reverse-transcription polymerase chain reaction (RT-PCR) and by immunohistochemistry in normal and diseased livers. In addition, we performed in vitro studies in isolated rat hepatocytes to investigate WT1 regulation and function. We detected WT1 messenger RNA (mRNA) in 18% of normal livers, 17% of chronic hepatitis with minimal fibrosis, 49% of chronic hepatitis with bridging fibrosis, and 71% of cirrhotic livers. In cirrhosis, WT1 immunoreactivity was localized to the nucleus of hepatocytes. WT1 mRNA abundance correlated inversely with prothrombin time (P =.04) and directly with serum bilirubin (P =.002) and with the MELD score (P =.001) of disease severity. In rats, WT1 expression was present in fetal hepatocytes and in the cirrhotic liver but not in normal hepatic tissue. In vitro studies showed that isolated primary hepatocytes express WT1 when stimulated with transforming growth factor beta (TGF-beta) or when the cells undergo dedifferentiation in culture. Moreover, we found that WT1 down-regulates hepatocyte nuclear factor 4 (HNF-4), a factor that is essential to maintain liver function and metabolic regulation in the mature organ. Hepatic expression of HNF-4 was impaired in advanced human cirrhosis and negatively correlated with WT1 mRNA levels (P =.001). In conclusion, we show that WT1 is induced by TGF-beta and down-regulates HNF-4 in liver cells. WT1 is reexpressed in the cirrhotic liver in relation to disease progression and may play a role in the development of hepatic insufficiency in cirrhosis. PMID:12829997

  15. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol.

    PubMed

    Wang, Won-Bo; Lai, Hsin-Chih; Hsueh, Po-Ren; Chiou, Robin Y-Y; Lin, Shwu-Bin; Liaw, Shwu-Jen

    2006-10-01

    Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a phytoalexin compound with anti-inflammatory and antioxidant activities. The effect of resveratrol on swarming and virulence factor expression of Proteus mirabilis, an important pathogen infecting the urinary tract, was determined on swarming agar plates with and without the compound. Bacteria harvested at different times were assayed for cell length and the production of flagella, haemolysin and urease. Resveratrol inhibited P. mirabilis swarming and virulence factor expression in a dose-dependent manner. Resveratrol significantly inhibited swarming at 15 microg ml(-1), and completely inhibited swarming at 60 microg ml(-1). Inhibition of swarming and virulence factor expression was mediated through RsbA, a His-containing phosphotransmitter of the bacterial two-component signalling system possibly involved in quorum sensing. Complementation of an rsbA-defective mutant with the rsbA gene restored its responsiveness to resveratrol. The compound also inhibited the ability of P. mirabilis to invade human urothelial cells. These findings suggest that resveratrol has potential to be developed as an antimicrobial agent against P. mirabilis infection. PMID:17005777

  16. Factors determining long-term outcomes of hepatocellular carcinoma within the Milan criteria: liver transplantation versus locoregional therapy: A retrospective cohort study.

    PubMed

    Kim, Jung Hee; Sinn, Dong Hyun; Gwak, Geum-Youn; Choi, Gyu-Seong; Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Kim, Ki Yeon; Kim, Kyunga; Paik, Yong-Han; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon

    2016-08-01

    Patients with hepatocellular carcinoma (HCC) satisfying the Milan criteria are candidates for liver transplantation (LT), but locoregional therapies could be another options for them.A total of 1859 treatment-naïve HCC patients fulfilling the Milan criteria were analyzed. Survival tree analysis was performed to generate survival nodes with similar survival risks in 1729 non-LT group, and compared with the survival of 130 patients who received LT.Among patients who did not receive LT, survival tree analysis classified patients into 6 nodes according to Child-Pugh (CP) score, serum alphafetoprotein (AFP) levels, tumor size, and age, with different mortality risks (5-year survival rate of 87.3%, 77.5%, 65.8%, 64.7%, 44.0%, and 28.7% for nodes 1-6, respectively; P < 0.001). The overall survival of patients in nodes 1 (CP score 5 with AFP levels <5 ng/mL) and 2 (CP score 5 with maximal tumor size <2.5 cm) were comparable with that of patients who received LT (both P > 0.05), but the survival rates of patients in nodes 3 to 6 were worse than that of LT (P < 0.05 for all). In each survival node, survival differed slightly according to initial treatment modality for patients who did not receive LT. For patients who received LT, tumor stage at the time of LT was associated with long-term outcome.Certain groups of non-LT patients showed survival rates that were similar to the survival rates of LT patients. CP score, AFP levels, tumor size, and age were baseline factors that can help estimate the long-term outcomes of non-LT treatment. In addition, tumor stage at the time of LT and specific initial treatment modality in non-LT patients affected the long-term outcomes. These factors can help estimate the long-term outcomes of HCC patients diagnosed within the Milan criteria. PMID:27583916

  17. Between School Factors and Teacher Factors: What Inhibits Malaysian Science Teachers from Using ICT?

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku

    2014-01-01

    Despite the Malaysian government's efforts to increase the use of ICT in school, teachers' uptake of the technology remains slow and dismal. In this study, teachers' perceptions of the barriers that inhibited their use of ICT in the science classroom were explored. One hundred and fifty-one (N = 151) science teachers from selected secondary…

  18. Liver cancer - hepatocellular carcinoma

    MedlinePlus

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. ...

  19. The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides.

    PubMed Central

    Longo, F M; Vu, T K; Mobley, W C

    1990-01-01

    Nerve growth factor (NGF)1 is a neurotrophic polypeptide that acts via specific receptors to promote the survival and growth of neurons. To delineate the NGF domain(s) responsible for eliciting biological activity, we synthesized small peptides corresponding to three regions in NGF that are hydrophilic and highly conserved. Several peptides from mouse NGF region 26-40 inhibited the neurite-promoting effect of NGF on sensory neurons in vitro. Inhibition was sequence-specific and could be overcome by increasing the concentration of NGF. Moreover, peptide actions were specific for NGF-mediated events in that they failed to block the neurotrophic activity of ciliary neuronotrophic factor (CNTF) or phorbol 12-myristate 13-acetate (PMA). In spite of the inhibition of NGF activity, peptides did not affect the binding of radiolabeled NGF. These studies define one region of NGF that may be required for neurotrophic activity. Images PMID:2100197

  20. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction.

    PubMed

    Beggs, Kevin M; McGreal, Steven R; McCarthy, Alex; Gunewardena, Sumedha; Lampe, Jed N; Lau, Christoper; Apte, Udayan

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. PMID:27153767

  1. The Kmif (Kveim-induced macrophage migration inhibition factor) test in sarcoidosis

    PubMed Central

    Williams, W. Jones; Pioli, E.; Jones, D. J.; Dighero, M.

    1972-01-01

    Circulating lymphocytes from 30 patients with sarcoidosis when stimulated in vitro with Kveim-induced macrophage migration factor, the Kmif test, produced a guinea-pig macrophage migration inhibition factor in 21 of 30 cases (70%). In those patients not on steroids the results showed a good correlation with the cutaneous Kveim test. One positive test was found in 16 normal subjects. Our results suggest that the Kmif test may prove a useful rapid alternative to the Kveim test. PMID:4675181

  2. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  3. Faculty as Mentors in Undergraduate Research, Scholarship, and Creative Work: Motivating and Inhibiting Factors

    ERIC Educational Resources Information Center

    Baker, Vicki L.; Pifer, Meghan J.; Lunsford, Laura G.; Greer, Jane; Ihas, Dijana

    2015-01-01

    In this study, we sought to contribute to research about the high-impact practice of undergraduate research from the understudied faculty perspective. We relied on focus group data from faculty members (N = 41) across five institutions to better understand the supporting and inhibiting factors that contribute to faculty members' engagement in…

  4. Interleukin-10 inhibits lipopolysaccharide-induced upregulation of tissue factor in canine peripheral blood monocytes.

    PubMed

    Ogasawara, Seigo; Stokol, Tracy

    2012-08-15

    The potentially fatal hemostatic disorder of disseminated intravascular coagulation (DIC) is initiated in bacterial sepsis by lipopolysaccharide (LPS)-induced tissue factor (TF) expression on monocytes. Interleukin-10 (IL-10) is a potent inhibitory cytokine that downregulates monocyte inflammatory and procoagulant responses. We hypothesized that canine recombinant IL-10 (rIL-10) would inhibit LPS-induced TF upregulation on canine monocytes in a dose-dependent manner. Canine peripheral blood mononuclear cells (PBMC), obtained by double-density gradient centrifugation, and monocytes, purified from PBMC by immunomagnetic bead separation with an anti-canine CD14 antibody (Ab), were stimulated in suspension with LPS (0.1-1000 ng/mL) for various times. Recombinant IL-10 (10-5000 pg/mL) was added with LPS or up to 2h later. Tissue factor procoagulant activity was measured by cleavage of a chromogenic substrate by activated Factor X generated by the TF-factor VII complex. We found that rIL-10, when given concurrently or 1h after LPS, strongly inhibited LPS-induced TF procoagulant activity in canine PBMC and monocytes. This inhibition was dose-dependent and blocked by an anti-canine IL-10 Ab. Our results indicate that rIL-10 effectively inhibits LPS-induced TF upregulation in canine monocytes and could potentially be useful in limiting the development of DIC in dogs with endotoxemia. PMID:22609246

  5. Motivating and Inhibiting Factors in Online Gambling Behaviour: A Grounded Theory Study

    ERIC Educational Resources Information Center

    McCormack, Abby; Griffiths, Mark D.

    2012-01-01

    To date, there has been very little empirical research examining why people gamble online or--just as importantly--why they do not gamble online. A grounded theory study examining the motivating and inhibiting factors in online gambling was carried out. The sample comprised 15 online gamblers, 14 offline gamblers, and 11 non-gamblers, and resulted…

  6. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma.

    PubMed

    Breitkreutz, I; Raab, M S; Vallet, S; Hideshima, T; Raje, N; Mitsiades, C; Chauhan, D; Okawa, Y; Munshi, N C; Richardson, P G; Anderson, K C

    2008-10-01

    Osteolytic bone disease in multiple myeloma (MM) is caused by enhanced osteoclast (OCL) activation and inhibition of osteoblast function. Lenalidomide and bortezomib have shown promising response rates in relapsed and newly diagnosed MM, and bortezomib has recently been reported to inhibit OCLs. We here investigated the effect of lenalidomide on OCL formation and osteoclastogenesis in comparison with bortezomib. Both drugs decreased alpha V beta 3-integrin, tartrate-resistant acid phosphatase-positive cells and bone resorption on dentin disks. In addition, both agents decreased receptor activator of nuclear factor-kappaB ligand (RANKL) secretion of bone marrow stromal cells (BMSCs) derived from MM patients. We identified PU.1 and pERK as major targets of lenalidomide, and nuclear factor of activated T cells of bortezomib, resulting in inhibition of osteoclastogenesis. Furthermore, downregulation of cathepsin K, essential for resorption of the bone collagen matrix, was observed. We demonstrated a significant decrease of growth and survival factors including macrophage inflammatory protein-alpha, B-cell activating factor and a proliferation-inducing ligand. Importantly, in serum from MM patients treated with lenalidomide, the essential bone-remodeling factor RANKL, as well as the RANKL/OPG ratio, were significantly reduced, whereas osteoprotegerin (OPG) was increased. We conclude that both agents specifically target key factors in osteoclastogenesis, and could directly affect the MM-OCL-BMSCs activation loop in osteolytic bone disease. PMID:18596740

  7. Efficient delivery of ursolic acid by poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo

    PubMed Central

    Zhang, Hao; Zheng, Donghui; Ding, Jing; Xu, Huae; Li, Xiaolin; Sun, Weihao

    2015-01-01

    Previous reports have shown that ursolic acid (UA), a pentacyclic triterpenoid derived from Catharanthus trichophyllus roots, could inhibit the growth of a series of cancer cells. However, the potential for clinical application of UA is greatly hampered by its poor solubility, whereas the hydrophobicity of UA renders it a promising model drug for nanosized delivery systems. In the current study, we loaded UA into amphiphilic poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles and performed physiochemical characterization as well as analysis of the releasing capacity. In vitro experiments indicated that UA-NPs inhibited the growth of liver cancer cells and induced cellular apoptosis more efficiently than did free UA. Moreover, UA-NPs significantly delayed tumor growth and localized to the tumor site when compared with the equivalent dose of UA. In addition, both Western blotting and immunohistochemistry suggested that the possible mechanism of the superior efficiency of UA-NPs is mediation by the regulation of apoptosis-related proteins. Therefore, UA-NPs show potential as a promising nanosized drug system for liver cancer therapy. PMID:25792825

  8. Chemoembolization for hepatocellular carcinoma.

    PubMed

    Lencioni, Riccardo

    2012-08-01

    Transcatheter arterial chemoembolization (TACE) is the standard of care for patients with preserved liver function and asymptomatic, noninvasive multinodular hepatocellular carcinoma (HCC) confined to the liver. However, the survival benefit of conventional TACE-including the administration of an anticancer agent-in-oil emulsion followed by embolic agents-reported in randomized controlled trials and meta-analyses was described as modest. Various strategies to improve outcomes for this patient group have become the subject of much ongoing clinical research. The introduction of embolic, drug-eluting beads (DEB) for transarterial administration has been shown to significantly reduce liver toxicity and systemic drug exposure compared to conventional regimens. The addition of molecular targeted drugs to the therapeutic armamentarium for HCC has prompted the design of clinical trials aimed at investigating the synergies between TACE and systemic treatments. Combining TACE with agents with anti-angiogenic properties represents a promising strategy, because TACE is thought to cause local hypoxia, resulting in a temporary increase in levels of vascular endothelial growth factor. Recently, a large phase II randomized, double-blind, placebo-controlled trial (the SPACE study) has shown that the concurrent administration of DEB-TACE and sorafenib has a manageable safety profile and has suggested that time to progression and time to vascular invasion or extrahepatic spread may be improved with respect to DEB-TACE alone. These data support the further evaluation of molecular targeted, systemically active agents in combination with DEB-TACE in a phase III setting. PMID:22846867

  9. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor.

    PubMed

    Mata, Miguel A; Satterly, Neal; Versteeg, Gijs A; Frantz, Doug; Wei, Shuguang; Williams, Noelle; Schmolke, Mirco; Peña-Llopis, Samuel; Brugarolas, James; Forst, Christian V; White, Michael A; García-Sastre, Adolfo; Roth, Michael G; Fontoura, Beatriz M A

    2011-10-01

    A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reversed NS1-mediated inhibition of host gene expression. A counterscreen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus (VSV). The mechanism of action occurs through activation of REDD1 expression and concomitant inhibition of mammalian target of rapamycin complex 1 (mTORC1) via TSC1-TSC2 complex. The antiviral activity of naphthalimides was abolished in REDD1(-/-) cells. Inhibition of REDD1 expression by viruses resulted in activation of the mTORC1 pathway. REDD1(-/-) cells prematurely upregulated viral proteins via mTORC1 activation and were permissive to virus replication. In contrast, cells conditionally expressing high concentrations of REDD1 downregulated the amount of viral protein. Thus, REDD1 is a new host defense factor, and chemical activation of REDD1 expression represents a potent antiviral intervention strategy. PMID:21909097

  10. Targeting Platelet-Derived Growth Factor Receptor β(+) Scaffold Formation Inhibits Choroidal Neovascularization.

    PubMed

    Strittmatter, Karin; Pomeroy, Hayley; Marneros, Alexander G

    2016-07-01

    Neovascular age-related macular degeneration is among the most common causes of irreversible blindness and manifests with choroidal neovascularization (CNV). Anti-vascular endothelial growth factor-A therapies are only partially effective and their chronic administration may impair functions of the choriocapillaris and retina. Thus, novel therapeutic targets are needed urgently. We have observed in a laser-induced model of CNV that a platelet-derived growth factor receptor β positive (PDGFRβ(+)) scaffold is formed before infiltration of neovessels into this scaffold to form CNV lesions, and that this scaffold limits the extent of neovascularization. Based on these observations we hypothesized that ablation of proliferating PDGFRβ(+) cells to prevent the formation of this scaffold might inhibit CNV growth and present a novel therapeutic approach for neovascular age-related macular degeneration. To test this hypothesis we targeted proliferating PDGFRβ(+) cells through independent distinct approaches after laser injury: i) by using an inducible genetic model to inhibit specifically proliferating PDGFRβ(+) cells, ii) by treating mice with a neutralizing anti-PDGFRβ antibody, iii) by administering an anti-PDGF-AB/BB aptamer, and iv) by using small chemical inhibitor approaches. The results show that therapeutic targeting of proliferating PDGFRβ(+) cells potently inhibits the formation of the pericyte-like scaffold, with concomitant attenuation of CNV. Moreover, we show that early inhibition of PDGFRβ(+) cell proliferation before neovessel formation is sufficient to inhibit scaffold formation and neovascularization. PMID:27338108

  11. Hepatocellular carcinoma and hepatitis B surface protein

    PubMed Central

    Li, Yong-Wei; Yang, Feng-Cai; Lu, Hui-Qiong; Zhang, Jiong-Shan

    2016-01-01

    The tumorigenesis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) has been widely studied. HBV envelope proteins are important for the structure and life cycle of HBV, and these proteins are useful for judging the natural disease course and guiding treatment. Truncated and mutated preS/S are produced by integrated viral sequences that are defective for replication. The preS/S mutants are considered “precursor lesions” of HCC. Different preS/S mutants induce various mechanisms of tumorigenesis, such as transactivation of transcription factors and an immune inflammatory response, thereby contributing to HCC. The preS2 mutants and type II “Ground Glass” hepatocytes represent novel biomarkers of HBV-associated HCC. The preS mutants may induce the unfolded protein response and endoplasmic reticulum stress-dependent and stress-independent pathways. Treatments to inhibit hepatitis B surface antigen (HBsAg) and damage secondary to HBsAg or the preS/S mutants include antivirals and antioxidants, such as silymarin, resveratrol, and glycyrrhizin acid. Methods for the prevention and treatment of HCC should be comprehensive. PMID:26877602

  12. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis

    PubMed Central

    Tian, J; Tang, Z Y; Ye, S L; Liu, Y K; Lin, Z Y; Chen, J; Xue, Q

    1999-01-01

    A new human hepatocellular carcinoma (HCC) cell line with a highly metastatic potential was established from subcutaneous xenograft of a metastatic model of human HCC in nude mice (LCI-D20) by means of alternating cell culture in vitro and growth in nude mice. The line, designated MHCC97, has been cultivated for 18 months and subcultured for more than 90 passages. The line was showed to be of human origin by karyotype analysis. The cells were either grown as compact colonies (in clusters) or as a monolayered sheet with about 31 h of population-doubling time, exhibited typical malignant epithelial in morphology and were positive for α-fetoprotein (AFP). Flow cytometric analysis of the cell DNA content showed an aneuploid pattern, and its index was 1.5 as compared to that of normal human peripheral blood lymphocytes. Karyotypic analyses of G- and C-banding techniques revealed that all cells presented chromosome abnormalities in number and structure. The number of cell line MHCC97 chromosome ranged from 59 to 65 with a modal number of 60 and 61. At least two common chromosome markers, i(1q) and der(4)t(4;?)(4pter→q35::?), were present in all cells, and deletion of Y chromosome also occurred in all cells. The subcutaneous and intrahepatic xenografts were formed and metastatic lesions in lungs were found after the cells were inoculated into nude mice. The rate of metastasis to lungs was 100% using orthotopic inoculation. Reverse transcription polymerase chain reaction products revealed positive expressions of integrin α5 and β1, urokinase type plasminogen activator receptor (uPAR), vascular endothelial growth factor and nm23-H1 mRNAs of cell line MHCC97. Immunostaining of c-Met, uPAR showed strongly positive in both subcutaneous xenografts and lung metastatic lesions; while positive in xenografts and negative in metastatic lesions for integrin α5, β1. E-cadherin and P53 was not expressed either in xenograft or in the metastatic lesions. PCR products of HBsAg and

  13. Inhibition of human factor VIIIa by anti-A2 subunit antibodies.

    PubMed Central

    Lollar, P; Parker, E T; Curtis, J E; Helgerson, S L; Hoyer, L W; Scott, M E; Scandella, D

    1994-01-01

    Human inhibitory alloantibodies and autoantibodies to Factor VIII (FVIII) are usually directed toward the A2 and/or C2 domains of the FVIII molecule. Anti-C2 antibodies block the binding of FVIII to phospholipid, but the mechanism of action of anti-A2 antibodies is not known. We investigated the properties of a patient autoantibody, RC, and a monoclonal antibody, 413, that bind to the region which contains the epitopes of all anti-A2 alloantibodies or autoantibodies studied to date. mAb 413 and RC were noncompetitive inhibitors of a model intrinsic Factor X activation complex (intrinsic FXase) consisting of Factor IXa, activated FVIII (FVIIIa), and synthetic phospholipid vesicles, since they decreased the Vmax of intrinsic FXase by > 95% at saturating concentrations without altering the Km. This indicates that RC and mAb 413 either block the binding of FVIIIa to FIXa or phospholipid or interfere with the catalytic function of fully assembled intrinsic FXase, but they do not inhibit the binding of the substrate Factor X. mAb 413 did not inhibit the increase in fluorescence anisotropy that results from the binding of Factor VIIIa to fluorescein-5-maleimidyl-D-phenylalanyl-prolyl-arginyl-FIXa (Fl-M-FPR-FIXa) on phospholipid vesicles in the absence of Factor X, indicating it does not inhibit assembly of intrinsic FXase. Addition of Factor X to Fl-M-FPR-FIXa, FVIIIa, and phospholipid vesicles produced a further increase in fluorescence anisotropy and a decrease in fluorescence intensity. This effect was blocked completely by mAb 413. We conclude that anti-A2 antibodies inhibit FVIIIa function by blocking the conversion of intrinsic FXase/FX complex to the transition state, rather than by interfering with formation of the ground state Michaelis complex. PMID:8200986

  14. Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy

    PubMed Central

    Moore, Claire E.J.; Wang, Xuemin; Xie, Jianling; Pickford, Jo; Barron, John; Regufe da Mota, Sergio; Versele, Matthias; Proud, Christopher G.

    2016-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K) inhibits the elongation stage of protein synthesis by phosphorylating its only known substrate, eEF2. eEF2K is tightly regulated by nutrient-sensitive signalling pathways. For example, it is inhibited by signalling through mammalian target of rapamycin complex 1 (mTORC1). It is therefore activated under conditions of nutrient deficiency. Here we show that inhibiting eEF2K or knocking down its expression renders cancer cells sensitive to death under nutrient-starved conditions, and that this is rescued by compounds that block protein synthesis. This implies that eEF2K protects nutrient-deprived cells by inhibiting protein synthesis. Cells in which signalling through mTORC1 is highly active are very sensitive to nutrient withdrawal. Inhibiting mTORC1 protects them. Our data reveal that eEF2K makes a substantial contribution to the cytoprotective effect of mTORC1 inhibition. eEF2K is also reported to promote another potentially cytoprotective process, autophagy. We have used several approaches to test whether inhibition or loss of eEF2K affects autophagy under a variety of conditions. We find no evidence that eEF2K is involved in the activation of autophagy in the cell types we have studied. We conclude that eEF2K protects cancer cells against nutrient starvation by inhibiting protein synthesis rather than by activating autophagy. PMID:26795954

  15. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions.

    PubMed

    Hanas, J S; Gunn, C G

    1996-03-01

    Transcription factor IIIA (TFIIIA), a cysteine-rich regulatory protein, is the prototype for the largest known superfamily of eukaryotic transcription factors. Members of the TFIIIA superfamily contain Cys2His2 zinc finger domains responsible for nucleic acid binding. Xenobiotic metal ions, which lack known biological function, were previously used as probes for the structure and function of steroid hormone receptors which contain Cys2Cys2 zinc finger domains. Structural alterations in cysteine-rich regulatory proteins by such ions in vivo might potentiate carcinogenesis and other disease processes. In the present study cadmium and other xenobiotic metal ions were used to probe the structure and function of TFIIIA. The specific interaction of TFIIIA with the internal control region (ICR) of the 5S RNA gene, as assayed by DNase I protection, was inhibited by Cd2+ ion concentrations of > or = 0.1 microM. Aluminum ions were also found to inhibit the TFIIIA-5S RNA gene interaction, albeit at higher concentrations (> or = 5 microM). Inhibition by either metal ion was not readily reversible. Other xenobiotic metal ions, such as mercury or cesium, were not found to be inhibitory under these conditions. None of these ions at the concentrations used in this study affected the ability of DNase I to digest DNA or restriction enzymes to specifically cleave DNA. Preincubation of TFIIIA bound to 5S RNA with either Cd2+ or Al3+ resulted in subsequent DNA binding upon dilution and RNA removal, whereas preincubation of free TFIIIA with the metal ions resulted in inhibition of subsequent DNA binding. Because 5S rRNA also binds the TFIIIA zinc finger domains, these results indicate that the 5S RNA bound to TFIIIA protects the protein from metal inhibition and implicates the zinc fingers in the inhibition mechanism. The nature of the footprint inhibition indicates that the N-terminal fingers of TFIIIA are affected by the metal ions. Cd2+ and Al3+ ions also inhibited the ability of

  16. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions.

    PubMed Central

    Hanas, J S; Gunn, C G

    1996-01-01

    Transcription factor IIIA (TFIIIA), a cysteine-rich regulatory protein, is the prototype for the largest known superfamily of eukaryotic transcription factors. Members of the TFIIIA superfamily contain Cys2His2 zinc finger domains responsible for nucleic acid binding. Xenobiotic metal ions, which lack known biological function, were previously used as probes for the structure and function of steroid hormone receptors which contain Cys2Cys2 zinc finger domains. Structural alterations in cysteine-rich regulatory proteins by such ions in vivo might potentiate carcinogenesis and other disease processes. In the present study cadmium and other xenobiotic metal ions were used to probe the structure and function of TFIIIA. The specific interaction of TFIIIA with the internal control region (ICR) of the 5S RNA gene, as assayed by DNase I protection, was inhibited by Cd2+ ion concentrations of > or = 0.1 microM. Aluminum ions were also found to inhibit the TFIIIA-5S RNA gene interaction, albeit at higher concentrations (> or = 5 microM). Inhibition by either metal ion was not readily reversible. Other xenobiotic metal ions, such as mercury or cesium, were not found to be inhibitory under these conditions. None of these ions at the concentrations used in this study affected the ability of DNase I to digest DNA or restriction enzymes to specifically cleave DNA. Preincubation of TFIIIA bound to 5S RNA with either Cd2+ or Al3+ resulted in subsequent DNA binding upon dilution and RNA removal, whereas preincubation of free TFIIIA with the metal ions resulted in inhibition of subsequent DNA binding. Because 5S rRNA also binds the TFIIIA zinc finger domains, these results indicate that the 5S RNA bound to TFIIIA protects the protein from metal inhibition and implicates the zinc fingers in the inhibition mechanism. The nature of the footprint inhibition indicates that the N-terminal fingers of TFIIIA are affected by the metal ions. Cd2+ and Al3+ ions also inhibited the ability of

  17. Inhibiting and facilitating factors to end a violent relationship: patterns of behavior among women in Spain.

    PubMed

    Ruiz-Pérez, Isabel; Rodriguez-Madrid, Nieves; Plazaola-Castaño, Juncal; Montero-Piñar, Isabel; Escribà-Agüir, Vicenta; Márquez-Herrera, Nayra; Sanz-Peregrín, Carlos; Nevot-Cordero, Adela

    2013-01-01

    The objective of this study are (a) to explore the factors, which facilitate or inhibit women's responses to intimate partner violence (IPV) and their ability to leave a violent relationship; (b) to identify patterns of behavior in abused women based on their perception of the violence and the actions they take to find help or a solution to the problems derived from IPV. Semistructured interviews were carried out. The critical path is defined as the sequence of decisions and actions taken by affected women to address the violence they experienced. Based on this concept, we identified several factors that affect women's responses to violence, and categorized them into inhibiting and facilitating factors. We also identified three patterns of behavior: the first one is theoretically as the ideal critical path, whereas in the third pattern the process is less like the ideal critical path. PMID:24364130

  18. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  19. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  20. Atrial natriuretic factor (ANF) inhibits thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B. )

    1990-01-01

    Recently, thyroid follicular cells were shown to exhibit atrial natriuretic factor (ANF)-like immunoreactivity and high affinity ANF receptors. In this study, we therefore examined the effects of synthetic rat ANF{sub 1-28} on basal and stimulated thyroid hormone secretion in the mouse, according to the McKenzie technique. Iodine deficient mice were pretreated with {sup 125}I and thyroxine. ANF (3 nmol/animal) was found to inhibit the increase in blood radioiodine levels that was induced by TSH or vasoactive intestinal polypeptide (VIP). Furthermore, ANF and norepinephrine additively inhibited the TSH-induced increase in blood radioiodine levels. It is concluded that ANF inhibits thyroid hormone secretion, which, therefore, might be locally regulated by intrathyroidal ANF.

  1. Reduced serum inhibition of platelet-activating factor activity in preeclampsia.

    PubMed

    Benedetto, C; Massobrio, M; Bertini, E; Abbondanza, M; Enrieu, N; Tetta, C

    1989-01-01

    We determined in normal nonpregnant (group 1) women, normal pregnant (group 2) women, and patients with preeclampsia (group 3) the serum inhibition of platelet-activating factor activity, the presence of detectable amounts of platelet-activating factor in the blood, and platelet responsiveness in vitro to platelet-activating factor, and to other agonists (adenosine diphosphate, collagen, and ristocetin), and prostacyclin (prostaglandin I2). In patients with preeclampsia (group 3) the serum inhibition of platelet-activating factor activity was significantly lower than that in groups 1 and 2. However, no detectable amounts of platelet-activating factor were observed. The mean values of platelet aggregation induced by platelet-activating factor, adenosine diphosphate, collagen and ristocetin, and the prostaglandin I2-inhibitory concentration of 50% which is inversely correlated with platelet sensitivity to prostaglandin I2, were not significantly different between groups 2 and 3. It is suggested that in preeclampsia the defect in serum inhibitory potential of platelet-activating factor--induced platelet aggregation may contribute to the disturbance in the homeostatic balance between proaggregant and antiaggregant substances. PMID:2912073

  2. Infiltrative Hepatocellular Carcinoma

    PubMed Central

    Yan, Xiaopeng; Fu, Xu; Deng, Min; Chen, Jun; He, Jian; Shi, Jiong; Qiu, Yudong

    2016-01-01

    Abstract Data on infiltrative hepatocellular carcinoma (iHCC) receiving hepatectomy are unclear. Our study assessed the outcomes, effects of anatomical resection, and prognostic factors in a cohort of Chinese patients with iHCC undergoing hepatectomy. Data from 47 patients with iHCC undergoing hepatectomy were analyzed in a retrospective study. Independent prognostic factors of overall survival (OS) and recurrence-free survival (RFS) were identified using univariate and multivariate analyses. Correlations between microvascular invasion (MVI) and clinicopathological features were assessed using the χ2 test, Student t test, or the Mann–Whitney U test. Survival outcomes were estimated using the Kaplan-Meier method. The median OS was 27.37 months and the 1-year RFS rate were 61.7%. Alpha-fetoprotein (AFP) level was not a specific parameter in iHCC patients undergoing hepatectomy. Anatomic resection was significantly associated with increased RFS (P = 0.007). Patients showing MVI were observed with decreased RFS (P < 0.001). A high lactate dehydrogenase (LDH) level was significantly associated with decreased OS and RFS (P = 0.003 and P = 0.020, respectively). MVI was shown correlated with the levels of aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), and LDH. Subgroup analysis indicated that in mild MVI group, survival outcome was significantly more favorable in patients with high LDH level (P = 0.019). iHCC patients are related with higher MVI rate and patients may still derive survival benefit from anatomic resection at early and intermediate stages. MVI classification could be used to identify iHCC patients with a poorer survival, especially those with a high preoperative LDH level. PMID:27175659

  3. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  4. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    PubMed

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. PMID:26797521

  5. Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/bilirubin binding protein.

    PubMed Central

    Stremmel, W; Berk, P D

    1986-01-01

    To clarify sulfobromophthalein (BSP) and bilirubin uptake mechanisms, isolated rat hepatocytes were incubated with [35S]BSP. The initial uptake velocity (V0), determined from the first, linear portion of the cumulative uptake curve, was saturable (Michaelis constant [Km] = 6.2 +/- 0.5 microM; Vmax = 638 +/- 33 pmol X min-1 per 10(5) hepatocytes), maximal at 37 degrees C and pH 7.4, and competitively inhibited by bilirubin, but not by taurocholate, cholate, or oleate. Preloading with unlabeled BSP led to trans-stimulation of V0. Sodium substitution or pretreatment of hepatocytes with ouabain or metabolic inhibitors had no effect on V0; trypsin reduced V0 by 39% (P less than 0.001). A rabbit antiserum to the rat liver plasma membrane (LPM)-BSP/bilirubin binding protein selectively reduced V0 of 5 microM [35S]BSP and [14C]bilirubin by 41 and 42%, respectively (P less than 0.01); uptakes of [3H]oleate, [3H]cholate and [3H]taurocholate were not affected. Hence, the LPM-BSP/bilirubin binding protein plays a role in the carrier-mediated uptake of BSP and bilirubin by hepatocytes. PMID:3745441

  6. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  7. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3

    PubMed Central

    Drewniak, Agata; Groenewold, Vincent; van den Berg, Timo K.; Kuijpers, Taco W.

    2008-01-01

    Neutrophils have a very short life span and undergo apoptosis within 24 hours after leaving the bone marrow. Granulocyte colony-stimulating factor (G-CSF) is essential for the recruitment of fresh neutrophils from the bone marrow but also delays apoptosis of mature neutrophils. To determine the mechanism by which G-CSF inhibits neutrophil apoptosis, the kinetics of neutrophil apoptosis during 24 hours in the absence or presence of G-CSF were analyzed in vitro. G-CSF delayed neutrophil apoptosis for approximately 12 hours and inhibited caspase-9 and -3 activation, but had virtually no effect on caspase-8 and little effect on the release of proapoptotic proteins from the mitochondria. However, G-CSF strongly inhibited the activation of calcium-dependent cysteine proteases calpains, upstream of caspase-3, via apparent control of Ca2+-influx. Calpain inhibition resulted in the stabilization of the X-linked inhibitor of apoptosis (XIAP) and hence inhibited caspase-9 and -3 in human neutrophils. Thus, neutrophil apoptosis is controlled by G-CSF after initial activation of caspase-8 and mitochondrial permeabilization by the control of postmitochondrial calpain activity. PMID:18524991

  8. Activation of Interferon Regulatory Factor 3 Is Inhibited by the Influenza A Virus NS1 Protein

    PubMed Central

    Talon, Julie; Horvath, Curt M.; Polley, Rosalind; Basler, Christopher F.; Muster, Thomas; Palese, Peter; García-Sastre, Adolfo

    2000-01-01

    We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-α/β) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-α/β gene expression. IRF-3 activation and, as a consequence, IFN-β mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses. PMID:10933707

  9. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  10. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  11. E1A inhibits transforming growth factor-beta signaling through binding to Smad proteins.

    PubMed

    Nishihara, A; Hanai, J; Imamura, T; Miyazono, K; Kawabata, M

    1999-10-01

    Smads form a recently identified family of proteins that mediate intracellular signaling of the transforming growth factor (TGF)-beta superfamily. Smads bind to DNA and act as transcriptional regulators. Smads interact with a variety of transcription factors, and the interaction is likely to determine the target specificity of gene induction. Smads also associate with transcriptional coactivators such as p300 and CBP. E1A, an adenoviral oncoprotein, inhibits TGF-beta-induced transactivation, and the ability of E1A to bind p300/CBP is required for the inhibition. Here we determined the Smad interaction domain (SID) in p300 and found that two adjacent regions are required for the interaction. One of the regions is the C/H3 domain conserved between p300 and CBP, and the other is a nonconserved region. p300 mutants containing SID inhibit transactivation by TGF-beta in a dose-dependent manner. E1A inhibits the interaction of Smad3 with a p300 mutant that contains SID but lacks the E1A binding domain. We found that E1A interacts specifically with receptor-regulated Smads, suggesting a novel mechanism whereby E1A antagonizes TGF-beta signaling. PMID:10497242

  12. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo.

    PubMed Central

    Sobel, M; McNeill, P M; Carlson, P L; Kermode, J C; Adelman, B; Conroy, R; Marques, D

    1991-01-01

    The intravenous administration of heparin to patients before open heart surgery reduced ristocetin cofactor activity by 58% (P less than 0.01, t test), and this impairment of von Willebrand factor-dependent platelet function was closely related to plasma heparin levels (r2 = 0.9), but not to plasma von Willebrand factor (vWF) levels. We hypothesized that heparin may inhibit vWF-dependent platelet hemostatic functions by directly binding vWF in solution and interfering with vWF-GpIb binding. Using the in vitro techniques of ristocetin-induced platelet agglutination, fluorescent flow cytometric measurement of vWF-platelet binding, and conventional radioligand binding assays we observed that heparin inhibited both vWF-dependent platelet function and vWF-platelet binding in a parallel and dose-dependent manner. Heparin also inhibited platelet agglutination induced by bovine vWF and inhibited the binding of human asialo-vWF to platelets in ristocetin-free systems. The inhibitory potency of heparin was not dependent upon its affinity for antithrombin III, but was molecular weight dependent: homogeneous preparations of lower molecular weight were less inhibitory. Heparin impairment of vWF function may explain why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin. PMID:2022745

  13. Ambroxol inhibits platelet-derived growth factor production in human monocytic cells.

    PubMed

    Utsugi, Mitsuyoshi; Dobashi, Kunio; Koga, Yasuhiko; Masubuchi, Ken; Shimizu, Yasuo; Endou, Katsuaki; Nakazawa, Tsugio; Mori, Masatomo

    2002-02-01

    Several growth factors, including platelet-derived growth factor (PDGF), have been implicated in the mechanism of lung and airway remodeling. We investigated the effect of ambroxol, trans-4-[(2-amino-3,5-dibromobenzyl) amino] cyclohexanol hydrochloride, on the lipopolysaccharide-induced PDGF production in human monocytic cells, THP-1. Ambroxol inhibited the lipopolysaccharide-induced PDGF-AB production via PDGF-A mRNA expression. Lipopolysaccharide activated p44/42 extracellular signal-regulated kinase (ERK), and ambroxol attenuated the lipopolysaccharide-induced p44/42 ERK activation. Furthermore, mitogen-activated protein kinase kinase (MEK)-1-specific inhibitor, 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD 98059), blocked the lipopolysaccharide-induced p44/42 ERK activation and PDGF production. These findings indicate that ambroxol inhibits the lipopolysaccharide-induced PDGF production due to the suppression of p44/42 ERK activity. PMID:11834245

  14. Gliotoxin potentiates osteoblast differentiation by inhibiting nuclear factor-κB signaling

    PubMed Central

    WANG, GUANGYE; ZHANG, XIAOHAI; YU, BAOQING; REN, KE

    2015-01-01

    The differentiation of pluripotent mesenchymal stem cells to mature osteoblasts is crucial for the maintenance of the adult skeleton. In rheumatic arthritis, osteoblast differentiation is impaired by the overproduction of cytokine tumor necrosis factor (TNF)-α. It has been demonstrated that TNF-α is able to inhibit osteoblast differentiation through the activation of nuclear factor (NF)-κB signaling. As a result of the critical role of TNF-α and NF-κB in the pathogenesis of bone-loss associated diseases, these factors are regarded as key targets for the development of therapeutic agents. In the current study, the role of the NF-κB inhibitor gliotoxin (GTX) in the regulation of osteoblast differentiation was evaluated. The non-toxic GTX doses were determined to be ≤3 μg/ml. It was revealed that GTX was able to block TNF-α-induced inhibition of osteoblast differentiation, as indicated by alkaline phosphatase (ALP) activity and ALP staining assays, as well as the expression levels of osteoblast-associated genes Col I, Ocn, Bsp, Runx2, Osx and ATF4. Additionally, it was identified that gliotoxin directly promoted bone morphoge-netic protein-2-induced osteoblast differentiation. GTX was found to inhibit the accumulation of NF-κB protein p65 in the nucleus and reduce NF-κB transcriptional activity, suggesting that GTX potentiated osteoblast differentiation via the suppression of NF-κB signaling. PMID:25816130

  15. The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3

    PubMed Central

    Basler, Christopher F.; Mikulasova, Andrea; Martinez-Sobrido, Luis; Paragas, Jason; Mühlberger, Elke; Bray, Mike; Klenk, Hans-Dieter; Palese, Peter; García-Sastre, Adolfo

    2003-01-01

    The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-β) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-α/β receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-α4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-β gene, by blocking IRF-3 activation. PMID:12829834

  16. Factor in urinary extracts from pregnant women that inhibit mouse oocyte maturation in vitro.

    PubMed

    Sakakibara, R; Sakai, K; Sakurai, Y; Kohnoura, T; Ishiguro, M

    1993-01-01

    Mouse oocyte maturation inhibitory factors, on the basis of inhibitory activity of spontaneous germinal vesicle breakdown (GVBD) of denuded mouse oocytes in culture, were extracted and partially purified by reversed-phase resin adsorption and Sephadex G-100 and G-50 column chromatographies from the urine of pregnant women. Denuded oocytes obtained from ovaries of ICR mice underwent spontaneous GVBD by cultivation for 3 h in modified Krebs-Ringer's buffered solution, while this spontaneous GVBD was found to be inhibited by adding the final preparation (U-D-4) of urine. The inhibition was dose dependent, ranging from 0.6 to 10 micrograms protein/ml medium. Oocytes treated with U-D-4 and resuspended in control medium resumed GVBD. The molecular mass of U-D-4 was estimated to be less than 2,000 Da with gel filtration. Ether treatment failed to extract inhibitory factor(s) from U-D-4 and pepsin treatment inactivated U-D-4, indicating that inhibitory factor(s) in U-D-4 are peptide-like substances. The inhibitory effect of U-D-4 on spontaneous GVBD was partially reversed in the presence of naloxone, a potent opioid antagonist. U-D-4s obtained from urine samples of pregnant women, nonpregnant women, and men showed the inhibitory effect on spontaneous GVBD; however, the activity of U-D-4 obtained from pregnancy urine was significantly more potent than those of the other urine samples. PMID:8418810

  17. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition

    PubMed Central

    Zhang, Ying; Farenholtz, Kaitlyn E.; Yang, Yanzhi; Guessous, Fadila; diPierro, Charles G.; Calvert, Valerie S.; Deng, Jianghong; Schiff, David; Xin, Wenjun; Lee, Jae K.; Purow, Benjamin; Christensen, James; Petricoin, Emanuel; Abounader, Roger

    2013-01-01

    Purpose The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not well known molecular determinants that predict responsiveness to c-MET inhibitors, and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental design We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells (GSCs), and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results We found that HGF co-expression is a key predictor of response to c-MET inhibition among the examined factors, and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and non-responsive cells. Surprisingly, we also found that short pre-treatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the anti-tumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGFR small molecule kinase inhibitor. Conclusions These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition, and propose ligand pre-treatment as a potential new strategy for improving the anti-cancer efficacy of RTK inhibitors. PMID:23386689

  18. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  19. Intracellular signaling and hepatocellular carcinoma.

    PubMed

    Iakova, Polina; Timchenko, Lubov; Timchenko, Nikolai A

    2011-02-01

    Liver cancer is the fifth most common cancer and the third most common cause of cancer related death in the world. The recent development of new techniques for the investigations of global change in the gene expression, signaling pathways and wide genome binding has provided novel information for the mechanisms underlying liver cancer progression. Although these studies identified gene expression signatures in hepatocellular carcinoma, the early steps of the development of hepatocellular carcinomas (HCC) are not well understood. The development of HCC is a multistep process which includes the progressive alterations of gene expression leading to the increased proliferation and to liver cancer. This review summarizes recent progress in the identification of the key steps of the development of HCC with the focus on early events of carcinogenesis and on the role of translational and epigenetic alterations in the development of HCC. Quiescent stage of the liver is supported by several tumor suppressor proteins including p53, Rb and C/EBPα. Studies with chemical models of liver carcinogenesis and with human HCC have shown that the elevation of gankyrin is responsible for the elimination of these three proteins at early steps of carcinogenesis. Later stages of progression of the liver cancer are associated with alterations in many signaling pathways including translation which leads to epigenetic silencing/activation of many genes. Particularly, recent reports suggest a critical role of histone deacetylase 1, HDAC1, in the development of HCC through the interactions with transcription factors such as C/EBP family proteins. PMID:20850540

  20. Overview of Hepatocellular Adenoma in Japan

    PubMed Central

    Sasaki, Motoko; Nakanuma, Yasuni

    2012-01-01

    Hepatocellular adenoma (HCA) is generally a benign hepatocellular tumor arising in a nonfibrotic/cirrhotic liver, and recently four major subgroups were identified based on genotype and phenotype classification from Europe. HCA is rare in Asian countries including Japan, and there have been few studies regarding the subgroups of HCA in Japan. We surveyed subgroups of HCA in 13 patients (7 women) in Japan, based on the phenotypic classification. As results, we identified 2 hepatocyte nuclear factor (HNF) 1α-inactivated HCAs (15%), two β-catenin-activated HCAs (15%), 5 inflammatory HCAs (39%), and 4 unclassified HCAs (29%). The use of oral contraceptives was found only in 2 unclassified HCAs (29%). Rather low percentage of female patients and use of oral contraceptives appear to be common clinicopathological features in Japan and also East Asian countries. Furthermore, a group of possible inflammatory HCAs characterized by strong immunoreactivity for serum amyloid A (SAA) was found in patients with alcoholic cirrhosis. The inflammatory HCA/SAA-positive hepatocellular neoplasm in alcoholic cirrhosis may be a new entity of HCA, which may have potential of malignant transformation. Further studies are needed to clarify genetic changes, monoclonality, and pathogenesis of this new type of hepatocellular neoplasm. PMID:22973519

  1. Alcoholic cirrhosis and hepatocellular carcinoma.

    PubMed

    Stickel, Felix

    2015-01-01

    Hepatocellular carcinoma shows a rising incidence worldwide, and the largest burden of disease in Western countries derives from patients with alcoholic liver disease (ALD) and cirrhosis, the latter being the premier premalignant factor for HCC. The present chapter addresses key issues including the epidemiology of alcohol-associated HCC, and its link to other coexisting non-alcoholic liver diseases, and additional host and environmental risk factors including the underlying genetics. Also discussed are molecular mechanisms of alcohol-associated liver cancer evolution involving the mediators of alcohol toxicity and carcinogenicity, acetaldehyde and reactive oxygen species, as well as the recently described mutagenic adducts which these mediators form with DNA. Specifically, interference of alcohol with retinoids and cofactors of transmethylation processes are outlined. Information presented in this chapter illustrates that the development of HCC in the context of ALD is multifaceted and suggests several molecular targets for prevention and markers for the screening of risk groups. PMID:25427904

  2. Allicin inhibits lymphangiogenesis through suppressing activation of vascular endothelial growth factor (VEGF) receptor.

    PubMed

    Wang, Weicang; Du, Zheyuan; Nimiya, Yoshiki; Sukamtoh, Elvira; Kim, Daeyoung; Zhang, Guodong

    2016-03-01

    Allicin, the most abundant organosulfur compound in freshly crushed garlic tissues, has been shown to have various health-promoting effects, including anticancer actions. A better understanding of the effects and mechanisms of allicin on tumorigenesis could facilitate development of allicin or garlic products for cancer prevention. Here we found that allicin inhibited lymphangiogenesis, which is a critical cellular process implicated in tumor metastasis. In primary human lymphatic endothelial cells, allicin at 10 μM inhibited capillary-like tube formation and cell migration, and it suppressed phosphorylation of vascular endothelial growth factor receptor 2 and focal adhesion kinase. Using a Matrigel plug assay in mice, addition of 10 μg allicin in Matrigel plug inhibited 40-50% of vascular endothelial growth factor-C-induced infiltration of lymphatic endothelial cells and leukocytes. S-Allylmercaptoglutathione, a major cellular metabolite of allicin, had no effect on lymphangiogenic responses in lymphatic endothelial cells. Together, these results demonstrate the antilymphangiogenic effect of allicin in vitro and in vivo, suggesting a novel mechanism for the health-promoting effects of garlic compounds. PMID:26895668

  3. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.

    PubMed

    Wöhrle, Simon; Henninger, Christine; Bonny, Olivier; Thuery, Anne; Beluch, Noemie; Hynes, Nancy E; Guagnano, Vito; Sellers, William R; Hofmann, Francesco; Kneissel, Michaela; Graus Porta, Diana

    2013-04-01

    Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases. PMID:23129509

  4. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity.

    PubMed

    Wu, Qian; Liu, Hai-Ou; Liu, Yi-Dong; Liu, Wei-Si; Pan, Deng; Zhang, Wei-Juan; Yang, Liu; Fu, Qiang; Xu, Jie-Jie; Gu, Jian-Xin

    2015-01-01

    MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis. PMID:25422324

  5. Decreased Expression of Hepatocyte Nuclear Factor 4α (Hnf4α)/MicroRNA-122 (miR-122) Axis in Hepatitis B Virus-associated Hepatocellular Carcinoma Enhances Potential Oncogenic GALNT10 Protein Activity*

    PubMed Central

    Wu, Qian; Liu, Hai-Ou; Liu, Yi-Dong; Liu, Wei-Si; Pan, Deng; Zhang, Wei-Juan; Yang, Liu; Fu, Qiang; Xu, Jie-Jie; Gu, Jian-Xin

    2015-01-01

    MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis. PMID:25422324

  6. Macrophage Migration Inhibitory Factor (MIF) as a Chaperone Inhibiting Accumulation of Misfolded SOD1

    PubMed Central

    Israelson, Adrian; Ditsworth, Dara; Sun, Shuying; Song, SungWon; Liang, Jason; Hruska-Plochan, Marian; McAlonis-Downes, Melissa; Abu-Hamad, Salah; Zoltsman, Guy; Shani, Tom; Maldonado, Marcus; Bui, Anh; Navarro, Michael; Zhou, Huilin; Marsala, Martin; Kaspar, Brian K.; Da Cruz, Sandrine; Cleveland, Don W.

    2015-01-01

    Summary Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons and accompanied by accumulation of misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and endoplasmic reticulum (ER). Using inhibition of misfolded SOD1 deposition onto mitochondria as an assay, a chaperone activity abundant in non-neuronal tissues is now purified and identified to be the multifunctional macrophage migration inhibitory factor (MIF), whose activities include an ATP-independent protein folding chaperone. Purified MIF is shown to directly inhibit mutant SOD1 misfolding. Elevating MIF in neuronal cells suppresses accumulation of misfolded SOD1 and its association with mitochondria and ER and extends survival of mutant SOD1-expressing motor neurons. Accumulated MIF protein is identified to be low in motor neurons, implicating correspondingly low chaperone activity as a component of vulnerability to mutant SOD1 misfolding and supporting therapies to enhance intracellular MIF chaperone activity. PMID:25801706

  7. BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia.

    PubMed

    Roe, Jae-Seok; Mercan, Fatih; Rivera, Keith; Pappin, Darryl J; Vakoc, Christopher R

    2015-06-18

    The bromodomain and extraterminal (BET) protein BRD4 is a validated drug target in leukemia, yet its regulatory function in this disease is not well understood. Here, we show that BRD4 chromatin occupancy in acute myeloid leukemia closely correlates with the hematopoietic transcription factors (TFs) PU.1, FLI1, ERG, C/EBPα, C/EBPβ, and MYB at nucleosome-depleted enhancer and promoter regions. We provide evidence that these TFs, in conjunction with the lysine acetyltransferase activity of p300/CBP, facilitate BRD4 recruitment to their occupied sites to promote transcriptional activation. Chemical inhibition of BET bromodomains was found to suppress the functional output of each hematopoietic TF, thereby interfering with essential lineage-specific transcriptional circuits in this disease. These findings reveal a chromatin-based signaling cascade comprised of hematopoietic TFs, p300/CBP, and BRD4 that supports leukemia maintenance and is suppressed by BET bromodomain inhibition. PMID:25982114

  8. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway

    PubMed Central

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through