Science.gov

Sample records for factor-1 gene locus

  1. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas.

    PubMed

    Byun, Do-Sun; Cho, Kyucheol; Ryu, Byung-Kyu; Lee, Min-Goo; Kang, Min-Ju; Kim, Hak-Ryul; Chi, Sung-Gil

    2003-11-01

    X-linked inhibitor of apoptosis (XIAP) is the most potent member of the IAP family that exerts antiapoptotic effects by interfering with the activities of caspases. Recently, XIAP-associated factor 1 (XAF1) and two mitochondrial proteins, Smac/DIABLO and HtrA2, have been identified to negatively regulate the caspase-inhibiting activity of XIAP. To explore the candidacy of XAF1, Smac/DIABLO, and HtrA2 as a tumor suppressor in gastric tumorigenesis, we investigated the expression and mutation status of the genes in 123 gastric tissues and 15 cancer cell lines. Whereas Smac/DIABLO and HtrA2 transcripts were normally expressed in all cancer specimens we examined, XAF1 transcript was not expressed or present at extremely low levels in 40% (6 of 15) of cancer cell lines and in 23% (20 of 87) of primary carcinomas. Abnormal reduction of XAF1 expression showed a strong correlation with stage and grade of tumors, and a tumor-specific down-regulation of XAF1 was observed in 45% (9 of 20) of matched sets. Unlike XAF1, XIAP expression exhibited no detectable alteration in cancers. Whereas loss of heterozygosity within the XAF1 region or somatic mutations of the gene was not detected, expression of XAF1 transcript was reactivated in all nonexpressor cell lines after 5-aza-2-deoxycytidine treatment. The 5' upstream region of the XAF1 gene encompasses no gastric cell-rich region that rigorously satisfies the formal criteria for CpG islands. However, bisulfite DNA sequencing analysis for 34 CpG sites in the promoter region revealed a strong association between hypermethylation and gene silencing. Moreover, transcriptional silencing of XAF1 was tightly associated with hypermethylation of seven CpGs located in the 5' proximal region (nucleotides -23 to -234). Additionally, loss or abnormal reduction of XAF1 expression was found to inversely correlate with p53 mutations, suggesting that epigenetic inactivation of XAF1 and mutational alteration of p53 might be mutually exclusive

  2. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  3. Integration of the BALB/c ecotropic provirus into the colony-stimulating factor-1 growth factor locus in a myc retrovirus-induced murine monocyte tumor.

    PubMed

    Baumbach, W R; Colston, E M; Cole, M D

    1988-09-01

    The development of tumors is thought to be a multistage process that requires an unknown number of genetic or epigenetic changes in a single cell. We previously described a murine monocyte tumor which was induced by a helper-free c-myc retrovirus and which also contained a DNA rearrangement at the colony-stimulating factor-1 (CSF-1) locus. The CSF-1 gene rearrangement gave rise to high levels of growth factor production and autocrine growth, implicating this secondary event in tumorigenesis. This CSF-1 gene rearrangement was found to be the result of integration of the BALB/c ecotropic retrovirus. Restriction enzyme mapping and DNA sequence analysis demonstrated that the novel provirus is identical to the BALB/c endogenous ecotropic provirus, indicating that infection was probably not due to the creation of a recombinant virus in vivo. The proviral integration site was mapped 3 kilobases 5' of the CSF-1 promoter and in an opposite transcriptional orientation, indicating that activation of CSF-1 expression was the result of the presence of the retroviral enhancer element. PMID:3261346

  4. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  5. CUBN Is a Gene Locus for Albuminuria

    PubMed Central

    Böger, Carsten A.; Chen, Ming-Huei; Tin, Adrienne; Olden, Matthias; Köttgen, Anna; de Boer, Ian H.; Fuchsberger, Christian; O'Seaghdha, Conall M.; Pattaro, Cristian; Teumer, Alexander; Liu, Ching-Ti; Glazer, Nicole L.; Li, Man; O'Connell, Jeffrey R.; Tanaka, Toshiko; Peralta, Carmen A.; Kutalik, Zoltán; Luan, Jian'an; Zhao, Jing Hua; Hwang, Shih-Jen; Akylbekova, Ermeg; Kramer, Holly; van der Harst, Pim; Smith, Albert V.; Lohman, Kurt; de Andrade, Mariza; Hayward, Caroline; Kollerits, Barbara; Tönjes, Anke; Aspelund, Thor; Ingelsson, Erik; Eiriksdottir, Gudny; Launer, Lenore J.; Harris, Tamara B.; Shuldiner, Alan R.; Mitchell, Braxton D.; Arking, Dan E.; Franceschini, Nora; Boerwinkle, Eric; Egan, Josephine; Hernandez, Dena; Reilly, Muredach; Townsend, Raymond R.; Lumley, Thomas; Siscovick, David S.; Psaty, Bruce M.; Kestenbaum, Bryan; Haritunians, Talin; Bergmann, Sven; Vollenweider, Peter; Waeber, Gerard; Mooser, Vincent; Waterworth, Dawn; Johnson, Andrew D.; Florez, Jose C.; Meigs, James B.; Lu, Xiaoning; Turner, Stephen T.; Atkinson, Elizabeth J.; Leak, Tennille S.; Aasarød, Knut; Skorpen, Frank; Syvänen, Ann-Christine; Illig, Thomas; Baumert, Jens; Koenig, Wolfgang; Krämer, Bernhard K.; Devuyst, Olivier; Mychaleckyj, Josyf C.; Minelli, Cosetta; Bakker, Stephan J.L.; Kedenko, Lyudmyla; Paulweber, Bernhard; Coassin, Stefan; Endlich, Karlhans; Kroemer, Heyo K.; Biffar, Reiner; Stracke, Sylvia; Völzke, Henry; Stumvoll, Michael; Mägi, Reedik; Campbell, Harry; Vitart, Veronique; Hastie, Nicholas D.; Gudnason, Vilmundur; Kardia, Sharon L.R.; Liu, Yongmei; Polasek, Ozren; Curhan, Gary; Kronenberg, Florian; Prokopenko, Inga; Rudan, Igor; Ärnlöv, Johan; Hallan, Stein; Navis, Gerjan; Parsa, Afshin; Ferrucci, Luigi; Coresh, Josef; Shlipak, Michael G.; Bull, Shelley B.; Paterson, Andrew D.; Wichmann, H.-Erich; Wareham, Nicholas J.; Loos, Ruth J.F.; Rotter, Jerome I.; Pramstaller, Peter P.; Cupples, L. Adrienne; Beckmann, Jacques S.; Yang, Qiong; Heid, Iris M.; Rettig, Rainer; Dreisbach, Albert W.; Bochud, Murielle

    2011-01-01

    Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 × 10−11) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes. PMID:21355061

  6. Asynchronous DNA replication within the human. beta. -globin gene locus

    SciTech Connect

    Epner, E.; Forrester, W.C.; Groudine, M. )

    1988-11-01

    The timing of DNA replication of the human {beta}-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human {beta}-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-{gamma}-globin gene region and approximately 20 kilobases 5' to the {epsilon}-globin gene and 20 kilobases 3' to the {beta}-globin gene, replicate later and throughout S phase. A similar area is also present in the {alpha}-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks.

  7. Interchromosomal gene conversion at an endogenous human cell locus.

    PubMed Central

    Quintana, P J; Neuwirth, E A; Grosovsky, A J

    2001-01-01

    To examine the relationship between gene conversion and reciprocal exchange at an endogenous chromosomal locus, we developed a reversion assay in a thymidine kinase deficient mutant, TX545, derived from the human lymphoblastoid cell line TK6. Selectable revertants of TX545 can be generated through interchromosomal gene conversion at the site of inactivating mutations on each tk allele or by reciprocal exchange that alters the linkage relationships of inactivating polymorphisms within the tk locus. Analysis of loss of heterozygosity (LOH) at intragenic polymorphisms and flanking microsatellite markers was used to initially evaluate allelotypes in TK(+) revertants for patterns associated with either gene conversion or crossing over. The linkage pattern in a subset of convertants was then unambiguously established, even in the event of prereplicative recombinational exchanges, by haplotype analysis of flanking microsatellite loci in tk(-/-) LOH mutants collected from the tk(+/-) parental convertant. Some (7/38; 18%) revertants were attributable to easily discriminated nonrecombinational mechanisms, including suppressor mutations within the tk coding sequence. However, all revertants classified as a recombinational event (28/38; 74%) were attributed to localized gene conversion, representing a highly significant preference (P < 0.0001) over gene conversion with associated reciprocal exchange, which was never observed. PMID:11404339

  8. CHARACTERIZATION AND GENE EXPRESSION OF BABESIA BOVIS ELONGATION FACTOR-1ALPHA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elongation factor 1 alpha (EF-1') is a constitutively expressed, abundant protein that is a key element in eukaryotic protein translation. Because of its high level of transcription, the EF-1''promoter has been utilized to drive exogenous gene expression in transfected cells. In this study, we ident...

  9. The discovery of the microphthalmia locus and its gene, Mitf

    PubMed Central

    Arnheiter, Heinz

    2010-01-01

    Summary The history of the discovery of the microphthalmia locus and its gene, now called Mitf, is a testament to the triumph of serendipity. Although the first microphthalmia mutation was discovered among the descendants of a mouse that was irradiated for the purpose of mutagenesis, the mutation most likely was not radiation-induced but occurred spontaneously in one of the parents of a later breeding. Although Mitf might eventually have been identified by other molecular genetic techniques, it was first cloned from a chance transgene insertion at the microphthalmia locus. And although Mitf was found to encode a member of a well-known transcription factor family, its analysis might still be in its infancy had Mitf not turned out to be of crucial importance for the physiology and pathology of many distinct organs, including eye, ear, immune system, bone, and skin, and in particular for melanoma. In fact, near seven decades of Mitf research have led to many insights about development, function, degeneration, and malignancies of a number of specific cell types, and it is hoped that these insights will one day lead to therapies benefitting those afflicted with diseases originating in these cell types. PMID:20807369

  10. TNXB locus may be a candidate gene predisposing to schizophrenia.

    PubMed

    Wei, J; Hemmings, G P

    2004-02-15

    We report here on the detection of nine single nucleotide polymorphisms (SNPs) near to the NOTCH4 locus in the search for schizophrenia susceptibility genes in the class III region of the human major histocompatibility complex (MHC). We totally analyzed 122 family trios recruited in the UK. The TDT analysis demonstrated that of the nine SNPs, three were associated with schizophrenia, including rs1009382 (P = 0.00047), rs204887 (P = 0.007), and rs8283 (P = 0.015). Both rs1009382 and rs204887 are present in the TNXB locus. The rs1009382 is a non-synonymous SNP located in exon 23 of the gene and its A to G base change causes a Glu2578Gly substitution. The goodness-of-fit test showed that genotypic distribution of rs1009382 was deviated from Hardy-Weinberg equilibrium due to homozygote excess in the patient group (P = 0.01), suggesting that a double dose of a genetic risk may be involved. Possibly, rs1009382 is a candidate SNP predisposing to a schizophrenic illness. Moreover, the test for linkage disequilibrium (LD) between paired SNPs showed that the nine SNPs studied may be in the same LD block with an unexpected pattern as the strength of LD was not correlated with the distance between paired SNPs. The haplotype analysis suggested that there might be more than one disease-related allele located in the class III region of the MHC, and that these alleles possibly confer either susceptibility or resistance to schizophrenia. PMID:14755442

  11. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network

    PubMed Central

    Keith, Benjamin P.; Robertson, David L.; Hentges, Kathryn E.

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity. PMID:25538735

  12. Recombination between elongation factor 1α genes from distantly related archaeal lineages

    PubMed Central

    Inagaki, Yuji; Susko, Edward; Roger, Andrew J.

    2006-01-01

    Homologous recombination (HR) and lateral gene transfer are major processes in genome evolution. The combination of the two processes, HR between genes in different species, has been documented but is thought to be restricted to very similar sequences in relatively closely related organisms. Here we report two cases of interspecific HR in the gene encoding the core translational protein translation elongation factor 1α (EF-1α) between distantly related archaeal groups. Maximum-likelihood sliding window analyses indicate that a fragment of the EF-1α gene from the archaeal lineage represented by Methanopyrus kandleri was recombined into the orthologous gene in a common ancestor of the Thermococcales. A second recombination event appears to have occurred between the EF-1α gene of the genus Methanothermobacter and its ortholog in a common ancestor of the Methanosarcinales, a distantly related euryarchaeal lineage. These findings suggest that HR occurs across a much larger evolutionary distance than generally accepted and affects highly conserved essential “informational” genes. Although difficult to detect by standard whole-gene phylogenetic analyses, interspecific HR in highly conserved genes may occur at an appreciable frequency, potentially confounding deep phylogenetic inference and hypothesis testing. PMID:16537397

  13. Quantitative trait locus mapping of soybean maturity gene E5

    PubMed Central

    Dissanayaka, Auchithya; Rodriguez, Tito O.; Di, Shaokang; Yan, Fan; Githiri, Stephen M.; Rodas, Felipe Rojas; Abe, Jun; Takahashi, Ryoji

    2016-01-01

    Time to flowering and maturity in soybean is controlled by loci E1 to E5, and E7 to E9. These loci were assigned to molecular linkage groups (MLGs) except for E5. This study was conducted to map the E5 locus using F2 populations expected to segregate for E5. F2 populations were subjected to quantitative trait locus (QTL) analysis for days to flowering (DF) and maturity (DM). In Harosoy-E5 × Clark-e2 population, QTLs for DF and DM were found at a similar position with E2. In Harosoy × Clark-e2E5 population, QTLs for DF and DM were found in MLG D1a and B1, respectively. In Harosoy-E5Dt2 × Clark-e2 population, a QTL for DF was found in MLG B1. Thus, results from these populations were not fully consistent, and no candidate QTL for E5 was found. In Harosoy × PI 80837 population, from which E5 was originally identified, QTLs corresponding to E1 and E3 were found, but none for E5 existed. Harosoy and PI 80837 had the e2-ns allele whereas Harosoy-E5 had the E2-dl allele. The E2-dl allele of Harosoy-E5 may have been generated by outcrossing and may be responsible for the lateness of Harosoy-E5. We conclude that a unique E5 gene may not exist. PMID:27436951

  14. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2016-02-01

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait-gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species. PMID:26637433

  15. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken

    PubMed Central

    Johnsson, Martin; Jonsson, Kenneth B.; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-01-01

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species. PMID:26637433

  16. Structure of the Catfish IGH Locus: Analysis of the Region Including the Single Functional IGHM Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The catfish IGH locus is large (~1Mb) and complex, having undergone multiple internal duplications and transpositions. To define the structure of the locus that contains the single expressed IGHM gene, two overlapping bacterial-artificial-chromosome (BAC) clones spanning the most 3’ end of the chann...

  17. Genes for the dimerization cofactor of hepatocyte nuclear factor-1[alpha] (DCOH) are on human and murine chromsomes 10

    SciTech Connect

    Milatovich, A.; Mendel, D.B.; Crabtree, G.R.; Francke, U. )

    1993-04-01

    Hepatocyte nuclear factor-1[alpha] (HNF-1[alpha]; gene symbol, TCF1) forms dimers with itself as well as with HNF-1[beta] and regulates the expression of several liver-specific genes. Recently, a dimerization cofactor of hepatocyte nuclear factor-1[alpha], called DCOH, has been identified. Here, the authors report the chromosomal localization of the genes for this cofactor to chromosomes 10 in both humans and mice by Southern blot analyses of somatic cell hybrids. 25 refs., 1 fig., 2 tabs.

  18. Two forms of loops generate the chromatin conformation of the immunoglobulin heavy chain gene locus

    PubMed Central

    Guo, Changying; Gerasimova, Tatiana; Hao, Haiping; Ivanova, Irina; Chakraborty, Tirtha; Selimyan, Roza; Oltz, Eugene M.; Sen, Ranjan

    2013-01-01

    SUMMARY The immunoglobulin heavy chain (IgH) gene locus undergoes radial re-positioning within the nucleus and locus contraction in preparation for gene recombination. We demonstrate that IgH locus conformation involves two levels of chromosomal compaction. At the first level the locus folds into several multi-looped domains. One such domain at the 3′ end of the locus requires an enhancer, Eμ; two other domains at the 5′ end are Eμ-independent. At the second level, these domains are brought into spatial proximity by Eμ-dependent interactions with specific sites within the VH region. Eμ is also required for radial re-positioning of IgH alleles indicating its essential role in large scale chromosomal movements in developing lymphocytes. Our observations provide a comprehensive view of the conformation of IgH alleles in pro-B cells and the mechanisms by which it is established. PMID:21982154

  19. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici.

    PubMed

    Kilaru, S; Schuster, M; Latz, M; Das Gupta, S; Steinberg, N; Fones, H; Gurr, S J; Talbot, N J; Steinberg, G

    2015-06-01

    Understanding the cellular organization and biology of fungal pathogens requires accurate methods for genomic integration of mutant alleles or fluorescent fusion-protein constructs. In Zymoseptoria tritici, this can be achieved by integrating of plasmid DNA randomly into the genome of this wheat pathogen. However, untargeted ectopic integration carries the risk of unwanted side effects, such as altered gene expression, due to targeting regulatory elements, or gene disruption following integration into protein-coding regions of the genome. Here, we establish the succinate dehydrogenase (sdi1) locus as a single "soft-landing" site for targeted ectopic integration of genetic constructs by using a carboxin-resistant sdi1(R) allele, carrying the point-mutation H267L. We use various green and red fluorescent fusion constructs and show that 97% of all transformants integrate correctly into the sdi1 locus as single copies. We also demonstrate that such integration does not affect the pathogenicity of Z. tritici, and thus the sdi1 locus is a useful tool for virulence analysis in genetically modified Z. tritici strains. Furthermore, we have developed a vector which facilitates yeast recombination cloning and thus allows assembly of multiple overlapping DNA fragments in a single cloning step for high throughput vector and strain generation. PMID:26092798

  20. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  1. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  2. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    SciTech Connect

    Yasmin, Tania; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-12-16

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of {beta}-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3{beta} (GSK-3{beta}) and inhibition of GSK-3{beta} attenuated the DIF-1-induced {beta}-catenin degradation, indicating the involvement of GSK-3{beta} in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/{beta}-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.

  3. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk

    PubMed Central

    Shi, Joy; Aronson, Kristan J.; Grundy, Anne; Kobayashi, Lindsay C.; Burstyn, Igor; Schuetz, Johanna M.; Lohrisch, Caroline A.; SenGupta, Sandip K.; Lai, Agnes S.; Brooks-Wilson, Angela; Spinelli, John J.; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case–control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  4. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk.

    PubMed

    Shi, Joy; Aronson, Kristan J; Grundy, Anne; Kobayashi, Lindsay C; Burstyn, Igor; Schuetz, Johanna M; Lohrisch, Caroline A; SenGupta, Sandip K; Lai, Agnes S; Brooks-Wilson, Angela; Spinelli, John J; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case-control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  5. The insulin-like growth factor-1 gene is associated with cerebral infarction in Japanese subjects.

    PubMed

    Aoi, Noriko; Nakayama, Tomohiro; Soma, Masayoshi; Kosuge, Kotoko; Haketa, Akira; Sato, Mikano; Sato, Naoyuki; Hinohara, Shigeaki; Doba, Nobutakh; Asai, Satoshi

    2012-10-01

    Atherosclerosis leads to cerebral infarction (CI) and the insulin/insulin-like growth factor-1 (IGF1) signaling pathway plays an important role in this process during adult life. The purpose of this study was to investigate the relationship between the human IGF1 gene and CI in the Japanese population via a case-control study that also included a separate analysis of the two gender groups. A total of 155 CI patients and 316 controls were genotyped for six single nucleotide polymorphisms (SNPs) of the human IGF1 gene (rs2162679, rs7956547, rs2288378, rs2072592, rs978458 and rs6218). All data were analyzed for three separate groups: the total subjects, men and women. The logistic regression analysis revealed that the GG + AG variant of rs2162679 (P = 0.047), the AA + GA variant of rs2072592 (P = 0.005) and the CC + TC variant of rs6218 (P = 0.015) exhibited a protective effect for CI in the total subject group. For the women and the total subjects groups, the overall distribution of the haplotype established by rs7956547-rs978458 was significantly different between the CI patients and the non-CI subjects. For the total subjects, the frequency of the T-G haplotype (rs7956547-rs978458) was also significantly higher (P = 0.034), whereas the frequency of the T-A haplotype (rs7956547-rs978458) was significantly lower (P = 0.008) in the CI patients versus the non-CI subjects. For women, the frequency of the T-A haplotype (rs7956547-rs978458) was significantly lower (P = 0.021) in the CI patients as compared with the non-CI subjects. The specific SNPs and haplotypes can be utilized as genetic markers for CI resistance or CI risk. PMID:23121326

  6. Different Foreign Genes Incidentally Integrated into the Same Locus of the Streptococcus suis Genome

    PubMed Central

    Sekizaki, Tsutomu; Takamatsu, Daisuke; Osaki, Makoto; Shimoji, Yoshihiro

    2005-01-01

    Some strains of Streptococcus suis possess a type II restriction-modification (RM) system, whose genes are thought to be inserted into the genome between purH and purD from a foreign source by illegitimate recombination. In this study, we characterized the purHD locus of the S. suis genomes of 28 serotype reference strains by DNA sequencing. Four strains contained the RM genes in the locus, as described before, whereas 11 strains possessed other genetic regions of seven classes. The genetic regions contained a single gene or multiple genes that were either unknown or similar to hypothetical genes of other bacteria. The mutually exclusive localization of the genetic regions with the atypical G+C contents indicated that these regions were also acquired from foreign sources. No transposable element or long-repeat sequence was found in the neighboring regions. An alignment of the nucleotide sequences, including the RM gene regions, suggested that the foreign regions were integrated by illegitimate recombination via short stretches of nucleotide identity. By using a thermosensitive suicide plasmid, the RM genes were experimentally introduced into an S. suis strain that did not contain any foreign genes in that locus. Integration of the plasmid into the S. suis genome did not occur in the purHD locus but occurred at various chromosomal loci, where there were 2 to 10 bp of nucleotide identity between the chromosome and the plasmid. These results suggest that various foreign genes described here were incidentally integrated into the same locus of the S. suis genome. PMID:15659665

  7. Mining locus tags in PubMed Central to improve microbial gene annotation

    PubMed Central

    2014-01-01

    Background The scientific literature contains millions of microbial gene identifiers within the full text and tables, but these annotations rarely get incorporated into public sequence databases. We propose to utilize the Open Access (OA) subset of PubMed Central (PMC) as a gene annotation database and have developed an R package called pmcXML to automatically mine and extract locus tags from full text, tables and supplements. Results We mined locus tags from 1835 OA publications in ten microbial genomes and extracted tags mentioned in 30,891 sentences in main text and 20,489 rows in tables. We identified locus tag pairs marking the start and end of a region such as an operon or genomic island and expanded these ranges to add another 13,043 tags. We also searched for locus tags in supplementary tables and publications outside the OA subset in Burkholderia pseudomallei K96243 for comparison. There were 168 publications containing 48,470 locus tags and 83% of mentions were from supplementary materials and 9% from publications outside the OA subset. Conclusions B. pseudomallei locus tags within the full text and tables of OA publications represent only a small fraction of the total mentions in the literature. For microbial genomes with very few functionally characterized proteins, the locus tags mentioned in supplementary tables and within ranges like genomic islands contain the majority of locus tags. Significantly, the functions in the R package provide access to additional resources in the OA subset that are not currently indexed or returned by searching PMC. PMID:24499370

  8. Challenges and solutions for gene identification in the presence of familial locus heterogeneity.

    PubMed

    Rehman, Atteeq U; Santos-Cortez, Regie Lyn P; Drummond, Meghan C; Shahzad, Mohsin; Lee, Kwanghyuk; Morell, Robert J; Ansar, Muhammad; Jan, Abid; Wang, Xin; Aziz, Abdul; Riazuddin, Saima; Smith, Joshua D; Wang, Gao T; Ahmed, Zubair M; Gul, Khitab; Shearer, A Eliot; Smith, Richard J H; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hinnant, John; Khan, Shaheen N; Fisher, Rachel A; Ahmad, Wasim; Friderici, Karen H; Riazuddin, Sheikh; Friedman, Thomas B; Wilch, Ellen S; Leal, Suzanne M

    2015-09-01

    Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification. PMID:25491636

  9. Challenges and solutions for gene identification in the presence of familial locus heterogeneity

    PubMed Central

    Rehman, Atteeq U; Santos-Cortez, Regie Lyn P; Drummond, Meghan C; Shahzad, Mohsin; Lee, Kwanghyuk; Morell, Robert J; Ansar, Muhammad; Jan, Abid; Wang, Xin; Aziz, Abdul; Riazuddin, Saima; Smith, Joshua D; Wang, Gao T; Ahmed, Zubair M; Gul, Khitab; Shearer, A Eliot; Smith, Richard J H; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hinnant, John; Khan, Shaheen N; Fisher, Rachel A; Ahmad, Wasim; Friderici, Karen H; Riazuddin, Sheikh; Friedman, Thomas B; Wilch, Ellen S; Leal, Suzanne M

    2015-01-01

    Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification. PMID:25491636

  10. THE EPENDYMAL ROUTE FOR INSULIN-LIKE GROWTH FACTOR-1 GENE THERAPY IN THE BRAIN

    PubMed Central

    Hereñú, Claudia B.; Sonntag, William E.; Morel, Gustavo R.; Portiansky, Enrique L.; Goya, Rodolfo G.

    2009-01-01

    Intracerebroventricular administration of the peptide insulin-like growth factor-1 (IGF-1) has been shown to be an effective neuroprotective strategy in the brain of different animal models, a major advantage being the achievement of high concentrations of IGF-1 in the brain without altering serum levels of the peptide. In order to exploit this therapeutic approach further, we used high performance recombinant adenoviral (RAd) vectors expressing their transgene under the control of the potent mouse cytomegalovirus immediate early (mCMV) promoter, to transduce brain ependymal cells with high efficiency and to achieve effective release of transgenic IGF-1 into the cerebrospinal fluid (CSF). We constructed RAd vectors expressing either the chimeric protein (TK/GFP)fus (green fluorescent protein fused to HSV1 thymidine kinase) or the cDNA encoding rat IGF-1, both driven by the mCMV promoter. The vectors were injected into the lateral ventricles of young rats and chimeric GFP expression in brain sections was assessed by fluorescence microscopy. The ependymal cell marker vimentin was detected by immunofluorescence and nuclei were labeled with the DNA dye DAPI. Blood and CSF samples were drawn at different times post vector injection. In all cerebral ventricles, vimentin immunoreactive cells of the ependyma were predominantly transduced by RAd-(TK/GFP)fus, showing nuclear and cytoplasmic expression of the transgene. For tanycytes (TK/GFP)fus expression was evident in their cytoplasmic processes as they penetrated deep into the hypothalamic parenchyma. Intracerebroventricular injection of RAd-IGF-1 induced high levels of IGF-1 in the CSF but not in serum. We conclude that the ependymal route constitutes an effective approach for implementing experimental IGF-1 gene therapy in the brain. PMID:19531373

  11. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    PubMed

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells. PMID:27424222

  12. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  13. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  14. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    PubMed Central

    Connelley, Timothy; Aerts, Jan; Law, Andy; Morrison, W Ivan

    2009-01-01

    Background Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes

  15. Gene arrangement at the Rhesus blood group locus of chimpanzees detected by fiber-FISH.

    PubMed

    Suto, Y; Ishikawa, Y; Hyodo, H; Ishida, T; Kasai, F; Tanoue, T; Hayasaka, I; Uchikawa, M; Juji, T; Hirai, M

    2003-01-01

    The Rhesus (Rh) blood group system in humans is encoded by two genes with high sequence homology. These two genes, namely, RHCE and RHD, have been implied to be duplicated during evolution. However, the genomic organization of Rh genes in chimpanzees and other nonhuman primates has not been precisely studied. We analyzed the arrangement of the Rh genes of chimpanzees (Pan troglodytes) by two-color fluorescence in situ hybridization on chromatin DNA fibers (fiber-FISH) using two genomic DNA probes that respectively contain introns 3 and 7 of human RH genes. Among the five chimpanzees studied, three were found to be homozygous for the two-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5'). Although a similar gene arrangement can be detected in the RH gene locus of typical Rh-positive humans, the distance between the two genes in chimpanzees was about 50 kb longer than that in humans. The remaining two chimpanzees were homozygous for a four-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5') - Rh (3'<--5') - Rh (3'<--5') within a region spanning about 300 kb. This four-Rh-gene type has not been detected in humans. Further analysis of other great apes showed different gene arrangements: a bonobo was homozygous for the three-Rh-gene type; a gorilla was heterozygous for the one-Rh- and two-Rh-gene types; an orangutan was homozygous for the one-Rh-gene type. Our findings on the intra- and interspecific genomic variations in the Rh gene locus in Hominoids would shed further light on reconstructing the genomic pathways of Rh gene duplication during evolution. PMID:14610358

  16. Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus

    PubMed Central

    McLellan, Andrew S; Fischer, Beate; Dveksler, Gabriela; Hori, Tomomi; Wynne, Freda; Ball, Melanie; Okumura, Katsuzumi; Moore, Tom; Zimmermann, Wolfgang

    2005-01-01

    Background The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. Results We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. Conclusion We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus

  17. Locus of the Pseudomonas aeruginosa toxin A gene.

    PubMed Central

    Hanne, L F; Howe, T R; Iglewski, B H

    1983-01-01

    The gene for Pseudomonas aeruginosa toxin A has been mapped in the late region of the chromosome of strain PAO. Strain PAO-PR1, which produces parental levels of toxin A antigen that is enzymatically inactive and nontoxic, was used as the donor for R68.45 plasmid-mediated genetic exchange. Strain PAO-PR1 (toxA1) was mated with toxin A-producing strains, and exconjugates for selected prototrophic markers were tested for the transfer of toxA1. The toxA1 gene was located between cnu-9001 and pur-67 at approximately 85 min on the PAO chromosome. PMID:6403508

  18. Mining Disease-Resistance Genes in Roses: Functional and Molecular Characterization of the Rdr1 Locus

    PubMed Central

    Terefe-Ayana, Diro; Yasmin, Aneela; Le, Thanh Loan; Kaufmann, Helgard; Biber, Anja; Kühr, Astrid; Linde, Marcus; Debener, Thomas

    2011-01-01

    The interaction of roses with the leaf spot pathogen Diplocarpon rosae (the cause of black spot on roses) is an interesting pathosystem because it involves a long-lived woody perennial, with life history traits very different from most model plants, and a hemibiotrophic pathogen with moderate levels of gene flow. Here we present data on the molecular structure of the first monogenic dominant resistance gene from roses, Rdr1, directed against one isolate of D. rosae. Complete sequencing of the locus carrying the Rdr1 gene resulted in a sequence of 265,477 bp with a cluster of nine highly related TIR–NBS–LRR (TNL) candidate genes. After sequencing revealed candidate genes for Rdr1, we implemented a gene expression analysis and selected five genes out of the nine TNLs. We then silenced the whole TNL gene family using RNAi (Rdr1–RNAi) constructed from the most conserved sequence region and demonstrated a loss of resistance in the normally resistant genotype. To identify the functional TNL gene, we further screened the five TNL candidate genes with a transient leaf infiltration assay. The transient expression assay indicated a single TNL gene (muRdr1H), partially restoring resistance in the susceptible genotype. Rdr1 was found to localize within the muRdr1 gene family; the genes within this locus contain characteristic motifs of active TNL genes and belong to a young cluster of R genes. The transient leaf assay can be used to further analyze the rose black spot interaction and its evolution, extending the analyses to additional R genes and to additional pathogenic types of the pathogen. PMID:22639591

  19. Direct visualization of the highly polymorphic RNU2 locus in proximity to the BRCA1 gene.

    PubMed

    Tessereau, Chloé; Buisson, Monique; Monnet, Nastasia; Imbert, Marine; Barjhoux, Laure; Schluth-Bolard, Caroline; Sanlaville, Damien; Conseiller, Emmanuel; Ceppi, Maurizio; Sinilnikova, Olga M; Mazoyer, Sylvie

    2013-01-01

    Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene. PMID:24146815

  20. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cauliflower Or gene affects plant growth and development in addition to conferring beta-carotene accumulation. This study was undertaken to investigate the molecular basis of the Or gene mutation in controlling plant growth. The OR protein was found to interact with cauliflower and Arabidopsis e...

  1. Non-Locus-Specific Polygenes Giving Responses to Selection for Gene Conversion Frequencies in Ascobolus Immersus

    PubMed Central

    Zwolinski, S. A.; Lamb, B. C.

    1995-01-01

    Selection for higher and lower meiotic conversion frequencies was investigated in the fungus Ascobolus immersus. Strains carrying the same known gene conversion control factors, which have major effects on conversion frequencies at their specific target locus, sometimes gave significant differences in conversion frequency. Selection for high or low conversion frequencies at the w1-78 site was practiced for five generations, giving significant responses in both directions. These responses were due to polygenes, or genes of minor effect, not to new conversion control factors of major effect. Crosses of selected strains to strains with other mutations showed that the genes' effects were not specific to w1-78, but could affect conversion frequencies of another mutation, w1-3C1, at that locus and of two other loci, w-BHj and w9, which are unlinked to w1 or to each other. The proportional changes in gene conversion frequency due to selection varied according to the locus and site involved and according to the conversion control factor alleles present. There were differences of >/=277% in conversion frequency between ``high'' and ``low'' strains. Selection for conversion frequency had little effect on other features of conversion, such as the frequency of postmeiotic segregation or the relative frequencies of conversion to mutant or wild type. PMID:7498769

  2. The nuclear elongation factor-1α gene: a promising marker for phylogenetic studies of Triatominae (Hemiptera: Reduviidae).

    PubMed

    Díaz, Sebastián; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2016-09-01

    Molecular systematics is a remarkable approach for understanding the taxonomic traits and allows the exploration of the inter-population dynamics of several species in the Triatominae subfamily that are involved in Trypanosoma cruzi transmission. Compared to other relevant species that transmit vector-borne diseases, such as some species of the Diptera, there are relatively few nuclear genetic markers available for systematic studies in the Triatominae subfamily. Molecular systematic studies performed on Triatominae are based on mitochondrial gene fragments and, less frequently, on nuclear ribosomal genes or spacers. Due to the fact that these markers can occasionally present problems such as nuclear mitochondrial genes (NUMTs) or intra-genomic variation for high gene copy numbers, it is necessary to use additional nuclear markers to more reliably address the molecular evolution of Triatominae. In this study, we performed phylogenetic analysis using the nuclear elongation factor-1 alpha (EF-1α) gene in individuals from 12 species belonging to the Triatomini and Rhodniini tribes. Genetic diversities and phylogenetic topologies were compared with those obtained for the mitochondrial 16S rRNA and Cytochrome b (cyt b) genes, as well as for the D2 variable region of the ribosomal 28S rRNA gene. These results indicate that the EF-1α marker exhibits an intermediate level of diversity compared to mitochondrial and nuclear ribosomal genes, and that phylogenetic analysis based on EF-1α is highly informative for resolving deep phylogenetic relationships in Triatominae, such as tribe or genera. PMID:27268149

  3. The MAT Locus Genes Play Different Roles in Sexual Reproduction and Pathogenesis in Fusarium graminearum

    PubMed Central

    Juanyu; Zhang; Ma, Jiwen; Wu, Zhongshou; Wang, Guanghui; Wang, Chenfang; Xu, Jin-Rong

    2013-01-01

    Sexual reproduction plays a critical role in the infection cycle of Fusarium graminearum because ascospores are the primary inoculum. As a homothallic ascomycete, F. graminearum contains both the MAT1-1 and MAT1-2-1 loci in the genome. To better understand their functions and regulations in sexual reproduction and pathogenesis, in this study we assayed the expression, interactions, and mutant phenotypes of individual MAT locus genes. Whereas the expression of MAT1-1-1 and MAT12-1 rapidly increased after perithecial induction and began to decline after 1 day post-perithecial induction (dpi), the expression of MAT1-1-2 and MAT1-1-3 peaked at 4 dpi. MAT1-1-2 and MAT1-1-3 had a similar expression profile and likely are controlled by a bidirectional promoter. Although none of the MAT locus genes were essential for perithecium formation, all of them were required for ascosporogenesis in self-crosses. In outcrosses, the mat11-1-2 and mat11-1-3 mutants were fertile but the mat1-1-1 and mat1-2-1 mutants displayed male- and female-specific defects, respectively. The mat1-2-1 mutant was reduced in FgSO expression and hyphal fusion. Mat1-1-2 interacted with all other MAT locus transcription factors, suggesting that they may form a protein complex during sexual reproduction. Mat1-1-1 also interacted with FgMcm1, which may play a role in controlling cell identity and sexual development. Interestingly, the mat1-1-1 and mat1-2-1 mutants were reduced in virulence in corn stalk rot assays although none of the MAT locus genes was important for wheat infection. The MAT1-1-1 and MAT1-2-1 genes may play a host-specific role in colonization of corn stalks. PMID:23826182

  4. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum.

    PubMed

    Zheng, Qian; Hou, Rui; Juanyu; Zhang; Ma, Jiwen; Wu, Zhongshou; Wang, Guanghui; Wang, Chenfang; Xu, Jin-Rong

    2013-01-01

    Sexual reproduction plays a critical role in the infection cycle of Fusarium graminearum because ascospores are the primary inoculum. As a homothallic ascomycete, F. graminearum contains both the MAT1-1 and MAT1-2-1 loci in the genome. To better understand their functions and regulations in sexual reproduction and pathogenesis, in this study we assayed the expression, interactions, and mutant phenotypes of individual MAT locus genes. Whereas the expression of MAT1-1-1 and MAT12-1 rapidly increased after perithecial induction and began to decline after 1 day post-perithecial induction (dpi), the expression of MAT1-1-2 and MAT1-1-3 peaked at 4 dpi. MAT1-1-2 and MAT1-1-3 had a similar expression profile and likely are controlled by a bidirectional promoter. Although none of the MAT locus genes were essential for perithecium formation, all of them were required for ascosporogenesis in self-crosses. In outcrosses, the mat11-1-2 and mat11-1-3 mutants were fertile but the mat1-1-1 and mat1-2-1 mutants displayed male- and female-specific defects, respectively. The mat1-2-1 mutant was reduced in FgSO expression and hyphal fusion. Mat1-1-2 interacted with all other MAT locus transcription factors, suggesting that they may form a protein complex during sexual reproduction. Mat1-1-1 also interacted with FgMcm1, which may play a role in controlling cell identity and sexual development. Interestingly, the mat1-1-1 and mat1-2-1 mutants were reduced in virulence in corn stalk rot assays although none of the MAT locus genes was important for wheat infection. The MAT1-1-1 and MAT1-2-1 genes may play a host-specific role in colonization of corn stalks. PMID:23826182

  5. Schizophrenia susceptibility gene locus at Xp22.3.

    PubMed

    Milunsky, J; Huang, X L; Wyandt, H E; Milunsky, A

    1999-06-01

    Multiple genetic loci have been implicated in the search for schizophrenia susceptibility genes, none having been proven as causal. Genetic heterogeneity is probable in the polygenic etiology of schizophrenia. We report on two unrelated Caucasian women with paranoid schizophrenia (meeting Diagnostic and Statistical Manual of Mental Disorders (DSM IV) criteria) who have an Xp22.3 overlapping deletion characterized by fluorescence in situ hybridization (FISH). Patient 1 was previously reported by us (Wyandt HE, Bugeau-Michaud L, Skare JC, Milunsky A. Partial duplication of Xp: a case report and review of previously reported cases. Amer J Med Genet 1991: 40: 280-283) to have a de novo partial duplication of Xp. At that time, she was a 24-year-old woman with short stature, irregular menses, other abnormalities suggestive of Turner syndrome, and paranoid schizophrenia. Recently, FISH analysis demonstrated that she has an inverted duplication (X)(p22.1p11.2) and a microscopic deletion (X)(p22.2p22.3) between DXS1233 and DXS7108 spanning approximately 16-18 cM. Patient 2 is a 14-year-old girl with short stature, learning disabilities, and paranoid schizophrenia. High-resolution chromosome analysis revealed a de novo deletion involving Xp22. FISH analysis showed that the deletion (X)(p22.2p22.3) spanned 10-12 cM between AFMB290XG5 and DXS1060. Given that deletions of Xp22 are not common events, the occurrence of two unrelated schizophrenia patients with an overlapping deletion of this region would be extraordinarily rare. Hence, the deletion within Xp22.3 almost certainly contains a gene involved in the pathogenesis of paranoid schizophrenia. PMID:10450863

  6. The mouse lysosomal membrane protein 1 gene as a candidate for the motorneuron degeneration (mnd) locus

    SciTech Connect

    Bermingham, N.A.; Martin, J.E.; Fisher, E.M.C.

    1996-03-01

    The motorneuron degeneration (mnd) mutation causes one of the few late-onset progressive neurodegenerations in mice; therefore, the mnd mouse is a valuable paradigm for studying neurodegenerative biology. The mnd mutation may also model human neuronal ceroid lipofuscinosis (NCL) or Batten disease. Mnd maps to the centromeric region of mouse chromosome 8, which likely corresponds to portions of human chromosomes 13,8, or 19; we note that the chromosome 13 portion maps close to a region thought to contain the human Type V NCL locus. We have identified candidate genes for the mnd locus from human chromosomes 13, 8, and 19, and we are mapping these genes in the mouse to determine their proximity to the mutated locus and to refine the comparative human-mouse map in this area. A candidate gene from human chromosome 13 is LAMP1, which encodes lysosomal membrane protein 1. We found that Lamp1 in the mouse lies within the region of the mnd mutation. Therefore, we sequenced Lamp1 cDNAs from homozygous mnd mice and unrelated wildtype C57BL/6 mice. We find no differences between the two cDNA species in the regions examined, and expression analysis shows a similar LAMP1 protein distribution in wildtype and mutant mice, suggesting that an abnormal accumulation of material within normal lysosome structures is unlikely to be the pathogenetic mechanism in the mnd mouse. 19 refs., 3 figs.

  7. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene.

    PubMed

    Kim, Min-Jung; Lim, Gah-Hyun; Kim, Eun-Seon; Ko, Chang-Beom; Yang, Kwang-Yeol; Jeong, Jin-An; Lee, Myung-Chul; Kim, Cheol Soo

    2007-03-01

    We conducted a genetic yeast screen to identify salt tolerance (SAT) genes in a maize kernel cDNA library. During the screening, we identified a maize clone (SAT41) that seemed to confer elevated salt tolerance in comparison to control cells. SAT41 cDNA encodes a 16-kDa protein which is 82.4% identical to the Arabidopsis Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. To further examine salinity tolerance in Arabidopsis, we functionally characterized the MBF1a gene and found that dehydration as well as heightened glucose (Glc) induced MBF1a expression. Constitutive expression of MBF1a in Arabidopsis led to elevated salt tolerance in transgenic lines. Interestingly, plants overexpressing MBF1a exhibited insensitivity to Glc and resistance to fungal disease. Our results suggest that MBF1a is involved in stress tolerance as well as in ethylene and Glc signaling in Arabidopsis. PMID:17234157

  8. SimPhy: Phylogenomic Simulation of Gene, Locus, and Species Trees

    PubMed Central

    Mallo, Diego; De Oliveira Martins, Leonardo; Posada, David

    2016-01-01

    We present a fast and flexible software package—SimPhy—for the simulation of multiple gene families evolving under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer—all three potentially leading to species tree/gene tree discordance—and gene conversion. SimPhy implements a hierarchical phylogenetic model in which the evolution of species, locus, and gene trees is governed by global and local parameters (e.g., genome-wide, species-specific, locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating partitioned nucleotide, codon, and protein multilocus sequence alignments under a plethora of substitution models using the program INDELible. We validate SimPhy's output using theoretical expectations and other programs, and show that it scales extremely well with complex models and/or large trees, being an order of magnitude faster than the most similar program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users can find the source code, precompiled executables, a detailed manual and example cases. PMID:26526427

  9. SimPhy: Phylogenomic Simulation of Gene, Locus, and Species Trees.

    PubMed

    Mallo, Diego; De Oliveira Martins, Leonardo; Posada, David

    2016-03-01

    We present a fast and flexible software package--SimPhy--for the simulation of multiple gene families evolving under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer--all three potentially leading to species tree/gene tree discordance--and gene conversion. SimPhy implements a hierarchical phylogenetic model in which the evolution of species, locus, and gene trees is governed by global and local parameters (e.g., genome-wide, species-specific, locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating partitioned nucleotide, codon, and protein multilocus sequence alignments under a plethora of substitution models using the program INDELible. We validate SimPhy's output using theoretical expectations and other programs, and show that it scales extremely well with complex models and/or large trees, being an order of magnitude faster than the most similar program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users can find the source code, precompiled executables, a detailed manual and example cases. PMID:26526427

  10. Associations Between Newly Discovered Polymorphisms of the CEBPD GENE LOCUS and Body Parameters in Sheep.

    PubMed

    Trukhachev, Vladimir; Skripkin, Valentin; Kvochko, Andrey; Kulichenko, Alexander; Kovalev, Dmitry; Pisarenko, Sergey; Volynkina, Anna; Selionova, Marina; Aybazov, Magomet; Golovanova, Natalia; Yatsyk, Olesya; Krivoruchko, Alexander

    2016-10-01

    An understanding of what effects particular genes can have on body parameters in productive animals is particularly significant for the process of marker-assisted selection. The gene of transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD gene) is involved in the process of growth in animals and is known to be a promising candidate for use as a genomic marker. The structure of the CEBPD gene locus was determined using NimbleGen sequencing technology (Roche, USA). The effect of polymorphisms, which were identified using the aforementioned technology, was investigated in 30 rams of the Manych Merino sheep breed. Twenty-two single nucleotide polymorphisms (SNP) were detected in the CEBPD gene locus. Significantly, two SNPs, namely, g.315T>G and g.327C>T, have been identified for the first time. It was demonstrated that the complex of linked SNPs, consisting of g.301A>T, g.426T>C, and g.1226T>C, had a negligible effect on body parameters in Manych Merino sheep. Animals with the heterozygous type of SNP g.1142C>T exhibited changes solely in the chest and croup width. The newly discovered SNP g.327C>T was proven to have a negative effect on live weight and body size (p < 0.05) in Manych Merino sheep. Sheep with the heterozygous type of g.562G>A and g.3112C>G SNP complex showed an increase in live weight and dimensions (p < 0.05) compared with those of wild homozygous type. Consequently, SNPs g.327C>T, g.562G>A, and g.3112C>G in the CEBPD gene locus can be successfully used as markers in sheep breeding. Future research will evaluate the influence of the aforementioned SNPs on slaughter indicators for sheep meat production. PMID:27565864

  11. The human growth hormone gene is regulated by a multicomponent locus control region

    SciTech Connect

    Jones, B.; Cooke, N.E.; Liebhaber, S.A.; Monks, B.R.

    1995-12-01

    This article describes research involving the five-member human growth hormone (hGH)/chorionic somatomammotropin (hCS) gene cluster and its expression in the placenta. The results indicate that interactions among multiple elements are required to restrict hGH transcription to the pituitary and generate appropriate levels of expression in the mouse genome. In addition, the results suggest a role for shared and unique regulatory sequences in locus control region-mediated expression of the hGH/hCS gene cluster in the pituitary and possibly the placenta. 67 refs., 9 figs.

  12. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation

    PubMed Central

    Bell, Charles C.; Amaral, Paulo P.; Kalsbeek, Anton; Magor, Graham W.; Gillinder, Kevin R.; Tangermann, Pierre; di Lisio, Lorena; Cheetham, Seth W.; Gruhl, Franziska; Frith, Jessica; Tallack, Michael R.; Ru, Ke-Lin; Crawford, Joanna; Mattick, John S.; Dinger, Marcel E.; Perkins, Andrew C.

    2016-01-01

    Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis. PMID:27226347

  13. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation.

    PubMed

    Bell, Charles C; Amaral, Paulo P; Kalsbeek, Anton; Magor, Graham W; Gillinder, Kevin R; Tangermann, Pierre; di Lisio, Lorena; Cheetham, Seth W; Gruhl, Franziska; Frith, Jessica; Tallack, Michael R; Ru, Ke-Lin; Crawford, Joanna; Mattick, John S; Dinger, Marcel E; Perkins, Andrew C

    2016-01-01

    Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis. PMID:27226347

  14. Association between polymorphism in the melanocortin 1 receptor gene and E locus plumage color phenotype.

    PubMed

    Dávila, S G; Gil, M G; Resino-Talaván, P; Campo, J L

    2014-05-01

    The purpose of this study was to investigate the effect of the melanocortin 1 receptor (MC1R) gene on plumage color in chickens. The gene was sequenced in 77 males and 77 females from 13 Spanish breeds, carrying 6 different alleles in the E locus (E*E, E*R, E*WH, E*N, E*B, E*BC), a recessive wheaten (yellowish-white) tester line (E*Y), and a White Leghorn population (heterozygous E*E). A total of 11 significant SNP were detected. Nine of them were nonsynonymous (T212C, G274A, G376A, T398AC, G409A, A427G, C637T, A644C, and G646A, corresponding to amino acid changes Met72Thr, Glu92Lys, Val126Ile, Leu133GlnPro, Ala137Thr, Thr143Ala, Arg213Cys, His215Pro, and Val216Ile), and 2 were synonymous (C69T and C834T). With respect to the significant SNP, 7 had an allelic frequency of 0.5 or greater for some of the alleles at the E locus. These results indicated a significant correlation between MC1R polymorphism and the presence of different alleles at the E locus. All the populations carrying the E*E or E*R alleles, except the Birchen Leonesa, had the G274A polymorphism. Eleven haplotypes were made with 7 of the significant SNP. The distribution of these haplotypes in the different alleles of the E locus showed that each haplotype was predominantly associated to one allele. The number of haplotypes was greatest for the Black Menorca, Birchen Leonesa, and Blue Andaluza breeds, whereas the Quail Castellana and Red-barred Vasca breeds were monomorphic. Our results suggested that the Glu92Lys mutation may be responsible of the activation of the receptor for eumelanin production, being necessary but not sufficient to express the extended black phenotype. They also suggested that the Arg213Cys mutation may be the cause of the loss or the decrease of function of the receptor to produce eumelanin, and the Ala137Thr mutation may be a candidate to attenuate the Glu92Lys effect. The observed co-segregation of the E locus alleles and polymorphisms in MC1R confirms that the E locus is

  15. Locus for a human hereditary cataract is closely linked to the. gamma. -crystallin gene family

    SciTech Connect

    Lubsen, N.H.; Renwick, J.H.; Tsui, L.C.; Breitman, M.L.; Schoenmakers, J.G.G.

    1987-01-01

    Within the human ..gamma..-crystallin gene cluster polymorphic Taq I sites are present. These give rise to three sets of allelic fragments from the ..gamma..-crystallin genes. Together these restriction fragment length polymorphisms define eight possible haplotypes, three of which (Q, R, and S) were found in the Dutch and English population. A fourth haplotype (P) was detected within a family in which a hereditary Coppock-like cataract of the embryonic lens nucleus occurs in heterozygotes. Haplotype P was found only in family members who suffered from cataract, and all family members who suffered from cataract had haplotype P. The absolute correlation between the presence of haplotype P and cataract within this family shows that the ..gamma..-crystallin gene cluster and the locus for the Coppock-like cataract are closely linked. This linkage provides genetic evidence that the primary cause of a cataract in humans could possibly be a lesion in a crystallin gene.

  16. Actin-dependent intranuclear repositioning of an active gene locus in vivo

    PubMed Central

    Dundr, Miroslav; Ospina, Jason K.; Sung, Myong-Hee; John, Sam; Upender, Madhvi; Ried, Thomas; Hager, Gordon L.; Matera, A. Gregory

    2007-01-01

    Although bulk chromatin is thought to have limited mobility within the interphase eukaryotic nucleus, directed long-distance chromosome movements are not unknown. Cajal bodies (CBs) are nuclear suborganelles that nonrandomly associate with small nuclear RNA (snRNA) and histone gene loci in human cells during interphase. However, the mechanism responsible for this association is uncertain. In this study, we present an experimental system to probe the dynamic interplay of CBs with a U2 snRNA target gene locus during transcriptional activation in living cells. Simultaneous four-dimensional tracking of CBs and U2 genes reveals that target loci are recruited toward relatively stably positioned CBs by long-range chromosomal motion. In the presence of a dominant-negative mutant of β-actin, the repositioning of activated U2 genes is markedly inhibited. This supports a model in which nuclear actin is required for these rapid, long-range chromosomal movements. PMID:18070915

  17. Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1

    PubMed Central

    Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.

    2014-01-01

    The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176

  18. Identification of novel steroidogenic factor 1 (SF-1)-target genes and components of the SF-1 nuclear complex.

    PubMed

    Mizutani, Tetsuya; Kawabe, Shinya; Ishikane, Shin; Imamichi, Yoshitaka; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-06-15

    Steroidogenic factor 1 (SF-1) is a master regulator of adrenal and reproductive development and function. Although SF-1 was identified as a transcriptional regulator for steroid metabolic enzymes, it has been shown that SF-1 also regulates other genes that are involved in various cellular processes. Previously, we showed that introduction of SF-1 into mesenchymal stem cells resulted in the differentiation of these cells to the steroidogenic lineage. By using this method of differentiation, we performed comprehensive analyses to identify the novel SF-1-target genes and components of the SF-1 nuclear complex. Genome-wide analyses with promoter tiling array and DNA microarray identified 10 genes as novel SF-1-target genes including glutathione S-transferase A family, 5-aminolevulinic acid synthase 1 and ferredoxin reductase. Using SF-1 immuno-affinity chromatography of nuclear proteins followed by MS/MS analysis, we identified 24 proteins including CCAAT/enhancer-binding protein β as components of SF-1 nuclear complex. In this review, we will describe novel roles of the newly identified genes for steroidogenesis. PMID:25463758

  19. Mice devoid of interferon regulatory factor 1 (IRF-1) show normal expression of type I interferon genes.

    PubMed Central

    Reis, L F; Ruffner, H; Stark, G; Aguet, M; Weissmann, C

    1994-01-01

    The transcription factor interferon regulatory factor 1 (IRF-1) binds tightly to the interferon (IFN)-beta promoter and has been implicated in the induction of type I IFNs. We generated mice devoid of functional IRF-1 by targeted gene disruption. As reported by others, IRF-1-deficient mice showed a discrete phenotype: the CD4/CD8 ratio was increased and IFN-gamma-induced levels of macrophage iNO synthase mRNA were strongly diminished. However, type I IFN induction in vivo by virus or double-stranded RNA was unimpaired, as evidenced by serum IFN titers and IFN mRNA levels in spleen, liver and lung. There was also no impairment in the response of type I IFN-inducible genes. Therefore, IRF-1 is not essential for these processes in vivo. Images PMID:7957048

  20. Chenodeoxycholic Acid Reduces Hypoxia Inducible Factor-1α Protein and Its Target Genes.

    PubMed

    Moon, Yunwon; Choi, Su Mi; Chang, Soojeong; Park, Bongju; Lee, Seongyeol; Lee, Mi-Ock; Choi, Hueng-Sik; Park, Hyunsung

    2015-01-01

    This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein. PMID:26098428

  1. Organization of the V gene segments in mouse T-cell antigen receptor [alpha]/[delta] locus

    SciTech Connect

    Wang, K.; Klotz, J.L.; Kiser, G.; Bristol, G.; Hays, E.; Lai, E.; Gese, E.; Kronenberg, M.; Hood, L. )

    1994-04-01

    The mouse T-cell receptor (TCR) [alpha]/[delta] was mapped using 17 V[alpha] and 4 V[delta] subfamily-specific probes. Four complementary methods were used: (1) an estimate of the V gene repertoire by Southern blot analysis of genomic DNA with subfamily-specific probes; (2) an analysis of V gene segments deleted by TCR gene rearrangements from a panel of T-cell tumors and hybridomas; (3) an analysis of overlapping clusters of cosmid clones; and (4) an analysis of large DNA fragments separated by field-inversion gel electrophoresis. The [alpha]/[delta] locus spans about 1 Mb. The distance between the 3[prime]-most V gene segments (V[delta]1) and the [delta] constant gene (C[delta]) is no more than 150 kb. Sixty-six V gene segments have been mapped physically on cosmids. The members of individual V[alpha] gene segments subfamilies are dispersed throughout the locus. In contrast, the V[delta] gene segments V[delta]1 to 5 are clustered at the 3[prime] end of the V gene segments cluster. At least two DNA segment duplications, 45 to 80 kb in length, are present in the locus. These data provide information on the evolution of the [alpha]/[delta] locus and on organizational features that might influence the expression of specific V gene segments in [gamma][delta] cells. 35 refs., 5 figs., 2 tabs.

  2. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    SciTech Connect

    Halaban, R.; Moellmann, G. )

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  3. A genomewide screen for chronic rhinosinusitis genes identifies a locus on chromosome 7q

    PubMed Central

    Pinto, Jayant M.; Hayes, M. Geoffrey; Schneider, Daniel; Naclerio, Robert M.; Ober, Carole

    2014-01-01

    Background Chronic rhinosinusitis is an important public health problem with substantial impact on patient quality of life and health care costs. We hypothesized that genetic variation may be one factor that affects this disease. Objective To identify genetic variation underlying susceptibility to chronic rhinosinusitis using a genome-wide approach. Methods We studied a religious isolate that practices a communal lifestyle and shares common environmental exposures. Using physical examination, medical interviews, and a review of medical records, we identified 8 individuals with chronic rhinosinusitis out of 291 screened. These 8 individuals were related to each other in a single 60 member, 9 generation pedigree. A genome-wide screen for loci influencing susceptibility to chronic rhinosinusitis using 1123 genome-wide markers was conducted. Results The largest linkage peak (P = 0.0023; 127.15 cM, equivalent to LOD=2.01) was on chromosome 7q31.1-7q32.1, 7q31 (127.15 cM; 1-LOD support region: 115cM to 135cM) and included the CFTR locus. Genotyping of 38 mutations in the CFTR gene did not reveal variation accounting for this linkage signal. Conclusion Understanding the genes involved in chronic rhinosinusitis may lead to improvements in its diagnosis and treatment. Our results represent the first genome-wide screen for chronic rhinosinusitis and suggest that a locus on 7q31.1-7q32.1 influences disease susceptibility. This may be the CFTR gene or another nearby locus. PMID:18622306

  4. Dictyostelium ribosomal protein genes and the elongation factor 1B gene show coordinate developmental regulation which is under post-transcriptional control.

    PubMed

    Agarwal, A K; Blumberg, D D

    1999-06-01

    Starvation for amino acids initiates the developmental program in the cellular slime mold, Dictyostelium discoideum [19, 20]. One of the earliest developmental events is the decline in ribosomal protein synthesis [2, 17, 29, 30]. The ribosomal protein mRNAs are excluded from polysomes with 20 min to 1 h following the removal of nutrients, and their mRNA levels decline sharply at about 9 h into the 24-h developmental cycle [28, 31, 35, 36]. It has been generally assumed that the decline in r-protein mRNA levels during late development reflected a decline in the transcription rate [12, 32, 43]. Here we demonstrate that this is not the case. The transcription rates of three ribosomal protein genes, rpL11, rpL23 and rpS9 as well as an elongation factor 1B gene have been determined during growth and development in Dictyostelium. Throughout growth and development the transcription rate of the ribosomal protein genes remains relatively constant at 0.2%-0.5% of the rate of rRNA transcription while the elongation factor 1B gene is transcribed at 0.4%-0.6% of the rRNA rate. This low but constant transcription rate is in contrast to a spore coat protein gene Psp D, which is transcribed at 6% of the rRNA rate in late developing cells. The elongation factor 1B gene appears to be co-regulated with the ribosomal protein genes both in terms of its transcription rate and mRNA accumulation. Dictyostelium has been a popular model for understanding signal transduction and the growth to differentiation transition, thus it is of significance that the regulation of ribosome biosynthesis in Dictyostelium resembles that of higher eukaryotes in being regulated largely at the post-transcriptional level in response to starvation as opposed to yeasts where the regulation is largely transcriptional [27]. PMID:10374261

  5. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence.

    PubMed Central

    Engebrecht, J; Silverman, M

    1987-01-01

    Production of light by the marine bacterium Vibrio fischeri and by recombinant hosts containing cloned lux genes is controlled by the density of the culture. Density-dependent regulation of lux gene expression has been shown to require a locus consisting of the luxR and luxI genes and two closely linked divergent promoters. As part of a genetic analysis to understand the regulation of bioluminescence, we have sequenced the region of DNA containing this control circuit. Open reading frames corresponding to luxR and luxI were identified; transcription start sites were defined by S1 nuclease mapping and sequences resembling promoter elements were located. Images PMID:3697093

  6. A distal locus element mediates IFN-γ priming of LPS-stimulated TNF gene expression

    PubMed Central

    Chow, Nancy A.; Jasenosky, Luke D.; Goldfeld, Anne E.

    2014-01-01

    SUMMARY IFN-γ priming sensitizes monocytes/macrophages to lipopolysaccharide (LPS) stimulation, resulting in augmented expression of a set of genes including TNF. Here, we demonstrate that IFN-γ priming of LPS-stimulated TNF transcription requires a distal TNF/LT locus element 8 kb upstream of the TNF transcription start site (hHS-8). IFN-γ stimulation leads to increased DNase I accessibility of hHS-8 and its recruitment of IRF1, and subsequent LPS stimulation enhances H3K27 acetylation and induces enhancer RNA synthesis at hHS-8. Ablation of IRF1 or targeting the hHS-8 IRF1 binding site in vivo with Cas9 linked to the KRAB repressive domain abolishes IFN-γ priming while LPS induction of the gene is unaffected. Thus, IFN-γ poises a distal enhancer in the TNF/LT locus by chromatin remodeling and IRF1 recruitment, which then drives enhanced TNF gene expression in response to a secondary TLR stimulus. PMID:25482561

  7. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    SciTech Connect

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S.

    1994-09-01

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, but the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.

  8. Variant forms of the binary toxin CDT locus and tcdC gene in Clostridium difficile strains.

    PubMed

    Stare, Barbara Geric; Delmée, Michel; Rupnik, Maja

    2007-03-01

    Variability in the genes for toxin A, toxin B and other pathogenicity locus regions is well known and is the basis for the distribution of Clostridium difficile strains into variant toxinotypes. Previous data have indicated that some C. difficile strains have a non-functional truncated form of the binary toxin (CDT) locus. This study analysed variability in the CDT locus and the presence of deleted tcdC genes in C. difficile strains. A total of 146 strains were screened, including known variant toxinotypes and non-variant A+B+ (toxinotype 0) and A-B- C. difficile strains. In all of the strains studied, only two forms of the CDT locus were found: a full-length 4.3 kb fragment encoding the functional binary toxin or a truncated 2.3 kb fragment. Whilst the full-length CDT locus was found almost exclusively in variant toxinotypes, the truncated form was detected in 79% of toxinotype 0 strains. Non-toxinogenic A-B- strains with a truncated version were not found and only rarely possessed the full-length CDT locus (A-B-CDT+ strains). Four different forms of the tcdC gene were found; three represented deleted versions and typically were found in toxinotypes III-VII, XI, XIV-XVI and XXIV. PMID:17314362

  9. Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development.

    PubMed

    Fiorino, Antonio; Manenti, Giacomo; Gamba, Beatrice; Bucci, Gabriele; De Cecco, Loris; Sardella, Michele; Buscemi, Giacomo; Ciceri, Sara; Radice, Maria T; Radice, Paolo; Perotti, Daniela

    2016-09-01

    Retina-derived POU domain Factor 1 (RPF-1), a member of POU transcription factor family, is encoded by POU6F2 gene, addressed by interstitial deletions at chromosome 7p14 in Wilms tumor (WT). Its expression has been detected in developing kidney and nervous system, suggesting an early role for this gene in regulating development of these organs. To investigate into its functions and determine its role in transcriptional regulation, we generated an inducible stable transfectant from HEK293 cells. RPF-1 showed nuclear localization, elevated stability, and transactivation of promoters featuring POU consensus sites, and led to reduced cell proliferation and in vivo tumor growth. By addressing the whole transcriptome regulated by its induction, we could detect a gross alteration of gene expression that is consistent with promoter occupancy predicted by genome-wide Chip-chip analysis. Comparison of bound regulatory regions with differentially expressed genes allowed identification of 217 candidate targets. Enrichment of divergent octamers in predicted regulatory regions revealed promiscuous binding to bipartite POUS and POUH consensus half-sites with intervening spacers. Gel-shift competition assay confirmed the specificity of RPF-1 binding to consensus motifs, and demonstrated that the Ser-rich region upstream of the POU domain is indispensable to achieve DNA-binding. Promoter-reporter activity addressing a few target genes indicated a dependence by RPF-1 on transcriptional response. In agreement with its expression in developing kidney and nervous system, the induced transcriptome appears to indicate a function for this protein in early renal differentiation and neuronal cell fate, providing a resource for understanding its role in the processes thereby regulated. PMID:27425396

  10. THE WHEAT D-GENOME HMW-GLUTENIN LOCUS:BAC SEQUENCING, GENE DISTRIBUTION, AND RETROTRANSPOSON CLUSTERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial-artificial-chromosome (BAC) clone from the genome of Triticum tauschii, the D-genome ancestor of hexaploid bread wheat, was sequenced and the presence of the two paralogous x- and y- type high-molecular-weight (HMW) glutenin genes of the Glu-D1 locus was confirmed. These two genes occur...

  11. GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D.

    PubMed Central

    Jolly, C J; Glenn, G M; Rahman, S

    1996-01-01

    An important determinant of wheat grain quality is the hardness of the grain. The trait is controlled by a major locus, Ha, on the short arm of chromosome 5D. Purified starch granules from soft-grained wheats have associated with them 15-kDa polypeptides called grain softness proteins (GSPs) or "friabilins." Genes that encode one family of closely related GSP polypeptides - GSP-1 genes - were mapped using chromosome substitution lines to the group 5 chromosomes. An F2 population segregating for hard and soft alleles at the Ha locus on a near-isogenic background was used in a single-seed study of the inheritance of grain softness and of GSP-1 alleles. Grain softness versus grain hardness was inherited in a 3:1 ratio. The presence versus absence of GSPs in single seed starch preparations was coinherited with grain softness versus hardness. This showed that grain softness is primarily determined by seed, and not by maternal, genotype. In addition, no recombination was detected in 44 F2 plants between GSP-1 restriction fragment length polymorphisms and Ha alleles. Differences between hard and soft wheat grains in membrane structure and lipid extractability have been described and, of the three characterized proteins that are part of the mixture of 15-kDa polypeptides called GSPs, at least two, and probably all three, are proteins that bind polar lipids. The data are interpreted to suggest that the Ha locus may encode one or more members of a large family of lipid-binding proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8637887

  12. Amplification of the murine mdr2 gene and a reconsideration of the structure of the murine mdr gene locus.

    PubMed

    Kirschner, L S

    1995-01-01

    A common feature of cells selected in vitro for the multidrug resistance (MDR) phenotype is the amplification and concomitant overexpression of the mdr genes. In murine macrophage-like J774.2-derived MDR cell lines, there is a good correlation between levels of amplification and expression for the mdr1b gene, but not for the other two gene family members, mdr1a and mdr2. To understand this phenomenon better, a study of the amplification and expression of the mdr2 gene was undertaken. Southern blotting of genomic DNAs from a series of six MDR cell lines revealed that five of these lines had 5'-end amplification of mdr2, whereas only three contained 3'-end amplification. The analysis also suggested the involvement of a recombination hot-spot in this phenomenon. Despite the observation that the ratio between the number of copies of the 5' and 3' ends of the gene differs among cell lines, the ratio of 5' to 3' end transcription of mdr2 was approximately 1 in all cell lines. An analysis of promoter methylation in MDR cell lines demonstrated that this mechanism may play a role in regulating the transcription of mdr2, but not of mdr1b. Long-range mapping of the mdr locus in parental and amplified cell lines suggested that the three mdr genes are oriented in the same direction, and also revealed the presence of a number of rearrangement events. Models for the murine mdr gene locus in wild-type cells and in a cell line containing a rearrangement are presented. PMID:7832992

  13. Locus Characterization and Gene Expression of Bovine FNDC5: Is the Myokine Irisin Relevant in Cattle?

    PubMed Central

    Komolka, Katrin; Albrecht, Elke; Schering, Lisa; Brenmoehl, Julia; Hoeflich, Andreas; Maak, Steffen

    2014-01-01

    The transmembrane protein FNDC5 was recently characterized as precursor of an exercise induced myokine named irisin. Previous studies found a relationship between circulating irisin levels and muscle mass in humans. Consequently, we tested the hypothesis whether FNDC5/irisin is involved in the modulation of body composition in cattle. Since information on the bovine FNDC5 locus was scarce, we characterized the gene experimentally as prerequisite for these investigations. We provide here a revised and extended gene model for bovine FNDC5. Although similarly organized like the human and murine loci, a higher variability was observed at transcript level in the bovine locus. FNDC5 mRNA was abundant in bovine skeletal muscle and was detected at lower levels in adipose tissue and liver. There were no expression differences between two groups of bulls highly different in muscularity and adiposity. Full-length FNDC5 protein (25 kDa) was present in bovine skeletal muscle independent of muscularity. Neither FNDC5 nor its putatively secreted peptide irisin were found in circulation of bulls. In contrast, we demonstrated that FNDC5 (25 kDa) and irisin (12 kDa) were present in murine skeletal muscle and that irisin was circulating in murine serum. This indicates fundamental differences in the regulation of FNDC5 and irisin between rodents and cattle. PMID:24498244

  14. Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.

    PubMed

    Marx, Hans; Mecklenbräuker, Astrid; Gasser, Brigitte; Sauer, Michael; Mattanovich, Diethard

    2009-12-01

    The yeast Pichia pastoris is a widely used host organism for heterologous protein production. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number integrants of P. pastoris are achievable only by screening of random events or by cloning of gene concatemers. Methods for rapid and reliable multicopy integration of the expression cassette are therefore desirable. Here we present such a method based on vector integration into the rDNA locus and post-transformational vector amplification by repeated selection on increased antibiotic concentrations. Data are presented for two exemplary products: human serum albumin, which is secreted into the supernatant, and human superoxide dismutase, which is accumulated in the cytoplasm of the cells. The striking picture evolving is that intracellular protein production is tightly correlated with gene copy number, while use of the secretory pathway introduces a high clonal variability and the correlation with gene copy number is valid only for low gene copy numbers. PMID:19799640

  15. Prostaglandin E2 Via Steroidogenic Factor-1 Coordinately Regulates Transcription of Steroidogenic Genes Necessary for Estrogen Synthesis in Endometriosis

    PubMed Central

    Attar, Erkut; Tokunaga, Hideki; Imir, Gonca; Yilmaz, M. Bertan; Redwine, David; Putman, Michael; Gurates, Bilgin; Attar, Rukset; Yaegashi, Nobuo; Hales, Dale B.; Bulun, Serdar E.

    2009-01-01

    Context: Products of at least five specific steroidogenic genes, including steroidogenic acute regulatory protein (StAR), which facilitates the entry of cytosolic cholesterol into the mitochondrion, side chain cleavage P450 enzyme, 3β-hydroxysteroid-dehydrogenase-2, 17-hydroxylase/17-20-lyase, and aromatase, which catalyzes the final step, are necessary for the conversion of cholesterol to estrogen. Expression and biological activity of StAR and aromatase were previously demonstrated in endometriosis but not in normal endometrium. Prostaglandin E2 (PGE2) induces aromatase expression via the transcriptional factor steroidogenic factor-1 (SF1) in endometriosis, which is opposed by chicken-ovalbumin upstream-transcription factor (COUP-TF) and Wilms’ tumor-1 (WT1) in endometrium. Objective: The aim of the study was to demonstrate a complete steroidogenic pathway leading to estrogen biosynthesis in endometriotic cells and the transcriptional mechanisms that regulate basal and PGE2-stimulated estrogen production in endometriotic cells and endometrium. Results: Compared with normal endometrial tissues, mRNA levels of StAR, side chain cleavage P450, 3β-hydroxysteroid-dehydrogenase-2, 17-hydroxylase/17-20-lyase, aromatase, and SF1 were significantly higher in endometriotic tissues. PGE2 induced the expression of all steroidogenic genes; production of progesterone, estrone, and estradiol; and StAR promoter activity in endometriotic cells. Overexpression of SF1 induced, whereas COUP-TFII or WT1 suppressed, StAR promoter activity. PGE2 induced coordinate binding of SF1 to StAR and aromatase promoters but decreased COUP-TFII binding in endometriotic cells. COUP-TFII or WT1 binding to both promoters was significantly higher in endometrial compared with endometriotic cells. Conclusion: Endometriotic cells contain the full complement of steroidogenic genes for de novo synthesis of estradiol from cholesterol, which is stimulated by PGE2 via enhanced binding of SF1 to promoters

  16. An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts.

    PubMed Central

    Boyes, D C; Nasrallah, J B

    1995-01-01

    The self-incompatibility locus of Brassica consists of a coadapted gene complex that contains at least two genes required for the recognition and inhibition of pollen by the stigma when self-pollinated. Here, we report the identification of a third S locus-linked gene from the S2 haplotype of Brassica oleracea. This gene, which we designated SLA (for S Locus Anther), is a novel gene with an unusual structure. SLA is transcribed from two promoters to produce two complementary anther-specific transcripts, one spliced and the other unspliced, that accumulate in an antiparallel manner in developing microspores and anthers. The sequence of the spliced transcript showed the presence of two open reading frames that predict proteins of 10 and 7.5 kD. Neither transcript was produced in a self-compatible B. napus strain carrying an S2-like haplotype, indicating that the SLA gene in this strain is nonfunctional. Interestingly, sequences related to SLA were not detected in DNA or RNA from plants carrying S haplotypes other than S2. The haplotype specificity of SLA, its anther-specific expression, and its physical linkage to the S locus are properties expected for a gene that encodes a determinant of S2 specificity in pollen. PMID:7549484

  17. [BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs].

    PubMed

    Song, Shaozheng; Zhu, Mengmin; Yuan, Yuguo; Rong, Yao; Xu, Sheng; Chen, Si; Mei, Junyan; Cheng, Yong

    2016-03-01

    To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk. PMID:27349115

  18. Towards cloning the WAS-gene locus: YAC-contigs and PFGE analysis

    SciTech Connect

    Meindi, A.; Schindelhauer, D.; Hellebrand, H.

    1994-09-01

    Patients with X-linked recessive Wiskott-Aldrich syndrome (WAS) manifest eczema, thrombocytopenia and severe immunodeficiency. Mapping studies place the WAS gene locus between the markers TIMP and DXS255 which both have been shown to be recombinant with the disease locus. Linkage analysis in eight families including a large Swiss family showed tight linkage of the disease to the loci DXS255 and DXS1126 and exclusion of TIMP as well as polymorphic loci adjacent to the OATL1 pseudogene cluster (e.g., DXS6616). Physical mapping with established YAC contigs and a radiation hybrid encompassing the Xp11.22-11.3 region revealed the loci order TIMP-PFC-elk1-DXS1367-DXS6616-OATL1-(DXS11260DXS226)-C5-3-TGE-3, SYP and (DXS255-DXS146). The markers TIMP and C5-3 are contained on the same 1.6 Mb MluI-fragment. A novel expressed sequence (R1) could be placed between elk-1 and the PFC gene while the STS C5-3 could be localized adjacent to DXS1126. The gene cluster around DXS1126 could be connected with the TFE-3 and synaptophysin genes which map on the same 400 kb MluI fragment and two overlapping YACs. The minimum distance between SYP and DXS255 is 1.2 Mb; the maximum distance is 2.2 Mb. Expressed sequences which are obtained from a cosmid contig around DXS1126 and C5-3 are being used for mutation screening in WAS patients.

  19. Physical linkage of a GABAA receptor subunit gene to the DXS374 locus in human Xq28.

    PubMed Central

    Bell, M V; Bloomfield, J; McKinley, M; Patterson, M N; Darlison, M G; Barnard, E A; Davies, K E

    1989-01-01

    We report the physical linkage of the gene encoding one of the subunits of the GABAA receptor (GABRA3) to the polymorphic locus DXS374 on the human X chromosome at Xq28. X-linked manic depression and other psychiatric disorders have been mapped to this region, and thus GABRA3 is a potential candidate gene for these disorders. DXS374--and therefore GABRA3--lies distal to the fragile X locus at a recombination fraction of approximately .15. Images Figure 1 Figure 2 PMID:2574000

  20. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii

    PubMed Central

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  1. HOS1, a genetic locus involved in cold-responsive gene expression in arabidopsis.

    PubMed Central

    Ishitani, M; Xiong, L; Lee, H; Stevenson, B; Zhu, J K

    1998-01-01

    Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time. PMID:9668134

  2. Generation of Antigenic Variants via Gene Conversion: Evidence for Recombination Fitness Selection at the Locus Level in Anaplasma marginale▿

    PubMed Central

    Futse, James E.; Brayton, Kelly A.; Nydam, Seth D.; Palmer, Guy H.

    2009-01-01

    Multiple bacterial and protozoal pathogens utilize gene conversion to generate antigenically variant surface proteins to evade immune clearance and establish persistent infection. Both the donor alleles that encode the variants following recombination into an expression site and the donor loci themselves are under evolutionary selection: the alleles that encode variants that are sufficiently antigenically unique yet retain growth fitness and the loci that allow efficient recombination. We examined allelic usage in generating Anaplasma marginale variants during in vivo infection in the mammalian reservoir host and identified preferential usage of specific alleles in the absence of immune selective pressure, consistent with certain individual alleles having a fitness advantage for in vivo growth. In contrast, the loci themselves appear to have been essentially equally selected for donor function in gene conversion with no significant effect of locus position relative to the expression site or origin of replication. This pattern of preferential allelic usage but lack of locus effect was observed independently for Msp2 and Msp3 variants, both generated by gene conversion. Furthermore, there was no locus effect observed when a single locus contained both msp2 and msp3 alleles in a tail-to-tail orientation flanked by a repeat. These experimental results support the hypothesis that predominance of specific variants reflects in vivo fitness as determined by the encoding allele, independent of locus structure and chromosomal position. Identification of highly fit variants provides targets for vaccines that will prevent the high-level bacteremia associated with acute disease. PMID:19487473

  3. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine.

    PubMed

    Schwander, Florian; Eibach, Rudolf; Fechter, Iris; Hausmann, Ludger; Zyprian, Eva; Töpfer, Reinhard

    2012-01-01

    A population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar 'Solaris' consisting of 265 F1-individuals was genetically mapped using SSR markers and screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two strong QTLs on linkage groups (LGs) 18 and 09. The locus on LG 18 was found to be identical with the previously described locus Rpv3 and is transmitted by Gf.Ga-52-42. 'Solaris' transmitted the resistance-related locus on LG 09 explaining up to 50% of the phenotypic variation in the population. This downy mildew resistance locus is named Rpv10 for resistance to Plasmopara viticola. Rpv10 was initially introgressed from Vitis amurensis, a wild species of the Asian Vitis gene pool. The one-LOD supported confidence interval of the QTL spans a section of 2.1 centi Morgan (cM) corresponding to 314 kb in the reference genome PN40024 (12x). Eight resistance gene analogues (RGAs) of the NBS-LRR type and additional resistance-linked genes are located in this region of PN40024. The F1 sub-population which contains the Rpv3 as well as the Rpv10 locus showed a significantly higher degree of resistance, indicating additive effects by pyramiding of resistance loci. Possibilities for using the resistance locus Rpv10 in a grapevine breeding programme are discussed. Furthermore, the marker data revealed 'Severnyi' × 'Muscat Ottonel' as the true parentage for the male parent of 'Solaris'. PMID:21935694

  4. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  5. Mapping of the recessive white locus and analysis of the tyrosinase gene in chickens.

    PubMed

    Sato, S; Otake, T; Suzuki, C; Saburi, J; Kobayashi, E

    2007-10-01

    An F(2) chicken population of 265 individuals, obtained from an intercross between the Japanese Game (colored plumage) and the White Plymouth Rock (the recessive white) and genotyped for microsatellite markers, was used for determining the locus of the gene responsible for the recessive white plumage phenotype in chickens. Two hundred twenty-five markers were mapped in 28 linkage groups. Linkage analysis revealed that the recessive white gene was mapped to chromosome 1. Detailed analysis using additional markers uncovered a significant linkage between 2 new markers, mapped to the flanking region of the tyrosinase gene, which is associated with skin and plumage color. The sequence of the tyrosinase gene was investigated in recessive white chickens and colored chickens. There were no obvious differences in the tyrosinase gene exons between the recessive white chicken and the colored chicken. However, sequence analysis of tyrosinase intron 4 in the recessive white chicken revealed a presence of an insertion of an avian retroviral sequence. The White Plymouth Rock and the F(2) generation with white plumage were identified as homozygous carriers of the retroviral sequence. Expression of the normal transcript containing exon 5 was substantially decreased in the recessive white chicken compared with the colored chicken. Some abnormal tyrosinase gene transcripts were expressed in the skin of the White Plymouth Rock: reverse transcription PCR products amplified from exon 3 to intron 4 and from retroviral sequence 3' long terminal repeat to exon 5. Based on these results, it was confirmed that an avian retroviral sequence insertion in the tyrosinase gene was the cause of recessive white phenotype in chickens. PMID:17878441

  6. Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity.

    PubMed

    Soler-Bistué, Alfonso; Mondotte, Juan A; Bland, Michael Jason; Val, Marie-Eve; Saleh, María-Carla; Mazel, Didier

    2015-04-01

    The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution. PMID:25875621

  7. Characterization and localization of ORFF gene from the LD1 locus of Leishmania donovani.

    PubMed

    Jain, Manju; Madhubala, Rentala

    2008-06-15

    The Leishmania genome project has identified new genes at a rapid rate. The 32.8-megabase haploid genome of Leishmania major (Friedlin strain) is published and the comparative analysis of genome sequences of two other species, Leishmania infantum and Leishmanai braziliensis has been done. The haploid genome of Leishmania major (Friedlin strain) has around 8272 protein-coding genes, of which only 36% can be ascribed a putative function. Out of these open reading frames around 910 Leishmania major genes have no orthologs in the other two Tritryp genomes. These "Leishmania -restricted" genes hold a potential as novel drug targets and potential vaccine candidates. Open reading frame, ORFF, is a single copy gene located on the chromosome 35 as a part of the multigene LD1 locus. Indirect immunofluorescence study and creation of ORFF-GFP fusion showed that ORFF is localized in the DNA containing compartments of Leishmania donovani, the nucleus and the kinetoplast. In order to characterize ORFF gene of L. donovani, we have created ORFF over-expressors and single allele deletion mutants by homologous replacement strategy. ORFF is likely to be an important gene for the parasite growth since results from over-expression studies and characterization of ORFF heterozygous knockout mutants reveal marked alterations in the cell cycle phenotype compared to the wild-type parasites. Flowcytometry based cell cycle analysis showed selective increase in the DNA synthetic phase of the ORFF over-expressors and a subversion of the same in heterozygous knockouts of ORFF suggesting its potential role in cell cycle progression. PMID:18423903

  8. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  9. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    PubMed

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  10. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure

    PubMed Central

    Sundararaman, S; Miller, T J; Pastore, J M; Kiedrowski, M; Aras, R; Penn, M S

    2011-01-01

    We previously demonstrated that transient stromal cell-derived factor-1 alpha (SDF-1) improved cardiac function when delivered via cell therapy in ischemic cardiomyopathy at a time remote from acute myocardial infarction (MI) rats. We hypothesized that non-viral gene transfer of naked plasmid DNA-expressing hSDF-1 could similarly improve cardiac function. To optimize plasmid delivery, we tested SDF-1 and luciferase plasmids driven by the cytomegalovirus (CMV) promoter with (pCMVe) or without (pCMV) translational enhancers or α myosin heavy chain (pMHC) promoter in a rodent model of heart failure. In vivo expression of pCMVe was 10-fold greater than pCMV and pMHC expression and continued over 30 days. We directly injected rat hearts with SDF-1 plasmid 1 month after MI and assessed heart function. At 4 weeks after plasmid injection, we observed a 35.97 and 32.65% decline in fractional shortening (FS) in control (saline) animals and pMHC-hSDF1 animals, respectively, which was sustained to 8 weeks. In contrast, we observed a significant 24.97% increase in animals injected with the pCMVe-hSDF1 vector. Immunohistochemistry of cardiac tissue revealed a significant increase in vessel density in the hSDF-1-treated animals compared with control animals. Increasing SDF-1 expression promoted angiogenesis and improved cardiac function in rats with ischemic heart failure along with evidence of scar remodeling with a trend toward decreased myocardial fibrosis. These data demonstrate that stand-alone non-viral hSDF-1 gene transfer is a strategy for improving cardiac function in ischemic cardiomyopathy. PMID:21472007

  11. Kamebakaurin inhibits the expression of hypoxia-inducible factor-1α and its target genes to confer antitumor activity.

    PubMed

    Wang, Ke Si; Ma, Juan; Mi, Chunliu; Li, Jing; Lee, Jung Joon; Jin, Xuejun

    2016-04-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Kamebakaurin is a diterpenoid compound isolated from Isodon excia (Maxin.) Hara, which has been used for anti-inflammatory activities. However, its antitumor activity along with molecular mechanism has not been reported. Kamebakaurin showed potent inhibitory activity against HIF-1 activation induced by hypoxia or CoCl2 in various human cancer cell lines. This compound significantly decreased the hypoxia-induced accumulation of HIF-1α protein, whereas it did not affect the expression of topoisomerase-I (Topo-I). Further analysis revealed that kamebakaurin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Furthermore, kamebakaurin prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). However, kamebakaurin caused cell growth inhibition via cell cycle arrest at G1 phase in tumor cells. In vivo studies, we further confirmed the inhibitory effect of kamebakaurin on the expression of HIF-1α proteins, leading to growth inhibition of HCT116 cells in a xenograft tumor model. These results show that kamebakaurin is an effective inhibitor of HIF-1 and provide new perspectives into its anticancer activity. PMID:26781327

  12. Elongation Factor 1β′ Gene from Spodoptera exigua: Characterization and Function Identification through RNA Interference

    PubMed Central

    Zhao, Li-Na; Qin, Zi; Wei, Ping; Guo, Hong-Shuang; Dang, Xiang-Li; Wang, Shi-Gui; Tang, Bin

    2012-01-01

    Elongation factor (EF) is a key regulation factor for translation in many organisms, including plants, bacteria, fungi, animals and insects. To investigate the nature and function of elongation factor 1β′ from Spodoptera exigua (SeEF-1β′), its cDNA was cloned. This contained an open reading frame of 672 nucleotides encoding a protein of 223 amino acids with a predicted molecular weight of 24.04 kDa and pI of 4.53. Northern blotting revealed that SeEF-1β′ mRNA is expressed in brain, epidermis, fat body, midgut, Malpighian tubules, ovary and tracheae. RT-PCR revealed that SeEF-1β′ mRNA is expressed at different levels in fat body and whole body during different developmental stages. In RNAi experiments, the survival rate of insects injected with SeEF-1β′ dsRNA was 58.7% at 36 h after injection, which was significantly lower than three control groups. Other elongation factors and transcription factors were also influenced when EF-1β′ was suppressed. The results demonstrate that SeEF-1β′ is a key gene in transcription in S. exigua. PMID:22942694

  13. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  14. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

    PubMed

    Tallam, Aravind; Perumal, Thaneer M; Antony, Paul M; Jäger, Christian; Fritz, Joëlle V; Vallar, Laurent; Balling, Rudi; Del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  15. An ALMT1 gene cluster controlling aluminium (aluminum) tolerance at the Alt4 locus of rye (Secale cereale L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminium toxicity is a major problem in agriculture worldwide. Among the cultivated triticeae, rye (Secale cereale L.) is one of the most Al-tolerant and represents an important potential source of Al-tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes...

  16. Expression of the poplar Flowering Locus T1 (FT1) gene reduces the generation time in plum (Prunus domestica L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...

  17. TALEN‐mediated gene editing of the thrombospondin‐1 locus in axolotl

    PubMed Central

    Kuo, Tzu‐Hsing; Kowalko, Johanna E.; DiTommaso, Tia; Nyambi, Mandi; Montoro, Daniel T.; Essner, Jeffrey J.

    2015-01-01

    Abstract Loss‐of‐function genetics provides strong evidence for a gene's function in a wild‐type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long‐standing questions. Here we demonstrate targeted modification of the thrombospondin‐1 (tsp‐1) locus using transcription‐activator‐like effector nucleases (TALENs) and identify a role of tsp‐1 in recruitment of myeloid cells during limb regeneration. We find that while tsp‐1‐edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN‐mediated gene edits.

  18. Dentin phosphoprotein gene locus is not associated with dentinogenesis imperfecta types II and III

    SciTech Connect

    MacDougall, M.; Zeichner-David, M.; Davis, A.; Slavkin, H. ); Murray, J. ); Crall, M. )

    1992-01-01

    Dentinogenesis imperfecta (DGI) is an autosomal dominant inherited dental disease which affects dentin production and mineralization. Genetic linkage studies have been performed on several multigeneration informative kindreds. These studies determined linkage between DGI types II and III and group-specific component (vitamin D-binding protein). This gene locus has been localized to the long arm of human chromosome 4 in the region 4q11-q21. Although this disease has been mapped to chromosome 4, the defective gene product is yet to be determined. Biochemical studies have suggested abnormal levels of dentin phosphoprotein (DPP) associated with DGI type II. This highly acidic protein is the major noncollagenous component of dentin, being solely expressed by the ectomesenchymal derived odontoblast cells of the tooth. The purpose of the present study was to establish whether DPP is associated with DGI types II and III, by using molecular biology techniques. The results indicated that DPP is not localized to any region of human chromosome 4, thus suggesting that the DPP gene is not directly associated with DGI type II or DGI type III. The data do not exclude the possibility that other proteins associated with DPP posttranslational modifications might be responsible for this genetic disease.

  19. The alcohol dehydrogenase gene is nested in the outspread locus of Drosophila melanogaster

    SciTech Connect

    McNabb, S.; Greig, S.; Davis, T.

    1996-06-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh{sup r} are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5{prime} end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5{prime} extension verifies that Adh and Adh{sup r} are nested in osp and shows that osp has a transcription unit of {ge}74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. 55 refs., 11 figs., 1 tab.

  20. Surf5: A gene in the tightly clustered mouse surfeit locus is highly conserved and transcribed divergently from the rpL7A (Surf3) gene

    SciTech Connect

    Garson, K.; Duhig, T.; Armes, N.; Colombo, P.; Fried, M.

    1995-11-20

    The four previously characterized genes (Surf1 to 4) of the mouse Surfeit locus do not share any sequence homology, and the transcription of each gene alternates with respect to its neighbors. Adjacent Surfeit genes are separated by very small distances, and two of the genes overlap at their 3{prime} ends. In this work we have further defined the Surfeit gene cluster by the isolation of Surf5, a fifth gene of the locus, and determination of its relationship to the other Surfeit genes. Surf5 does not share any sequence homology with the four cloned Surfeit genes. The transcription of Surf5 is divergent with respect to its neighbor the Surf3 gene, and the 5{prime} ends of Surf5 and Surf3 are separated by only 159 bp, suggesting the presence of a second bidirectional promoter in the locus. The 3{prime} end of Surf5 maps only 68 bp away from the processed 3{prime} end of a pseudogene. The human and partial chicken Surf5 coding regions show greater than 95% identity, and a Caenorhabditis elegans homologue shows 38% identity and 56% similarity with the mouse Surf5 amino acid sequence. The 3.5-kb transcript of Surf5 encodes a small hydrophilic protein of 140 amino acid residues, which differs from the ribosomal protein L7a encoded by the Surf3 gene or the integral membrane protein encoded by the Surf4 gene. Subcellular fractionation located the Surf5 protein to the soluble fraction of the cytoplasm. The Surfeit locus appears to represent a novel type of gene cluster in which the genes are unrelated by sequence or function; however, their organization may play a role in their gene expression. 44 refs., 5 figs.

  1. [Gene polymorphism at apoB locus and the serum lipids profile in children].

    PubMed

    Zhu, W; Feng, N; Wang, Y; Ye, G

    2001-09-01

    The relations of gene polymorphism at the apolipoprotein B locus and serum lipid profile in children was studied in 308 normal 7-11 year-old children, including 151 boys and 157 girls. Blood samples were collected for all subjects, and then the serum and blood clot were separated. Serum lipids, including TC, TG, LDL-C, HDL-C, apoB, apoA I and Lp(a) were detected. Genome DNA was extracted from blood clot, then apoB-Xba I gene polymorphism were tested by PCR-RFLP method. The results showed that the distribution of apoB-Xba I genotype in 308 children accorded with Hardy-Weiberg inheritance equilibrium law. The frequency of heterozygote(+/-) was 13.3%, allele(+) was 0.067. The frequency of allele(+) was closed to the internal and Japanese reports (0.033 and 0.04), but much less than the Caucasians (0.50). This showed a ethnic and population difference in the inheritance variation. The average LDL-C levels of the heterozygotes(+/-) were 2.17 mmol/L, no difference compared with homozygotes(-/-) (2.21 mmol/L, P > 0.05). There was also no difference for the genotype distribution between the hyperlipidemia group and control group, which may be the results of no enough sample size and the sample selection, and so on. On the other hand, in normal children, serum lipids controlled by many genes, the effect of a single gene might be small. More studies and analysis on the relationship between serum lipids and multiple genes in multisites should be the next step. PMID:12561593

  2. Identification of the minus-dominance gene ortholog in the mating-type locus of Gonium pectorale.

    PubMed

    Hamaji, Takashi; Ferris, Patrick J; Coleman, Annette W; Waffenschmidt, Sabine; Takahashi, Fumio; Nishii, Ichiro; Nozaki, Hisayoshi

    2008-01-01

    The evolution of anisogamy/oogamy in the colonial Volvocales might have occurred in an ancestral isogamous colonial organism like Gonium pectorale. The unicellular, close relative Chlamydomonas reinhardtii has a mating-type (MT) locus harboring several mating-type-specific genes, including one involved in mating-type determination and another involved in the function of the tubular mating structure in only one of the two isogametes. In this study, as the first step in identifying the G. pectorale MT locus, we isolated from G. pectorale the ortholog of the C. reinhardtii mating-type-determining minus-dominance (CrMID) gene, which is localized only in the MT- locus. 3'- and 5'-RACE RT-PCR using degenerate primers identified a CrMID-orthologous 164-amino-acid coding gene (GpMID) containing a leucine-zipper RWP-RK domain near the C-terminal, as is the case with CrMID. Genomic Southern blot analysis showed that GpMID was coded only in the minus strain of G. pectorale. RT-PCR revealed that GpMID expression increased during nitrogen starvation. Analysis of F1 progeny suggested that GpMID and isopropylmalate dehydratase LEU1S are tightly linked, suggesting that they are harbored in a chromosomal region under recombinational suppression that is comparable to the C. reinhardtii MT locus. However, two other genes present in the C. reinhardtii MT locus are not linked to the G. pectorale LEU1S/MID, suggesting that the gene content of the volvocalean MT loci is not static over time. Inheritance of chloroplast and mitochondria genomes in G. pectorale is uniparental from the plus and minus parents, respectively, as is also the case in C. reinhardtii. PMID:18202374

  3. Polymorphisms in the kinesin-like factor 1 B gene and risk of epithelial ovarian cancer in Eastern Chinese women.

    PubMed

    Shi, Ting-Yan; Jiang, Zhi; Jiang, Rong; Yin, Sheng; Wang, Meng-Yun; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Zang, Rongyu; Wei, Qingyi

    2015-09-01

    The kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings. PMID:25854172

  4. The mutated human gene encoding hepatocyte nuclear factor 1β inhibits kidney formation in developing Xenopus embryos

    PubMed Central

    Wild, Wiltrud; Pogge von Strandmann, Elke; Nastos, Aristotelis; Senkel, Sabine; Lingott-Frieg, Anja; Bulman, Michael; Bingham, Coralie; Ellard, Sian; Hattersley, Andrew T.; Ryffel, Gerhart U.

    2000-01-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is a tissue-specific regulator that also plays an essential role in early development of vertebrates. In humans, four heterozygous mutations in the HNF1β gene have been identified that lead to early onset of diabetes and severe primary renal defects. The degree and type of renal defects seem to depend on the specific mutation. We show that the frameshift mutant P328L329fsdelCCTCT associated with nephron agenesis retains its DNA-binding properties and acts as a gain-of-function mutation with increased transactivation potential in transfection experiments. Expression of this mutated factor in the Xenopus embryo leads to defective development and agenesis of the pronephros, the first kidney form of amphibians. Very similar defects are generated by overexpressing in Xenopus the wild-type HNF1β, which is consistent with the gain-of-function property of the mutant. In contrast, introduction of the human HNF1β mutant R137-K161del, which is associated with a reduced number of nephrons with hypertrophy of the remaining ones and which has an impaired DNA binding, shows only a minor effect on pronephros development in Xenopus. Thus, the overexpression of both human mutants has a different effect on renal development in Xenopus, reflecting the variation in renal phenotype seen with these mutations. We conclude that mutations in human HNF1β can be functionally characterized in Xenopus. Our findings imply that HNF1β not only is an early marker of kidney development but also is functionally involved in morphogenetic events, and these processes can be investigated in lower vertebrates. PMID:10758154

  5. Internal Duplications of DH, JH, and C Region Genes Create an Unusual IgH Gene Locus in Cattle.

    PubMed

    Ma, Li; Qin, Tong; Chu, Dan; Cheng, Xueqian; Wang, Jing; Wang, Xifeng; Wang, Peng; Han, Haitang; Ren, Liming; Aitken, Robert; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2016-05-15

    It has been suspected for many years that cattle possess two functional IgH gene loci, located on Bos taurus autosome (BTA) 21 and BTA11, respectively. In this study, based on fluorescence in situ hybridization and additional experiments, we showed that all functional bovine IgH genes were located on BTA21, and only a truncated μCH2 exon was present on BTA11. By sequencing of seven bacterial artificial chromosome clones screened from a Hostein cow bacterial artificial chromosome library, we generated a 678-kb continuous genomic sequence covering the bovine IGHV, IGHD, IGHJ, and IGHC genes, which are organized as IGHVn-IGHDn-IGHJn-IGHM1-(IGHDP-IGHV3-IGHDn)3-IGHJn-IGHM2-IGHD-IGHG3-IGHG1-IGHG2-IGHE-IGHA. Although both of two functional IGHM genes, IGHM1 and IGHM2, can be expressed via independent VDJ recombinations, the IGHM2 can also be expressed through class switch recombination. Likely because more IGHD segments can be involved in the expression of IGHM2, the IGHM2 gene was shown to be dominantly expressed in most tissues throughout different developmental stages. Based on the length and identity of the coding sequence, the 23 IGHD segments identified in the locus could be divided into nine subgroups (termed IGHD1 to IGHD9). Except two members of IGHD9 (14 nt in size), all other functional IGHD segments are longer than 30 nt, with the IGHD8 gene (149 bp) to be the longest. These remarkably long germline IGHD segments play a pivotal role in generating the exceptionally great H chain CDR 3 length variability in cattle. PMID:27053761

  6. A new risk locus in the ZEB2 gene for schizophrenia in the Han Chinese population.

    PubMed

    Khan, Raja Amjad Waheed; Chen, Jianhua; Wang, Meng; Li, Zhiqiang; Shen, Jiawei; Wen, Zujia; Song, Zhijian; Li, Wenjin; Xu, Yifeng; Wang, Lishan; Shi, Yongyong

    2016-04-01

    The ZEB2 gene encodes the Zinc Finger E-box binding protein. As a key regulator of epithelial mesenchymal differentiation, ZEB2 plays an important role in the pathogenesis of cancer, and its high level expression has been observed in glioma patients. Different mutations in this gene have been identified in patients with Mowat-Wilson syndrome. A previous genome-wide association study (GWAS) of schizophrenia conducted in Caucasians has shown a significant association of rs12991836, located near the ZEB2 gene, with schizophrenia. Thus, we conducted a case control study to further investigate whether this genomic region is also a susceptibility locus for schizophrenia in the Han Chinese population. In total, 1248 schizophrenia (SCZ) cases (mean age±S.D., 36.44±9.0years), 1344 bipolar disorder (BPD) cases (mean age±S.D., 34.84±11.44years), 1056 major depressive disorder (MDD) cases (mean age±S.D., 34.41±12.09years) and 1248 healthy control samples (mean age±S.D., 30.62±11.35years) were recruited. We genotyped 12 SNPs using the Sequenom MassARRAY platform in this study. We found that rs6755392 showed a significant association with SCZ (rs6755392: adjusted Pallele=0.016; adjusted Pgenotype=0.052; OR (95% CI)=1.201 (1.073~1.344)). Additionally, two haplotypes (TCTG, TCTA) were also significantly associated with SCZ. This is the first study claiming the association of the genetic risks of rs6755392 in the ZEB2 gene with schizophrenia. PMID:26654950

  7. Phenotype selection for detecting variable genes: a survey of cardiovascular quantitative traits and TNF locus polymorphism.

    PubMed

    Hong, Mun-Gwan; Bennet, Anna M; de Faire, Ulf; Prince, Jonathan A

    2007-06-01

    The practice of using discrete clinical diagnoses in genetic association studies has seldom led to a replicable genetic model. If, as the literature suggests, weak genotype-phenotype relationships are detected when clinical diagnoses are used, power might be increased by exploring more fundamental biological traits. Emerging solutions to this include directly modeling levels of the protein product of a gene (usually in plasma) and sequence variation specifically in/around that gene, as well as exploring multiple quantitative traits related to a disease of interest. Here, we attempt a strategy based upon these premises examining sequence variants near the TNF locus, a region widely studied in cardiovascular disease. Multilocus genotype models were used to perform a systematic screen of 18 metabolic and anthropometric traits for genetic association. While there was no evidence for an effect of TNF polymorphism on plasma TNF levels, a relatively strong effect on plasma PAI-1 levels did emerge (P=0.000019), but this was only evident in post-myocardial infarction patients. Modeled jointly with the common 4G/5G insertion/deletion polymorphism of SERPINE1 (formerly PAI), this effect appears large (10% of variance explained versus 2% for SERPINE1 4G/5G). We exhibit this finding cautiously, and use it to illustrate how transitioning the study of disease risk to quantitative traits might empower the identification of functionally variable genes. Further, a case is highlighted where association between sequence variation in a gene and its product is not readily apparent even in large samples, but where association with a down-stream pathway may be. PMID:17356550

  8. The HLA DQB1 gene locus: Further evidence for an association with schizophrenia

    SciTech Connect

    Zhang, X.R.; Rudert, W.A.; Nimgaonkar, L.

    1994-09-01

    A genetic predisposition to schizophrenia is well-established. Immunological abnormalities suggestive of an auto-immune disorder have also been noted. However, no consistent associations with HLA have been detected. A negative association between schizophrenia and HLA DQB1*0602 among African-Americans, but not among Caucasian individuals, was reported recently. The association is plausible, because (i) an association of insulin dependent diabetes mellitus (IDDM) with the HLA DQB1 gene locus is known, and (ii) an inverse relationship between the prevalence of schizophrenia and IDDM has been suggested. In view of the ethnic differences in the above association, a cohort of Chinese ethnicity from Singapore was examined in the present study. Consenting male inpatients with schizophrenia (n=102, ICD-9 criteria) participated. The controls were male adults undergoing pre-employment checkup (n=111). HLA DQB1 gene polymorphisms were analyzed using a PCR-based reverse dot-blot assay. In case of ambiguity, samples were checked using PCR amplification with sequence-specific primers. In support of the earlier report, a negative association with HLA DQB1*0602 was noted (odds ratio 0.22, C.I. 0.18, 0.83; {chi}{sup 2}=8.0, p<0.005; both analyses uncorrected for multiple comparisons).

  9. The SLC2A14 gene: genomic locus, tissue expression, splice variants, and subcellular localization of the protein.

    PubMed

    Amir Shaghaghi, Mandana; Murphy, Brent; Eck, Peter

    2016-08-01

    The SLC2A14 gene encodes for GLUT14, an orphan member of the facilitated membrane glucose transporter family, which was originally described to be exclusively expressed in human testis. However, genetic variations in SLC2A14 are associated with chronic diseases such as Alzheimer's disease and Inflammatory Bowel Disease, which cannot be explained by a strictly testicular expression. Therefore we analyzed available information on the SLC2A14 gene to update knowledge of the locus and its encoded products. This report presents an expanded SLC2A14 gene locus and a more diverse tissue expression, concurring with the existing evidence for disease associations. The exon utilization is tissue specific, with major expression in testis. When the 2 major testicular protein isoforms were expressed in mammalian cells, they located to the plasmalemma membrane, providing early evidence that GLUT14 could function as a membrane transporter. PMID:27460888

  10. Quantitative trait locus gene mapping: a new method for locating alcohol response genes.

    PubMed

    Crabbe, J C

    1996-01-01

    Alcoholism is a multigenic trait with important non-genetic determinants. Studies with genetic animal models of susceptibility to several of alcohol's effects suggest that several genes contributing modest effects on susceptibility (Quantitative Trait Loci, or QTLs) are important. A new technique of QTL gene mapping has allowed the identification of the location in mouse genome of several such QTLs. The method is described, and the locations of QTLs affecting the acute alcohol withdrawal reaction are described as an example of the method. Verification of these QTLs in ancillary studies is described and the strengths, limitations, and future directions to be pursued are discussed. QTL mapping is a promising method for identifying genes in rodents with the hope of directly extrapolating the results to the human genome. This review is based on a paper presented at the First International Congress of the Latin American Society for Biomedical Research on Alcoholism, Santiago, Chile, November 1994. PMID:12893462

  11. Regulatory elements necessary for termination of transcription within the immunoglobulin heavy chain gene locus

    SciTech Connect

    Moore, B.B.

    1992-01-01

    Previous experimentation demonstrated that regulation of the IgM only phenotype in both pre-B and immature B cells was primarily at the transcriptional level. Expression of IgD mRNA involves transcription of the entire 29 kilobase rearranged [mu]-[delta] locus. Mature B cells transcribe the [beta] exons at approximately half the level that they transcribe the [delta] gene. Early B cells however, transcribe the [mu] gene with approximately 90% more efficiency than they do the [delta] gene. Specifically, early B cells show a transcription termination event occurring within a 1 kilobase region of the [mu]-[delta] intron. This dissertation analyzes the sequence elements necessary to encode the transcription termination event within the [mu]-[delta] intron. This work shows that the termination motif consists of specific sequences within the [mu]m poly(A) site as well as a region of the [mu]-[delta] intron contained within a 1200 base pair fragment. The 1200 base pair fragment extends from the Pst I site within the intron and ends just prior to the C[delta]1 exon. This fragment contains a 162 base pair unique sequence inverted repeat (USIR). Furthermore, the [mu]m site is specifically required because the [mu]s site was unable to substitute, despite extensive usage. In addition, the USIR-containing intron functions in an orientation-dependent manner. Analysis of this termination motif in a variety of lymphoid and non-lymphoid cells suggests that this motif is an intrinsic polymerase II termination motif. This implies that transcription termination in early B cells is by a default model and that active regulation of this motif involves an anti-termination event in mature B cells.

  12. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma.

    PubMed

    Shu, Jingmin; Li, Lihua; Sarver, Anne E; Pope, Emily A; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A; Steer, Clifford J; Subramanian, Subbaya

    2016-04-19

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  13. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  14. Search for the Function of NWC, Third Gene Within RAG Locus: Generation and Characterization of NWC-Deficient Mice.

    PubMed

    Kasztura, Monika; Sniezewski, Lukasz; Laszkiewicz, Agnieszka; Majkowski, Michal; Kobak, Kamil; Peczek, Karolina; Janik, Sylwia; Kapusniak, Violetta; Miazek, Arkadiusz; Cebrat, Malgorzata; Kisielow, Pawel

    2016-08-01

    NWC is a third gene within recombination activating gene (RAG) locus, which unlike RAG genes is ubiquitously expressed and encodes a unique protein containing three strongly evolutionarily conserved domains not found in any other known protein. To get insight into its function we identified several proteins co-immunoprecipitating with NWC protein and generated new NWC-deficient mice. Here, we present evidence that unlike many other ubiquitously expressed evolutionarily conserved proteins, functional inactivation of NWC does not cause any gross developmental, physiological or reproductive abnormalities and that under physiological conditions NWC may be involved in assembling and functioning of cilia, cell surface organelles found on nearly every eukaryotic cell. PMID:26703212

  15. A transcription map of the regions surrounding the CSF1R locus on human chromosome 5q31: Candidate genes for diastrophic dysplasia

    SciTech Connect

    Clines, G.; Lovett, M.

    1994-09-01

    Diastrophic dysplasia (DTD) is an autosomal recessive disorder of unknown pathogenesis that is characterized by abnormal skeletal and cartilage growth. Phenotypic characteristics of the disorder include short stature, scoliosis, and deformation of the first metacarpal. The diastrophic dysplasia gene has been localized to chromosome 5q31-33, within {approximately}60 kb of the colony stimulating factor 1 receptor gene (CSF1R). We have used direct cDNA selection to build a transcription map across {approximately}250 kb surrounding and including the CSF1R locus. cDNA pools from human placenta, activated T cells, cerebellum, Hela cells, fetal brain, chondrocytes, chondrosarcomas and osteosarcomas were multiplexed in these selections. After two rounds of selection, an analysis revealed that {approximately}70% of the selected cDNAs were contained within the contig. DNA sequencing and cosmid mapping data from a collection of 310 clones revealed the presence of three new genes in this region that show no appreciable homologies on sequence database searches, as well as cDNA clones from the CSF1R and the PDGFRB loci (another of the known genes in the region). An additional cDNA was found with 100% homology to the gene encoding human ribosomal protein L7 (RPL7). This cDNA comprised {approximately}25% of all selected clones. However, further analysis of the genomic contig revealed the presence of an RPL7 processed pseudogene in very close proximity to the CSF1R and PDGFRB genes. The selection of processed pseudogenes is one previously anticipated artifact of selection metholodolgies, but has not been previously observed. Mutational analysis of the three new genes is underway in diastrophic dysplasia families, as is derivation of full length cDNA clones and the expansion of this detailed transcription map into a larger genomic contig.

  16. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach

    PubMed Central

    2013-01-01

    Background Maturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach (Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively. Results Recombinant individuals from the WxBy F2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC (NAM/ATAF1, 2/CUC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F1 parent. However, this variation did not segregate in the CxA F2 population being the CxA F1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F2 populations. Conclusions Using two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in

  17. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region

    PubMed Central

    Kim, Kiwan; Kim, Najung; Lee, Gap Ryol

    2016-01-01

    The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner. PMID:26840450

  18. Knockin of Cre Gene at Ins2 Locus Reveals No Cre Activity in Mouse Hypothalamic Neurons

    PubMed Central

    Li, Ling; Gao, Lin; Wang, Kejia; Ma, Xianhua; Chang, Xusheng; Shi, Jian-Hui; Zhang, Ye; Yin, Kai; Liu, Zhimin; Shi, Yuguang; Xie, Zhifang; Zhang, Weiping J.

    2016-01-01

    The recombination efficiency and cell specificity of Cre driver lines are critical for exploring pancreatic β cell biology with the Cre/LoxP approach. Some commonly used Cre lines are based on the short Ins2 promoter fragment and show recombination activity in hypothalamic neurons; however, whether this stems from endogenous Ins2 promoter activity remains controversial. In this study, we generated Ins2-Cre knockin mice with a targeted insertion of IRES-Cre at the Ins2 locus and demonstrated with a cell lineage tracing study that the Ins2 gene is not transcriptionally active in the hypothalamus. The Ins2-Cre driver line displayed robust Cre expression and activity in pancreatic β cells without significant alterations in insulin expression. In the brain, Cre activity was mainly restricted to the choroid plexus, without significant recombination detected in the hippocampus or hypothalamus by the LacZ or fluorescent tdTomato reporters. Furthermore, Ins2-Cre mice exhibited normal glucose tolerance and insulin secretion upon glucose stimulation in vivo. In conclusion, this Ins2-Cre driver line allowed high-fidelity detection of endogenous Ins2 promoter activity in vivo, and the negative activity in the hypothalamus demonstrated that this system is a promising alternative tool for studying β cell biology. PMID:26830324

  19. gadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation.

    PubMed

    Li, Haixing; Li, Wenming; Liu, Xiaohua; Cao, Yusheng

    2013-12-01

    Normally, Lactobacillus brevis has two glutamate decarboxylase (GAD) genes; gadA and gadB. Using PCR, we cloned the gadA gene from L. brevis strain NCL912, a high yield strain for the production of gamma-aminobutyric acid (GABA). However, despite using 61 different primer pairs, including degenerate primers from conserved regions, we were unable to use PCR to clone gadB from the NCL912 strain. Furthermore, we could not clone it by genomic walking over 3000 bp downstream of the aldo-keto reductase gene, a single-copy gene that is located 1003 bp upstream of gadB in L. brevis ATCC367. Altogether, the data suggest that L. brevis NCL912 does not contain a gadB gene. By genomic walking, we cloned regions upstream and downstream of the gadA gene to obtain a 4615 bp DNA fragment that included the complete gadA locus. The locus contained the GAD gene (gadA) and the glutamate:GABA antiporter gene (gadC), which appear to be transcribed in an operon (gadCA), and a transcriptional regulator (gadR) of gadCA. During whole fed-batch fermentation, the expression of gadR, gadC and gadA was synchronized and correlated well with GABA production. The gadA locus we cloned from NCL912 has reduced homology compared with gadA loci of other L. brevis strains, and these differences might explain the ability of NCL912 to produce higher levels of GABA in culture. PMID:24164637

  20. Gene Structure of the 10q26 Locus: A Clue to Cracking the ARMS2/HTRA1 Riddle?

    PubMed

    Kortvely, Elod; Ueffing, Marius

    2016-01-01

    Age-related macular degeneration (AMD) is a sight-threatening disorder of the central retina. Being the leading cause of visual impairment in senior citizens, it represents a major public health issue in developed countries. Genetic studies of AMD identified two major susceptibility loci on chromosomes 1 and 10. The high-risk allele of the 10q26 locus encompasses three genes, PLEKHA1, ARMS2, and HTRA1 with high linkage disequilibrium and the individual contribution of the encoded proteins to disease etiology remains controversial. While PLEKHA1 and HTRA1 are highly conserved proteins, ARMS2 is only present in primates and can be detected by using RT-PCR. On the other hand, there is no unequivocal evidence for the existence of the encoded protein. However, it has been reported that risk haplotypes only affect the expression of ARMS2 (but not of HTRA1), making ARMS2 the best candidate for being the genuine AMD gene within this locus. Yet, homozygous carriers of a common haplotype carry a premature stop codon in the ARMS2 gene (R38X) and therefore lack ARMS2, but this variant is not associated with AMD. In this work we aimed at characterizing the diversity of transcripts originating from this locus, in order to find new hints on how to resolve this perplexing paradox. We found chimeric transcripts originating from the PLEKHA1 gene but ending in ARMS2. This finding may give a new explanation as to how variants in this locus contribute to AMD. PMID:26427389

  1. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene.

    PubMed Central

    Faris, Justin D; Fellers, John P; Brooks, Steven A; Gill, Bikram S

    2003-01-01

    The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Three chromosome walking steps were performed by complete sequencing of BACs and identification of low-copy markers through similarity searches of database sequences. The BAC contig spans a physical distance of approximately 300 kb corresponding to a genetic distance of 0.9 cM. The physical map of T. monococcum had perfect colinearity with the genetic map of wheat chromosome arm 5AL. Recombination data in conjunction with analysis of fast neutron deletions confirmed that the contig spanned the Q locus. The Q gene was narrowed to a 100-kb segment, which contains an APETALA2 (AP2)-like gene that cosegregates with Q. AP2 is known to play a major role in controlling floral homeotic gene expression and thus is an excellent candidate for Q. PMID:12750342

  2. Characteristics of polymorphism at a VNTR locus 3' to the apolipoprotein B gene in five human populations.

    PubMed Central

    Deka, R; Chakraborty, R; DeCroo, S; Rothhammer, F; Barton, S A; Ferrell, R E

    1992-01-01

    We have analyzed the allele frequency distribution at the hypervariable locus 3' to the apolipoprotein B gene (ApoB 3' VNTR) in five well-defined human populations (Kacharis of northeast India, New Guinea Highlanders of Papua New Guinea, Dogrib Indians of Canada, Pehuenche Indians of Chile, and a relatively homogeneous Caucasian population of northern German extraction) by using the PCR technique. A total of 12 segregating alleles were detected in the pooled sample of 319 individuals. A fairly consistent bimodal pattern of allele frequency distribution, apparent in most of these geographically and genetically diverse populations, suggests that the ApoB 3' VNTR polymorphism predates the geographic dispersal of ancestral human populations. In spite of the observed high degree of polymorphism at this locus (expected heterozygosity levels 55%-78%), the genotype distributions in all populations (irrespective of their tribal or cosmopolitan nature) conform to their respective Hardy-Weinberg predictions. Furthermore, analysis of the congruence between expected heterozygosity and the observed number of alleles reveals that, in general, the allele frequency distributions at this locus are in agreement with the predictions of the classical mutation-drift models. The data also show that alleles that are shared by all populations have the highest average frequency within populations. These findings demonstrate the potential utility of highly informative hypervariable loci such as the ApoB 3' VNTR locus in population genetic research, as well as in forensic medicine and determination of biological relatedness of individuals. Images Figure 1 PMID:1463014

  3. Familial migraine: Exclusion of the susceptibility gene from the reported locus of familial hemiplegic migraine on 19p

    SciTech Connect

    Hovatta, I.; Peltonen, L.; Kallela, M.; Faerkkilae, M.

    1994-10-01

    Genetic isolates are highly useful in analyses of the molecular background of complex diseases since the enrichment of a limited number of predisposing genes can be predicted in representative families or in specific geographical regions. It has been suggested that the pathophysiology and etiology of familial hemiplegic migraine (FHM) and typical migraine with aura are most probably the same. Recent assignment of FHM locus to chromosome 19p in two French families makes it now possible to test this hypothesis. We report here linkage data on four families with multiple cases of migraine disorder originating from the genetically isolated population of Finland. We were interested to discover whether the migraine in these families would also show linkage to the markers on 19p. We could exclude a region of 50 cM, flanking the reported FHM locus, as a site of migraine locus in our four families. It seems evident that locus heterogeneity exists between different diagnostic classes of migraine spectrum of diseases and also between different ethnic groups. 10 refs., 2 figs., 1 tab.

  4. Vascular endothelial growth factor and hypoxia-inducible factor-1α gene polymorphisms and coronary collateral formation in patients with coronary chronic total occlusions

    PubMed Central

    Amoah, Vincent; Wrigley, Benjamin; Holroyd, Eric; Smallwood, Andrew; Armesilla, Angel L; Nevill, Alan; Cotton, James

    2016-01-01

    Introduction: We evaluated the association between two single nucleotide polymorphisms of the vascular endothelial growth factor gene and one of the hypoxia-inducible factor-1α gene and the degree of coronary collateral formation in patients with a coronary chronic total occlusion. Methods: Totally, 98 patients with symptomatic coronary artery disease and a chronic total occlusion observed during coronary angiography were recruited. Genotyping of two vascular endothelial growth factor promoter single nucleotide polymorphisms (−152G>A and −165C>T) and the C1772T single nucleotide polymorphism of hypoxia-inducible factor-1α were performed using polymerase chain reaction and restriction fragment length polymorphism analysis. The presence and extent of collateral vessel filling was scored by blinded observers using the Rentrop grade. Results: We found no association between the vascular endothelial growth factor −152G>A, −165C>T and hypoxia-inducible factor-1α −1772C>T with the presence and filling of coronary collateral vessels. A history of percutaneous coronary intervention and transient ischaemic attack/cerebrovascular accident were associated with the presence of enhanced collateral vessel formation following binary logistic regression analysis. Conclusion: The study findings suggest that coronary collateral formation is not associated with the tested polymorphic variants of vascular endothelial growth factor and hypoxia-inducible factor-1α in patients with symptomatic coronary artery disease and the presence of a chronic total occlusion. PMID:27621802

  5. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.).

    PubMed

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  6. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  7. Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco.

    PubMed

    Shoji, Tsubasa; Hashimoto, Takashi

    2015-05-01

    Plants have evolved diverse defense metabolites as adaptations to biotic and abiotic stresses. The defense alkaloid nicotine is produced in Nicotiana tabacum (tobacco) and its biosynthesis is elicited by jasmonates in the roots. At least seven jasmonate-responsive genes that encode transcription factors of the Ethylene Response Factor (ERF) family are clustered at the nicotine-regulatory locus NICOTINE2 (NIC2) in the tobacco genome. A subset of the NIC2-locus ERFs and their homologs, including ERF189 and ERF199, have been shown to be most effective in controlling nicotine biosynthetic pathway genes. Herein reported is that the ERF genes of this group, other than ERF189 and ERF199, were strongly induced by NaCl in tobacco hairy roots, although salt stress had no effect on expression of nicotine biosynthesis genes. Abscisic acid and osmotic stress also increased expression of a subset of these NaCl-inducible ERF genes. Promoter expression analysis in transgenic tobacco hairy roots confirmed that while methyl jasmonate (MJ) activated the promoters of ERF29, ERF210 and ERF199, salt stress up-regulated the promoters of only ERF29 and ERF210, but not ERF199. The protein biosynthesis inhibitor cycloheximide induced expression of the ERFs, and simultaneous addition of MJ and cycloheximide showed synergistic effects. These results indicate that, after several gene duplication events, the NIC2-locus ERFs and possibly their homologs appear to have diverged in their responses to jasmonates and various environmental inputs, including salt stress, and may have evolved to regulate distinct metabolic processes and cellular responses. PMID:24947337

  8. Targeting exogenous GDNF gene to the bovine somatic cell beta-casein locus for the production of transgenic bovine animals.

    PubMed

    Zhang, X M; Luo, F H; Ding, H M; Li, B; Zhang, J J; Wu, Y J

    2015-01-01

    Considerable attention is currently being directed toward methods for producing recombinant human proteins in the mammary glands of genetically modified transgenic livestock. However, the expression of inserted genes in transgenic animals is variable and often very low because of the randomness of the site of transgene integration. One possible strategy to avoid the expression problem associated with random integration is to use site-specific integration by targeting integration to a high expression locus and, thereby, to improve expression of the transferred gene. In the present study, we focused on glial cell line-derived neurotrophic factor (GDNF), a novel type of neurotrophic factor first cloned in 1993. Research has shown that GDNF may have potential applications in the treatment of Parkinson's disease and other diseases of the central nervous system since it acts as a protective factor for central dopaminergic neurons. Here, we constructed a gene targeting vector to knock-in the human GDNF gene at the bovine beta-casein gene locus as a first step to producing transgenic animals with a high level of expression of human GDNF protein in their mammary glands. Bovine fetal fibroblast cells were transfected with linearized pNRTCNbG by electroporation. Three cell clones were identified with successful targeting to the beta-casein locus; and were confirmed using both polymerase chain reaction analysis and sequencing. Gene-targeted cells were used as nuclear donors; a total of 161 embryos were reconstructed, 23 of which developed to the blastocyst stage. These blastocysts were transferred to 8 recipient cows, but no offspring were obtained. PMID:26634460

  9. Characterization of FLOWERING LOCUS T1 (FT1) Gene in Brachypodium and Wheat

    PubMed Central

    Han, Xiuli; Wang, Shuyun; Ni, Fei; Li, Kun; Pearce, Stephen; Wu, Jiajie; Dubcovsky, Jorge; Fu, Daolin

    2014-01-01

    The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT) plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi) resulted in non-flowering Brachypodium plants and late flowering plants (2–4 weeks delay) in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments. PMID:24718312

  10. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    PubMed

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing. PMID:24023421

  11. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    SciTech Connect

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  12. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein

    SciTech Connect

    Citovsky, V.; Knorr, D.; Zambryski, P. )

    1991-03-15

    Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 35S RNA that is homologous to the entire genome. The authors propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex.

  13. Determination of the kappa anti-alpha(1,3) dextran immune response difference by A gene(s) in the VKappa-locus of mice

    PubMed Central

    1979-01-01

    Mice lacking the V(alpha(1,3) (h gamma1)-gene do not produce a gamma1 anti-alpha(1,3) dextran response. However, on hyperimmunization some strains mount a kappa-anti-alpha(1,3) dextran response, whereas other remain nonresponder. Responsiveness in dominant. The kappa-anti- alpha(1,3) response difference is linked to the Ly-3 locus on chromosone 6 and is likely the result of a structural Vkappa-gene(s). In conjunction with previous work, three Vkappa-allogroups can now be distinguished. At present, this is the only example of an immune responsiveness difference associated with the Vkappa-locus. PMID:109565

  14. Immotile cilia syndrome: A recombinant family at HLA-linked gene locus

    SciTech Connect

    Gasparini, P.; Grifa, A.; Oggiano, N.; Fabbrizzi, E.; Giorgi, P.L.

    1994-02-15

    The immotile-cilia syndrome (ICS) is an autosomal recessive trait of congenital dismobility or even complete immobility of cilia in the ciliated epithelia (MIM 244400). Recurrent upper respiratory infections in early childhood are the most common clinical findings. Recently a disease locus was mapped by sib pair analysis in two unrelated families on 6p tightly linked to HLA class II loci, such as DR and DQ. In order to confirm this assignment and to test the presence of possible heterogeneity, the authors analyzed several ICS families utilizing DNA makers of HLA class II region. Here they report the identification of a recombinant family at this locus. 3 refs., 1 fig.

  15. Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans)genes by the tobacco 271 locus.

    PubMed

    Thierry, D; Vaucheret, H

    1996-12-01

    The transgene locus of the tobacco plant 271 (271 locus) is located on a telomere and consists of multiple copies of a plasmid carrying an NptII marker gene driven by the cauliflower mosaic virus (CaMV) 19S promoter and the leaf-specific nitrite reductase Nii1 cDNA cloned in the antisense orientation under the control of the CaMV 35S promoter. Previous analysis of gene expression in leaves has shown that this locus triggers both post-transcriptional silencing of the host leaf-specific Nii genes and transcriptional silencing of transgenes driven by the 19S or 35S promoter irrespective of their coding sequence and of their location in the genome. In this paper we show that silencing of transgenes carrying Nii1 sequences occurs irrespective of the promoter driving their expression and of their location within the genome. This phenomenon occurs in roots as well as in leaves although root Nii genes share only 84% identity with leaf-specific Nii1 sequences carried by the 271 locus. Conversely, transgenes carrying the bean Nii gene (which shares 76% identity with the tobacco Nii1 gene) escape silencing by the 271 locus. We also show that transgenes driven by the figwort mosaic virus 34S promoter (which shares 63% identity with the 35S promoter) also escape silencing by the 271 locus. Taken together, these results indicate that a high degree of sequence similarity is required between the sequences of the silencing locus and of the target (trans)genes for both transcriptional and post-transcriptional silencing. PMID:9002606

  16. SNAIL gene inhibited by hypoxia-inducible factor 1α (HIF-1α) in epithelial ovarian cancer.

    PubMed

    Zhang, Pengnan; Liu, Yanmei; Feng, Youji; Gao, Shujun

    2016-09-01

    The aim of this study was to investigate the relationship between HIF-1α and SNAIL gene expression in the epithelial ovarian cancer (EOC) cell line. EOC cells were treated with hypoxia, hypoxia combined with rapamycin, and control. The expression of HIF-1α and E-cad were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The gene expression of SNAIL was studied by RT-PCR and real-time PCR. RNA interference technology was used to determine the relationship between HIF-1α and SNAIL. The present study indicated that the HIF-1α protein was expressed and increased in EOC cell line. SNAIL mRNA was found to increase and E-cad expression decreased with the time of hypoxia prolonged. Hypoxia increased invasion abilities of EOC cell line, but compared with cells exposed to hypoxia, the change of invasive ability of cells with rapamycin had no effect. The expression of HIF-1α protein and SNAIL mRNA could be inhibited gradually by rapamycin. siRNA of HIF-1α could suppress the expression of SNAIL while siRNA of SNAIL had no influence on HIF-1α protein expression. HIF-1α may be the upstream of the SNAIL gene in EOC. Our data suggested that HIF-1α might be an upregulator of the SNAIL gene and HIF-1α-SNAIL-E-cad pathway may play an important role in EOC invasion and metastasis. PMID:27044634

  17. Insulin-like growth factor-1- and interleukin-6-related gene variation and risk of multiple myeloma

    PubMed Central

    Birmann, Brenda M.; Tamimi, Rulla M.; Giovannucci, Edward; Rosner, Bernard; Hunter, David J.; Kraft, Peter; Mitsiades, Constantine; Anderson, Kenneth C.; Colditz, Graham A.

    2009-01-01

    Insulin-like growth factor (IGF)-1 and interleukin (IL)-6 promote the proliferation and survival of multiple myeloma cells. Variation in genes related to IGF-1 and IL-6 signaling may influence susceptibility to multiple myeloma. To assess their etiologic role, we examined the association of 70 tagging single nucleotide polymorphisms (SNP) in seven IGF-1 and three IL-6 pathway genes with multiple myeloma risk in two prospective cohorts, the Nurses' Health Study and Health Professionals Follow-up Study. Among participants who provided DNA specimens, we identified 58 women and 24 men with multiple myeloma and matched two controls per case. We used multivariable logistic regression models to assess the association of the SNPs or tagged haplotypes with multiple myeloma risk. Several SNPs had suggestive associations with multiple myeloma based on large odds ratios (OR), although corresponding omnibus p-values were not more than nominally significant (i.e., at p<0.05). These SNPs included rs1801278 in the gene encoding insulin receptor substrate-1 (IRS1; C/T v. C/C genotypes; OR=4.3, 95% confidence interval (CI)=1.5-12.1), and three IL-6 receptor SNPs: rs6684439 (T/T v. C/C: 2.9, 1.2-7.0), rs7529229 (C/C v. T/T; 2.5, 1.1-6.0), and rs8192284 (C/C v. A/A; 2.5, 1.1-6.0). Additional SNPs in genes encoding IGF-1, IGF binding protein-2, IRS2, and gp130 also demonstrated suggestive associations with multiple myeloma risk. We conducted a large number of statistical tests, and the findings may be due to chance. Nonetheless, the data are consistent with the hypothesis that IGF-1- and IL-6-related gene variation influences susceptibility to multiple myeloma and warrant confirmation in larger populations. PMID:19124510

  18. The Effects of Insulin-Like Growth Factor-1 Gene Therapy and Cell Transplantation on Rat Acute Wound Model

    PubMed Central

    Talebpour Amiri, Fereshteh; Fadaei Fathabadi, Fatemeh; Mahmoudi Rad, Mahnaz; Piryae, Abbas; Ghasemi, Azar; Khalilian, Alireza; Yeganeh, Farshid; Mosaffa, Nariman

    2014-01-01

    Background: Wound healing is a complex process. Different types of skin cells, extracellular matrix and variety of growth factors are involved in wound healing. The use of recombinant growth factors in researches and production of skin substitutes are still a challenge. Objectives: Much research has been done on the effects of gene therapy and cell therapy on wound healing. In this experimental study, the effect of insulin-like growth factor (IGF-1) gene transfer in fibroblast cells was assessed on acute dermal wound healing. Materials and Methods: Fibroblasts were cultured and transfected with IGF-1. Lipofectamine 2000 was used as a reagent of transfection. Transgene expression levels were measured by the enzyme linked immunosorbent assay (ELISA). To study in vivo, rats (weighing 170-200 g) were randomly divided into three groups (five/group) and full-thickness wounds were created on the dorsum region. Suspensions of transfected fibroblast cells were injected into the wound and were compared with wounds treated with native fibroblast cells and normal saline. For the microscopic examination, biopsy was performed on day seven. Results: In vitro, the maximum expression of IGF1 (96.95 pg/mL) in transfected fibroblast cells was 24 hours after gene transfer. In vivo, it was clear that IGF-1 gene therapy caused an increase in the number of keratinocyte cells during the wound healing process (mean of group A vs. group B with P value = 0.01, mean of group A vs. group C with P value = 0.000). Granulation of tissue formation in the transfected fibroblast group was more organized when compared with the normal saline group and native fibroblast cells. Conclusions: This study indicated that the optimization of gene transfer increases the expression of IGF-1. High concentrations of IGF-1, in combination with cell therapy, have a significant effect on wound healing. PMID:25558384

  19. Steroid sulfotransferase 2A1 gene transcription is regulated by steroidogenic factor 1 and GATA-6 in the human adrenal.

    PubMed

    Saner, Karla J; Suzuki, Takashi; Sasano, Hironobu; Pizzey, John; Ho, Clement; Strauss, Jerome F; Carr, Bruce R; Rainey, William E

    2005-01-01

    Sulfonation is a phase II conjugation reaction responsible for the biotransformation of many compounds including steroids, bile acids, and drugs. Humans are presently known to express at least five cytosolic sulfotransferase (SULT) enzymes, of which only two are hydroxysteroid SULT, SULT2A1, commonly known as steroid sulfotransferase, and the cholesterol sulfotransferase SULT2B1. SULT2A1 is highly expressed in the adrenal where it is responsible for the sulfation of hydroxysteroids including conversion of dehydroepiandrosterone to dehydroepiandrosterone sulfate and in the liver where it is responsible for sulfation of bile acids and circulating hydroxysteroids. Little is known concerning the transcriptional regulation of human SULT2A1 in adrenal. Herein we demonstrate the role of two transcription factors, steroidogenic factor 1 (SF1) and GATA-6, in the regulation of SULT2A1 transcription. These transcription factors were quantified by real-time RT-PCR in normal human adrenal tissue. Transient transfection assays with deleted and mutated SULT2A1 promoter constructs allowed for the determination of specific SF1 and GATA binding cis-regulatory elements necessary for transactivation of SULT2A1 promoter, and binding was confirmed by EMSA analysis. Both SF1 and GATA-6 were positive regulators of SULT2A1 promoter constructs. These data support the hypothesis that adrenal SULT2A1 expression is regulated by SF1 and GATA-6. PMID:15388788

  20. Synovial expression of Th17-related and cancer-associated genes is regulated by the arthritis severity locus Cia10.

    PubMed

    Jenkins, E; Brenner, M; Laragione, T; Gulko, P S

    2012-04-01

    We have previously identified Cia10 as an arthritis severity and articular damage quantitative trait locus. In this study, we used Illumina RatRef-12 microarrays to analyze the expression of 21,922 genes in synovial tissues from arthritis-susceptible DA and arthritis-protected DA.ACI(Cia10) congenics with pristane-induced arthritis. 310 genes had significantly different expression. The genes upregulated in DA, and reciprocally downregulated in DA.ACI(Cia10) included IL-11, Ccl12 and Cxcl10, as well as genes implicated in Th17 responses such as IL-17A, IL-6, Ccr6, Cxcr3 and Stat4. Suppressors of immune responses Tgfb and Vdr, and inhibitors of oxidative stress were upregulated in congenics. There was an over-representation of genes implicated in cancer and cancer-related phenotypes such as tumor growth and invasion among the differentially expressed genes. Cancer-favoring genes like Ctsd, Ikbke, and Kras were expressed in increased levels in DA, whereas inhibitors of cancer phenotypes such as Timp2, Reck and Tgfbr3 were increased in DA.ACI(Cia10). These results suggest that Cia10 may control arthritis severity, synovial hyperplasia and joint damage via the regulation of the expression of cancer-related genes, inflammatory mediators and Th17-related markers. These new findings have the potential to generate new targets for therapies aimed at reducing arthritis severity and joint damage in rheumatoid arthritis. PMID:22048456

  1. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    PubMed Central

    Ling, King-Hwa; Brautigan, Peter J.; Moore, Sarah; Fraser, Rachel; Leong, Melody Pui-Yee; Leong, Jia-Wen; Zainal Abidin, Shahidee; Lee, Han-Chung; Cheah, Pike-See; Raison, Joy M.; Babic, Milena; Lee, Young Kyung; Daish, Tasman; Mattiske, Deidre M.; Mann, Jeffrey R.; Adelson, David L.; Thomas, Paul Q.; Hahn, Christopher N.; Scott, Hamish S.

    2016-01-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1. PMID:26958646

  2. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts.

    PubMed

    Ling, King-Hwa; Brautigan, Peter J; Moore, Sarah; Fraser, Rachel; Leong, Melody Pui-Yee; Leong, Jia-Wen; Zainal Abidin, Shahidee; Lee, Han-Chung; Cheah, Pike-See; Raison, Joy M; Babic, Milena; Lee, Young Kyung; Daish, Tasman; Mattiske, Deidre M; Mann, Jeffrey R; Adelson, David L; Thomas, Paul Q; Hahn, Christopher N; Scott, Hamish S

    2016-06-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1. PMID:26958646

  3. Functional Characterization of Hevea brasiliensis CRT/DRE Binding Factor 1 Gene Revealed Regulation Potential in the CBF Pathway of Tropical Perennial Tree.

    PubMed

    Cheng, Han; Cai, Haibin; Fu, Haitian; An, Zewei; Fang, Jialin; Hu, Yanshi; Guo, Dianjing; Huang, Huasun

    2015-01-01

    Rubber trees (Hevea brasiliensis) are susceptible to low temperature and therefore are only planted in the tropical regions. In the past few decades, although rubber trees have been successfully planted in the northern margin of tropical area in China, they suffered from cold injury during the winter. To understand the physiological response under cold stress, we isolated a C-repeat binding factor 1 (CBF1) gene from the rubber tree. This gene (HbCBF1) was found to respond to cold stress but not drought or ABA stress. The corresponding HbCBF1 protein showed CRT/DRE binding activity in gel shift experiment. To further characterize its molecular function, the HbCBF1 gene was overexpressed in Arabidopsis. The HbCBF1 over expression (OE) line showed enhanced cold resistance and relatively slow dehydration, and the expression of Arabidopsis CBF pathway downstream target genes, e.g. AtCOR15a and AtRD29a, were significantly activated under non-acclimation condition. These data suggest HbCBF1 gene is a functional member of the CBF gene family, and may play important regulation function in rubber tree. PMID:26361044

  4. Functional Characterization of Hevea brasiliensis CRT/DRE Binding Factor 1 Gene Revealed Regulation Potential in the CBF Pathway of Tropical Perennial Tree

    PubMed Central

    Cheng, Han; Cai, Haibin; Fu, Haitian; An, Zewei; Fang, Jialin; Hu, Yanshi; Guo, Dianjing; Huang, Huasun

    2015-01-01

    Rubber trees (Hevea brasiliensis) are susceptible to low temperature and therefore are only planted in the tropical regions. In the past few decades, although rubber trees have been successfully planted in the northern margin of tropical area in China, they suffered from cold injury during the winter. To understand the physiological response under cold stress, we isolated a C-repeat binding factor 1 (CBF1) gene from the rubber tree. This gene (HbCBF1) was found to respond to cold stress but not drought or ABA stress. The corresponding HbCBF1 protein showed CRT/DRE binding activity in gel shift experiment. To further characterize its molecular function, the HbCBF1 gene was overexpressed in Arabidopsis. The HbCBF1 over expression (OE) line showed enhanced cold resistance and relatively slow dehydration, and the expression of Arabidopsis CBF pathway downstream target genes, e.g. AtCOR15a and AtRD29a, were significantly activated under non-acclimation condition. These data suggest HbCBF1 gene is a functional member of the CBF gene family, and may play important regulation function in rubber tree. PMID:26361044

  5. Gene trapping uncovers sex-specific mechanisms for upstream stimulatory factors 1 and 2 in angiotensinogen expression.

    PubMed

    Park, Sungmi; Liu, Xuebo; Davis, Deborah R; Sigmund, Curt D

    2012-06-01

    A single-nucleotide polymorphism (C/A) located within an E-box at the -20 position of the human angiotensinogen (AGT) promoter may regulate transcriptional activation through differential recruitment of the transcription factors upstream stimulatory factor (USF) 1 and 2. To study the contribution of USF1 on AGT gene expression, mice carrying a (-20C) human AGT (hAGT) transgene were bred with mice harboring a USF1 gene trap allele designed to knock down USF1 expression. USF1 mRNA was reduced relative to controls in liver (9 ± 1%), perigenital adipose (16 ± 3%), kidney (17 ± 1%), and brain (34 ± 2%) in double-transgenic mice. This decrease was confirmed by electrophoretic mobility shift assay. Chromatin immunoprecipitation analyses revealed a decrease in USF1, with retention of USF2 binding at the hAGT promoter in the liver of male mice. hAGT expression was reduced in the liver and other tissues of female but not male mice. The decrease in endogenous AGT expression was insufficient to alter systolic blood pressure at baseline but caused reduced systolic blood pressure in female USF1 gene trap mice fed a high-fat diet. Treatment of USF1 knockdown males with intravenous adenoviral short hairpin RNA targeting USF2 resulted in reduced expression of USF1, USF2, and hAGT protein. Our data from chromatin immunoprecipitation assays suggests that this decrease in hAGT is attributed to decreased USF2 binding to the hAGT promoter. In conclusion, both USF1 and USF2 are essential for AGT transcriptional regulation, and distinct sex-specific and tissue-specific mechanisms are involved in the activities of these transcription factors in vivo. PMID:22547438

  6. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains.

    PubMed

    Eicher, J D; Stein, C M; Deng, F; Ciesla, A A; Powers, N R; Boada, R; Smith, S D; Pennington, B F; Iyengar, S K; Lewis, B A; Gruen, J R

    2015-04-01

    A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples - Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) - and then combined results by meta-analysis. DYX2 markers, specifically those in the 3' untranslated region of DCDC2 (P = 1.43 × 10(-4) ), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10(-2) ) and DRD2 (P = 9.22 × 10(-3) ) and nicotinic-related genes CHRNA3 (P = 2.51 × 10(-3) ) and BDNF (P = 8.14 × 10(-3) ) with case-control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated. PMID:25778907

  7. The effect of 9p21.3 coronary artery disease locus neighboring genes on atherosclerosis in mice

    PubMed Central

    Kim, Juyong Brian; Deluna, Andres; Mungrue, Imran N.; Vu, Christine; Pouldar, Delila; Civelek, Mete; Orozco, Luz; Wu, Judy; Wang, Xuping; Charugundla, Sarada; Castellani, Lawrence W.; Rusek, Marta; Jakobowski, Hieronim; Lusis, Aldons J.

    2013-01-01

    Background The human 9p21.3 chromosome locus has been shown to be an independent risk factor for atherosclerosis in multiple large scale genome-wide association studies, but the underlying mechanism remains unknown. We set out to investigate the potential role of the 9p21.3 locus neighboring genes, including Mtap, the two isoforms of Cdkn2a, p16Ink4a and p19Arf, and Cdkn2b in atherosclerosis using knockout mice models. Methods and Results Gene targeted mice for neighboring genes, including Mtap, Cdkn2a, p19Arf, and Cdkn2b, were each bred to mice carrying the human APO*E3 Leiden transgene which sensitizes the mice for atherosclerotic lesions through elevated plasma cholesterol. We found that the mice heterozygous for Mtap developed larger lesion compared to wild-type mice (49623±21650 vs. 18899±9604 μm2/section (Mean±SD); p=0.01), with similar morphology as wild type mice. The Mtap heterozygous mice demonstrated changes in metabolic and methylation profiles and CD4+ cell counts. The Cdkn2a knockout mice had smaller lesions compared to wild-type and heterozygous mice and there were no significant differences in lesion size in p19Arf and Cdkn2b mutants as compared to wild type. We observed extensive, tissue-specific compensatory regulation of the Cdkn2a and Cdkn2b genes among the various knockout mice, making the effects on atherosclerosis difficult to interpret. Conclusions Mtap plays a protective role against atherosclerosis, whereas Cdkn2a appears to be modestly proatherogenic. However, no relation was found between the 9p21 genotype and the transcription of 9p21 neighboring genes in primary human aortic vascular cells in vitro. There is extensive compensatory regulation in the highly conserved 9p21 orthologous region in mice. PMID:22952318

  8. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains

    PubMed Central

    Eicher, J. D.; Stein, C. M.; Deng, F.; Ciesla, A. A.; Powers, N. R.; Boada, R.; Smith, S. D.; Pennington, B. F.; Iyengar, S. K.; Lewis, B. A.; Gruen, J. R.

    2015-01-01

    A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples – Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) – and then combined results by meta-analysis. DYX2 markers, specifically those in the 3′ untranslated region of DCDC2 (P = 1.43 × 10–4), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10–2) and DRD2 (P = 9.22 × 10–3) and nicotinic-related genes CHRNA3 (P = 2.51 × 10–3) and BDNF (P = 8.14 × 10–3) with case–control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated. PMID:25778907

  9. A novel function of interferon regulatory factor-1: inhibition of Th2 cells by down-regulating the Il4 gene during Listeria infection.

    PubMed

    Maruyama, Saho; Kanoh, Makoto; Matsumoto, Akira; Kuwahara, Makoto; Yamashita, Masakatsu; Asano, Yoshihiro

    2015-03-01

    Infection with certain pathogens induces a shift of the Th subset balance to a Th1 dominant state. This, in turn, results in the suppression of Th2 responses. We focused on the involvement of interferon regulatory factor-1 (IRF-1) in the suppression of Th2 cells during Listeria infection. We found that the inhibition of IL-4 production by Th2 cells is mediated by a soluble factor (LmSN) produced by Listeria-infected antigen-presenting cells. The inhibition is not observed with T cells from Irf1 gene-targeted mice. IRF-1 suppresses transcription of the Il4 gene in Th2 cells. Under the influence of the LmSN, IRF-1 binds to the 3' untranslated region (UTR) region of the Il4 gene and down-regulates Il4 gene transcription. Finally, we identified IL-1α and IL-1β as the mediator of the LmSN activity. Signaling through IL-1R induces the stabilization and/or nuclear translocation of IRF-1. We propose that IRF-1 functions to induce the T-cell subset shift via a novel mechanism. Under the influence of IL-1, IRF-1 translocates into the nucleus and acts on the 3'UTR region of the Il4 gene, thus inhibiting its transcription in Th2 cells. As a result, the immune system shifts predominantly to a Th1 response during Listeria infection, resulting in effective protection of the host. PMID:25280793

  10. Identification of a Maize Locus That Modulates the Hypersensitive Defense Response, Using Mutant-Assisted Gene Identification and Characterization

    PubMed Central

    Chintamanani, Satya; Hulbert, Scot H.; Johal, Gurmukh S.; Balint-Kurti, Peter J.

    2010-01-01

    Potentially useful naturally occurring genetic variation is often difficult to identify as the effects of individual genes are subtle and difficult to observe. In this study, a novel genetic technique called Mutant-Assisted Gene Identification and Characterization is used to identify naturally occurring loci modulating the hypersensitive defense response (HR) in maize. Mutant-Assisted Gene Identification and Characterization facilitates the identification of naturally occurring alleles underlying phenotypic variation from diverse germplasm, using a mutant phenotype as a “reporter.” In this study the reporter phenotype was caused by a partially dominant autoactive disease resistance gene, Rp1-D21, which caused HR lesions to form spontaneously all over the plant. Here it is demonstrated that the Rp1-D21 phenotype is profoundly affected by genetic background. By crossing the Rp1-D21 gene into the IBM mapping population, it was possible to map and identify Hrml1 on chromosome 10, a locus responsible for modulating the HR phenotype conferred by Rp1-D21. Other loci with smaller effects were identified on chromosomes 1 and 9. These results demonstrate that Mutant-Assisted Gene Identification and Characterization is a viable approach for identifying naturally occurring useful genetic variation. PMID:20176981

  11. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus

    PubMed Central

    Chia, T. Y. P.; Müller, A.; Jung, C.; Mutasa-Göttgens, E. S.

    2008-01-01

    Floral transition in the obligate long-day (LD) plant sugar beet (Beta vulgaris ssp. vulgaris) is tightly linked to the B gene, a dominant early-bolting quantitative trait locus, the expression of which is positively regulated by LD photoperiod. Thus, photoperiod regulators like CONSTANS (CO) and CONSTANS-LIKE (COL) genes identified in many LD and short-day (SD)-responsive plants have long been considered constituents and/or candidates for the B gene. Until now, the photoperiod response pathway of sugar beet (a Caryophyllid), diverged from the Rosids and Asterids has not been identified. Here, evidence supporting the existence of a COL gene family is provided and the presence of Group I, II, and III COL genes in sugar beet, as characterized by different zinc-finger (B-box) and CCT (CO, CO-like, TOC) domains is demonstrated. BvCOL1 is identified as a close-homologue of Group 1a (AtCO, AtCOL1, AtCOL2) COL genes, hence a good candidate for flowering time control and it is shown that it maps to chromosome II but distant from the B gene locus. The late-flowering phenotype of A. thaliana co-2 mutants was rescued by over-expression of BvCOL1 thereby suggesting functional equivalence with AtCO, and it is shown that BvCOL1 interacts appropriately with the endogenous downstream genes, AtFT and AtSOC1 in the transgenic plants. Curiously, BvCOL1 has a dawn-phased diurnal pattern of transcription, mimicking that of AtCOL1 and AtCOL2 while contrasting with AtCO. Taken together, these data suggest that BvCOL1 plays an important role in the photoperiod response of sugar beet. PMID:18495636

  12. ERBB3-rs2292239 as primary type 1 diabetes association locus among non-HLA genes in Chinese.

    PubMed

    Sun, Chengjun; Wei, Haiyan; Chen, Xiuli; Zhao, Zhuhui; Du, Hongwei; Song, Wenhui; Yang, Yu; Zhang, Miaoying; Lu, Wei; Pei, Zhou; Xi, Li; Yan, Jian; Zhi, Dijing; Cheng, Ruoqian; Luo, Feihong

    2016-09-01

    Type 1 diabetes (T1D) is an autoimmune disease that has strong contribution of genetic factors to its etiology. We aimed to assess the genetic association between non-HLA genes and T1D in a Chinese case-control cohort recruited from multiple centers consisting of 364 patients with T1D and 719 unrelated healthy children. We genotyped 55 single nucleotide polymorphisms (SNP) markers located in 16 non-HLA genes (VTCN1, PTPN22, CTLA4, SUMO4, CD274, IL2RA, INS, DHCR7, ERBB3, VDR, CYP27B1, CD69, CD276, PTPN2, UBASH3A, and IL2RB) using SNaPshot multiple single-base extension methods. After multivariate analysis and correction for multiple comparisons, we identified the SNP rs2292239 in ERBB3 gene were significantly associated with T1D. The frequency of the major G allele was significantly decreased in patients with T1D (68.8% in T1D vs 77.3% in controls, OR 0.65, 95% CI 0.53-0.79, P = 0.02), and the minor allele T was associated with an increased risk of T1D (OR 1.55, 95% CI 1.26-1.90, P = 0.02). Our haplotype analysis confirmed that rs2292239 was the primary T1D association locus in our current investigation. These results indicated that the ERBB3-rs2292239 was the primary T1D association locus among the investigated 55 SNPs in 16 non-HLA genes in Chinese Han population. PMID:27331016

  13. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape

    PubMed Central

    Sun, Liang; Rodriguez, Gustavo R.; Clevenger, Josh P.; Illa-Berenguer, Eudald; Lin, Jinshan; Blakeslee, Joshua J.; Liu, Wenli; Fei, Zhangjun; Wijeratne, Asela; Meulia, Tea; van der Knaap, Esther

    2015-01-01

    fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal–distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins. PMID:26175354

  14. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes.

    PubMed

    Johnson, Robert M; Prychitko, Tom; Gumucio, Deborah; Wildman, Derek E; Uddin, Monica; Goodman, Morris

    2006-02-28

    Phylogenetic inferences drawn from comparative data on mammalian beta-globin gene clusters indicate that the ancestral primate cluster contained a locus control region (LCR) and five paralogously related beta-type globin loci (5'-LCR-epsilon-gamma-psieta-delta-beta-3'), with epsilon and gamma expressed solely during embryonic life. A gamma locus tandem duplication (5'-gamma(1)-gamma(2)-3') triggered gamma's evolution toward fetal expression but by a different trajectory in platyrrhines (New World monkeys) than in catarrhines (Old World monkeys and apes, including humans). In platyrrhine (e.g., Cebus) fetuses, gamma(1) at the ancestral distance from epsilon is down-regulated, whereas gamma(2) at increased distance is up-regulated. Catarrhine gamma(1) and gamma(2) acquired longer distances from epsilon (14 and 19 kb, respectively), and both are up-regulated throughout fetal life with gamma(1)'s expression predominating over gamma(2)'s. On enlarging the platyrrhine expression data, we find Aotus gamma is embryonic, Alouatta gamma is inactive at term, and in Callithrix, gamma(1) is down-regulated fetally, whereas gamma(2) is up-regulated. Of eight mammalian taxa now represented per taxon by embryonic, fetal, and postnatal beta-type globin gene expression data, four taxa are primates, and data for three of these primates are from this laboratory. Our results support a model in which a short distance (<10 kb) between epsilon and the adjacent gamma is a plesiomorphic character that allows the LCR to drive embryonic expression of both genes, whereas a longer distance (>10 kb) impedes embryonic activation of the downstream gene. PMID:16488971

  15. Hepatocyte nuclear factor-1alpha is required for expression but dispensable for histone acetylation of the lactase-phlorizin hydrolase gene in vivo.

    PubMed

    Bosse, Tjalling; van Wering, Herbert M; Gielen, Marieke; Dowling, Lauren N; Fialkovich, John J; Piaseckyj, Christina M; Gonzalez, Frank J; Akiyama, Taro E; Montgomery, Robert K; Grand, Richard J; Krasinski, Stephen D

    2006-05-01

    Hepatocyte nuclear factor-1alpha (HNF-1alpha) is a modified homeodomain-containing transcription factor that has been implicated in the regulation of intestinal genes. To define the importance and underlying mechanism of HNF-1alpha for the regulation of intestinal gene expression in vivo, we analyzed the expression of the intestinal differentiation markers and putative HNF-1alpha targets lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) in hnf1alpha null mice. We found that in adult jejunum, LPH mRNA in hnf1alpha(-/-) mice was reduced 95% compared with wild-type controls (P < 0.01, n = 4), whereas SI mRNA was virtually identical to that in wild-type mice. Furthermore, SI mRNA abundance was unchanged in the absence of HNF-1alpha along the length of the adult mouse small intestine as well as in newborn jejunum. We found that HNF-1alpha occupies the promoters of both the LPH and SI genes in vivo. However, in contrast to liver and pancreas, where HNF-1alpha regulates target genes by recruitment of histone acetyl transferase activity to the promoter, the histone acetylation state of the LPH and SI promoters was not affected by the presence or absence of HNF-1alpha. Finally, we showed that a subset of hypothesized intestinal target genes is regulated by HNF-1alpha in vivo and that this regulation occurs in a defined tissue-specific and developmental context. These data indicate that HNF-1alpha is an activator of a subset of intestinal genes and induces these genes through an alternative mechanism in which it is dispensable for chromatin remodeling. PMID:16223943

  16. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells.

    PubMed Central

    Yu-Lee, L Y; Hrachovy, J A; Stevens, A M; Schwarz, L A

    1990-01-01

    The pituitary peptide hormone prolactin (Prl) is a potent inducer of Nb2 T lymphoma cell proliferation. To analyze the early genetic response to the mitogenic signals of Prl, a cDNA library was constructed from Nb2 T cells stimulated for 4 h with Prl and the protein synthesis inhibitor cycloheximide. Of 26 distinct clones isolated by differential screening, one clone, designated c25, exhibited extremely rapid but transient kinetics of induction by Prl and superinduction by Prl plus cycloheximide. Run-on transcription analysis indicated that c25 gene transcription was induced greater than 20-fold within 30 to 60 min of Prl stimulation. Surprisingly, DNA sequence analysis of c25 cDNA revealed that this Prl-inducible early-response gene is the rat homolog of the mouse transcription factor interferon-regulatory factor 1 (IRF-1), sharing 91% coding sequence similarity with mouse IRF-1. At the protein level, rat IRF-1 shares 97% and 92% homology with mouse IRF-1 and human IRF-1, respectively, suggesting that this molecule has been functionally conserved throughout evolution. Our studies show that the gene for IRF-1 is an immediate-early gene in Prl-stimulated T cells, which suggests that IRF-1 is a multifunctional molecule. In addition to its role in regulating growth-inhibitory interferon genes, IRF-1 may, therefore, also play a stimulatory role in cell proliferation. The gene for IRF-1 is one of the earliest genes known to be transcriptionally regulated by Prl. Images PMID:2342469

  17. Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis

    PubMed Central

    Monte-Neto, Rubens; Laffitte, Marie-Claude N.; Leprohon, Philippe; Reis, Priscila; Frézard, Frédéric; Ouellette, Marc

    2015-01-01

    Background Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Methodology/Principal Findings Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. Conclusions/Significance This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites. PMID:25679388

  18. Identification of the locus for human polymorphic cataract on chromosome 2 near gamma-crystallin gene cluster

    SciTech Connect

    Rogaev, E.I.; Rogaeva, E.A.; Keryanov, S.

    1994-09-01

    Cataract is the leading cause of blindness in human population. While positive linkage data have been obtained for some forms of inherited cataract, no evidence for mutations in any genes have been reported for human inherited cataract existing as an isolated abnormality. Previously, we have described the autosomal dominant polymorphic congenital cataract (PCC) which is characterized by partial opacity located between the fetal nucleus of the lens and the equator. The number, color and form of opacity is varied. We described pedigrees with 73 affected individuals, and used this in a linkage analysis with a set of polymorphic DNA markers randomly placed across the genome as well as with markers selected from some of the candidate genes or from nearby chromosomal regions. We have found evidence for segregation of a cataract locus with DNA markers from 2q36. The causative genetic defect has been mapped to a 20 cM interval which includes a cluster of gamma-crystallin genes. The gamma-crystallin proteins are abundant soluble low molecular weight proteins in the lens. We have used the trinucleotide repeat polymorphic markers from intron 2 of gamma-crystallin B gene and found the segregation of this marker with the disease with no evidence for recombination in the pedigree containing 62 affected individuals. These data suggest that the non-nuclear forms of human cataract may be caused by defects in gamma-crystallin genes.

  19. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum.

    PubMed

    Wolabu, Tezera W; Zhang, Fei; Niu, Lifang; Kalve, Shweta; Bhatnagar-Mathur, Pooja; Muszynski, Michael G; Tadege, Million

    2016-05-01

    Sorghum is a typical short-day (SD) plant and its use in grain or biomass production in temperate regions depends on its flowering time control, but the underlying molecular mechanism of floral transition in sorghum is poorly understood. Here we characterized sorghum FLOWERING LOCUS T (SbFT) genes to establish a molecular road map for mechanistic understanding. Out of 19 PEBP genes, SbFT1, SbFT8 and SbFT10 were identified as potential candidates for encoding florigens using multiple approaches. Phylogenetic analysis revealed that SbFT1 clusters with the rice Hd3a subclade, while SbFT8 and SbFT10 cluster with the maize ZCN8 subclade. These three genes are expressed in the leaf at the floral transition initiation stage, expressed early in grain sorghum genotypes but late in sweet and forage sorghum genotypes, induced by SD treatment in photoperiod-sensitive genotypes, cooperatively repressed by the classical sorghum maturity loci, interact with sorghum 14-3-3 proteins and activate flowering in transgenic Arabidopsis plants, suggesting florigenic potential in sorghum. SD induction of these three genes in sensitive genotypes is fully reversed by 1 wk of long-day treatment, and yet, some aspects of the SD treatment may still make a small contribution to flowering in long days, indicating a complex photoperiod response mediated by SbFT genes. PMID:26765652

  20. Effects of ploidy and sex-locus genotype on gene expression patterns in the fire ant Solenopsis invicta

    PubMed Central

    Nipitwattanaphon, Mingkwan; Wang, John; Ross, Kenneth G.; Riba-Grognuz, Oksana; Wurm, Yannick; Khurewathanakul, Chitsanu; Keller, Laurent

    2014-01-01

    Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development. PMID:25355475

  1. Identification of a New Locus, Ptr(t), Required for Rice Blast Resistance Gene Pi-ta-Mediated Resistance

    SciTech Connect

    Jia, Yulin; Martin, Rodger Carl

    2008-01-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a NBS type resistance gene Pi-ta to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here we report the identification of a new locus Ptr(t) that is required for Pi-ta-mediated signal recognition. A Pi-ta expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) does not alter recognition specificity to another resistance gene Pi-ks in the Pi-ta homozygote indicate that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregate at single dominant nuclear gene. A ratio of 1 resistant: 1 susceptible of a BC1 using Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and co-segregated. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers spanning 9 megabase of Pi-ta determines that Pi-ta and Ptr(t) are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction.

  2. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae

    SciTech Connect

    Kaneko, Y.; Toh-e, A.; Oshima, Y.

    1982-02-01

    Two lines of evidence showed that the PHO8 gene encodes the structure of repressible, nonspecific alkaline phosphatase in Saccharomyces cerevisiae: (I) the enzyme produced by a temperature-sensitive pho8 mutant at the permissive temperature (25/sup 0/C) was more thermolabile than that of the wild-type strain, and (II) the PHO8 gene showed a gene dosage effect on the enzyme activity. The pho8 locus has been mapped on chromosome IV, 8 centimorgans distal to rna3. A new mutant carrying the pho9 gene was isolated which lacks repressible alkaline phosphatase, but has the normal phenotype for the synthesis of repressible acid phosphatase. The pho9 gene segregated independently of all known pho-regulatory genes and did not show the gene dosage effect on repressible alkaline phosphatase activity. The pho9/pho9 diploid hardly sporulated and showed no commitment to intragenic recombination when it was inoculated on sporulation medium. Hence the pho9 mutant has a phenotype similar to the pep4 mutant, which was isolated as a pleiotropic mutant with reduced levels of proteinases A and B carboxypeptidase Y. An allelism test indicated that pho9 and pep4 are allelic.

  3. A 1.6-Mb contig of yeast artificial chromosomes around the human factor VIII gene reveals three regions homologous to probes for the DXS115 locus and two for the DXYS64 locus.

    PubMed Central

    Freije, D; Schlessinger, D

    1992-01-01

    Two yeast artificial chromosome (YAC) libraries were screened for probes in Xq28, around the gene for coagulation factor VIII (F8). A set of 30 YACs were recovered and assembled into a contig spanning at least 1.6 Mb from the DXYS64 locus to the glucose 6-phosphate dehydrogenase gene (G6PD). Overlaps among the YACs were determined by several fingerprinting techniques and by additional probes generated from YAC inserts by using Alu-vector or ligation-mediated PCR. Analysis of more than 30 probes and sequence-tagged sites (STSs) made from the region revealed the presence of several homologous genomic segments. For example, a probe for the DXYS64 locus, which maps less than 500 kb 5' of F8, detects a similar but not identical locus between F8 and G6PD. Also, a probe for the DXS115 locus detects at least three identical copies in this region, one in intron 22 of F8 and at least two more, which are upstream of the 5' end of the gene. Comparisons of genomic and YAC DNA suggest that the multiple loci are not created artifactually during cloning but reflect the structure of uncloned human DNA. On the basis of these data, the most likely order for the loci analyzed is tel-DXYS61-DXYS64-(DXS115-3-DXS115-2)-5'F8-(D XS115-1)-3'F8-G6PD. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1609806

  4. Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus.

    PubMed

    Marcel, D; Raison, S; Bezin, L; Pujol, J F; Weissmann, D

    1998-02-13

    The plasticity of tyrosine hydroxylase (TH) phenotype in the locus coeruleus (LC) of two pure inbred strains of mice, Balb/C (C) and C57Black/6 (B6), was investigated at the molecular level by radioactive in situ hybridization. The results demonstrated that in basal conditions, C mouse LC contains less TH-mRNA-expressing cells than B6. After RU 24722-treatment, which induces long lasting TH gene expression in the LC, we previously reported an increase in TH-expressing cell number in C mouse LC only, equalizing TH phenotype between the two strains. Here, we demonstrate that strain specific plasticity of TH phenotype detected in spatially organized cells is associated with the regulation of TH-mRNA expression above a detectable level. These results suggest that interstrain differences and pharmacologically-induced phenotypic plasticity in TH phenotype may occur at the transcriptional level. PMID:9533398

  5. Ectopic T Cell Receptor-α Locus Control Region Activity in B Cells Is Suppressed by Direct Linkage to Two Flanking Genes at Once

    PubMed Central

    Andino, Blanca E.; Harrow, Faith; Erhard, Karl F.; Kovalovsky, Damian; Sant'Angelo, Derek B.; Ortiz, Benjamin D.

    2010-01-01

    The molecular mechanisms regulating the activity of the TCRα gene are required for the production of the circulating T cell repertoire. Elements of the mouse TCRα locus control region (LCR) play a role in these processes. We previously reported that TCRα LCR DNA supports a gene expression pattern that mimics proper thymus-stage, TCRα gene-like developmental regulation. It also produces transcription of linked reporter genes in peripheral T cells. However, TCRα LCR-driven transgenes display ectopic transcription in B cells in multiple reporter gene systems. The reasons for this important deviation from the normal TCRα gene regulation pattern are unclear. In its natural locus, two genes flank the TCRα LCR, TCRα (upstream) and Dad1 (downstream). We investigated the significance of this gene arrangement to TCRα LCR activity by examining transgenic mice bearing a construct where the LCR was flanked by two separate reporter genes. Surprisingly, the presence of a second, distinct, reporter gene downstream of the LCR virtually eliminated the ectopic B cell expression of the upstream reporter observed in earlier studies. Downstream reporter gene activity was unaffected by the presence of a second gene upstream of the LCR. Our findings indicate that a gene arrangement in which the TCRα LCR is flanked by two distinct transcription units helps to restrict its activity, selectively, on its 5′-flanking gene, the natural TCRα gene position with respect to the LCR. Consistent with these findings, a TCRα/Dad1 locus bacterial artificial chromosome dual-reporter construct did not display the ectopic upstream (TCRα) reporter expression in B cells previously reported for single TCRα transgenes. PMID:21124935

  6. Inflammatory bowel disease (IBD) locus 12: is glutathione peroxidase-1 (GPX1) the relevant gene?

    PubMed

    Häuser, F; Rossmann, H; Laubert-Reh, D; Wild, P S; Zeller, T; Müller, C; Neuwirth, S; Blankenberg, S; Lackner, K J

    2015-12-01

    Genome-wide association studies have identified and repeatedly confirmed the association of rs3197999 in MST1 with inflammatory bowel disease (IBD). However, the underlying pathophysiology remains unclear. rs3197999 is a non-synonymous single-nucleotide polymorphism which modifies the function of macrophage stimulating protein-1 (MST1). We show by haplotyping that rs3197999 is in linkage disequilibrium with rs1050450 in GPX1, with almost complete cosegregation of the minor alleles. As shown by immunoassay, rs3197999 influences the MST-1 level in serum. But also rs1050450 causes an amino acid exchange in glutathione peroxidase 1 (GPx-1) and reduced activity of this antioxidant enzyme. The association of GPx deficiency and IBD in mice was already shown. We propose that GPx-1 is a better candidate than MST1 for the pathophysiologic link between IBD locus 12 and IBD. PMID:26355565

  7. Single gene locus changes perturb complex microbial communities as much as apex predator loss.

    PubMed

    McClean, Deirdre; McNally, Luke; Salzberg, Letal I; Devine, Kevin M; Brown, Sam P; Donohue, Ian

    2015-01-01

    Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change. PMID:26354365

  8. Role of the serotonin transporter gene locus in the response to SSRI treatment of major depressive disorder in late life.

    PubMed

    Seripa, Davide; Pilotto, Andrea; Paroni, Giulia; Fontana, Andrea; D'Onofrio, Grazia; Gravina, Carolina; Urbano, Maria; Cascavilla, Leandro; Paris, Francesco; Panza, Francesco; Padovani, Alessandro; Pilotto, Alberto

    2015-05-01

    It has been suggested that the serotonin or 5-hydroxytriptamine (5-HT) transporter (5-HTT) and its gene-linked polymorphic region (5-HTTLPR) are selective serotonin reuptake inhibitor (SSRI) response modulators in late-life depression (LLD), and particularly in late-life major depressive disorder (MDD). Previous studies differed in design and results. Our study aimed to investigate the solute carrier family 6 (neurotransmitter transporter and serotonin) member 4 (SLC6A4) gene locus, encoding 5-HTT and SSRI treatment response in late-life MDD. For a prospective cohort study, we enrolled 234 patients with late-life MDD to be treated with escitalopram, sertraline, paroxetine or citalopram for 6 months. The SLC6A4 polymorphisms rs4795541 (5-HTTLPR), rs140701 and rs3813034 genotypes spanning the SLC6A4 locus were investigated in blinded fashion. No placebo group was included. We assessed responder or non-responder phenotypes according to a reduction in the 21-item version of the Hamilton Depression Rating Scale (HDRS-21) score of ⩾ 50%. At follow-up, 30% of the late-life MDD patients were non-responders to SSRI treatment. No time-course of symptoms and responses was made. A poor response was associated with a higher baseline HDRS-21 score. We observed a significant over-representation of the rs4795541-S allele in the responder patients (0.436 versus 0.321; p = 0.023). The single S-allele dose-additive effect had OR = 1.74 (95% CI 1.12-2.69) in the additive regression model. Our findings suggested a possible influence of 5-HTTLPR on the SSRI response in patients with late-life MDD, which is potentially useful in identifying the subgroups of LLD patients whom need a different pharmacological approach. PMID:25827644

  9. Mapping of the gene for cleidocranial dysplasia in the historical Cape Town (Arnold) kindred and evidence for locus homogeneity.

    PubMed Central

    Ramesar, R S; Greenberg, J; Martin, R; Goliath, R; Bardien, S; Mundlos, S; Beighton, P

    1996-01-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disorder, features of which include a patient anterior fontanelle, a bulging calvarium, hypoplasia or aplasia of the clavicles, a wide public symphysis, dental anomalies, vertebral malformation, and short stature. The Cape Town kindred which is under our genetic management was originally described more than four decades ago and now consists of more than 1000 people. Following reports of rearrangements on chromosomes 6 and 8 in people with CCD, we have carried out linkage analyses between highly information microsatellite dinucleotide repeat markers in the rearranged regions and the disorder in a branch of this South African CCD kindred, consisting of 38 subjects, 18 of whom are affected. Maximum lod scores (at theta = 0.00) of 7.14 (for marker D6S459), 4.32 (TCTE), 4.99 (D6S452), 5.97 (D6S269), and 3.95 (D6S465) confirm linkage of the disorder to the short arm of chromosome 6. Our data indicate that the CCD gene is located within a minimal region of approximately 10 cM flanked by the marker D6S451 distally and D6S466 proximally. This information is vital towards isolating and characterising the gene for CCD, and is being used to construct a physical map of 6p21.1-6p21.3. More importantly, mapping of the locus in the South African kindred of mixed ancestry, in which the "founder" of the disorder was of Chinese origin, suggests that a single locus is responsible for classic CCD. Images PMID:8782054

  10. Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice.

    PubMed

    Kubo, Takahiko; Takashi, Tomonori; Ashikari, Motoyuki; Yoshimura, Atsushi; Kurata, Nori

    2016-02-01

    Molecular mechanisms of hybrid breakdown associated with sterility (F2 sterility) are poorly understood as compared with those of F1 hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F2 sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereas the indica allele (HSA1a-i(s)) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i(s), encodes an uncharacterized protein with some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i(s)-HSA1b-i(s) alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i(s) caused semi-sterility in the heterozygous state with the HSA1a-i(s)-HSA1b-i(s) haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F1 hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F1 and F2 hybrid sterility. PMID:26455463

  11. Mapping of the gene for cleidocranial dysplasia in the historical Cape Town (Arnold) kindred and evidence for locus homogeneity.

    PubMed

    Ramesar, R S; Greenberg, J; Martin, R; Goliath, R; Bardien, S; Mundlos, S; Beighton, P

    1996-06-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disorder, features of which include a patient anterior fontanelle, a bulging calvarium, hypoplasia or aplasia of the clavicles, a wide public symphysis, dental anomalies, vertebral malformation, and short stature. The Cape Town kindred which is under our genetic management was originally described more than four decades ago and now consists of more than 1000 people. Following reports of rearrangements on chromosomes 6 and 8 in people with CCD, we have carried out linkage analyses between highly information microsatellite dinucleotide repeat markers in the rearranged regions and the disorder in a branch of this South African CCD kindred, consisting of 38 subjects, 18 of whom are affected. Maximum lod scores (at theta = 0.00) of 7.14 (for marker D6S459), 4.32 (TCTE), 4.99 (D6S452), 5.97 (D6S269), and 3.95 (D6S465) confirm linkage of the disorder to the short arm of chromosome 6. Our data indicate that the CCD gene is located within a minimal region of approximately 10 cM flanked by the marker D6S451 distally and D6S466 proximally. This information is vital towards isolating and characterising the gene for CCD, and is being used to construct a physical map of 6p21.1-6p21.3. More importantly, mapping of the locus in the South African kindred of mixed ancestry, in which the "founder" of the disorder was of Chinese origin, suggests that a single locus is responsible for classic CCD. PMID:8782054

  12. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors

    SciTech Connect

    Gicquel, C.; Schneid, H.; Le Bouc, Y.; Bertagna, X.; Francillard-Leblond, M.; Luton, J.P.; Girard, F.

    1994-06-01

    Little is known about the pathophysiology of sporadic adrenocortical tumors in adults. Because loss of heterozygosity at the 11p15 locus has been described in childhood tumors, particularly in adrenocortical tumors associated with the Beckwith-Wiedemann syndrome, and because insulin-like growth factor-II (IGF-II) is a crucial regulator of fetal adrenal growth, the authors looked for structural analysis at the 11p15 locus and IGF-II gene expression in 23 sporadic adrenocortical adult tumors: 6 carcinomas (5 with Cushing`s syndrome and 1 nonsecreting) and 17 benign adenomas (13 with Cushing`s syndrome, 1 pure androgen secreting, and 3 nonsecreting). Twenty-one patients were informative at the 11p15 locus, and six (four carcinomas and two adenomas) of them (28.5%) exhibited 11p15 structural abnormalities in tumor DNA (five, a uniparental disomy and one, a mosaicism). In a single case that could be further studied, a paternal isodisomy was observed. Very high IGF-II mRNA contents were detected in seven tumors (30%; 5 of the 6 carcinomas and 2 of the 17 adenomas). They were particularly found in tumors with uniparental disomy at the 11p15 locus. Overall, a strong correlation existed between IGF-II mRNA contents and DNA demethylation at the IGF-II locus. These data show that genetic alterations involving the 11p15 locus were highly frequent in malignant tumors, but found only in rare adenomas. These results in combination with evidence for overexpression of IGF-II from the 11p15.5 locus suggest that abnormalities in structure and/or expression of the IGF-II gene play a role as a late event of a multistep process of tumorigenesis. 58 refs., 6 figs., 4 tabs.

  13. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts

    PubMed Central

    2013-01-01

    Background A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. Results For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. Conclusions In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state. PMID:23442824

  14. Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis pigmentosa is influenced by a gene linked to the homologous RP11 allele.

    PubMed Central

    McGee, T L; Devoto, M; Ott, J; Berson, E L; Dryja, T P

    1997-01-01

    A subset of families with autosomal dominant retinitis pigmentosa (RP) display reduced penetrance with some asymptomatic gene carriers showing no retinal abnormalities by ophthalmic examination or by electroretinography. Here we describe a study of three families with reduced-penetrance RP. In all three families the disease gene appears to be linked to chromosome 19q13.4, the region containing the RP11 locus, as defined by previously reported linkage studies based on five other reduced-penetrance families. Meiotic recombinants in one of the newly identified RP11 families and in two of the previously reported families serve to restrict the disease locus to a 6-cM region bounded by markers D19S572 and D19S926. We also compared the disease status of RP11 carriers with the segregation of microsatellite alleles within 19q13.4 from the noncarrier parents in the newly reported and the previously reported families. The results support the hypothesis that wild-type alleles at the RP11 locus or at a closely linked locus inherited from the noncarrier parents are a major factor influencing the penetrance of pathogenic alleles at this locus. PMID:9345108

  15. Chicken TAP genes differ from their human orthologues in locus organisation, size, sequence features and polymorphism.

    PubMed

    Walker, Brian A; van Hateren, Andrew; Milne, Sarah; Beck, Stephan; Kaufman, Jim

    2005-05-01

    We have previously shown that in the chicken major histocompatibility complex, the two transporters associated with antigen processing genes (TAP1 and TAP2) are located head to head between two classical class I genes. Here we show that the region between these two TAP genes has transcription factor-binding sites in common with class I gene promoters. The TAP genes are also up-regulated by interferon-gamma in a similar way to mammalian TAP genes and in a way that suggests they are both transcribed from a bi-directional promoter. The gene structures of TAP1 and TAP2 differ from that of human TAPs in that TAP1 has a truncated exon 1 and TAP2 has fused exons, resulting in a much smaller gene size. The truncation of TAP1 results in the loss of approximately 150 amino acids, which are thought to be involved in endoplasmic reticulum retention, heterodimer formation and tapasin binding, compared to human TAP1. Most of the protein sequence features involved in binding ATP are conserved, with two exceptions: chicken TAP1 has a glycine in the switch region where other TAPs have glutamine or histidine, and both chicken TAP genes have serines in the C motif where mammalian TAP2 has an alanine. Lastly, the chicken TAP genes are highly polymorphic, with at least as many TAP alleles as there are class I alleles, as seen by investigating nine inbred lines of chicken. The close proximity of the TAP genes to the class I genes and the high level of polymorphism may allow co-evolution of the genes, allowing TAP molecules to transport peptides specifically for the class I molecules of that haplotype. PMID:15900495

  16. Multi-locus molecular phylogeny and allelic variation in a transcription factor gene suggest the multiple independent origins of kabuli chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the patterns of molecular diversity in wild crop relatives and the cultivated gene pool of chickpea we genotyped a set of 98 wild annual and 224 cultivated accessions with a 768 feature assay that monitored SNPs in low-copy orthologous loci. Analyses of the resulting multi-locus genotypin...

  17. Further Characterization of the Odysseus Locus of Hybrid Sterility in Drosophila: One Gene Is Not Enough

    PubMed Central

    Perez, D. E.; Wu, C. I.

    1995-01-01

    Previously we mapped by genetical and molecular means a gene that contributes to hybrid-male sterility between Drosophila mauritiana and D. simulans to the cytological interval of 16D. In this report, we refine the mapping of this gene, Odysseus (Ods) and show that it can be delineated to a region the size of an average gene. We further demonstrate that, while Ods appears to be a discrete element, it requires other nearby gene(s) to be cointrogressed to confer full hybrid sterility effect. This observation is in agreement with the view that reproductive isolation between closely related species of Drosophila is usually caused by several genes of weak effect from the same species that interact strongly among themselves as well as with the foreign genetic background. PMID:7635285

  18. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  19. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  20. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18.

    PubMed

    Hunt, D M; Sahota, V K; Taylor, K; Simrak, D; Hornigold, N; Arnemann, J; Wolfe, J; Buxton, R S

    1999-12-15

    We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the

  1. Host cell factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11 and ZNF143.

    PubMed

    Parker, J Brandon; Yin, Hanwei; Vinckevicius, Aurimas; Chakravarti, Debabrata

    2014-11-01

    Host cell factor-1 (HCF-1) is a metazoan transcriptional coregulator essential for cell-cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct coregulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell-cycle control genes and leads to reduced cell proliferation, cell-cycle progression, and cell viability. These data establish a model in which a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation. PMID:25437553

  2. Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia.

    PubMed

    Chen, Chunhua; Ostrowski, Robert P; Zhou, Changman; Tang, Jiping; Zhang, John H

    2010-07-01

    We evaluated a role of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream genes in acute hyperglycemia-induced hemorrhagic transformation in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats weighing 280-300 g (n = 105) were divided into sham, 90 min middle cerebral artery occlusion (MCAO), MCAO plus HIF-1alpha inhibitors, 2-methoxyestradiol (2ME2) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), groups. Rats received an injection of 50% dextrose (6 ml/kg intraperitoneally) at 15 min before MCAO. HIF-1alpha inhibitors were administered at the onset of reperfusion. The animals were examined for neurological deficits and sacrificed at 6, 12, 24, and 72 hr following MCAO. The cerebral tissues were collected for histology, zymography, and Western blot analysis. The expression of HIF-1alpha was increased in ischemic brain tissues after MCAO and reduced by HIF-1alpha inhibitors. In addition, 2ME2 reduced the expression of vascular endothelial growth factor (VEGF) and the elevation of active matrix metalloproteinase-2 and -9 (MMP-2/MMP-9) in the ipsilateral hemisphere. Both 2ME2 and YC-1 reduced infarct volume and ameliorated neurological deficits. However, only 2ME2 attenuated hemorrhagic transformation in the ischemic territory. In conclusion, the inhibition of HIF-1alpha and its downstream genes attenuates hemorrhagic conversion of cerebral infarction and ameliorates neurological deficits after focal cerebral ischemia. PMID:20155812

  3. Host Cell Factor-1 Recruitment to E2F-bound and Cell Cycle Control Genes is Mediated by THAP11 and ZNF143

    PubMed Central

    Parker, J. Brandon; Yin, Hanwei; Vinckevicius, Aurimas; Chakravarti, Debabrata

    2014-01-01

    Summary Host cell factor-1 (HCF-1) is a metazoan transcriptional co-regulator essential for cell cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct co-regulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell cycle control genes and leads to reduced cell proliferation, cell cycle progression, and cell viability. These data establish a new model which suggests that a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation. PMID:25437553

  4. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses

    PubMed Central

    Wongseree, Waranyu; Assawamakin, Anunchai; Piroonratana, Theera; Sinsomros, Saravudh; Limwongse, Chanin; Chaiyaratana, Nachol

    2009-01-01

    in PGM1 (phosphoglucomutase 1), two intronic SNPs in LMX1A (LIM homeobox transcription factor 1, alpha), two intronic SNPs in PARK2 (Parkinson disease (autosomal recessive, juvenile) 2, parkin) and three intronic SNPs in GYS2 (glycogen synthase 2 (liver)) are associated with the disease. The 2LOmb result suggests that there is no interaction between each pair of the identified genes that can be described by purely epistatic two-locus interaction models. Moreover, there are no interactions between these four genes that can be described by purely epistatic multi-locus interaction models with marginal two-locus effects. The findings provide an alternative explanation for the aetiology of T2D in a UK population. Conclusion An omnibus permutation test on ensembles of two-locus analyses can detect purely epistatic multi-locus interactions with marginal two-locus effects. The study also reveals that SNPs from large-scale or genome-wide case-control data which are discarded after single-locus analysis detects no association can still be useful for genetic epidemiology studies. PMID:19761607

  5. Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids

    PubMed Central

    Pinheiro, Ana; Lanning, Dennis; Alves, Paulo C.; Mage, Rose G.; Knight, Katherine L.; van der Loo, Wessel; Esteves, Pedro J.

    2012-01-01

    The rabbit has long been a model for studies of the immune system. Work using rabbits contributed both to the battle against infectious diseases such as rabies and syphilis, and to our knowledge of antibodies' structure, function, and regulated expression. With the description of rabbit Ig allotypes, the discovery of different gene segments encoding immunoglobulins became possible. This challenged the “one gene-one protein” dogma. The observation that rabbit allotypic specificities of the variable regions were present on IgM and IgG molecules also led to the hypothesis of Ig class switching. Rabbit allotypes contributed to the documentation of phenomena such as allelic exclusion and imbalance in production of allelic gene products. During the last 30 years, the rabbit Ig allotypes revealed a number of unique features, setting them apart from mice, humans and other mammals. Here, we review the most relevant findings concerning the rabbit IGHV. Among these are the preferential usage of one VH gene in VDJ rearrangements, the existence of trans-species polymorphism in the IGHV locus revealed by serology and confirmed by sequencing IGHV genes in Lepus, the unusually large genetic distances between allelic lineages and the fact that the antibody repertoire is diversified in this species only after birth. The Whole Genome Sequence of rabbit, plus re-sequencing of additional strains and related genera, will allow further evolutionary investigations of antibody variation. Continued research will help define the roles that genetic, allelic and population diversity at antibody loci may play in host-parasite interactions. PMID:21594770

  6. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature.

    PubMed

    Alcázar, Rubén; von Reth, Marcel; Bautor, Jaqueline; Chae, Eunyoung; Weigel, Detlef; Koornneef, Maarten; Parker, Jane E

    2014-12-01

    Mechanisms underlying speciation in plants include detrimental (incompatible) genetic interactions between parental alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana strain from Poland, Landsberg erecta (Ler), and many Central Asian A. thaliana strains. The incompatible interaction is determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL) RPP1 (Recognition of Peronospora parasitica1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3 (SRF3) in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like Ler (R1-R8) genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3 overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like alleles in a local population in Gorzów Wielkopolski (Poland). Only Gorzów individuals carrying the RPP1-like Ler haplotype are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of forces shaping the evolution of RPP1-like genes at local and regional population scales. PMID:25503786

  7. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32.

    PubMed

    Weis, J H; Morton, C C; Bruns, G A; Weis, J J; Klickstein, L B; Wong, W W; Fearon, D T

    1987-01-01

    The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32. PMID:3782802

  8. New assignment of the adenosine deaminase gene locus to chromosome 20q13 X 11 by study of a patient with interstitial deletion 20q.

    PubMed Central

    Petersen, M B; Tranebjaerg, L; Tommerup, N; Nygaard, P; Edwards, H

    1987-01-01

    A karyotype 46,XY,del(20)(q11 X 23q13 X 11) was found in a three year old boy with mental and growth retardation, low set ears, broad nasal bridge, and macrostomia. Adenosine deaminase (ADA) activity was reduced by about 50%, assigning the gene locus to the deleted segment. A review of the previously reported regional assignments suggests that the ADA gene is in the region of band 20q13 X 11. Images PMID:3560174

  9. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5

    SciTech Connect

    Steege, G. van der; Grootscholten, P.M.; Cobben, J.M.; Scheffer, H.; Buys, C.H.C.M.

    1996-10-01

    The survival motor neuron (SMN) gene has been described as a determining gene for spinal muscular atrophy (SMA). SMN has a closely flanking, nearly identical copy ({sup C}BCD541). Gene and copy gene can be discriminated by sequence differences in exons 7 and 8. The large majority of SMA patients show homozygous deletions of at least exons 7 and 8 of the SMN gene. A minority of patients show absence of SMN exon 7 but retention of exon 8. This is explained by results of our present analysis of 13 such patients providing evidence for apparent gene-conversion events between SMN and the centromeric copy gene. Instead of applying a separate analysis for absence or presence of SMN exons 7 and 8, we used a contiguous PCR from intron 6 to exon 8. In every case we found a chimeric gene with a fusion of exon 7 of the copy gene and exon 8 of SMN and absence of a normal SMN gene. Similar events, including the fusion counterpart, were observed in a group of controls, although in the presence of a normal SMN gene. Chimeric genes as the result of fusions of parts of SMN and {sup C}BCD541 apparently are far from rare and may partly explain the frequently observed SMN deletions in SMA patients. 23 refs., 4 figs.

  10. Increased messenger RNA for allograft inflammatory factor-1, LERK-5, and a novel gene in 17.5-day relative to 15.5-day bovine embryos.

    PubMed

    Glover, Michelle D; Seidel, George E

    2003-09-01

    Considerable embryonic loss occurs between Gestation Days 15 and 18 in cattle when critical cellular and molecular events occur, including maternal recognition of pregnancy. To gain insight into these events, mRNA differential display analysis was used to identify eight unique cDNA fragments present in greater abundance in 17.5-day than in 15.5-day bovine embryos. Four cDNA fragments, confirmed to be upregulated in 17.5-day embryos using Northern analysis, were cloned and sequenced. Three cDNA fragments shared sequence identities with known homologs: human allograft inflammatory factor-1 (AIF-1), human LERK-5, and bovine interferon-tau. One novel cDNA fragment did not share sequence identity to previously reported genes, except for a similar DNA sequence in the human genome. AIF-1 mRNA was present in developing placenta through Gestation Day 36, and abundant levels were observed in adult bovine spleen and lung. The novel gene, which we have named periattachment factor (PAF), was not detected in adult tissues using Northern analysis or in conceptuses between Days 30 and 36 of pregnancy. Additional sequence information for bPAF was obtained from a cDNA library constructed from a 25-day bovine embryo. The protein corresponding to the open reading frame has four protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, a nuclear targeting sequence, but no obvious DNA or RNA binding motifs. Abundant expression of this gene during a narrow but critical window of embryonic development makes it worthy of further study. PMID:12773430

  11. Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1.

    PubMed

    Hwang, JeeNa; Lee, Seonhee; Lee, Joung-Ho; Kang, Won-Hee; Kang, Jin-Ho; Kang, Min-Young; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2015-01-01

    The eukaryotic translation elongation factor 1 (eEF1) has two components: the G-protein eEF1A and the nucleotide exchange factor eEF1B. In plants, eEF1B is itself composed of a structural protein (eEF1Bγ) and two nucleotide exchange subunits (eEF1Bα and eEF1Bβ). To test the effects of elongation factors on virus infection, we isolated eEF1A and eEF1B genes from pepper (Capsicum annuum) and suppressed their homologs in Nicotiana benthamiana using virus-induced gene silencing (VIGS). The accumulation of a green fluorescent protein (GFP)-tagged Potato virus X (PVX) was significantly reduced in the eEF1Bβ- or eEF1Bɣ-silenced plants as well as in eEF1A-silenced plants. Yeast two-hybrid and co-immunoprecipitation analyses revealed that eEF1Bα and eEF1Bβ interacted with eEF1A and that eEF1A and eEF1Bβ interacted with triple gene block protein 1 (TGBp1) of PVX. These results suggest that both eEF1A and eEF1Bβ play essential roles in the multiplication of PVX by physically interacting with TGBp1. Furthermore, using eEF1Bβ deletion constructs, we found that both N- (1-64 amino acids) and C-terminal (150-195 amino acids) domains of eEF1Bβ are important for the interaction with PVX TGBp1 and that the C-terminal domain of eEF1Bβ is involved in the interaction with eEF1A. These results suggest that eEF1Bβ could be a potential target for engineering virus-resistant plants. PMID:26020533

  12. Insulin-like growth factor-1 receptor protein expression and gene copy number alterations in non-small cell lung carcinomas.

    PubMed

    Tsuta, Koji; Mimae, Takahiro; Nitta, Hiroaki; Yoshida, Akihiko; Maeshima, Akiko M; Asamura, Hisao; Grogan, Thomas M; Furuta, Koh; Tsuda, Hitoshi

    2013-06-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor implicated in the pathogenesis of several malignancies and is potentially an attractive target for anticancer treatment. In this study, we included 379 patients who underwent surgical resection (179 diagnosed as having adenocarcinoma [ADC]; 150, squamous cell carcinoma [SCC]; 41, sarcomatoid carcinoma and 9, large cell carcinoma). IGF-1R expression and gene copy number were assessed by immunohistochemistry and bright-field in situ hybridization (BISH), respectively. IGF-1R expression in non-small cell lung carcinoma was observed in 41.4% of samples and was more prevalent in SCC (69.3%) than in ADC (25.1%), large cell carcinoma (33.3%), and sarcomatoid carcinoma (12.2%) (P < .001). Among ADCs, most mucinous ADCs (75%) showed strong membranous staining with the IGF-1R antibody. Compared with protein expression, IGF-1R gene alteration was rare (8.4%). A statistically significant correlation between IGF-1R expression and positive IGF-1R BISH was observed (γ = 0.762, P < .001). IGF-1R-positive tumors were more common in smokers (P = .004), and these tumors were larger (P = .006) than the IGF-1R-negative tumors. IGF-1R BISH positivity was not correlated with any clinicopathologic factor. IGF-1R expression and IGF-1R BISH positivity were not correlated with overall survival. IGF-1R is highly expressed in SCC and mucinous ADC, although copy number alterations in the IGF-1R gene were rare. These findings may have important implications for future anti-IGF-1R therapeutic approaches. PMID:23266446

  13. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus

    PubMed Central

    Larsbrink, Johan; Thompson, Andrew J; Lundqvist, Magnus; Gardner, Jeffrey G; Davies, Gideon J; Brumer, Harry

    2014-01-01

    The degradation of plant biomass by saprophytes is an ecologically important part of the global carbon cycle, which has also inspired a vast diversity of industrial enzyme applications. The xyloglucans (XyGs) constitute a family of ubiquitous and abundant plant cell wall polysaccharides, yet the enzymology of XyG saccharification is poorly studied. Here, we present the identification and molecular characterization of a complex genetic locus that is required for xyloglucan utilization by the model saprophyte Cellvibrio japonicus. In harness, transcriptomics, reverse genetics, enzyme kinetics, and structural biology indicate that the encoded cohort of an α-xylosidase, a β-galactosidase, and an α-l-fucosidase is specifically adapted for efficient, concerted saccharification of dicot (fucogalacto)xyloglucan oligosaccharides following import into the periplasm via an associated TonB-dependent receptor. The data support a biological model of xyloglucan degradation by C. japonicus with striking similarities – and notable differences – to the complex polysaccharide utilization loci of the Bacteroidetes. PMID:25171165

  14. An ancient evolutionary origin of the Rag1/2 gene locus.

    PubMed

    Fugmann, Sebastian D; Messier, Cynthia; Novack, Laura A; Cameron, R Andrew; Rast, Jonathan P

    2006-03-01

    The diversity of antigen receptors in the adaptive immune system of jawed vertebrates is generated by a unique process of somatic gene rearrangement known as V(D)J recombination. The Rag1 and Rag2 proteins are the key mediators of this process. They are encoded by a compact gene cluster that has exclusively been identified in animal species displaying V(D)J-mediated immunity, and no homologous gene pair has been identified in other organisms. This distinctly restricted phylogenetic distribution has led to the hypothesis that one or both of the Rag genes were coopted after horizontal gene transfer and assembled into a Rag1/2 gene cluster in a common jawed vertebrate ancestor. Here, we identify and characterize a closely linked pair of genes, SpRag1L and SpRag2L, from an invertebrate, the purple sea urchin (Strongylocentrotus purpuratus) with similarity in both sequence and genomic organization to the vertebrate Rag1 and Rag2 genes. They are coexpressed during development and in adult tissues, and recombinant versions of the proteins form a stable complex with each other as well as with Rag1 and Rag2 proteins from several vertebrate species. We thus conclude that SpRag1L and SpRag2L represent homologs of vertebrate Rag1 and Rag2. In combination with the apparent absence of V(D)J recombination in echinoderms, this finding strongly suggests that linked Rag1- and Rag2-like genes were already present and functioning in a different capacity in the common ancestor of living deuterostomes, and that their specific role in the adaptive immune system was acquired much later in an early jawed vertebrate. PMID:16505374

  15. The Interleukin 1 Gene Cluster Contains a Major Susceptibility Locus for Ankylosing Spondylitis

    PubMed Central

    Timms, Andrew E.; Crane, Alison M.; Sims, Anne-Marie; Cordell, Heather J.; Bradbury, Linda A.; Abbott, Aaron; Coyne, Mark R. E.; Beynon, Owen; Herzberg, Ibi; Duff, Gordon W.; Calin, Andrei; Cardon, Lon R.; Wordsworth, B. Paul; Brown, Matthew A.

    2004-01-01

    Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS. PMID:15309690

  16. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber.

    PubMed Central

    Trebitsh, T; Staub, J E; O'Neill, S D

    1997-01-01

    Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers. PMID:9085580

  17. Voluntary exercise offers anxiolytic potential and amplifies galanin gene expression in the locus coeruleus of the rat.

    PubMed

    Sciolino, Natale R; Dishman, Rodney K; Holmes, Philip V

    2012-07-15

    Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running. PMID:22580167

  18. A Drosophila muscle-specific gene related to the mouse quaking locus.

    PubMed

    Fyrberg, C; Becker, J; Barthmaier, P; Mahaffey, J; Fyrberg, E

    1997-09-15

    We have characterized a novel muscle-specific gene of Drosophila melanogaster, defined by enhancer trap strain 24B of Brand and Perrimon (1993). We show that transcripts of the gene accumulate within presumptive mesoderm and persist within developing muscles, strongly suggesting that the encoded protein is involved in muscle cell determination and differentiation. cDNA sequences reveal that the Drosophila protein is similar to quaking (64% identity over 210 amino acids), a protein essential for mouse embryogenesis, and gld-1 (53% identity over 162 amino acids) a germ-line-specific tumor suppressing protein of the nematode, Caenorhabditis elegans. We demonstrate that the Drosophila gene resides within the 93F chromosome subdivision, and describe its physical map. Finally, we have used the gene, which we have named quaking-related 93F (qkr93F), to identify a family of closely related KH domains. PMID:9332381

  19. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    PubMed Central

    Patil, Prabhu B; Sonti, Ramesh V

    2004-01-01

    Background In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively

  20. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus.

    PubMed

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F; Peterson, Thomas

    2015-11-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  1. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution.

    PubMed Central

    Chen, J J; Janssen, B J; Williams, A; Sinha, N

    1997-01-01

    Compound leaves are seen in many angiosperm genera and are thought to be either fundamentally different from simple leaves or elaborations of simple leaves. The knotted1-like homeobox (knox) genes are known to regulate plant development. When overexpressed in homologous or heterologous species, this family of genes can cause changes in leaf morphology, including excessive leaf compounding in tomato. We describe here an instance of a spontaneously arisen fusion between a gene encoding a metabolic enzyme and a homeodomain protein. We show that the fusion results in overexpression of the homeodomain protein and a change in morphology that approximates the changes caused by overexpression of the same gene under the control of the cauliflower mosaic virus 35S promoter in transgenic plants. Exon-shuffling events can account for the modularity of proteins. If the shuffled exons are associated with altered promoters, changes in gene expression patterns can result. Our results show that gene fusions of this nature can cause changes in expression patterns that lead to altered morphology. We suggest that such phenomena may have played a role in the evolution of form. PMID:9286107

  2. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance.

    PubMed

    Jia, Yulin; Martin, Rodger

    2008-04-01

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a nucleotide binding site-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here, we report the identification of a new locus, Ptr(t), that is required for Pi-ta-mediated signal recognition. A Pi-ta-expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) do not alter recognition specificity to another resistance gene, Pi-k(s), in the Pi-ta homozygote, indicating that Ptr(t) is more likely specific to Pi-ta-mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregates as a single dominant nuclear gene. A ratio of 1:1 (resistant/susceptible) of a population of BC1 of Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and cosegregate. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers at the Pi-ta region determined that Pi-ta and Ptr(t) are located within a 9-megabase region and are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta-mediated signal recognition and transduction. PMID:18321185

  3. A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and in silico candidate gene analysis

    PubMed Central

    Winawer, Melodie R.; Klassen, Tara L.; Teed, Sarah; Shipman, Marissa; Leung, Emily H.; Palmer, Abraham A.

    2014-01-01

    Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse Chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine susceptible congenics for 6Hz ECT, another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line1 (starting at rs13480828), was not susceptible; thus defining a 1.0 Mb critical region that was unique to Line1. Bioinformatic approaches identified 52 human orthologues within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2, and Cs, which are involved in neural cell differentiation, cellular remodeling, and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes. PMID:24373497

  4. Regulation of Flowering in the Long-Day Grass Lolium temulentum by Gibberellins and the FLOWERING LOCUS T Gene

    PubMed Central

    King, Rod W.; Moritz, Thomas; Evans, Lloyd T.; Martin, Jerome; Andersen, Claus H.; Blundell, Cheryl; Kardailsky, Igor; Chandler, Peter M.

    2006-01-01

    Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD), expression of a 20-oxidase GA biosynthetic gene increases in the leaf; its product, GA20, then increases 5.7-fold versus short day; its substrate, GA19, decreases equivalently; and a bioactive product, GA5, increases 4-fold. A link between flowering, LD, GAs, and GA biosynthesis is shown in three ways: (1) applied GA19 became florigenic on exposure to LD; (2) expression of LtGA20ox1, an important GA biosynthetic gene, increased in a florally effective LD involving incandescent lamps, but not with noninductive fluorescent lamps; and (3) paclobutrazol, an inhibitor of an early step of GA biosynthesis, blocked flowering, but only if applied before the LD. Expression studies of a 2-oxidase catabolic gene showed no changes favoring a GA increase. Thus, the early LD increase in leaf GA5 biosynthesis, coupled with subsequent doubling in GA5 content at the shoot apex, provides a substantial trail of evidence for GA5 as a LD florigen. LD signaling may also involve transport of FT mRNA or protein because expression of LtFT and LtCONSTANS increased rapidly, substantially (>80-fold for FT), and independently of GA. However, because a LD from fluorescent lamps induced LtFT expression but not flowering, the nature of the light response of FT requires clarification. PMID:16581877

  5. Targeting Human α-Lactalbumin Gene Insertion into the Goat β-Lactoglobulin Locus by TALEN-Mediated Homologous Recombination.

    PubMed

    Zhu, Hongmei; Liu, Jun; Cui, Chenchen; Song, Yujie; Ge, Hengtao; Hu, Linyong; Li, Qian; Jin, Yaping; Zhang, Yong

    2016-01-01

    Special value of goat milk in human nutrition and well being is associated with medical problems of food allergies which are caused by milk proteins such as β-lactoglobulin (BLG). Here, we employed transcription activator-like effector nuclease (TALEN)-assisted homologous recombination in goat fibroblasts to introduce human α-lactalbumin (hLA) genes into goat BLG locus. TALEN-mediated targeting enabled isolation of colonies with mono- and bi-allelic transgene integration in up to 10.1% and 1.1%, respectively, after selection. Specifically, BLG mRNA levels were gradually decreasing in both mo- and bi-allelic goat mammary epithelial cells (GMECs) while hLA demonstrated expression in GMECs in vitro. Gene-targeted fibroblast cells were efficiently used in somatic cell nuclear transfer, resulting in production of hLA knock-in goats directing down-regulated BLG expression and abundant hLA secretion in animal milk. Our findings provide valuable background for animal milk optimization and expedited development for agriculture and biomedicine. PMID:27258157

  6. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis.

    PubMed

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-10-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  7. Targeting Human α-Lactalbumin Gene Insertion into the Goat β-Lactoglobulin Locus by TALEN-Mediated Homologous Recombination

    PubMed Central

    Cui, Chenchen; Song, Yujie; Ge, Hengtao; Hu, Linyong; Li, Qian; Jin, Yaping; Zhang, Yong

    2016-01-01

    Special value of goat milk in human nutrition and well being is associated with medical problems of food allergies which are caused by milk proteins such as β-lactoglobulin (BLG). Here, we employed transcription activator-like effector nuclease (TALEN)-assisted homologous recombination in goat fibroblasts to introduce human α-lactalbumin (hLA) genes into goat BLG locus. TALEN-mediated targeting enabled isolation of colonies with mono- and bi-allelic transgene integration in up to 10.1% and 1.1%, respectively, after selection. Specifically, BLG mRNA levels were gradually decreasing in both mo- and bi-allelic goat mammary epithelial cells (GMECs) while hLA demonstrated expression in GMECs in vitro. Gene-targeted fibroblast cells were efficiently used in somatic cell nuclear transfer, resulting in production of hLA knock-in goats directing down-regulated BLG expression and abundant hLA secretion in animal milk. Our findings provide valuable background for animal milk optimization and expedited development for agriculture and biomedicine. PMID:27258157

  8. A case of 9.7 Mb terminal Xp deletion including OA1 locus associated with contiguous gene syndrome.

    PubMed

    Cho, Eun-Hae; Kim, Sook-Young; Kim, Jin-Kyung

    2012-10-01

    Terminal or interstitial deletions of Xp (Xp22.2→Xpter) in males have been recognized as a cause of contiguous gene syndromes showing variable association of apparently unrelated clinical manifestations such as Leri-Weill dyschondrosteosis (SHOX), chondrodysplasia punctata (CDPX1), mental retardation (NLGN4), ichthyosis (STS), Kallmann syndrome (KAL1), and ocular albinism (GPR143). Here we present a case of a 13.5 yr old boy and sister with a same terminal deletion of Xp22.2 resulting in the absence of genes from the telomere of Xp to GPR143 of Xp22. The boy manifested the findings of all of the disorders mentioned above. We began a testosterone enanthate monthly replacement therapy. His sister, 11 yr old, manifested only Leri-Weill dyschondrosteosis, and had engaged in growth hormone therapy for 3 yr. To the best of our knowledge, this is the first report of a male with a 9.7 Mb terminal Xp deletion including the OA1 locus in Korea. PMID:23091330

  9. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection.

    PubMed Central

    Meyers, B C; Shen, K A; Rohani, P; Gaut, B S; Michelmore, R W

    1998-01-01

    Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of approximately 5. 5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka /Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands. PMID:9811792

  10. Discovery of functional non-coding conserved regions in the α-synuclein gene locus

    PubMed Central

    Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt

    2014-01-01

    Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays.  We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351

  11. Alteration of the retinoblastoma gene locus in radium-exposed individuals

    SciTech Connect

    Hardwick, J.P.; Schlenker, R.; Huberman, E.

    1991-01-01

    This study was performed to determine if the retinoblastoma suppressor gene was altered in individuals exposed to radium. We analyzed the Rb gene in 30 individuals, 17 of whom were exposed to radium either occupationally or iatrogenically. In the kidney DNA from four of nine radium-exposed individuals, the Rb gene was deleted. Three of these alterations in the Rb gene were internal deletions, which resulted in the absence of Rb mRNA accumulation. These results imply that the Rb gene is susceptible to radium-induced damage and confirm previous showing that radiation preferentially causes genomic deletions. The pronounced alterations in the non-tumorigenic femurs from radium-exposed individuals suggests that in the many years of exposure there was a selection of cells with alterations, presumably because of their growth advantage. Also it implies that deletions of one of the Rb alleles can be one of the events (perhaps an initial one) in the progression of radium-induced sarcomas. 11 refs., 2 figs.

  12. The association between hypoxia-inducible factor-1 α gene G1790A polymorphism and cancer risk: a meta-analysis of 28 case–control studies

    PubMed Central

    2014-01-01

    Purpose Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the cellular adaptation to hypoxia. HIF-1α gene single nucleotide polymorphisms (SNPs) are implicated to be associated with cancer risks. However, results from the published studies remained inconclusive. The aim of this study is to investigate the relationship of HIF-1α gene G1790A polymorphism with cancer using meta-analysis. Methods A comprehensive search in Pubmed, EMBASE and China National Knowledge Infrastructure (CNKI) was conducted to identify all publications on the association between this polymorphism and cancer until December 13, 2013. Odds ratios (OR) with 95% confidence intervals (95% CI) were used to evaluate the strength of this association. Association between lymph node metastasis and G1790A was also investigated. Results A total of 5985 cases and 6809 controls in 28 case–control studies were included in this meta-analysis. The A allele of HIF-1α gene G1790A polymorphism was found to be significantly associated with increased cancer risk in four genetic models: AA + AG vs. GG (dominant model OR = 1.85, 95% CI = 1.27-2.69), AA vs. AG + GG (recessive model OR = 5.69, 95% CI = 3.87-8.37), AA vs. GG (homozygote comparison OR = 6.63, 95% CI = 4.49-9.79), and AG vs. GG (heterozygote comparison OR = 2.39, 95% CI = 1.53-3.75). This variant was also significantly associated with higher risks of pancreatic cancer, head and neck cancer, lung cancer and renal cell carcinoma. However, the A allele of G1790A was not significantly associated with increased lymph node metastasis in the dominant model by overall meta-analysis. Conclusions Our meta-analysis suggests that the substitution of G with A of HIF-1α gene G1790A polymorphism is a risk factor of cancer, especially for pancreatic cancer, lung cancer, renal cell carcinoma and head and neck cancer. The association is significant in Asian, Caucasian population and public based

  13. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. ); Levy, D.L. ); Smith, M. ); Klein, D.N. ); MacMurray, J.; Tosk, J.M. ); Sverd, J. Cornell Univ. Medical College, Manhasset, NY ); Borison, R.L.; Evans, D.D. )

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  14. Intragenic Locus in Human PIWIL2 Gene Shares Promoter and Enhancer Functions

    PubMed Central

    Zinovyeva, Marina V.; Nikolaev, Lev G.; Azhikina, Tatyana L.

    2016-01-01

    Recently, more evidence supporting common nature of promoters and enhancers has been accumulated. In this work, we present data on chromatin modifications and non-polyadenylated transcription characteristic for enhancers as well as results of in vitro luciferase reporter assays suggesting that PIWIL2 alternative promoter in exon 7 also functions as an enhancer for gene PHYHIP located 60Kb upstream. This finding of an intragenic enhancer serving as a promoter for a shorter protein isoform implies broader impact on understanding enhancer-promoter networks in regulation of gene expression. PMID:27248499

  15. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus

    PubMed Central

    Porjesz, Bernice; Almasy, Laura; Edenberg, Howard J.; Wang, Kongming; Chorlian, David B.; Foroud, Tatiana; Goate, Alison; Rice, John P.; O'Connor, Sean J.; Rohrbaugh, John; Kuperman, Samuel; Bauer, Lance O.; Crowe, Raymond R.; Schuckit, Marc A.; Hesselbrock, Victor; Conneally, P. Michael; Tischfield, Jay A.; Li, Ting-Kai; Reich, Theodore; Begleiter, Henri

    2002-01-01

    Human brain oscillations represent important features of information processing and are highly heritable. A common feature of beta oscillations (13–28 Hz) is the critical involvement of networks of inhibitory interneurons as pacemakers, gated by γ-aminobutyric acid type A (GABAA) action. Advances in molecular and statistical genetics permit examination of quantitative traits such as the beta frequency of the human electroencephalogram in conjunction with DNA markers. We report a significant linkage and linkage disequilibrium between beta frequency and a set of GABAA receptor genes. Uncovering the genes influencing brain oscillations provides a better understanding of the neural function involved in information processing. PMID:11891318

  16. Hepatocyte Nuclear Factor 1 Regulates the Expression of the Organic Cation Transporter 1 via Binding to an Evolutionary Conserved Region in Intron 1 of the OCT1 Gene

    PubMed Central

    O’Brien, Valerie P.; Bokelmann, Kristin; Ramírez, Jacqueline; Jobst, Karoline; Ratain, Mark J.; Brockmöller, Jürgen

    2013-01-01

    The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences. PMID:23922447

  17. Hepatocyte nuclear factor 1 regulates the expression of the organic cation transporter 1 via binding to an evolutionary conserved region in intron 1 of the OCT1 gene.

    PubMed

    O'Brien, Valerie P; Bokelmann, Kristin; Ramírez, Jacqueline; Jobst, Karoline; Ratain, Mark J; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2013-10-01

    The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences. PMID:23922447

  18. A polymorphism in the insulin-like growth factor 1 gene is associated with postpartum resumption of ovarian cyclicity in Holstein-Friesian cows under grazing conditions

    PubMed Central

    2013-01-01

    Background Insulin-like growth factor 1 (IGF-1) gene is considered as a promising candidate for the identification of polymorphisms affecting cattle performance. The objectives of the current study were to determine the association of the single nucleotide polymorphism (SNP) IGF-1/SnaBI with fertility, milk production and body condition traits in Holstein-Friesian dairy cows under grazing conditions. Methods Seventy multiparous cows from a commercial herd were genotyped for the SNP IGF-1/SnaBI. Fertility measures evaluated were: interval to commencement of luteal activity (CLA), calving to first service (CFS) and calving to conception (CC) intervals. Milk production and body condition score were also evaluated. The study period extended from 3 wk before calving to the fourth month of lactation. Results and discussion Frequencies of the SNP IGF-1/SnaBI alleles A and B were 0.59 and 0.41, respectively. Genotype frequencies were 0.31, 0.54 and 0.14 for AA, AB and BB, respectively. Cows with the AA genotype presented an early CLA and were more likely to resume ovarian cyclicity in the early postpartum than AB and BB ones. No effect of the SNP IGF-1/SnaBI genotype was evidenced on body condition change over the experimental period, suggesting that energy balance is not responsible for the outcome of postpartum ovarian resumption in this study. Traditional fertility measures were not affected by the SNP IGF-1/SnaBI. Conclusion To our knowledge this is the first report describing an association of the SNP IGF-1/SnaBI with an endocrine fertility measure like CLA in cattle. Results herein remark the important role of the IGF-1gene in the fertility of dairy cows on early lactation and make the SNP IGF-1/SnaBI an interesting candidate marker for genetic improvement of fertility in dairy cattle. PMID:23409757

  19. Association between Insulin-Like Growth Factor 1 Gene rs12423791 or rs6214 Polymorphisms and High Myopia: A Meta-Analysis

    PubMed Central

    Guo, Lan; Du, Xueying; Lu, Ciyong; Zhang, Wei-Hong

    2015-01-01

    Objective To evaluate the association of insulin-like growth factor 1 gene rs12423791 and rs6214 polymorphisms with high myopia. Methods An electronic search was conducted on PubMed, Embase, the Cochrane Library and the Chinese Biological Abstract Database for articles published prior to May 6, 2014. A meta-analysis was performed using Revman 5.1 and Stata 12.0, and the odds ratios with 95% confidence intervals were calculated in fixed or random effects models based on the results of the Q test. The subgroup analysis was conducted on the basis of the various regions, the sensitivity analysis was also performed to evaluate the stability of the results, and the publication bias was evaluated by a funnel plot and Egger’s linear regression analysis. Results This comprehensive meta-analysis included 2808 high myopia patients and 2778 controls from five unrelated studies. The results demonstrated that the significant association was not present in any genetic models between IGF-1 rs12423791 or rs6214 and high myopia. However, subgroup analysis indicated that rs12423791 polymorphism was associated with high myopia in the Chinese populations in the allelic contrast model (C vs. G: OR=1.24, 95% CI=1.04-1.48 in the fixed-effects model), the dominant model (CC+CG vs. GG: OR=1.40, 95% CI=1.16-1.69 in the fixed-effects model), and the codominant model (CG vs. GG: OR=1.37, 95% CI= 1.12-1.68 in the fixed-effects model). Additionally, none of the individual studies significantly affected the association between IGF-1 rs12423791 and high myopia, according to sensitivity analysis. Conclusion This meta-analysis shows that IGF-1 rs12423791 or rs6214 gene polymorphism is not associated with high myopia. PMID:26076017

  20. Molecular cloning, pathologically-correlated expression and functional characterization of the colonystimulating factor 1 receptor (CSF-1R) gene from a teleost, Plecoglossus altivelis

    PubMed Central

    CHEN, Qiang; LU, Xin-Jiang; LI, Ming-Yun; CHEN, Jiong

    2016-01-01

    Colony-stimulating factor 1 receptor (CSF-1R) is an important regulator of monocytes/macrophages (MO/MΦ). Although several CSF-1R genes have been identified in teleosts, the precise role of CSF- 1R in ayu (Plecoglossus altivelis) remains unclear. In this study, we characterized the CSF-1R homologue from P. altivelis, and named it PaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that PaCSF-1R was most closely related to that of Japanese ricefish (Oryzias latipes). Tissue distribution and expression analysis showed that the PaCSF-1R transcript was mainly expressed in the head kidney-derived MO/MΦ, spleen, and head kidney, and its expression was significantly altered in various tissues upon Vibrio anguillarum infection. After PaCSF-1R neutralization for 48 h, the phagocytic activity of MO/MΦ was significantly decreased, suggesting that PaCSF-1R plays a role in regulating the phagocytic function of ayu MO/MΦ. PMID:27029867

  1. Comprehensive sequence analysis of the NR5A1 gene encoding steroidogenic factor 1 in a large group of infertile males

    PubMed Central

    Röpke, Albrecht; Tewes, Ann-Christin; Gromoll, Jörg; Kliesch, Sabine; Wieacker, Peter; Tüttelmann, Frank

    2013-01-01

    The steroidogenic factor 1 (SF1) protein, encoded by the NR5A1 gene, plays a central role in gonadal development and steroidogenesis. Mutations in NR5A1 were first described in patients with primary adrenal insufficiency and 46,XY disorders of sexual development and later also in men with hypospadias, bilateral anorchia and micropenis and women with primary ovarian insufficiency. Recently, heterozygous missense mutations were found in 4% of infertile men with unexplained reduced sperm counts living in France, but all mutation carriers were of non-Caucasian ancestry. Therefore, we performed a comprehensive NR5A1 sequence analysis in 488 well-characterised predominantly Caucasian patients with azoo- or severe oligozoospermia. Two-hundred-thirty-seven men with normal semen parameters were sequenced as controls. In addition to several synonymous variants of unclear pathogenicity, three heterozygous missense mutations predicted to be damaging to SF1 protein function were identified. The andrological phenotype in infertile but otherwise healthy mutation carriers seems variable. In conclusion, mutations altering SF1 protein function and causing spermatogenic failure are also found in men of German origin, but the prevalence seems markedly lower than in other populations. PMID:23299922

  2. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identify the wheat stem rust resistance gene Sr50 by physical mapping, mutation and complementation as homologous to barley Mla encoding a Coiled-Coil-Nucleotide-Binding-Leucine-Rich Repeat (CC-NB-LRR) protein. We show that Sr50 confers a unique resistance specificity, different from Sr31 and oth...

  3. Genomic analysis of the Tsn1 locus and the identification of candidate genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat Tsn1 gene on wheat chromosome arm 5BL confers sensitivity to the host-selective proteinaceous toxins Ptr ToxA and SnToxA produced by the pathogenic fungi Pyrenophora tritici-repentis and Stagonospora nodorum, respectively. Compatible Tsn1-ToxA interactions lead to extensive cell death and...

  4. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.

    PubMed

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J; Li, Qiyuan; Marks, Jeffrey R; Berchuck, Andrew; Lee, Janet M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y; Kjaer, Susanne Kruger; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Budzilowska, Agnieszka; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A; Freedman, Matthew L; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D; Gayther, Simon A; Schildkraut, Joellen M

    2015-11-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. PMID:26424751

  5. Regulation of cytochrome b5 gene transcription by Sp3, GATA-6, and steroidogenic factor 1 in human adrenal NCI-H295A cells.

    PubMed

    Huang, Ningwu; Dardis, Andrea; Miller, Walter L

    2005-08-01

    Sex steroid synthesis requires the 17,20 lyase activity of P450c17, which is enhanced by cytochrome b5, acting as an allosteric factor to promote association of P450c17 with its electron donor, P450 oxidoreductase. Cytochrome b5 is preferentially expressed in the fetal adrenal and postadrenarchal adrenal zona reticularis; the basis of this tissue-specific, developmentally regulated transcription of the b5 gene is unknown. We found b5 expression in all cell lines tested, including human adrenal NCI-H295A cells, where its mRNA is reduced by cAMP and phorbol ester. Multiple sites, between -83 and -122 bp upstream from the first ATG, initiate transcription. Deletional mutagenesis localized all detectable promoter activity within -327/+15, and deoxyribonuclease I footprinting identified protein binding at -72/-107 and -157/-197. DNA segments -65/-40, -114/-70 and -270/-245 fused to TK32/Luc yielded significant activity, and mutations in their Sp sites abolished that activity; electrophoretic mobility shift assay (EMSA) showed that Sp3, but not Sp1, binds to these Sp sites. Nuclear factor 1 (NF-1) and GATA-6, but not GATA-4 bind to the NF-1 and GATA sites in -157/-197. In Drosophila S2 cells, Sp3 increased -327/Luc activity 58-fold, but Sp1 and NF-1 isoforms were inactive. Mutating the three Sp sites ablated activity without or with cotransfection of Sp1/Sp3. In NCI-H295A cells, mutating the three Sp sites reduced activity to 39%; mutating the Sp, GATA, and NF-1 sites abolished activity. In JEG-3 cells, GATA-4 was inactive, GATA-6 augmented -327/Luc activity to 231% over the control, and steroidogenic factor 1 augmented activity to 655% over the control; these activities required the Sp and NF-1 sites. Transcription of cytochrome b5 shares many features with the regulation of P450c17, whose activity it enhances. PMID:15831526

  6. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

    PubMed Central

    2013-01-01

    Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon

  7. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    SciTech Connect

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the in situ hybridization mapping with the gene are presented. 10 refs., 1 fig.

  8. The Staphylococcus aureus scdA gene: a novel locus that affects cell division and morphogenesis.

    PubMed

    Brunskill, E W; de Jonge, B L; Bayles, K W

    1997-09-01

    A new Staphylococcus aureus gene termed scdA was found upstream of the autolysis regulatory genes, lytS and lytR, and was shown to potentially encode a hydrophilic 25 kDa protein. Analysis of scdA transcription revealed that it is transcribed as a monocistronic message and is lytSR-independent. A role in cell wall metabolism was indicated by examination of the scdA mutant S. aureus KB323, which had a grossly aberrant cellular morphology and formed large cell clusters when grown in liquid culture medium. Furthermore, KB323 exhibited a reduced rate of autolysis and had increased peptidoglycan cross-linking compared to the parental strain, NCTC 8325-4. These data suggest that scdA plays an important role in staphylococcal cell division. PMID:9308171

  9. Mutation-Selection Balance in Multi-Locus Systems. I. Duplicate Gene Action

    PubMed Central

    Pritchett-Ewing, Evelyn

    1981-01-01

    A theoretical model is presented that extends the case of selection against homozygous recessives counterbalanced by mutation to a system of n loci. This extension allows analysis of the role of gene duplication in the evolution of new function. The aspect of retention of function for sufficiently long periods of time to allow for divergence vs. silencing of nonfunctional loci is discussed in relation to examples in salmonid and catastomid fishes and in the globin-like clusters. PMID:17249091

  10. Gene Recruitment of the Activated INO1 Locus to the Nuclear Membrane

    PubMed Central

    2004-01-01

    The spatial arrangement of chromatin within the nucleus can affect reactions that occur on the DNA and is likely to be regulated. Here we show that activation of INO1 occurs at the nuclear membrane and requires the integral membrane protein Scs2. Scs2 antagonizes the action of the transcriptional repressor Opi1 under conditions that induce the unfolded protein response (UPR) and, in turn, activate INO1. Whereas repressed INO1 localizes throughout the nucleoplasm, the gene is recruited to the nuclear periphery upon transcriptional activation. Recruitment requires the transcriptional activator Hac1, which is produced upon induction of the UPR, and is constitutive in a strain lacking Opi1. Artificial recruitment of INO1 to the nuclear membrane permits activation in the absence of Scs2, indicating that the intranuclear localization of a gene can profoundly influence its mechanism of activation. Gene recruitment to the nuclear periphery, therefore, is a dynamic process and appears to play an important regulatory role. PMID:15455074

  11. Nucleotide Variation and Conservation at the Dpp Locus, a Gene Controlling Early Development in Drosophila

    PubMed Central

    Richter, B.; Long, M.; Lewontin, R. C.; Nitasaka, E.

    1997-01-01

    A study of polymorphism and species divergence of the dpp gene of Drosophila has been made. Eighteen lines from a population of D. melanogaster were sequenced for 5200 bp of the Hin region of the gene, coding for the dpp polypeptide. A comparison was made with sequence from D. simulans. Ninety-six silent polymorphisms and three amino acid replacement polymorphisms were found. The overall silent polymorphism (0.0247) is low, but haplotype diversity (0.0066 for effectively silent sites and 0.0054 for all sites) is in the range found for enzyme loci. Amino acid variation is absent in the N-terminal signal peptide, the C-terminal TGF-β peptide and in the N-terminal half of the pro-protein region. At the nucleotide level there is strong conservation in the middle half of the large intron and in the 3' untranslated sequence of the last exon. The 3' untranslated conservation, which is perfect for 110 bp among all the divergent species, is unexplained. There is strong positive linkage disequilibrium among polymorphic sites, with stretches of apparent gene conversion among originally divergent sequences. The population apparently is a migration mixture of divergent clades. PMID:9071586

  12. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus.

    PubMed

    Fox, B A; Bzik, D J

    1994-11-01

    We evaluated the stage-specific transcription and processing of serine repeat antigen (SERA) messenger RNA to further examine mechanisms regulating gene expression in Plasmodium falciparum. SERA mRNA was expressed exclusively in trophozoite and schizont stages. Transcription from the SERA gene was first detected between 24 and 29 h following erythrocyte invasion. The transcript mapping data revealed heterogeneity of the SERA mRNA 5' and 3' ends. RNA sequencing revealed that SERA transcripts were not generated by a trans-splicing mechanism. A new SERA gene, SERA3, was identified 1.8 kb upstream of SERA. The direction of transcription of the SERA locus genes, SERA3, SERA, and SERA2, was mapped relative to the location of other chromosome 2 genetic markers. The SERA locus and the closely linked MSA2 locus were found to be transcriptionally regulated in a coordinate fashion. Collectively, the results of these experiments show that parallel and coordinately controlled transcription units reside on chromosome 2. These results implicate a novel mechanism of transcriptional control in Plasmodium. PMID:7891737

  13. A NOVEL ALZHEIMER DISEASE LOCUS LOCATED NEAR THE GENE ENCODING TAU PROTEIN

    PubMed Central

    Jun, Gyungah; Ibrahim-Verbaas, Carla A.; Vronskaya, Maria; Lambert, Jean-Charles; Chung, Jaeyoon; Naj, Adam C.; Kunkle, Brian W.; Wang, Li-San; Bis, Joshua C.; Bellenguez, Céline; Harold, Denise; Lunetta, Kathryn L.; Destefano, Anita L.; Grenier-Boley, Benjamin; Sims, Rebecca; Beecham, Gary W.; Smith, Albert V.; Chouraki, Vincent; Hamilton-Nelson, Kara L.; Ikram, M. Arfan; Fievet, Nathalie; Denning, Nicola; Martin, Eden R.; Schmidt, Helena; Kamatani, Yochiro; Dunstan, Melanie L; Valladares, Otto; Laza, Agustin Ruiz; Zelenika, Diana; Ramirez, Alfredo; Foroud, Tatiana M.; Choi, Seung-Hoan; Boland, Anne; Becker, Tim; Kukull, Walter A.; van der Lee, Sven J.; Pasquier, Florence; Cruchaga, Carlos; Beekly, Duane; Fitzpatrick, Annette L.; Hanon, Oliver; Gill, Michael; Barber, Robert; Gudnason, Vilmundur; Campion, Dominique; Love, Seth; Bennett, David A.; Amin, Najaf; Berr, Claudine; Tsolaki, Magda; Buxbaum, Joseph D.; Lopez, Oscar L.; Deramecourt, Vincent; Fox, Nick C; Cantwell, Laura B.; Tárraga, Lluis; Dufouil, Carole; Hardy, John; Crane, Paul K.; Eiriksdottir, Gudny; Hannequin, Didier; Clarke, Robert; Evans, Denis; Mosley, Thomas H.; Letenneur, Luc; Brayne, Carol; Maier, Wolfgang; De Jager, Philip; Emilsson, Valur; Dartigues, Jean-François; Hampel, Harald; Kamboh, M. Ilyas; de Bruijn, Renee F.A.G.; Tzourio, Christophe; Pastor, Pau; Larson, Eric B.; Rotter, Jerome I.; O’Donovan, Michael C; Montine, Thomas J.; Nalls, Michael A.; Mead, Simon; Reiman, Eric M.; Jonsson, Palmi V.; Holmes, Clive; St George-Hyslop, Peter H.; Boada, Mercè; Passmore, Peter; Wendland, Jens R.; Schmidt, Reinhold; Morgan, Kevin; Winslow, Ashley R.; Powell, John F; Carasquillo, Minerva; Younkin, Steven G.; Jakobsdóttir, Jóhanna; Kauwe, John SK; Wilhelmsen, Kirk C.; Rujescu, Dan; Nöthen, Markus M; Hofman, Albert; Jones, Lesley; Haines, Jonathan L.; Psaty, Bruce M.; Van Broeckhoven, Christine; Holmans, Peter; Launer, Lenore J.; Mayeux, Richard; Lathrop, Mark; Goate, Alison M.; Escott-Price, Valentina; Seshadri, Sudha; Pericak-Vance, Margaret A.; Amouyel, Philippe; Williams, Julie; van Duijn, Cornelia M.; Schellenberg, Gerard D.; Farrer, Lindsay A.

    2015-01-01

    APOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer’s Project (IGAP) Consortium in APOE ε4+ (10,352 cases and 9,207 controls) and APOE ε4− (7,184 cases and 26,968 controls) subgroups as well as in the total sample testing for interaction between a SNP and APOE ε4 status. Suggestive associations (P<1x10−4) in stage 1 were evaluated in an independent sample (stage 2) containing 4,203 subjects (APOE ε4+: 1,250 cases and 536 controls; APOE ε4-: 718 cases and 1,699 controls). Among APOE ε4− subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 datasets (best SNP, rs2732703, P=5·8x10−9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100 kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4− subjects (MS4A6A/MS4A4A/ MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6x10−7) is noteworthy because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3x10−8), frontal cortex (P≤1.3x10−9), and temporal cortex (P≤1.2x10−11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively

  14. A novel Alzheimer disease locus located near the gene encoding tau protein.

    PubMed

    Jun, G; Ibrahim-Verbaas, C A; Vronskaya, M; Lambert, J-C; Chung, J; Naj, A C; Kunkle, B W; Wang, L-S; Bis, J C; Bellenguez, C; Harold, D; Lunetta, K L; Destefano, A L; Grenier-Boley, B; Sims, R; Beecham, G W; Smith, A V; Chouraki, V; Hamilton-Nelson, K L; Ikram, M A; Fievet, N; Denning, N; Martin, E R; Schmidt, H; Kamatani, Y; Dunstan, M L; Valladares, O; Laza, A R; Zelenika, D; Ramirez, A; Foroud, T M; Choi, S-H; Boland, A; Becker, T; Kukull, W A; van der Lee, S J; Pasquier, F; Cruchaga, C; Beekly, D; Fitzpatrick, A L; Hanon, O; Gill, M; Barber, R; Gudnason, V; Campion, D; Love, S; Bennett, D A; Amin, N; Berr, C; Tsolaki, Magda; Buxbaum, J D; Lopez, O L; Deramecourt, V; Fox, N C; Cantwell, L B; Tárraga, L; Dufouil, C; Hardy, J; Crane, P K; Eiriksdottir, G; Hannequin, D; Clarke, R; Evans, D; Mosley, T H; Letenneur, L; Brayne, C; Maier, W; De Jager, P; Emilsson, V; Dartigues, J-F; Hampel, H; Kamboh, M I; de Bruijn, R F A G; Tzourio, C; Pastor, P; Larson, E B; Rotter, J I; O'Donovan, M C; Montine, T J; Nalls, M A; Mead, S; Reiman, E M; Jonsson, P V; Holmes, C; St George-Hyslop, P H; Boada, M; Passmore, P; Wendland, J R; Schmidt, R; Morgan, K; Winslow, A R; Powell, J F; Carasquillo, M; Younkin, S G; Jakobsdóttir, J; Kauwe, J S K; Wilhelmsen, K C; Rujescu, D; Nöthen, M M; Hofman, A; Jones, L; Haines, J L; Psaty, B M; Van Broeckhoven, C; Holmans, P; Launer, L J; Mayeux, R; Lathrop, M; Goate, A M; Escott-Price, V; Seshadri, S; Pericak-Vance, M A; Amouyel, P; Williams, J; van Duijn, C M; Schellenberg, G D; Farrer, L A

    2016-01-01

    APOE ɛ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ɛ4+ (10 352 cases and 9207 controls) and APOE ɛ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ɛ4 status. Suggestive associations (P<1 × 10(-4)) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ɛ4+: 1250 cases and 536 controls; APOE ɛ4-: 718 cases and 1699 controls). Among APOE ɛ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10(-9)). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ɛ4+ subjects (CR1 and CLU) or APOE ɛ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10(-7)) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P ⩽ 1.3 × 10(-8)), frontal cortex (P ⩽ 1.3 × 10(-9)) and temporal cortex (P⩽1.2 × 10(-11)). Rs113986870 is also strongly associated with a MAPT probe

  15. Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture

    PubMed Central

    Mahajan, Milind C; Karmakar, Subhradip; Krause, Diane; Weissman, Sherman M

    2009-01-01

    Objective The aim of the present study has been to establish serum free culture conditions for the ex vivo expansion and differentiation of human CD34+ cells into erythroid lineage and to study the chromatin structure, gene expression and transcription factor recruitment at the α–globin locus in the developing erythron. Methods A basal IMDM cell culture medium with 1% bovine serum albumin as a serum replacement and a combination of cytokines and growth factors was used for the expansion and differentiation of the CD34+ cells. Expression patterns of the alpha and beta like genes at various stages of erythropoiesis was studied by Reverse transcriptase (RT)-qPCR analysis, profile of key erythroid transcription factors was investigated by western blotting, and the chromatin structure and transcription factor recruitment at the alpha globin locus was investigated by ChIP-qPCR analysis. Results Human CD34+ cells in the serum free medium undergo near synchronous erythroid differentiation to yield large amount of cells at different differentiation stages. We observe distinct patterns of the histone modifications and transcription factor binding at the α-globin locus during erythroid differentiation of CD34+ cells. NF-E2 was present at upstream activator sites even before addition of erythropoietin (Epo), while bound GATA-1 was only detectable after Epo treatment. After seven days of erythropoietin treatment, H3K4Me2 modification uniformly increases throughout the α–globin locus. Acetylation at H3K9 and binding of Pol II, NF-E2 and GATA-1 were restricted to certain HS sites of the enhancer and theta gene, and were conspicuously low at the α-like globin promoters. Rearrangement of the insulator binding factor CTCF took place at and around the α-globin locus as CD34+ cells differentiated into erythroid pathway. Conclusion Our results indicate that remodeling of the upstream elements may be the primary event in activation of α–globin gene expression. Activation of

  16. Layered genetic control of DNA methylation and gene expression: a locus of multiple sclerosis in healthy individuals.

    PubMed

    Shin, Jean; Bourdon, Celine; Bernard, Manon; Wilson, Michael D; Reischl, Eva; Waldenberger, Melanie; Ruggeri, Barbara; Schumann, Gunter; Desrivieres, Sylvane; Leemans, Alexander; Abrahamowicz, Michal; Leonard, Gabriel; Richer, Louis; Bouchard, Luigi; Gaudet, Daniel; Paus, Tomas; Pausova, Zdenka

    2015-10-15

    DNA methylation may contribute to the etiology of complex genetic disorders through its impact on genome integrity and gene expression; it is modulated by DNA-sequence variants, named methylation quantitative trait loci (meQTLs). Most meQTLs influence methylation of a few CpG dinucleotides within short genomic regions (<3 kb). Here, we identified a layered genetic control of DNA methylation at numerous CpGs across a long 300 kb genomic region. This control involved a single long-range meQTL and multiple local meQTLs. The long-range meQTL explained up to 75% of variance in methylation of CpGs located over extended areas of the 300 kb region. The meQTL was identified in four samples (P = 2.8 × 10(-17), 3.1 × 10(-31), 4.0 × 10(-71) and 5.2 × 10(-199)), comprising a total of 2796 individuals. The long-range meQTL was strongly associated not only with DNA methylation but also with mRNA expression of several genes within the 300 kb region (P = 7.1 × 10(-18)-1.0 × 10(-123)). The associations of the meQTL with gene expression became attenuated when adjusted for DNA methylation (causal inference test: P = 2.4 × 10(-13)-7.1 × 10(-20)), indicating coordinated regulation of DNA methylation and gene expression. Further, the long-range meQTL was found to be in linkage disequilibrium with the most replicated locus of multiple sclerosis, a disease affecting primarily the brain white matter. In middle-aged adults free of the disease, we observed that the risk allele was associated with subtle structural properties of the brain white matter found in multiple sclerosis (P = 0.02). In summary, we identified a long-range meQTL that controls methylation and expression of several genes and may be involved in increasing brain vulnerability to multiple sclerosis. PMID:26220975

  17. Analysis of Expression of a Phenazine Biosynthesis Locus of Pseudomonas aureofaciens PGS12 on Seeds with a Mutant Carrying a Phenazine Biosynthesis Locus-Ice Nucleation Reporter Gene Fusion.

    PubMed

    Georgakopoulos, D G; Hendson, M; Panopoulos, N J; Schroth, M N

    1994-12-01

    A derivative of Pseudomonas aureofaciens PGS12 expressing a promoterless ice nucleation gene under the control of a phenazine biosynthesis locus was used to study the expression of a phenazine antibiotic locus (Phz) during bacterial seed colonization. Seeds of various plants were inoculated with wild-type PGS12 and a PGS12 ice nucleation-active phz:inaZ marker exchange derivative and planted in soil, and the expression of the reporter gene was monitored at different intervals for 48 h during seed germination. phz gene expression was first detected 12 h after planting, and the expression increased during the next 36-h period. Significant differences in expression of bacterial populations on different seeds were measured at 48 h. The highest expression level was recorded for wheat seeds (one ice nucleus per 4,000 cells), and the lowest expression level was recorded for cotton seeds (one ice nucleus per 12,000,000 cells). These values indicate that a small proportion of bacteria in a seed population expressed phenazine biosynthesis. Reporter gene expression levels and populations on individual seeds in a sample were lognormally distributed. There was greater variability in reporter gene expression than in population size among individual seeds in a sample. Expression on sugar beet and radish seeds was not affected by different inoculum levels or soil matric potentials of -10 and -40 J/kg; only small differences in expression on wheat and sugar beet seeds were detected when the seeds were planted in various soils. It is suggested that the nutrient level in seed exudates is the primary reason for the differences observed among seeds. The lognormal distribution of phenazine expression on seeds and the timing and difference in expression of phenazine biosynthesis on seeds have implications for the potential efficacy of biocontrol microorganisms against plant pathogens. PMID:16349467

  18. Analysis of Expression of a Phenazine Biosynthesis Locus of Pseudomonas aureofaciens PGS12 on Seeds with a Mutant Carrying a Phenazine Biosynthesis Locus-Ice Nucleation Reporter Gene Fusion

    PubMed Central

    Georgakopoulos, Dimitrios G.; Hendson, Mavis; Panopoulos, Nickolas J.; Schroth, Milton N.

    1994-01-01

    A derivative of Pseudomonas aureofaciens PGS12 expressing a promoterless ice nucleation gene under the control of a phenazine biosynthesis locus was used to study the expression of a phenazine antibiotic locus (Phz) during bacterial seed colonization. Seeds of various plants were inoculated with wild-type PGS12 and a PGS12 ice nucleation-active phz:inaZ marker exchange derivative and planted in soil, and the expression of the reporter gene was monitored at different intervals for 48 h during seed germination. phz gene expression was first detected 12 h after planting, and the expression increased during the next 36-h period. Significant differences in expression of bacterial populations on different seeds were measured at 48 h. The highest expression level was recorded for wheat seeds (one ice nucleus per 4,000 cells), and the lowest expression level was recorded for cotton seeds (one ice nucleus per 12,000,000 cells). These values indicate that a small proportion of bacteria in a seed population expressed phenazine biosynthesis. Reporter gene expression levels and populations on individual seeds in a sample were lognormally distributed. There was greater variability in reporter gene expression than in population size among individual seeds in a sample. Expression on sugar beet and radish seeds was not affected by different inoculum levels or soil matric potentials of -10 and -40 J/kg; only small differences in expression on wheat and sugar beet seeds were detected when the seeds were planted in various soils. It is suggested that the nutrient level in seed exudates is the primary reason for the differences observed among seeds. The lognormal distribution of phenazine expression on seeds and the timing and difference in expression of phenazine biosynthesis on seeds have implications for the potential efficacy of biocontrol microorganisms against plant pathogens. PMID:16349467

  19. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri

    PubMed Central

    Yip, Emily S.; Geszvain, Kati; DeLoney-Marino, Cindy R.; Visick, Karen L.

    2006-01-01

    Summary Successful colonization of a eukaryotic host by a microbe involves complex microbe-microbe and microbe-host interactions. Previously, we identified in Vibrio fischeri a putative sensor kinase, RscS, required for initiating symbiotic colonization of its squid host Euprymna scolopes. Here, we analyzed the role of rscS by isolating an allele, rscS1, with increased activity. Multi-copy rscS1 activated transcription of genes within the recently identified symbiosis polysaccharide (syp) cluster. Wild-type cells carrying rscS1 induced aggregation phenotypes in culture, including the formation of pellicles and wrinkled colonies, in a syp-dependent manner. Colonies formed by rscS1-expressing cells produced a matrix not found in control colonies and largely lost in an rscS1-expressing sypN mutant. Finally, multi-copy rscS1 provided a colonization advantage over control cells and substantially enhanced the ability of wild-type cells to aggregate on the surface of the symbiotic organ of E. scolopes; this latter phenotype similarly depended upon an intact syp locus. These results suggest that transcription induced by RscS-mediated signal transduction plays a key role in colonization at the aggregation stage by modifying the cell surface and increasing the ability of the cells to adhere to one another and/or to squid-secreted mucus. PMID:17087775

  20. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies.

    PubMed

    Sun, Jingnan; Li, Wei; Sun, Yunpeng; Yu, Dehai; Wen, Xue; Wang, Hong; Cui, Jiuwei; Wang, Guanjun; Hoffman, Andrew R; Hu, Ji-Fan

    2014-09-01

    Dysregulation of the insulin-like growth factor type I receptor (IGF1R) has been implicated in the progression and therapeutic resistance of malignancies. In acute myeloid leukemia (AML) cells, IGF1R is one of the most abundantly phosphorylated receptor tyrosine kinases, promoting cell growth through the PI3K/Akt signaling pathway. However, little is known regarding the molecular mechanisms underlying IGF1R gene dysregulation in cancer. We discovered a novel intragenic long noncoding RNA (lncRNA) within the IGF1R locus, named IRAIN, which is transcribed in an antisense direction from an intronic promoter. The IRAIN lncRNA was expressed exclusively from the paternal allele, with the maternal counterpart being silenced. Using both reverse transcription-associated trap and chromatin conformation capture assays, we demonstrate that this lncRNA interacts with chromatin DNA and is involved in the formation of an intrachromosomal enhancer/promoter loop. Knockdown of IRAIN lncRNA with shRNA abolishes this intrachromosomal interaction. In addition, IRAIN was downregulated both in leukemia cell lines and in blood obtained from high-risk AML patients. These data identify IRAIN as a new imprinted lncRNA that is involved in long-range DNA interactions. PMID:25092925

  1. Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease.

    PubMed

    Elahi, Maqsood M; Asotra, Kamlesh; Matata, Bashir M; Mastana, Sarabjit S

    2009-03-01

    Tumor necrosis factor-alpha (TNF-alpha) is a potent immunomediator and proinflammatory cytokine that has been implicated in the pathogenesis of a large number of human diseases. The location of its gene within major histocompatibility complex and biological activities has raised the possibility that polymorphisms within this locus may contribute to the pathogenesis of wide range of autoimmune and infectious diseases. For example, a bi-allelic single nucleotide substitution of G (TNFA1 allele) with A (TNFA2 allele) polymorphism at -308 nucleotides upstream from the transcription initiation site in the TNF-alpha promoter is associated with elevated TNF-alpha levels and disease susceptibilities. However, it is still unclear whether TNF-alpha -308 polymorphism plays a part in the disease process, in particular whether it could affect transcription factor binding and in turn influence TNF-alpha transcription and synthesis. Several studies have suggested that TNFA2 allele is significantly linked with the high TNF-alpha-producing autoimmune MHC haplotype HLA-A1, B8, DR3, with elevated serum TNF-alpha levels and a more severe outcome in diseases. This review discusses the genetics of the TNF-alpha -308 polymorphism in selected major diseases and evaluates its common role in health and disease. PMID:19708125

  2. A novel deletion/insertion caused by a replication error in the β-globin gene locus control region.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Meley, Roland; Pondarré, Corinne; Francina, Alain

    2011-01-01

    Deletions in the β-globin locus control region (β-LCR) lead to (εγδβ)(0)-thalassemia [(εγδβ)(0)-thal]. In patients suffering from these rare deletions, a normal hemoglobin (Hb), phenotype is found, contrasting with a hematological thalassemic phenotype. Multiplex-ligation probe amplification (MLPA) is an efficient tool to detect β-LCR deletions combined with long-range polymerase chain reaction (PCR) and DNA sequencing to pinpoint deletion breakpoints. We present here a novel 11,155 bp β-LCR deletion found in a French Caucasian patient which removes DNase I hypersensitive site 2 (HS2) to HS4 of the β-LCR. Interestingly, a 197 bp insertion of two inverted sequences issued from the HS2-HS3 inter-region is present and suggests a complex rearrangement during replication. Carriers of this type of thalassemia can be misdiagnosed as an α-thal trait. Consequently, a complete α- and β-globin gene cluster analysis is required to prevent a potentially damaging misdiagnosis in genetic counselling. PMID:21797698

  3. Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V.

    PubMed Central

    Sachs, M S; Bertrand, H; Metzenberg, R L; RajBhandary, U L

    1989-01-01

    The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA. Images PMID:2540423

  4. Novel locus for fibrinogen in 3' region of LEPR gene in island population of Vis (Croatia).

    PubMed

    Tomas, Željka; Petranović, Matea Zajc; Škarić-Jurić, Tatjana; Barešić, Ana; Salihović, Marijana Peričić; Narančić, Nina Smolej

    2014-11-01

    Leptin, a possible mediator between energy homeostasis, inflammation and cardiovascular disease (CVD), acts via leptin receptors. We investigated association of single-nucleotide polymorphisms (SNPs) and haplotypes of the leptin receptor gene (LEPR) with several CVD risk factors: body mass index, waist circumference (WC), serum lipids, fibrinogen and C-reactive protein levels. Thirty-one SNPs in and near LEPR gene were analyzed in 986 inhabitants of the island of Vis, Croatia and 29 SNPs in the inland sample (N=499). We assessed linkage disequilibrium (LD), SNP and haplotype associations with the selected phenotypes. rs4291477 significantly associated with fibrinogen (P=0.003) and rs7539471 marginally significantly with high-density lipoprotein (P=0.004), but only in the Vis sample, while rs10493384 marginally significantly associated with triglyceride levels (P=0.006) in the inland sample. SNPs were grouped into eight LD blocks in Vis and in seven blocks in the inland population. Haplotype A-C-A-A-G-A in block 5 in Vis (rs1782754, rs1171269, rs1022981, rs6673324, rs3790426, rs10493380) and haplotype A-A-A-A in block 4 in the inland data (rs1782754, rs1022981, rs6673324, rs1137100) were nominally associated with WC, P=7.085 × 10(-22) (adjusted P=0.0979) and P=5.496 × 10(-144) (adjusted P=0.1062), respectively. PMID:25296580

  5. Gene-disease association with human IFNL locus polymorphisms extends beyond hepatitis C virus infections.

    PubMed

    Chinnaswamy, S

    2016-07-01

    Interferon (IFN) lambda (IFN-λ or type III IFN) gene polymorphisms were discovered in the year 2009 to have a strong association with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection in human hosts. This landmark discovery also brought renewed interest in type III IFN biology. After more than half a decade since this discovery, we now have reports that show that genetic association of IFNL gene polymorphisms in humans is not limited only to HCV infections but extends beyond, to include varied diseases such as non-alcoholic fatty liver disease, allergy and several other viral diseases including that caused by the human immunodeficiency virus. Notably, all these conditions have strong involvement of host innate immune responses. After the discovery of a deletion polymorphism that leads to the expression of a functional IFN-λ4 as the prime 'functional' variant, the relevance of other polymorphisms regulating the expression of IFN-λ3 is in doubt. Herein, I seek to critically address these issues and review the current literature to provide a framework to help further understanding of IFN-λ biology. PMID:27278127

  6. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis.

    PubMed

    Jégu, Teddy; Latrasse, David; Delarue, Marianne; Hirt, Heribert; Domenichini, Séverine; Ariel, Federico; Crespi, Martin; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2014-02-01

    SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus. PMID:24510722

  7. Associations between genetic variants in the promoter region of the insulin-like growth factor-1 (IGF1) gene and blood serum IGF1 concentration in Hanwoo cattle.

    PubMed

    Chung, H Y; Choi, Y J; Park, H N; Davis, M E

    2015-01-01

    In this study, we investigated the associations between genetic variants in the promoter region of the insulin-like growth factor-1 (IGF1) gene and blood serum IGF1 concentration in Hanwoo cattle. Polymerase chain reaction primers were based on GenBank accession No. AF404761 and amplified approximately 533-bp segments. Newly identified sequences were submitted to GenBank (accession No. DQ267493). Sequence analysis revealed that genetic variants were located at a nucleotide position 323 for the nucleotide substitution C/A that was first reported in this study and positions 326-349 for a repeat motif (CA10-11). The allele frequencies of g.323C>A were 0.264 (C) and 0.736 (A) without significant deviation from Hardy-Weinberg equilibrium. Frequencies of the repeat motif CA(10) and CA(11) were 0.604 and 0.396, respectively. Statistical analysis revealed that the genetic variation g.323C>A was significantly associated with blood serum IGF1 concentrations with significant additive genetic effects, whereas no associations were found for the repeat motif. IGF1 concentrations were positively (r = 0.453) and negatively (r = -0.445) correlated with weights in the growing stages (16-21 months) and late fattening stages (22-30 months), respectively. The results of the present study and future genotypic data for Hanwoo beef cattle based on the robust genetic variation of IGF1 will provide critical information for genetic improvement and will have a large impact on commercial markets. PMID:25966067

  8. Regulation of Molecular Chaperone Gene Transcription Involves the Serine Phosphorylation, 14-3-3ɛ Binding, and Cytoplasmic Sequestration of Heat Shock Factor 1

    PubMed Central

    Wang, XiaoZhe; Grammatikakis, Nicholas; Siganou, Aliki; Calderwood, Stuart K.

    2003-01-01

    Heat shock factor 1 (HSF1) regulates the transcription of molecular chaperone hsp genes. However, the cellular control mechanisms that regulate HSF1 activity are not well understood. In this study, we have demonstrated for the first time that human HSF1 binds to the essential cell signaling protein 14-3-3ɛ. Binding of HSF1 to 14-3-3ɛ occurs in cells in which extracellular signal regulated kinase (ERK) is activated and blockade of the ERK pathway by treatment with the specific ERK pathway inhibitor PD98059 in vivo strongly suppresses the binding. We previously showed that ERK1 phosphorylates HSF1 on serine 307 and leads to secondary phosphorylation by glycogen synthase kinase 3 (GSK3) on serine 303 within the regulatory domain and that these phosphorylation events repress HSF1. We show here that HSF1 binding to 14-3-3ɛ requires HSF1 phosphorylation on serines 303 and 307. Furthermore, the serine phosphorylation-dependent binding of HSF1 to 14-3-3ɛ results in the transcriptional repression of HSF1 and its sequestration in the cytoplasm. Leptomycin B, a specific inhibitor of nuclear export receptor CRM1, was found to reverse the cytoplasmic sequestration of HSF1 mediated by 14-3-3ɛ, suggesting that CRM1/14-3-3ɛ directed nuclear export plays a major role in repression of HSF1 by the ERK/GSK3/14-3-3ɛ pathway. Our experiments indicate a novel pathway for HSF1 regulation and suggest a mechanism for suppression of its activity during cellular proliferation. PMID:12917326

  9. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury.

    PubMed

    Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori

    2014-06-10

    The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery. PMID:24657809

  10. Single Nucleotide Polymorphisms in the Insulin-Like Growth Factor 1 (IGF-1) Gene are Associated with Performance in Holstein-Friesian Dairy Cattle

    PubMed Central

    Mullen, Michael Paul; Berry, Donagh P.; Howard, Dawn J.; Diskin, Michael G.; Lynch, Ciaran O.; Giblin, Linda; Kenny, David A.; Magee, David A.; Meade, Kieran G.; Waters, Sinead M.

    2011-01-01

    Insulin-like growth factor 1 (IGF-1) has been shown to be associated with fertility, growth, and development in cattle. The aim of this study was to (1) identify novel single nucleotide polymorphisms (SNPs) in the bovine IGF-1 gene and alongside previously identified SNPs (2) determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5′ promoter, intronic, and 3′ regulatory regions, encompassing ~5 kb of IGF-1. Genotyping and associations with daughter performance for milk production, fertility, survival, and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P < 0.05) were identified between six SNPs (four novel and two previously identified) and milk composition, survival, body condition score, and body size. The C allele of AF017143 a previously published SNP (C-512T) in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P < 0.05) with increased cow carcass weight (i.e., an indicator of mature cow size). Novel SNPs were identified in the 3′ region of IGF-1 were associated (P < 0.05) with functional survival and chest width. The remaining four SNPs, all located within introns of IGF-1 were associated (P < 0.05) with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation, and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle. PMID:22303302

  11. Cloning and gene expression of allograft inflammatory factor-1 (AIF-1) provide new insights into injury and bacteria response of the sea cucumber Apostichopus japonicus (Selenka, 1867).

    PubMed

    Ji, Nanjing; Chang, Yaqing; Zhao, Chong; Pang, Zhengguo; He, Zhou

    2014-06-01

    Allograft inflammatory factor-1 (AIF-1) is an interferon (IFN)-γ-inducible Ca(2+)-binding cytokine that associates with the immune defense and inflammatory response. In this study, we reported AIF-1 gene in sea cucumber Apostichopus japonicus (AjAIF-1). The full-length cDNA of AjAIF-1 is 1541 bp with an open reading frame (ORF) of 477 bp encoding 158 amino acids. Two EF-hand Ca(2+)-binding motifs were found in the deduced AjAIF-1. AjAIF-1 was widely expressed in all tested tissues (body wall, intestine, respiratory tree, tube feet, coelomocytes and longitudinal muscle), with the highest expression in respiratory tree. After Vibrio splendidus challenge and physical injury, AjAIF-1 transcripts were significantly upregulated in coelomocytes. The mRNA expression level of AjAIF-1 in coelomocytes reached to the highest value at 4 h (3.38-folds vs. the PBS control, P < 0.05) post injection. After papilla injury, the mRNA level of AjAIF-1 in coelomocytes was upregulated, and its peak value was found at 4 h (3.88-folds vs. the control, P < 0.05). These results indicated that 1) AjAIF-1 sensitively responds to pathogen infection; 2) AjAIF-1 is involved in acute inflammatory response. Our findings gain general information about the role of AjAIF-1 in the innate immunity of A. japonicus. PMID:24704420

  12. PAX5-positive T-cell Anaplastic Large Cell Lymphomas Associated with Extra Copies of the PAX5 Gene Locus

    PubMed Central

    Feldman, Andrew L; Law, Mark E; Inwards, David J; Dogan, Ahmet; McClure, Rebecca F; Macon, William R

    2010-01-01

    Cell lineage is the major criterion by which lymphomas are classified. Immunohistochemistry has greatly facilitated lymphoma diagnosis by detecting expression of lineage-associated antigens. However, loss or aberrant expression of these antigens may present diagnostic challenges. Anaplastic large cell lymphoma is a T-cell lymphoma that shows morphologic and phenotypic overlap with classical Hodgkin lymphoma, a tumor of B-cell derivation. Staining for the B-cell transcription factor, PAX5, has been suggested to be helpful in this differential, as it is positive in most classical Hodgkin lymphomas, but absent in anaplastic large cell lymphomas. Herein, we report four systemic T-cell anaplastic large cell lymphomas positive for PAX5 by immunohistochemistry, with weak staining intensity similar to that seen in classical Hodgkin lymphoma. All diagnoses were confirmed by a combination of morphologic, phenotypic, and molecular criteria. Three cases were ALK-negative and one was ALK-positive. PAX5 immunohistochemistry was negative in 198 additional peripheral T-cell lymphomas, including 66 anaplastic large cell lymphomas. Unexpectedly, though PAX5 translocations were absent, all evaluable PAX5-positive anaplastic large cell lymphomas showed extra copies of the PAX5 gene locus by fluorescence in situ hybridization. In contrast, only 4% of PAX5-negative peripheral T-cell lymphomas had extra copies of PAX5. We conclude that aberrant expression of PAX5 occurs rarely in T-cell anaplastic large cell lymphomas, and may be associated with extra copies of the PAX5 gene. PAX5-positive lymphomas with morphologic features overlapping different lymphoma types should be evaluated with an extensive immunohistochemical panel and/or molecular studies to avoid diagnostic errors that could lead to inappropriate treatment. Since PAX5 overexpression causes T-cell neoplasms in experimental models, PAX5 may have contributed to lymphomagenesis in our cases. PMID:20118907

  13. Novel exons in the tbx5 gene locus generate protein isoforms with distinct expression domains and function.

    PubMed

    Yamak, Abir; Georges, Romain O; Sheikh-Hassani, Massomeh; Morin, Martin; Komati, Hiba; Nemer, Mona

    2015-03-13

    TBX5 is the gene mutated in Holt-Oram syndrome, an autosomal dominant disorder with complex heart and limb deformities. Its protein product is a member of the T-box family of transcription factors and an evolutionarily conserved dosage-sensitive regulator of heart and limb development. Understanding TBX5 regulation is therefore of paramount importance. Here we uncover the existence of novel exons and provide evidence that TBX5 activity may be extensively regulated through alternative splicing to produce protein isoforms with differing N- and C-terminal domains. These isoforms are also present in human heart, indicative of an evolutionarily conserved regulatory mechanism. The newly identified isoforms have different transcriptional properties and can antagonize TBX5a target gene activation. Droplet Digital PCR as well as immunohistochemistry with isoform-specific antibodies reveal differential as well as overlapping expression domains. In particular, we find that the predominant isoform in skeletal myoblasts is Tbx5c, and we show that it is dramatically up-regulated in differentiating myotubes and is essential for myotube formation. Mechanistically, TBX5c antagonizes TBX5a activation of pro-proliferative signals such as IGF-1, FGF-10, and BMP4. The results provide new insight into Tbx5 regulation and function that will further our understanding of its role in health and disease. The finding of new exons in the Tbx5 locus may also be relevant to mutational screening especially in the 30% of Holt-Oram syndrome patients with no mutations in the known TBX5a exons. PMID:25623069

  14. Modic changes and interleukin 1 gene locus polymorphisms in occupational cohort of middle-aged men

    PubMed Central

    Solovieva, Svetlana; Luoma, Katariina; Raininko, Raili; Leino-Arjas, Päivi; Riihimäki, Hilkka

    2009-01-01

    According to recent systematic reviews, Modic changes are associated with low-back pain. However, their pathophysiology remains largely unknown. A previous study of Northern Finnish males implicated that IL1A and MMP3 polymorphisms play a role in type II Modic changes. The purpose of the current study was to examine the association of IL1 cluster polymorphisms with Modic changes amongst middle-aged men in Southern Finland. The final study sample consisted of 108 men from three different occupations, who underwent magnetic resonance imaging (MRI) with a 0.1 T-scanner. Six single nucleotide polymorphisms (SNP) in the IL1 gene cluster (IL1A c.1-889C>T; IL1B c.3954C>T; IL1RN c.1812G>A; IL1RN c.1887G>C; IL1RN c.11100T>C; IL1RN c.1506G>A) were genotyped with the SNP-TRAP method or by allele-specific primer extension on modified microarray. In all, 45 subjects had Modic changes at one or more disc levels. The presence of the minor allele of IL1A (c.1-889C>T) was associated with these changes (any Modic change p = 0.031, type II changes p = 0.036). The carriers of the T-allele had a 2.5-fold risk of Modic change and the association was independent of the other IL1 gene cluster loci studied. In addition, a minor haplotype, with a frequency of 7.5% in the study population, including the minor alleles of IL1A c.1-889C>T, IL1RN c.1812G>A, and IL1RN c.1506G>A, was significantly associated with Modic changes. This observation is in accordance with the previous finding from a different geographical area, and thus confirms the importance of the IL1A gene in the pathophysiology of Modic changes. PMID:19701653

  15. Diffuse Glomerular Nodular Lesions in Diabetic Pigs Carrying a Dominant-Negative Mutant Hepatocyte Nuclear Factor 1-Alpha, an Inheritant Diabetic Gene in Humans

    PubMed Central

    Hara, Satoshi; Umeyama, Kazuhiro; Yokoo, Takashi; Nagashima, Hiroshi; Nagata, Michio

    2014-01-01

    Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α) P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3) gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI) with advanced glycation end-product (AGE) and Nε-carboxymethyl-lysine (CML) deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β) was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the somewhat acute and

  16. Mouse keratinocytes express c98, a novel gene homologous to bcl-2, that is stimulated by insulin-like growth factor 1 and prevents dexamethasone-induced apoptosis.

    PubMed

    Su, Hung-Yi; Cheng, Winston T K; Chen, Shih-Chu; Lin, Chen-Tse; Lien, Yi-Yang; Liu, Hung-Jen; Gilmour, R Stewart

    2004-01-20

    Many studies have been undertaken to investigate the mechanisms of skin differentiation. In particular, growth factors and hormones are believed to play important roles in skin proliferation, differentiation and survival. Insulin-like growth factor-1 (IGF-1) has been identified as a survival factor in many tissues including the skin, but the molecular mechanism of IGF-1 in epidermal differentiation is not completely understood. Neonatal mouse skin is useful for studying changes in gene expression, as the mitotic activity of skin cells changes shortly after birth. Using RNA differential display (DD), a 357-nt message that is specifically expressed in the epidermal keratinocytes of IGF-1-injected newborn mice but not in controls, has been identified. Confirmation of expression of this gene by ribonuclease protection assay (RPA) showed that its mRNA expression in the epidermal keratinocytes is induced by IGF-1. Using RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM-5'-RACE), we have successfully isolated a 3473-bp full-length gene, c98, that has 97% sequence homology to a bcl-2-like gene, bcl-w. The latter has been identified as a proto-oncogene in several murine myeloid cell lines. Amino acid sequence analysis of the c98 showed that it has 97% sequence identity to the bcl-w protein and possesses bcl-2 homology domains (BH) 1, 2 and 3. Immunoblotting data revealed similar increases of c98 protein expression to its mRNA expression in the keratinocytes of IGF-1-injected animals. Weak expression of other bcl-2 family member proteins, bax, bcl-2 and bcl-xL, were also found in the immunoblots. Additionally, IGF-1 was found to be able to protect epidermal keratinocytes from dexamethasone (DEX)-induced apoptosis, based on the findings that after the cells were treated with DEX, DNA laddering was present in the control mice but not in those injected with IGF-1. Further, using a photometric enzyme-linked immunoassay to quantitate keratinocyte death, we found that

  17. Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase.

    PubMed

    Dresser, Ashley R; Hardy, Pierre-Olivier; Chaconas, George

    2009-12-01

    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the

  18. Confirmation of a third locus, at 2p, for autosomal recessive limb-girdle muscular dystrophy indicates that at least 4 genes are responsible for this condition

    SciTech Connect

    Passos-Bueno, M.R.; Moreira, E.S.; Vasques, L.R.

    1994-09-01

    Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a heterogeneous group of diseases with a wide spectrum of clinical signs, varying from very severe to mild ones. One gene for a mild form was mapped at 15q while another gene for a severe form was mapped at 13p. In both cases, evidence of genetic heterogeneity were demonstrated following analysis of Brazilian families. More recently, a third gene was identified at 2p based on linkage analysis in 2 LGMD families with the markers D2S166, D2S136 and D2S134. The relative proportion of each genetic form among affected families is unknown. Therefore, the closest available markers for each of the LGMD genes have been tested in 12 Brazilian families with at least 3 affected patients. The following results have been observed: 3 were 15q-linked families, 1 was 13p-linked, at least 2 were linked to 2p and 2 were excluded for any of these 3 loci. In relation to the 2p locus, we have tested a total of 12 markers in the 2 linked Brazilian families. The maximum lod score for the marker which was informative for the two families (D2S291) was 8.35 at {theta}=0.01. Therefore, these results suggest the existence of at least 4 different genes causing the LGMD phenotype and confirm linkage to the 2p locus. In addition, our data refine the localization of the third locus since the marker D2S291 is at least 9 cM closer to this gene (FAPESP, CNPq, MDA, PADCT).

  19. The IGF2 Locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor 2 (IGF2) is a peptide hormone regulating various cellular processes such as proliferation and apoptosis. IGF2 is vital to embryo development. The IGF2 locus covers approximately 150-kb genomic region on human chromosome 11, containing two imprinted genes, IGF2 and H19, sha...

  20. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance?

    PubMed

    Anderson, Timothy J C; Nair, Shalini; Qin, Huang; Singlam, Sittaporn; Brockman, Alan; Paiphun, Lucy; Nosten, François

    2005-06-01

    Mu et al. (Mu, J., M. T. Ferdig, X. Feng, D. A. Joy, J. Duan, T. Furuya, G. Subramanian, L. Aravind, R. A. Cooper, J. C. Wootton, M. Xiong, and X. Z. Su, Mol. Microbiol. 49:977-989, 2003) recently reported exciting associations between nine new candidate transporter genes and in vitro resistance to chloroquine (CQ) and quinine (QN), with six of these loci showing association with CQ or QN in a southeast Asian population sample. We replicated and extended this work by examining polymorphisms in these genes and in vitro resistance to eight drugs in parasites collected from the Thailand-Burma border. To minimize problems of multiple testing, we used a two-phase study design, while to minimize problems caused by population structure, we analyzed parasite isolates collected from a single clinic. We first examined associations between genotype and drug response in 108 unique single-clone parasite isolates. We found strong associations between single nucleotide polymorphisms in pfmdr and mefloquine (MFQ), artesunate (AS), and lumefantrine (LUM) response. We also observed associations between an ABC transporter (G7) and response to QN and AS and between another ABC transporter (G49) and response to dihydro-artemisinin (DHA). We reexamined significant associations in an independent sample of 199 unique single-clone infections from the same location. The significant associations with pfmdr-1042 detected in the first survey remained. However, with the exception of the G7-artesunate association, all other associations observed with the nine new candidate transporters disappeared. We also examined linkage disequilibrium (LD) between markers and phenotypic correlations between drug responses. We found minimal LD between genes. Furthermore, we found no correlation between chloroquine and quinine responses, although we did find expected strong correlations between MFQ, QN, AS, DHA, and LUM. To conclude, we found no evidence for an association between 8/9 candidate genes and

  1. Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression

    PubMed Central

    Hisamatsu, Tamotsu

    2013-01-01

    Flowering time of the short-day plant Chrysanthemum morifolium is largely dependent upon daylength, but it is also distinctly influenced by other environmental factors. Flowering is delayed by summer heat. Here, the underlying basis for this phenomenon was investigated. Heat-induced flowering retardation occurred similarly in C. morifolium and C. seticuspe, a wild-type diploid chrysanthemum. In both plants, this flowering retardation occurred mainly because of inhibition of capitulum development. Concurrently, expression of flowering-related genes in the shoot tip was delayed under high temperature conditions. In chrysanthemums, FLOWERING LOCUS T-like 3 (FTL3) has been identified as a floral inducer produced in the leaves after short-day stimuli and transported to the shoot tip. In C. seticuspe, heat-induced flowering retardation was accompanied by a reduction in FTL3 expression in the leaves. Two C. morifolium cultivars with flowering times that are differently affected by growth temperature were also examined. High temperature-induced FTL3 repression was observed in the leaves of both cultivars, although the degree of repression was greater in the heat-sensitive cultivar than in the heat-tolerant cultivar. When a scion of the heat-sensitive cultivar was grafted onto the stock of the heat-tolerant cultivar, flowering in the shoot tip was less sensitive to heat. Conversely, a scion of the heat-tolerant cultivar grafted onto the heat-sensitive cultivar showed increased heat sensitivity. Thus, several lines of evidence suggest that the reduction of FTL3 signalling from the leaves to the shoot tip at high temperatures is involved in flowering retardation in chrysanthemums. PMID:23314814

  2. Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus.

    PubMed Central

    Kranz, R G; Pace, V M; Caldicott, I M

    1990-01-01

    Transcription of the genes that code for proteins involved in nitrogen fixation in free-living diazotrophs is typically repressed by high internal oxygen concentrations or exogenous fixed nitrogen. The DNA sequence of a regulatory locus required for repression of Rhodobacter capsulatus nitrogen fixation genes was determined. It was shown that this locus, defined by Tn5 insertions and by ethyl methanesulfonate-derived mutations, is homologous to the glnB gene of other organisms. The R. capsulatus glnB gene was upstream of glnA, the gene for glutamine synthetase, in a glnBA operon. beta-Galactosidase expression from an R. capsulatus glnBA-lacZ translational fusion was increased twofold in cells induced by nitrogen limitation relative to that in cells under nitrogen-sufficient conditions. R. capsulatus nifR1, a gene that was previously shown to be homologous to ntrC and that is required for transcription of nitrogen fixation genes, was responsible for approximately 50% of the transcriptional activation of this glnBA fusion in cells induced under nitrogen-limiting conditions. R. capsulatus GLNB, NIFR1, and NIFR2 (a protein homologous to NTRB) were proposed to transduce the nitrogen status in the cell into repression or activation of other R. capsulatus nif genes. Repression of nif genes in response to oxygen was still present in R. capsulatus glnB mutants and must have occurred at a different level of control in the regulatory circuit. Images FIG. 4 FIG. 5 PMID:2152916

  3. Possible Involvement of Locus-Specific Methylation on Expression Regulation of LEAFY Homologous Gene (CiLFY) during Precocious Trifoliate Orange Phase Change Process

    PubMed Central

    Liu, Rong; Khan, Muhammad Rehman Gul; Hu, Chun-Gen

    2014-01-01

    DNA methylation plays an essential role in regulating plant development. Here, we described an early flowering trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf) was treated with 5-azacytidine and displayed a number of phenotypic and developmental abnormalities. These observations suggested that DNA methylation might play an important role in regulating many developmental pathways including early flowering trait, and then the expression level of five key or integrated citrus flowering genes were analyzed. Our results showed that FLOWERING LOCUS T (CiFT) relative expression level was increased with the increasing concentrations of 5-AzaC. However, LEAFY (CiLFY), APETELA1 (CiAP1), TERMINAL FLOWER1 (CiTFL1), and FLOWERING LOCUS C (CiFLC) showed highest relative expression levels at 250 µΜ treatment, while decreased sharply at higher concentrations. In order to further confirm DNA methylation affects the expression of these genes, their full-length sequences were isolated by genome-walker method, and then was analyzed by using bioinformatics tools. However, only one locus-specific methylation site was observed in CiLFY sequence. Therefore, DNA methylation level of the CiLFY was investigated both at juvenile and adult stages of precocious trifoliate orange by bisulfate sequencing PCR; it has been shown that the level of DNA methylation was altered during phase change. In addition, spatial and temporal expression patterns of CiLFY promoter and a series of 5′ deletions were investigated by driving the expression of a β-glucuronidase reporter gene in Arabidopsis. Exogenous GA3 treatment on transgenic Arabidopsis revealed that GA3 might be involved in the developmental regulation of CiLFY during flowering process of precocious trifoliate orange. These results provided insights into the molecular regulation of CiLFY gene expression, which would be helpful for studying citrus flowering. PMID:24523915

  4. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus

    PubMed Central

    Zhang, Xiaoyang; Cowper-Sal·lari, Richard; Bailey, Swneke D.; Moore, Jason H.; Lupien, Mathieu

    2012-01-01

    Genome-wide association studies (GWAS) are identifying genetic predisposition to various diseases. The 17q24.3 locus harbors the single nucleotide polymorphism (SNP) rs1859962 that is statistically associated with prostate cancer (PCa). It defines a 130-kb linkage disequilibrium (LD) block that lies in an ∼2-Mb gene desert area. The functional biology driving the risk associated with this LD block is unknown. Here, we integrate genome-wide chromatin landscape data sets, namely, epigenomes and chromatin openness from diverse cell types. This identifies a PCa-specific enhancer within the rs1859962 risk LD block that establishes a 1-Mb chromatin loop with the SOX9 gene. The rs8072254 and rs1859961 SNPs mapping to this enhancer impose allele-specific gene expression. The variant allele of rs8072254 facilitates androgen receptor (AR) binding driving increased enhancer activity. The variant allele of rs1859961 decreases FOXA1 binding while increasing AP-1 binding. The latter is key to imposing allele-specific gene expression. The rs8072254 variant in strong LD with the rs1859962 risk SNP can account for the risk associated with this locus, while rs1859961 is a rare variant less likely to contribute to the risk associated with this LD block. Together, our results demonstrate that multiple genetic variants mapping to a unique enhancer looping to the SOX9 oncogene can account for the risk associated with the PCa 17q24.3 locus. Allele-specific recruitment of the transcription factors androgen receptor (AR) and activating protein-1 (AP-1) account for the increased enhancer activity ascribed to this PCa-risk LD block. This further supports the notion that an integrative genomics approach can identify the functional biology disrupted by genetic risk variants. PMID:22665440

  5. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type)

    PubMed Central

    Wendell, Douglas L.; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function. PMID:27548675

  6. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type).

    PubMed

    Wendell, Douglas L; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function. PMID:27548675

  7. Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor

    PubMed Central

    Nair, Ramesh V.; Green, Edward M.; Watson, David E.; Bennett, George N.; Papoutsakis, Eleftherios T.

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871–885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain. PMID:9864345

  8. Stage-specific hypermutability of the regA locus of Volvox, a gene regulating the germ-soma dichotomy

    SciTech Connect

    Kirk, D.L.; Baran, G.J.; Harper, J.F.; Huskey, R.J.; Huson, K.S.; Zagris, N.

    1987-01-16

    Mutation at the regA locus confers on somatic cells of Volvox (which otherwise undergo programmed death) ability to redifferentiate as reproductive cells. Stable mutations at the regA locus, but not at other loci, were induced at high frequency when embryos at one particular stage were exposed to either UV irradiation, novobiocin, nalidixic acid, bleomycin, 4-hydroxyaminoquinoline-1-oxide, 5-bromodeoxyuridine, or 5-fluorouracil. All treatments led to some mutations that were not expressed until the second generation after treatment. The sensitive period was after somatic and reproductive cells of the next generation had been set apart, but before they had undergone cytodifferentiation. Hypermutability occurs in presumptive reproductive cells (in which regA is normally not expressed) somewhat before regA normally acts in somatic cells. We postulate that hypermutability of regA in the reproductive cells at this time reflects a change of state that the locus undergoes as it is inactivated.

  9. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): Differential gene expression and thyroid hormones dependence during metamorphosis

    PubMed Central

    Infante, Carlos; Asensio, Esther; Cañavate, José Pedro; Manchado, Manuel

    2008-01-01

    Background Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. Conclusion We have identified five

  10. Human locus coeruleus neurons express the GABA(A) receptor gamma2 subunit gene and produce benzodiazepine binding.

    PubMed

    Hellsten, Kati S; Sinkkonen, Saku T; Hyde, Thomas M; Kleinman, Joel E; Särkioja, Terttu; Maksimow, Anu; Uusi-Oukari, Mikko; Korpi, Esa R

    2010-06-21

    Noradrenergic neurons of the locus coeruleus project throughout the cerebral cortex and multiple subcortical structures. Alterations in the locus coeruleus firing are associated with vigilance states and with fear and anxiety disorders. Brain ionotropic type A receptors for gamma-aminobutyric acid (GABA) serve as targets for anxiolytic and sedative drugs, and play an essential regulatory role in the locus coeruleus. GABA(A) receptors are composed of a variable array of subunits forming heteropentameric chloride channels with different pharmacological properties. The gamma2 subunit is essential for the formation of the binding site for benzodiazepines, allosteric modulators of GABA(A) receptors that are clinically often used as sedatives/hypnotics and anxiolytics. There are contradictory reports in regard to the gamma2 subunit's expression and participation in the functional GABA(A) receptors in the mammalian locus coeruleus. We report here that the gamma2 subunit is transcribed and participates in the assembly of functional GABA(A) receptors in the tyrosine hydroxylase-positive neuromelanin-containing neurons within postmortem human locus coeruleus as demonstrated by in situ hybridization with specific gamma2 subunit oligonucleotides and autoradiographic assay for flumazenil-sensitive [(3)H]Ro 15-4513 binding to benzodiazepine sites. These sites were also sensitive to the alpha1 subunit-preferring agonist zolpidem. Our data suggest a species difference in the expression profiles of the alpha1 and gamma2 subunits in the locus coeruleus, with the sedation-related benzodiazepine sites being more important in man than rodents. This may explain the repeated failures in the transition of novel drugs with a promising neuropharmacological profile in rodents to human clinical usage, due to intolerable sedative effects. PMID:20417252

  11. The tyrosinase-positive oculocutaneous albinism gene shows locus homogeneity on chromosome 15q11-q13 and evidence of multiple mutations in southern African negroids

    SciTech Connect

    Kedda, M.A.; Stevens, G.; Manga, P.; Viljoen, C.; Jenkins, T.; Ramsay, M. Univ. of Witwatersrand, Johannesburg )

    1994-06-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) is an autosomal recessive disorder of the melanin pigmentary system. South African ty-pos OCA individuals occur with two distinct phenotypes, with or without darkly pigmented patches (ephelides, or dendritic freckles) on exposed areas of the skin. These phenotypes are concordant within families, suggesting that there may be more than one mutation at the ty-pos OCA locus. Linkage studies carried out in 41 families have shown linkage between markers in the Prader-Willi/Angelman syndrome (PWS/AS) region on chromosome 15q11-q13 and ty-pos OCA. Analysis showed no obligatory crossovers between the alleles at the D15S12 locus and ty-pos OCA, suggesting that the D15S12 locus is very close to or part of the disease locus, which is postulated to be the human homologue, P, of the mouse pink-eyed dilution gene, p. Unlike caucasoid [open quotes]ty-pos OCA[close quotes] individuals, negroid ty-pos OCA individuals do not show any evidence of locus heterogeneity. Studies of allelic association between the polymorphic alleles detected at the D15S12 locus and ephelus status suggest that there was a single major mutation giving rise to ty-pos OCA without ephelides. There may, however, be two major mutations causing ty-pos OCA with ephelides, one associated with D15S12 allele 1 and the other associated with D15S12 allele 2. The two loci, GABRA5 and D15S24, flanking D15S12, are both hypervariable, and many different haplotypes were observed with the alleles at the three loci on both ty-pos OCA-associated chromosomes and [open quotes]normal[close quotes] chromosomes. No haplotype showed statistically significant association with ty-pos OCA, and thus none could be used to predict the origins of the ty-pos OCA mutations. On the basis of the D15S12 results, there is evidence for multiple ty-pos OCA mutations in southern African negroids. 31 refs., 1 fig., 3 tabs.

  12. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus

    PubMed Central

    Jacquemont, Sébastien; Reymond, Alexandre; Zufferey, Flore; Harewood, Louise; Walters, Robin G.; Kutalik, Zoltán; Martinet, Danielle; Shen, Yiping; Valsesia, Armand; Beckmann, Noam D.; Thorleifsson, Gudmar; Belfiore, Marco; Bouquillon, Sonia; Campion, Dominique; De Leeuw, Nicole; De Vries, Bert B. A.; Esko, Tõnu; Fernandez, Bridget A.; Fernández-Aranda, Fernando; Fernández-Real, José Manuel; Gratacòs, Mònica; Guilmatre, Audrey; Hoyer, Juliane; Jarvelin, Marjo-Riitta; Kooy, Frank R.; Kurg, Ants; Le Caignec, Cédric; Männik, Katrin; Platt, Orah S.; Sanlaville, Damien; Van Haelst, Mieke M.; Villatoro Gomez, Sergi; Walha, Faida; Wu, Bai-Lin; Yu, Yongguo; Aboura, Azzedine; Addor, Marie-Claude; Alembik, Yves; Antonarakis, Stylianos E.; Arveiler, Benoît; Barth, Magalie; Bednarek, Nathalie; Béna, Frédérique; Bergmann, Sven; Beri, Mylène; Bernardini, Laura; Blaumeiser, Bettina; Bonneau, Dominique; Bottani, Armand; Boute, Odile; Brunner, Han G.; Cailley, Dorothée; Callier, Patrick; Chiesa, Jean; Chrast, Jacqueline; Coin, Lachlan; Coutton, Charles; Cuisset, Jean-Marie; Cuvellier, Jean-Christophe; David, Albert; De Freminville, Bénédicte; Delobel, Bruno; Delrue, Marie-Ange; Demeer, Bénédicte; Descamps, Dominique; Didelot, Gérard; Dieterich, Klaus; Disciglio, Vittoria; Doco-Fenzy, Martine; Drunat, Séverine; Duban-Bedu, Bénédicte; Dubourg, Christèle; El-Sayed Moustafa, Julia S.; Elliott, Paul; Faas, Brigitte H. W.; Faivre, Laurence; Faudet, Anne; Fellmann, Florence; Ferrarini, Alessandra; Fisher, Richard; Flori, Elisabeth; Forer, Lukas; Gaillard, Dominique; Gerard, Marion; Gieger, Christian; Gimelli, Stefania; Gimelli, Giorgio; Grabe, Hans J.; Guichet, Agnès; Guillin, Olivier; Hartikainen, Anna-Liisa; Heron, Délphine; Hippolyte, Loyse; Holder, Muriel; Homuth, Georg; Isidor, Bertrand; Jaillard, Sylvie; Jaros, Zdenek; Jiménez-Murcia, Susana; Joly Helas, Géraldine; Jonveaux, Philippe; Kaksonen, Satu; Keren, Boris; Kloss-Brandstätter, Anita; Knoers, Nine V. A. M.; Koolen, David A.; Kroisel, Peter M.; Kronenberg, Florian; Labalme, Audrey; Landais, Emilie; Lapi, Elisabetta; Layet, Valérie; Legallic, Solenn; Leheup, Bruno; Leube, Barbara; Lewis, Suzanne; Lucas, Josette; Macdermot, Kay D.; Magnusson, Pall; Marshall, Christian R.; Mathieu-Dramard, Michèle; Mccarthy, Mark I.; Meitinger, Thomas; Antonietta Mencarelli, Maria; Merla, Giuseppe; Moerman, Alexandre; Mooser, Vincent; Morice-Picard, Fanny; Mucciolo, Mafalda; Nauck, Matthias; Coumba Ndiaye, Ndeye; Nordgren, Ann; Pasquier, Laurent; Petit, Florence; Pfundt, Rolph; Plessis, Ghislaine; Rajcan-Separovic, Evica; Paolo Ramelli, Gian; Rauch, Anita; Ravazzolo, Roberto; Reis, Andre; Renieri, Alessandra; Richart, Cristobal; Ried, Janina S.; Rieubland, Claudine; Roberts, Wendy; Roetzer, Katharina M.; Rooryck, Caroline; Rossi, Massimiliano; Saemundsen, Evald; Satre, Véronique; Schurmann, Claudia; Sigurdsson, Engilbert; Stavropoulos, Dimitri J.; Stefansson, Hreinn; Tengström, Carola; Thorsteinsdóttir, Unnur; Tinahones, Francisco J.; Touraine, Renaud; Vallée, Louis; Van Binsbergen, Ellen; Van Der Aa, Nathalie; Vincent-Delorme, Catherine; Visvikis-Siest, Sophie; Vollenweider, Peter; Völzke, Henry; Vulto-Van Silfhout, Anneke T.; Waeber, Gérard; Wallgren-Pettersson, Carina; Witwicki, Robert M.; Zwolinksi, Simon; Andrieux, Joris; Estivill, Xavier; Gusella, James F.; Gustafsson, Omar; Metspalu, Andres; Scherer, Stephen W.; Stefansson, Kari; Blakemore, Alexandra I. F.; Beckmann, Jacques S.; Froguel, Philippe

    2011-01-01

    Both underweight and obesity have been associated with increased mortality1,2. Underweight, defined as body mass index (BMI) ≤ 18,5 kg/m2 in adults 3 and ≤ −2 standard deviations (SD) in children4,5, is the main sign of a series of heterogeneous clinical conditions such as failure to thrive (FTT) 6–8, feeding and eating disorder and/or anorexia nervosa9,10. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported 11, 12. We previously demonstrated that hemizygosity of a ~600 kb region on the short arm of chromosome 16 (chr16:29.5–30.1Mb), causes a highly-penetrant form of obesity often associated with hyperphagia and intellectual disabilities13. Here we show that the corresponding reciprocal duplication is associated with underweight. We identified 138 (132 novel cases) duplication carriers (108 unrelated carriers) from over 95,000 individuals clinically-referred for developmental or intellectual disabilities (DD/ID), psychiatric disorders or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight (mean Z-score −0.6; p=4.4×10−4) and BMI (mean Z-score −0.5; p=2.0×10−3). In particular, half of the boys younger than 5 years are underweight with a probable diagnosis of FTT, while adult duplication carriers have an 8.7-fold (p=5.9×10−11; CI_95=[4.5–16.6]) increased risk of being clinically underweight. We observe a significant trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive feeding behaviours and a significant reduction in head circumference (mean Z-score −0.9; p=7.8×10−6). Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus, correlating with changes in transcript levels for genes mapping within the duplication but not within flanking

  13. Polymorphisms at the G72/G30 Gene Locus, on 13q33, Are Associated with Bipolar Disorder in Two Independent Pedigree Series*

    PubMed Central

    Hattori, Eiji; Liu, Chunyu; Badner, Judith A.; Bonner, Tom I.; Christian, Susan L.; Maheshwari, Manjula; Detera-Wadleigh, Sevilla D.; Gibbs, Richard A.; Gershon, Elliot S.

    2003-01-01

    Linkage evidence suggests that chromosome 13 (13q32-33) contains susceptibility genes for both bipolar disorder and schizophrenia. Recently, genes called “G72” and “G30” were identified, and polymorphisms of these overlapping genes were reported to be associated with schizophrenia. We studied two series of pedigrees with bipolar disorder: the Clinical Neurogenetics (CNG) pedigrees (in which linkage to illness had been previously reported at 13q32-33), with 83 samples from 22 multiplex families, and the National Institute of Mental Health (NIMH) Genetics Initiative pedigrees, with 474 samples from 152 families. Sixteen single-nucleotide polymorphisms (SNPs) were genotyped at and around the G72/G30 locus, which covered a 157-kb region encompassing the entire complementary DNA sequences of G72 and G30. We performed transmission/disequilibrium testing (TDT) and haplotype analysis, since a linkage-disequilibrium block was present at this gene locus. In the CNG and NIMH data sets, the results of global TDT of the entire haplotype set were significant and consistent (P=.0004 and P=.008, respectively). In the CNG series, the associated genotypes divided the families into those with linkage and those without linkage (partitioned by the linkage evidence). Analysis of the decay of haplotype sharing gave a location estimate that included G72/G30 in its 95% confidence interval. Although statistically significant association was not detected for individual SNPs in the NIMH data set, the same haplotype was consistently overtransmitted in both series. These data suggest that a susceptibility variant for bipolar illness exists in the vicinity of the G72/G30 genes. Taken together with the earlier report, this is the first demonstration of a novel gene(s), discovered through a positional approach, independently associated with both bipolar illness and schizophrenia. PMID:12647258

  14. Assignment of the gene encoding the 5-HT{sub 1E} serotonin receptor (S31) (locus HTR1E) to human chromosome 6q14-q15

    SciTech Connect

    Levy, F.O.; Tasken, K.; Solberg, R.

    1994-08-01

    The human gene for the 5-HT{sub 1E} serotonin receptor was recently cloned, but no chromosomal assignment has yet been given to this gene (locus HTR1E). In this work, we demonstrate by two independent polymerase chain reactions on a panel of human-hamster somatic cell hybrid genomic DNA that the 5-HT{sub 1E} serotonin receptor gene is localized on human chromosome 6. Furthermore, by means of in situ hybridization to human metaphase chromosomes, using the cloned 5-HT{sub 1E} receptor gene (phage clone {lambda}-S31) as a probe, we demonstrate that this gene is localized to the q14-q15 region on chromosome 6. Screening of genomic DNA from 15 unrelated Caucasian individuals, using as a probe the open reading frame of the cloned 5-HT{sub 1E} receptor gene, did not reveal any restriction fragment length polymorphisms with the enzymes BamHI, BanII, BglII, EcoRI, HincII, HindIII, HinfI, MspI, PstI, and PvuII. Since the 5-HT{sub 1E} receptor is found mainly in the cerebral cortex and abnormal function of the serotonergic system has been implicated in a variety of neurologic and psychiatric diseases, the precise chromosomal assignment of the 5-HT{sub 1E} receptor gene is the crucial first step toward the evaluation of this locus as a candidate for mutations in such syndromes. 28 refs., 2 figs., 2 tabs.

  15. Association of High Myopia with Crystallin Beta A4 (CRYBA4) Gene Polymorphisms in the Linkage-Identified MYP6 Locus

    PubMed Central

    Ho, Daniel W. H.; Yap, Maurice K. H.; Ng, Po Wah; Fung, Wai Yan; Yip, Shea Ping

    2012-01-01

    Background Myopia is the most common ocular disorder worldwide and imposes tremendous burden on the society. It is a complex disease. The MYP6 locus at 22 q12 is of particular interest because many studies have detected linkage signals at this interval. The MYP6 locus is likely to contain susceptibility gene(s) for myopia, but none has yet been identified. Methodology/Principal Findings Two independent subject groups of southern Chinese in Hong Kong participated in the study an initial study using a discovery sample set of 342 cases and 342 controls, and a follow-up study using a replication sample set of 316 cases and 313 controls. Cases with high myopia were defined by spherical equivalent ≤ -8 dioptres and emmetropic controls by spherical equivalent within ±1.00 dioptre for both eyes. Manual candidate gene selection from the MYP6 locus was supported by objective in silico prioritization. DNA samples of discovery sample set were genotyped for 178 tagging single nucleotide polymorphisms (SNPs) from 26 genes. For replication, 25 SNPs (tagging or located at predicted transcription factor or microRNA binding sites) from 4 genes were subsequently examined using the replication sample set. Fisher P value was calculated for all SNPs and overall association results were summarized by meta-analysis. Based on initial and replication studies, rs2009066 located in the crystallin beta A4 (CRYBA4) gene was identified to be the most significantly associated with high myopia (initial study: P = 0.02; replication study: P = 1.88e-4; meta-analysis: P = 1.54e-5) among all the SNPs tested. The association result survived correction for multiple comparisons. Under the allelic genetic model for the combined sample set, the odds ratio of the minor allele G was 1.41 (95% confidence intervals, 1.21-1.64). Conclusions/Significance A novel susceptibility gene (CRYBA4) was discovered for high myopia. Our study also signified the potential importance of appropriate gene

  16. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus.

    PubMed

    Kothapalli, Nagarama; Norton, Darrell D; Fugmann, Sebastian D

    2008-02-15

    Somatic hypermutation and gene conversion are two closely related processes that increase the diversity of the primary Ig repertoire. Both processes are initiated by the activation-induced cytidine deaminase that converts cytosine residues to uracils in a transcription-dependent manner; these lesions are subsequently fixed in the genome by direct replication and error-prone DNA repair. Two alternative mechanisms were proposed to explain why this mutagenic activity is targeted almost exclusively to Ig loci: 1) specific cis-acting DNA sequences; or 2) very high levels of Ig gene transcription. In this study we now identify a novel 3' regulatory region in the chicken Ig light chain gene containing not only a classical transcriptional enhancer but also cis-acting DNA elements essential for targeting activation-induced cytidine deaminase-mediated sequence diversification to this locus. PMID:18250404

  17. Estrogen-inducible and liver-specific expression of the chicken Very Low Density Apolipoprotein II gene locus in transgenic mice.

    PubMed Central

    Wijnholds, J; Philipsen, S; Pruzina, S; Fraser, P; Grosveld, F; Ab, G

    1993-01-01

    We have examined the chicken Very Low Density Apolipoprotein II (apoVLDL II) gene locus in transgenic mice. A DNA fragment composed of the transcribed region, 16 kb of 5' flanking and 400 bp of 3' flanking sequences contained all the information sufficient for estrogen-inducible, liver-specific expression of the apoVLDL II gene. The far-upstream region contains a Negative Regulating Element coinciding with a DNaseI-hypersensitive site at -11 kb. In transgenic mice, the NRE at -11 kb is used for downregulating the expression to a lower maximum level. The NRE might be used for modulating apoVLDL II gene expression, and may be involved in the rapid shut-down of the expression after hormone removal. Images PMID:8479914

  18. Toward cloning of a novel ataxia gene: Refined assignment and physical map of the IOSCA locus (SCA8) on 10q24

    SciTech Connect

    Nikali, K.; Isosomppi, J.; Suomalainen, A.

    1997-01-15

    Infantile onset spinocerebellar ataxia (IOSCA) is a progressive neurological disorder of unknown etiology. It is inherited as an autosomal recessive trait and has so far been reported in just 19 Finnish patients in 13 separate families. We have previously assigned the IOSCA locus (HGMW-approved symbol SCA8) to chromosome 10q, where no previously identified ataxia loci are located. Haplotype analysis combined with genealogical data provided evidence that all the IOSCA cases in Finland originate from a single 30- to 40-generation-old founder mutation. By analyzing extended disease haplotypes observed today, the IOSCA locus can now be restricted to a region between two adjacent microsatellites, D10S192 and D10S1265, with no genetic intermarker distance. We have constructed a detailed physical map of this 270-kb IOSCA region and cytogenetically localized it to 10q24. We have also assigned two previously known genes, PAX2 and CYP17, more precisely into this region, but the sequence analysis of coding regions of these two genes has not revealed mutations in an IOSCA patient. The obtained long-range clones will form the basis for the isolation of a novel ataxia gene. 42 refs., 3 figs.

  19. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize

    PubMed Central

    Selinger, David A.; Chandler, Vicki L.

    1999-01-01

    The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements. PMID:10611328

  20. A new negroid-specific HindIII polymorphism in the serum amyloid A1 (SAA1) gene increases the usefulness of the SAA locus in linkage studies

    SciTech Connect

    Stevens, G.; Ramsay, M.; Jenkins, T. ); Kluve-Beckerman, B. )

    1993-01-01

    The cDNA probe pSAA82 detects three serum amyloid A (SAA) loci on chromosome 11p. SAA1 and SAA2 have 90% nucleotide identity in exon and intron sequences (1), whereas SAA3 has an average of 70% identity with SAA1 and SAA2 (3). The chromosomal organization of the loci is not yet known. A two-allele polymorphic HindIII site was found within intron 2 of the SAA2 locus (1) with fragments of 3.0 (a2) and 5.0 kb (a1) (previously sized as 2.8 and 4.6 kb, respectively) which occur in Caucasoids, Negroids, and San (formerly [open quote]Bushmen[close quotes]) (2). The discovery of a further, Negroid-specific, polymorphic HindIII restriction site, detected with the same probe, increases its usefulness. This RFLP is associated with the SAA1 locus (6) and is characterized by the presence of two allelic fragments of 3.6 (b1) and 1.4 kb (b2). This HindIII site is also thought to occur within intron 2 because of the strong evolutionary conservation between the SAA1 and SAA2 genes. The polymorphism may therefore either predate the gene duplication event or be present as a result of gene conversion. 6 refs., 1 fig.

  1. Rosa26 Locus Supports Tissue-Specific Promoter Driving Transgene Expression Specifically in Pig

    PubMed Central

    Ma, Jing; Huang, Tianqing; Jiang, Dandan; Xie, Bingteng; Wu, Meiling; Wang, Jiaqiang; Song, Yuran; Wang, Ying; He, Yilong; Sun, Jialu; Hu, Kui; Guo, Runfa; Wang, Liu; Zhou, Qi; Mu, Yanshuang; Liu, Zhonghua

    2014-01-01

    Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP)-driven Follistatin (Fst) were successfully targeted into the pRosa26 locusby traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus. PMID:25232950

  2. Cloning of cDNA encoding human rapsyn and mapping of the RAPSN gene locus to chromosome 11p11.2-p11.1

    SciTech Connect

    Buckel, A.; Beeson, D.; Vincent, A.

    1996-08-01

    We have isolated and sequenced cDNA clones for the human 43-kDa acetylcholine receptor-associated protein rapsyn. The cDNA encodes a 412-amino-acid protein that has a predicted molecular mass of 46,330 Da and shows 96% sequence identity with mouse rapsyn. Analysis of PCR amplifications, first from somatic cell hybrids and subsequently from radiation hybrids, localizes the human RAPSN gene locus to chromosome 11p11.2-p11.1 in close proximity to ACP2. 12 refs., 2 figs.

  3. A Mouse Homeo Box Gene, Hox-1.5, and the Morphological Locus, Hd, Map to within 1 Cm on Chromosome 6

    PubMed Central

    Mock, Beverly A.; D'Hoostelaere, Lawrence A.; Matthai, Roberta; Huppi, Konrad

    1987-01-01

    Mo-10, a homeo box-containing sequence in the Hox-1 complex of genes referred to as Hox-1.5, was found to be polymorphic in inbred and wild mice, and a strain distribution of three allelic forms of Hox-1.5 are reported. The position of Hox-1.5 was mapped in backcross experiments to within 1 cM of the hypodactyly locus on chromosome 6. This identifies the Hd mutation as a useful model for the examination of homeo box expression during mammalian development. PMID:2887485

  4. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence

    PubMed Central

    Larsen, Inna; Craven, Mark; Brandt, Curtis R.

    2016-01-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  5. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence.

    PubMed

    Kolb, Aaron W; Lee, Kyubin; Larsen, Inna; Craven, Mark; Brandt, Curtis R

    2016-03-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  6. Two Functional Copies of the DGCR6 Gene Are Present on Human Chromosome 22q11 Due to a Duplication of an Ancestral Locus

    PubMed Central

    Edelmann, Lisa; Stankiewicz, Pavel; Spiteri, Elizabeth; Pandita, Raj K.; Shaffer, Lisa; Lupski, James; Morrow, Bernice E.

    2001-01-01

    The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans. PMID:11157784

  7. siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells

    PubMed Central

    Menendez, Matthew T.; Teygong, Crystal; Wade, Kristin; Florimond, Celia

    2015-01-01

    ABSTRACT Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. PMID:26106078

  8. Characterization of a human X-linked gene from the DXS732E locus in the candidate region for the anhidrotic ectodermal dysplasia (EDA) gene (Xq13.1)

    SciTech Connect

    Gault, J.; Zonana, J.; Zeltinger, J.

    1994-09-01

    A conserved mouse genomic clone was used to identify a homologous human genomic clone (the DXS732E locus), which was subsequently employed to isolate cDNAs from a human fetal brain library. Nine unique overlapping cDNAs were isolated, and sequences analysis of 3.9 kb identified a putative 1 kb ORF. GRAIL analysis of the sequence supported the hypothesis that the putative ORF was coding sequence, and Prosite analysis of the putative ORF identified potential glycosylation and phosphorylation sites. The 5{prime} end of the gene maps within a CpG island, and comparison of cDNA sequences indicate the gene is alternatively spliced at its 3{prime} end. Northern analysis and RT-PCR indicate that two different sized messages appear to be expressed with the gene expressed in human fetal kidney, intestine, brain, and muscle. The gene is expressed in 77 day human skin, a time when hair follicle formation occurs. Anhidrotic ectodermal dysplasia (EDA) results in the abnormal morphogenesis of hair, teeth and eccrine sweat glands. A positional cloning strategy towards cloning the EDA gene had been used, and deletion and X-autosome translocation patients have been useful in further delimiting the EDA region. The present gene at the DXS732E locus is partially deleted in one EDA patient who does not have other apparent abnormalities. No rearrangements of the gene have been detected in two female X-autosome translocation EDA patients, nor in four additional male patients with submicroscopic molecular deletions.

  9. Genetic variation in lipoprotein (a) levels in families enriched for coronary artery disease is determined almost entirely by the apolipoprotein (a) gene locus

    SciTech Connect

    DeMeester, C.A.; Lusis, A.J.; Bu, X.; Gray, R.J.; Rotter, J.I.

    1995-01-01

    Lipoprotein (a) (Lp[a]) is a cholesterol-rich lipoprotein resembling LDL but also containing a large polypeptide designated apolipoprotein (a) (apo[a]). Its levels are highly variable among individuals and, in a number of studies, are strongly correlated with the risk of coronary artery disease (CAD). In an effort to determine which genes control Lp(a) levels, we have studied 25 multiplex families (comprising 298 members) enriched for CAD. The apo(a) gene was genotyped among the families, using a highly informative pulse-field gel electrophoresis procedure. In addition, polymorphisms of the gene for the other major protein of Lp(a), apolipoprotein B (apoB), were examined. Quantitative sib-pair linkage analysis indicates that apo(a) is the major gene controlling Lp(a) levels in this CAD population (P = .001; 99 sib pairs), whereas the apoB gene demonstrated no significant quantitative linkage effect. We estimate that the apo(a) locus accounts for {le}98% of variance of Lp(a) serum levels. Approximately 43% of this variation is explained by size polymorphisms within the apo(a) gene. These results indicate that the apo(a) gene is the major determinant of Lp(a) serum levels not only in the general population but also in a high-risk CAD population. 59 refs., 4 figs., 3 tabs.

  10. Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species.

    PubMed Central

    Aho, E L; Botten, J W; Hall, R J; Larson, M K; Ness, J K

    1997-01-01

    Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular weights than do gonococcal or meningococcal class I pili. In this study, we have determined the N-terminal amino acid sequence for class II pilin and isolated the expression locus encoding class II pilin from N. meningitidis FAM18. Meningococcal class II pilin displays features typical of type IV pili and shares extensive amino acid identity with the N-terminal conserved regions of other neisserial pilin proteins. However, the deduced class II pilin sequence displays several unique features compared with previously reported meningococcal class I and gonococcal pilin sequences. Class II pilin lacks several conserved peptide regions found within the semivariable and hypervariable regions of other neisserial pilins and displays a large deletion in a hypervariable region of the protein believed to be exposed on the pilus face in gonococcal pili. DNA sequence comparisons within all three regions of the coding sequence also suggest that the meningococcal class II pilin gene is the most dissimilar of the three types of neisserial pilE loci. Additionally, the class II locus fails to display flanking-sequence homology to class I and gonococcal genes and lacks a downstream Sma/Cla repeat sequence, a feature present in all other neisserial pilin genes examined to date. These data indicate meningococcal class II pili represent a structurally distinct class of pili and suggest that relationships among pilin genes in pathogenic Neisseria do not necessarily follow species boundaries. PMID:9199428

  11. Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    PubMed Central

    Faure, Baptiste; Jollivet, Didier; Tanguy, Arnaud; Bonhomme, François; Bierne, Nicolas

    2009-01-01

    Background Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation

  12. The evolution of male-female sexual dimorphism predates the gender-based divergence of the mating locus gene MAT3/RB.

    PubMed

    Hiraide, Rintaro; Kawai-Toyooka, Hiroko; Hamaji, Takashi; Matsuzaki, Ryo; Kawafune, Kaoru; Abe, Jun; Sekimoto, Hiroyuki; Umen, James; Nozaki, Hisayoshi

    2013-05-01

    The molecular bases for the evolution of male-female sexual dimorphism are possible to study in volvocine algae because they encompass the entire range of reproductive morphologies from isogamy to oogamy. In 1978, Charlesworth suggested the model of a gamete size gene becoming linked to the sex-determining or mating type locus (MT) as a mechanism for the evolution of anisogamy. Here, we carried out the first comprehensive study of a candidate MT-linked oogamy gene, MAT3/RB, across the volvocine lineage. We found that evolution of anisogamy/oogamy predates the extremely high male-female divergence of MAT3 that characterizes the Volvox carteri lineage. These data demonstrate very little sex-linked sequence divergence of MAT3 between the two sexes in other volvocine groups, though linkage between MAT3 and the mating locus appears to be conserved. These data implicate genetic determinants other than or in addition to MAT3 in the evolution of anisogamy in volvocine algae. PMID:23364323

  13. Evaluation of 41 Candidate Gene Variants for Obesity in the EPIC-Potsdam Cohort by Multi-Locus Stepwise Regression

    PubMed Central

    Knüppel, Sven; Rohde, Klaus; Meidtner, Karina; Drogan, Dagmar; Holzhütter, Hermann-Georg; Boeing, Heiner; Fisher, Eva

    2013-01-01

    Objective Obesity has become a leading preventable cause of morbidity and mortality in many parts of the world. It is thought to originate from multiple genetic and environmental determinants. The aim of the current study was to introduce haplotype-based multi-locus stepwise regression (MSR) as a method to investigate combinations of unlinked single nucleotide polymorphisms (SNPs) for obesity phenotypes. Methods In 2,122 healthy randomly selected men and women of the EPIC-Potsdam cohort, the association between 41 SNPs from 18 obesity-candidate genes and either body mass index (BMI, mean = 25.9 kg/m2, SD = 4.1) or waist circumference (WC, mean = 85.2 cm, SD = 12.6) was assessed. Single SNP analyses were done by using linear regression adjusted for age, sex, and other covariates. Subsequently, MSR was applied to search for the ‘best’ SNP combinations. Combinations were selected according to specific AICc and p-value criteria. Model uncertainty was accounted for by a permutation test. Results The strongest single SNP effects on BMI were found for TBC1D1 rs637797 (β = −0.33, SE = 0.13), FTO rs9939609 (β = 0.28, SE = 0.13), MC4R rs17700144 (β = 0.41, SE = 0.15), and MC4R rs10871777 (β = 0.34, SE = 0.14). All these SNPs showed similar effects on waist circumference. The two ‘best’ six-SNP combinations for BMI (global p-value = 3.45⋅10–6 and 6.82⋅10–6) showed effects ranging from −1.70 (SE = 0.34) to 0.74 kg/m2 (SE = 0.21) per allele combination. We selected two six-SNP combinations on waist circumference (global p-value = 7.80⋅10–6 and 9.76⋅10–6) with an allele combination effect of −2.96 cm (SE = 0.76) at maximum. Additional adjustment for BMI revealed 15 three-SNP combinations (global p-values ranged from 3.09⋅10–4 to 1.02⋅10–2). However, after carrying out the permutation test all SNP combinations lost significance indicating that the statistical associations

  14. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor1[OPEN

    PubMed Central

    Kim, Mi Jung

    2016-01-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15. However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. PMID:27246098

  15. cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: Evidence for a gene cluster of aquaporins at chromosome locus 12q13

    SciTech Connect

    Ma, Tonghui; Yang, Baoxue; Verkman, A.S.

    1996-08-01

    A 1.8-kb cDNA clone (designed hKID, gene symbol AQP2L) with homology to the aquaporins was isolated from a human kidney cDNA library. The longest open reading frame of 846 bp encoded a 282-amino-acid hydrophobic protein that contained the conserved NPA motifs of MIP family members. Cell-free translation produced a nonglycosylated protein migrating at 29 kDa. Northern blot analysis revealed a 2.2-kb transcript expressed only in human kidney. PCR/Southern blot analysis of human kidney cDNA using primers flanking the hKID coding sequence revealed expression of a full-length mRNA and short transcripts with partial exon 1 and partial exon 4 deletions. Genomic Southern blot indicted a single-copy hKID gene. PCR analysis of a human/rodent somatic hybrid panel localized the hKID gene to chromosome 12. Chromosomal fluorescence in situ hybridization mapped the hKID (AQP2L) gene to chromosome locus 12q13, the same location a as the AQP-2 and MIP genes. The high sequence homology, similar genomic structure, and identical chromosomal loci of hKID, MIP, and AQP-2 suggest a MIP family gene cluster at chromosome locus 12q13. Further work is needed to establish the physiological significance of hKID. 43 refs., 6 figs.

  16. Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed.

    PubMed

    Hua, Yingpeng; Zhang, Didi; Zhou, Ting; He, Mingliang; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2016-07-01

    Allotetraploid rapeseed (Brassica napus L., An An Cn Cn , 2n = 4x = 38) is extraordinarily susceptible to boron (B) deficiency, a ubiquitous problem causing severe losses in seed yield. The breeding of B-efficient rapeseed germ plasm is a cost-effective and environmentally friendly strategy for the agricultural industry; however, genes regulating B efficiency in allotetraploid rapeseed have not yet been isolated. In this research, quantitative trait locus (QTL) fine mapping and digital gene expression (DGE) profiling were combined to identify the candidate genes underlying the major-effect QTL qBEC-A3a, which regulates B efficiency. Comparative phenotype analyses of the near-isogenic lines (NILs) indicated that qBEC-A3a plays a significant role in improving B efficiency under B deficiency. Exploiting QTL fine mapping and DGE analyses revealed a nodulin 26-like intrinsic protein (NIP) gene, which encodes a likely boric acid channel. The gene co-expression network for putative B transporters also highlighted its central role in the efficiency of B uptake. An integration of whole-genome re-sequencing (WGS) with bulked segregant analysis (BSA) authenticated the emerging availability of QTL-seq for the QTL analyses in allotetraploid rapeseed. Transcriptomics-assisted QTL mapping and comparative genomics provided novel insights into the rapid identification of quantitative trait genes (QTGs) in plant species with complex genomes. PMID:26934080

  17. Expression Quantitative Trait Locus Mapping Studies in Mid-secretory Phase Endometrial Cells Identifies HLA-F and TAP2 as Fecundability-Associated Genes

    PubMed Central

    Kosova, Gülüm; Patterson, Kristen; Hartmann, Katherine E.; Velez Edwards, Digna R.; Stephenson, Mary D.; Lynch, Vincent J.; Ober, Carole

    2016-01-01

    Fertility traits in humans are heritable, however, little is known about the genes that influence reproductive outcomes or the genetic variants that contribute to differences in these traits between individuals, particularly women. To address this gap in knowledge, we performed an unbiased genome-wide expression quantitative trait locus (eQTL) mapping study to identify common regulatory (expression) single nucleotide polymorphisms (eSNPs) in mid-secretory endometrium. We identified 423 cis-eQTLs for 132 genes that were significant at a false discovery rate (FDR) of 1%. After pruning for strong LD (r2 >0.95), we tested for associations between eSNPs and fecundability (the ability to get pregnant), measured as the length of the interval to pregnancy, in 117 women. Two eSNPs were associated with fecundability at a FDR of 5%; both were in the HLA region and were eQTLs for the TAP2 gene (P = 1.3x10-4) and the HLA-F gene (P = 4.0x10-4), respectively. The effects of these SNPs on fecundability were replicated in an independent sample. The two eSNPs reside within or near regulatory elements in decidualized human endometrial stromal cells. Our study integrating eQTL mapping in a primary tissue with association studies of a related phenotype revealed novel genes and associated alleles with independent effects on fecundability, and identified a central role for two HLA region genes in human implantation success. PMID:27447835

  18. Expression Quantitative Trait Locus Mapping Studies in Mid-secretory Phase Endometrial Cells Identifies HLA-F and TAP2 as Fecundability-Associated Genes.

    PubMed

    Burrows, Courtney K; Kosova, Gülüm; Herman, Catherine; Patterson, Kristen; Hartmann, Katherine E; Velez Edwards, Digna R; Stephenson, Mary D; Lynch, Vincent J; Ober, Carole

    2016-07-01

    Fertility traits in humans are heritable, however, little is known about the genes that influence reproductive outcomes or the genetic variants that contribute to differences in these traits between individuals, particularly women. To address this gap in knowledge, we performed an unbiased genome-wide expression quantitative trait locus (eQTL) mapping study to identify common regulatory (expression) single nucleotide polymorphisms (eSNPs) in mid-secretory endometrium. We identified 423 cis-eQTLs for 132 genes that were significant at a false discovery rate (FDR) of 1%. After pruning for strong LD (r2 >0.95), we tested for associations between eSNPs and fecundability (the ability to get pregnant), measured as the length of the interval to pregnancy, in 117 women. Two eSNPs were associated with fecundability at a FDR of 5%; both were in the HLA region and were eQTLs for the TAP2 gene (P = 1.3x10-4) and the HLA-F gene (P = 4.0x10-4), respectively. The effects of these SNPs on fecundability were replicated in an independent sample. The two eSNPs reside within or near regulatory elements in decidualized human endometrial stromal cells. Our study integrating eQTL mapping in a primary tissue with association studies of a related phenotype revealed novel genes and associated alleles with independent effects on fecundability, and identified a central role for two HLA region genes in human implantation success. PMID:27447835

  19. Allelic Analysis of the Maize amylose-extender Locus Suggests That Independent Genes Encode Starch-Branching Enzymes IIa and IIb.

    PubMed Central

    Fisher, D. K.; Gao, M.; Kim, K. N.; Boyer, C. D.; Guiltinan, M. J.

    1996-01-01

    Starch branching enzymes (SBE) catalyze the formation of [alpha]-1,6-glucan linkages in the biosynthesis of starch. Three distinct SBE isoforms have been identified in maize (Zea mays L.) endosperm, SBEI, IIa, and IIb. Independent genes have been identified that encode maize SBEI and IIb; however, it has remained controversial as to whether SBEIIa and IIb result from posttranscriptional processes acting on the product of a single gene or whether they are encoded by separate genes. To investigate this question, we analyzed 16 isogenic lines carrying independent alleles of the maize amylose-extender (ae) locus, the structural gene for SBEIIb. We show that 22 d after pollination ae-B1 endosperm expressed little Sbe2b (ae)-hybridizing transcript, and as expected, ae-B1 endosperm also lacked detectable SBEIIb enzymatic activity. Significantly, we show that ae-B1 endosperm contained SBEIIa enzymatic activity, strongly supporting the hypothesis that endosperm SBEIIa and IIb are encoded by separate genes. Furthermore, we show that in addition to encoding the predominant Sbe2b-hybridizing message expressed in endosperm, the ae gene also encodes the major Sbe2b-like transcript expressed in developing embryos and tassels. PMID:12226207

  20. Genomic organization of the human osteopontin gene: Exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type II.

    SciTech Connect

    Crosby, A.H.; Edwards, S.J.; Murray, J.C.

    1995-05-01

    Osteopontin (SPP1) is the principal phosphorylated glycoprotein of bone that is also expressed in a limited number of other tissues including dentine. In the current investigation the authors report the genomic organization of the SPP1 gene, which comprises seven exons, six of which contain coding sequence. The splice sites for exon donor and acceptor positions are in close agreement with previously published consensus sequences. Comparison of the human gene with its murine and bovine counterparts revealed a highly homologous organization. A highly informative short tandem repeat polymorphism isolated at the SPP1 locus showed no recombination with the autosomal dominant disorder dentinogenesis imperfecta type II. Nevertheless, sequencing of each exon in individuals affected by this disorder failed to reveal any disease-specific mutations. 25 refs., 2 figs., 2 tabs.

  1. Higher-level phylogeny of the Therevidae (Diptera: insecta) based on 28S ribosomal and elongation factor-1 alpha gene sequences.

    PubMed

    Yang, L; Wiegmann, B M; Yeates, D K; Irwin, M E

    2000-06-01

    Therevidae (stilleto flies) are a little-known family of asiloid brachyceran Diptera (Insecta). Separate and combined phylogenetic analyses of 1200 bases of the 28S ribosomal DNA and 1100 bases of elongation factor-1alpha were used to infer phylogenetic relationships within the family. The position of the enigmatic taxon Apsilocephala Kröber is evaluated in light of the molecular evidence. In all analyses, molecular data strongly support the monophyly of Therevidae, excluding Apsilocephala, and the division of Therevidae into two main clades corresponding to a previous classification of the family into the subfamilies Phycinae and Therevinae. Despite strong support for some relationships within these groups, relationships at the base of the two main clades are weakly supported. Short branch lengths for Australasian clades at the base of the Therevinae may represent a rapid radiation of therevids in Australia. PMID:10860652

  2. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species

    PubMed Central

    Li, Wentao; Chetelat, Roger T.

    2015-01-01

    Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin–proteasome pathway, a mechanism related to that which controls pollen recognition in SI. PMID:25831517

  3. Confirmation of the 2p locus for the mild autosomal recessive lim-girdle muscular dystrophy gene (LGMD2B) in three families allows refinement of the candidate region

    SciTech Connect

    Bashir, R.; Iughetti, P.; Strachan, T.

    1995-05-01

    The mild autosomal recessive limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of muscle diseases. The first gene to be mapped and associated with this phenotype was a locus on 15q geographic isolate. These results have been confirmed in other populations, but it was shown that there is genetic heterogeneity for this form of LGMD. Recently, a second locus has been mapped to chromosome 2p. The confirmation of the mapping of this second locus in LGMD families from different populations is of utmost importance for the positional cloning of this gene (HGMW-approved symbol LGMD2B). In this publication, haplotypes generated from five chromosome 2 markers from all of the known large families linked to chromosome 2p are reported together with the recombinants that show the current most likely location of the LGMD 2B gene. 9 refs., 2 figs., 1 tab.

  4. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF1) gene are associated with growth-related traits in farmed Atlantic salmon

    PubMed Central

    Tsai, H Y; Hamilton, A; Guy, D R; Houston, R D

    2014-01-01

    Understanding the genetic basis of variation in traits related to growth and fillet quality in Atlantic salmon is of importance to the aquaculture industry. Several growth-related QTL have been identified via the application of genetic markers. The IGF1 gene is considered a highly conserved and crucial growth-regulating gene in salmonid species. However, the association between polymorphisms in the IGF1 gene and growth-related traits in Atlantic salmon is unknown. Therefore, in this study, regions of the Atlantic salmon IGF1 gene were sequenced, aligned and compared across individuals. Three SNPs were identified in the putative promoter (SNP1, g.5763G>T; GenBank no. AGKD01012745), intron 1 (SNP2, g.7292C>T; GenBank no. AGKD01012745) and intron 3 (SNP3, g.4671A>C; GenBank no. AGKD01133398) regions respectively. These SNPs were genotyped in a population of 4800 commercial Atlantic salmon with data on several weight and fillet traits measured at harvest (at approximately 3 years of age). In a mixed model, association analysis of individual SNPs, SNP1 and SNP3 were both significantly associated with several weight traits (P < 0.05). The estimated additive effect on overall harvest weight was approximately 35 and 110 g for SNPs 1 and 3 respectively. A haplotype analysis confirmed the association between genetic variation in the IGF1 gene with overall body weight (P < 0.05) and fillet component traits (P < 0.05). Our findings suggest the identified nucleotide polymorphisms of the IGF1 gene may either affect farmed Atlantic salmon growth directly or be in population-wide linkage disequilibrium with causal variation, highlighting their possible utility as candidates for marker-assisted selection in the aquaculture industry. PMID:25090910

  5. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

    PubMed Central

    Christians, E; Michel, E; Adenot, P; Mezger, V; Rallu, M; Morange, M; Renard, J P

    1997-01-01

    The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA. PMID:9001232

  6. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    PubMed Central

    Meyer, Swanhild U.; Krebs, Stefan; Thirion, Christian; Blum, Helmut; Krause, Sabine; Pfaffl, Michael W.

    2015-01-01

    Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate

  7. A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus.

    PubMed Central

    Renalier, M H; Batut, J; Ghai, J; Terzaghi, B; Gherardi, M; David, M; Garnerone, A M; Vasse, J; Truchet, G; Huguet, T

    1987-01-01

    A 290-kilobase (kb) region of the Rhizobium meliloti 2011 pSym megaplasmid, which contains nodulation genes (nod) as well as genes involved in nitrogen fixation (nif and fix), was shown to carry at least six sequences repeated elsewhere in the genome. One of these reiterated sequences, about 5 kb in size, had previously been identified as part of a cluster of fix genes located 220 kb downstream of the nifHDK promoter. Deletion of the reiterated part of this fix cluster does not alter the symbiotic phenotype. Deletion of the second copy of this reiterated sequence, which maps on pSym 40 kb upstream of the nifHDK promoter, also has no effect. Deletion of both of these copies however leads to a Fix- phenotype, indicating that both sequences carry functionally reiterated fix gene(s). The fix copy 40 kb upstream of nifHDK is part of a symbiotic cluster which also carries a nod locus, the deletion of which produces a marked delay in nodulation. Images PMID:3571166

  8. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  9. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  10. Sequence variation at the rice blast resistance gene Pi-km locus: Implications for the development of allele specific markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recently cloned blast resistance (R) gene Pi-km protects rice crops against specific races of the fungal pathogen Magnaporthe oryzae in a gene-for-gene manner. The use of blast R genes remains the most cost-effective method for an integrated disease management strategy. To facilitate rice breed...

  11. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    SciTech Connect

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  12. Murine fumarylacetoacetate hydrolase (Fah) gene is disrupted by a neonatally lethal albino deletion that defines the hepatocyte-specific developmental regulation 1 (hsdr-1) locus

    SciTech Connect

    Klebig, M.L. Oak Ridge National Lab., TN ); Russell, L.B.; Rinchik, E.M. )

    1992-02-15

    Homozygous deletion of the hepatocyte-specific developmental regulation 1 (hsdr-1) locus in mouse chromosome 7 results in perinatal death and a pleiotropic syndrome characterized by ultrastructural abnormalities of the liver and kidney, failure of induction of a number of specific transcription units in the liver and kidney during late gestation, and marked overexpression of an enzyme that defends against oxidative stress. Previously, the breakpoints of two albino (c) deletions (c{sup 14CoS} and c{sup IFAFyh}) that genetically define hsdr-1 were localized, on a long-range map, in the vicinity of the distal breakpoint of a viable albino deletion (c{sup 24R75M}) that breaks proximally within the c locus. Here the authors report the use of a probe derived from a deletion breakpoint fusion fragment cloned from c{sup 24R75M}/c{sup 24R75M} DNA to clone a breakpoint fusion fragment caused by the c{sup 14CoS} deletion. The proximal breakpoint of the c{sup 14CoS} deletion was discovered to disrupt a gene (Fah) encoding fumarylacetoacetate hydrolase, the last enzyme in the tyrosine degradation pathway. These mouse mutants may also provide models for the human genetic disorder hereditary tyrosinemia, which is associated with fumarylacetoacetate hydrolase deficiency and liver and kidney dysfunction.

  13. Stromal cell-derived factor 1 gene polymorphism is associated with susceptibility to adverse long-term allograft outcomes in non-diabetic kidney transplant recipients.

    PubMed

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p=0.041; p=0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106-6.799, p=0.03) and 2.306-fold (95% CI. 1.254-4.24, p=0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  14. Stromal Cell-Derived Factor 1 Gene Polymorphism Is Associated with Susceptibility to Adverse Long-Term Allograft Outcomes in Non-Diabetic Kidney Transplant Recipients

    PubMed Central

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p = 0.041; p = 0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106–6.799, p = 0.03) and 2.306-fold (95% CI. 1.254–4.24, p = 0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  15. The homeodomain Pbx2-Prep1 complex modulates hepatocyte nuclear factor 1alpha-mediated activation of the UDP-glucuronosyltransferase 2B17 gene.

    PubMed

    Gregory, Philip A; Mackenzie, Peter I

    2002-07-01

    UDP glucuronosyltransferases (UGT) are expressed in a wide range of tissues in which their levels of expression and distribution are dependent on cell-type specific regulatory mechanisms. The presence of a hepatocyte nuclear factor (HNF) 1 binding site in the proximal promoters of several UGT2B genes has been shown to contribute to their expression in liver cells and possibly other HNF1-containing cell types. In some of these UGT2B genes, a putative pre-B cell homeobox (Pbx) transcription factor binding site is found directly adjacent to the functional HNF1 site. To determine whether this putative Pbx site contributes to the regulation of UGT2B expression, we chose the UGT2B17 gene and investigated the capacity of its Pbx site to bind specific transcription factors and alter promoter activity. The UGT2B17 Pbx site matches a consensus Pbx site known to bind members of the Pbx, Hox, Meis, and Prep1 families of homeodomain-containing proteins and has previously been shown to bind nuclear proteins in DNaseI footprint assays. In this study, we used gel shift and functional assays to show that a Pbx2-Prep1 heterodimer can bind to the UGT2B17 Pbx site and interfere with the binding of HNF1alpha to its site adjacent to the Pbx site. This interaction of Pbx2-Prep1 and HNF1alpha results in down-regulation of HNF1alpha-mediated activation of the UGT2B17 promoter. Modulation of transcription by restricting the binding of transcriptional effectors to their target site is a novel role for Pbx2-Prep1 complexes. PMID:12065766

  16. AID-mediated diversification within the IgL locus of chicken DT40 cells is restricted to the transcribed IgL gene.

    PubMed

    Gopal, Anjali R; Fugmann, Sebastian D

    2008-04-01

    Somatic hypermutation (SHM) and gene conversion (GCV) are closely related processes that increase the diversity the primary immunoglobulin repertoire. In both processes the activation-induced cytidine deaminase (AID) converts cytosine residues to uracils within the DNA of the immunoglobulin (Ig) genes in a transcription-dependent manner, and subsequent error-prone repair processes lead to changes in the antigen recognition site of the encoded receptors. This activity is specifically recruited to the Ig loci by unknown mechanisms. Our analyses of the chicken B-cell line DT40, and derivatives thereof, now revealed that even the closest neighbors of the Ig light chain (IgL) gene are protected from AID activity, albeit being transcribed and thus acting as potential targets of AID. Our findings are in support of a model in which cis-acting DNA boundary elements restrict AID activity to the IgL locus and guard the genome in the vicinity of the IgL gene from deleterious mutations. PMID:18023479

  17. AID-mediated diversification within the IgL locus of chicken DT40 cells is restricted to the transcribed IgL gene

    PubMed Central

    Gopal, Anjali R.; Fugmann, Sebastian D.

    2008-01-01

    Somatic hypermutation (SHM) and gene conversion (GCV) are closely related processes that increase the diversity the primary immunoglobulin repertoire. In both processes the activation-induced cytidine deaminase (AID) converts cytosine residues to uracils within the DNA of the immunoglobulin (Ig) genes in a transcription-dependent manner, and subsequent error-prone repair processes lead to changes in the antigen recognition site of the encoded receptors. This activity is specifically recruited to the Ig loci by unknown mechanisms. Our analyses of the chicken B-cell line DT40, and derivatives thereof, now revealed that even the closest neighbors of the Ig light chain (IgL) gene are protected from AID activity, albeit being transcribed and thus acting as potential targets of AID. Our findings are in support of a model in which cis-acting DNA boundary elements restrict AID activity to the IgL locus and guard the genome in the vicinity of the IgL gene from deleterious mutations. PMID:18023479

  18. Recurrent Deletions of Puroindoline Genes at the Grain Hardness Locus in Four Independent Lineages of Polyploid Wheat1[W][OA

    PubMed Central

    Li, Wanlong; Huang, Li; Gill, Bikram S.

    2008-01-01

    Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the Am genome of hexaploid Triticum zhukovskyi (AmAG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed. PMID:18024553

  19. The CAR1 Gene Encoding a Cellular Receptor Specific for Subgroup B and D Avian Leukosis Viruses Maps to the Chicken tvb Locus

    PubMed Central

    Smith, Eugene J.; Brojatsch, Jürgen; Naughton, John; Young, John A. T.

    1998-01-01

    Host susceptibility to subgroup B, D, and E avian leukosis viruses (ALV) is determined by specific alleles of the chicken tvb locus. Recently, a chicken gene that encodes a cellular receptor, designated CAR1, specific for subgroups B and D ALV was cloned, and it was proposed that this gene was the s3 allele of tvb (J. Brojatsch, J. Naughton, M. M. Rolls, K. Zingler, and J. A. T. Young, Cell 87:845–855, 1996). We now report that in a backcross derived from an F1 (Jungle Fowl × White Leghorn [WL]) male mated with inbred WL females, the cloned ALV receptor gene cosegregated with two markers linked to tvb. The two markers used were a tvbs1-specific antigen recognized by the chicken R2 alloantiserum and restriction fragment length polymorphisms associated with the expressed sequence tag com152e. With all three markers, no crossovers were observed among 52 backcross progeny tested and LOD linkage scores of 15.7 were obtained. These data demonstrate that CAR1 is the subgroup B and D ALV susceptibility gene located at tvbs3. PMID:9525691

  20. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns

    PubMed Central

    Li, Zhigang; Reighard, Gregory Lynn; Abbott, Albert Glenn; Bielenberg, Douglas Gary

    2009-01-01

    Mapping and sequencing of the non-dormant evg mutant in peach [Prunus persica (L.) Batsch] identified six tandem-arrayed DAM (dormancy-associated MADS-box) genes as candidates for regulating growth cessation and terminal bud formation. To narrow the list of candidate genes, an attempt was made to associate bud phenology with the seasonal and environmental patterns of expression of the candidates in wild-type trees. The expression of the six peach DAM genes at the EVG locus of peach was characterized throughout an annual growing cycle in the field, and under controlled conditions in response to a long day–short day photoperiod transition. DAM1, 2, 4, 5, and 6 were responsive to a reduction in photoperiod in controlled conditions and the direction of response correlated with the seasonal timing of expression in field-grown trees. DAM3 did not respond to photoperiod and may be regulated by chilling temperatures. The DAM genes in peach appear to have at least four distinct patterns of expression. DAM1, 2, and 4 are temporally associated with seasonal elongation cessation and bud formation and are the most likely candidates for control of the evg phenotype. PMID:19553369

  1. C/EBPβ, When Expressed from the C/ebpα Gene Locus, Can Functionally Replace C/EBPα in Liver but Not in Adipose Tissue

    PubMed Central

    Chen, Shih-Shun; Chen, Jin-Feng; Johnson, Peter F.; Muppala, Vijayakumar; Lee, Ying-Hue

    2000-01-01

    Knockout of C/EBPα causes a severe loss of liver function and, subsequently, neonatal lethality in mice. By using a gene replacement approach, we generated a new C/EBPα-null mouse strain in which C/EBPβ, in addition to its own expression, substituted for C/EBPα expression in tissues. The homozygous mutant mice C/ebpαβ/β are viable and fertile and show none of the overt liver abnormalities found in the previous C/EBPα-null mouse line. Levels of hepatic PEPCK mRNA are not different between C/ebpαβ/β and wild-type mice. However, despite their normal growth rate, C/ebpαβ/β mice have markedly reduced fat storage in their white adipose tissue (WAT). Expression of two adipocyte-specific factors, adipsin and leptin, is significantly reduced in the WAT of C/ebpαβ/β mice. In addition, expression of the non-adipocyte-specific genes for transferrin and cysteine dioxygenase is reduced in WAT but not in liver. Our study demonstrates that when expressed from the C/ebpα gene locus, C/EBPβ can act for C/EBPα to maintain liver functions during development. Moreover, our studies with the C/ebpαβ/β mice provide new insights into the nonredundant functions of C/EBPα and C/EBPβ on gene regulation in WAT. PMID:10982846

  2. Analyses of chicken immunoglobulin light chain cDNA clones indicate a few germline V lambda genes and allotypes of the C lambda locus.

    PubMed Central

    Parvari, R; Ziv, E; Lentner, F; Tel-Or, S; Burstein, Y; Schechter, I

    1987-01-01

    cDNA libraries of chicken spleen and Harder gland (a gland enriched with immunocytes) constructed in pBR322 were screened by differential hybridization and by mRNA hybrid-selected translation. Eleven L-chain cDNA clones were identified from which VL probes were prepared and each was annealed with kidney DNA restriction digests. All VL probes revealed the same set of bands, corresponding to about 15 germline VL genes of one subgroup. The nucleotide sequences of six VL clones showed greater than or equal to 85% homology, and the predicted amino acid sequences were identical or nearly identical to the major N-terminal sequence of L-chains in chicken serum. These findings, and the fact that the VL clones were randomly selected from normal lymphoid tissues, strongly indicate that the bulk of chicken L-chains is encoded by a few germline VL genes, probably much less than 15 since many of the VL genes are known to be pseudogenes. Therefore, it is likely that somatic mechanisms operating prior to specific triggering by antigen play a major role in the generation of antibody diversity in chicken. Analysis of the constant region locus (sequencing of CL gene and cDNAs) demonstrate a single CL isotype and suggest the presence of CL allotypes. Images Fig. 1. Fig. 2. Fig. 4. PMID:3107981

  3. Amplification of the Insulin-Like Growth Factor 1 Receptor Gene Is a Rare Event in Adrenocortical Adenocarcinomas: Searching for Potential Mechanisms of Overexpression

    PubMed Central

    Ribeiro, Tamaya Castro; Jorge, Alexander Augusto; Almeida, Madson Q.; Mariani, Beatriz Marinho de Paula; Nishi, Mirian Yumi; Mendonca, Berenice Bilharinho; Fragoso, Maria Candida Barisson Villares

    2014-01-01

    Context. IGF1R overexpression appears to be a prognostic biomarker of metastatic pediatric adrenocortical tumors. However, the molecular mechanisms that are implicated in its upregulation remain unknown. Aim. To investigate the potential mechanisms involved in IGF1R overexpression. Patients and Methods. We studied 64 adrenocortical tumors. IGF1R copy number variation was determined in all patients using MLPA and confirmed using real time PCR. In a subgroup of 32 patients, automatic sequencing was used to identify IGF1R allelic variants and the expression of microRNAs involved in IGF1R regulation by real time PCR. Results. IGF1R amplification was detected in an adrenocortical carcinoma that was diagnosed in a 46-year-old woman with Cushing's syndrome and virilization. IGF1R overexpression was demonstrated in this case. In addition, gene amplification of other loci was identified in this adrenocortical malignant tumor, but no IGF1R copy number variation was evidenced in the remaining cases. Automatic sequencing revealed three known polymorphisms but they did not correlate with its expression. Expression of miR-100, miR-145, miR-375, and miR-126 did not correlate with IGF1R expression. Conclusion. We demonstrated amplification and overexpression of IGF1R gene in only one adrenocortical carcinoma, suggesting that these combined events are uncommon. In addition, IGF1R polymorphisms and abnormal microRNA expression did not correlate with IGF1R upregulation in adrenocortical tumors. PMID:25110710

  4. The cAMP response element binding protein (CREB) is activated by insulin-like growth factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast.

    PubMed

    Zuloaga, R; Fuentes, E N; Molina, A; Valdés, J A

    2013-10-18

    Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP3/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA-CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation. PMID:24064350

  5. The Association between Hypoxia-Inducible Factor-1 α Gene C1772T Polymorphism and Cancer Risk: A Meta-Analysis of 37 Case-Control Studies

    PubMed Central

    Liu, Jiajia; Liu, Dongjuan; Zhao, Xin; Hu, Ting; Jiang, Lu; Dan, Hongxia; Zeng, Xin; Li, Jing; Wang, Jiayi; Chen, Qianming

    2013-01-01

    Background The possible association between HIF-1α C1772T polymorphism and cancer risk has been studied extensively. However, the results were controversial. In order to get a more precise conclusion of this association, a meta-analysis was performed. Methods A total of 10186 cases and 10926 controls in 37 case-control studies were included in this meta-analysis. Allele and genotypic differences between cases and controls were evaluated. Subgroup analysis by cancer site, ethnicity, source of controls and gender was performed. Results The T allele of HIF-1α gene C1772T was significantly associated with increased cancer risk in three genetic models: TT+CT vs.CC (dominant model OR=1.23, 95%CI=1.03-1.47), TT vs. CT+CC (recessive model OR=2.51, 95%CI=1.54-4.09), TT vs. CC (homozygote comparison OR=2.02, 95%CI=1.21-3.39).In subgroup analysis, the frequency of the T variant was found to be significantly increased in cervical cancer, pancreatic cancer, head and neck cancer, renal cell carcinoma, Asian and female subgroups. Conclusions Our meta-analysis suggests that the substitution of C allele with T at HIF-1α gene C1772T polymorphism is a risk factor of cancer, especially for cervical, head and neck cancer, pancreatic cancer and renal cell carcinoma. It is also a risk factor of cancer in Asian group as well as in female group. PMID:24367595

  6. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    SciTech Connect

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  7. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  8. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1{alpha}) and HIF-regulated genes

    SciTech Connect

    Li Qin; Chen Haobin; Huang Xi; Costa, Max . E-mail: costam@env.med.nyu.edu

    2006-06-15

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1{alpha}-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1{alpha} protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1{alpha} responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1{alpha} protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1{alpha} protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1{alpha}-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1{alpha} protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1{alpha} after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1{alpha} protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the

  9. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines.

    PubMed

    Fong, W G; Liston, P; Rajcan-Separovic, E; St Jean, M; Craig, C; Korneluk, R G

    2000-11-15

    X-linked inhibitor of apoptosis protein (XIAP) is a potent modulator of programmed cell death. XIAP specifically binds and inhibits the function of caspase-3, -7, and -9, key effector proteases of apoptosis. We recently isolated, by yeast two-hybrid screening, a novel 34-kDa zinc finger protein, XIAP-associated factor 1 (XAF1). Both the caspase inhibiting and the anti-apoptotic abilities of XIAP were found to be blocked by overexpressed XAF1. Here, we report the isolation and characterization of the human XAF1 gene. The xaf1 gene consists of seven exons spanning 18 kb. Fluorescence in situ hybridization analysis localized the xaf1 locus at 17p13.2, telomeric to the p53 gene. The xaf1 locus was further refined to YAC 746C10, approximately 3 cM distal to TP53. Microsatellite analysis of the xaf1 locus using the NCI 60 cell line panel revealed significantly decreased heterozygosity at all three polymorphic markers tested, suggesting that allelic loss of the xaf1 gene is prevalent in cancer cell lines. Examination of the same NCI cell line panel for xaf1 RNA expression demonstrated that cancer cell lines exhibited very low levels of mRNA relative to normal human liver. In contrast, XIAP mRNA levels were relatively high in the majority of cancer cell lines tested. We propose that a high level of XIAP to XAF1 expression in cancer cells may provide a survival advantage through the relative increase of XIAP anti-apoptotic function. PMID:11087668

  10. Involvement of hepatocyte nuclear factor 1 in the regulation of the UDP-glucuronosyltransferase 1A7 (UGT1A7) gene in rat hepatocytes.

    PubMed

    Metz, R P; Auyeung, D J; Kessler, F K; Ritter, J K

    2000-08-01

    UDP-glucuronosyltransferase 1A7 (UGT1A7) is a major UGT contributing to the glucuronidation of xenobiotic phenols in rats. Its expression in rat liver is tightly regulated, with low constitutive and high inducible expression in response to aryl hydrocarbon receptor ligands and oltipraz. Previously, we reported the absence of 3-methylcholanthrene- or oltipraz-responsive elements in the 1.6-kbp region flanking the UGT1A7 promoter. However, potential binding sites were noted for several liver-enriched transcription factors. Here we show that deletion of the hepatic nuclear factor (HNF)3, HNF4, and CCAAT-enhancer binding protein-like binding sites had no effect on the expression of a UGT1A7 reporter plasmid, p(-965/+56)1A7-Luc, in primary rat hepatocytes. The full activity of the promoter was contained in the region between bases -157 and +76. Two sites of binding by rat liver nuclear proteins were detected in this region by DNase footprinting. PR-1 corresponded to the HNF1-like binding site between bases -52 and -38, whereas PR-2 was located between -30 to -6. Gel retardation studies supported the presence of HNF1alpha in the PR-1 DNA-liver nuclear protein complex. Mutation of PR-1 inhibited binding in the gel shift assay, prevented activation by overexpressed HNF1 in human embryonic kidney cells, and reduced by >80% the maximal luciferase activities expressed from basal and 3-methylcholanthrene-responsive UGT1A7 gene reporter constructs in primary rat hepatocytes. These data provide evidence for an important stimulatory role of HNF1 in promoting UGT1A7 gene expression in rat liver. PMID:10908299

  11. Mixed Lineage Leukemia 5 (MLL5) Protein Regulates Cell Cycle Progression and E2F1-responsive Gene Expression via Association with Host Cell Factor-1 (HCF-1)*

    PubMed Central

    Zhou, Peipei; Wang, Zhilong; Yuan, Xiujie; Zhou, Cuihong; Liu, Lulu; Wan, Xiaoling; Zhang, Feng; Ding, Xiaodan; Wang, Chuangui; Xiong, Sidong; Wang, Zhen; Yuan, Jinduo; Li, Qiang; Zhang, Yan

    2013-01-01

    Trithorax group proteins methylate lysine 4 of histone 3 (H3K4) at active gene promoters. MLL5 protein, a member of the Trithorax protein family, has been implicated in the control of the cell cycle progression; however, the underlying molecular mechanism(s) have not been fully determined. In this study, we found that the MLL5 protein can associate with the cell cycle regulator “host cell factor” (HCF-1). The interaction between MLL5 and HCF-1 is mediated by the “HCF-1 binding motif” (HBM) of the MLL5 protein and the Kelch domain of the HCF-1 protein. Confocal microscopy showed that the MLL5 protein largely colocalized with HCF-1 in the nucleus. Knockdown of MLL5 resulted in reduced cell proliferation and cell cycle arrest in the G1 phase. Moreover, down-regulation of E2F1 target gene expression and decreased H3K4me3 levels at E2F1-responsive promoters were observed in MLL5 knockdown cells. Additionally, the core subunits, including ASH2L, RBBP5, and WDR5, that are necessary for effective H3K4 methyltransferase activities of the Trithorax protein complexes, were absent in the MLL5 complex, suggesting that a distinct mechanism may be used by MLL5 for exerting its H3K4 methyltransferase activity. Together, our findings demonstrate that MLL5 could associate with HCF-1 and then be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation, thereby facilitating the cell cycle G1 to S phase transition. PMID:23629655

  12. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs).

    PubMed

    Darabi, Hatef; Beesley, Jonathan; Droit, Arnaud; Kar, Siddhartha; Nord, Silje; Moradi Marjaneh, Mahdi; Soucy, Penny; Michailidou, Kyriaki; Ghoussaini, Maya; Fues Wahl, Hanna; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Alonso, M Rosario; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Benitez, Javier; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Choi, Ji-Yeob; Conroy, Don M; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Devilee, Peter; Dörk, Thilo; Easton, Douglas F; Fasching, Peter A; Figueroa, Jonine; Fletcher, Olivia; Flyger, Henrik; Galle, Eva; García-Closas, Montserrat; Giles, Graham G; Goldberg, Mark S; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A; Hallberg, Emily; Hamann, Ute; Hartman, Mikael; Hollestelle, Antoinette; Hopper, John L; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Kang, Daehee; Khan, Sofia; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Lambrechts, Diether; Le Marchand, Loic; Lee, Soo Chin; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Mayes, Rebecca; McKay, James; Meindl, Alfons; Milne, Roger L; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Olswold, Curtis; Orr, Nick; Peterlongo, Paolo; Pita, Guillermo; Pylkäs, Katri; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H; Tessier, Daniel C; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine M; Vincent, Daniel; Winqvist, Robert; Wu, Anna H; Wu, Pei-Ei; Yip, Cheng Har; Zheng, Wei; Pharoah, Paul D P; Hall, Per; Edwards, Stacey L; Simard, Jacques; French, Juliet D; Chenevix-Trench, Georgia; Dunning, Alison M

    2016-01-01

    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90-0.94; P = 8.96 × 10(-15))) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10(-09), r(2) = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10(-11), r(2) = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus. PMID:27600471

  13. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs)

    PubMed Central

    Darabi, Hatef; Beesley, Jonathan; Droit, Arnaud; Kar, Siddhartha; Nord, Silje; Moradi Marjaneh, Mahdi; Soucy, Penny; Michailidou, Kyriaki; Ghoussaini, Maya; Fues Wahl, Hanna; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Alonso, M. Rosario; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Benitez, Javier; Bogdanova, Natalia V.; Bojesen, Stig E.; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Choi, Ji-Yeob; Conroy, Don M.; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Devilee, Peter; Dörk, Thilo; Easton, Douglas F.; Fasching, Peter A.; Figueroa, Jonine; Fletcher, Olivia; Flyger, Henrik; Galle, Eva; García-Closas, Montserrat; Giles, Graham G.; Goldberg, Mark S.; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A.; Hallberg, Emily; Hamann, Ute; Hartman, Mikael; Hollestelle, Antoinette; Hopper, John L.; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Kang, Daehee; Khan, Sofia; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Lambrechts, Diether; Le Marchand, Loic; Lee, Soo Chin; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Mayes, Rebecca; McKay, James; Meindl, Alfons; Milne, Roger L.; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Olswold, Curtis; Orr, Nick; Peterlongo, Paolo; Pita, Guillermo; Pylkäs, Katri; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C.; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H.; Tessier, Daniel C.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine M.; Vincent, Daniel; Winqvist, Robert; Wu, Anna H.; Wu, Pei-Ei; Yip, Cheng Har; Zheng, Wei; Pharoah, Paul D. P.; Hall, Per; Edwards, Stacey L.; Simard, Jacques; French, Juliet D.; Chenevix-Trench, Georgia; Dunning, Alison M.

    2016-01-01

    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90–0.94; P = 8.96 × 10−15)) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10−09, r2 = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10−11, r2 = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus. PMID:27600471

  14. Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1α and regulates interferon-γ gene transcription in Th1 cells

    PubMed Central

    Maruyama, T; Nara, K; Yoshikawa, H; Suzuki, N

    2007-01-01

    We have found previously that Txk, a member of the Tec family tyrosine kinases, is involved importantly in T helper 1 (Th1) cytokine production. However, how Txk regulates interferon (IFN)-γ gene transcription in human T lymphocytes was not fully elucidated. In this study, we identified poly(ADP-ribose) polymerase 1 (PARP1) and elongation factor 1α (EF-1α) as Txk-associated molecules that bound to the Txk responsive element of the IFN-γ gene promoter. Txk phosphorylated EF-1α and PARP1 formed a complex with them, and bound to the IFN-γ gene promoter in vitro. In particular, the N terminal region containing the DNA binding domain of PARP1 was important for the trimolecular complex formation involving Txk, EF-1α and PARP1. Several mutant Txk which lacked kinase activity were unable to form the trimolecular complex. A PARP1 inhibitor, PJ34, suppressed IFN-γ but not interleukin (IL)-4 production by normal peripheral blood lymphocytes (PBL). Multi-colour confocal analysis revealed that Txk and EF-1α located in the cytoplasm in the resting condition. Upon activation, a complex involving Txk, EF-1α and PARP1 was formed and was located in the nucleus. Collectively, Txk in combination with EF-1α and PARP1 bound to the IFN-γ gene promoter, and exerted transcriptional activity on the IFN-γ gene. PMID:17177976

  15. Sequence Analysis of Staphylococcus hyicus ATCC 11249T, an Etiological Agent of Exudative Epidermitis in Swine, Reveals a Type VII Secretion System Locus and a Novel 116-Kilobase Genomic Island Harboring Toxin-Encoding Genes

    PubMed Central

    Foecking, Mark F.; Hsieh, Hsin-Yeh; Adkins, Pamela R. F.; Stewart, George C.; Middleton, John R.

    2015-01-01

    Staphylococcus hyicus is the primary etiological agent of exudative epidermitis in swine. Analysis of the complete genome sequence of the type strain revealed a locus encoding a type VII secretion system and a large chromosomal island harboring the genes encoding exfoliative toxin ExhA and an EDIN toxin homolog. PMID:25700402

  16. Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation.

    PubMed

    Franzin, Fernanda M; Sircili, Marcelo P

    2015-01-01

    The locus of enterocyte effacement (LEE) is a 35.6 kb pathogenicity island inserted in the genome of some bacteria such as enteropathogenic Escherichia coli, enterohemorrhagic E.coli, Citrobacter rodentium, and Escherichia albertii. LEE comprises the genes responsible for causing attaching and effacing lesions, a characteristic lesion that involves intimate adherence of bacteria to enterocytes, a signaling cascade leading to brush border and microvilli destruction, and loss of ions, causing severe diarrhea. It is composed of 41 open reading frames and five major operons encoding a type three system apparatus, secreted proteins, an adhesin, called intimin, and its receptor called translocated intimin receptor (Tir). LEE is subjected to various levels of regulation, including transcriptional and posttranscriptional regulators located both inside and outside of the pathogenicity island. Several molecules were described being related to feedback inhibition, transcriptional activation, and transcriptional repression. These molecules are involved in a complex network of regulation, including mechanisms such as quorum sensing and temporal control of LEE genes transcription and translation. In this mini review we have detailed the complex network that regulates transcription and expression of genes involved in this kind of lesion. PMID:25710006

  17. Quantitative trait locus mapping of genes that regulate HDL cholesterol in SM/J and NZB/B1NJ inbred mice.

    PubMed

    Pitman, Wendy A; Korstanje, Ron; Churchill, Gary A; Nicodeme, Edwige; Albers, John J; Cheung, Marian C; Staton, Megan A; Sampson, Stephen S; Harris, Stephen; Paigen, Beverly

    2002-01-01

    To investigate the quantitative trait loci (QTL) regulating plasma cholesterol, the female progeny of an (SMxNZB/ B1NJ)xNZB/B1NJ backcross were fed an atherogenic diet. After 18 wk, plasma total cholesterol and high-density lipoprotein cholesterol (HDL-C) was measured. HDL-C concentrations were greater in NZB than in SM mice. For standard chow-fed mice, QTL were found near D5Mit370 and D18Mit34. For mice fed an atherogenic diet, a QTL was found near D5Mit239. The QTL for chow-fed and atherogenic-fed mice on chromosome 5 seem to be two different loci. We used a multitrait analysis to rule out pleiotropy in favor of a two-QTL hypothesis. Furthermore, the HDL-C in these strains was induced by the high-fat diet. For inducible HDL-C, one significant locus was found near D15Mit39. The gene for an HDL receptor, Srb1, maps close to the HDL-C QTL at D5Mit370, but the concentrations of Srb1 mRNA and SR-B1 protein and the gene sequence of NZB/B1NJ and SM/J did not support Srb1 as a candidate gene. With these QTL, we have identified chromosomal regions that affect lipoprotein profiles in these strains. PMID:12006675

  18. Characterization of a kinesin-related gene ATSV, within the tuberous sclerosis locus (TSC1) candidate region on chromosome 9q34

    SciTech Connect

    Furlong, R.A.; Zhou, Chun Yan; Ferguson-Smith, M.A.; Affara, N.A.

    1996-05-01

    In the search for candidate genes for the tuberous sclerosis (TSC1) disease locus on chromosome 9q34, we have isolated an overlapping series of 22 plasmid and phage cDNA clones covering nearly 7 kb and with an open reading frame of 5070 bp encoding a protein of 1690 amino acids. The putative protein product is a member of the kinesin superfamily and is homologous to the mouse KIF1A and the Caenorhabditas elegans unc-104 genes. Both KIF1A and unc-104 function in the anterograde axonal transport of synaptic vesicles. The human homolog is therefore termed H-ATSV (axonal transporter of synaptic vesicles, HGMW-approved nomenclature ATSV). Screening of DNA from 107 tuberous sclerosis patients and 80 unaffected individuals with H-ATSV cDNA probes by pulsed-field gel electrophoresis/Southern blotting following digestion by rare-cutting methylation-sensitive restriction enzymes showed variant banding patterns in three patients with tuberous sclerosis. However, further analysis indicated that these variant fragments represent a rare polymorphism probably associated with methylation of clustered restriction sites. There is no evidence to support H-ATSV as a candidate gene for TSC1. 28 refs., 5 figs.

  19. The UAS(MAL) is a bidirectional promotor element required for the expression of both the MAL61 and MAL62 genes of the Saccharomyces MAL6 locus.

    PubMed

    Levine, J; Tanouye, L; Michels, C A

    1992-09-01

    Maltose fermentation in Saccharomyces yeasts requires one of five unlinked MAL loci: MAL1, 2, 3, 4, or 6. Each locus consists of three genes encoding maltose permease, maltase and the MAL activator. At MAL6 the genes are called MAL61, MAL62 and MAL63, respectively. Transcription of MAL61 and MAL62 is coordinately induced by maltose and repressed by glucose and this regulation is mediated by the MAL activator. By deletion analysis of the MAL61-MAL62 intergenic region, we show that a 68-basepair region, from base pairs -515 to -582 upstream of the MAL61 start codon, contains a sequence necessary for the maltose-induced expression of MAL61 and MAL62, the UAS(MAL). This sequence contains two copies of an 11-basepair dyad which may be the active elements of the UAS(MAL). Using heterologous gene plasmid constructs, we demonstrate that the UAS(MAL) sequence is sufficient for maltose inducibility of MAL62 and that this regulated expression requires a functional MAL activator. Our results suggest that the MAL61-MAL62 intergenic region contains additional distinct elements which function to precisely regulate MAL61 and/or MAL62 expression. Among these are repressing sequences, including a glucose-responsive element located between base pairs -583 and -638, which is partially responsible for mediating glucose-repression of MAL62 expression. PMID:1525871

  20. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  1. The Cloning and Functional Characterization of Peach CONSTANS and FLOWERING LOCUS T Homologous Genes PpCO and PpFT

    PubMed Central

    Nguyen, Thi Hung; Liang, Huike; Wang, Rui; Liu, Xiayan; Li, Tianhong; Qi, Yafei; Yu, Fei

    2015-01-01

    Flowering is an essential stage of plant growth and development. The successful transition to flowering not only ensures the completion of plant life cycles, it also serves as the basis for the production of economically important seeds and fruits. CONSTANS (CO) and FLOWERING LOCUS T (FT) are two genes playing critical roles in flowering time control in Arabidopsis. Through homology-based cloning and rapid-amplifications of cDNA ends (RACE), we obtained full-lengths cDNA sequences of Prunus persica CO (PpCO) and Prunus persica FT (PpFT) from peach (Prunus persica (L.) Batsch) and investigated their functions in flowering time regulation. PpCO and PpFT showed high homologies to Arabidopsis CO and FT at DNA, mRNA and protein levels. We showed that PpCO and PpFT were nucleus-localized and both showed transcriptional activation activities in yeast cells, consistent with their potential roles as transcription activators. Moreover, we established that the over-expression of PpCO could restore the late flowering phenotype of the Arabidopsis co-2 mutant, and the late flowering defect of the Arabidopsis ft-1 mutant can be rescued by the over-expression of PpFT, suggesting functional conservations of CO and FT genes in peach and Arabidopsis. Our results suggest that PpCO and PpFT are homologous genes of CO and FT in peach and they may function in regulating plant flowering time. PMID:25905637

  2. A new model for disruption of the ornithine decarboxylase gene, SPE1, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus.

    PubMed Central

    Schwartz, B; Hittelman, A; Daneshvar, L; Basu, H S; Marton, L J; Feuerstein, B G

    1995-01-01

    Ornithine decarboxylase (ODC) is a rate-determining enzyme of the polyamine-biosynthetic pathway. We sought to produce cells with impaired ODC function in order to study the biological functions of polyamines. Saccharomyces cerevisiae strains were obtained by one-step gene replacement of a 900 bp fragment of the yeast ODC gene (SPE1) with the yeast URA3 gene. Spores derived from SPE1/spe1 cells germinated at reduced efficiency relative to SPE1/SPE1. Sustained growth of spe1 haploid mutants in polyamine-free medium led to intracellular polyamine depletion, reduction in budding index, G1 arrest and cessation of growth, and cells that were large and misshapen. All of these effects were completely reversed by adding polyamines to the medium, even after 5 days of polyamine starvation. A diploid yeast strain bearing two copies of disrupted spe1 lost heterozygosity at the mating-type locus more often when grown in the absence of polyamines than when grown in their presence, indicating that polyamine deficiency leads to either chromosome loss or to mitotic recombination. Images Figure 3 Figure 10 PMID:7492339

  3. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  4. Characterization of the murine gene corresponding to human Hermansky-Pudlak syndrome type 3: exclusion of the Subtle gray (sut) locus.

    PubMed

    Huizing, M; Anikster, Y; White, J G; Gahl, W A

    2001-01-01

    Hermansky-Pudlak syndrome (HPS) consists of oculocutaneous albinism and a bleeding diathesis due to absent platelet dense bodies. In addition to exhibiting considerable phenotypic variation, this autosomal recessive disorder displays locus heterogeneity. One causative gene is HPS1, coding for a protein of unknown function and resulting in HPS-1 disease, common in northwest Puerto Rico. A second HPS-causing gene is ADTB3A, coding for the beta3A subunit of adaptor complex-3 (AP-3, a coat protein complex) and resulting in HPS-2 disease. Each of these HPS subtypes has a murine counterpart, specifically pale ear for HPS-1 and pearl for HPS-2. Recently, the HPS3 gene, responsible for HPS-3 disease in a genetic isolate of central Puerto Rico, was isolated and characterized. Its location on human chromosome 3q24 suggested that the mouse model corresponding to HPS-3 disease might be subtle gray. To examine this possibility, we determined the mouse HPS3 sequence, its genomic organization, and its amino acid sequence, which shares 95.8% identity with the human protein. We demonstrated that the subtle gray mouse produces a normal size and amount of HPS3 mRNA and has an entirely normal sequence in every exon and intron/exon boundary. Furthermore, subtle gray exhibits a normal contingent of platelet dense bodies. Together, these data eliminate subtle gray as a murine model for HPS-3 disease and suggest that other mouse models be examined. PMID:11592818

  5. Pulmonary Pathology in Thyroid Transcription Factor-1 Deficiency Syndrome

    PubMed Central

    Galambos, Csaba; Levy, Hara; Cannon, Carolyn L.; Vargas, Sara O.; Reid, Lynne M.; Cleveland, Robert; Lindeman, Robert; deMello, Daphne E.; Wert, Susan E.; Whitsett, Jeffrey A.; Perez-Atayde, Antonio R.; Kozakewich, Harry

    2010-01-01

    Thyroid transcription factor-1 (TTF-1) deficiency syndrome is characterized by neurologic, thyroidal, and pulmonary dysfunction. Children usually have mild-to-severe respiratory symptoms and occasionally die of respiratory failure. Herein, we describe an infant with a constitutional 14q12–21.3 haploid deletion encompassing the TTF-1 gene locus who had cerebral dysgenesis, thyroidal dysfunction, and respiratory insufficiency. The clinical course was notable for mild hyaline membrane disease, continuous ventilatory support, and symmetrically distributed pulmonary cysts by imaging. He developed pneumonia and respiratory failure and died at 8 months. Pathologically, the lungs had grossly visible emphysematous changes with “cysts” up to 2 mm in diameter. The airway generations and radial alveolar count were diminished. In addition to acute bacterial pneumonia, there was focally alveolar septal fibrosis, pneumocyte hypertrophy, and clusters of airspace macrophages. Ultrastructurally, type II pneumocytes had numerous lamellar bodies, and alveolar spaces contained fragments of type II pneumocytes and extruded lamellar bodies. Although immunoreactivity for surfactant protein SP-A and ABCA3 was diminished, that for SP-B and proSP-C was robust, although irregularly distributed, corresponding to the distribution of type II pneumocytes. Immunoreactivity for TTF-1 protein was readily detected. In summation, we document abnormal airway and alveolar morphogenesis and altered expression of surfactant-associated proteins, which may explain the respiratory difficulties encountered in TTF-1 haploinsufficiency. These findings are consistent with experimental evidence documenting the important role of TTF-1 in pulmonary morphogenesis and surfactant metabolism. PMID:20203240

  6. Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

    PubMed

    Kanda, Atsushi; Ishijima, Tomoko; Shinozaki, Fumika; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Nakai, Yuji; Abe, Keiko; Kawahata, Keiko; Ikegami, Shuji

    2014-06-28

    We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α. PMID:24598469

  7. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. PMID:26764214

  8. Identification of a new locus Ptr(t) required for rice blast resistance gene Pi-ta-mediated resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a NBS-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here we report the identification of a...

  9. NOD congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene

    PubMed Central

    Fraser, Heather I.; Dendrou, Calliope A.; Healy, Barry; Rainbow, Daniel B.; Howlett, Sarah; Smink, Luc J.; Gregory, Simon; Steward, Charles A.; Todd, John A.; Peterson, Laurence B.; Wicker, Linda S.

    2010-01-01

    We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) Idd18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain which enabled the resolution of Idd18 to a 604 kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3, and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in non-coding regions with 138 single nucleotide polymorphisms (SNPs) concentrated in the introns between exons 20 and 27, and immediately after the 3′ UTR. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune beta-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes. PMID:20363978

  10. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    PubMed

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae. PMID:23728780

  11. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat.

    PubMed

    Schnurbusch, Thorsten; Collins, Nicholas C; Eastwood, Russell F; Sutton, Tim; Jefferies, Steven P; Langridge, Peter

    2007-08-01

    Toxicity due to high levels of soil boron (B) represents a significant limitation to cereal production in some regions, and the Bo1 gene provides a major source of B toxicity tolerance in bread wheat (Triticum aestivum L.). A novel approach was used to develop primers to amplify and sequence gene fragments specifically from the Bo1 region of the hexaploid wheat genome. Single-nucleotide polymorphisms (SNPs) identified were then used to generate markers close to Bo1 on the distal end of chromosome 7BL. In the 16 gene fragments totaling 19.6 kb, SNPs were observed between the two cultivars Cranbrook and Halberd at a low frequency (one every 613 bp). Furthermore, SNPs were distributed unevenly, being limited to only two genes. In contrast, RFLP provided a much greater number of genetic markers, with every tested gene identifying polymorphism. Bo1 previously known only as a QTL was located as a discrete Mendelian locus. In total, 28 new RFLP, PCR and SSR markers were added to the existing map. The 1.8 cM Bo1 interval of wheat corresponds to a 227 kb section of rice chromosome 6L encoding 21 predicted proteins with no homology to any known B transporters. The co-dominant PCR marker AWW5L7 co-segregated with Bo1 and was highly predictive of B tolerance status within a set of 94 Australian bread wheat cultivars and breeding lines. The markers and rice colinearity described here represent tools that will assist B tolerance breeding and the positional cloning of Bo1. PMID:17571251

  12. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 1 Interacts with a Member of the Interferon-Stimulated Gene 15 Pathway

    PubMed Central

    Jacobs, Sarah R.; Stopford, Charles M.; West, John A.; Bennett, Christopher L.; Giffin, Louise

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus known to establish lifelong latency in the human host. We and others have previously shown that three KSHV homologs of cellular interferon regulatory factors (IRFs), known as viral IRFs (vIRFs), participate in evasion of the host interferon (IFN) response. We report that vIRF1 interacts with the cellular interferon-stimulated gene 15 (ISG15) E3 ligase, HERC5, in the context of Toll-like receptor 3 (TLR3) activation and IFN induction. The ISG15 protein is covalently conjugated to target proteins upon activation of the interferon response. Interaction between vIRF1 and HERC5 was confirmed by immunoprecipitation, and the region between amino acids 224 and 349 of vIRF1 was required for interaction with HERC5. We further report that expression of vIRF1 in the context of TLR3 activation results in decreased ISG15 conjugation of proteins. Specifically, TLR3-induced ISG15 conjugation and protein levels of cellular IRF3, a known ISG15 target, were decreased in the presence of vIRF1 compared to the control. vIRF1 itself was also identified as a target of ISG15 conjugation. KSHV-infected cells exhibited increased ISG15 conjugation upon reactivation from latency in coordination with increased IFN. Furthermore, knockdown of ISG15 in latently infected cells resulted in a higher level of KSHV reactivation and an increase in infectious virus. These data suggest that the KSHV vIRF1 protein affects ISG15 conjugation and interferon responses and may contribute to effective KSHV replication. IMPORTANCE The KSHV vIRF1 protein can inhibit interferon activation in response to viral infection. We identified a cellular protein named HERC5, which is the major ligase for ISG15, as a vIRF1 binding partner. vIRF1 association with HERC5 altered ISG15 modification of cellular proteins, and knockdown of ISG15 augmented reactivation of KSHV from latency. PMID:26355087

  13. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)

    PubMed Central

    2010-01-01

    Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M

  14. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus.

    PubMed

    Lecordier, Laurence; Uzureau, Pierrick; Tebabi, Patricia; Brauner, Jonathan; Benghiat, Fleur Samantha; Vanhollebeke, Benoit; Pays, Etienne

    2015-08-01

    Human apolipoprotein L1 (APOL1) kills African trypanosomes except Trypanosoma rhodesiense and Trypanosoma gambiense, the parasites causing sleeping sickness. APOL1 uptake into trypanosomes is favoured by its association with the haptoglobin-related protein-haemoglobin complex, which binds to the parasite surface receptor for haptoglobin-haemoglobin. As haptoglobin-haemoglobin can saturate the receptor, APOL1 uptake is increased in haptoglobin-poor (hypohaptoglobinaemic) serum (HyHS). While T. rhodesiense resists APOL1 by RNA polymerase I (pol-I)-mediated expression of the serum resistance-associated (SRA) protein, T. gambiense resists by pol-II-mediated expression of the T. gambiense-specific glycoprotein (TgsGP). Moreover, in T. gambiense resistance to HyHS is linked to haptoglobin-haemoglobin receptor inactivation by mutation. We report that unlike T. gambiense, T. rhodesiense possesses a functional haptoglobin-haemoglobin receptor, and that like T. gambiense experimentally provided with active receptor, this parasite is killed in HyHS because of receptor-mediated APOL1 uptake. However, T. rhodesiense could adapt to low haptoglobin by increasing transcription of SRA. When assayed in Trypanosoma brucei, resistance to HyHS occurred with pol-I-, but not with pol-II-mediated SRA expression. Similarly, T. gambiense provided with active receptor acquired resistance to HyHS only when TgsGP was moved to a pol-I locus. Thus, transcription by pol-I favours adaptive gene regulation, explaining the presence of SRA in a pol-I locus. PMID:25899052

  15. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV.

    PubMed Central

    Breines, D M; Ouabdesselam, S; Ng, E Y; Tankovic, J; Shah, S; Soussy, C J; Hooper, D C

    1997-01-01

    The locus nfxD, which contributes to high-level quinolone resistance in Escherichia coli KF111b (gyrAr nfxB nfxD), is only expressed in the presence of a gyrA mutation, and maps to the region of the parC and parE genes, was outcrossed into strain KF130, creating strain DH161 (gyrAr nfxD). DNA sequence analysis of DH161 revealed no changes in the topoisomerase IV parC quinolone resistance-determining region but did identify a single T-to-A mutation in parE at codon 445, leading to a change from Leu to His. Full-length cloned parE+ partially complemented the resistance phenotype in KF111b and DH161, but did not complement the resistance phenotype in strain KF130 (gyrAr). No complementation was seen with cloned, truncated parE+. To confirm these findings, gyrAr was first outcrossed from KF130 into E. coli W3110parE10 [parE temperature sensitive(Ts)] and KL16. The transduced strains KL16 and W3110parE10 were subsequently transformed with plasmids containing cloned parE from DH161 or KL16. Cloned parE from DH161 increased norfloxacin resistance in the parE(Ts) background twofold at 30 degrees C and fourfold at 42 degrees C compared to those for cloned parE from KL16. The same experiment with a non-Ts background revealed a twofold increase in the norfloxacin MIC at both 30 and 42 degrees C. These data identify the nfxD conditional resistance locus as a mutant allele of parE. This report is the first of a quinolone-resistant parE mutant and confirms the role of topoisomerase IV as a secondary target of norfloxacin in E. coli. PMID:8980775

  16. Identification of three microsatellites at the human myelin oligodendrocyte glycoprotein (MOG) locus, a gene potentially involved in multiple sclerosis

    SciTech Connect

    Borot, N.; Dolbois, L.; Coppin, H.

    1994-09-01

    The gene encoding MOG is located on the short arm of chromosome 6, less than 120 kb telomeric to HLA-F. We have cloned the MOG gene from a cosmid library. Using tandemly repeated dinucleotides, we probed the genomic region containing the human MOG gene in order to identify and localize polymorphic markers: three microsatellites were characterized in that region. Using a polymerase chain reaction-based technique, we studied length variability for these three markers among 173 healthy individuals and 167 multiple sclerosis patients. Heterozygosity varied from 50% to 60% according to the marker. Pairwise studies showed significant linkage disequilibrium between some alleles. Multiple sclerosis patients and controls were not shown to have statistically significant differences in the MOG region. Further studies on the coding regions are in progress in order to exclude any involvement of the MOG gene in multiple sclerosis.

  17. The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins.

    PubMed Central

    Marquis, H; Ficht, T A

    1993-01-01

    In Brucella abortus, a gene encoding a major cell envelope protein, omp2, is duplicated within a short segment of the large chromosomal DNA. Although both genes contain open reading frames, encoding proteins of high identity, expression from only one, omp2b, has been detected in laboratory-grown B. abortus. In the present study, we wished to determine whether omp2b encodes the previously studied Brucella porin and to characterize the omp2a gene product. Experiments were performed with Escherichia coli transformants expressing either omp2a or omp2b. Our results indicated that both gene products localized to the outer membrane of E. coli. Initial rates of transport of [14C]maltose and growth rates in the presence of maltodextrins of defined size indicated an increased hydrophilic permeability of transformants expressing omp2a. These cells were also shown to grow on maltotetraose, a molecule with a molecular mass of 667 Da. Activity consistent with the formation of pores could not be demonstrated in transformants expressing omp2b. However, Omp2b formed oligomers resistant to heat denaturation up to 70 degrees C in sodium dodecyl sulfate buffer, a property characteristic of bacterial porins. Overall, these results suggest that the omp2a gene product has pore-forming activity and that the omp2b gene encodes the previously characterized Brucella porin. Images PMID:7689540

  18. Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites

    SciTech Connect

    Postic, C.; Niswender, K.D.; Shelton, K.D.; Pettepher, C.C.; Granner, D.K.; Magnuson, M.A.

    1995-10-10

    We cloned and characterized an 83-kb fragment of mouse genomic DNA containing the entire glucokinase (GK) gene. The 11 exons of the gene span a total distance of 49 kb, with exons 1{beta} and 1L being separated by 35 kb. A total of 25,266 bp of DNA sequence information was determined: from {approximately}-9.2 to {approximately}+15 kb (24,195 bp), relative to the hepatocyte transcription start site, and from -335 to -736 bp (1071 bp), relative to the transcription start site in {beta} cells. These sequences revealed that mouse GK is >94% identical to rat and human GK. Mouse hepatic GK mRNA is regulated by fasting and refeeding, as also occurs in the rat. Alignment of the upstream and downstream promoter regions of the mouse, rat, and human genes revealed several evolutionarily conserved regions that may contribute to transcriptional regulation. However, fusion gene studies in transgenic mice indicate that the conserved regions near the transcription start site in hepatocytes are themselves not sufficient for position-independent expression in liver. Analysis of the chromatin structure of a 48-kb region of the mouse gene using DNase I revealed eight liver-specific hypersensitive sites whose locations ranged from 0.1 to 36 kb upstream of the liver transcription start site. The availability of a single, contiguous DNA fragment containing the entire mouse GK gene should allow further studies of cell-specific expression of GK to be performed. 46 refs., 8 figs.

  19. New Zealand Ginger mouse: novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass.

    PubMed

    Duchesnes, Cécile E; Naggert, Jürgen K; Tatnell, Michele A; Beckman, Nikki; Marnane, Rebecca N; Rodrigues, Jessica A; Halim, Angela; Pontré, Beau; Stewart, Alistair W; Wolff, George L; Elliott, Robert; Mountjoy, Kathleen G

    2009-05-13

    The study of spontaneous mutations in mice over the last century has been fundamental to our understanding of normal physiology and mechanisms of disease. Here we studied the phenotype and genotype of a novel mouse model we have called the New Zealand Ginger (NZG/Kgm) mouse. NZG/Kgm mice are very large, rapidly growing, ginger-colored mice with pink eyes. Breeding NZG/Kgm mice with CAST/Ei or C57BL/6J mice showed that the ginger coat colour is a recessive trait, while the excessive body weight and large body size exhibit a semidominant pattern of inheritance. Backcrossing F1 (NZG/Kgm x CAST/Ei) to NZG/Kgm mice to produce the N2 generation determined that the NZG/Kgm mouse has two recessive pigmentation variant genes (oca2(p) and tyrp-1(b)) and that the tyrp-1(b) gene locus associates with large body size. Three coat colors appeared in the N2 generation; ginger, brown, and dark. Strikingly, N2 male coat colour associated with body weight; the brown-colored mice weighed the most followed by ginger and then dark. The male brown coat-colored offspring reached adult body weights indistinguishable from NZG/Kgm males. The large NZG/Kgm mouse body size is a result of excessive lean body mass since these mice are not obese or diabetic. NZG/Kgm mice exhibit an unusual pattern of fat distribution; compared with other mouse strains they have disproportionately higher amounts of subcutaneous and gonadal fat. These mice are susceptible to high-fat diet-induced obesity but are resistant to high-fat diet-induced diabetes. We propose NZG/Kgm mice as a novel model to delineate gene(s) that regulate 1) growth and metabolism, 2) resistance to Type 2 diabetes, and 3) preferential fat deposition in the subcutaneous and gonadal areas. PMID:19293329

  20. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    SciTech Connect

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences. (ERB)

  1. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums

    PubMed Central

    Oda, Atsushi; Narumi, Takako; Li, Tuoping; Kando, Takumi; Higuchi, Yohei; Sumitomo, Katsuhiko; Fukai, Seiichi; Hisamatsu, Tamotsu

    2012-01-01

    Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums. PMID:22140240

  2. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1

    PubMed Central

    Li, Chao; Zhang, Yannan; Zhang, Kun; Guo, Danli; Cui, Baiming; Wang, Xiyin; Huang, Xianzhong

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a mobile signal protein, recognized as major component of florigen, which has a central position in regulating flowering, and also plays important roles in various physiological aspects. A mode is recently emerging for the balance of indeterminate and determinate growth, which is controlled by the ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a strong influence on the floral transition and plant architecture. Orthologs of GhFT1 was previously isolated and characterized from Gossypium hirsutum. We demonstrated that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering, promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher rate of photosynthesis and caused flowers abscission. Analysis of gene expression suggested that flower identity genes were significantly upregulated in transgenic plants. Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer, was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated in transgenic plants under long-day conditions, but downregulated under short-day conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb the balance of the endogenous tobacco FT paralogs of inducers and repressors and resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles of FT in regulating shoot architecture by advancing determine growth. Manipulating the ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like gene activity holds promise to improve plant architecture and enhance crop yield. PMID:26136765

  3. Candidate-Gene Screening and Association Analysis at the Autism-Susceptibility Locus on Chromosome 16p: Evidence of Association at GRIN2A and ABAT

    PubMed Central

    Barnby, Gabrielle; Abbott, Aaron; Sykes, Nuala; Morris, Andrew; Weeks, Daniel E.; Mott, Richard; Lamb, Janine; Bailey, Anthony J.; Monaco, Anthony P.

    2005-01-01

    Autism is a highly heritable neurodevelopmental disorder whose underlying genetic causes have yet to be identified. To date, there have been eight genome screens for autism, two of which identified a putative susceptibility locus on chromosome 16p. In the present study, 10 positional candidate genes that map to 16p11-13 were examined for coding variants: A2BP1, ABAT, BFAR, CREBBP, EMP2, GRIN2A, MRTF-B, SSTR5, TBX6, and UBN1. Screening of all coding and regulatory regions by denaturing high-performance liquid chromatography identified seven nonsynonymous changes. Five of these mutations were found to cosegregate with autism, but the mutations are not predicted to have deleterious effects on protein structure and are unlikely to represent significant etiological variants. Selected variants from candidate genes were genotyped in the entire International Molecular Genetics Study of Autism Consortium collection of 239 multiplex families and were tested for association with autism by use of the pedigree disequilibrium test. Additionally, genotype frequencies were compared between 239 unrelated affected individuals and 192 controls. Patterns of linkage disequilibrium were investigated, and the transmission of haplotypes across candidate genes was tested for association. Evidence of single-marker association was found for variants in ABAT, CREBBP, and GRIN2A. Within these genes, 12 single-nucleotide polymorphisms (SNPs) were subsequently genotyped in 91 autism trios (one affected individual and two unaffected parents), and the association was replicated within GRIN2A (Fisher's exact test, P<.0001). Logistic regression analysis of SNP data across GRIN2A and ABAT showed a trend toward haplotypic differences between cases and controls. PMID:15830322

  4. Intron-length polymorphism at the actin gene locus mac-1: a genetic marker for population studies in the marine mussels Mytilus galloprovincialis Lmk. and M. edulis L.

    PubMed

    Ohresser, M; Borsa, P; Delsert, C

    1997-06-01

    A novel intron-length polymorphism at the actin gene locus mac-1 is here reported and used as a genetic marker for population studies in mussels of the genus Mytilus. Two closely related genes subsequently identified as alleles, mac-1a1 and mac-1b1, from a genomic library of M. galloprovincialis were partially cloned and sequenced. They mainly differed from each other by a 65-bp insertion within their first intron. Polymerase chain reaction (PCR) primers were designed outside the insertion. The PCR analysis of 166 individual mussels from M. galloprovincialis and M. edulis populations revealed three size-classes of alleles or allelomorphs, two of which were of the expected sizes for mac1a1 and mac-1b1. One allelomorph was absent from M. edulis samples, although it was present at substantial frequencies in M. galloprovincialis populations. The frequencies of the two other allelomorphs significantly differed between M. galloprovincialis and M. edulis populations. The comparison of six mac-1 intron sequences over 277 bp showed at once that allelomorphs encompassed alleles differing from one another by substantial numbers of mutations, and that identical alleles were present in both M. galloprovincialis and M. edulis individuals, a probable result of the recent introgression between the two species. PMID:9200839

  5. Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus.

    PubMed

    Hall, Andrew Brantley; Timoshevskiy, Vladimir A; Sharakhova, Maria V; Jiang, Xiaofang; Basu, Sanjay; Anderson, Michelle A E; Hu, Wanqi; Sharakhov, Igor V; Adelman, Zach N; Tu, Zhijian

    2014-01-01

    The preservation of a homomorphic sex-determining chromosome in some organisms without transformation into a heteromorphic sex chromosome is a long-standing enigma in evolutionary biology. A dominant sex-determining locus (or M-locus) in an undifferentiated homomorphic chromosome confers the male phenotype in the yellow fever mosquito Aedes aegypti. Genetic evidence suggests that the M-locus is in a nonrecombining region. However, the molecular nature of the M-locus has not been characterized. Using a recently developed approach based on Illumina sequencing of male and female genomic DNA, we identified a novel gene, myo-sex, that is present almost exclusively in the male genome but can sporadically be found in the female genome due to recombination. For simplicity, we define sequences that are primarily found in the male genome as male-biased. Fluorescence in situ hybridization (FISH) on A. aegypti chromosomes demonstrated that the myo-sex probe localized to region 1q21, the established location of the M-locus. Myo-sex is a duplicated myosin heavy chain gene that is highly expressed in the pupa and adult male. Myo-sex shares 83% nucleotide identity and 97% amino acid identity with its closest autosomal paralog, consistent with ancient duplication followed by strong purifying selection. Compared with males, myo-sex is expressed at very low levels in the females that acquired it, indicating that myo-sex may be sexually antagonistic. This study establishes a framework to discover male-biased sequences within a homomorphic sex-determining chromosome and offers new insights into the evolutionary forces that have impeded the expansion of the nonrecombining M-locus in A. aegypti. PMID:24398378

  6. Insights into the Preservation of the Homomorphic Sex-Determining Chromosome of Aedes aegypti from the Discovery of a Male-Biased Gene Tightly Linked to the M-Locus

    PubMed Central

    Hall, Andrew Brantley; Timoshevskiy, Vladimir A.; Sharakhova, Maria V.; Jiang, Xiaofang; Basu, Sanjay; Anderson, Michelle A.E.; Hu, Wanqi; Sharakhov, Igor V.; Adelman, Zach N.; Tu, Zhijian

    2014-01-01

    The preservation of a homomorphic sex-determining chromosome in some organisms without transformation into a heteromorphic sex chromosome is a long-standing enigma in evolutionary biology. A dominant sex-determining locus (or M-locus) in an undifferentiated homomorphic chromosome confers the male phenotype in the yellow fever mosquito Aedes aegypti. Genetic evidence suggests that the M-locus is in a nonrecombining region. However, the molecular nature of the M-locus has not been characterized. Using a recently developed approach based on Illumina sequencing of male and female genomic DNA, we identified a novel gene, myo-sex, that is present almost exclusively in the male genome but can sporadically be found in the female genome due to recombination. For simplicity, we define sequences that are primarily found in the male genome as male-biased. Fluorescence in situ hybridization (FISH) on A. aegypti chromosomes demonstrated that the myo-sex probe localized to region 1q21, the established location of the M-locus. Myo-sex is a duplicated myosin heavy chain gene that is highly expressed in the pupa and adult male. Myo-sex shares 83% nucleotide identity and 97% amino acid identity with its closest autosomal paralog, consistent with ancient duplication followed by strong purifying selection. Compared with males, myo-sex is expressed at very low levels in the females that acquired it, indicating that myo-sex may be sexually antagonistic. This study establishes a framework to discover male-biased sequences within a homomorphic sex-determining chromosome and offers new insights into the evolutionary forces that have impeded the expansion of the nonrecombining M-locus in A. aegypti. PMID:24398378

  7. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease

    PubMed Central

    Lambert, J-C; Grenier-Boley, B; Harold, D; Zelenika, D; Chouraki, V; Kamatani, Y; Sleegers, K; Ikram, M A; Hiltunen, M; Reitz, C; Mateo, I; Feulner, T; Bullido, M; Galimberti, D; Concari, L; Alvarez, V; Sims, R; Gerrish, A; Chapman, J; Deniz-Naranjo, C; Solfrizzi, V; Sorbi, S; Arosio, B; Spalletta, G; Siciliano, G; Epelbaum, J; Hannequin, D; Dartigues, J-F; Tzourio, C; Berr, C; Schrijvers, E M C; Rogers, R; Tosto, G; Pasquier, F; Bettens, K; Van Cauwenberghe, C; Fratiglioni, L; Graff, C; Delepine, M; Ferri, R; Reynolds, C A; Lannfelt, L; Ingelsson, M; Prince, J A; Chillotti, C; Pilotto, A; Seripa, D; Boland, A; Mancuso, M; Bossù, P; Annoni, G; Nacmias, B; Bosco, P; Panza, F; Sanchez-Garcia, F; Del Zompo, M; Coto, E; Owen, M; O'Donovan, M; Valdivieso, F; Caffara, P; Scarpini, E; Combarros, O; Buée, L; Campion, D; Soininen, H; Breteler, M; Riemenschneider, M; Van Broeckhoven, C; Alpérovitch, A; Lathrop, M; Trégouët, D-A; Williams, J; Amouyel, P

    2013-01-01

    Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n=2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case–control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43–1.96); P=1.1 × 10−10). We finally searched for association between SNPs within the FRMD4A locus and Aβ plasma concentrations in three independent non-demented populations (n=2579). We reported that polymorphisms were associated with plasma Aβ42/Aβ40 ratio (best signal, P=5.4 × 10−7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD. PMID:22430674

  8. Epidermal differentiation complex (locus 1q21) gene expression in head and neck cancer and normal mucosa.

    PubMed

    Tyszkiewicz, Tomasz; Jarzab, Michal; Szymczyk, Cezary; Kowal, Monika; Krajewska, Jolanta; Jaworska, Magdalena; Fraczek, Marcin; Krajewska, Anna; Hadas, Ewa; Swierniak, Michal; Markowski, Jaroslaw; Lange, Dariusz; Poltorak, Stanislaw; Wiench, Malgorzata; Krecicki, Tomasz; Jarzab, Jerzy; Maciejewski, Adam

    2014-01-01

    Epidermal differentiation complex (EDC) comprises a number of genes associated with human skin diseases including psoriasis, atopic dermatitis and hyperkeratosis. These genes have also been linked to numerous cancers, among them skin, gastric, colorectal, lung, ovarian and renal carcinomas. The involvement of EDC components encoding S100 proteins, small proline-rich proteins (SPRRs) and other genes in the tumorigenesis of head and neck squamous cell cancer (HNSCC) has been previously suggested. The aim of the study was to systematically analyze the expression of EDC components on the transcript level in HNSCC. Tissue specimens from 93 patients with HNC of oral cavity and 87 samples from adjacent or distant grossly normal oral mucosawere analyzed. 48 samples (24 tumor and 24 corresponding surrounding tissue) were hybridized to Affymetrix GeneChip Human 1.0 ST Arrays. For validation by quantitative real-time PCR (QPCR) the total RNA from all180 samples collected in the study was analyzed with Real-Time PCR system and fluorescent amplicon specific-probes. Additional set of samples from 14 patients with laryngeal carcinoma previously obtained by HG-U133 Plus 2.0 microarray was also included in the analyses. The expression of analyzed EDC genes was heterogeneous. Two transcripts (S100A1 and S100A4) were significantly down-regulated in oral cancer when compared to normal mucosa (0.69 and 0.36-fold change, respectively), showing an opposite pattern of expression to the remaining S100 genes. Significant up-regulation in tumors was found for S100A11, S100A7, LCE3D, S100A3 and S100A2 genes. The increased expression of S100A7 was subsequently validated by QPCR, confirming significant differences. The remaining EDC genes, including all encoding SPRR molecules, did not show any differences between oral cancer and normal mucosa. The observed differences were also assessed in the independent set of laryngeal cancer samples, confirming the role of S100A3 and LCE3D transcripts in

  9. Identification of Down's syndrome critical locus gene SIM2-s as a drug therapy target for solid tumors.

    PubMed

    DeYoung, Maurice Phil; Tress, Matthew; Narayanan, Ramaswamy

    2003-04-15

    We report here a cancer drug therapy use of a gene involved in Down's syndrome. Using bioinformatics approaches, we recently predicted Single Minded 2 gene (SIM2) from Down's syndrome critical region to be specific to certain solid tumors. Involvement of SIM2 in solid tumors has not previously been reported. Intrigued by a possible association between a Down's syndrome gene and solid tumors, we monitored SIM2 expression in solid tumors. Isoform-specific expression of SIM2 short-form (SIM2-s) was seen selectively in colon, prostate, and pancreatic carcinomas but not in breast, lung, or ovarian carcinomas nor in most normal tissues. In colon tumors, SIM2-s expression was seen in early stages. Antisense inhibition of SIM2-s expression in a colon cancer cell line caused inhibition of gene expression, growth inhibition, and apoptosis. The administration of the antisense, but not the control, oligonucleotides caused a pronounced inhibition of tumor growth in nude mice with no major toxicity. Our findings provide a strong rationale for the genes-to-drugs paradigm, establish SIM2-s as a molecular target for cancer therapeutics, and may further understanding of the cancer risk of Down's syndrome patients. PMID:12676991

  10. Structure at 1.6 Å resolution of the protein from gene locus At3g22680 from Arabidopsis thaliana

    SciTech Connect

    Allard, Simon T. M.; Bingman, Craig A.; Johnson, Kenneth A.; Wesenberg, Gary E.; Bitto, Eduard; Jeon, Won Bae; Phillips, George N. Jr

    2005-07-01

    The crystal structure of the 18 kDa At3g22680 gene product from A. thaliana was determined at 1.6 Å resolution. At3g22680 shows no structural homology to any other known proteins and represents a new fold in protein conformational space. The gene product of At3g22680 from Arabidopsis thaliana codes for a protein of unknown function. The crystal structure of the At3g22680 gene product was determined by multiple-wavelength anomalous diffraction and refined to an R factor of 16.0% (R{sub free} = 18.4%) at 1.60 Å resolution. The refined structure shows one monomer in the asymmetric unit, with one molecule of the non-denaturing detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate) tightly bound. Protein At3g22680 shows no structural homology to any other known proteins and represents a new fold in protein conformation space.

  11. Refining the locus for Best vitelliform macular dystrophy and mutation analysis of the candidate gene ROM1

    SciTech Connect

    Nichols, B.E.; Stone, E.M.; Sheffield, V.C. ); McInnes, R.; Bascom, R. ); Litt, M. )

    1994-01-01

    Vitelliform macular dystrophy (Best disease) is an autosomal dominant macular dystrophy which shares important clinical features with age-related macular degeneration, the most common cause of legal blindness in the elderly. Unfortunately, understanding and treatment for this common age-related disorder is limited. Discovery of the gene which causes Best disease has the potential to increase the understanding of the pathogenesis of all types of macular degeneration, including the common age-related form. Best disease has recently been mapped to chromosome 11q13. The photoreceptor-specific protein ROM1 has also been recently mapped to this location, and the ROM1 gene is a candidate gene for Best disease. Using highly polymorphic markers, the authors have narrowed the genetic region which contains the Best disease gene to the 10-cM region between markers D11S871 and PYGM. Marker D11S956 demonstrated no recombinants with Best disease in three large families and resulted in a lod score of 18.2. In addition, a polymorphism within the ROM1 gene also demonstrated no recombinants and resulted in a lod score of 10.0 in these same three families. The authors used a combination of SSCP analysis, denaturing gradient gel electrophoresis, and DNA sequencing to screen the entire coding region of the ROM1 gene in 11 different unrelated patients affected with Best disease. No nucleotide changes were found in the coding sequence of any affected patient, indicating that mutations within the coding sequence are unlikely to cause Best disease. 28 refs., 3 figs., 2 tabs.

  12. Refining the locus for Best vitelliform macular dystrophy and mutation analysis of the candidate gene ROM1.

    PubMed Central

    Nichols, B. E.; Bascom, R.; Litt, M.; McInnes, R.; Sheffield, V. C.; Stone, E. M.

    1994-01-01

    Vitelliform macular dystrophy (Best disease) is an autosomal dominant macular dystrophy which shares important clinical features with age-related macular degeneration, the most common cause of legal blindness in the elderly. Unfortunately, our understanding and treatment for this common age-related disorder is limited. Discovery of the gene which causes Best disease has the potential to increase our understanding of the pathogenesis of all types of macular degeneration, including the common age-related form. Best disease has recently been mapped to chromosome 11q13. The photoreceptor-specific protein ROM1 has also been recently mapped to this location, and the ROM1 gene is a candidate gene for Best disease. Using highly polymorphic markers, we have narrowed the genetic region which contains the Best disease gene to the 10-cM region between markers D11S871 and PYGM. Marker D11S956 demonstrated no recombinants with Best disease in three large families and resulted in a lod score of 18.2. In addition, a polymorphism within the ROM1 gene also demonstrated no recombinants and resulted in a lod score of 10.0 in these same three families. We used a combination of SSCP analysis, denaturing gradient gel electrophoresis, and DNA sequencing to screen the entire coding region of the ROM1 gene in 11 different unrelated patients affected with Best disease. No nucleotide changes were found in the coding sequence of any affected patient, indicating that mutations within the coding sequence are unlikely to cause Best disease. Images Figure 2 PMID:8279475

  13. Refining the locus for Best vitelliform macular dystrophy and mutation analysis of the candidate gene ROM1.

    PubMed

    Nichols, B E; Bascom, R; Litt, M; McInnes, R; Sheffield, V C; Stone, E M

    1994-01-01

    Vitelliform macular dystrophy (Best disease) is an autosomal dominant macular dystrophy which shares important clinical features with age-related macular degeneration, the most common cause of legal blindness in the elderly. Unfortunately, our understanding and treatment for this common age-related disorder is limited. Discovery of the gene which causes Best disease has the potential to increase our understanding of the pathogenesis of all types of macular degeneration, including the common age-related form. Best disease has recently been mapped to chromosome 11q13. The photoreceptor-specific protein ROM1 has also been recently mapped to this location, and the ROM1 gene is a candidate gene for Best disease. Using highly polymorphic markers, we have narrowed the genetic region which contains the Best disease gene to the 10-cM region between markers D11S871 and PYGM. Marker D11S956 demonstrated no recombinants with Best disease in three large families and resulted in a lod score of 18.2. In addition, a polymorphism within the ROM1 gene also demonstrated no recombinants and resulted in a lod score of 10.0 in these same three families. We used a combination of SSCP analysis, denaturing gradient gel electrophoresis, and DNA sequencing to screen the entire coding region of the ROM1 gene in 11 different unrelated patients affected with Best disease. No nucleotide changes were found in the coding sequence of any affected patient, indicating that mutations within the coding sequence are unlikely to cause Best disease. PMID:8279475

  14. Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

    PubMed Central

    Lim, Jung-Hyun; Yang, Hyun-Jung; Jung, Ki-Hong; Yoo, Soo-Cheul; Paek, Nam-Chon

    2014-01-01

    Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture. PMID:24599000

  15. Genomic analysis of the Snn1 locus on wheat chromosome arm 1BS and the identification of candidate genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogen Stagonospora nodorum produces multiple host-selective toxins (HSTs) that induce cell death and necrosis in sensitive wheat genotypes. One such HST is SnTox1, which interacts with the host gene Snn1 on wheat chromosome arm 1BS to cause necrosis leading to disease susceptibility. Toward t...

  16. Coordinating expression of FLOWERING LOCUS T by DORMANCY ASSOCIATED MADS-BOX-like genes in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direc...

  17. Mapping of the Proteinase B Structural Gene PRB1, in SACCHAROMYCES CEREVISIAE and Identification of Nonsense Alleles within the Locus

    PubMed Central

    Zubenko, George S.; Mitchell, Aaron P.; Jones, Elizabeth W.

    1980-01-01

    We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection. PMID:7009321

  18. Identification of a Maize Locus that Modulates the Hypersensitive Defense Response, Using Mutant-Assisted Gene Identification and Characterization (MAGIC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypersensitive response (HR) is the most visible and arguably the most important defense response in plants, although the details of how it is controlled and executed remain patchy. In this paper a novel genetic technique called MAGIC (Mutant-Assisted Gene Identification and Characterization) i...

  19. Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic suppression of disease resistance is occasionally observed in hexaploid wheat or in its interspecific crosses. The phenotypic effects of genes moved to wheat from relatives with lower ploidy are often smaller than in the original sources, suggesting the presence of modifiers or partial inhib...

  20. Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)

    PubMed Central

    2012-01-01

    Background In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs. Results A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers linked to the LpDGL1, LpPh1 and LpPIPK1 genes were located close to plant size, leaf extension time and heading date-related QTLs, respectively, suggesting that these genes may be functionally associated with important agronomic traits in perennial ryegrass. Conclusions Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with desirable traits. PMID:23137269

  1. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs1[OPEN

    PubMed Central

    Xu, Meilan; Yamagishi, Noriko; Zhao, Chen; Takeshima, Ryoma; Kasai, Megumi; Watanabe, Satoshi; Kanazawa, Akira; Yoshikawa, Nobuyuki; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Photoperiodism is a rhythmic change of sensitivity to light, which helps plants to adjust flowering time according to seasonal changes in daylength and to adapt to growing conditions at various latitudes. To reveal the molecular basis of photoperiodism in soybean (Glycine max), a facultative short-day plant, we analyzed the transcriptional profiles of the maturity gene E1 family and two FLOWERING LOCUS T (FT) orthologs (FT2a and FT5a). E1, a repressor for FT2a and FT5a, and its two homologs, E1-like-a (E1La) and E1Lb, exhibited two peaks of expression in long days. Using two different approaches (experiments with transition between light and dark phases and night-break experiments), we revealed that the E1 family genes were expressed only during light periods and that their induction after dawn in long days required a period of light before dusk the previous day. In the cultivar Toyomusume, which lacks the E1 gene, virus-induced silencing of E1La and E1Lb up-regulated the expression of FT2a and FT5a and led to early flowering. Therefore, E1, E1La, and E1Lb function similarly in flowering. Regulation of E1 and E1L expression by light was under the control of E3 and E4, which encode phytochrome A proteins. Our data suggest that phytochrome A-mediated transcriptional induction of E1 and its homologs by light plays a critical role in photoperiodic induction of flowering in soybean. PMID:26134161

  2. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs.

    PubMed

    Xu, Meilan; Yamagishi, Noriko; Zhao, Chen; Takeshima, Ryoma; Kasai, Megumi; Watanabe, Satoshi; Kanazawa, Akira; Yoshikawa, Nobuyuki; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-08-01

    Photoperiodism is a rhythmic change of sensitivity to light, which helps plants to adjust flowering time according to seasonal changes in daylength and to adapt to growing conditions at various latitudes. To reveal the molecular basis of photoperiodism in soybean (Glycine max), a facultative short-day plant, we analyzed the transcriptional profiles of the maturity gene E1 family and two FLOWERING LOCUS T (FT) orthologs (FT2a and FT5a). E1, a repressor for FT2a and FT5a, and its two homologs, E1-like-a (E1La) and E1Lb, exhibited two peaks of expression in long days. Using two different approaches (experiments with transition between light and dark phases and night-break experiments), we revealed that the E1 family genes were expressed only during light periods and that their induction after dawn in long days required a period of light before dusk the previous day. In the cultivar Toyomusume, which lacks the E1 gene, virus-induced silencing of E1La and E1Lb up-regulated the expression of FT2a and FT5a and led to early flowering. Therefore, E1, E1La, and E1Lb function similarly in flowering. Regulation of E1 and E1L expression by light was under the control of E3 and E4, which encode phytochrome A proteins. Our data suggest that phytochrome A-mediated transcriptional induction of E1 and its homologs by light plays a critical role in photoperiodic induction of flowering in soybean. PMID:26134161

  3. Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata.

    PubMed

    Solaiman, Daniel K Y; Ashby, Richard D; Licciardello, Grazia; Catara, Vittoria

    2008-02-01

    The complete sequence of the pha locus responsible for the biosynthesis of poly(hydroxyalkanoates) (PHAs) in Pseudomonas corrugata 388 was determined. As with the other known pseudomonad pha gene loci, the one in P. corrugata 388 also consists of phaC1 (1,680 bps; PHA synthase 1), phaZ (858 bp; PHA depolymerase) and phaC2 (1,683 bp; PHA synthase 2) genes. A BLAST search showed that the nucleotide sequences of these genes and the amino-acid sequences of their respective gene products are homologous to those of P. corrugata CFBP5454 and P. mediterranea CFBP5447. A putative intrinsic transcription terminator consisting of a dyad symmetry (24 bp; Delta G = -41.8 kcals) that precedes a stretch of dA residues was located in the phaC1-phaZ intergenic region. P. corrugata mutant-clones XI 32-1 and XI 32-4 were constructed in which this intergenic region was replaced with a selectable kanamycin-resistance gene. These mutant clones when grown on oleic acid for 48 h showed 4.7-to 7.0-fold increases of phaC1 and phaC2 relative expression in comparison to the initial inoculants, whereas the parental strain showed only 1.2- to 1.4-fold increases. Furthermore, in comparison to parental P. corrugata with only a few large PHA inclusion bodies, the mutants grown on oleic acid produce numerous smaller PHA granules that line the periphery of the cells. With glucose as a substrate, XI 32-1 and XI 32-4 clones produce mcl-PHA with a high content (26-31 mol%) of the mono-unsaturated 3-hydroxydodecenoate as a repeat-unit monomer. Our results show for the first time the effects of the phaC1-phaZ intergenic region on the substrate-dependent temporal expression of phaC1 and phaC2 genes, the repeat-unit composition of mcl-PHA, and the morphology of the PHA granules. PMID:17987331

  4. Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes

    PubMed Central

    Dhar, Shilpa S.; Wong-Riley, Margaret T. T.

    2009-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Regions high in neuronal activity, especially of the glutamatergic type, have high levels of cytochrome c oxidase (COX). Perturbations in neuronal activity affect the expressions of COX and glutamatergic N-methyl-D-aspartate receptor subunit 1 (NR1). The present study sought to test our hypothesis that the coupling extends to the transcriptional level, whereby NR1 and possibly other NR subunits and COX are co-regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), which regulates all COX subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutations, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Grin 1 (NR1), Grin 2b (NR2b) and COX subunit genes, but not of Grin2a and Grin3a genes. These transcripts were up-regulated by KCl and down-regulated by TTX in cultured primary neurons. However, silencing of NRF-1 with small interference RNA blocked the up-regulation of Grin1, Grin2b, and COX induced by KCl, and over-expression of NRF-1 rescued these transcripts that were suppressed by TTX. NRF-1 binding sites on Grin1 and Grin2b genes are also highly conserved among mice, rats, and humans. Thus, NRF-1 is an essential transcription factor critical in the co-regulation of NR1, NR2b, and COX, and coupling exists at the transcriptional level to ensure coordinated expressions of proteins important for synaptic transmission and energy metabolism. PMID:19144849

  5. Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa

    NASA Technical Reports Server (NTRS)

    Yamada, Atsuko; Martindale, Mark Q.

    2002-01-01

    Ctenophores are thoroughly modern animals whose ancestors are derived from a separate evolutionary branch than that of other eumetazoans. Their major longitudinal body axis is the oral-aboral axis. An apical sense organ, called the apical organ, is located at the aboral pole and contains a highly innervated statocyst and photodetecting cells. The apical organ integrates sensory information and controls the locomotory apparatus of ctenophores, the eight longitudinal rows of ctene/comb plates. In an effort to understand the developmental and evolutionary organization of axial properties of ctenophores we have isolated a forkhead gene from the Brain Factor 1 (BF-1) family. This gene, ctenoBF-1, is the first full-length nuclear gene reported from ctenophores. This makes ctenophores the most basal metazoan (to date) known to express definitive forkhead class transcription factors. Orthologs of BF-1 in vertebrates, Drosophila, and Caenorhabditis elegans are expressed in anterior neural structures. Surprisingly, in situ hybridizations with ctenoBF-1 antisense riboprobes show that this gene is not expressed in the apical organ of ctenophores. CtenoBF-1 is expressed prior to first cleavage. Transcripts become localized to the aboral pole by the 8-cell stage and are inherited by ectodermal micromeres generated from this region at the 16- and 32-cell stages. Expression in subsets of these cells persists and is seen around the edge of the blastopore (presumptive mouth) and in distinct ectodermal regions along the tentacular poles. Following gastrulation, stomodeal expression begins to fade and intense staining becomes restricted to two distinct domains in each tentacular feeding apparatus. We suggest that the apical organ is not homologous to the brain of bilaterians but that the oral pole of ctenophores corresponds to the anterior pole of bilaterian animals.

  6. Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Niemann-Pick C1-like 1 protein (NPC1L1) plays a critical role in intestinal cholesterol absorption. Our objective was to examine whether five variants (-133A>G, -18A>C, L272L, V1296V, and U3_28650A>G) at the NPC1L1 gene have effects on lipid levels, prevalence, and incidence of coronary heart diseas...

  7. Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus.

    PubMed

    Wang, Yong Sheng; He, Xiaoning; Du, Yue; Su, Jianmin; Gao, Mingqing; Ma, Yefei; Hua, Song; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2015-09-01

    This study aimed to assess the effects of the intracellular pathogen resistance 1 (Ipr1) transgene on preventing infection of Mycobacterium bovis in cattle. A specific expression vector for the Ipr1 gene was constructed and inserted in the genome between surfactant protein A and methionine adenosyltransferase I of bovine fetal fibroblasts. After SCNT, cleavage (86.9% vs. 87.4%, P > 0.05) and blastocyst developmental rates (34.6% vs. 33.5%, P > 0.05) were similar between transgenic and nontransgenic bovine fetal fibroblasts. Four surviving and one dead Ipr1-transgenic female cattle were produced by transfer of the SCNT blastocysts. Polymerase chain reaction and Southern blot analyses confirmed that the Ipr1 transgene of the cattle was located at the expected site. Inserting Ipr1 gene did not affect the expression of the surrounding genes. Main death modality of M bovis-infected peripheral blood mononuclear cells (PBMCs) derived from Ipr1-transgenic cattle was apoptosis, whereas that of PBMCs from control cattle was necrosis. In addition, the number of colony-forming units in PBMCs of Ipr1-transgenic cattle was significantly lower than that of the control cattle (P < 0.05). The finding that expression of Ipr1 transgene in PBMCs significantly increased anti-M bovis activity suggested breeding anti-M bovis cattle population by the transgenic SCNT technique could be a feasible strategy. PMID:25998271

  8. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    SciTech Connect

    Nanko, S.; Fukuda, R.; Hattori, M.

    1994-09-15

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. The LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.

  9. 2-Amino-N6-hydroxyadenine induces gene/point mutations and multiple-locus mutations, but not multilocus deletion mutations, in the ad-3 region of a two-component heterokaryon of Neurospora crassa.

    PubMed

    de Serres, F J; Brockman, H E; Overton, L K

    1991-08-01

    The mutagenicity of 2-amino-N6-hydroxyadenine (AHA) has been studied in Neurospora crassa by treating a two-component heterokaryon (H-12) and recovering specific-locus mutations induced in the ad-3 region. This assay system permits the identification of ad-3A and/or ad-3B mutants resulting from gene/point mutations, multilocus deletion mutations, and multiple-locus mutations of various genotypes, involving one or both loci. Genetic characterization of the ad-3 mutants recovered from experiments with AHA in H-12 shows that 98.9% (270/273) of the ad-3 mutants are gene/point mutations (ad-3R), 1.1% (3/270) are unknowns, and none is a multilocus deletion mutation (ad-3IR). Among the gene/point mutations, 3.3% (9/273) are multiple-locus mutations (gene/point mutations with a closely-linked recessive lethal mutation [ad-3R + RLCL]). Another 25.3% (69/273) are multiple-locus mutations with a recessive lethal mutation located elsewhere in the genome [ad-3R + RL]. Heterokaryon tests for allelic complementation among the ad-3BR mutants showed that 90.8% (139/153) of the mutants were complementing, and 20.3% (31/153) were leaky. In addition, 32.5% (38/117) of the ad-3AR mutants were leaky. These data are consistent with the hypothesis that AHA produces specific-locus mutations in the ad-3 region of N. crassa by base-pair substitution. The data from the present experiments are compared with the data for 2-aminopurine (2AP)-induced ad-3 mutants in H-12 (de Serres and Brockman, 1991). Whereas, 2AP is a weak mutagen in H-12, AHA is extremely potent (Brockman et al., 1987). In contrast with 2AP, AHA induces ad-3 mutants exclusively by gene/point mutation in H-12. We conclude that whereas AHA induces ad-3 mutants predominantly by AT to GC base-pair transitions, 2AP induces ad-3 mutants by a wide variety of mechanisms including: (1) AT to GC and GC to AT base-pair transitions, (2) frameshift mutations, (3) other, as yet unidentified, intragenic alterations, (4) small multilocus

  10. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes

    PubMed Central

    Barton, Anne; Eyre, Steve; Ke, Xiayi; Hinks, Anne; Bowes, John; Flynn, Edward; Martin, Paul; Wilson, Anthony G.; Morgan, Ann W.; Emery, Paul; Steer, Sophia; Hocking, Lynne J.; Reid, David M.; Harrison, Pille; Wordsworth, Paul; Thomson, Wendy; Worthington, Jane

    2009-01-01

    The concept of susceptibility genes common to different autoimmune diseases is now firmly established with previous studies demonstrating overlap of loci conferring susceptibility to type 1 diabetes (T1D) with both Coeliac disease and multiple sclerosis. Rheumatoid arthritis (RA) is an archetypal autoimmune disease and we, therefore, targeted putative T1D susceptibility loci for genotyping in UK RA cases and unrelated controls. A novel RA susceptibility locus at AFF3 was identified with convincing evidence for association in a combined sample cohort of 6819 RA cases and 12 650 controls [OR 1.12 95% confidence intervals (CI) 1.07–1.17, P = 2.8 × 10−7]. Association of two previously described loci (CTLA-4 and 4q27) with RA was also replicated (OR 0.87, 95% CI 0.82–0.94, P = 1.1 × 10−4 and OR 0.86, 95% CI 0.79–0.94, P = 5.4 × 10−4, respectively). These findings take the number of established RA susceptibility loci to 13, only one of which has not been associated with other autoimmune diseases. PMID:19359276

  11. Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE1[OPEN

    PubMed Central

    Andrés, Fernando; Romera-Branchat, Maida; Martínez-Gallegos, Rafael; Patel, Vipul; Schneeberger, Korbinian; Jang, Seonghoe; Altmüller, Janine; Nürnberg, Peter; Coupland, George

    2015-01-01

    Flowers form on the flanks of the shoot apical meristem (SAM) in response to environmental and endogenous cues. In Arabidopsis (Arabidopsis thaliana), the photoperiodic pathway acts through FLOWERING LOCUS T (FT) to promote floral induction in response to day length. A complex between FT and the basic leucine-zipper transcription factor FD is proposed to form in the SAM, leading to activation of APETALA1 and LEAFY and thereby promoting floral meristem identity. We identified mutations that suppress FT function and recovered a new allele of the homeodomain transcription factor PENNYWISE (PNY). Genetic and molecular analyses showed that ectopic expression of BLADE-ON-PETIOLE1 (BOP1) and BOP2, which encode transcriptional coactivators, in the SAM during vegetative development, confers the late flowering of pny mutants. In wild-type plants, BOP1 and BOP2 are expressed in lateral organs close to boundaries of the SAM, whereas in pny mutants, their expression occurs in the SAM. This ectopic expression lowers FD mRNA levels, reducing responsiveness to FT and impairing activation of APETALA1 and LEAFY. We show that PNY binds to the promoters of BOP1 and BOP2, repressing their transcription. These results demonstrate a direct role for PNY in defining the spatial expression patterns of boundary genes and the significance of this process for floral induction by FT. PMID:26417007

  12. Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE.

    PubMed

    Andrés, Fernando; Romera-Branchat, Maida; Martínez-Gallegos, Rafael; Patel, Vipul; Schneeberger, Korbinian; Jang, Seonghoe; Altmüller, Janine; Nürnberg, Peter; Coupland, George

    2015-11-01

    Flowers form on the flanks of the shoot apical meristem (SAM) in response to environmental and endogenous cues. In Arabidopsis (Arabidopsis thaliana), the photoperiodic pathway acts through FLOWERING LOCUS T (FT) to promote floral induction in response to day length. A complex between FT and the basic leucine-zipper transcription factor FD is proposed to form in the SAM, leading to activation of APETALA1 and LEAFY and thereby promoting floral meristem identity. We identified mutations that suppress FT function and recovered a new allele of the homeodomain transcription factor PENNYWISE (PNY). Genetic and molecular analyses showed that ectopic expression of BLADE-ON-PETIOLE1 (BOP1) and BOP2, which encode transcriptional coactivators, in the SAM during vegetative development, confers the late flowering of pny mutants. In wild-type plants, BOP1 and BOP2 are expressed in lateral organs close to boundaries of the SAM, whereas in pny mutants, their expression occurs in the SAM. This ectopic expression lowers FD mRNA levels, reducing responsiveness to FT and impairing activation of APETALA1 and LEAFY. We show that PNY binds to the promoters of BOP1 and BOP2, repressing their transcription. These results demonstrate a direct role for PNY in defining the spatial expression patterns of boundary genes and the significance of this process for floral induction by FT. PMID:26417007

  13. Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus.

    PubMed Central

    McGrew, M J; Bogdanova, N; Hasegawa, K; Hughes, S H; Kitsis, R N; Rosenthal, N

    1996-01-01

    The myosin light-chain 1/3 locus (MLC1/3) is regulated by two promoters and a downstream enhancer element which produce two protein isoforms in fast skeletal muscle at distinct stages of mouse embryogenesis. We have analyzed the expression of transcripts from the internal MLC3 promoter and determined that it is also expressed in the atria of the heart. Expression from the MLC3 promoter in these striated muscle lineages is differentially regulated during development. In transgenic mice, the MLC3 promoter is responsible for cardiac-specific reporter gene expression while the downstream enhancer augments expression in skeletal muscle. Examination of the methylation status of endogenous and transgenic promoter and enhancer elements indicates that the internal promoter is not regulated in a manner similar to that of the MLC1 promoter or the downstream enhancer. A GATA protein consensus sequence in the proximal MLC3 promoter but not the MLC1 promoter binds with high affinity to GATA-4, a cardiac muscle- and gut-specific transcription factor. Mutation of either the MEF2 or GATA motifs in the MLC3 promoter attenuates its activity in both heart and skeletal muscles, demonstrating that MLC3 expression in these two diverse muscle types is dependent on common regulatory elements. PMID:8754853

  14. Genetic mapping of a locus for multiple ephiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene

    SciTech Connect

    Briggs, M.D.; Choi, HiChang; Warman, M.L.; Loughlin, J.A.; Wordsworth, P.; Sykes, B.C.; Irven, C.M.M.; Smith, M.; Wynne-Davies, R.; Lipson, M.H.

    1994-10-01

    Multiple epiphyseal dysplasia (MED) is a dominantly inherited chondrodysplasia characterized by mild short stature and early-onset osteoarthrosis. Some forms of MED clinically resemble another chondrodysplasia phenotype, the mild form of pseudoachondroplasia (PSACH). On the basis of their clinical similarities as well as similar ultra-structural and biochemical features in cartilage from some patients, it has been proposed that MED and PSACH belong to a single bone-dysplasia family. Recently, both mild and severe PSACH as well as a form of MED have been linked to the same interval on chromosome 19, suggesting that they may be allelic disorders. Linkage studies with the chromosome 19 markers were carried out in a large family with MED and excluded the previously identified interval. Using this family, we have identified a MED locus on the short arm of chromosome 1, in a region containing the gene (COL9A2) that encodes the {alpha}2 chain of type IX collagen, a structural component of the cartilage extracellular matrix. 39 refs., 3 figs., 3 tabs.

  15. DYT6 dystonia: review of the literature and creation of the UMD Locus-Specific Database (LSDB) for mutations in the THAP1 gene.

    PubMed

    Blanchard, Arnaud; Ea, Vuthy; Roubertie, Agathe; Martin, Mélanie; Coquart, Coline; Claustres, Mireille; Béroud, Christophe; Collod-Béroud, Gwenaëlle

    2011-11-01

    By family-based screening, first Fuchs and then many other authors showed that mutations in THAP1 (THAP [thanatos-associated protein] domain-containing, apoptosis-associated protein 1) account for a substantial proportion of familial, early-onset, nonfocal, primary dystonia cases (DYT6 dystonia). THAP1 is the first transcriptional factor involved in primary dystonia and the hypothesis of a transcriptional deregulation, which was primarily proposed for the X-linked dystonia-parkinsonism (DYT3 dystonia), provided thus a new way to investigate the possible mechanism underlying the development of dystonic movements. Currently, 56 families present with a THAP1 mutation; however, no genotype/phenotype relationship has been found. Therefore, we carried out a systematic review of the literature on the THAP1 gene to colligate all reported patients with a specific THAP1 mutation and the associated clinical signs in order to describe the broad phenotypic continuum of this disorder. To facilitate the comparison of the identified mutations, we created a Locus-Specific Database (UMD-THAP1 LSDB) available at http://www.umd.be/THAP1/. Currently, the database lists 56 probands and 43 relatives with the associated clinical phenotype when available. The identification of a larger number of THAP1 mutations and collection of high-quality clinical information for each described mutation through international collaborative effort will help investigating the structure-function and genotype-phenotype correlations in DYT6 dystonia. PMID:21793105

  16. A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12

    SciTech Connect

    Kwon, B.S.; Chintamaneni, C.; Kobayashi, Y.; Kim, K.K. ); Kozak, C.A. ); Copeland, N.G.; Gilbert, D.J.; Jenkins, N. ); Barton, D.; Francke, U. )

    1991-10-15

    Melanocytes preferentially express an mRNA species, Pmel 17, whose protein product cross-reacts with anti-tyrosinase antibodies and whose expression correlates with the melanin content. The authors have now analyzed the deduced protein structure and mapped its chromosomal location in mouse and human. The amino acid sequence deduced from the nucleotide sequence of the Pmel 17 cDNA showed that the protein is composed of 645 amino acids with a molecular weight of 68,600. The Pmel 17 protein contains a putative leader sequence and a potential membrane anchor segment, which indicates that this may be a membrane-associated protein in melanocytes. The deduced protein contains five potential N-glycosylation sites and relatively high levels of serine and threonine. Three repeats of a 26-amino acid motif appear in the middle of the molecule. The human Pmel 17 gene, designated D12S53E, maps to chromosome 12, region 12pter-q21; and the mouse homologue, designated D12S53Eh, maps to the distal region of mouse chromosome 10, a region also known to carry the coat color locus si (silver).

  17. Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    PubMed Central

    2011-01-01

    Background Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the PaSSU intron in the rRNA small subunit gene of Phialophora americana isolate Wang 1046 is capable of in vitro splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme. Findings Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of Phialophora isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of Phialophora, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, Porpidia crustulata and Arthonia lapidicola. Conclusions The small putative group I introns in Phialophora have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses. PMID:21781325

  18. Isolation of a novel paraquat-inducible (pqi) gene regulated by the soxRS locus in Escherichia coli.

    PubMed Central

    Koh, Y S; Roe, J H

    1995-01-01

    We have isolated promoters inducible by paraquat, a superoxide radical-generating agent, from Escherichia coli, using promoter-probing plasmid pJAC4 (Y.S. Koh and J.H. Roe, Korean J. Microbiol. 31:267-273, 1993). One promoter clone pqi-5 (pqi denotes paraquat-inducible gene) was mapped at 21.8 min on the E. coli chromosome by using the Kohara phage library. We constructed an operon fusion of the lacZ gene with the pqi-5 promoter to monitor the expression of the gene in the single-copy state. LacZ expression was induced about 7- to 13-fold by 77 to 780 microM paraquat. Other known superoxide generators such as menadione, phenazine methosulfate, and plumbagin also induced the expression of beta-galactosidase in this fusion strain. On the other hand, no significant induction was observed with treatment with hydrogen peroxide, ethanol, and heat shock. Induction of beta-galactosidase was significantly reduced by introducing a delta sox-8::cat or soxS3::Tn10 mutation into the fusion strain, indicating that pqi-5 is a member of the soxRS regulon. A DNA fragment containing the pqi-5 promoter was cloned and sequenced from the Kohara phage E2E5. We identified two pqi-5 open reading frames (ORFs); ORF-A encodes a predicted protein of 342 amino acids, and ORF-B is truncated at the cloning site. The transcription start site from the pqi-5 promoter was determined by primer extension and S1 nuclease protection analyses. Northern (RNA) and S1 analyses indicated that there are two kinds of pqi-5 transcript; one covers ORF-A only and the other covers ORF-A and possibly also ORF-B. PMID:7751275

  19. Identification of Soat1 as a quantitative trait locus gene on mouse chromosome 1 contributing to hyperlipidemia.

    PubMed

    Lu, Zongji; Yuan, Zuobiao; Miyoshi, Toru; Wang, Qian; Su, Zhiguang; Chang, Catherine C; Shi, Weibin

    2011-01-01

    We previously identified two closely linked quantitative trait loci (QTL) on distal chromosome 1 contributing to major variations in plasma cholesterol and triglyceride levels in an intercross derived from C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. Soat1, encoding sterol o-acyltransferase 1, is a functional candidate gene located underneath the proximal linkage peak. We sequenced the coding region of Soat1 and identified four single nucleotide polymorphisms (SNPs) between B6 and C3H mice. Two of the SNPs resulted in amino-acid substitutions (Ile147Val and His205Tyr). Functional assay revealed an increased enzyme activity of Soat1 in peritoneal macrophages of C3H mice relative to those of B6 mice despite comparable protein expression levels. Allelic variants of Soat1 were associated with variations in plasma cholesterol and triglyceride levels in an intercross between B6.apoE(-/-) and C3H.apoE(-/-) mice. Inheritance of the C3H allele resulted in significantly higher plasma lipid levels than inheritance of the B6 allele. Soat1 variants were also significantly linked to major variations in plasma esterified cholesterol levels but not with free cholesterol levels. Trangenic expression of C3H Soat1 in B6.apoE(-/-) mice resulted in elevations of plasma cholesterol and triglyceride levels. These results indicate that Soat1 is a QTL gene contributing to hyperlipidemia. PMID:22022387

  20. Molecular Genetics of the Drosophila Melanogaster Ovo Locus, a Gene Required for Sex Determination of Germline Cells

    PubMed Central

    Garfinkel, M. D.; Lohe, A. R.; Mahowald, A. P.

    1992-01-01

    The Drosophila melanogaster ovo gene is required for survival and differentiation of female germline cells, apparently playing a role in germline sex determination. We recovered 60 kb of genomic DNA from its genetic location at 4E1,2 on the X chromosome. A transcription unit coding for an apparently female-specific germline-dependent 5-kb poly(A)(+) RNA size class is located substantially in a 7-kb region, within which three DNA-detectable lesions for mutations that inactivate the ovo function are located at two sites &4 kb apart. The breakpoint of a deficiency that removes the neighboring lethal complementation group shavenbaby (svb) but leaves the ovo function intact maps &5 kb to the molecular left of the leftmost ovo mutant site. A class of mutations that inactivates both the svb function and the ovo function affects genomic DNA between the two ovo sites. Sequences required for the two genetic functions are partly overlapping. In spite of this overlap, P element-mediated gene transfer of a 10-kb genomic DNA segment containing the 5-kb poly(A)(+) RNA transcription unit rescues the female sterility phenotypes of ovo mutations, but not the svb lethality. PMID:1349870

  1. The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis[W

    PubMed Central

    Jégu, Teddy; Latrasse, David; Delarue, Marianne; Hirt, Heribert; Domenichini, Séverine; Ariel, Federico; Crespi, Martin; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2014-01-01

    SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus. PMID:24510722

  2. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells.

    PubMed

    Solé, Anna; Ciudad, Carlos J; Chasin, Lawrence A; Noé, Véronique

    2016-06-15

    Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells. PMID:27063945

  3. Post-Zygotic and Inter-Individual Structural Genetic Variation in a Presumptive Enhancer Element of the Locus between the IL10Rβ and IFNAR1 Genes

    PubMed Central

    Prakash, Kancherla Reddy; Przerada, Szymon; Paprocka, Hanna; Zywicka, Anna; Westerman, Maxwell P.; Pedersen, Nancy L.; O'Hanlon, Terrance P.; Rider, Lisa G.; Miller, Frederick W.; Srutek, Ewa; Jankowski, Michal; Zegarski, Wojciech; Piotrowski, Arkadiusz; Absher, Devin; Dumanski, Jan P.

    2013-01-01

    Although historically considered as junk-DNA, tandemly repeated sequence motifs can affect human phenotype. For example, variable number tandem repeats (VNTR) with embedded enhancers have been shown to regulate gene transcription. The post-zygotic variation is the presence of genetically distinct populations of cells in an individual derived from a single zygote, and this is an understudied aspect of genome biology. We report somatically variable VNTR with sequence properties of an enhancer, located upstream of IFNAR1. Initially, SNP genotyping of 63 monozygotic twin pairs and multiple tissues from 21 breast cancer patients suggested a frequent post-zygotic mosaicism. The VNTR displayed a repeated 32 bp core motif in the center of the repeat, which was flanked by similar variable motifs. A total of 14 alleles were characterized based on combinations of segments, which showed post-zygotic and inter-individual variation, with up to 6 alleles in a single subject. Somatic variation occurred in ∼24% of cases. In this hypervariable region, we found a clustering of transcription factor binding sites with strongest sequence similarity to mouse Foxg1 transcription factor binding motif. This study describes a VNTR with sequence properties of an enhancer that displays post-zygotic and inter-individual genetic variation. This element is within a locus containing four related cytokine receptors: IFNAR2, IL10Rβ, IFNAR1 and IFNGR2, and we hypothesize that it might function in transcriptional regulation of several genes in this cluster. Our findings add another level of complexity to the variation among VNTR-based enhancers. Further work may unveil the normal function of this VNTR in transcriptional control and its possible involvement in diseases connected with these receptors, such as autoimmune conditions and cancer. PMID:24023707

  4. Allelic Variation in the Perennial Ryegrass FLOWERING LOCUS T Gene Is Associated with Changes in Flowering Time across a Range of Populations1[W

    PubMed Central

    Skøt, Leif; Sanderson, Ruth; Thomas, Ann; Skøt, Kirsten; Thorogood, Danny; Latypova, Galina; Asp, Torben; Armstead, Ian

    2011-01-01

    The Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) gene and its orthologs in other plant species (e.g. rice [Oryza sativa] OsFTL2/Hd3a) have an established role in the photoperiodic induction of flowering response. The genomic and phenotypic variations associated with the perennial ryegrass (Lolium perenne) ortholog of FT, designated LpFT3, was assessed in a diverse collection of nine European germplasm populations, which together constituted an association panel of 864 plants. Sequencing and genotyping of a series of amplicons derived from the nine populations, containing the complete exon and intron sequences as well as 5′ and 3′ noncoding sequences of LpFT3, identified a total of seven haplotypes. Genotyping assays designed to detect the genomic variation showed that three haplotypes were present in approximately equal proportions and represented 84% of the total, with a fourth representing a further 11%. Of the three major haplotypes, two were predicted to code for identical protein products and the third contained two amino acid substitutions. Association analysis using either a mixed model with a relationship matrix to correct for population structure and relatedness or structured association with further correction using genomic control indicated significant associations between LpFT3 and variation in flowering time. These associations were corroborated in a validation population segregating for the same major alleles. The most “diagnostic” region of genomic variation was situated 5′ of the coding sequence. Analysis of this region identified that the interhaplotype variation was closely associated with sequence motifs that were apparently conserved in the 5′ region of orthologs of LpFT3 from other plant species. These may represent cis-regulatory elements involved in influencing the expression of this gene. PMID:21115808

  5. The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6

    SciTech Connect

    Forbes, C.A.; Shellam, G.R.; Scalzo, A.A.

    1997-05-01

    Natural killer (NK) cells play important roles in controlling tumor cells and against a range of infectious organisms. Recent studies of mouse NK cell surface receptors, which may be involved in the specificity of NK cells, have shown that many of these molecules are encoded by the Ly49 and Ly55 (Nkrp1) multigene families that map to distal mouse chromosome 6. Also mapping to this NK cell gene complex (NKC) is the resistance locus, Cmv1, which is involved in genetically determined resistance to murine cytomegalovirus (MCMV). The aim of this study was to localize Cmv1 more precisely in relation to other NKC loci by generating a high-resolution genetic map of the region. We have analyzed 1250 backcross mice comprising panels of 700 (BALB/c x C57BL/6J)F{sub 1} X BALB/c and 550 (A/J X C57BL/6J)F{sub 1} X A/J progeny. A total of 25 polymorphic genes or microsatellite markers were analyzed over a region of 10 map units from D6Mit134 to D6Mit59. The Cmv1 phenotypes of mice recombinant in this interval were tested by infection with MCMV. The results obtained indicate that the functionally important NKC region is a tightly linked cluster of loci spanning at least 0.4 map units. Furthermore, Cmv1 maps distal to, but very closely linked to, the Ly49 multigene family (< 0.2 map units), suggesting that MCMV resistance may be conferred by MHC class I-specific NK cell receptors. 49 refs., 4 figs., 1 tab.

  6. Genetic recombination at the human RH locus: A family study of the red-cell Evans phenotype reveals a transfer of exons 2-6 from the RHD to the RHCE gene

    SciTech Connect

    Huang, C.H.; Chen, Y.; Reid, M.; Ghosh, S.

    1996-10-01

    The human RH locus appears to consist of two structural genes, D and CE, which map on the short arm p34-36 of chromosome 1 and specify a most complex system of blood-group genetic polymorphisms. Here we describe a family study of the Evans (also known as {open_quotes}D..{open_quotes}) phenotype, a codominant trait associated with both qualitative and quantitative changes in D-antigen expression. A cataract-causing mutation was also inherited in this family and was apparently cotransmitted with Evans, suggesting a chromosomal linkage of these two otherwise unrelated traits. Southern blot analysis and allele-specific PCR showed the linkage of Evans with a SphI RFLP marker and the presence of a hybrid gene in the RH locus. To delineate the pattern of gene expression, the composition and structure of Rh-polypeptide transcripts were characterized by reverse transcriptase-PCR and nucleotide sequencing. This resulted in the identification of a novel Rh transcript expressed only in the Evans-positive erythroid cells. Sequence analysis showed that the transcript maintained a normal open reading frame but occurred as a CE-D-CE composite in which exons 2-6 of the CE gene were replaced by the homologous counterpart of the D gene. This hybrid gene was predicted to encode a CE-D-CE fusion protein whose surface expression correlates with the Evans phenotype. The mode and consequence of such a recombination event suggest the occurrence, in the RH locus, of a segmental DNA transfer via the mechanism of gene conversion. 31 refs., 6 figs., 1 tab.

  7. Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9

    PubMed Central

    Simino, Jeannette; Sung, Yun Ju; Kume, Rezart; Schwander, Karen; Rao, D. C.

    2013-01-01

    Alcohol consumption is a known risk factor for hypertension, with recent candidate studies implicating gene-alcohol interactions in blood pressure (BP) regulation. We used 6882 (predominantly) Caucasian participants aged 20–80 years from the Framingham SNP Health Association Resource (SHARe) to perform a genome-wide analysis of SNP-alcohol interactions on BP traits. We used a two-step approach in the ABEL suite to examine genetic interactions with three alcohol measures (ounces of alcohol consumed per week, drinks consumed per week, and the number of days drinking alcohol per week) on four BP traits [systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure]. In the first step, we fit a linear mixed model of each BP trait onto age, sex, BMI, and antihypertensive medication while accounting for the phenotypic correlation among relatives. In the second step, we conducted 1 degree-of-freedom (df) score tests of the SNP main effect, alcohol main effect, and SNP-alcohol interaction using the maximum likelihood estimates (MLE) of the parameters from the first step. We then calculated the joint 2 df score test of the SNP main effect and SNP-alcohol interaction using MixABEL. The effect of SNP rs10826334 (near SLC16A9) on SBP was significantly modulated by both the number of alcoholic drinks and the ounces of alcohol consumed per week (p-values of 1.27E-08 and 3.92E-08, respectively). Each copy of the G-allele decreased SBP by 3.79 mmHg in those consuming 14 drinks per week vs. a 0.461 mmHg decrease in non-drinkers. Index SNPs in 20 other loci exhibited suggestive (p-value ≤ 1E-06) associations with BP traits by the 1 df interaction test or joint 2 df test, including 3 rare variants, one low-frequency variant, and SNPs near/in genes ESRRG, FAM179A, CRIPT-SOCS5, KAT2B, ADCY2, GLI3, ZNF716, SLIT1, PDE3A, KERA-LUM, RNF219-AS1, CLEC3A, FBXO15, and IGSF5. SNP-alcohol interactions may enhance discovery of novel variants with large effects that can be

  8. Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus

    PubMed Central

    Inoue, Yukiko U.; Inoue, Takayoshi

    2016-01-01

    Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen ‘rare’ genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse ‘common’ variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility. PMID:27503586

  9. Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus.

    PubMed

    Inoue, Yukiko U; Inoue, Takayoshi

    2016-01-01

    Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen 'rare' genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse 'common' variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility. PMID:27503586

  10. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine.

    PubMed

    Feechan, Angela; Anderson, Claire; Torregrosa, Laurent; Jermakow, Angelica; Mestre, Pere; Wiedemann-Merdinoglu, Sabine; Merdinoglu, Didier; Walker, Amanda R; Cadle-Davidson, Lance; Reisch, Bruce; Aubourg, Sebastien; Bentahar, Nadia; Shrestha, Bipna; Bouquet, Alain; Adam-Blondon, Anne-Françoise; Thomas, Mark R; Dry, Ian B

    2013-11-01

    The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor. PMID:24033846

  11. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm.

    PubMed

    Shorinola, Oluwaseyi; Bird, Nicholas; Simmonds, James; Berry, Simon; Henriksson, Tina; Jack, Peter; Werner, Peter; Gerjets, Tanja; Scholefield, Duncan; Balcárková, Barbara; Valárik, Miroslav; Holdsworth, M J; Flintham, John; Uauy, Cristobal

    2016-07-01

    The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties. PMID:27217549

  12. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young Holstein calves.

    PubMed

    Wang, P; Drackley, J K; Stamey-Lanier, J A; Keisler, D; Loor, J J

    2014-01-01

    The molecular mechanisms by which level of nutrient intake enhances skeletal muscle growth in young ruminants are not fully understood. We examined mammalian target of rapamycin (mTOR), insulin, and insulin-like growth factor-1 (IGF-1) gene network expression in semitendinosus muscle tissue of young male Holstein calves fed a conventional milk replacer plus conventional starter (CON) or an enhanced milk replacer plus high-protein starter (ENH) for 5 wk followed by a conventional starter or a high-protein starter until 10 wk of age. Feeding ENH led to greater concentration of plasma IGF-1 and leptin and greater carcass protein and fat mass throughout the study. Despite the greater plasma IGF-1 and protein mass at wk 5, calves fed ENH had lower expression of IGF1R, INSR, and RPS6KB1 but greater expression of IRS1 and PDPK1 in muscle tissue. Except for IGF1R expression, which did not differ at wk 10, these differences persisted at wk 10, suggesting a long-term effect of greater nutrient intake on physiological and molecular mechanisms. Components of mTOR complex (mTORC)1 and mTORC2 (RICTOR and RPTOR) and FOXO1 expression decreased by wk 10 regardless of diet. Overall, the present data revealed that greater nutrient intake throughout the milk-fed and early postweaning phase alters body mass composition partly by altering hormonal and molecular profiles of genes associated with glucose and amino acid signaling. Those networks may play a crucial role in coordinating neonatal muscle growth and metabolism in response to level of nutrient intake. PMID:24210480

  13. Transcriptional coupling of synaptic transmission and energy metabolism: Role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons

    PubMed Central

    Dhar, Shilpa S.; Liang, Huan Ling; Wong-Riley, Margaret T. T.

    2009-01-01

    SUMMARY Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts downregulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level. PMID:19615412

  14. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.

    PubMed Central

    Gong, Q H; McDowell, J C; Dean, A

    1996-01-01

    Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free

  15. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    PubMed Central

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  16. The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1

    SciTech Connect

    Bianchetti, Christopher M.; Blouin, George C.; Bitto, Eduard; Olson, John S.; Phillips, Jr., George N.

    2010-10-19

    The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166-residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme-bound forms were solved to near atomic resolution of 1.32 {angstrom} and 1.36 {angstrom}, respectively. The rate of hemin loss from the protein was measured to be 3.6 x 10{sup -5} s{sup -1}, demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10-stranded {beta}-barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid-mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k{prime}{sub CO} = 0.23 {micro}M{sup -1} s{sup -1}, k{sub CO} = 0.050 s{sup -1}) and NO binding to the ferric form (k{prime}{sub NO} = 1.2 {micro}M{sup -1} s{sup -1}, k{sub NO} = 73 s{sup -1}). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis.

  17. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction.

    PubMed

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in 'Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed. PMID:25330324

  18. Expression Profiling of FLOWERING LOCUS T-Like Gene in Alternate Bearing ‘Hass' Avocado Trees Suggests a Role for PaFT in Avocado Flower Induction

    PubMed Central

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in ‘Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed. PMID:25330324

  19. Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse

    PubMed Central

    Mrug, Michal; Zhou, Juling; Yang, Chaozhe; Aronow, Bruce J.; Cui, Xiangqin; Schoeb, Trenton R.; Siegal, Gene P.; Yoder, Bradley K; Guay-Woodford, Lisa M.

    2015-01-01

    We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd) of the B6(Cg)-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD). Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3). In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST)-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area; p<0.001). The relative strength of these effects allowed the use of recombinants from these crosses to fine map the Mpkd2 effects to a <14 Mbp interval that contains 92 RefSeq sequences. One of them corresponds to the previously described positional Mpkd2 candidate gene, Kif12. Among the positional Mpkd2 candidates, only expression of Kif12 correlates strongly with the expression pattern of Cys1 across multiple anatomical nephron structures and developmental time points. Also, we demonstrate that Kif12 encodes a primary cilium-associated protein. Together, these data provide genetic and informatic validation of the predicted renal cystic disease-modulating effects of Mpkd1-3 loci and implicate Kif12 as the candidate locus for Mpkd2. PMID:26295839

  20. Four-locus phylogeny of Fusarium avenaceum and related species and their species-specific identification based on partial phosphate permease gene sequences.

    PubMed

    Stakheev, Alexander A; Khairulina, Dina R; Zavriev, Sergey K

    2016-05-16

    The fungus Fusarium avenaceum and its closest relatives are responsible for contamination of agricultural plants and their products by mycotoxins such as enniatins and moniliformin. Precise identification of mycotoxin producers is necessary for estimation of the accumulation risk of those compounds and for preventing the consumption of highly contaminated products. Nucleic acids amplification-based techniques proved to be the most rapid and reliable approach for pathogen diagnostics and identification. In this study partial phosphate permease gene (PHO) sequences were determined for Fusarium avenaceum (including one isolate identified as F. arthrosporioides), F. tricinctum, F. acuminatum and F. torulosum. Phylogenetic analysis of 40 isolates of those species from different climates and geographical regions of Russia and some neighboring countries based on sequences of PHO, translation elongation factor 1 alpha (TEF1α), beta-tubulin (β-TUB), enniatin synthetase (Esyn1) genes and combined data set demonstrated that the PHO gene possesses the highest rate of variability among them and can be considered as an informative marker for phylogenetic studies of these species. According to the combined data set phylogeny, the isolates of each species formed clusters with a high bootstrap support. Analysis of PHO sequences revealed a high intraspecific variability of F. avenaceum: there were 5 independent clusters on the dendrogram, including one cluster which was closer to F. torulosum than to other F. avenaceum isolates. Variable sites in PHO sequences have been used for the design of species-specific primers and a fluorescent hydrolysis probe. The specificity of the assay was shown for DNA samples extracted from 68 isolates of 23 Fusarium species. Quantitative PCR approach was applied to estimate the contamination rate of 17 naturally infected oat and barley samples, previously characterized by microbiological procedures. PMID:26974249

  1. Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is prone to strawbreaker foot rot (eye- spot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventri- cosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown t...

  2. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39.

    PubMed Central

    Gudmundsson, G H; Magnusson, K P; Chowdhary, B P; Johansson, M; Andersson, L; Boman, H G

    1995-01-01

    PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13. Images Fig. 2 Fig. 3 PMID:7624374

  3. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.)

    PubMed Central

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L.; Saccomanno, Benedetta; Bentley, Alison R.; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95–96%) and predicted protein (96–97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated

  4. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.).

    PubMed

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L; Saccomanno, Benedetta; Bentley, Alison R; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95-96%) and predicted protein (96-97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated under

  5. Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone-insulin-like growth factor 1 axis pathways.

    PubMed

    Osorio, J S; Ji, P; Drackley, J K; Luchini, D; Loor, J J

    2014-12-01

    Peripartal cows likely require greater amounts of Met not only at the tissue and cell level for methylation reactions but also for milk protein synthesis after calving. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n=12), or CON plus Smartamine M (SM; Adisseo Inc.; n=13). The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (dry matter) of feed for MS or SM. Liver tissue was collected on -10, 7, and 21 d for transcriptome profiling of genes associated with Met and glutathione metabolism as well as components of the inflammation, oxidative stress, growth hormone/insulin-like growth factor-1 axis, and DNA methylation pathways. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. The S-adenosylhomocysteine hydrolase (SAHH) gene was the most abundant among all genes evaluated, with overall greater expression in Met-supplemented cows than CON, and in SM than MS. Expression of Met adenosyltransferase 1A (MAT1A) was greater in Met-supplemented cows than CON by 21 d postpartum. A greater overall expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) occurred in Met-supplemented cows than CON. In contrast, the expression of glutathione synthase (GSS); glutamate-cysteine ligase, catalytic subunit (GCLC); and superoxide dismutase 1, cytosolic (SOD1) was lower in Met-supplemented cows than CON. A greater overall expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) and greater upregulation of haptoglobin (HP) on d 7 occurred in Met-supplemented cows than CON. Expression of DNA cytosine-5-methyltransferase 3 alpha (DNMT3A) was greater but expression of DNMT1 was lower in Met-supplemented cows than CON. The response

  6. Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple.

    PubMed

    Zhao, Cheng; Mao, Ke; You, Chun-Xiang; Zhao, Xian-Yan; Wang, Shu-Hui; Li, Yuan-Yuan; Hao, Yu-Jin

    2016-06-01

    UVR8 (UV Resistance Locus 8) is an ultraviolet-B (UV-B; 280-315nm) light receptor that is involved in regulating many aspects of plant growth and development. UV-B irradiation can increase the development of flower and fruit coloration in many fruit trees, such as grape, pear and apple. Previous investigations of the structure and functions of UVR8 in plants have largely focused on Arabidopsis. Here, we isolated the UVR8 gene from apple (Malus domestica) and analyzed its function in transgenic Arabidopsis. Genomic and protein sequence analysis showed that MdUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis, including the conserved seven-bladed β-propeller, the C27 region, the 3 "GWRHT" motifs and crucial amino-acid residues (14 Trps, 2 Args). A point mutation prediction and three-dimensional structural analysis of MdUVR8 indicated that it has a similar structure to AtUVR8 and that the crucial residues are also important in MdUVR8. In terms of transcript levels, MdUVR8 expression was up-regulated by UV-B light, which suggests that its expression follows a 24-h circadian rhythm. Using heterologous expression of MdUVR8 in both uvr8-1 mutant and wild-type (WT) Arabidopsis, we found that MdUVR8 regulates hypocotyl elongation and gene expression under UV-B light. These data provide functional evidence for a role of MdUVR8 in controlling photomorphogenesis under UV-B light and indicate that the function of UVR8 is conserved between Arabidopsis and apple. Furthermore, we examined the interaction between MdUVR8 and MdCOP1 (constitutive photomorphogenic1) using a yeast two-hybrid assay and a co-immunoprecipitation assay. This interaction provides a direction for investigating the regulatory mechanisms of the UV-B-light pathway in apple. PMID:27095405

  7. Multiple-Locus Departures from Panmictic Equilibrium within and between Village Gene Pools of Amerindian Tribes at Different Stages of Agglomeration

    PubMed Central

    Smouse, Peter E.; Neel, James V.; Liu, Wanda

    1983-01-01

    A comparative analysis of departures from multiple-locus Hardy-Weinberg equilibrium is presented for a set of four tribal Indian groups (the Yanomama, Makiritare, Wapishana and Ticuna) from the lowlands of South America. These tribes span a range of agglomeration and acculturation from the most traditional, swidden horticulturalists to frontier townspeople. The small-group social organization typical of traditional horticulturalists leads to substantial departures from tribal panmixia, as manifested by the distribution of multiple-locus genotypes both within and between villages. Within villages, the departures from single-locus Hardy-Weinberg equilibrium are small and nonsignificant, but the departures from gametic equilibrium (independence of loci) are substantial, even for the unlinked loci we have used to characterize these populations. The departures from single-locus homogeneity across villages are also substantial. One of the normal concomitants of increasing acculturation in this setting is an increase in agglomeration. As agglomeration increases, the departures from multiple-locus panmixia decrease, a process that can be very rapid. We discuss both the shifting balance theory of evolution and punctuated evolutionary rates in light of the small group social organization that must have obtained throughout most of human evolution. PMID:6862182

  8. Genetic relatedness of Clostridium difficile isolates from various origins determined by triple-locus sequence analysis based on toxin regulatory genes tcdC, tcdR, and cdtR.

    PubMed

    Bouvet, Philippe J M; Popoff, Michel R

    2008-11-01

    A triple-locus nucleotide sequence analysis based on toxin regulatory genes tcdC, tcdR and cdtR was initiated to assess the sequence variability of these genes among Clostridium difficile isolates and to study the genetic relatedness between isolates. A preliminary investigation of the variability of the tcdC gene was done with 57 clinical and veterinary isolates. Twenty-three isolates representing nine main clusters were selected for tcdC, tcdR, and cdtR analysis. The numbers of alleles found for tcdC, tcdR and cdtR were nine, six, and five, respectively. All strains possessed the cdtR gene except toxin A-negative toxin B-positive variants. All but one binary toxin CDT-positive isolate harbored a deletion (>1 bp) in the tcdC gene. The combined analyses of the three genes allowed us to distinguish five lineages correlated with the different types of deletion in tcdC, i.e., 18 bp (associated or not with a deletion at position 117), 36 bp, 39 bp, and 54 bp, and with the wild-type tcdC (no deletion). The tcdR and tcdC genes, though located within the same pathogenicity locus, were found to have evolved separately. Coevolution of the three genes was noted only with strains harboring a 39-bp or a 54-bp deletion in tcdC that formed two homogeneous, separate divergent clusters. Our study supported the existence of the known clones (PCR ribotype 027 isolates and toxin A-negative toxin B-positive C. difficile variants) and evidence for clonality of isolates with a 39-bp deletion (toxinotype V, PCR ribotype 078) that are frequently isolated worldwide from human infections and from food animals. PMID:18832125

  9. Accuracy and coverage assessment of Oryctolagus cuniculus (Rabbit) Genes Encoding Immunoglobulins in the Whole Genome Sequence Assembly (OryCun2.0) and Localization of the IGH Locus to Chromosome 20

    PubMed Central

    Gertz, E. Michael; Schäffer, Alejandro A.; Agarwala, Richa; Bonnet-Garnier, Amélie; Rogel-Gaillard, Claire; Hayes, Hélène; Mage, Rose G.

    2013-01-01

    We report analyses of genes encoding immunoglobulin heavy and light chains in the rabbit 6.51x whole genome assembly. This OryCun2.0 assembly confirms previous mapping of the duplicated IGK1 and IGK2 loci to chromosome 2 and the IGL lambda light chain locus to chromosome 21. The most frequently rearranged and expressed IGHV1 that is closest to IG DH and IGHJ genes encodes rabbit VHa allotypes. The partially inbred Thorbecke strain rabbit used for whole-genome sequencing was homozygous at the IGK but heterozygous with the IGHV1a1 allele in one of 79 IGHV-containing unplaced scaffolds and IGHV1a2, IGHM, IGHG and IGHE sequences in another. Some IGKV, IGLV and IGHA genes are also in other unplaced scaffolds. By fluorescence in situ hybridization, we assigned the previously unmapped IGH locus to the q-telomeric region of rabbit chromosome 20. An approximately 3 Mb segment of human chromosome 14 including IGH genes predicted to map to this telomeric region based on synteny analysis could not be located on assembled chromosome 20. Unplaced scaffold chrUn0053 contains some of the genes that comparative mapping predicts to be missing. We identified discrepancies between previous targeted studies and the OryCun2.0 assembly and some new BAC clones with IGH sequences that can guide other studies to further sequence and improve the OryCun2.0 assembly. Complete knowledge of gene sequences encoding variable regions of rabbit heavy, kappa and lambda chains will lead to better understanding of how and why rabbits produce antibodies of high specificity and affinity through gene conversion and somatic hypermutation. PMID:23925440

  10. Correlation between genotypic diversity, lipooligosaccharide gene locus class variation and Caco-2 invasion potential of Campylobacter jejuni from human and chicken meat origin: a contribution to virulotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni stemmed from its potential role in post-infection paralytic disorders. In this study we present PCR screening of five LOS locus classes (A, B, C, D, and E), for a collection of 117 C. jejuni strains from chicken m...

  11. Species-specific RFLP pattern in the Heat Shock Protein26 gene (Hsp26): a single-locus tool for species identification and experimental testing of habitat-induced isolation in the New World Artemia species.

    PubMed

    Beristain, P; Gajardo, G; Bossier, P

    2010-01-01

    The brine shrimp Artemia (Crustacea, Branchiopoda), a paradigmatic inhabitant of hypersaline lakes, has molecular features to survive under stressful conditions, such as the p26 heat shock protein. We report the RFLP fingerprinting pattern (four restriction enzymes) of a 217 bp fragment of exon2 of the Hsp26 gene in six Artemia franciscana and four Artemia persimilis populations, the most genetically divergent Artemia species co-occurring in latitudinal extremes of Chile. The species-specific RFLP pattern observed is a simple and cost-effective single-locus tool for species delimitation and experimental testing the habitat-induced isolation barrier between them. PMID:21565017

  12. Proline-Rich Tyrosine Kinase 2 Mediates Gonadotropin-Releasing Hormone Signaling to a Specific Extracellularly Regulated Kinase-Sensitive Transcriptional Locus in the Luteinizing Hormone β-Subunit Gene

    PubMed Central

    Maudsley, Stuart; Naor, Zvi; Bonfil, David; Davidson, Lindsay; Karali, Dimitra; Pawson, Adam J.; Larder, Rachel; Pope, Caroline; Nelson, Nancy; Millar, Robert P.; Brown, Pamela

    2007-01-01

    G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH β-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH2-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH β-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH2-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH β-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression. PMID:17327421

  13. Gene by Environment Interaction Linking the Chromosome 15q25 Locus With Cigarette Consumption and Lung Cancer Susceptibility--Are African American Affected Differently?

    PubMed

    Hopkins, R J; Young, R P

    2016-02-01

    The majority of lung cancer cases result from complex interactions between smoking exposure, genetic susceptibility and a person's immune response to chronic inflammation or lung remodelling. Epidemiological studies confirm that susceptibility to developing chronic obstructive pulmonary disease (COPD), especially emphysema, is also closely linked to lung cancer susceptibility. Genetic epidemiology studies have consistently reported associations between the chromosome 15q25 locus with lung cancer and COPD. In addition, studies show this locus to be independently associated with cigarette consumption and nicotine addiction in a dose-response manner, primarily at lower levels of cigarette consumption. Studies that measure both cigarette consumption and lung function, together with extensive genotype analysis, will be needed to further unravel these complex relationships. PMID:27014742

  14. Novel paternity testing by distinguishing parental alleles at a VNTR locus in the differentially methylated region upstream of the human H19 gene.

    PubMed

    Naito, Emiko; Dewa, Koji; Fukuda, Masaaki; Sumi, Hirokazu; Wakabayashi, Yui-ichi; Umetsu, Kazuo; Yuasa, Isao; Yamanouchi, Haruo

    2003-11-01

    Conventional PCR-based genotyping is useful for forensic testing but cannot be used to determine parental origins of alleles in DNA specimens. Here we describe a novel method of combined conventional genotyping and PIA typing (parentally imprinted allele typing) at a minisatellite region upstream from the H19 locus. The PIA typing uses two sets of primers and DNA digested with methylation-sensitive Hha I enzyme. The first amplification produces only the methylated fragment of paternal H19 allele, and the second detects polymorphism in the minisatellite. Hence, this distinguishes paternal and maternal alleles by difference in the DNA methylation. Furthermore, the polymorphism in this polymorphic locus was examined using 199 unrelated Japanese and 171 unrelated Germans, their polymorphism information content being 0.671 and 0.705, respectively. Feasibility of this typing is demonstrated for six families, and the usefulness is shown by application to paternity testing. PMID:14640270

  15. Itpr3 Is responsible for the mouse tufted (tf) locus.

    PubMed

    Ellis, Hillary T; Tordoff, Michael G; Parker, M Rockwell

    2013-03-01

    The tf (tufted) locus is responsible for a classic phenotype of hair loss and regrowth in mice. It is a characteristic of the BTBR strain. Here, we use a combination of positional cloning methods and complementation mapping to identify Itpr3, the inositol triphosphate receptor type 3, as the gene responsible for the tf locus. PMID:23100490

  16. Physical structure of an endopolygalacturonase locus in peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The melting flesh trait and the freestone trait are genetically linked to the same single locus in peach. Several studies have associated an endopolygalacturonase gene with this locus, either a deletion of endopolygalacturonase associated with the non-melting/clingstone phenotype or changes in the ...

  17. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  18. Genomewide Search for Type 2 Diabetes–Susceptibility Genes in French Whites: Evidence for a Novel Susceptibility Locus for Early-Onset Diabetes on Chromosome 3q27-qter and Independent Replication of a Type 2–Diabetes Locus on Chromosome 1q21–q24

    PubMed Central

    Vionnet, Nathalie; Hani, El Habib; Dupont, Sophie; Gallina, Sophie; Francke, Stephan; Dotte, Sébastien; De Matos, Frédérique; Durand, Emmanuelle; Leprêtre, Frédéric; Lecoeur, Cécile; Gallina, Philippe; Zekiri, Lirije; Dina, Christian; Froguel, Philippe

    2000-01-01

    Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes–related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes—using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers—were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index<27 kg/m2) or early age at diagnosis (<45 years). In a second step, high-resolution genetic mapping (∼2 cM) was performed in regions on chromosomes 1 and 3 loci showing the strongest linkage to diabetic traits. We found evidence for linkage with diabetes or GI diagnosed at age <45 years in 92 affected sib pairs from 55 families at the D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P=.000004), supported by the MLB statistic (MLB-LOD=3.43, P=.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2–D1S484 (MLS = 3.04, P=.00018; MLB-LOD=2.99, P=.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results (a) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and (b) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of <7 cM. PMID:11067779

  19. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L. , encodes a functional serine/threonine kinase

    SciTech Connect

    Stein, J.C.; Nasrallah, J.B. )

    1993-03-01

    To investigate the catalytic properties of the Brassica oleracea S-locus receptor kinase (SRK), the authors have expressed the domain that is homologous to protein kinases as a fusion protein in Escherichia coli. Following in vivo labeling of cultures with [sup 32]P-labeled inorganic phosphate, they observed phosphorylation of the fusion protein on serine and threonine, but not on tyrosine. In contrast, labeling was not observed when lysine-524, a residue conserved among all protein kinases, was mutated to arginine, thus confirmed that SRK phosphorylation was the result of intrinsic serine/threonine kinase activity. 26 refs., 3 figs.

  20. Correlation between Genotypic Diversity, Lipooligosaccharide Gene Locus Class Variation, and Caco-2 Cell Invasion Potential of Campylobacter jejuni Isolates from Chicken Meat and Humans: Contribution to Virulotyping▿

    PubMed Central

    Habib, Ihab; Louwen, Rogier; Uyttendaele, Mieke; Houf, Kurt; Vandenberg, Olivier; Nieuwenhuis, Edward E.; Miller, William G.; van Belkum, Alex; De Zutter, Lieven

    2009-01-01

    Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40). We correlated LOS classes with clonal complexes (CC) assigned by multilocus sequence typing (MLST). Finally, we evaluated the invasion potential of a panel of 52 of these C. jejuni isolates for Caco-2 cells. PCR screening showed that 87.1% (101/116) of isolates could be assigned to LOS class A, B, C, D, or E. Concordance between LOS classes and certain MLST CC was revealed. The majority (85.7% [24/28]) of C. jejuni isolates grouped in CC-21 were shown to express LOS locus class C. The invasion potential of C. jejuni isolates possessing sialylated LOS (n = 29; classes A, B, and C) for Caco-2 cells was significantly higher (P < 0.0001) than that of C. jejuni isolates with nonsialylated LOS (n = 23; classes D and E). There was no significant difference in invasiveness between chicken meat and human isolates. However, C. jejuni isolates assigned to CC-206 (correlated with LOS class B) or CC-21 (correlated with LOS class C) showed statistically significantly higher levels of invasion than isolates from other CC. Correlation between LOS classes and CC was further confirmed by pulsed-field gel electrophoresis. The present study reveals a correlation between genotypic diversity and LOS locus classes of C. jejuni. We showed that simple PCR screening for C. jejuni LOS classes could reliably predict certain MLST CC and add to the interpretation of molecular-typing results. Our study corroborates that sialylation of LOS is advantageous for C. jejuni fitness and virulence in different hosts. The modulation of cell surface carbohydrate structure could enhance the ability of C. jejuni to adapt to or survive

  1. Genome-wide study refines the quantitative trait locus for number of ribs in a Large White × Minzhu intercross pig population and reveals a new candidate gene.

    PubMed

    Zhang, Long-Chao; Yue, Jing-Wei; Pu, Lei; Wang, Li-Gang; Liu, Xin; Liang, Jing; Yan, Hua; Zhao, Ke-Bin; Li, Na; Shi, Hui-Bi; Zhang, Yue-Bo; Wang, Li-Xian

    2016-10-01

    In China, sparerib is one of the most valuable parts of the pork carcass. As a result, candidate gene mining for number of ribs has become an interesting study focus. To examine the genetic basis for this major trait, we genotyped 596 individuals from an F2 Large White × Minzhu intercross pig population using the PorcineSNP60 Genotyping BeadChip. The genome-wide association study identified a locus for number of ribs in a 2.38-Mb region on Sus scrofa chromosome 7 (SSC7 of Sus scrofa genome assembly, Sscrofa10.2). We identified the top significant SNP ASGA0035536, which explained 16.51 % of the phenotypic variance. A previously reported candidate causal mutation (g.19034 A>C) in vertebrae development-associated gene VRTN explained 8.79 % of the phenotypic variation on number of ribs and had a much lower effect than ASGA0035536. Haplotype sharing analysis in F1 boars localized the rib number QTL to a 951-kb interval on SSC7. This interval encompassed 17 annotated genes in Sscrofa10.2, including the previously reported VRTN candidate gene. Of the 17 candidate genes, LTBP2, which encodes a latent transforming growth factor beta binding protein, was previously reported to indirectly regulate the activity of growth differentiation factor Gdf11, which has been shown to increase the number of ribs in knock-out mice. Thus, we propose LTBP2 as a good new candidate gene for number of ribs in the pig population. This finding advances our understanding of the genetic architecture of rib number in pigs. PMID:27307002

  2. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination.

    PubMed

    Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong

    2016-06-01

    Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast gro