Science.gov

Sample records for factor-2 enhances proliferation

  1. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  2. MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator Cited2.

    PubMed

    Clark, Amanda L; Naya, Francisco J

    2015-09-18

    Understanding cell cycle regulation in postmitotic cardiomyocytes may lead to new therapeutic approaches to regenerate damaged cardiac tissue. We have demonstrated previously that microRNAs encoded by the Gtl2-Dio3 noncoding RNA locus function downstream of the MEF2A transcription factor in skeletal muscle regeneration. We have also reported expression of these miRNAs in the heart. Here we investigated the role of two Gtl2-Dio3 miRNAs, miR-410 and miR-495, in cardiac muscle. Overexpression of miR-410 and miR-495 robustly stimulated cardiomyocyte DNA synthesis and proliferation. Interestingly, unlike our findings in skeletal muscle, these miRNAs did not modulate the activity of the WNT signaling pathway. Instead, these miRNAs targeted Cited2, a coactivator required for proper cardiac development. Consistent with miR-410 and miR-495 overexpression, siRNA knockdown of Cited2 in neonatal cardiomyocytes resulted in robust proliferation. This phenotype was associated with reduced expression of Cdkn1c/p57/Kip2, a cell cycle inhibitor, and increased expression of VEGFA, a growth factor with proliferation-promoting effects. Therefore, miR-410 and miR-495 are among a growing number of miRNAs that have the ability to potently stimulate neonatal cardiomyocyte proliferation. PMID:26240138

  3. Smad ubiquitination regulatory factor 2 expression is enhanced in hypertrophic scar fibroblasts from burned children

    PubMed Central

    Finnerty, Celeste C; He, Jing; Herndon, David N

    2013-01-01

    Transforming growth factor-β1 (TGF-β1) plays a key role in hypertrophic scar formation. A lot of studies have shown that TGF-β1 stimulates fibroblast proliferation, collagen production, and α-smooth muscle actin (α-SMA) expression, inhibits matrix degradation and eventually leads to scar formation. Smad proteins are important intracellular mediators of TGF-β1 signaling, and Smad ubiquitination regulatory factor 2 (Smurf2), an ubiquitin ligase for Smads, plays critical roles in the regulation of TGF-β1/Smad signaling. It was reported that Smurf2 was abnormally expressed during the process of liver fibrosis and lung fibrosis. Hypertrophic scarring is a fibroproliferative disorder of the dermis that occurs following wounding. However, little is known about the expression of Smurf2 in hypertrophic scarring. We hypothesized that TGF-β1 signaling cannot be disrupted after wound epithelialization probably due to abnormal expression of Smurf2 in hypertrophic scar fibroblasts. In the present study, we found that hypertrophic scar fibroblasts exhibited increased Smurf2 protein and mRNA levels compared with normal fibroblasts, and the expression of Smurf2 gradually increased in hypertrophic scar fibroblasts after TGF-β1 stimulation. Furthermore, we transfected Smurf2 siRNA into hypertrophic scar fibroblasts, and we found that silencing the expression of Smurf2 in hypertrophic scar fibroblasts dramatically reduced TGF-β1 production, inhibited TGF-β1-induced α-SMA expression and inhibited TGF-β1-induced collagen I synthesis. Our results suggest that the enhanced expression of Smurf2 is involved in the progression of hypertrophic scarring. PMID:21920670

  4. [Enhanced control of proliferation in telomerized cells].

    PubMed

    Egorov, E E; Moldaver, M V; Vishniakova, Kh S; Terekhov, S M; Dashinimaev, E B; Cheglakov, I B; Toropygin, I Iu; Iarygin, K N; Chumakov, P M; Korochkin, L I; Antonova, G A; Rybalkina, E Iu; Saburina, I N; Burnaevskiĭ, N S; Zelenin, A V

    2007-01-01

    Clones of telomerized fibroblasts of adult human skin have earlier been obtained. It was shown that despite their fast growth in mass cultures, these cells poorly form colonies. Conditioned medium, antioxidants, and reduced partial oxygen pressure enhanced their colony formation, but not to the level characteristic of the initial cells. The conditioned medium of telomerized cells enhanced colony formation to a much greater extent than that of the initial cells. A study of proteome of the telomerized fibroblasts has revealed changes in the activities of tens of genes. A general trend consists in weakening and increased lability of the cytoskeleton and in activation of the mechanisms controlling protein degradation. However, these changes are not very pronounced. During the formation of immortal telomerized cells, selection takes place, which appears to determine changes in the expression of some genes. It was proposed that a decrease in the capacity of telomerized cells for colony formation is due to increased requirements of these cells to cell-cell contacts. The rate of cell growth reached that characteristic of mass cultures only in the largest colonies. In this respect, the telomerized fibroblasts resembled stem cells: they are capable of self-maintenance, but "escape" to differentiation in the absence of the corresponding microenvironment (niche), which is represented by other fibroblasts. Non-dividing cells in the test of colony formation should be regarded as differentiated cells, since they have no features of degradation, preserve their viability, actively move, grow, phagocytized debris, etc. It was also shown that telomerization did not prevent differentiation of myoblasts and human neural stem cells. Thus, the results obtained suggest the existence of normal mechanisms underlying the regulation of proliferation in the telomerized cells, which opens possibilities of their use in cell therapy, especially in the case of autotransplantation to senior people

  5. [Effects of Plasmid Fibroblast Growth Factor-2 Magnetic Chitosan Gelatin Microspheres on Proliferation and Differentiation of Mesenchymal Stem Cells].

    PubMed

    Ding, Xingpo; Li, Ming; Cao, Yujiang; Yang, Qiong; He, Tongchuan; Luo, Cong; Li, Haibing; Bi, Yang

    2015-10-01

    The purpose of this study is to investigate the effect of superparamagnetic chitosan FGF-2 gelatin microspheres (SPCFGM) on the proliferation and differentiation of mouse mesenchymal stem cells. The superparamagnetic iron oxide chitosan nanoparticles (SPIOCNs) were synthesized by means of chemical co-precipitation, combined with FGF-2. Then The SPCFGM and superparamagnetic chitosan gelatin microspheres (SPCGM) were prepared by means of crosslinking-emulsion. The properties of SPCFGM and SPIONs were measured by laser diffraction particle size analyser and transmisson electron microscopy. The SPCFGM were measured for drug loading capacity, encapsulation efficiency and release pharmaceutical properties in vitro. The C3H10 cells were grouped according to the different ingredients being added to the culture medium: SPCFGM group, SPCGM group and DMEM as control group. Cell apoptosis was analyzed by DAPI staining. The protein expression level of FGF-2 was determined by Western blot. The proliferation activity and cell cycle phase of C3H10 were examined by CCK8 and flow cytometry. The results demonstrated that both of the SPIOCNs and SPCFGM were exhibited structure of spherical crystallization with a diameter of (25 ± 9) nm and (140 ± 12) μm, respectively. There were no apoptosis cells in the three group cells. Both the protein expression level of FGF-2 and cell proliferation activity increased significantly in the SPCFGM group cells (P < 0.05). The SPCFGM is successfully constructed and it can controlled-release FGF-2, remained the biological activity of FGF-2, which can promote proliferation activity of C3H10 cells, and are non-toxic to the cell. PMID:26964316

  6. Myocyte-specific enhancer binding factor 2A expression is downregulated during temporal lobe epilepsy.

    PubMed

    Huang, Yunyi; Wu, Xuling; Guo, Jing; Yuan, Jinxian

    2016-09-01

    Myocyte-specific enhancer binding factor 2A (MEF2A) is a multifunctional nuclear protein that regulates synaptogenesis, dendritic morphogenesis, and neuronal survival. This study aimed to investigate the expression pattern of MEF2A in epileptogenic processes. MEF2A expression was detected in 20 temporal neocortex tissue samples from patients with temporal lobe epilepsy (TLE) and 20 samples from trauma patients without epilepsy by real-time quantitative polymerase chain reaction, immunohistochemistry, double-label immunofluorescent staining, and western blot analysis. In addition, the expression patterns of MEF2A in the hippocampus and adjacent cortex of a lithium-pilocarpine-induced TLE rat model and control rats were examined. MEF2A was found to be expressed in the nuclei of neurons but not in the dendrites of neurons and astrocytes. MEF2A expression was significantly downregulated in temporal neocortex of humans and rats with TLE compared to the control groups. In addition, in the lithium-pilocarpine-induced TLE model, MEF2A expression dynamically decreased within 2 months. Taken together, these data suggest that MEF2A is involved in the pathogenesis of TLE. PMID:26439092

  7. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma.

    PubMed

    Cheng, Shaobing; Jiang, Xu; Ding, Chaofeng; Du, Chengli; Owusu-Ansah, Kwabena Gyabaah; Weng, Xiaoyu; Hu, Wendi; Peng, Chuanhui; Lv, Zhen; Tong, Rongliang; Xiao, Heng; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2016-01-01

    Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC. PMID:27556459

  8. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma

    PubMed Central

    Cheng, Shaobing; Jiang, Xu; Ding, Chaofeng; Du, Chengli; Owusu-Ansah, Kwabena Gyabaah; Weng, Xiaoyu; Hu, Wendi; Peng, Chuanhui; Lv, Zhen; Tong, Rongliang; Xiao, Heng; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2016-01-01

    Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2’s potential role as a therapeutic target in HCC. PMID:27556459

  9. RNA Interference of Myocyte Enhancer Factor 2A Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zhao, Yu-xia; Liu, Gang-qiong; Zhang, Jin-ying

    2015-01-01

    Objective Myocyte enhancer factor-2A (MEF 2A) has been shown to be involved in atherosclerotic lesion development, but its role in preexisting lesions is still unclear. In the present study we aim to assess the role of MEF 2A in the progression of pre-existing atherosclerosis. Methods Eighty apolipoprotein E-deficient mice (APOE KO) were randomly allocated to control, scramble and MEF 2A RNA interference (RNAi) groups, and constrictive collars were used to induce plaque formation. Six weeks after surgery, lentiviral shRNA construct was used to silence the expression of MEF 2A. Carotid plaques were harvested for analysis 4 weeks after viral vector transduction. Inflammatory gene expression in the plasma and carotid plaques was determined by using ELISAs and real-time RT-PCR. Results The expression level of MEF 2A was significantly reduced in plasma and plaque in the RNAi group, compared to the control and NC groups, whereas the expression level of pro-inflammatory cytokines was markedly increased. Silencing MEF 2A using lentiviral shRNA significantly reduced the plaque collagen content and fibrous cap thickness, as well as increased plaque area. However, silencing MEF 2A had no obvious effect on plaque lipid content. Conclusions Lentivirus-mediated MEF 2A shRNA accelerates inflammation and atherosclerosis in APOE KO mice, but has no effect on lipoprotein levels in plasma. PMID:25793529

  10. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  11. Enhancing VVER Annular Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    G. S. Chang

    2007-06-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. The merits of nuclear energy are the high-density energy, and low environmental impacts i.e. almost zero greenhouse gas emission. Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current LWR as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce the spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope 238Pu /Pu ratio. For future advanced nuclear systems, the minor actinides are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. In this paper, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. We concluded that the concept of MARA, involves the use of transuranic nuclides (237Np and/or 241Am), can not only drastically

  12. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells

    PubMed Central

    Hamurcu, Zuhal; Ashour, Ahmed; Kahraman, Nermin; Ozpolat, Bulent

    2016-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an emerging molecular target for cancer therapy, contributes to cancer proliferation, cell survival, tumorigenesis, and invasion, disease progression and drug resistance. Although eEF2K is highly up-regulated in various cancers, the mechanism of gene regulation has not been elucidated. In this study, we examined the role of Forkhead Box M1 (FOXM1) proto-oncogenic transcription factor in triple negative breast cancer (TNBC) cells and the regulation of eEF2K. We found that FOXM1 is highly upregulated in TNBC and its knockdown by RNA interference (siRNA) significantly inhibited eEF2K expression and suppressed cell proliferation, colony formation, migration, invasion and induced apoptotic cell death, recapitulating the effects of eEF2K inhibition. Knockdown of FOXM1 inhibited regulators of cell cycle, migration/invasion and survival, including cyclin D1, Src and MAPK-ERK signaling pathways, respectively. We also demonstrated that FOXM1 (1B and 1C isoforms) directly binds to and transcriptionally regulates eEF2K gene expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. Furthermore, in vivo inhibition of FOXM1 by liposomal siRNA-nanoparticles suppressed growth of MDA-MB-231 TNBC tumor xenografts in orthotopic models. In conclusion, our study provides the first evidence about the transcriptional regulation of eEF2K in TNBC and the role of FOXM1 in mediating breast cancer cell proliferation, survival, migration/invasion, progression and tumorgenesis and highlighting the potential of FOXM1/eEF2K axis as a molecular target in breast and other cancers. PMID:26918606

  13. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms

  14. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  15. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2008-07-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. To accomplish these goals, international cooperation is very important and public acceptance is crucial. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu /Pu. For future advanced nuclear systems, the minor actinides (MA) are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the

  16. Enhanced osteoblast proliferation and collagen gene expression by estradiol

    SciTech Connect

    Ernest, M.; Schmid, Ch.; Froesch, E.R. )

    1988-04-01

    Estrogens play a crucial role in the development of postmenopausal osteoporosis. However, the mechanism by which estrogens exert their effects on bone is unknown. To examine possible direct effects of 17{beta}-estradiol on bone-forming cells, the authors used pure rat osteoblast-like cells in vitro as a model. Osteoblast-like cells prepared from calvaria of newborn rats were cultured serum-free in methylcellulose-containing medium for 21 days. Osteoblast-like cells proliferate selectively into clonally derived cell clusters of spherical morphorlogy. 17{beta}-Estradiol at concentrations of 0.1 nM and 1 nM enhanced osteoblast-like cell proliferation by 41% and 68% above vehicle-treated controls. The biologically inactive stereoisomer 17{alpha}-estradiol (same concentrations) had no effect. Moreover, the antiestrogen tamoxifen abolished the stimulation of osteoblast-like cell proliferation by 17{beta}-estradiol. After 21 days of culture, RNA was prepared and analyzed in a dot-hybridization assay for the abundance of pro{alpha}1(I) collagen mRNA. Steady-state mRNA levels were increased in cultures treated with 17{beta}-estradiol in a dose-dependent manner with maximal stimulation at 1 nM and 10 nM. At the same concentrations, the percentage of synthesized protein (labeled by ({sup 3}H)proline pulse) that was digestible by collagenase was increased, indicating that 17{beta}-estradiol acts as pretranslational levels to enhance synthesis of bone collagen. These data show that the osteoblast is a direct target for 17{beta}-estradiol.

  17. Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor γ Essential for Resistance to Crescentic GN.

    PubMed

    Henique, Carole; Bollee, Guillaume; Lenoir, Olivia; Dhaun, Neeraj; Camus, Marine; Chipont, Anna; Flosseau, Kathleen; Mandet, Chantal; Yamamoto, Masayuki; Karras, Alexandre; Thervet, Eric; Bruneval, Patrick; Nochy, Dominique; Mesnard, Laurent; Tharaux, Pierre-Louis

    2016-01-01

    Necrotizing and crescentic rapidly progressive GN (RPGN) is a life-threatening syndrome characterized by a rapid loss of renal function. Evidence suggests that podocyte expression of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) may prevent podocyte injury, but the function of glomerular PPARγ in acute, severe inflammatory GN is unknown. Here, we observed marked loss of PPARγ abundance and transcriptional activity in glomerular podocytes in experimental RPGN. Blunted expression of PPARγ in podocyte nuclei was also found in kidneys from patients diagnosed with crescentic GN. Podocyte-specific Pparγ gene targeting accentuated glomerular damage, with increased urinary loss of albumin and severe kidney failure. Furthermore, a PPARγ gain-of-function approach achieved by systemic administration of thiazolidinedione (TZD) failed to prevent severe RPGN in mice with podocyte-specific Pparγ gene deficiency. In nuclear factor erythroid 2-related factor 2 (NRF2)-deficient mice, loss of podocyte PPARγ was observed at baseline. NRF2 deficiency markedly aggravated the course of RPGN, an effect that was partially prevented by TZD administration. Furthermore, delayed administration of TZD, initiated after the onset of RPGN, still alleviated the severity of experimental RPGN. These findings establish a requirement for the NRF2-PPARγ cascade in podocytes, and we suggest that these transcription factors have a role in augmenting the tolerance of glomeruli to severe immune-complex mediated injury. The NRF2-PPARγ pathway may be a therapeutic target for RPGN. PMID:25999406

  18. Rebamipide Delivered by Brushite Cement Enhances Osteoblast and Macrophage Proliferation

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Engqvist, Håkan; Karlsson Ott, Marjam

    2015-01-01

    Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurrs via non-fickian diffusion, with a rapid linear release of 9.70% ±0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ±7.4% at 1uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts. PMID:26023912

  19. Activating transcription factor 2 expression mediates cell proliferation and is associated with poor prognosis in human non-small cell lung carcinoma

    PubMed Central

    YOU, ZHENYU; ZHOU, YONG; GUO, YULING; CHEN, WENYAN; CHEN, SHAOQING; WANG, XIAOLANG

    2016-01-01

    Activating transcription factor 2 (ATF2) is a member of the cAMP response element binding protein family that heterodimerizes and activates other transcription factors involved in stress and DNA damage responses, growth, differentiation and apoptosis. ATF2 has been investigated as a potential carcinogenic biomarker in certain types of cancer, such as melanoma. However, its function and clinical significance in non-small cell lung cancer (NSCLC) has not been well studied. Therefore, the present study aimed to analyze the association between ATF2/phosphorylated (p)-ATF2 expression and NSCLC malignant behavior, and discuss its clinical significance. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression of ATF2 in NSCLC cell lines and fresh NSCLC tissue samples. In addition, immunohistochemistry (IHC) was performed to identify the location and expression of ATF2 and p-ATF2 (threonine 71) in paraffin-embedded sections of NSCLC and adjacent normal tissue. The results demonstrated that ATF2 was markedly overexpressed in the NSCLC cells and significantly overexpressed in the fresh NSCLC tissues compared with the control cells and samples (86 paraffin-embedded tissue sections), respectively (P<0.01). Further data demonstrated that ATF2 expression levels were significantly increased in tumor tissues compared to normal tissues and ATF2 was located in the cytoplasm and nucleus. ATF2 expression was closely associated with adverse clinical characteristics such as TNM stage (P=0.002), tumor size (P=0.018) and metastasis (P=0.027). In addition, nuclear p-ATF2 staining was positive in 65/86 samples of NSCLC. Furthermore, the Kaplan-Meier analysis indicated that patients with high levels of ATF2 and p-ATF2 expression had a significantly shorter overall survival compared with patients exhibiting a low expression (P<0.01 and P<0.05, respectively). Subsequent in vitro experiments revealed that cell growth decreased

  20. Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair.

    PubMed

    Chen, William C W; Lee, Brandon G; Park, Dae Woo; Kim, Kyobum; Chu, Hunghao; Kim, Kang; Huard, Johnny; Wang, Yadong

    2015-12-01

    Myocardial infarction (MI) causes myocardial necrosis, triggers chronic inflammatory responses, and leads to pathological remodeling. Controlled delivery of a combination of angiogenic and immunoregulatory proteins may be a promising therapeutic approach for MI. We investigated the bioactivity and therapeutic potential of an injectable, heparin-based coacervate co-delivering an angiogenic factor, fibroblast growth factor-2 (FGF2), and an anti-inflammatory cytokine, Interleukin-10 (IL-10) in a spatially and temporally controlled manner. Coacervate delivery of FGF2 and IL-10 preserved their bioactivities on cardiac stromal cell proliferation in vitro. Upon intramyocardial injection into a mouse MI model, echocardiography revealed that FGF2/IL-10 coacervate treated groups showed significantly improved long-term LV contractile function and ameliorated LV dilatation. FGF2/IL-10 coacervate substantially augmented LV myocardial elasticity. Additionally, FGF2/IL-10 coacervate notably enhanced long-term revascularization, especially at the infarct area. In addition, coacervate loaded with 500 ng FGF2 and 500 ng IL-10 significantly reduced LV fibrosis, considerably preserved infarct wall thickness, and markedly inhibited chronic inflammation at the infarct area. These results indicate that FGF2/IL-10 coacervate has notably greater therapeutic potential than coacervate containing only FGF2. Overall, our data suggest therapeutically synergistic effects of FGF-2/IL-10 coacervate, particularly coacervate with FGF2 and 500 ng IL-10, for the treatment of ischemic heart disease. PMID:26370927

  1. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. PMID:26041412

  2. The Positive Transcription Elongation Factor b Is an Essential Cofactor for the Activation of Transcription by Myocyte Enhancer Factor 2

    PubMed Central

    Nojima, Masanori; Huang, Yehong; Tyagi, Mudit; Kao, Hung-Ying; Fujinaga, Koh

    2014-01-01

    The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells. PMID:18662700

  3. Evidence for Fibroblast Growth Factor-2 as a Mediator of Amphetamine-Enhanced Motor Improvement following Stroke

    PubMed Central

    Wolf, William A.; Martin, Jody L.; Kartje, Gwendolyn L.; Farrer, Robert G.

    2014-01-01

    Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte

  4. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo. PMID:20075049

  5. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells

    PubMed Central

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N.

    2016-01-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  6. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    PubMed

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  7. MECHANISMS INVOLVED IN THE ENHANCED SUSCEPTIBILITY OF SENESCENT RATS TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA (PPARA), CELL PROLIFERATION AND OXIDATIVE STRESS

    EPA Science Inventory

    Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress

    Jihan A. Youssef1, Pierre Ammann2, B...

  8. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    SciTech Connect

    Zhang Dan; Hu Xiaoming; Qian Li; Wilson, Belinda; Lee, Christopher; Flood, Patrick; Langenbach, Robert; Hong, J.-S.

    2009-07-01

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E{sub 2} (PGE{sub 2}) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE{sub 2} was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE{sub 2} in enhanced astrocyte proliferation was suggested by the findings that PGE{sub 2} production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE{sub 2} antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE{sub 2} to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE{sub 2} plays an important role in astrocyte proliferation, identifying PGE{sub 2} as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE{sub 2} in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  9. Mixtures of four organochlorines enhance human breast cancer cell proliferation.

    PubMed Central

    Payne, J; Scholze, M; Kortenkamp, A

    2001-01-01

    In view of the large differences between the concentrations of estrogenic chemicals needed to elicit effects in in vitro assays and their levels in human tissues, it is hard to explain possible health risks in terms of exposure to individual compounds. Human populations, however, are exposed to mixtures of estrogenic and estrogen-like agents and it is necessary to consider the impact of combined effects. We assessed the combined effects of 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichloroethane (o,p'-DDT), 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), beta-hexachlorocyclohexane (beta-HCH), and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p'-DDT) on the induction of cell proliferation in MCF-7 cells. All four compounds are persistent organochlorines that can be found in human tissues. We performed extensive concentration-response analyses with the single agents to predict the effects of two mixtures of all four compounds with different mixture ratios. We calculated the predictions by using the pharmacologically well-founded models of concentration addition and independent action and then tested them experimentally. o,p'-DDT, p,p'-DDE, beta-HCH, and p,p'-DDT acted together to produce proliferative effects in MCF-7 cells. The combined effect of the four agents could be predicted on the basis of data about single agent concentration-response relationships. Regression analysis demonstrated that there were combination effects even when each mixture component was present at levels at or below its individual no-observed-effect-concentration. We assessed combination effects in two ways: First, evaluations in relation to the proliferative responses induced by single mixture components revealed that the combination effects were stronger than the effects of the most potent constituent. Thus, according to this method of evaluation, the combined effects may be termed synergistic. Second, comparisons with the expected effects, as predicted by concentration

  10. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity. PMID:23114150

  11. Enhancement of CD3AK cell proliferation and killing ability by α-Thujone.

    PubMed

    Zhou, Yu; Liu, Jun-quan; Zhou, Zhong-hai; Lv, Xiao-ting; Chen, Yong-qiang; Sun, Lei-qing; Chen, Fu-xing

    2016-01-01

    Thujone is a monoterpene ketone natural substance found mainly in wormwood and sage. Previous studies have shown that Thujone has various pharmacological effects, such as anti-tumor, analgesic, and insecticide. The effect of α-Thujone to human immune cells is still unknown. Our study focuses on investigating the effects and mechanism of α-Thujone to CD3AK (anti- CD3 antibody induced activated killer) cells proliferation and cytotoxicity to colon cancer cell lines. With cell proliferation and FCM assay, it is found that α-Thujone could significantly enhance CD3AK cell proliferation and expression of CD107a in a dose-dependent manner. The cytotoxicity to colon cancer cells detected by CCK-8 assay is also improved. The expressions of TNF-α and FasL detected with ELISA assay were not significantly changed. Mechanically, the study shows that α-Thujone could enhance the expression of p-ERK1/2 and p-Akt. In addition, α-Thujone has no cytotoxicity to HCT116 and SW620 cells proliferation. In a word, α-Thujone enhances CD3AK cell proliferation and cytotoxicity via the improvement of expression of CD107a, p-Akt and p-ERK1/2. PMID:26655741

  12. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells.

    PubMed

    Totzeck, Matthias; Schicho, Andreas; Stock, Pia; Kelm, Malte; Rassaf, Tienush; Hendgen-Cotta, Ulrike B

    2015-03-01

    Skeletal muscle tissue has a remarkable high regenerative capacity. The underlying cellular events are governed by complex signaling processes, and the proliferation of skeletal myoblasts is a key initial event. The role of nitric oxide (NO) in cell cycle regulation is well-appreciated. Nitrite, an NO oxidation product, is a stable source for NO-like bioactivity particularly in cases when oxygen shortage compromises NO-synthases activity. Although numerous studies suggest that nitrite effects are largely related to NO-dependent signaling, emerging evidence also implicates that nitrite itself can activate protein pathways albeit under physiological, normoxic conditions. This includes a recently demonstrated cyclic guanosine monophosphate-(cGMP)-independent enhancement of endothelial cell proliferation. Whether nitrite itself has the potential to affect myoblast proliferation and metabolism with or without activation of the canonical NO/cGMP pathway to subsequently support muscle cell regeneration is not known. Here we show that nitrite increases proliferation and metabolic activity of murine cultured myoblasts dose-dependently. This effect is not abolished by the NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimida-zoline-1-oxyl-3 oxide and does not affect intracellular cGMP levels, implicating a cGMP-independent mechanism. Nitrite circumvents the rapamycin induced attenuation of myoblast proliferation and enhances mTOR activity. Our results provide evidence for a novel potential physiological and therapeutic approach of nitrite in skeletal muscle regeneration processes under normoxia independent of NO and cGMP. PMID:25501648

  13. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    PubMed

    Umesh, Vaibhavi; Rape, Andrew D; Ulrich, Theresa A; Kumar, Sanjay

    2014-01-01

    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling. PMID:25000176

  14. Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation.

    PubMed

    Nedachi, T; Kawai, T; Matsuwaki, T; Yamanouchi, K; Nishihara, M

    2011-06-30

    Progranulin (PGRN) is an estrogen-inducible growth factor thought to affect multiple processes in the CNS, including brain sexual differentiation, adult neurogenesis in the hippocampus, and development of neurodegenerative diseases. However, the precise physiological functions of PGRN in individual nerve cells are not fully understood. The aim of the present study was to enhance the understanding of PGRN function in the CNS by investigating the effects of PGRN on neural progenitor cells (NPCs). We found that significant amounts of endogenous PGRN were secreted from isolated NPCs in cultures. To assess the bioactivities of endogenous and exogenous PGRN, we studied NPCs derived from wild-type mice (WT-NPCs) and PGRN-deficient mice (KO-NPCs). We found that proliferation of KO-NPCs was significantly enhanced by PGRN treatment; however, PGRN treatment apparently did not affect proliferation of WT-NPCs perhaps because of the high levels of endogenous PGRN expression. NPC death and asymmetric cellular division of KO-NPCs and WT-NPCs, which results in production of neural stem cells, astrocytes, or oligodendrocytes, were not affected by PGRN treatment. We also investigated the signaling mechanism(s) that mediate PGRN-induced NPC proliferation and found that phosphorylation of serine 9 (S9) of glycogen synthase kinase 3-beta (GSK3β), which was dependent on phosphatidylinositol 3-kinase (PI3K) activity, was induced by PGRN treatment. In addition, a GSK3β-specific inhibitor enhanced NPC proliferation. Taken together, our observations indicate that PGRN enhanced NPC proliferation, at least in part, via inducing GSK3β phosphorylation. PMID:21540081

  15. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation.

    PubMed

    Gu, Hai-Ying; Chen, Zhong; Sa, Rong-Xiao; Yuan, Su-Su; Chen, Hong-Yuan; Ding, Yi-Tao; Yu, Ai-Min

    2004-08-01

    Bioartificial liver and hepatocyte transplantation is anticipated to supply a temporary metabolic support for candidates of liver transplantation or for patients with fulminant liver failure. An essential restriction of this form is the inability to acquire an enough amount of hepatocytes. Enhancement of the proliferation and differentiated function of hepatocytes is becoming a pursued target. Here, porcine hepatocytes were successfully immobilized on nano-sized gold colloid particles to construct a "hepatocyte/gold colloid" interface at which hepatocytes can be quickly proliferated. The properties of this resulting interface were characterized and confirmed by scanning electron microscopy and atomic force microscopy. The proliferative mechanism of hepatocytes was also discussed. The proliferated hepatocytes could be applied to the clinic based on their excellent functions for the synthesis of protein, glucose and urea as well as lower lactate dehydrogenase release. PMID:15020118

  16. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.

    PubMed

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  17. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

    PubMed Central

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  18. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    PubMed

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. PMID:26917381

  19. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    PubMed Central

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  20. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells

    PubMed Central

    Chen, Shuangshuang; Zhao, Shuang; Wang, Xinxing; Zhang, Luo; Jiang, Enze; Gu, Yuan; Shangguan, Anna Junjie; Zhao, Hong

    2015-01-01

    Background Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown. Methods To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes. Results Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines. Conclusions Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation. PMID:26798587

  1. Monascin attenuates oxidative stress-mediated lung inflammation via peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor-erythroid 2 related factor 2 (Nrf-2) modulation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Pan, Tzu-Ming

    2014-06-11

    We speculated that peroxisome proliferator-activated receptor (PPAR)-γ agonists may modulate the oxidative stress pathway to ameliorate the development of airway inflammation. The effect of Monascus-fermented metabolite monascin (MS) and rosiglitazone (Rosi) on oxidative stress-induced lung inflammation was evaluated. Luciferase assay and DNA binding activity assay were used to point out that MS may be a novel PPAR-γ agonist and nuclear factor-erythroid 2 related factor 2 (Nrf-2) activator. We used hydrogen peroxide (H2O2) to induce inflammation in lung epithelial cells. MS and Rosi prevented H2O2-induced ROS generation in A549 epithelial cells through PPAR-γ translocation, avoiding inflammatory mediator expression via inhibiting nuclear factor (NF)-κB translocation. The regulatory ability of MS was abolished by siRNA against PPAR-γ. MS also elevated antioxidant enzyme expression via Nrf-2 activation. Both PPAR-γ and Nrf-2 might have benefits against lung inflammation. MS regulated PPAR-γ and Nrf-2 to improve lung oxidative inflammation. PMID:24865672

  2. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation.

    PubMed

    Jung, Yu Jin; Kim, Ran; Ham, Hyun-Joo; Park, Sang In; Lee, Min Young; Kim, Jongmin; Hwang, Jihwan; Park, Moon-Seo; Yoo, Seung-Schik; Maeng, Lee-So; Chang, Woochul; Chung, Yong-An

    2015-04-01

    A number of studies have reported the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) for induction of bone repair. This study investigated whether bone regeneration might be enhanced by application of focused LIPUS to selectively stimulate fractured calvarial bone. To accomplish this, bone defects were surgically created in the middle of the skull of rats that were subsequently exposed to focused LIPUS. Bone regeneration was assessed by repeated computed tomography imaging after the operation, as well as histologic analysis with calcein, hematoxylin and eosin and proliferating cell nuclear antigen assay. At 6 wk after surgery, bone formation in the focused LIPUS-treated group improved significantly relative to the control. Interestingly, new bone tissue sprouted from focused LIPUS target points. Histologic analysis after exposure to focused LIPUS revealed that proliferating cells were significantly increased relative to the control. Taken together, these results suggest that focused LIPUS can improve re-ossification through enhancement of cell proliferation in calvarial defect sites. PMID:25701528

  3. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation.

    PubMed

    Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa

    2016-01-01

    Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy. PMID:26487184

  4. Doxycycline enhances the Ras-MAPK signaling and proliferation of mouse thymic epithelial cells.

    PubMed

    Chen, Xun; Xia, Sheng; Li, Rong; Liu, Hui; Huang, Ying; Qian, Xiaoping; Xiao, Xueyuan; Xu, Xun; Lin, Xin; Tian, Yuxiang; Zong, Yangyong; He, Dacheng; Chen, Weifeng; Zhang, Yu; Shao, Qixiang

    2009-06-01

    Depletion of T-cell-dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti-cancer chemotherapy and/or radiotherapy. In general, T-cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G(0)/G(1) phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary-type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H-Ras, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c-myc. These data, and the observation that the proliferation-enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras-ERK/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. PMID:19330805

  5. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation.

    PubMed

    Shirazi, Hasti Atashi; Rasouli, Javad; Ciric, Bogoljub; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2015-04-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has recently been found to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Although its effect was attributed to an anti-inflammatory mechanism, it is not clear whether this treatment can also directly act on neural cells to promote CNS recovery. The present study investigates the effect of various concentrations of 1,25(OH)2D3 on neural stem cell (NSC) proliferation and their differentiation to oligodendrocytes, the myelinating cells. We have, for the first time, shown that NSCs constitutively express vitamin D receptor (VDR), which can be upregulated by 1,25(OH)2D3. This vitamin significantly enhanced proliferation of NSCs, and enhanced their differentiation into neurons and oligodendrocytes, but not astrocytes. NSCs treated with 1,25(OH)2D3 showed increased expression of NT-3, BDNF, GDNF and CNTF, important neurotrophic factors for neural cell survival and differentiation. Overall, we demonstrated that 1,25(OH)2D3 has a direct effect on NSC proliferation, survival, and neuron/oligodendrocyte differentiation, thus representing a novel mechanism underlying its remyelinating and neuroprotective effect in MS/EAE therapy. PMID:25681066

  6. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion

    PubMed Central

    Brunetti, Tonya M.; Fremin, Brayon J.; Cripps, Richard M.

    2015-01-01

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles. PMID:25797154

  7. Enhancement of primary neuronal cell proliferation using printing-transferred carbon nanotube sheets.

    PubMed

    Kang, Dong-Wan; Sun, Fangfang; Choi, Yoon Ji; Zou, Fengming; Cho, Won-Ho; Choi, Byung-Kwan; Koh, Kwangnak; Lee, Jaebeom; Han, In Ho

    2015-05-01

    Artificial nerve guidance conduits (aNGCs) prepared from polymer scaffolds and carbon nanotubes (CNTs) possess unique chemical and physical properties, and have been widely used in preclinical trials to promote neuronal differentiation and growth. However, there have been only a few reports on the clinical applicability of CNT sheets for proliferation of primary neuronal cells due to safety concerns. The present study assesses the ability and potential applicability of multiwalled CNTs (MWNTs) composited with polydimethylsiloxane (PDMS) sheets to promote and enhance the proliferation of primary neuronal cells. In this study, the aqueous MWNT dispersion was filtered, and the PDMS/MWNT sheets were prepared using a simple printing transfer method. Characterization of PDMS/MWNT sheets demonstrated their unique physical properties such as superior mechanical strength and electroconductivity when compared with PDMS sheets. The effect of the PDMS/MWNT sheets on the neural cell proliferation and cytotoxicity was evaluated using MTT and alamar blue assays. Our results indicate the viability and proliferation of primary neuronal cells and Schwann cells in PDMS/MWNT sheets increased over twice when compared with a noncoated dish that is not usual in the primary neuronal cell growth control (p < 0.05). In addition, PDMS/MWNT sheets enhanced the adhesion and viability of the cells compared with poly-l-lysine coated dishes, which are most commonly used for improving cell adherence. Additionally, the PDMS/MWNT sheets exhibited excellent biocompatibility for culturing neuronal and Schwann cells. Overall, all assessments indicate that PDMS/MWNT sheets are ideal candidates for the development of artificial nerve conduits for clinical use following peripheral nerve injury. PMID:25087551

  8. Ability of bovine mammary macrophages to enhance proliferation of autologous blood and mammary secretion lymphocytes.

    PubMed

    Concha, C; Holmberg, O

    1990-02-01

    Cells were obtained by centrifuging the mammary secretion of healthy udders of 19 cows during the dry-period and during mid-lactation. The suspended cells were incubated in plastic wells. Those adhered cells classified as mammary macrophages were incubated with pokeweed mitogen (PWM). Autologous peripheral blood lymphocytes were added to wells containing untreated macrophage cultures or cultures pretreated with PWM. In seven cows autologous dry-period mammary lymphocytes were added instead of blood lymphocytes. The macrophages + lymphocyte cultures were subjected to the lymphocyte stimulation test (LST). For comparison, peripheral blood lymphocytes and dry-period secretion lymphocytes were also subjected to the LST in the presence of PWM. In all cases, mitogenic responses were higher in pretreated macrophage cultures than in background control cultures. The stimulation indices (SI) showed that PWM-pretreated dry-period mammary macrophages enhanced the proliferation of autologous peripheral blood lymphocytes to a greater extent than did blood lymphocytes plus PWM (49 +/- 10 v. 30 +/- 6; P less than or equal to 0.05). Mammary macrophages taken from the same cows but during midlactation also clearly induced proliferation of autologous peripheral blood lymphocytes but to a lesser extent than dry-period macrophages (16 +/- 2 v. 49 +/- 10; 16 +/- 2 v. 30 +/- 6; P less than or equal to 0.01 and P less than or equal to 0.05). The PWM pretreatment of mammary macrophages increased the proliferation of autologous dry-period mammary lymphocytes by at least a factor of three (28 +/- 8 v. 8 +/- 2 P less than or equal to 0.05). The present results indicate that bovine mammary macrophages pretreated with PWM enhance proliferation as well as modulation of mammary and peripheral blood lymphocytes. The modulation of lymphocyte stimulation as demonstrated here in vitro, has great significance regarding aspects of local immunostimulation related to modern treatment of mastitis. PMID

  9. SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells

    PubMed Central

    Cui, Yang; Qin, Lili; Wu, Jing; Qu, Xuan; Hou, Chen; Sun, Wenyan; Li, Shiyong; Vaughan, Andrew T. M.; Li, Jian Jian; Liu, Jiankang

    2015-01-01

    SIRT3 is a key NAD+-dependent protein deacetylase in the mitochondria of mammalian cells, functioning to prevent cell aging and transformation via regulation of mitochondrial metabolic homeostasis. However, SIRT3 is also found to express in some human tumors; its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demonstrated that the expression of SIRT3 was elevated in a group of gastric cancer cells compared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive cancer cells were more frequently detected in the intestinal type gastric cancers than the diffuse type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overexpression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis, enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells. PMID:26121691

  10. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  11. Nucleolin enhances the proliferation and migration of heat-denatured human dermal fibroblasts.

    PubMed

    Jiang, Bimei; Li, Yuanbin; Liang, Pengfei; Liu, Yanjuan; Huang, Xu; Tong, Zhongyi; Zhang, Pihong; Huang, Xiaoyuan; Liu, Ying; Liu, Zhenguo

    2015-01-01

    Denatured dermis, a part of dermis in burned skin, has the ability to restore its normal morphology and functions after their surrounding microenvironment is improved. However, the cellular and molecular mechanisms by which the denatured dermis could improve wound healing are still unclear. This study aimed to investigate the role of nucleolin during the recovery of heat-denatured human dermal fibroblasts. Nucleolin mRNA and protein expression were significantly increased time-dependently during the recovery of heat-denatured human dermal fibroblasts (52 °C, 30 seconds). Heat-denaturation promoted a time-dependent cell proliferation, migration, chemotaxis, and scratched wound healing during the recovery of human dermal fibroblasts. These effects were prevented by knockdown of nucleolin expression with small interference RNA (siRNA), whereas overexpression of nucleolin enhanced cell proliferation, migration, and chemotaxis of human dermal fibroblasts with heat-denaturation. In addition, the expression of transforming growth factor-beta 1(TGF-β1) was significantly increased during the recovery of heat-denatured dermis and human dermal fibroblasts. TGF-β1 expression was up-regulated by nucleolin in human dermal fibroblasts. The results suggest that nucleolin expression is up-regulated, and play an important role in promoting cell proliferation, migration, and chemotaxis of human dermal fibroblasts during the recovery of heat-denatured dermis with a mechanism probably related to TGF-β1. PMID:26148015

  12. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    PubMed

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds. PMID:26652045

  13. Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition.

    PubMed

    Stoica, Adrian; Manakhov, Anton; Polčák, Josef; Ondračka, Pavel; Buršíková, Vilma; Zajíčková, Renata; Medalová, Jiřina; Zajíčková, Lenka

    2015-01-01

    Recently, diamondlike carbon (DLC) thin films have gained interest for biological applications, such as hip and dental prostheses or heart valves and coronary stents, thanks to their high strength and stability. However, the biocompatibility of the DLC is still questionable due to its low wettability and possible mechanical failure (delamination). In this work, DLC:N:O and DLC: SiOx thin films were comparatively investigated with respect to cell proliferation. Thin DLC films with an addition of N, O, and Si were prepared by plasma enhanced CVD from mixtures of methane, hydrogen, and hexamethyldisiloxane. The films were optically characterized by infrared spectroscopy and ellipsometry in UV-visible spectrum. The thickness and the optical properties were obtained from the ellipsometric measurements. Atomic composition of the films was determined by Rutherford backscattering spectroscopy combined with elastic recoil detection analysis and by x-ray photoelectron spectroscopy. The mechanical properties of the films were studied by depth sensing indentation technique. The number of cells that proliferate on the surface of the prepared DLC films and on control culture dishes were compared and correlated with the properties of as-deposited and aged films. The authors found that the level of cell proliferation on the coated dishes was high, comparable to the untreated (control) samples. The prepared DLC films were stable and no decrease of the biocompatibility was observed for the samples aged at ambient conditions. PMID:25967153

  14. Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2

    PubMed Central

    Ding, Zhenhua; Jian, Sun; Peng, Xuebiao; Liu, Yimin; Wang, Jianyu; Zheng, Li; Ou, Chengshan; Wang, Yinghui; Zeng, Weixia; Zhou, Meijuan

    2015-01-01

    Abstract Proteolipid protein 2 (PLP2) has been shown to be upregulated in several cancers, including breast cancer, hepatocellular carcinoma, osteosarcoma, and melanoma. PLP2 specifically binds to phosphatidylinositol 3 kinase to activate the protein kinase B pathway to enhance cell proliferation, adhesion, and invasion in melanoma cells. Therefore, we speculated that PLP2 exhibits oncogenic potential. However, the regulatory mechanisms of PLP2 in cancer cells remain unclear. Herein, we found that microRNA (miR)-664 expression was significantly downregulated in cutaneous malignant melanoma (CMM) cells and tissues compared with normal human melanocytes and benign melanocytic naevi. MiR-664 expression level was significantly correlated with patient survival. Ectopic expression of miR-664 reduced CMM cell proliferation and anchorage-independent growth, whereas the inhibition of miR-664 induced these effects. Furthermore, inhibition of miR-664 in CMM cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of the cyclin-dependent kinase inhibitor P21 and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-664 downregulated PLP2 expression by directly targeting the PLP2 untranslated region. Taken together, our results suggest that miR-664 may play an important role in suppressing proliferation of CMM cells and present a novel mechanism of miR-mediated direct suppression of PLP2 expression in cancer cells. PMID:26287415

  15. Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells.

    PubMed

    Tello Velasquez, Johana; Yao, Rebecca-Qing; Lim, Filip; Han, Chunguang; Ojika, Makoto; Ekberg, Jenny A K; Quinn, Ronald J; John, James A St

    2016-09-01

    Linckosides are members of the steroid glycoside family isolated from the starfish Linckia laevigata. These natural compounds have notable neuritogenic activity and synergistic effects on NGF-induced neuronal differentiation of PC12 cells. Neurogenic factors or molecules that are able to mimic their activities are known to be involved in the survival, proliferation and migration of neurons and glial cells; however how glial cells respond to specific neurogenic molecules such as linckosides has not been investigated. This study aimed to examine the effect of three different linckosides (linckoside A, B and granulatoside A) on the morphological properties, proliferation and migration of human olfactory ensheathing cells (hOECs). The proliferation rate after all the treatments was higher than control as detected by MTS assay. Additionally, hOECs displayed dramatic morphological changes characterized by a higher number of processes after linckoside treatment. Interestingly changes in microtubule organization and expression levels of some early neuronal markers (GAP43 and βIII-tubulin) were also observed. An increase in the phosphorylation of ERK 1/2 after addition of the compounds suggests that this pathway may be involved in the linckoside-mediated effects particularly those related to morphological changes. These results are the first description of the stimulating effects of linckosides on hOECs and raise the potential for this natural compound or its derivatives to be used to regulate and enhance the therapeutic properties of OECs, particularly for cell transplantation therapies. PMID:27343824

  16. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures

    SciTech Connect

    Hirsch, Cordula; Campano, Louise M.; Woehrle, Simon; Hecht, Andreas . E-mail: andreas.hecht@mol-med.uni-freiburg.de

    2007-02-01

    Canonical Wnt signaling triggers the formation of heterodimeric transcription factor complexes consisting of {beta}-catenin and T cell factors, and thereby controls the execution of specific genetic programs. During the expansion and neurogenic phases of embryonic neural development canonical Wnt signaling initially controls proliferation of neural progenitor cells, and later neuronal differentiation. Whether Wnt growth factors affect neural progenitor cells postnatally is not known. Therefore, we have analyzed the impact of Wnt signaling on neural progenitors isolated from cerebral cortices of newborn mice. Expression profiling of pathway components revealed that these cells are fully equipped to respond to Wnt signals. However, Wnt pathway activation affected only a subset of neonatal progenitors and elicited a limited increase in proliferation and neuronal differentiation in distinct subsets of cells. Moreover, Wnt pathway activation only transiently stimulated S-phase entry but did not support long-term proliferation of progenitor cultures. The dampened nature of the Wnt response correlates with the predominant expression of inhibitory pathway components and the rapid actuation of negative feedback mechanisms. Interestingly, in differentiating cell cultures activation of canonical Wnt signaling reduced Hes1 and Hes5 expression suggesting that during postnatal neural development, Wnt/{beta}-catenin signaling enhances neurogenesis from progenitor cells by interfering with Notch pathway activity.

  17. Surface modification of SU-8 for enhanced cell attachment and proliferation within microfluidic chips.

    PubMed

    Hamid, Qudus; Wang, Chengyang; Snyder, Jessica; Sun, Wei

    2015-02-01

    Advances in micro-electro-mechanical systems (MEMS) have led to an increased fabrication of micro-channels. Microfabrication techniques are utilized to develop microfluidic channels for continuous nutrition supply to cells inside a micro-environment. The ability of cells to build tissues and maintain tissue-specific functions depends on the interaction between cells and the extracellular matrix (ECM). SU-8 is a popular photosensitive epoxy-based polymer in MEMS. The patterning of bare SU-8 alone does not provide the appropriate ECM necessary to develop microsystems for biological applications. Manipulating the chemical composition of SU-8 will enhance the biological compatibility, giving the fabricated constructs the appropriate ECM needed to promote a functional tissue array. This article investigates three frequently used surface treatment techniques: (1) plasma treatment, (2) chemical reaction, and (3) deposition treatment to determine which surface treatment is the most beneficial for enhancing the biological properties of SU-8. The investigations presented in this article demonstrated that the plasma, gelatin, and sulfuric acid treatments have a potential to enhance SU-8's surface for biological application. Of course each treatment has their advantages and disadvantages (application dependent). Cell proliferation was studied with the use of the dye Almar Blue, and a micro-plate reader. After 14 days, cell proliferation to plasma treated surfaces was statistically significantly enhanced (p < 0.00001), compared to untreated surfaces. The plasma treated surface is suggested to be the better of the three treatments for biological enhancement followed by gelatin and sulfuric acid treatments, respectively. PMID:24919697

  18. Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle

    PubMed Central

    Vogel, Elizabeth R.; VanOosten, Sarah K.; Holman, Michelle A.; Hohbein, Danielle D.; Thompson, Michael A.; Vassallo, Robert; Pandya, Hitesh C.; Prakash, Y. S.

    2014-01-01

    Cigarette smoke is a common environmental insult associated with increased risk of developing airway diseases such as wheezing and asthma in neonates and children. In adults, asthma involves airway remodeling characterized by increased airway smooth muscle (ASM) cell proliferation and increased extracellular matrix (ECM) deposition, as well as airway hyperreactivity. The effects of cigarette smoke on remodeling and contractility in the developing airway are not well-elucidated. In this study, we used canalicular-stage (18–20 wk gestational age) human fetal airway smooth muscle (fASM) cells as an in vitro model of the immature airway. fASM cells were exposed to cigarette smoke extract (CSE; 0.5–1.5% for 24–72 h), and cell proliferation, ECM deposition, and intracellular calcium ([Ca2+]i) responses to agonist (histamine 10 μM) were used to evaluate effects on remodeling and hyperreactivity. CSE significantly increased cell proliferation and deposition of ECM molecules collagen I, collagen III, and fibronectin. In contrast, [Ca2+]i responses were not significantly affected by CSE. Analysis of key signaling pathways demonstrated significant increase in extracellular signal-related kinase (ERK) and p38 activation with CSE. Inhibition of ERK or p38 signaling prevented CSE-mediated changes in proliferation, whereas only ERK inhibition attenuated the CSE-mediated increase in ECM deposition. Overall, these results demonstrate that cigarette smoke may enhance remodeling in developing human ASM through hyperplasia and ECM production, thus contributing to development of neonatal and pediatric airway disease. PMID:25344066

  19. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    SciTech Connect

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  20. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction.

    PubMed

    Horani, Amjad; Nath, Aditya; Wasserman, Mollie G; Huang, Tao; Brody, Steven L

    2013-09-01

    The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell-cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air-liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors. PMID:23713995

  1. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation

    PubMed Central

    Yu, Jian; Chen, Liguang; Cui, Bing; Widhopf, George F.; Shen, Zhouxin; Wu, Rongrong; Zhang, Ling; Zhang, Suping; Briggs, Steven P.; Kipps, Thomas J.

    2015-01-01

    Evolutionarily conserved receptor tyrosine kinase–like orphan receptor-1 and -2 (ROR1/2) are considered distinct receptors for Wnt5a and are implicated in noncanonical Wnt signaling in organogenesis and cancer metastasis. We found that Wnt5a enhanced proliferation and migration of chronic lymphocytic leukemia (CLL) cells and that these effects were blocked by the humanized anti-ROR1 mAb cirmtuzumab (UC-961). Treatment of CLL cells with Wnt5a induced ROR1 to oligomerize with ROR2 and recruit guanine exchange factors (GEFs), which activated Rac1 and RhoA; siRNA-mediated silencing of either ROR1 or ROR2 or treatment with UC-961 inhibited these effects. Using the ROR1-deficient CLL cell line MEC1, we demonstrated that ectopic ROR1 expression induced ROR1/ROR2 heterooligomers, which recruited GEFs, and enhanced proliferation, cytokine-directed migration, and engraftment potential of MEC1 cells in immune-deficient mice. Notably, treatment with UC-961 inhibited engraftment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice. Molecular analysis revealed that the extracellular Kringle domain is required for ROR1/ROR2 heterooligomerization and the cysteine-rich domain or intracellular proline-rich domain is required for Wnt5a-induced recruitment of GEFs to ROR1/ROR2. This study identifies an interaction between ROR1 and ROR2 that is required for Wnt5a signaling that promotes leukemia chemotaxis and proliferation. PMID:26690702

  2. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis

    SciTech Connect

    Raesaenen, Kati; Vaheri, Antti

    2010-06-10

    The role of paracrine tumor-stroma regulation in the progression of cancer is under intense investigation. Activated fibroblasts are key components of the tumor microenvironment providing the soluble factors mediating the regulation. Nemosis is an experimental model to study these parameters: formation of a multicellular spheroid activates fibroblasts and leads to increased production of soluble factors involved in the promotion of growth and motility. Role of nemosis was investigated in the tumorigenesis of HaCaT derivatives representing skin carcinoma progression. Conditioned medium from fibroblast spheroids increased proliferation rate of HaCaT derivatives. Expression of proliferation marker Ki-67 increased significantly in benign A5 and low-grade malignant II-4 cells, but did not further increase in the metastatic RT3 cells. Expression of p63, keratinocyte stem cell marker linked to cancer progression, was augmented by medium from nemotic fibroblasts; this increase was also seen in RT3 cells. Scratch-wound healing of the keratinocytes was enhanced in response to fibroblast nemosis. Neutralizing antibodies against growth factors inhibited wound healing to some extent; the response varied between benign and malignant keratinocytes. Migration and invasion were enhanced by conditioned medium from nemotic fibroblasts in benign and low-grade malignant cells. RT3 keratinocyte migration was further augmented, but invasion was not, indicating their intrinsic capacity to invade. Our data demonstrate that fibroblast nemosis increases proliferation and motility of HaCaT keratinocyte derivatives, and thus nemosis can be used as a model to study the role of soluble factors secreted by fibroblasts in tumor progression.

  3. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells.

    PubMed

    Stoyanov, Evgeniy; Uddin, Mohib; Mankuta, David; Dubinett, Steven M; Levi-Schaffer, Francesca

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect. PMID:21733595

  4. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    PubMed Central

    Lakhkar, Nilay J; M Day, Richard; Kim, Hae-Won; Ludka, Katarzyna; Mordan, Nicola J; Salih, Vehid; Knowles, Jonathan C

    2015-01-01

    In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications. PMID:26668711

  5. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients.

    PubMed

    Moore, Nicole M; Lin, Nancy J; Gallant, Nathan D; Becker, Matthew L

    2011-05-01

    Rational design of bioactive tissue engineered scaffolds for directing bone regeneration in vivo requires a comprehensive understanding of cell interactions with the immobilized bioactive molecules. In the current study, substrates possessing gradient concentrations of immobilized peptides were used to measure the concentration-dependent proliferation and osteogenic differentiation of human bone marrow stromal cells. Two bioactive peptides, one derived from extracellular matrix protein (ECM), GRGDS, and one from bone morphogenic protein-2 (BMP-2), KIPKASSVPTELSAISTLYL, were found to synergistically enhance cell proliferation, up-regulate osteogenic mRNA markers bone sialoprotein (BSP) and Runt-related transcription factor 2, and produce mineralization at densities greater than 130 pmol cm(-2) (65 pmol cm(-2) for each peptide). In addition, COOH-terminated self-assembled monolayers alone led to up-regulated BSP mRNA levels at densities above 200 pmol cm(-2) and increased cell proliferation from day 3 to day 14. Taking further advantage of both the synergistic potentials and the concentration-dependent activities of ECM and growth-factor-derived peptides on proliferative activity and osteogenic differentiation, without the need for additional osteogenic supplements, will enable the successful incorporation of the bioactive species into biorelevant tissue engineering scaffolds. PMID:21272672

  6. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization.

    PubMed

    Wu, Yao-Ming; Liu, Chiung-Hui; Huang, Miao-Juei; Lai, Hong-Shiee; Lee, Po-Huang; Hu, Rey-Heng; Huang, Min-Chuan

    2013-09-01

    Altered glycosylation is a hallmark of cancer. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates with advanced tumor stage, metastasis, and poor survival. Enforced expression of C1GALT1 was sufficient to enhance cell proliferation, whereas RNA interference-mediated silencing of C1GALT1 was sufficient to suppress cell proliferation in vitro and in vivo. Notably, C1GALT1 attenuation also suppressed hepatocyte growth factor (HGF)-mediated phosphorylation of the MET kinase in hepatocellular carcinoma cells, whereas enforced expression of C1GALT1 enhanced MET phosphorylation. MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. In support of these results, we found that the expression level of phospho-MET and C1GALT1 were associated in primary hepatocellular carcinoma tissues. Mechanistic investigations showed that MET was decorated with O-glycans, as revealed by binding to Vicia villosa agglutinin and peanut agglutinin. Moreover, C1GALT1 modified the O-glycosylation of MET, enhancing its HGF-induced dimerization and activation. Together, our results indicate that C1GALT1 overexpression in hepatocellular carcinoma activates HGF signaling via modulation of MET O-glycosylation and dimerization, providing new insights into how O-glycosylation drives hepatocellular carcinoma pathogenesis. PMID:23832667

  7. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity.

    PubMed

    Brusco, Janaina; Haas, Kurt

    2015-08-15

    The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions. PMID:25581818

  8. Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition.

    PubMed

    Chen, Xue-Ying; Lv, Rui-Juan; Zhang, Wei; Yan, Yu-Gang; Li, Peng; Dong, Wen-Qian; Liu, Xue; Liang, Er-Shun; Tian, Hong-Liang; Lu, Qing-Hua; Zhang, Ming-Xiang

    2016-05-24

    Cardiac fibrosis is an important pathological process of diabetic cardiomyopathy, the underlying mechanism remains elusive. This study sought to identify whether inhibition of Myocyte enhancer factor 2A (MEF2A) alleviates cardiac fibrosis by partially regulating Endothelial-to-mesenchymal transition (EndMT). We induced type 1 diabetes mellitus using the toxin streptozotocin (STZ) in mice and injected with lentivirus-mediated short-hairpin RNA (shRNA) in myocardium to inhibit MEF2A expression. Protein expression, histological and functional parameters were examined twenty-one weeks post-STZ injection. We found that Diabetes mellitus increased cardiac MEF2A expression, aggravated cardiac dysfunction and myocardial fibrosis through the accumulation of fibroblasts via EndMT. All of these features were abolished by MEF2A inhibition. MEF2A gene silencing by shRNA in cultured human umbilical vein endothelial cells (HUVECs) ameliorated high glucose-induced phenotypic transition and acquisition of mesenchymal markers through interaction with p38MAPK and Smad2. We conclude that inhibition of endothelial cell-derived MEF2A might be beneficial in the prevention of diabetes mellitus-induced cardiac fibrosis by partially inhibiting EndMT through interaction with p38MAPK and Smad2. PMID:27105518

  9. Enhanced Clearance of Pseudomonas aeruginosa by Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Bedi, Brahmchetna; Yuan, Zhihong; Joo, Myungsoo; Zughaier, Susu M; Goldberg, Joanna B; Arbiser, Jack L; Hart, C Michael; Sadikot, Ruxana T

    2016-07-01

    The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ). Macrophages treated with a PPARγ agonist (pioglitazone) showed enhanced phagocytosis and bacterial killing of PAO1. It is known that PAO1 QS molecules are inactivated by PON-2. QS molecules are also known to inhibit activation of PPARγ by competitively binding PPARγ receptors. In accord with this observation, we found that infection of macrophages with PAO1 inhibited expression of PPARγ and PON-2. Mechanistically, we show that PPARγ induces macrophage paraoxonase 2 (PON-2), an enzyme that degrades QS molecules produced by P. aeruginosa Gene silencing studies confirmed that enhanced clearance of PAO1 in macrophages by PPARγ is PON-2 dependent. Further, we show that PPARγ agonists also enhance clearance of P. aeruginosa from lungs of mice infected with PAO1. Together, these data demonstrate that P. aeruginosa impairs the ability of host cells to mount an immune response by inhibiting PPARγ through secretion of QS molecules. These studies define a novel mechanism by which PPARγ contributes to the host immunoprotective effects during bacterial infection and suggest a role for PPARγ immunotherapy for P. aeruginosa infections. PMID:27091928

  10. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  11. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors.

    PubMed

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis. PMID:27246266

  12. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression

    PubMed Central

    Cui, Tiantian; Srivastava, Amit Kumar; Han, Chunhua; Yang, Linlin; Zhao, Ran; Zou, Ning; Qu, Meihua; Duan, Wenrui; Zhang, Xiaoli; Wang, Qi-En

    2015-01-01

    Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression. PMID:25871391

  13. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

    PubMed Central

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis. PMID:27246266

  14. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically

  15. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling

    PubMed Central

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G.; Bezprozvanny, Ilya; Huber, Kimberly M.

    2015-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. PMID:26459759

  16. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits.

    PubMed

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-05-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6A(H) and COX7A(H) lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5'-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6A(H) promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 --> MEF2A --> COX(H) transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1alpha in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  17. Nuclear Respiratory Factor 1 Controls Myocyte Enhancer Factor 2A Transcription to Provide a Mechanism for Coordinate Expression of Respiratory Chain Subunits*S⃞

    PubMed Central

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-01-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6AH and COX7AH lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5′-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6AH promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 → MEF2A → COXH transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1α in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  18. Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films.

    PubMed

    Li, Yan; Zheng, Zebin; Cao, Zhinan; Zhuang, Liangting; Xu, Yong; Liu, Xiaozhen; Xu, Yue; Gong, Yihong

    2016-05-01

    Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control. PMID:26895501

  19. FBI-1 Enhances ETS-1 Signaling Activity and Promotes Proliferation of Human Colorectal Carcinoma Cells

    PubMed Central

    Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang

    2014-01-01

    In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma. PMID:24857950

  20. GPR171 expression enhances proliferation and metastasis of lung cancer cells

    PubMed Central

    Dho, So Hee; Lee, Kwang-Pyo; Jeong, Dongjun; Kim, Chang-Jin; Chung, Kyung-Sook; Kim, Ji Young; Park, Bum-Chan; Park, Sung Sup; Kim, Seon-Young; Kwon, Ki-Sun

    2016-01-01

    G protein-coupled receptors (GPCRs) are among the most significant therapeutic targets and some of them promote the growth and metastasis of cancer. Here, we show that an increase in the levels of GPR171 is crucial for lung cancer tumor progression in vitro and in vivo. Immunostaining of clinical samples indicated that GPR171 was overexpressed in 46.8% of lung carcinoma tissues. Depletion of GPR171 with an anti-GPR171 antibody decreased proliferation of lung carcinoma cells and attenuated tumor progression in a mouse xenograft model. Knockdown of GPR171 also inhibited migration and invasion of the lung cancer cell lines. Notably, inhibition of GPR171 synergistically enhanced the tumoricidal activity of an epidermal growth factor receptor (EGFR) inhibitor in lung cancer cells. These results indicate that GPR171 blockade is a promising antineoplastic strategy and provide a preclinical rationale for combined inhibition of GPR171 and EGFR. PMID:26760963

  1. Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation.

    PubMed

    Chung, Ki Y; Morrone, Giovanni; Schuringa, Jan Jacob; Plasilova, Magdalena; Shieh, Jae-Hung; Zhang, Yue; Zhou, Pengbo; Moore, Malcolm A S

    2006-12-15

    The t(7;11)(p15;p15) translocation, observed in acute myelogenous leukemia and myelodysplastic syndrome, generates a chimeric gene where the 5' portion of the sequence encoding the human nucleoporin NUP98 protein is fused to the 3' region of HOXA9. Here, we show that retroviral-mediated enforced expression of the NUP98-HOXA9 fusion protein in cord blood-derived CD34(+) cells confers a proliferative advantage in both cytokine-stimulated suspension cultures and stromal coculture. This advantage is reflected in the selective expansion of hematopoietic stem cells as measured in vitro by cobblestone area-forming cell assays and in vivo by competitive repopulation of nonobese diabetic/severe combined immunodeficient mice. NUP98-HOXA9 expression inhibited erythroid progenitor differentiation and delayed neutrophil maturation in transduced progenitors but strongly enhanced their serial replating efficiency. Analysis of the transcriptosome of transduced cells revealed up-regulation of several homeobox genes of the A and B cluster as well as of Meis1 and Pim-1 and down-modulation of globin genes and of CAAT/enhancer binding protein alpha. The latter gene, when coexpressed with NUP98-HOXA9, reversed the enhanced proliferation of transduced CD34(+) cells. Unlike HOXA9, the NUP98-HOXA9 fusion was protected from ubiquitination mediated by Cullin-4A and subsequent proteasome-dependent degradation. The resulting protein stabilization may contribute to the leukemogenic activity of the fusion protein. PMID:17178874

  2. Irradiation enhances the support of haemopoietic cell transmigration, proliferation and differentiation by endothelial cells.

    PubMed

    Gaugler, M H; Squiban, C; Mouthon, M A; Gourmelon, P; van der Meeren, A

    2001-06-01

    Endothelial cells (ECs) are a critical component of the bone marrow stroma in the regulation of haemopoiesis. Recovery of bone marrow aplasia after radiation exposure depends, in part, on the repair of radiation-induced endothelial damage. Therefore, we assessed the ability of an irradiated human bone marrow EC line (TrHBMEC) to support transmigration, proliferation and differentiation of CD34+ bone marrow cells either irradiated or not in transendothelial migration or co-culture models. Radiation-induced EC damage was reflected by an increased release of soluble intercellular adhesion molecule (sICAM)-1 and platelet endothelial cell adhesion molecule (PECAM)-1. Irradiation of TrHBMECs with a 10 Gy dose strongly enhanced the transmigration of CD34+ cells, granulo-monocytic progenitors (CFU-GM) and erythroid progenitors (BFU-E). While ICAM-1 and PECAM-1 expression on irradiated TrHBMECs was increased, only antibodies against PECAM-1 inhibited the radiation-induced enhanced transmigration of haemopoietic cells. Irradiation of TrHBMECs (5-15 Gy) also increased proliferation and differentiation towards the granulo-monocytic lineage of co-cultured CD34+ cells, as well as colony formation by those cells and the production of interleukin 6 (IL-6), IL-8, granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF. Irradiated TrHBMECs were more capable of stimulating irradiated (1,2 Gy) CD34+ cells and haemopoietic progenitors than non-irradiated TrHBMECs. Together, these results suggest that, despite the radiation-induced damage, irradiated ECs may favour haemopoietic reconstitution after radiation exposure. PMID:11442488

  3. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips.

    PubMed

    Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M

    2016-10-14

    Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched  nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma. PMID:27587351

  4. Cytomegalovirus infection enhances smooth muscle cell proliferation and intimal thickening of rat aortic allografts.

    PubMed Central

    Lemström, K B; Bruning, J H; Bruggeman, C A; Lautenschlager, I T; Häyry, P J

    1993-01-01

    Inbred DA (AG-B4, RT1a) and WF (AG-B2, RT1v) rats were used as donors and recipients of aortic allografts. The recipient rats were inoculated i.p. either on day 1 (early infection) or on day 60 (late infection) with 10(5) plaque-forming units of rat cytomegalovirus (RCMV). The control rats were left noninfected. The presence of viral infection was demonstrated by plaque assays from biopsies of the salivary glands, liver, and spleen at sacrifice. The rats received 300 microCi[3H]thymidine by i.v. injection 3 h before sacrifice, and the grafts were removed at various time points for histology, immunohistochemistry, and autoradiography. RCMV infection significantly enhanced the generation of allograft arteriosclerosis. Infection at the time of transplantation had two important effects. First, the infection was associated with an early, prominent inflammatory episode and proliferation of inflammatory cells in the allograft adventitia. Second, the viral infection doubled the proliferation rate of smooth muscle cells and the arteriosclerotic alterations in the intima. In late infection the impact of RCMV infection on the allograft histology was nearly nonexistent. RCMV infection showed no effect in syngeneic grafts. These results suggest that early infection is more important to the generation of accelerated allograft arteriosclerosis than late infection, and that an acute alloimmune response must be associated with virus infection, to induce accelerated allograft arteriosclerosis. RCMV-infected aortic allografts, as described here, provide the first experimental model to investigate the interaction between the virus and the vascular wall of the transplant. Images PMID:8394384

  5. Constitutive Expression of Human Telomerase Enhances the Proliferation Potential of Human Mesenchymal Stem Cells

    PubMed Central

    Bischoff, David S.; Makhijani, Nalini S.

    2012-01-01

    Abstract Human mesenchymal stem cells (hMSCs) are highly desirable cells for bone engineering due to the inherent multipotent nature of the cells. Unfortunately, there is a high degree of variability, as primary hMSC cultures quickly undergo replicative senescence with loss of proliferative potential as they are continually propagated in cell culture. We sought to reduce the variability of these cells by insertion and expression of human telomerase reverse transcriptase (TERT) to immortalize the cell line. hMSCs were transduced with a lentivirus containing the human TERT gene. The resulting cell line has been propagated through more than 70 population-doubling level (PDL) to date and continues to grow exhibiting the characteristic fibroblastic hMSC phenotype. Expression of TERT mRNA and protein activity was confirmed in the TERT-transduced cells. Mock-transduced hMSCs had almost undetectable levels of TERT mRNA and protein activity and lost proliferation potential at PDL 14. The enhanced growth capacity of the hMSC TERT cells was due to increased cell proliferation and reduced cellular senescence rather than due to inhibition of apoptosis. The multipotent nature of the TERT cells was confirmed by differentiation toward the osteoblastic and adipogenic lineages in vitro. Osteoblastic differentiation was confirmed by both expression of alkaline phosphate and mineral deposition visualized by Alizarin Red staining. Adipogenic differentiation was confirmed by production of lipid droplets, which were detected by Oil Red-O staining. In summary, we have generated a stable hMSC line that can be continually propagated and retains both osteoblastic and adipogenic differentiation potential. PMID:23515239

  6. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    SciTech Connect

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  7. Ethanolamine enhances the proliferation of intestinal epithelial cells via the mTOR signaling pathway and mitochondrial function.

    PubMed

    Yang, Huansheng; Xiong, Xia; Li, Tiejun; Yin, Yulong

    2016-05-01

    Ethanolamine (Etn), which is the base constituent of phosphatidylethanolamine, a major phospholipid in animal cell membranes, is required for the proliferation of many types of mammalian epithelial cells. However, it is not clear whether the proliferation of intestinal epithelial cells requires Etn. The present study was conducted to examine the effects of Etn on the proliferation of intestinal epithelial cells and to elucidate the underlying mechanisms. The addition of Etn at 100 or 200 μM was found to enhance the proliferation of IPEC-1 cells. The expression of cell cycle-related proteins CDK4, RB3, cyclin A, and PCNA was also enhanced by Etn. Moreover, the expression or phosphorylation levels of the mammalian target of rapamycin (mTOR) signaling pathway protein and the expression of proteins related to mitochondrial function were also affected by Etn in IPEC-1 cells. These results indicate that Etn promotes the proliferation of intestinal epithelial cells by exerting effects on mTOR signaling pathway and mitochondrial function. PMID:27083163

  8. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells.

    PubMed

    Yang, Luyuan; Yaseen, Mohammed; Zhao, Xiubo; Coffey, Paul; Pan, Fang; Wang, Yuming; Xu, Hai; Webster, John; Lu, Jian R

    2015-04-01

    Silk fibroin (SF) films were modified with gelatin (G) to explore if such SF/G films could enhance the surface biocompatibility of silk as cell growth biomaterials. Ultrathin films were coated from aqueous SF solutions pre-mixed with different amounts of G. It was found that the SF/G blended films after methanol treatment were highly stable in physiological conditions. The incorporation of G smoothed the surface morphology of the SF/G films formed. Surface-exposed RGD sequences were successfully identified on the SF/G films through specific recognition of an integrin-mimicking peptide (bearing the sequence of CWDDGWLC). Cell culture experiments with 3T3 fibroblasts demonstrated that SF/G films with 1.2-20% (w/w) G gave clear improvement in promoting cell attachment and proliferation over pure SF films. Films containing 10-20% (w/w) of G showed cell attachment and growth even superior to the pure G films. The differences as observed from this study suggest that due to the lack of mechanical strength associated with its high solubility, G could not work alone as a cell growth scaffold. The enhanced cellular responses from the blended SF/G films must result from improvement in film stability arising from SF and in cytocompatibility arising from G. The results thus indicate the potential of the SF/G blends in tissue engineering and biomedical engineering where physical and biological properties could be manipulated via mixing either as bulk biomaterials or for coating purposes. PMID:25784671

  9. Lead enhances CD4{sup +} T cell proliferation indirectly by targeting antigen presenting cells and modulating antigen-specific interactions

    SciTech Connect

    Farrer, David G.; Hueber, Sara M.; McCabe, Michael J. . E-mail: michael_mccabe@urmc.rochester.edu

    2005-09-01

    Although Pb is a well-known immunotoxicant, its mechanism of action is not well understood. Low levels of Pb ({approx}1 {mu}M) markedly enhance the proliferative T cell response in mixed lymphocyte culture (MLC), a process we have termed allo-enhancement. As Pb allo-enhancement occurs whether alloantigen presenting cells (APC) are derived from C57BL/6 or BALB.B10, the allo-reactive T cells involved are likely to be specific for peptide in the context of the IA{sup b} molecule as the IE molecule is null in H-2{sup b} mice. Analysis of T cell division in MLC with Pb treatment indicated that there was no significant difference between Pb and non-Pb-treated cultures until day 4 when the frequency of proliferating T cells was much greater than in non-treated cultures. Our data suggest that this increased proliferation is not coupled with increased IL-2 levels in the media as these were actually decreased with Pb treatment and that Pb-induced enhancement in the allo-proliferative response is only partially dependent upon IL-2. Pb allo-enhancement is abrogated when stimulating allo-APCs are paraformaldehyde-fixed, and T cell proliferation stimulated by concanavalin A is not enhanced with Pb treatment, suggesting that the APC is the proximate target of Pb in allo-MLC. Pb allo-enhancement does not occur when T cells respond to irradiated allo-B cells, alone; however, it is restored when syngeneic CD11c-enriched cells are added. Of the CD11c-enriched splenocytes, the fraction that is adherent after 24 h, consistent with macrophages, appears to be the cell type targeted by Pb. Using T cells from DO11.10 transgenic mice, we determined that the effect of Pb is centered around specific p:MHC interactions and that enhanced costimulation is an unlikely mechanism for Pb allo-enhancement.

  10. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    SciTech Connect

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  11. Pioglitazone enhances small-sized adipocyte proliferation in subcutaneous adipose tissue.

    PubMed

    Kajita, Kazuo; Mori, Ichiro; Hanamoto, Takayuki; Ikeda, Takahide; Fujioka, Kei; Yamauchi, Masahiro; Okada, Hideyuki; Usui, Taro; Takahashi, Noriko; Kitada, Yoshihiko; Taguchi, Kohichiro; Kajita, Toshiko; Uno, Yoshihiro; Morita, Hiroyuki; Ishizuka, Tatsuo

    2012-01-01

    The possibility that mature adipocytes proliferate has not been fully investigated. In this study, we demonstrate that adipocytes can proliferate. 5-bromo-2'-deoxyuridine (BrdU)-labeled adipocyte like cells, most of which were less than 30 μm in diameter, were observed in adipose tissue. Proliferating cell nuclear antigen (PCNA) was simultaneously detected in BrdU-labeled nuclei. Observation of individual mature adipocytes of smeared specimens on glass slides revealed that small sized adipocytes more frequently incorporated BrdU. Cultured mature adipocytes using the ceiling-cultured method showed clustering of proliferating cells in small-sized adipocytes. These small cultured adipocytes, but not large ones, extensively incorporated BrdU. Quantified analysis of BrdU incorporation demonstrated that mature visceral adipocytes, including epididymal, mesenteric and perirenal adipocytes, proliferated more actively than subcutaneous ones. On the other hand, treatment with pioglitazone (Pio), a ligand of peroxisome proliferator-activated receptor γ, containing food for 2w, elevated BrdU incorporation and expression of PCNA in mature adipocytes isolated from subcutaneous, but not visceral adipose tissue. Moreover, Pio induced increased BrdU-labeled small-sized subcutaneous adipocytes, which was associated with an increased number of total small adipocytes in subcutaneous adipose tissue. In conclusion, mature adipocytes have a subgroup representing the potential to replicate, and this proliferation is more active in visceral adipocytes. Treatment with Pio increases proliferation in subcutaneous adipocytes. These results may explain the mechanism of Pio-induced hyperplasia especially in subcutaneous adipocytes. PMID:22972172

  12. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.

    PubMed

    Jindal, Shitu; Bansal, Rajesh; Singh, Bijay P; Pandey, Rajiv; Narayanan, Shankar; Wani, Mohan R; Singh, Vakil

    2014-07-01

    This investigation was carried out to study the effect of a novel process of surface modification, surface nanostructuring by ultrasonic shot peening, on osteoblast proliferation and corrosion behavior of commercially pure titanium (c p-Ti) in simulated body fluid. A mechanically polished disc of c p-Ti was subjected to ultrasonic shot peening with stainless steel balls to create nanostructure at the surface. A nanostructure (<20 nm) with inhomogeneous distribution was revealed by atomic force and scanning electron microscopy. There was an increase of approximately 10% in cell proliferation, but there was drastic fall in corrosion resistance. Corrosion rate was increased by 327% in the shot peened condition. In order to examine the role of residual stresses associated with the shot peened surface on these aspects, a part of the shot peened specimen was annealed at 400°C for 1 hour. A marked influence of annealing treatment was observed on surface structure, cell proliferation, and corrosion resistance. Surface nanostructure was much more prominent, with increased number density and sharper grain boundaries; cell proliferation was enhanced to approximately 50% and corrosion rate was reduced by 86.2% and 41% as compared with that of the shot peened and the as received conditions, respectively. The highly significant improvement in cell proliferation, resulting from annealing of the shot peened specimen, was attributed to increased volume fraction of stabilized nanostructure, stress recovery, and crystallization of the oxide film. Increase in corrosion resistance from annealing of shot peened material was related to more effective passivation. Thus, the surface of c p-Ti, modified by this novel process, possessed a unique quality of enhancing cell proliferation as well as the corrosion resistance and could be highly effective in reducing treatment time of patients adopting dental and orthopedic implants of titanium and its alloys. PMID:25020216

  13. Cholinergic Enhancement of Cell Proliferation in the Postnatal Neurogenic Niche of the Mammalian Spinal Cord

    PubMed Central

    Corns, Laura F.; Atkinson, Lucy; Daniel, Jill; Edwards, Ian J.; New, Lauryn

    2015-01-01

    Abstract The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non‐α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5‐ethynyl‐2'‐deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox‐2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging. Stem Cells 2015;33:2864–2876 PMID:26038197

  14. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    PubMed

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions. PMID:27150157

  15. Hypothalamic proline-rich polypeptide enhances bone marrow colony-forming cell proliferation and stromal progenitor cell differentiation.

    PubMed

    Galoyan, A A; Korochkin, L I; Rybalkina, E J; Pavlova, G V; Saburina, I N; Zaraiski, E I; Galoyan, N A; Davtyan, T K; Bezirganyan, K B; Revishchin, A V

    2008-01-01

    The AGAPEPAEPAQPGVY proline-rich peptide (PRP-1) was isolated from neurosecretory granules of the bovine neurohypophysis; it is produced by N. supraopticus and N. paraventricularis. It has been shown that PRP-1 has many potentially beneficial biological effects, including immunoregulatory, hematopoietic, antimicrobial, and antineurodegenerative properties. Here we showed that PRP increased colony-forming cell (CFC) proliferation in rat bone marrow (BM) cells in vivo. In PRP-treated rat BM, the CFU number at day 7 and day 14 was considerably increased in comparison with untreated rat BM and no difference was found at day 21 and day 28. The related peptide [arg8]vasopressin did not reveal CFC proliferation. PRP failed to farther increase CFC proliferation in vitro in BM obtained from PRP-treated or untreated rats. After 3-4 days of human BM stromal cell cultivation in the presence of 2-20 microg/ml PRP the appearance of cells expressing CD15, CD10, CD11a, CD11b, CD3, CD4, and CD16 surface antigens did not differ from the untreated cells. PRP increased the appearance of CD14-positive cells upon 3-4-day incubation with both adult and fetal BM stromal cells. Our results suggest a previously undescribed role for the hypothalamic peptide within neurosecretory hypothalamus-bone marrow humoral axis, because PRP enhances BM colony-forming cell proliferation and stromal cell differentiation. PMID:19177842

  16. Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression.

    PubMed

    Chowdhury, Rajdeep; Chatterjee, Raghunath; Giri, Ashok K; Mandal, Chitra; Chaudhuri, Keya

    2010-10-01

    Arsenic is a well-established human carcinogen; however molecular mechanisms to arsenic-induced carcinogenesis are complex and elusive. The present study identifies a potential biomarker of arsenic exposure, and redefines arsenic-induced signaling in stimulation of cell proliferation. The effect of arsenic exposure on gene expression was evaluated in PBMC of arsenic-exposed individuals selected from a severely affected district of West Bengal, India. A novel, un-documented biomarker of arsenic exposure, CyclinA was identified by microarray analysis from the study. Non-transformed cell lines HaCat and Int407 when exposed to clinically achievable arsenic concentration showed significant increase of CyclinA substantiating the clinical data. An associated increase in S phase population of cells in cell cycle, indicative of enhanced proliferation was also noticed. On further investigation of the pathway to arsenic-induced proliferation, we observed that arsenic resulted: ROS generation; activated Erk signaling; stimulated AP-1 activity, including immediate early genes, c-Jun and c-Fos. N-Acetyl-l-cysteine, a ROS quencher, blocked the arsenic-induced effects. Our study underlines a previously undefined mechanism by which arsenic imparts its toxicity and results in uncontrolled cell proliferation. PMID:20654705

  17. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains.

    PubMed

    Cheng, Yannan; Dai, Yiqin; Zhu, Ximin; Xu, Haochen; Cai, Ping; Xia, Ruohong; Mao, Lizhen; Zhao, Bing-Qiao; Fan, Wenying

    2015-10-21

    In the mammalian brain, neurogenesis persists throughout the embryonic period and adulthood in the subventricular zone of the lateral ventricle and the granular zone (dentate gyrus) of the hippocampus. Newborn neural progenitor cells (NPCs) in the two regions play a critical role in structural and functional plasticity and neural regeneration after brain injury. Previous studies have reported that extremely low-frequency electromagnetic fields (ELF-EMF) could promote osteogenesis, angiogenesis, and cardiac stem cells' differentiation, which indicates that ELF-EMF might be an effective tool for regenerative therapy. The present studies were carried out to examine the effects of ELF-EMF on hippocampal NPCs cultured from embryonic and adult ischemic brains. We found that exposure to ELF-EMF (50 Hz, 0.4 mT) significantly enhanced the proliferation capability both in embryonic NPCs and in ischemic NPCs. Neuronal differentiation was also enhanced after 7 days of cumulative ELF-EMF exposure, whereas glial differentiation was not influenced markedly. The expression of phosphorylated Akt increased during the proliferation process when ischemic NPCs were exposed to ELF-EMF. However, blockage of the Akt pathway abolished the ELF-EMF-induced proliferation of ischemic NPCs. These data show that ELF-EMF promotes neurogenesis of ischemic NPCs and suggest that this effect may occur through the Akt pathway.Video abstract, Supplemental Digital Content 1, http://links.lww.com/WNR/A347. PMID:26339991

  18. Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation

    PubMed Central

    Fatt, Michael; Hsu, Karolynn; He, Ling; Wondisford, Fredric; Miller, Freda D.; Kaplan, David R.; Wang, Jing

    2015-01-01

    Summary The recruitment of endogenous adult neural stem cells for brain repair is a promising regenerative therapeutic strategy. This strategy involves stimulation of multiple stages of adult neural stem cell development, including proliferation, self-renewal, and differentiation. Currently, there is a lack of a single therapeutic approach that can act on these multiple stages of adult neural stem cell development to enhance neural regeneration. Here we show that metformin, an FDA-approved diabetes drug, promotes proliferation, self-renewal, and differentiation of adult neural precursors (NPCs). Specifically, we show that metformin enhances adult NPC proliferation and self-renewal dependent upon the p53 family member and transcription factor TAp73, while it promotes neuronal differentiation of these cells by activating the AMPK-aPKC-CBP pathway. Thus, metformin represents an optimal candidate neuro-regenerative agent that is capable of not only expanding the adult NPC population but also subsequently driving them toward neuronal differentiation by activating two distinct molecular pathways. PMID:26677765

  19. [Lily polysaccharide 1 enhances the effect of metformin on proliferation and apoptosis of human breast carcinoma cells].

    PubMed

    Hou, Jin; Li, Fen; Li, Xinhua; Mei, Qibing; Mi, Man

    2016-06-01

    Objective To investigate the effect of metformin, alone or in combination with Lily polysaccharide 1 (LP1), on cell viability and apoptosis in MCF-7 human breast cancer cells. Methods LP1 (0.5, 1.0 mg/mL) and metformin (5, 10, 20, 50 mmol/L) were added into MCF-7 cell culture medium, followed by incubating for 72 hours in carbon dioxide incubators at 37DegreesCelsius. MCF-7 cell proliferation was determined using MTT assay; the apoptosis and cell cycle of MCF-7 cells were examined using annexin V-FITC/PI double staining combined with flow cytometry; Western blotting was used to determine the content of Bcl-2, Bax, adenosine monophosphate-activated protein kinase (AMPK) and phosphorated AMPK (p-AMPK) proteins. Results Metformin-induced inhibition of MCF-7 cell proliferation was significantly enhanced when 1 mg/mL LP1 was added in. Compared with the control group and the metformin only group, more cells were arrested to G1 and the apoptosis rate was raised obviously in the metformin and LP1 combination group. LP1 promoted the downregulated expression of Bcl-2 and the upregulated expression of Bax induced by metformin, but it didn't show any impact on the metformin-activated AMPK pathway. Conclusion LP1 enhances the proliferation-inhibitory and apoptosis-promoting effect of metformin on human breast carcinoma cells. The mechanism may be related with Bcl-2 downregulation and Bax upregulation. PMID:27371846

  20. Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas.

    PubMed

    Ozkaya, Hande Mefkure; Comunoglu, Nil; Keskin, Fatma Ela; Oz, Buge; Haliloglu, Ozlem Asmaz; Tanriover, Necmettin; Gazioglu, Nurperi; Kadioglu, Pinar

    2016-06-01

    Aromatase, a key enzyme in local estrogen synthesis, is expressed in different pituitary tumors including growth hormone (GH)-secreting adenomas. We aimed to evaluate aromatase, estrogen receptor α (ERα), estrogen receptor β (ERβ), pituitary tumor transforming gene (PTTG), and fibroblast growth factor 2 (FGF2) expressions in GH-secreting adenomas, and investigate their correlation with clinical, pathologic, and radiologic parameters. This cross-sectional study was conducted in a tertiary center in Turkey. Protein expressions were determined via immunohistochemical staining in ex vivo tumor samples of 62 patients with acromegaly and ten normal pituitary tissues. Concordantly increased aromatase, PTTG, and FGF2 expressions were detected in the tumor samples as compared with controls (p < 0.001 for all). None of the tumors expressed ERα while ERβ was detected only in mixed somatotroph adenomas. Aromatase, ERβ, PTTG expressions were not significantly different between patients with and without remission (p > 0.05 for all). FGF2 expression was significantly higher in patients without postoperative and late remission (p = 0.002 and p = 0.012, respectively), with sphenoid bone invasion, optic chiasm compression, and somatostatin analog resistance (p = 0.005, p = 0.033, and p = 0.013, respectively). Aromatase, PTTG and FGF2 expressions were positively correlated with each other (r = 0,311, p = 0.008 for aromatase, FGF2; r = 0.380, p = 0.001 for aromatase, PTTG; r = 0.400, p = 0.001 for FGF2, PTTG). PTTG-mediated FGF2 upregulation is associated with more aggressive tumor features in patients with acromegaly. Also, locally produced estrogen through aromatization might have a role in this phenomenon. PMID:26578364

  1. Optimization of Heterogeneous Utilization of Thorium in PRWs to Enhance Proliferation Resistance & Reduce Waste

    SciTech Connect

    Mujid Kazimi

    2003-12-18

    Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and aside from the alpha (n reaction on the 240 Pu isotope) does not present any significant intrinsic barrier to weapon assembly

  2. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    SciTech Connect

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  3. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  4. Enhancement of Human Skin Fibroblasts Proliferation as a Result of Treating With Quince Seed Mucilage

    PubMed Central

    Ghafourian, Mehri; Tamri, Pari; Hemmati, Aliasghar

    2015-01-01

    Background: Quince seed mucilage (QSM) has been used in Iranian folk medicine in the treatment of wounds and burns. Experimental and clinical studies showed its wound healing activity. However, the mechanism by which this agent affects cells involved in the wound healing process is unknown. Objectives: In this study, we investigated the effects of QSM at concentrations of 50, 100, 200, and 400 µg/mL on human skin fibroblast proliferation as an aspect of promotion of wound healing. Materials and Methods: Human skin fibroblast cell line (HNFF-P18) was used in the experiment. Cell proliferation assay was measured by a MTT assay. Results: Cells treated with QSM at concentrations less than 400 µg/mL increased their proliferative activity. The concentration of 50 µg/mL was the most effective dose after 72 hours treatment. Conclusions: QSM has the ability to stimulate proliferation of human skin fibroblast. This effect suggests that this compound can act as a wound healing agent. PMID:25866719

  5. Uropathogenic E.coli (UPEC) Infection Induces Proliferation through Enhancer of Zeste Homologue 2 (EZH2)

    PubMed Central

    Penna, Frank; Samiei, Alaleh Najdi; Sidler, Martin; Jiang, Jia-Xin; Ibrahim, Fadi; Tolg, Cornelia; Delgado-Olguin, Paul; Rosenblum, Norman; Bägli, Darius J.

    2016-01-01

    Host-pathogen interactions can induce epigenetic changes in the host directly, as well as indirectly through secreted factors. Previously, uropathogenic Escherichia coli (UPEC) was shown to increase DNA methyltransferase activity and expression, which was associated with methylation-dependent alterations in the urothelial expression of CDKN2A. Here, we showed that paracrine factors from infected cells alter expression of another epigenetic writer, EZH2, coordinate with proliferation. Urothelial cells were inoculated with UPEC, UPEC derivatives, or vehicle (mock infection) at low moi, washed, then maintained in media with Gentamycin. Urothelial conditioned media (CM) and extracellular vesicles (EV) were isolated after the inoculations and used to treat naïve urothelial cells. EZH2 increased with UPEC infection, inoculation-induced CM, and inoculation-induced EV vs. parallel stimulation derived from mock-inoculated urothelial cells. We found that infection also increased proliferation at one day post-infection, which was blocked by the EZH2 inhibitor UNC1999. Inhibition of demethylation at H3K27me3 had the opposite effect and augmented proliferation. CONCLUSION: Uropathogen-induced paracrine factors act epigenetically by altering expression of EZH2, which plays a key role in early host cell proliferative responses to infection. PMID:26964089

  6. Immature and Mature Megakaryocytes Enhance Osteoblast Proliferation and Inhibit Osteoclast Formation

    PubMed Central

    Ciovacco, Wendy A.; Cheng, Ying-Hua; Horowitz, Mark C.; Kacena, Melissa A.

    2011-01-01

    Recent data suggests that megakaryocytes (MKs) play a role in skeletal homeostasis. In vitro and in vivo data show that MKs stimulate osteoblast (OB) proliferation and inhibit osteoclast (OC) formation, thus favoring net bone deposition. There are several mouse models with dysregulated megakaryopoiesis and resultant high bone mass phenotypes. One such model that our group has extensively studied is GATA-1 deficient mice. GATA-1 is a transcription factor required for normal megakaryopoiesis, and mice deficient in GATA-1 have increases in immature MK number and a striking increase in bone mass. While the increased bone mass could simply be a result of increased MK number, here we take a more in depth look at the MKs of these mice to see if there is a unique factor inherent to GATA-1 deficient MKs that favors increased bone deposition. We show that increased MK number does correspond with increased OB proliferation and decreased OC proliferation, that stage of maturation does not alter the effect of MKs on bone cell lineages beyond the megakaryoblast stage, and that GATA-1 deficient MKs survive longer than wild-type controls. So while increased MK number in GATA-1 deficient mice likely contributes to the high bone mass phenotype, we propose that the increased longevity of this lineage also plays a role. Since GATA-1 deficient MKs live longer they are able to exert both more proliferative influence on OBs and more inhibitory influence on OCs. PMID:20052670

  7. Lentivirus-mediated silencing of MPHOSPH8 inhibits MTC proliferation and enhances apoptosis

    PubMed Central

    LI, PEIYONG; YANG, WEIPING; SHEN, BAIYONG; LI, HONGWEI; YAN, JIQI

    2016-01-01

    Thyroid carcinoma (TC) is the most common malignancy of the endocrine organs, and its incidence rate has steadily increased over the last decade. For medullary thyroid cancer (MTC), a type of TC, a high mortality rate has been reported. In previous studies, M-phase phosphoprotein 8 (MPHOSPH8) displayed an elevated expression in various human carcinoma cells. Thus, MPHOSPH8 may be a sensitive biomarker that could be used for the diagnosis and follow-up of MTC. In the present study, plasmids of RNA interference targeting the MPHOSPH8 gene were constructed. Once these lentiviruses targeting MPHOSPH8 were transfected into the MTC cell line TT, cell viability and proliferation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was used to assess the cell cycle distribution and apoptosis. The expression levels of MPHOSPH8 were detected by reverse transcription quantitative-polymerase chain reaction and western blot analyses. Depletion of MPHOSPH8 significantly inhibited cell proliferation. Furthermore, knockdown of MPHOSPH8 in TT cells led to G0/G1 phase cell cycle arrest and apoptosis. The results of the present study suggest that MPHOSPH8 promotes cell proliferation and may be a potential target for anticancer therapy of MTC. PMID:27313751

  8. Canine PHA-stimulated adherent cell enhance interferon-gamma production and proliferation of autologous peripheral blood mononuclear cells.

    PubMed

    Ide, Kaori; Momoi, Yasuyuki; Iwasaki, Toshiroh

    2005-03-01

    Dendritic cells are specialized antigen-presenting cells with immuno-modulating functions that are attractive for clinical applications for cancer immunotherapy. This study examined immunostimulatory functions of phytohemagglutinin (PHA)-stimulated adherent cells (PHA-Ad cells) from peripheral blood mononuclear cells (PBMCs) in dogs. PHA-Ad cells enhanced interferon-gamma from autologous PBMC in vitro. PHA-Ad cells also stimulated antigen-independent proliferation of peripheral blood lymphocytes. These results suggest that PHA-Ad cells from PBMC possess a stimulatory function to evoke anti-tumour immunity and that they demonstrate potential for therapeutic applications in dogs. PMID:19379211

  9. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production.

    PubMed

    Razavi, Rozita; Najafabadi, Hamed S; Abdullah, Sarah; Smukler, Simon; Arntfield, Margot; van der Kooy, Derek

    2015-04-01

    Endogenous pancreatic multipotent progenitors (PMPs) are ideal candidates for regenerative approaches to compensate for β-cell loss since their β-cell-producing capacities as well as strategic location would eliminate unnecessary invasive manipulations. However, little is known about the status and potentials of PMPs under diabetic conditions. Here we show that β-cell metabolic stress and hyperglycemia enhance the proliferation capacities of adult PMP cells and bias their production of progeny toward β-cells in mouse and human. These effects are dynamic and correlate with functional β-cell regeneration when conditions allow. PMID:25392245

  10. Suppression of hepatocellular carcinoma cell proliferation by short hairpin RNA of frizzled 2 with Sonazoid-enhanced irradiation.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    Short-hairpin RNA of frizzled-2 (shRNA-Fz2) is known to suppress the proliferation of hepatocellular carcinoma (HCC) cells; however, its effect on HCC cell motility is unknown. In this study, suppression of HCC cell motility by shRNA-Fz2 was analyzed, and introduction of shRNA-Fz2 into HCC cells was facilitated with ultrasound (US) irradiation generated from a diagnostic US device, which was enhanced by the contrast-enhanced US reagent Sonazoid. The HCC cell lines HLF and PLC/PRF/5 that were transfected with shRNA-Fz2 were plated to form monolayers, following which the cell monolayers were scratched with a sterile razor. After 48 h, the cells were stained with hematoxylin and eosin, and the distance between the growing edge of the cell layer and the scratch lines was measured. Total RNA from the cells was isolated and subjected to real-time quantitative PCR to quantify matrix metalloproteinase 9 expression at 48 h after transfection of shRNA-Fz2. Starch-iodide method was applied to analyze the generation of H2O2 following US irradiation with the addition of Sonazoid in the liquid, and cell proliferation was analyzed 72 h later. The distances between the growing edge of the cell layer and the scratch lines and MMP9 expression levels were significantly decreased with transfection of shRNA-Fz2 (P<0.05). In the starch-iodide method, absorbance significantly decreased with the addition of Sonazoid (P<0.05), which suggested that US irradiation with Sonazoid generated H2O2 and enhanced sonoporation. ShRNA-Fz2 suppressed cell proliferation of both cell lines at a mechanical index of 0.4. Motility of HLF cells and PLC/PRF/5 cells was suppressed by shRNA-FZ2. Sonazoid enhanced sonoporation of the cells with the diagnostic US device and the suppression of proliferation of both HCC cell lines by shRNA-Fz2. PMID:26648389

  11. Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells.

    PubMed

    Hanaoka, Koichi; Tanaka, Eiji; Takata, Takashi; Miyauchi, Mutsumi; Aoyama, Junko; Kawai, Nobuhiko; Dalla-Bona, Diego A; Yamano, Eizo; Tanne, Kazuo

    2006-05-01

    Platelet-derived growth factor (PDGF) is an essential signaling molecule for wound healing and tissue repair. This study was aimed at evaluating the effect of PDGF on the proliferation of temporomandibular joint (TMJ) disc-derived cells and extracellular matrix synthesis. The number of cultured cells were counted by COULTER Z1. The assay for collagen synthesis was performed using a sircol soluble collagen assay. Hyaluronic acid (HA) synthesis was analyzed by a high performance liquid chromatography. The expression of collagens, matrix metalloproteinases (MMPs), and the tissue inhibitors of metalloproteinases (TIMPs) were examined using SYBR Green in terms of the RNA levels. PDGF treatment significantly (P < .01) increased the proliferation rate of the disc-derived cells as compared with the controls when the dose was 5 ng/ mL or greater. Treatment with more than 5 ng/mL PDGF resulted in an amount of collagen synthesis significantly (P < .01) higher than the controls. HA synthesis was maximal with 5 ng/mL PDGF treatment. Quantitative real-time polymerase chain reaction analyses showed that treatment with 5 ng/mL of PDGF-BB upregulated the mitochondrial RNA levels of type I and II collagens, MMPs, and TIMPs within 6 hours. It is concluded that PDGF, if its concentration is optimal, enhanced proliferation and matrix synthesis of TMJ disc-derived cells, indicating that PDGF may be effective for use in tissue engineering of the TMJ disc. PMID:16637732

  12. OPTIMIZATION OF HETEROGENEOUS UTILIZATION OF THORIUM IN PWRS TO ENHANCE PROLIFERATION RESISTANCE AND REDUCE WASTE.

    SciTech Connect

    TODOSOW,M.; KAZIMI,M.

    2004-08-01

    Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does not present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of

  13. Aβ 1-40 enhances the proliferation of human diploid fibroblasts.

    PubMed

    Theda, Lindsey; Drews, Michelle K; Zitnik, Galynn; Oshima, Junko; Martin, George M

    2016-02-01

    There is a vast literature on the role of beta amyloid (Aβ) peptides in the pathogenesis of Alzheimer's disease. However, there is a paucity of research on the potential physiological functions of these evolutionarily conserved products of the Aβ precursor protein. Based on previous studies in neuroblastoma cells, we hypothesized that Aβ may contribute to the proliferation of somatic cells. We present evidence supporting this hypothesis for the case of cultured human skin fibroblasts immortalized with the catalytic subunit of human telomerase (hTERT). Optimal concentrations ranged from 100 pM-10 nM, depending on the nature of the assay. PMID:26827638

  14. Loss of Hypoxia-Inducible Factor 2 Alpha in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury

    PubMed Central

    Proper, Steven P.; Saini, Yogesh; LaPres, John J.

    2014-01-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2αΔ/Δ) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2αΔ/Δ mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2αΔ/Δ and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung. PMID:24218148

  15. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung. PMID:24218148

  16. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain

    PubMed Central

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U.; Yoon, Byung-Woo

    2016-01-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke. PMID:27073384

  17. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    SciTech Connect

    Rosendahl, Ann H.; Gundewar, Chinmay; Said Hilmersson, Katarzyna; Ni, Lan; Saleem, Moin A.; Andersson, Roland

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  18. Enhancement of B-cell translocation gene-1 expression by prostaglandin E2 in macrophages and the relationship to proliferation.

    PubMed Central

    Suk, K; Sipes, D G; Erickson, K L

    1997-01-01

    Although prostaglandin (PG) E2 is known to suppress various macrophage functions, the molecular mechanisms by which that occurs are largely unknown. To understand better those mechanisms, differential screening of a cDNA library from PGE2-treated macrophages was performed. Subsequently, the DNA sequence of a differentially expressed cDNA clone was determined and the cDNA was identified as B-cell translocation gene-1 (BTG1), a recently cloned antiproliferative gene. A two-to threefold increase in macrophage BTG1 expression was observed after PGE2 treatment. PGE1 and platelet-activating factor, but not leukotrienes B4, and C4, or lipopolysaccharide, also enhanced BTG1 expression. Furthermore, this effect ws mimicked by dibutyryl cAMP which indicated the involvement of elevated cAMP in the PGE2-mediated enhancement of BTG1. Moreover, there was an inverse correlation between BTG1 mRNA expression and macrophage proliferation; however, BTG1 alteration was not associated with macrophage tumoricidal activation. Thus, BTG1 may play a role in PGE2-mediated inhibition of macrophage proliferation and not activation. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9203975

  19. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes

    PubMed Central

    Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi; Okubo, Chikako; Hatani, Takeshi; Chonabayashi, Kazuhisa; Nishikawa, Misato; Takei, Ikue; Oishi, Akiko; Narita, Megumi; Hoshijima, Masahiko; Kimura, Takeshi; Yamanaka, Shinya; Yoshida, Yoshinori

    2016-01-01

    Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. Although transplantation of induced pluripotent stem cell (iPSC)-derived CMs have been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day4 mesodermal cells, and day8, day20, and day30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day20 CMs was significantly higher compared to other cells. Transplantation of day20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. They also demonstrate this model can be used to track the fate of transplanted cells over a long time. PMID:26743035

  20. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis.

    PubMed

    Xia, Hong; Diebold, Deanna; Nho, Richard; Perlman, David; Kleidon, Jill; Kahm, Judy; Avdulov, Svetlana; Peterson, Mark; Nerva, John; Bitterman, Peter; Henke, Craig

    2008-07-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen-rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that beta1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)-Akt-S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of beta1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K-Akt-S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect. PMID:18541712

  1. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis

    PubMed Central

    Xia, Hong; Diebold, Deanna; Nho, Richard; Perlman, David; Kleidon, Jill; Kahm, Judy; Avdulov, Svetlana; Peterson, Mark; Nerva, John; Bitterman, Peter; Henke, Craig

    2008-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen–rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that β1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)–Akt–S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of β1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K–Akt–S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect. PMID:18541712

  2. Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats.

    PubMed

    Lee, H J; Kim, J W; Yim, S V; Kim, M J; Kim, S A; Kim, Y J; Kim, C J; Chung, J H

    2001-11-01

    The mother-infant relationship is an instinctive phenomenon, and loss of maternal care in early life influences neonatal development, behavior and physiologic responses.(1,2) Furthermore, the early loss may affect the vulnerability of the infant to neuropsychiatric disorders, such as childhood anxiety disorders, personality disorders and depression, over its lifespan.(3,4) Fluoxetine is prescribed worldwide for depression and is often used in the treatment of childhood mental problems related to maternal separation or loss of maternal care.(5,6) In the present study, fluoxetine was administrated to rats with maternal separation to determine its effects on neuronal development, in particular with respect to cell proliferation and apoptosis in the dentate gyrus of the hippocampus. Rat pups were separated from their mothers and socially isolated on postnatal day 14 and were treated with fluoxetine (5 mg kg(-1)) and 5-bromo-2'-deoxyuridine (BrdU) (50 mg kg(-1)) for 7 days, after which immunohistochemistry and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining were carried out. In the pups with maternal separation treated with fluoxetine, the number of BrdU-positive cells was significantly increased and that of TUNEL-positive cells was significantly decreased in the dentate gyrus compared to pups with maternal separation that did not receive fluoxetine treatment. These findings indicate that fluoxetine affects new cell proliferation and apoptosis, and we propose that fluoxetine may be useful in the treatment of maternal separation-related diseases. PMID:11673802

  3. A Strong U.S. Nuclear Enterprise Enhances Global Nuclear Proliferation Management

    SciTech Connect

    Buckner, M.R.

    2001-01-29

    Nuclear policy in the U.S. has evolved over the last five decades as a result of reactions to certain defining events in the evolution of global nuclear technology. These events generally involved either safety issues or concerns about the potential proliferation of nuclear weapons. A world unthreatened by nuclear weapons proliferation is a vision that U.S. policy has strived for since the early years of the atomic age. The U.S. approach to stemming the spread of nuclear weapons has undergone three significant changes over the last fifty-plus years. The McMahon Act of 1946 proscribed dissemination of U. S. nuclear technology overseas for any purpose, whether for weapons or peaceful uses. This approach was superseded by the Atomic Energy Act, stimulated by the Atoms for Peace Initiative (1), which provided for the sharing of substantial scope of nuclear technology for peaceful purposes with countries willing to forego nuclear weapons development. In the decades that followed, the Treaty on the Nonproliferation of Nuclear Weapons (NPT) was signed by 187 nations and the International Atomic Energy Agency (IAEA) was formed to monitor adherence to the Treaty and assist in technology transfer. This international initiative was instrumental in limiting the emergence of new States with nuclear weapons capabilities to a few as compared to the more than fifty that was projected in the early 50's.

  4. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma

    PubMed Central

    Wang, Xiao-Qiang; Tao, Bang-Bao; Li, Bin; Wang, Xu-Hui; Zhang, Wen-Chuan; Wan, Liang; Hua, Xu-Ming; Li, Shi-Ting

    2016-01-01

    Gliomas are the most common and aggressive type of primary adult brain tumors. Although TREM2 mutation is reported to be related to Nasu-Hakola disease and Alzheimer's disease, little is known about the association between TREM2 and gliomas. Here, we reported that TREM2 was significantly overexpressed in glioma tissues compared with non-tumorous brain tissues. Furthermore, TREM2 expression was closely related to pathological grade and overall survival of patients with gliomas. Down-regulation of TREM2 in two glioma cell lines, U87 and U373, resulted in a significant reduction in cell proliferation, migration and invasion and a dramatic increase in S phase arrest and apoptosis. In vivo tumorigenesis experiment also revealed that depletion of TREM2 expression inhibited U87 cell proliferation. Moreover, based on gene set enrichment analysis (GSEA) with The Cancer Genome Atlas (TCGA) dataset, we found that TREM2 was positive related to Kyoto Encyclopedia of Genes and Genomes (KEGG) apoptosis, Cromer metastasis and KEGG chemokine pathways, which was further validated by western blot in TREM2 knockdown glioma cells and indicated a possible mechanism underlying its effects on glioma. In summary, our study suggests that TREM2 may work as an oncogene and a new effective therapeutic target for glioma treatment. PMID:26506595

  5. CCAAT/enhancer-binding protein-β participates in oxidized LDL-enhanced proliferation in 3T3-L1 cells.

    PubMed

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; D'Archivio, Massimo; Giovannini, Claudio; Masella, Roberta

    2011-09-01

    Increased circulating oxidized LDL (oxLDL) have been found in obese subjects. Obesity is characterized by an excess of fat mass resulting from an increase in adipocyte number and size. The generation of new adipocytes is a tightly controlled process where multiple factors acting in a signaling cascade follow a precise temporal expression pattern; oxLDL appear to have a role in the impairment of this process. The purpose of this study was to examine the effects of oxLDL on the mechanisms involved in the proliferative stage of the differentiation process in 3T3-L1 cells. After hormonal induction, 3T3-L1 cells undergo approximately two rounds of mitotic clonal expansion (MCE), a process required for adipogenesis. CCAAT/enhancer-binding protein β (C/EBPβ) is immediately expressed after induction, and plays a crucial role in MCE, but its expression must decrease to allow preadipocytes to mature into adipocytes. We found that, in the presence of stimuli to differentiate, oxLDL induced a higher proliferation rate in this cell line, associated with a sustained up-regulation of C/EBPβ, which remained activated inside the nucleus for several days. RNAi-mediated knockdown of C/EBPβ 24 h after oxLDL treatment counteracted the increase in proliferation rate. Both C/EBPβ expression and proliferation processes appear to be influenced by cAMP/protein kinase A (PKA) and extracellular signal-regulated kinases1/2 (ERK1/2) pathways. OxLDL treatment led to increased levels of cAMP, and to a strong, prolonged phosphorylation of ERK1/2 and C/EBPβ. The addition of cAMP and PKA inhibitors, SQ22536 and H-89, respectively, reduced proliferation only in oxLDL-treated cells, whereas the addition of ERK1/2 inhibitor U0126 blocked proliferation in both control and oxLDL-treated cells. C/EBPβ nuclear expression and DNA-binding activity were reduced by U0126, under all tested conditions. These findings show that the altered expression pattern of C/EBPβ is involved in the increase in the

  6. Phenobarbital mechanistic data and risk assessment: enzyme induction, enhanced cell proliferation, and tumor promotion.

    PubMed

    Whysner, J; Ross, P M; Williams, G M

    1996-01-01

    Chronic exposure to high doses of phenobarbital (PB) causes hepatocellular adenomas in both mice and rats and hepatocellular carcinomas in some strains of mice. Long-term PB therapy has not been found to cause human tumors. PB is not DNA reactive, and most genotoxicity tests have yielded negative results. PB has been extensively studied as an epigenetic, rodent liver tumor promoter. At exposures causing rodent liver tumors, PB has measurable effects on hepatocytes: PB inhibits cell-to-cell communication; PB induces enzymes, including P450 cytochromes; PB stimulates proliferation and inhibits apoptosis of hepatocytes in neoplastic foci. Threshold exposures for some of these endpoints coincide with the threshold exposure for tumorigenesis. PMID:8910954

  7. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer

    PubMed Central

    Wang, Huimin; Tan, Mingzi; Schwab, Carlton L.; Deng, Lu; Gao, Jian; Hao, Yingying; Li, Xiao; Gao, Song; Liu, Juanjuan; Lin, Bei

    2016-01-01

    Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer. PMID:26575020

  8. Loss of MAP3K1 enhances proliferation and apoptosis during retinal development

    PubMed Central

    Mongan, Maureen; Wang, Jingcai; Liu, Hongshan; Fan, Yunxia; Jin, Chang; Kao, Winston Y.-W.; Xia, Ying

    2011-01-01

    Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1+/ΔKDJnk1–/– and Map3k1+/ΔKDJnk+/–Jnk2+/– mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration. PMID:21862560

  9. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation.

    PubMed

    Szalayova, Gabriela; Ogrodnik, Aleksandra; Spencer, Brianna; Wade, Jacqueline; Bunn, Janice; Ambaye, Abiy; James, Ted; Rincon, Mercedes

    2016-06-01

    Chronic inflammation is known to facilitate cancer progression and metastasis. Less is known about the effect of acute inflammation within the tumor microenvironment, resulting from standard invasive procedures. Recent studies in mouse models have shown that the acute inflammatory response triggered by a biopsy in mammary cancer increases the frequency of distal metastases. Although tumor biopsies are part of the standard clinical practice in breast cancer diagnosis, no studies have reported their effect on inflammatory response. The objective of this study is to (1) determine whether core needle biopsies in breast cancer patients trigger an inflammatory response, (2) characterize the type of inflammatory response present, and (3) evaluate the potential effect of any acute inflammatory response on residual tumor cells. The biopsy wound site was identified in the primary tumor resection tissue samples from breast cancer patients. The inflammatory response in areas adjacent (i.e., immediately around previous biopsy site) and distant to the wound biopsy was investigated by histology and immunohistochemistry analysis. Proliferation of tumor cells was also assayed. We demonstrate that diagnostic core needle biopsies trigger a selective recruitment of inflammatory cells at the site of the biopsy, and they persist for extended periods of time. While macrophages were part of the inflammatory response, an unexpected accumulation of eosinophils at the edge of the biopsy wound was also identified. Importantly, we show that biopsy causes an increase in the proliferation rate of tumor cells located in the area adjacent to the biopsy wound. Diagnostic core needle biopsies in breast cancer patients do induce a unique acute inflammatory response within the tumor microenvironment and have an effect on the surrounding tumor cells. Therefore, biopsy-induced inflammation could have an impact on residual tumor cell progression and/or metastasis in human breast cancer. These findings

  10. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.

    PubMed

    Yassin, Mohammed A; Leknes, Knut N; Sun, Yang; Lie, Stein A; Finne-Wistrand, Anna; Mustafa, Kamal

    2016-08-01

    Poly(l-lactide-co-ɛ-caprolactone) (poly(LLA-co-CL)) has been blended with Tween 80 to tune the material properties and optimize cell-material interactions. Accordingly, the aims of this study were fourfold: to evaluate the effect of low concentrations of Tween 80 on the surface microstructure of 3D poly(LLA-co-CL) porous scaffolds: to determine the effect of different concentrations of Tween 80 on proliferation of bone marrow stromal cells (BMSCs) in vitro under dynamic cell culture at 7 and 21 days; to assess the influence of Tween 80 on the degradation rate of poly(LLA-co-CL) at 7 and 21 days; and in a subcutaneous rat model, to evaluate the effect on bone formation of porous scaffolds modified with 3% Tween 80 at 2 and 8 weeks. Blending 3% (w/w) Tween 80 with poly(LLA-co-CL) improves the surface wettability (p < 0.001). Poly(LLA-co-CL)/3% Tween 80 shows significantly increased cellular proliferation at days 7 and 21 (p < 0.001). Moreover, the presence of Tween 80 facilitates the degradation of poly(LLA-co-CL). Two weeks post-implantation, the poly(LLA-co-CL)/3% Tween 80 scaffolds exhibit significant mRNA expression of Runx2 (p = 0.004). After 8 weeks, poly(LLA-co-CL)/3% Tween 80 scaffolds show significantly increased de novo bone formation, demonstrated by μ-CT (p = 0.0133) and confirmed histologically. It can be concluded that blending 3% (w/w) Tween 80 with poly (LLA-co-CL) improves the hydrophilicity and osteogenic potential of the scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2049-2059, 2016. PMID:27086867

  11. PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing β-catenin expression and nuclear translocation.

    PubMed

    Liu, Y; Ye, X; Zhang, J-B; Ouyang, H; Shen, Z; Wu, Y; Wang, W; Wu, J; Tao, S; Yang, X; Qiao, K; Zhang, J; Liu, J; Fu, Q; Xie, Y

    2015-10-29

    Aberrant activation of the Wnt/β-catenin pathway is frequent in hepatocellular carcinoma (HCC) and contributes to HCC initiation and progression. This abnormal activation may result from somatic mutations in the genes of the Wnt/β-catenin pathway and/or dysregulation of the Wnt/β-catenin pathway. The mechanism for the latter remains poorly understood. Prospero-related homeobox 1 (PROX1) is a downstream target of the Wnt/β-catenin pathway in human colorectal cancer and elevated PROX1 expression promotes malignant progression. However, the Wnt/β-catenin pathway does not regulate PROX1 expression in the liver and HCC cells. Here we report that PROX1 promotes HCC cell proliferation in vitro and tumor growth in HCC xenograft mice. PROX1 and β-catenin levels are positively correlated in tumor tissues as well as in cultured HCC cells. PROX1 can upregulate β-catenin transcription by stimulating the β-catenin promoter and enhance the nuclear translocation of β-catenin in HCC cells, which leads to the activation of the Wnt/β-catenin pathway. Moreover, we show that increase in PROX1 expression renders HCC cells more resistant to sorafenib treatment, which is the standard therapy for advanced HCC. Overall, we have pinpointed PROX1 as a critical factor activating the Wnt/β-catenin pathway in HCC, which promotes HCC proliferation and sorafenib resistance. PMID:25684142

  12. Neutrophil elastase enhances the proliferation and decreases apoptosis of leukemia cells via activation of PI3K/Akt signaling

    PubMed Central

    YANG, RONG; ZHONG, LIANG; YANG, XIAO-QUN; JIANG, KAI-LING; LI, LIU; SONG, HAO; LIU, BEI-ZHONG

    2016-01-01

    Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with specificity for a broad range of substrates. NE has been reported to be associated with the pathogenesis of several conditions, particularly that of pulmonary diseases. Previous studies have shown that NE can cleave the pro-myelocyte - retinoic acid receptor-alpha chimeric protein and is important for the development of acute pro-myelocytic leukemia. To further elucidate the role of NE in acute pro-myelocytic leukemia, the present study successfully constructed a lentiviral vector containing the NE gene (LV5-NE), which was transfected into NB4 acute pro-myelocytic leukemia cells. The effects of NE overexpression in NB4 cells were detected using a Cell-Counting Kit-8 assay, flow cytometry and western blot analysis. The results showed that NE significantly promoted the proliferation of NB4 cells, inhibited cell apoptosis and apoptotic signaling, and led the activation of Akt. In an additional experiment, a vector expressing small hairpin RNA targeting NE was constructed to assess the effects of NE knockdown in U937 cells. Western blot analysis revealed that apoptotic signaling was increased, while Akt activation was decreased following silencing of NE. The results of the present study may indicate that NE activates the phosphoinositide-3 kinase/Akt signaling pathway in leukemia cells to inhibit apoptosis and enhance cell proliferation, and may therefore represent a molecular target for the treatment of pro-myelocytic leukemia. PMID:27035679

  13. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    PubMed

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. PMID:25746263

  14. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation.

    PubMed

    Hui, Xiaoyan; Gu, Ping; Zhang, Jialiang; Nie, Tao; Pan, Yong; Wu, Donghai; Feng, Tianshi; Zhong, Cheng; Wang, Yu; Lam, Karen S L; Xu, Aimin

    2015-08-01

    Adiponectin is an abundant adipokine with pleiotropic protective effects against a cluster of obesity-related cardiometabolic disorders. However, its role in adaptive thermogenesis has scarcely been explored. Here we showed that chronic cold exposure led to a markedly elevated production of adiponectin in adipocytes of subcutaneous white adipose tissue (scWAT), which in turn bound to M2 macrophages in the stromal vascular fraction. Chronic cold exposure-induced accumulation of M2 macrophages, activation of beige cells, and thermogenic program were markedly impaired in scWAT of adiponectin knockout (ADN KO) mice, whereas these impairments were reversed by replenishment with adiponectin. Mechanistically, adiponectin was recruited to the cell surface of M2 macrophages via its binding partner T-cadherin and promoted the cell proliferation by activation of Akt, consequently leading to beige cell activation. These findings uncover adiponectin as a key efferent signal for cold-induced adaptive thermogenesis by mediating the crosstalk between adipocytes and M2 macrophages in scWAT. PMID:26166748

  15. Upregulated KLK10 inhibits esophageal cancer proliferation and enhances cisplatin sensitivity in vitro.

    PubMed

    Li, Lei; Xu, Nan; Fan, Ning; Meng, Qingchun; Luo, Wenchao; Lv, Lijia; Ma, Wei; Liu, Xiaoyu; Liu, Lu; Xu, Fei; Wang, Huaxin; Mao, Weifeng; Li, Yan

    2015-11-01

    The kallikrein-related peptidase 10 (KLK10) gene has tumor-suppressive function in various types of human cancer. However, previous studies showed that KLK10 also acts as an oncogene and is upregulated in gastrointestinal tumors. The role of KLK10 in human esophageal cancer (EC) remains unclear. In the present study, the expression of KLK10 in human esophageal and non-esophageal cancer tissues was investigated by immunohistochemistry. Quantitative RT-PCR and western blot analysis were utilized to detect KLK10 mRNA and protein expression in human esophageal cancer cell lines (TE-1 and Eca-109). Small interference RNA was utilized to specifically knockdown KLK10 expression in Eca-109 and TE-1 cells. Cell proliferation, cell cycle analysis as well as CDDP-dependent apoptosis were determined using a CCK-8 assay and flow cytometry. The results showed that, KLK10 was positive in 67 out of 83 (80.72%) human EC and positive in 3 out of 11 (27.27%) normal tissues (P=0.001). The present study indicated that KLK10 potentially plays a crucial role in Eca-109 cell growth. Additionally, the downregulation of KLK10 induced S-phase arrest and promoted cisplatin-induced apoptosis. The resutls of the present study suggested that KLK10 is a promising novel marker for the diagnostic and therapeutic target of esophageal cancer. PMID:26479703

  16. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination.

    PubMed

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K; Naidu, Ravi

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30mgL(-1) metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10mgL(-1)), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72-78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP-bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. PMID:26849325

  17. Chicken biliary exosomes enhance CD4(+)T proliferation and inhibit ALV-J replication in liver.

    PubMed

    Wang, Yue; Wang, Guihua; Wang, Zhenzhen; Zhang, Huangge; Zhang, Li; Cheng, Ziqiang

    2014-04-01

    Exosomes, which are small membrane vesicles of endocytic origin, carry lipids, RNA/miRNAs, and proteins and have immune modulatory functions. In this study, we isolated exosomes from the bile of specific pathogen-free chickens, 42-43 days of age, by using an ultracentrifugation and filtration method. The density of the exosomes, isolated by sucrose gradient fractionation, was between 1.13 and 1.19 g/mL. Electron microscopic observation of the liver showed that exosomes were present in the space of Disse and bile canaliculus. Chicken biliary exosomes displayed typical saucer-shaped, rounded morphology. Using liquid chromatography mass spectrum methodology, 196 proteins, including exosomal markers and several unique proteins, were identified and compared with mouse biliary exosomes. Noteworthy, CCCH type zinc finger antiviral protein was found on chicken biliary exosomes never described before. Furthermore, our data show that chicken biliary exosomes promote the proliferation of CD4(+) and CD8(+) T cells and monocytes from liver. In addition, chicken biliary exosomes significantly inhibit avian leukosis virus subgroup J, which is an oncogenic retrovirus, from replicating in the DF-1 cell line. These data indicate that chicken biliary exosomes possess the capacity to influence the immune responses of lymphocytes and inhibit avian leukosis virus subgroup J (ALV-J). PMID:24697699

  18. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    SciTech Connect

    Gao, Hui; Xie, Jing; Peng, Jianjun; Han, Yantao; Jiang, Qixiao; Han, Mei; Wang, Chunbo

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  19. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    PubMed Central

    Luo, Li-ke; Wei, Qing-jun; Liu, Lei; Zheng, Li; Zhao, Jin-min

    2015-01-01

    As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis. PMID:25802548

  20. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  1. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma.

    PubMed

    Zhu, Ying; Zhu, Meng-Xiao; Zhang, Xiao-Dan; Xu, Xiu-E; Wu, Zhi-Yong; Liao, Lian-Di; Li, Li-Yan; Xie, Yang-Min; Wu, Jian-Yi; Zou, Hai-Ying; Xie, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2016-06-01

    Epigenetic alterations, including DNA methylation and histone modifications, are involved in the regulation of cancer initiation and progression. SET and MYND domain-containing protein 3 (SMYD3), a methyltransferase, plays an important role in transcriptional regulation during human cancer progression. However, SMYD3 expression and its function in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, SMYD3 expression was studied by immunohistochemistry in a tumor tissue microarray from 131 cases of ESCC patients. Statistical analysis showed that overall survival of patients with high SMYD3 expressing in primary tumors was significantly lower than that of patients with low SMYD3-expressing tumors (P = .008, log-rank test). Increased expression of SMYD3 was found to be associated with lymph node metastasis in ESCC (P = .036) and was an independent prognostic factor for poor overall survival (P = .025). RNAi-mediated knockdown of SMYD3 suppressed ESCC cell proliferation, migration, and invasion in vitro and inhibited local tumor invasion in vivo. SMYD3 regulated transcription of EZR and LOXL2 by directly binding to the sequences of the promoter regions of these target genes, as demonstrated by a chromatin immunoprecipitation assay. Immunohistochemical staining of ESCC tissues also confirmed that protein levels of EZR and LOXL2 positively correlated with SMYD3 expression, and the Spearman correlation coefficients (rs) were 0.78 (n = 81; P < .01) and 0.637 (n = 103; P < .01), respectively. These results indicate that SMYD3 enhances tumorigenicity in ESCC through enhancing transcription of genes involved in proliferation, migration, and invasion. PMID:26980013

  2. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  3. Mild heat stress enhances differentiation and proliferation of Japanese quail myoblasts and enhances slow muscle fiber characteristics.

    PubMed

    Choi, Y M; Chen, P R; Shin, S; Zhang, J; Hwang, S; Lee, K

    2016-08-01

    The objective of this study was to investigate the effect of mild heat stress on muscle fiber hyperplastic and hypertrophic growth in quail primary myogenic cells to better understand the mechanisms leading to increased skeletal muscle development in avian embryos incubated at a higher temperature. Compared to control cultures maintained at 37°C, incubation at 39°C enhanced myotube length (P < 0.01) and diameter (P < 0.001) at 3 days after differentiation (D3). This enlargement of the myotubes incubated at 39°C can be explained by differences in the fusion index (56.7 vs. 46.2%, P < 0.05) and nuclei number per myotube (18.1 vs. 10.8, P < 0.001) compared to the control cells at D3. Additionally, a higher density of myotubes at D3 in cultures exposed to a higher temperature were related to higher levels of Pax-7 (P < 0.05) compared to the control cells incubated continuously at 37°C. These results indicated a higher proliferative capacity in cells exposed to mild heat stress compared to the control cells. On the other hand, mild heat stress enhanced protein levels of slow myosin heavy chain isoform (P < 0.01) and cytochrome c oxidase subunit IV (P < 0.01) compared to the control cells at D3. These discrepancies in protein expression indicated maintenance of slow muscle fiber type characteristics in myotubes incubated at 39°C. Our results suggest that mild heat stress plays a significant role in myogenic mechanisms related to muscle mass and development. PMID:27038421

  4. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  5. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    SciTech Connect

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens; Widmer, Hans R.; Meyer, Morten

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  6. Proliferation enhancement of budding yeast and mammalian cells with periodic oxygen radical treatment

    NASA Astrophysics Data System (ADS)

    Mori, Yosuke; Kobayashi, Jun; Murata, Tomiyasu; Hahizume, Hiroshi; Hori, Masaru; Ito, Masafumi

    2015-09-01

    Recently, nonequilibrium atmospheric-pressure plasmas have been intensively studied for biological applications. However, the each effect of species in plasmas to biological tissue has not been clarified yet because various factors exist in the plasmas. Accordingly, we have studied effects of atomic oxygen dose on cell growth such as budding yeast and mouse NIH3T3 fibroblasts of mammalian cells. Both of cells were suspended with PBS, and treated using oxygen radical source. In order to prevent the radicals from reacting with the ambient air, the treatment region was surrounded by a plastic cover and purged with Ar. The proliferative effect of 15 % was observed at the O3Pj dose of around 1 . 0 ×1017 cm-3 in NIH3T3 cells as well as in yeast cells. Moreover, periodic oxygen treatment enhanced the effect in budding yeast cells. The best interval of periodic oxygen radical treatment was around 2 hours, which is almost the same period as that of their cell cycle. With the optimum interval time, we have investigated the effect of the number of the treatments. As the number of treatments increases, the growth rate of budding yeast cells was gradually enhanced and saturated at thrice treatments. This work was partly supported by JSPS KAKENHI Grant Numbers 26286072 and project for promoting Research Center in Meijo University.

  7. Akt1 and -2 inhibition diminishes terminal differentiation and enhances central memory CD8+ T-cell proliferation and survival

    PubMed Central

    Abu Eid, Rasha; Friedman, Kevin M; Mkrtichyan, Mikayel; Walens, Andrea; King, William; Janik, John; Khleif, Samir N

    2015-01-01

    The CD8+ T-cell response comprises terminally differentiated effector cells and antigen-experienced memory T cells. The latter encompass central (TCM) and effector (TEM) memory cells. TCM cells are superior in their protection against viral and bacterial challenges and mediation of antitumor immunity due to their higher proliferative ability upon antigen re-encounter. Defining a mechanism to enhance TCM cells and delay terminal differentiation of CD8+ T cells is crucial for cancer immune therapy, as it can promote a better tumor immune response. The differentiation of CD8+ memory T cells is thought to be coordinated by the phosphoinositide 3-kinase (PI3K)/Akt pathway. We, therefore, investigated the role of Akt isoforms in the differentiation and proliferation of memory CD8+ T cells. We found that Akt1 and Akt2, but not Akt3, drive the terminal differentiation of CD8+ T cells, and their inhibition enhances the therapeutically superior TCM phenotype. Furthermore, the inhibition of Akt1 and Akt2, but not Akt 3, delays CD8+ T-cell exhaustion and preserves naïve and TCM CD8+ T cells, thus enhancing their proliferative ability and survival and prolonging their cytokine and Granzyme B production ability. Here, we define a mechanism in which proliferative potential, function, and survival of CD8+ T cells are enhanced by maintaining a reservoir of TCM and naïve cells using only Akt1 and Akt2 inhibition. Therefore, our findings strongly suggest the utility of using Akt1 and Akt2 inhibitors to modulate CD8+ T cells, both for adoptive cell transfer and vaccine-based cancer immune therapies. PMID:26155399

  8. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion

    PubMed Central

    Manissorn, Juthatip; Khamchun, Supaporn; Vinaiphat, Arada; Thongboonkerd, Visith

    2016-01-01

    Adhesion of calcium oxalate (CaOx) crystals on renal tubular epithelial cells is a critical event for kidney stone disease that triggers many cascades of cellular response. Our previous expression proteomics study identified several altered proteins in MDCK renal tubular cells induced by CaOx crystals. However, functional significance of those changes had not been investigated. The present study thus aimed to define functional roles of such proteome data. Global protein network analysis using STRING software revealed α-tubulin, which was decreased, as one of central nodes of protein-protein interactions. Overexpression of α-tubulin (pcDNA6.2-TUBA1A) was then performed and its efficacy was confirmed. pcDNA6.2-TUBA1A could maintain levels of α-tubulin and its direct interacting partner, vimentin, after crystal exposure. Also, pcDNA6.2-TUBA1A successfully reduced cell death to almost the basal level and increased cell proliferation after crystal exposure. Additionally, tissue repair capacity was improved in pcDNA6.2-TUBA1A cells. Moreover, cell-crystal adhesion was reduced by pcDNA6.2-TUBA1A. Finally, levels of potential crystal receptors (HSP90, HSP70, and α-enolase) on apical membrane were dramatically reduced to basal levels by pcDNA6.2-TUBA1A. These findings implicate that α-tubulin has protective roles in kidney stone disease by preventing cell death and cell-crystal adhesion, but on the other hand, enhancing cell proliferation and tissue repair function. PMID:27363348

  9. Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion.

    PubMed

    Manissorn, Juthatip; Khamchun, Supaporn; Vinaiphat, Arada; Thongboonkerd, Visith

    2016-01-01

    Adhesion of calcium oxalate (CaOx) crystals on renal tubular epithelial cells is a critical event for kidney stone disease that triggers many cascades of cellular response. Our previous expression proteomics study identified several altered proteins in MDCK renal tubular cells induced by CaOx crystals. However, functional significance of those changes had not been investigated. The present study thus aimed to define functional roles of such proteome data. Global protein network analysis using STRING software revealed α-tubulin, which was decreased, as one of central nodes of protein-protein interactions. Overexpression of α-tubulin (pcDNA6.2-TUBA1A) was then performed and its efficacy was confirmed. pcDNA6.2-TUBA1A could maintain levels of α-tubulin and its direct interacting partner, vimentin, after crystal exposure. Also, pcDNA6.2-TUBA1A successfully reduced cell death to almost the basal level and increased cell proliferation after crystal exposure. Additionally, tissue repair capacity was improved in pcDNA6.2-TUBA1A cells. Moreover, cell-crystal adhesion was reduced by pcDNA6.2-TUBA1A. Finally, levels of potential crystal receptors (HSP90, HSP70, and α-enolase) on apical membrane were dramatically reduced to basal levels by pcDNA6.2-TUBA1A. These findings implicate that α-tubulin has protective roles in kidney stone disease by preventing cell death and cell-crystal adhesion, but on the other hand, enhancing cell proliferation and tissue repair function. PMID:27363348

  10. Elevated expression of KIF18A enhances cell proliferation and predicts poor survival in human clear cell renal carcinoma

    PubMed Central

    CHEN, QI; CAO, BIN; NAN, NING; WANG, YU; ZHAI, XU; LI, YOUFANG; CHONG, TIE

    2016-01-01

    The function of kinesin family member 18A (KIF18A) in human renal cell carcinoma (RCC) is unclear. The purpose of the current study was to determine the expression and prognostic significance of KIF18A in RCC. Specimens from 273 RCC patients undergoing nephrectomies were studied. Expression of KIF18A mRNA was examined by reverse transcription-polymerase chain reaction (RT-PCR) or quantitative PCR, and the expression of KIF18A protein was examined by immunohistochemistry and western blotting. The expression of KIF18A in clear-cell RCC cell lines was decreased using small interfering RNA targeting KIF18A, and increased by transfection with KIF18A cDNA. The proliferative ability of RCC cells in vitro and in vivo was detected by WST-1 assay and an animal xenograft model with BALB/c nude mice, respectively. The association between KIF18A expression and overall survival was calculated using Kaplan-Meier analysis. The results showed that KIF18A expression was significantly increased in RCC tissues compared with normal kidney tissues. The level of KIF18A expression was significantly associated with tumor stage, histological grade, metastasis and tumor size. Moreover, KIF18A increased the proliferation of RCC cells in vitro and in vivo. KIF18A expression was upregulated in RCC and enhanced the proliferation of RCC cells. Therefore, it appears that KIF18A plays a key role in the carcinogenesis and progression of RCC, and is a novel candidate prognostic marker for RCC patients. Furthermore, silencing KIF18A expression may serve as a new therapeutic strategy against RCC. PMID:27347065

  11. Enhanced lymphocyte longevity and absence of proliferation and lymphocyte apoptosis in Quilty effects of human heart allografts.

    PubMed Central

    Dong, C.; Winters, G. L.; Wilson, J. E.; McManus, B. M.

    1997-01-01

    "Quilty effect" (QE) is a common and problematic observation in endomyocardial biopsy specimens from patients after cardiac transplantation. The origin, fate, and significance of QE cellular elements are unknown. Twenty-six paraffin-embedded endomyocardial biopsy specimens with QE (five QE As and twenty-one QE Bs) from twenty-two cardiac allografts were studied by immunohistochemistry for expression of Bcl-2, Fas antigen, proliferating cell nuclear antigen (PCNA), perforin, T cells (UCHL-1), macrophages (CD68), and apoptosis by in situ terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL). Approximately 50% of the lymphocytes present, mainly in the deeper region of 20 of 21 QE Bs and all 5 QE As, expressed Bcl-2 in a pseudo-nodular pattern surrounding high endothelial venules. Fas expression was detected in lymphocytes in 20 of 21 QE Bs and 5 QE As in a similar pattern to Bcl-2. However, endothelial cells and macrophages were Bcl-2 negative, whereas both cell types were Fas positive. Perforin was negative in nearly all lymphocytes. TUNEL staining revealed that lymphocytes in QEs did not undergo apoptosis; however, TUNEL positivity was observed in approximately 70% of endothelial cells and macrophages and certain adjacent cardiac myocytes in 20 of 21 QE Bs and 5 QE As. One large QE B with a germinal center was noted. Germinal center cells expressed PCNA intensely but were negative for Bcl-2, Fas, and TUNEL. Cells surrounding the germinal center expressed abundant Bcl-2. The following conclusions were drawn. 1) Apoptosis does not occur in lymphocytes in QE where enhanced Bcl-2 (apoptosis inhibitor) and Fas antigen (apoptosis inducer) are expressed. 2) PCNA negativity indicates that QE lymphocytes may not proliferate, and perforin negativity indicates that they may not exhibit perforin-based cytotoxicity. We propose that there may be a relationship between the longevity of lymphocytes in QE and the absence of apoptosis. Images Figure 1

  12. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    SciTech Connect

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng . E-mail: teng@eng.fsu.edu

    2007-07-06

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O{sub 2}) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2{alpha}, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.

  13. ZNF217 is associated with poor prognosis and enhances proliferation and metastasis in ovarian cancer.

    PubMed

    Li, Jing; Song, Lanlin; Qiu, Yuwen; Yin, Ailan; Zhong, Mei

    2014-01-01

    ZNF217 is an alternatively spliced Kruppel-like transcription factor that has recently been implicated to play a role in human carcinogenesis. Here, we used immunohistochemistry (IHC) to show that ZNF217 protein is overexpressed in nearly 60% of ovarian tumor samples. The disease-free survival time was shorter in patients with positive ZNF217 expression than in ZNF217-negative patients (P=0.042). Fluorescence in situ hybridization (FISH) analysis showed ZNF217 genomic amplification in the poorly differentiated tumors, suggesting that ZNF217 is associated with the progression of ovarian cancer. Invasion was enhanced in HO-8910 cells stably transfected with constructs carrying full-length ZNF217 relative to cells transfected with the empty vector. To confirm our findings in vivo, we performed a tumorigenicity assay in nude mice inoculated with the HO-8910 overexpressing ZNF217 cells. As expected, tumors grown in the ZNF217 group were more invasive and prone to metastasis than those formed control groups. Based on these clinical and laboratory observations, we conclude that ZNF217 may contribute to ovarian cancer invasion and metastasis, and associated with worse clinical outcomes. PMID:25031722

  14. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    SciTech Connect

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. )

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  15. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway. PMID:26507778

  16. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.

    PubMed

    Dionyssiou, M G; Nowacki, N B; Hashemi, S; Zhao, J; Kerr, A; Tsushima, R G; McDermott, J C

    2013-01-01

    Characterizing the signaling network that controls MEF2 transcription factors is crucial for understanding skeletal and cardiac muscle gene expression. Glycogen synthase kinase 3β (GSK3β) regulates MEF2 activity indirectly through reciprocal regulation of p38MAPK. Cross-talk between GSK3β and p38MAPK regulates MEF2 activity in skeletal and cardiac muscle. Understanding cross-talk in the signaling network converging at MEF2 control has therapeutic implications in cardiac and skeletal muscle pathology. Glycogen synthase kinase 3β (GSK3β) is a known regulator of striated muscle gene expression suppressing both myogenesis and cardiomyocyte hypertrophy. Since myocyte enhancer factor 2 (MEF2) proteins are key transcriptional regulators in both systems, we assessed whether MEF2 is a target for GSK3β. Pharmacological inhibition of GSK3β resulted in enhanced MEF2A/D expression and transcriptional activity in skeletal myoblasts and cardiac myocytes. Even though in silico analysis revealed GSK3β consensus (S/T)XXX(S/T) sites on MEF2A, a subsequent in vitro kinase assay revealed that MEF2A is only a weak substrate. However, we did observe a posttranslational modification in MEF2A in skeletal myoblasts treated with a GSK3β inhibitor which coincided with increased p38MAPK phosphorylation, a potent MEF2A activator, indicating that GSK3β inhibition may de-repress p38MAPK. Heart specific excision of GSK3β in mice also resulted in up-regulation of p38MAPK activity. Interestingly, upon pharmacological p38MAPK inhibition (SB203580), GSK3β inhibition loses its effect on MEF2 transcriptional activity suggesting potent cross-talk between the two pathways. Thus we have documented that cross-talk between p38MAPK and GSK3β signaling converges on MEF2 activity having potential consequences for therapeutic modulation of cardiac and skeletal muscle gene expression. PMID:23137781

  17. Human VE-Cadherin Fusion Protein as an Artificial Extracellular Matrix Enhancing the Proliferation and Differentiation Functions of Endothelial Cell.

    PubMed

    Xu, Ke; Shuai, Qizhi; Li, Xiaoning; Zhang, Yan; Gao, Chao; Cao, Lei; Hu, Feifei; Akaike, Toshihiro; Wang, Jian-xi; Gu, Zhongwei; Yang, Jun

    2016-03-14

    In an attempt to enhance endothelial cell capture and promote the vascularization of engineered tissue, we biosynthesized and characterized the recombinant fusion protein consisting of human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) to serve as a bioartificial extracellular matrix. The hVE-cad-Fc protein naturally formed homodimers and was used to construct hVE-cad-Fc matrix by stably adsorbing on polystyrene plates. Atomic force microscop assay showed uniform hVE-cad-Fc distribution with nanorod topography. The hVE-cad-Fc matrix markedly promoted human umbilical vein endothelial cells (HUVECs) adhesion and proliferation with fibroblastoid morphology. Additionally, the hVE-cad-Fc matrix improved HUVECs migration, vWF expression, and NO release, which are closely related to vascularization. Furthermore, the hVE-cad-Fc matrix activated endogenous VE-cadherin/β-catenin proteins and effectively triggered the intracellular signals such as F-actin stress fiber, p-FAK, AKT, and Bcl-2. Taken together, hVE-cad-Fc could be a promising bioartificial matrix to promote vascularization in tissue engineering. PMID:26859785

  18. Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation.

    PubMed

    Muhit, Md Abdul; Umehara, Kaoru; Noguchi, Hiroshi

    2016-09-01

    Five new polyalkoxylated furofuranone lignan glucosides, terminalosides L-P (1-5), were isolated from EtOAc extracts of the leaves of Terminalia citrina, a Bangladeshi medicinal plant. The structures of the isolates were deduced primarily by NMR spectroscopy, and four of the isolates were found to contain rare tetraoxygenated aryl groups in their structures. The absolute configurations and conformations of the furofuranone ring were confirmed by ECD spectroscopy. All of the isolates were evaluated for their estrogenic and/or antiestrogenic properties using two estrogen responsive breast cancer cell lines, T47D and MCF-7. At a concentration of 10nM, terminaloside L (1) suppressed E2-enhanced T47D cell proliferation by 90%, while terminaloside M (2) showed 90% antiestrogenic activity against MCF-7 cells. Compared to 2, the antiestrogenic activity of terminaloside O (4) and P (5) was weak, possibly due to the different attachment positions of the sugar moiety that they share in common. This is the first report of furofuranone lignans from any Terminalia species, and also of their antiestrogenic activity. PMID:27425446

  19. Hepatitis B virus core protein enhances human telomerase reverse transcriptase expression and hepatocellular carcinoma cell proliferation in a c-Ets2-dependent manner.

    PubMed

    Gai, Xiaoxiao; Zhao, Peiqing; Pan, Yingfang; Shan, Haixia; Yue, Xuetian; Du, Juan; Zhang, Zhenyu; Liu, Peng; Ma, Hongxin; Guo, Min; Yang, Xiaoyun; Sun, Wensheng; Gao, Lifen; Ma, Chunhong; Liang, Xiaohong

    2013-07-01

    Hepatitis B virus core protein can regulate viral replication and host gene expression. However, it is unclear whether and how hepatitis B virus core protein regulates hepatocellular carcinoma cell proliferation. Induction of hepatitis B virus core protein over-expression significantly enhanced the proliferation of hepatocellular carcinoma cells, while knockdown of hepatitis B virus core protein expression inhibited the proliferation of hepatocellular carcinoma cells. Altered hepatitis B virus core protein expression significantly changed the growth of implanted hepatocellular carcinoma in vivo. Microarray analysis indicated that hepatitis B virus core protein up-regulated human telomerase reverse transcriptase expression, which was further validated by over-expression and knockdown assays in vitro. Furthermore, knockdown of human telomerase reverse transcriptase expression mitigated the hepatitis B virus core protein-enhanced hepatocellular carcinoma cell proliferation and clone formation in vitro. Luciferase assays indicated that hepatitis B virus core protein enhanced the promoter activity of human telomerase reverse transcriptase, which was dependent on the binding of c-Ets2 to the promoter region between -192 and -187. In addition, hepatitis B virus core protein enhanced human telomerase reverse transcriptase transcription in HepG2 cells, but not in the c-Ets2-silencing HepG2 cells. Moreover, hepatitis B virus core protein promoted c-Ets2 nuclear translocation. Finally, significantly higher levels of human telomerase reverse transcriptase expression and nuclear c-Ets2 accumulation were detected in hepatitis B virus core protein-positive hepatocellular carcinoma samples. Our findings demonstrate that hepatitis B virus core protein promotes hepatocellular carcinoma cell proliferation by up-regulating the c-Ets2-dependent expression of human telomerase reverse transcriptase. PMID:23542016

  20. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor.

    PubMed Central

    De Luca, Antonio; Severino, Anna; De Paolis, Paola; Cottone, Giuliano; De Luca, Luca; De Falco, Maria; Porcellini, Antonio; Volpe, Massimo; Condorelli, Gianluigi

    2003-01-01

    Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR-MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the alpha-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR-retenoid X receptor (RxR)-MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR-RxR-MEF2A-p300 but not by TR-RxR-MEF2A. Our data suggested that p300 can bind and modulate the activity of TR-RxR-MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR-RxR-MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A. PMID:12371907

  1. Low α2β1 Integrin Function Enhances the Proliferation of Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis by Activation of the β-Catenin Pathway

    PubMed Central

    Xia, Hong; Seeman, Jeremy; Hong, Jian; Hergert, Polla; Bodem, Vidya; Jessurun, Jose; Smith, Karen; Nho, Richard; Kahm, Judy; Gaillard, Philippe; Henke, Craig

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable fibroproliferative disorder characterized by unrelenting proliferation of fibroblasts and their deposition of collagen within alveoli, resulting in permanently scarred, nonfunctional airspaces. Normally, polymerized collagen suppresses fibroblast proliferation and serves as a physiological restraint to limit fibroproliferation after tissue injury. The IPF fibroblast, however, is a pathologically altered cell that has acquired the capacity to elude the proliferation-suppressive effects of polymerized collagen. The mechanism for this phenomenon remains incompletely understood. Here, we demonstrate that expression of α2β1 integrin, a major collagen receptor, is pathologically low in IPF fibroblasts interacting with polymerized collagen. Low integrin expression in IPF fibroblasts is associated with a failure to induce PP2A phosphatase activity, resulting in abnormally high levels of phosphorylated (inactive) GSK-3β and high levels of active β-catenin in the nucleus. Knockdown of β-catenin in IPF fibroblasts inhibits their ability to proliferate on collagen. Interdiction of α2β1 integrin in control fibroblasts reproduces the IPF phenotype and leads to the inability of these cells to activate PP2A, resulting in high levels of phosphorylated GSK-3β and active β-catenin and in enhanced proliferation on collagen. Our findings indicate that the IPF fibroblast phenotype is characterized by low α2β1 integrin expression, resulting in a failure of integrin to activate PP2A phosphatase, which permits inappropriate activation of the β-catenin pathway. PMID:22642910

  2. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    PubMed Central

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  3. Aberrant Regulation of the BST2 (Tetherin) Promoter Enhances Cell Proliferation and Apoptosis Evasion in High Grade Breast Cancer Cells

    PubMed Central

    Sayeed, Aejaz; Luciani-Torres, Gloria; Meng, Zhenhang; Bennington, James L.; Moore, Dan H.; Dairkee, Shanaz H.

    2013-01-01

    Normal cellular phenotypes that serve an oncogenic function during tumorigenesis are potential candidates for cancer targeting drugs. Within a subset of invasive primary breast carcinoma, we observed relatively abundant expression of Tetherin, a cell surface protein encoded by the Bone Marrow Stromal Cell Antigen (BST2) known to play an inhibitory role in viral release from infected immune cells of the host. Using breast cancer cell lines derived from low and intermediate histopathologic grade invasive primary tumors that maintain growth-suppressive TGFβ signaling, we demonstrate that BST2 is negatively regulated by the TGFβ axis in epithelial cells. Binding of the transcription factor AP2 to the BST2 promoter was attenuated by inhibition of the TGFβ pathway thereby increasing BST2 expression in tumor cells. In contrast, inherent TGFβ resistance characteristic of high grade breast tumors is a key factor underlying compromised BST2 regulation, and consequently its constitutive overexpression relative to non-malignant breast epithelium, and to most low and intermediate grade cancer cells. In both 2-dimensional and 3-dimensional growth conditions, BST2-silenced tumor cells displayed an enhancement in tamoxifen or staurosporine-induced apoptotic cell death together with a reduction in the S-phase fraction compared to BST2 overexpressing counterparts. In a subset of breast cancer patients treated with pro apoptotic hormonal therapy, BST2 expression correlated with a trend for poor clinical outcome, further supporting its role in conferring an anti apoptotic phenotype. Similar to the effects of gene manipulation, declining levels of endogenous BST2 induced by the phytoalexin – resveratrol, restored apoptotic function, and curbed cell proliferation. We provide evidence for a direct approach that diminishes aberrant BST2 expression in cancer cells as an early targeting strategy to assist in surmounting resistance to pro apoptotic therapies. PMID:23840623

  4. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro.

    PubMed

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin-eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  5. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells.

    PubMed

    D' Alimonte, I; Nargi, E; Mastrangelo, F; Falco, G; Lanuti, P; Marchisio, M; Miscia, S; Robuffo, I; Capogreco, M; Buccella, S; Caputi, S; Caciagli, F; Tetè, S; Ciccarelli, R

    2011-01-01

    Mesenchymal stem cells (MSC), isolated from dental tissues, are largely studied for future application in regenerative dentistry. In this study, we used MSC obtained from human dental pulp (DPSC) of normal impacted third molars that, when cultured in lineage-specific inducing media, differentiate into osteoblasts and adipocytes (evaluated by Alizarin Red S and Red Oil O stainings, respectively), thus showing a multipotency. We confirmed that DPSC, grown under undifferentiating conditions, are negative for hematopoietic (CD45, CD31, CD34, CD144) and positive for mesenchymal (CD29, CD90, CD105, CD166, CD146, STRO-1) markers, that underwent down-regulation when cells were grown in osteogenic medium for 3 weeks. In this condition, they also exhibit an increase in the expression of osteogenic markers (RUNX-2, alkaline phosphatase) and extracellular calcium deposition, whereas the expression of receptors (VEGFR-1 and -2) for vascular endothelial growth factors (VEGF) and related VEGF binding proteins was similar to that found in undifferentiated DPSC. Exposure of DPSC growing under undifferentiating or osteogenic conditions to VEGF-A165 peptide (10-40 ng/ml) for 8 days dose- and time-dependently increased the number of proliferating cells without inducing differentiation towards endothelial lineage, as evaluated by the lack of expression of specific markers (CD31, CD34, CD144). Additionally, exposure of DPSC cultured in osteogenic medium to VEGF-A165 for a similar period enhanced cell differentiation towards osteoblasts as evaluated after 14 and 21 days by Alizarin Red S staining and alkaline phosphatase activity quantification. These findings may have clinical implications possibly facilitating tissue repair and remodeling. PMID:21382274

  6. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor γ enhances myocardial ischemia-reperfusion injury in mice.

    PubMed

    Hobson, Michael J; Hake, Paul W; O'Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M; Piraino, Giovanna; Zingarelli, Basilia

    2014-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, using a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ mice), whereas controls included mice treated with the oil diluent vehicle (PPARγ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30-min ligation of the left anterior descending coronary artery followed by 2-h reperfusion. In PPARγ mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin I when compared with PPARγ mice. Upon echocardiographic analysis, PPARγ mice also demonstrated ventricular dilatation and systolic dysfunction. Plasma levels of the proinflammatory cytokines interleukin 1β and interleukin 6 were higher in PPARγ mice when compared with PPARγ mice. These pathological events in PPARγ mice were associated with enhanced nuclear factor κB DNA binding in the infarcted hearts. Thus, our data suggest that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation. PMID:24089001

  7. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor-γ enhances myocardial ischemia-reperfusion injury in mice

    PubMed Central

    Hobson, Michael J.; Hake, Paul W.; O’Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M.; Piraino, Giovanna; Zingarelli, Basilia

    2013-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, employing a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ−/− mice); whereas controls included mice treated with the oil diluent vehicle (PPARγ+/+ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30 min ligation of the left anterior descending coronary artery followed by 2 hrs reperfusion. In PPARγ−/− mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin-I when compared to PPARγ+/+ mice. PPARγ−/− mice also demonstrated ventricular dilatation and systolic dysfunction upon echocardiographic analysis. Plasma levels of the pro-inflammatory cytokines interleukin-1β and interleukin-6 were higher in PPARγ−/− mice when compared to PPARγ+/+ mice. These pathological events in PPARγ−/− mice were associated with enhanced nuclear factor-κB DNA binding in the infarcted hearts. Thus, our data suggests that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation. PMID:24089001

  8. Halofuginone Synergistically Enhances Anti-Proliferation of Rapamycin in T Cells and Reduces Cytotoxicity of Cyclosporine in Cultured Renal Tubular Epithelial Cells

    PubMed Central

    Chu, Tony L. H.; Guan, Qiunong; Nguan, Christopher Y. C.; Du, Caigan

    2015-01-01

    Both rapamycin (RAPA) and cyclosporin A (CsA) are commonly used for immunosuppression, however their adverse side effects limit their application. Thus, it is of interest to develop novel means to enhance or preserve the immunosuppressive activity of RAPA or CsA while reducing their toxicity. Halofuginone (HF) has been recently tested as a potential immunosuppressant. This study investigated the interaction of HF with RAPA or with CsA in cell cultures. Cell proliferation in cultures was determined using methylthiazol tetrazolium assay, and cell apoptosis assessed by flow cytometric analysis and Western blot. The drug-drug interaction was determined according to Loewe’s equation or Bliss independence. Here, we showed that addition of HF to anti-CD 3 antibody-stimulated splenocyte cultures induced synergistic suppression of T cell proliferation in the presence of RAPA, indicated by an interaction index (γ) value of < 1.0 between HF and RAPA, but not in those with CsA. The synergistic interaction of RAPA with HF in the suppression of T cell proliferation was also seen in a mixed lymphocyte reaction and Jurkat T cell growth, and was positively correlated with an increase in cell apoptosis, but not with proline depletion. In cultured kidney tubular epithelial cells, HF attenuated the cytotoxicity of CsA. In conclusion, these data indicate that HF synergistically enhances anti-T cell proliferation of RAPA and reduces the nephrotoxicity of CsA in vitro, suggesting the potential use of HF for enhancing anti-T cell proliferation of RAPA and reducing CsA-mediated nephrotoxicity. PMID:26671563

  9. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  10. Transgenic expression of Telomerase reverse transcriptase (Tert) improves cell proliferation of primary cells and enhances reprogramming efficiency into the induced pluripotent stem cell.

    PubMed

    Hidema, Shizu; Fukuda, Tomokazu; Date, Shiori; Tokitake, Yuko; Matsui, Yasuhisa; Sasaki, Hiroki; Nishimori, Katsuhiko

    2016-10-01

    The enzymatic activity of telomerase is important for the extension of the telomere repeat sequence and overcoming cellular senescence. We generated a conditional transgenic mouse line, carrying the telomerase reverse transcriptase (Tert) expression cassette, controlled by the Cre-loxP-mediated recombination. In our study, Cre recombinase expression efficiently activated Tert expression, resulting in its increased enzymatic activity, which extended the period of cellular proliferation until the keratinocytes entered senescence. This suggests that transgenic Tert expression is effective in enhancing primary cell proliferation. Notably, Tert expression increased colony formation of induced pluripotent stem (iPS) cells after the introduction of four reprogramming factors, Oct-4, klf4, SOX-2, and c-Myc into the transgenic fibroblasts. To the best of our knowledge, this is the first study to show that the transgenic Tert expression enhances reprogramming efficiency of iPS cells, which indicates a critical role for Tert in the reprogramming process. PMID:27297181

  11. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    SciTech Connect

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  12. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    PubMed Central

    Zhong, Xing; Xiu, Ling-ling; Wei, Guo-hong; Liu, Yuan-yuan; Su, Lei; Cao, Xiao-pei; Li, Yan-bing; Xiao, Hai-peng

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects. Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins. Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezafibrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARα inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or NG-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 μmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast proliferation. Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation. PMID:21499286

  13. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    SciTech Connect

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  14. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    SciTech Connect

    Wang Jianling; Wang Gangduo; Ma Huaxian; Khan, M. Firoze

    2011-01-15

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in

  15. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  16. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.

    PubMed

    Alway, Stephen E; Pereira, Suzette L; Edens, Neile K; Hao, Yanlei; Bennett, Brian T

    2013-09-01

    Loss of myonuclei by apoptosis is thought to contribute to sarcopenia. We have previously shown, that the leucine metabolite, β-hydroxy-β-methylbutyrate (HMB) suppresses apoptotic signaling and the apoptotic index (the ratio of apoptotic positive to apoptotic negative myonuclei) during muscle disuse and during reloading periods after disuse in aged rats. However, it was not clear if the apoptotic signaling indexes were due only to preservation of myonuclei or if perhaps the total myogenic pool increased as a result of HMB-mediated satellite cell proliferation as this would have also reduced the apoptotic index. In this study, we tested the hypothesis that HMB would augment myogenic cells (satellite cells) proliferation during muscle recovery (growth) after a period of disuse in senescent animals. The hindlimb muscles of 34 month old Fisher 344 × Brown Norway rats were unloaded for 14 days by hindlimb suspension (HLS), and then reloaded for 14 days. The rats received either Ca-HMB (340 mg/kg body weight; n = 16), or the vehicle (n = 10) by gavage throughout the experimental period. HMB prevented the functional decline in maximal plantar flexion isometric force production during the reloading period, but not during HLS. HMB-treatment enhanced the proliferation of muscle stem cells as shown by a greater percentage of satellite cells that had proliferated (more BrdU positive, Pax-7 positive, and more Pax7/Ki67 positive nuclei) and as a result, more differentiated stem cells were present (more MyoD/myogenin positive myonuclei), relative to total myonuclei, in reloaded plantaris muscles as compared to reloaded muscles from vehicle-treated animals. Furthermore HMB increased the nuclear protein abundance of proliferation markers, inhibitor of differentiation-2 and cyclin A, as compared to vehicle treatment in reloaded muscles. Although HMB increased phosphorylated Akt during reloading, other mTOR related proteins were not altered by HMB treatment. These data show that

  17. Blockade of irradiation-induced autophagosome formation impairs proliferation but does not enhance cell death in HCT-116 human colorectal carcinoma cells

    PubMed Central

    DE ALBUQUERQUE-XAVIER, ANA CRISTINA; BASTOS, LILIAN GONÇALVES R.; DE FREITAS, JULIO CESAR MADUREIRA; LEVE, FERNANDA; DE SOUZA, WALDEMIR FERNÁNDEZ; DE ARAUJO, WALLACE MARTINS; WANDERLEY, JOÃO LUIZ MENDES; TANAKA, MARCELO NEVES; DE SOUZA, WANDERLEY; MORGADO-DÍAZ, JOSÉ ANDRÉS

    2012-01-01

    This work was undertaken to gain further information on the molecular mechanisms underlying autophagosome formation and its relation with tumor cell survival in response to radiation in colon cancer. A human colon cancer cell line, HCT-116, was examined with respect to cell survival after blockade of irradiation-induced autophagosome formation by pharmacological interference. Autophagosome formation was confirmed using a kinetic study with incorporated bovine serum albumin gold-conjugate (BSA-Au) analyzed by electron microscopy and an autophagosome-associated LC3B antibody measured by immunofluorescence and Western blotting. Annexin V/PI double staining was used to monitor cell death by apoptosis, and cell cycle profiles by flow cytometry. Ionizing radiation (IR) promoted autophagosome formation in the HCT-116 IR-surviving cells. Pharmacological interference showed that PI3K/Akt and Src were involved in early stages of autophagosome formation. IR alone decreased cell proliferation by arresting cells in the G2/M phase, and pharmacological interference of autophagosome formation decreased proliferation, but did not affect cell survival. Also, our data suggest that decreased proliferation caused by PI3K and Src inhibitors could be through S phase cell cycle delay. Our results clearly indicate that blockade of IR-induced autophagosome formation impairs proliferation but does not enhance cell death in colon cancer cells. PMID:22246348

  18. The lymphocyte secretome from young adults enhances skeletal muscle proliferation and migration, but effects are attenuated in the secretome of older adults

    PubMed Central

    Al-Dabbagh, Sarah; McPhee, Jamie S; Murgatroyd, Christopher; Butler-Browne, Gillian; Stewart, Claire E; Al-Shanti, Nasser

    2015-01-01

    Older people experience skeletal muscle wasting, in part due to impaired proliferative capacity of quiescent skeletal muscle satellite cells which can be reversed by exposure to young blood. To investigate the role of immune cells in muscle regeneration, we isolated lymphocytes from whole blood of young and older healthy volunteers and cultured them with, or without, anti-CD3/CD28 activators to induce release of cytokines, interleukins, and growth factors into the media. The secreted proteins were collected to prepare a conditioned media, which was subsequently used to culture C2C12 myoblasts. The conditioned media from the activated young lymphocytes increased the rate of proliferation of myoblasts by around threefold (P < 0.005) and caused an approximate fourfold (P < 0.005) increase in migration compared with nonactivated lymphocyte control media. These responses were characterized by minimal myotube formation (2%), low fusion index (5%), low myosin heavy chain content, and substantial migration. In contrast, myoblasts treated with conditioned media from activated old lymphocytes exhibited a high degree of differentiation, and multi-nucleated myotube formation that was comparable to control conditions, thus showing no effect on proliferation or migration of myoblasts. These results indicate that secreted proteins from lymphocytes of young people enhance the muscle cell proliferation and migration, whereas secreted proteins from lymphocytes of older people may contribute to the attenuated skeletal muscle satellite cell proliferation and migration. PMID:26603449

  19. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells.

    PubMed

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  20. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  1. RXRα ablation in epidermal keratinocytes enhances UV radiation induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes

    PubMed Central

    Wang, Zhixing; Coleman, Daniel J.; Bajaj, Gaurav; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup Kumar

    2011-01-01

    We show here that keratinocytic nuclear receptor Retinoid X Receptor α (RXRα) regulates mouse keratinocyte and melanocyte homeostasis following acute ultraviolet radiation (UVR). Keratinocytic RXRα has a protective role on UVR-induced keratinocyte and melanocyte proliferation/differentiation, oxidative stress mediated DNA damage and cellular apoptosis. We discovered that keratinocytic RXRα in a cell autonomous manner regulate mitogenic growth responses in skin epidermis via secretion of hbEGF, GMCSF, IL1-α and COX2, and activation of MAPK pathways. We identified altered expression of several keratinocyte-derived mitogenic paracrine growth factors such as ET-1, HGF, α–MSH, SCF and FGF2 in skin of mice lacking RXRα in epidermal keratinocytes (RXRαep−/− mice), which in a non-cell autonomous manner modulated melanocyte proliferation and activation after UVR. RXRαep−/− mouse represents a unique animal model where UVR induces melanocyte proliferation/activation in both epidermis and dermis. Considered together, our results suggest that RXR antagonists, together with inhibitors of cell proliferation can be effective to prevent solar UV radiation induced photo-carcinogenesis. PMID:20944655

  2. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    PubMed Central

    Wang, Yuan-Yi; Zhu, Qing-San; Wang, Yi-Wei; Yin, Ruo-Feng

    2015-01-01

    Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation. Methods: TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells. Cell of same group were cultured without gene modification as controlled group. Proliferation capacity and cell apoptosis were observed during 6 passages of the cells. Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage. Results: NP cells with TB-4 transfection has normal TB-4 expression and exocytosis. NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation. TB-4 recombinant AAV-transfected human NP cells also show slower cell aging, lower cell apoptosis and higher cell proliferation than control group. Conclusions: TB-4 can prevent NP cell apoptosis, slow NP cell aging and promote NP cell proliferation. AAV transfection technique was able to highly and stably express TB-4 in human NP cells, which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases. PMID:26021512

  3. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    PubMed Central

    Ye, Jingjing; Ai, Wei; Zhang, Fenglin; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, YongLiang; Jiang, Qingyan; Wang, Songbo

    2016-01-01

    Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium ([Ca2+]o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM [Ca2+]o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, [Ca2+]o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, [Ca2+]o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects of [Ca2+]o. Moreover, [Ca2+]o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to [Ca2+]o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair. PMID:27123007

  4. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways.

    PubMed

    Soares, Ana Sofia; Costa, Vera Marisa; Diniz, Carmen; Fresco, Paula

    2015-01-01

    Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression. PMID:24909096

  5. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-κB and PI3K/Akt signaling pathways

    PubMed Central

    Jin, Zhiliang; Yan, Wei; Jin, Hui; Ge, Changzheng; Xu, Yanhua

    2016-01-01

    Esophageal cancer is the most common gastrointestinal cancer. Psoralidin exhibits antioxidant, anti-apoptotic, anti-inflammatory and antitumor effects, which result in the inhibition of cancer formation. The present study aimed to investigate the effect of psoralidin on esophageal carcinoma proliferation and growth, and to elucidate its underlying mechanism of action. The effect of psoralidin on cell proliferation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and 4′,6-diamidino-2-phenylindole staining assay, the present study demonstrated that psoralidin significantly enhanced apoptosis of human esophageal carcinoma Eca9706 cells. In addition, caspase-3 activity was analyzed with a caspase-3 colorimetric assay kit, while nuclear factor (NF)-κB activity and protein phosphatidylinositol 3-kinase (PI3K)/Akt expression were measured with an NF-κB enzyme-linked immunosorbent assay kit and western blot analysis, respectively. Eca9706 cells were treated with a PI3K agonist in order to investigate the mechanism of action of psoralidin. It was observed that psoralidin was able to decrease the proliferation and promote the cellular apoptosis of Eca9706 cells in a dose-dependent manner. Furthermore, psoralidin was also able to inhibit the caspase-3 activity of Eca9706 cells in a dose-dependent manner. In addition, psoralidin inhibited NF-κB activity and reduced PI3K and Akt protein expression in Eca9706 cells. Notably, the PI3K agonist was able to reverse the effect of psoralidin on Eca9706 cells. The results of the present study demonstrated that psoralidin was able to inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells via the NF-κB and PI3K/Akt signaling pathways. PMID:27446379

  6. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    SciTech Connect

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-03-10

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  7. Peroxisome Proliferator-activated Receptor γ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes*

    PubMed Central

    Oger, Frédérik; Dubois-Chevalier, Julie; Gheeraert, Céline; Avner, Stéphane; Durand, Emmanuelle; Froguel, Philippe; Salbert, Gilles; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2014-01-01

    The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor whose expression is induced during adipogenesis and that is required for the acquisition and control of mature adipocyte functions. Indeed, PPARγ induces the expression of genes involved in lipid synthesis and storage through enhancers activated during adipocyte differentiation. Here, we show that PPARγ also binds to enhancers already active in preadipocytes as evidenced by an active chromatin state including lower DNA methylation levels despite higher CpG content. These constitutive enhancers are linked to genes involved in the insulin/insulin-like growth factor signaling pathway that are transcriptionally induced during adipogenesis but to a lower extent than lipid metabolism genes, because of stronger basal expression levels in preadipocytes. This is consistent with the sequential involvement of hormonal sensitivity and lipid handling during adipocyte maturation and correlates with the chromatin structure dynamics at constitutive and activated enhancers. Interestingly, constitutive enhancers are evolutionary conserved and can be activated in other tissues, in contrast to enhancers controlling lipid handling genes whose activation is more restricted to adipocytes. Thus, PPARγ utilizes both broadly active and cell type-specific enhancers to modulate the dynamic range of activation of genes involved in the adipogenic process. PMID:24288131

  8. Tumor associated fibroblasts enhance head and neck squamous cell carcinoma proliferation, invasion, and metastasis in preclinical models

    PubMed Central

    Wheeler, Sarah Elizabeth; Shi, Huifang; Lin, Fangchen; Dasari, Sumana; Bednash, Joseph; Thorne, Stephen; Watkins, Simon; Joshi, Radhika; Thomas, Sufi Mary

    2014-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) has had little improvement in mortality rates in decades. A clearer understanding of the HNSCC tumor microenvironment will aid in finding more effective targeted therapies for this disease. Tumor associated fibroblasts (TAFs) are the largest stromal cellular components of the tumor microenvironment in HNSCC. Methods We isolated TAFs from clinical HNSCC cases and propagated in vitro. The effects of TAF secreted paracrine factors on in vitro HNSCC migration, invasion and proliferation was assessed. The effect of TAFs on HNSCC growth and metastases was determined in an orthotopic floor of mouth tumor model. Results TAF conditioned media increased HNSCC cell migration, invasion and proliferation. TAFs increased HNSCC tumor growth and metastases in vivo. Conclusions TAFs play a major role in increasing tumor growth and metastasis in HNSCC. Targeting the tumor stroma may be important to reduce the rate of HNSCC metastasis. PMID:23728942

  9. Sca-1+ cells from fetal heart with high aldehyde dehydrogenase activity exhibit enhanced gene expression for self-renewal, proliferation, and survival.

    PubMed

    Dey, Devaveena; Pan, Guodong; Varma, Nadimpalli Ravi S; Palaniyandi, Suresh Selvaraj

    2015-01-01

    Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such that ALDH(bright/high) cells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to the ALDH(low) fraction. The ALDH(high) fraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only the ALDH(high) and not the ALDH(low) fraction could give rise to all the cell types of the original population, demonstrating multipotency. ALDH(high) cells showed increased resistance against aldehyde challenge compared to ALDH(low) cells. These results indicate that ALDH(high) subpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart. PMID:25861413

  10. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries.

    PubMed Central

    Edelman, E R; Nugent, M A; Smith, L T; Karnovsky, M J

    1992-01-01

    Basic fibroblast growth factor (bFGF) is mitogenic for smooth muscle cells (SMC) and angiogenic. We examined the in vivo effects of bFGF in balloon denuded carotid arteries of laboratory rats. bFGF was administered continuously from polymer-based devices at 34 ng/d into the periadventitial space of rat carotid arteries for 2 wk. Intimal hyperplasia was not observed in the absence of injury or with lipopolysaccharide induced endothelial dysfunction. Different degrees of vascular injury produced proportionally more intimal hyperplasia. bFGF increased the intimal hyperplastic response 1.3-fold with severe vascular injury, and 2.4-fold with more mild injury. Increased cell proliferation, not extracellular matrix production, accounted for these effects. Cell density was unchanged for the control and bFGF-treated groups, and the number of proliferating intimal cells at 2 wk rose to an amount equivalent to the increase in mass; 1.9- and 4.0-fold for severe and lesser injury, respectively. The relative ability of heparin to reduce SMC proliferation was not altered by the presence of bFGF.bFGF also induced profound angiogenesis within and surrounding the polymeric releasing device, and in the vasa vasorum immediately around the injured arteries. bFGF's effect on vasa was linearly related to the amount of SMC proliferation within the blood vessel. Thus, the in vivo mitogenic and angiogenic potential of bFGF are coupled, and may be similarly modulated by the products of local injury and/or factors in the vessel wall. Images PMID:1371124

  11. Parkin Enhances the Expression of Cyclin-dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells*

    PubMed Central

    Tay, Shiam-Peng; Yeo, Calvin W. S.; Chai, Chou; Chua, Pei-Jou; Tan, Hui-Mei; Ang, Alex X. Y.; Yip, Daniel L. H.; Sung, Jian-Xiong; Tan, Puay Hoon; Bay, Boon-Huat; Wong, Siew-Heng; Tang, Carol; Tan, Jeanne M. M.; Lim, Kah-Leong

    2010-01-01

    Although mutations in the parkin gene are frequently associated with familial Parkinsonism, emerging evidence suggests that parkin also plays a role in cancers as a putative tumor suppressor. Supporting this, we show here that parkin expression is dramatically reduced in several breast cancer-derived cell lines as well as in primary breast cancer tissues. Importantly, we found that ectopic parkin expression in parkin-deficient breast cancer cells mitigates their proliferation rate both in vitro and in vivo, as well as reduces the capacity of these cells to migrate. Cell cycle analysis revealed the arrestment of a significant percentage of parkin-expressing breast cancer cells at the G1-phase. However, we did not observe significant changes in the levels of the G1-associated cyclin D1 and E. On the other hand, the level of cyclin-dependent kinase 6 (CDK6) is dramatically and selectively elevated in parkin-expressing breast cancer cells, the extent of which correlates well with the expression of parkin. Interestingly, a recent study demonstrated that CDK6 restrains the proliferation of breast cancer cells. Taken together, our results support a negative role for parkin in tumorigenesis and provide a potential mechanism by which parkin exerts its suppressing effects on breast cancer cell proliferation. PMID:20630868

  12. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation, and differentiation.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Xungai; Lin, Tong

    2014-11-01

    Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration. PMID:24288259

  13. Treadmill exercise improves short-term memory by enhancing hippocampal cell proliferation in quinolinic acid-induced Huntington’s disease rats

    PubMed Central

    Kim, You-Mi; Ji, Eun-Sang; Kim, Sang-Hoon; Kim, Tae-Woon; Ko, Il-Gyu; Jin, Jun-Jang; Kim, Chang-Ju; Kim, Tae-Wook; Kim, Dong-Hee

    2015-01-01

    Huntington’s disease (HD) is an inherited genetic disorder, characterized by cognitive dysfunction and abnormal body movements called chorea. Quinolinic acid (QA) is an endogenous metabolite of tryptophan in the kynurenine pathway. QA-induced alterations are similar to the symptoms of HD patients. Physical exercise has beneficial effects on the brain functions. Exercise increases production of neurotrophic factors in the brain and improves learning ability and memory function. In the present study, we investigated the effects of treadmill exercise short-term memory on QA-induced HD rats in relation with cell proliferation. For the induction of Huntington’s animal model, 2 μL of 100 nmol QA was intrastriatal injected into the rats. The rats in the treadmill exercise groups were forced to run on a treadmill for 30 min once a day, five times a week for 2 weeks. Step-down avoidance test was conducted for the determination of short-term memory. Cell proliferation in the hippocampal dentate gyrus was determined by 5-bromo-2′-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry. Western blot for brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) were performed. In the present results, treadmill exercise alleviated QA-induced short-term memory impairment in HD rats. Treadmill exercise increased cell proliferation in the hippocampal dentate gyrus through enhancing BDNF expression in the HD rats. These results revealed that treadmill exercise is effective for the symptom improvement in the HD patients. PMID:25830138

  14. NES1/KLK10 gene represses proliferation, enhances apoptosis and down-regulates glucose metabolism of PC3 prostate cancer cells

    PubMed Central

    Hu, Jiajia; Lei, Hu; Fei, Xiaochun; Liang, Sheng; Xu, Hanzhang; Qin, Dongjun; Wang, Yue; Wu, Yingli; Li, Biao

    2015-01-01

    The normal epithelial cell-specific-1 (NES1) gene, also named as KLK10, is recognised as a novel putative tumour suppressor in breast cancer, but few studies have focused on the function of KLK10 in human prostate cancer. Our study confirms that the expression of KLK10 in prostate cancer tissue and cell lines (PC3, DU145, and LNCaP clone FGC) is low. Given that the androgen-independent growth characteristic of the PC3 cell line is more similar to clinical castration-resistant prostate cancer, we studied the role of KLK10 in PC3. In vitro and in vivo assays showed that over-expressing KLK10 in PC3 could decelerate tumour proliferation, which was accompanied with an increase in apoptosis and suppression of glucose metabolism. The related proteins, such as Bcl-2 and HK-2, were down-regulated subsequently. Furthermore, by up-regulating Bcl-2 or HK-2 respectively in the PC3-KLK10 cell line, we observed a subsequent increase of cell proliferation and a synchronous up-regulation of HK-2 and Bcl-2. Besides, KLK10 expression was also increased by Bcl-2 and HK-2, which suggests that there is a negative feedback loop between KLK10 and Bcl-2/HK-2. Thus, our results demonstrated that KLK10 may function as a tumour suppressor by repressing proliferation, enhancing apoptosis and decreasing glucose metabolism in PC3 cells. PMID:26616394

  15. Combination of basic fibroblast growth factor and epidermal growth factor enhances proliferation and neuronal/glial differential of postnatal human enteric neurosphere cells in vitro.

    PubMed

    Pan, Wei-Kang; Yu, Hui; Wu, A-Li; Gao, Ya; Zheng, Bai-Jun; Li, Peng; Yang, Wei-Li; Huang, Qiang; Wang, Huai-Jie; Ge, Xin

    2016-08-01

    Human enteric neural stem cells (hENSCs) proliferate and differentiate into neurons and glial cells in response to a complex network of neurotrophic factors to form the enteric nervous system. The primary aim of this study was to determine the effect of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) on in-vitro expansion and differentiation of postnatal hENSCs-containing enteric neurosphere cells. Enteric neurosphere cells were isolated from rectal polyp specimens of 75 children (age, 1-13 years) and conditioned with bFGF, EGF, bFGF+EGF, or plain culture media. Proliferation of enteric neurosphere cells was examined using the methyl thiazolyl tetrazolium colorimetric assay over 7 days of culture. Fetal bovine serum (10%) was added to induce the differentiation of parental enteric neurosphere cells, and differentiated offspring cells were immunophenotyped against p75 neutrophin receptor (neural stem cells), peripherin (neuronal cells), and glial fibrillary acidic protein (glial cells). Combining bFGF and EGF significantly improved the proliferation of enteric neurosphere cells compared with bFGF or EGF alone (both P<0.01) throughout 7 days of culture. The addition of bFGF drove a significantly greater proportion of enteric neurosphere cells to differentiate into neuronal cells than that of EGF (P<0.01), whereas addition of EGF resulted in significantly more glial differentiation compared with addition of bFGF (P<0.01). Combining bFGF and EGF drove enteric neurosphere cells to differentiate into neuronal cells in a proportion similar to glial cells. Our results showed that the combination of bFGF and EGF significantly enhanced the proliferation and differentiation of postnatal hENSCs-containing enteric neurosphere cells in vitro. PMID:27306591

  16. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  17. MicroRNA-26b Represses Colon Cancer Cell Proliferation by Inhibiting Lymphoid Enhancer Factor 1 (LEF-1) Expression

    PubMed Central

    Zhang, Zichao; Kim, KyoungHyun; Li, Xiao; Moreno, Myriam; Sharp, Thad; Goodheart, Micheal J.; Safe, Stephen; Dupuy, Adam J.; Amendt, Brad A.

    2014-01-01

    microRNAs (miR) can act as oncogenes and tumor suppressors and several miRs are associated with cancer development and progression through the modulation of multiple cellular processes. miR-26b is down regulated in several cancers and tumors and miR-26b directly targets the Lef-1 3'UTR and inhibits endogenous Lef-1 expression. We report that miR-26b expression is associated with human colon cancer through the regulation of LEF-1 expression in colon cancer cells. Analyses of multiple colon cancer cell lines revealed an inverse correlation between miR-26b and LEF-1 expression. Normal human colon cells express low levels of LEF-1 and high levels of miR-26b, however human colon cancer cells have decreased miR-26b expression and increased LEF-1 expression. We demonstrate that miR-26b expression is a potent inhibitor of colon cancer cell proliferation and significantly decreases LEF-1 expression. The LEF-1 regualted genes Cyclin D1 and c-Myc were indirectly repressed by miR-26b and this was consistent with decreased proliferation. miR-26b overexpression in SW480 colon cancer cells also inhibited tumor growth in nude mice and this was due to decreased tumor growth and not apoptosis. Analyses of human colon cancer databases also demonstrated a link between miR-26b and LEF-1 expression. c-Myc expression is associated with multiple cancers and we propose that miR-26b may act as a potential therapeutic agent in reducing cancer cell proliferation through repressing LEF-1 activation of c-Myc and Cyclin D1 expression. PMID:24785257

  18. Aerobic Exercise Alleviates Ischemia-Induced Memory Impairment by Enhancing Cell Proliferation and Suppressing Neuronal Apoptosis in Hippocampus

    PubMed Central

    Seo, Tae-Beom; Kim, Tae-Woon; Shin, Mal-Soon; Ji, Eun-Sang; Cho, Han-Sam; Lee, Jae-Min; Kim, Tae-Wook

    2014-01-01

    Purpose Neurogenic lower urinary tract dysfunction (NLUTD) is a possible consequence of several neurological disorders. NLUTD may produce debilitating symptoms and serious complications, such as chronic renal failure, and recurrent urinary tract infections. Many animal studies of NLUTD symptoms have focused on animal models of cerebral ischemia. In the present study, we investigated the effects of treadmill exercise on memory function and its relation to cell proliferation and apoptosis in the hippocampus, following transient global ischemia in gerbils. Methods To induce transient global ischemia in gerbil, both common carotid arteries were occluded for 5 minutes. Gerbils in the exercise groups were forced to run on a treadmill exercise for 30 minutes once a day for 2 weeks. Step-down avoidance task and Y maze task were performed. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-staining, immunohistochemistry for 5-bromo-2'-deoxyridine, doublecortin, caspase-3, and Western blot for brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cytochrome c, caspase-3 were conducted. Results Ischemia caused memory impairment with an increase of cell proliferation, BDNF expression, and apoptosis in the hippocampus. Treadmill exercise improved memory function with further increase of cell proliferation and BDNF expression and a decrease of apoptosis. Conclusions The animal model that we have developed and our assessment of the relation between exercise and brain function can be useful tools for future investigations of NLUTD symptoms associated with stroke, particularly ischemic stroke. The present study suggests that treadmill exercise promoted the recovery of brain function after cerebral ischemia. PMID:25562035

  19. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  20. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption.

    PubMed

    Przekora, Agata; Benko, Aleksandra; Blazewicz, Marta; Ginalska, Grazyna

    2016-01-01

    Initial protein adsorption to the material surface is crucial for osteoblast adhesion, survival, and rapid proliferation resulting in intensive new bone formation. The aim of this study was to demonstrate that modification of a chitosan matrix of chitosan/hydroxyapatite (chit/HA) biomaterial for bone tissue engineering applications with linear β-1,3-glucan (curdlan) leads to promotion of serum protein adsorption to the resultant scaffold (chit/glu/HA) and thus in enhancement of osteoblast adhesion, spreading and proliferation. Fabricated biomaterials were pre-adsorbed with different protein solutions and then protein adsorption and osteoblast behavior on the scaffolds were compared. Moreover, surface chemical composition, wettability and surface energy of biomaterials were compared. Modification of the chitosan matrix with β-1,3-glucan introduces a greater polarpart in the resultant chitosan/β-1,3-glucan matrix presumably resulting from more OH groups within the curdlan structure. Moreover, FTIR-ATR results suggest that there might be some sort of chemical interaction between the NH group of chitosan and the OH group of β-1,3-glucan. As a consequence, the chit/glu/HA scaffold adsorbs significantly more adhesion proteins that are crucial for osteoblasts compared to the chit/HA material, providing a higher density culture of well-spread osteoblasts on its surface. Obtained results revealed that not only is chit/glu/HA biomaterial a promising scaffold for bone tissue engineering applications, but the specific polysaccharide chit/glu matrix itself is promising for use in the biomedical material field to modify various biomaterials in order to enhance osteoblast adhesion and proliferation on their surfaces. PMID:27388048

  1. CXCL14 enhances proliferation and migration of NCI-H460 human lung cancer cells overexpressing the glycoproteins containing heparan sulfate or sialic acid.

    PubMed

    Park, Cho Rong; You, Dong-Joo; Kim, Dong-Kyu; Moon, Mi Jin; Lee, Cheolju; Oh, Seung-Hyun; Ahn, Curie; Seong, Jae Young; Hwang, Jong-Ik

    2013-05-01

    CXCL14 is a chemokine family member that is involved in various cellular responses in addition to immune cell activation. Although constitutive CXCL14 expression in normal epithelial cells may help protect against infection by activating immune systems, its expression in cancer cells has raised controversy regarding its possible role in tumorigenesis. However, the underlying mechanisms for this disparity remain unknown. Investigation of cellular CXCL14 binding properties might increase our understanding of the peptide's roles in tumorigenesis. In the present study, we found that CXCL14 binds to various cell types. Interestingly, binding to NCI-H460 cells was prevented by heparan sulfate and N-acetyl neuraminic acid. Next, we examined effect of CXCL14 binding in NCI-H460 and NCI-H23. CXCL14 enhanced proliferation and migration in NCI-H460 but had no effect on NCI-H23. A reporter gene assay with various transcription factor response elements revealed that only nuclear factor-κB (NF-κB) signaling was activated by CXCL14 in NCI-H460 cells, which was blocked by BAPTA-AM, TPCA-1, and brefeldin A. Exogenous expression of some glycoproteins such as syndecan-4, podoplanin, and CD43 in these cells enhanced CXCL14 binding and NF-κB activity. Collectively, these results demonstrate that CXCL14 binding to glycoproteins harboring heparan sulfate proteoglycans and sialic acids leads proliferation and migration of some cancer cells. PMID:23161284

  2. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    SciTech Connect

    Miyatake, Kazumasa; Tsuji, Kunikazu; Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Muneta, Takeshi

    2013-02-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.

  3. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells.

    PubMed

    Muhammad, Rizwan; Peh, Gary S L; Adnan, Khadijah; Law, Jaslyn B K; Mehta, Jodhbir S; Yim, Evelyn K F

    2015-06-01

    One of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers. Biochemical cues such as growth factors and small molecules have been investigated to enhance the expansion of HCECs with a limited increase in proliferation. In this study, patterned tissue culture polystyrene (TCPS) was shown to significantly enhance the expansion of HCECs. The proliferation of HCECs increased up to 2.9-fold, and the expression amount and localization of cell-cell tight junction protein Zona Occludens-1 (ZO-1) was significantly enhanced when grown on 1 μm TCPS pillars. 250 nm pillars induced an optimal hexagonal morphology of HCEC cells. Furthermore, we demonstrated that the topographical effect on tight-junction expression and cell morphology could be maintained throughout each passage, and was effectively 'remembered' by the cells. Higher amount of tight-junction protein expression was maintained at cell junctions when topographic cues were removed in the successive seeding. This topographic memory suggested topography-exposed/induced cells would maintain the enhanced functional markers, which would be useful in cell-therapy based approaches to enable the in situ endothelial cell monolayer formation upon delivery. The development of patterned TCPS culture platforms could significantly benefit those researching human corneal endothelial cell cultivation for cell therapy, and tissue engineering applications. PMID:25796353

  4. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  5. Dioscorea Phytocompounds Enhance Murine Splenocyte Proliferation Ex Vivo and Improve Regeneration of Bone Marrow Cells In Vivo

    PubMed Central

    Su, Pei-Fen; Li, Chin-Jin; Hsu, Chih-Chien; Benson, Spencer; Wang, Sheng-Yang; Aravindaram, Kandan; Chan, Sunney I.; Wu, Shih-Hsiung; Yang, Feng-Ling; Huang, Wen-Ching; Shyur, Lie-Fen; Yang, Ning-Sun

    2011-01-01

    Specific cytokines have been tested clinically for immunotherapy of cancers; however, cytotoxicity has often impaired their usefulness. Consequently, alternative approaches are increasingly desirable. Dioscorea spp. tuber is a widely used traditional Chinese medicinal herb claimed to confer immunostimulatory activity. In this study, we evaluated Dioscorea as an adjuvant therapy for use alongside chemotherapy for cancer. Phytocompounds from Dioscorea tubers were ethanol fractioned and used for ex vivo splenocyte proliferation assay or in vivo force-feeding of mice pre-treated with the chemotherapy agent 5-fluorouracil. Co-treatment with a 50–75% ethanol-partitioned fraction of the tuber extract of D. batatas (DsCE-II) and interleukin (IL)-2 resulted in a significantly higher rate of murine splenocyte cell proliferation ex vivo than treatment with DsCE-II or IL-2 alone. This DsCE-II fraction, which contains a polysaccharide with a high proportion of β-1,4-linkage mannose (≥64%), also promoted the regeneration of specific progenitor cell populations in damaged bone marrow tissues of 5-fluorouracil-treated mice. Colony-forming unit (CFU) analyses demonstrated that the population of CFU-GM cells, but not CFU-GEMM or BFU-E cells, preferentially recovered to ~67% in the bone marrow of immune-suppressed mice fed with DsCE-II. DsCE-II efficacy level was ~85% of that obtained by subcutaneous administration of recombinant G-CSF proteins (5 μg kg−1) in mice tested in parallel. This study suggests that the DsCE-II fraction of D. batatas extract may be considered for further development as a dietary supplement for use alongside chemotherapy during cancer treatment. PMID:21799689

  6. Enhancer of zeste homolog 2 (EZH2) promotes the proliferation and invasion of epithelial ovarian cancer cells

    PubMed Central

    Li, Hua; Cai, Qi; Godwin, Andrew K.; Zhang, Rugang

    2010-01-01

    EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes non-catalytic subunits SUZ12 and EED. When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared to primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12 and EED were expressed at higher levels in all eight human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared to pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n=134) when compared to normal ovarian surface epithelium (n=46) (p<0.001). EZH2 expression positively correlated with expression of Ki67 (p<0.001) (a marker of cell proliferation) and tumor grade (p=0.034) but not tumor stage (p=0.908) in EOC. There was no correlation of EZH2 expression with overall (p=0.3) or disease-free survival (p=0.2) in high-grade serous histotype EOC patients (n=98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics. PMID:21115743

  7. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC. PMID:25367850

  8. Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer’s disease rats

    PubMed Central

    Sim, Young-Je

    2014-01-01

    Alzheimer’s disease is the most common cause of dementia. This disease is a progressive and irreversible brain disorder accompanied with severe learning and memory impairment. Exercise increases cognitive ability, attenuates motor deficits, increases new neuron formation, and ameliorates neurological impairments in several neurodegenerative diseases. This study investigated the effects of treadmill exercise on spatial learning ability in relation with cell proliferation in the hippocampus. The rat model of Alzheimer’s disease was induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) using a stereotaxic instrument. The rats in the exercise groups were forced to run on a treadmill for once 30 min daily for 28 consecutive days starting at 3 days after the ICV injection of STZ. Radial 8-arm maze test was conducted for the spatial learning ability. New neuron formation in the hippocampus was detected by 5-bromo-2’-deoxyuridine (BrdU) immunohistochemistry. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions were examined by western blot analysis. The present results show that ICV injection of STZ impaired spatial learning ability. Decreased cell proliferation with decrement of BDNF and TrkB expressions in the hippocampus were observed in the STZ-induced Alzheimer’s disease rats. However, treadmill exercise alleviated deficits of spatial learning ability. Treadmill exercise enhanced cell proliferation and increased BDNF and TrkB expressions in the rats with ICV injection of STZ. The present study suggests that treadmill exercise can be a useful strategy for treating memory impairment induced by several neurodegenerative diseases. PMID:24877042

  9. Novel role of Zn(II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers.

    PubMed

    Mei, Xueting; Xu, Donghui; Xu, Sika; Zheng, Yanping; Xu, Shibo

    2012-04-15

    Alcohol consumption can induce gastric ulcers and zinc deficiency. Zinc complexes were reported to have anti-ulcer activity as it acts as an anti-inflammatory and antioxidant. Zn(II)-curcumin complex and its solid dispersions (SDs) were synthesized and evaluated for its gastroprotective activity and mechanism against ethanol-induced ulcer. The Swiss murine fibroblast cell line (3T3) was used as an alternative in vitro model to evaluate the effects of Zn(II)-curcumin on cell proliferation. Zn(II)-curcumin were administered orally for seven consecutive days prior to induction of ulcers using ethanol. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that solid dispersions (SDs) of Zn(II)-curcumin (2.5-20 μM) enhanced the proliferation of 3T3 cells more significantly than curcumin at the same concentrations (P<0.01). Oral administration of Zn(II)-curcumin (12, 24 and 48 mg/kg) SDs dose-dependently prevented formation of ulcer lesions induced by ethanol. The levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and oxidative stress superoxide dismutase (SOD), glutathione peroxidase (GPX-Px), malonaldehyde (MDA) and H(+)-K(+)-ATPase were in the rats exposed to ethanol in ulceration have been altered. Zn(II)-curcumin prevented formation of ulcer lesions, significantly inhibited TNF-α and IL-6 mRNA expression, increased the activity of SOD and GSH-Px, reduced MDA levels and H(+)-K(+)-ATPase in mucosa of rats compared to controls (P<0.05). These findings suggest that the gastroprotective activity of Zn(II)-curcumin complex might contribute in stimulating cell proliferation and adjusting the proinflammatory cytokine-mediated oxidative damage to the gastric mucosa. PMID:22465177

  10. Enhanced proliferation of transfused marrow and reversal of normal growth inhibition of female marrow in male hosts 2 months after sublethal irradiation

    SciTech Connect

    Brecher, G.; Mulcahy, K.; Tjio, J.H.; Raveche, E.

    1985-01-01

    We have previously shown that bone marrow will seed and proliferate in normal recipients. Transfusion of 50 million cells on each of 4 or 5 consecutive days, a total of 200-250 million cells, resulted in the recipient's marrow being 20-40% of donor origin. The present paper reported on the marked enhancement of proliferation of donor cells in animals that were exposed to sublethal doses of irradiation of 300-900 R. Two months later, when their peripheral blood values had returned to normal, they were transfused with 100 million cells. The number of donor cells in the recipients exposed to 600-900 R reached 55-100% at various intervals after transfusion, with controls averaging 24% and never exceeding 40%. Since the transfused cells numbered less than 40% of the host's own complement of marrow cells, they could not replace 100% of them unless they proliferated more rapidly than the host cells. The implied competitive advantage of the donor cells was ascribed to a reduced capacity for self-renewal of the host's irradiated cells. In recipients exposed to 300 R and in nonirradiated controls, female cells failed to grow in male recipients, while male cells grew as well in female as in male hosts. The inhibition of growth of female cells in the male host was abolished by irradiation with 600 or 900 R, or by the exposure of the female donor cells to anti-Thy-1 serum and complement prior to transfusion. Experiments are under way to test the suggested immunologic nature of the inhibition phenomenon.

  11. Increased levels of palmitoylethanolamide and other bioactive lipid mediators and enhanced local mast cell proliferation in canine atopic dermatitis

    PubMed Central

    2014-01-01

    Background Despite the precise pathogenesis of atopic dermatitis (AD) is unknown, an immune dysregulation that causes Th2-predominant inflammation and an intrinsic defect in skin barrier function are currently the two major hypotheses, according to the so-called outside-inside-outside model. Mast cells (MCs) are involved in AD both by releasing Th2 polarizing cytokines and generating pruritus symptoms through release of histamine and tryptase. A link between MCs and skin barrier defects was recently uncovered, with histamine being found to profoundly contribute to the skin barrier defects. Palmitoylethanolamide and related lipid mediators are endogenous bioactive compounds, considered to play a protective homeostatic role in many tissues: evidence collected so far shows that the anti-inflammatory effect of palmitoylethanolamide depends on the down-modulation of MC degranulation. Based on this background, the purpose of the present study was twofold: (a) to determine if the endogenous levels of palmitoylethanolamide and other bioactive lipid mediators are changed in the skin of AD dogs compared to healthy animals; (b) to examine if MC number is increased in the skin of AD dogs and, if so, whether it depends on MC in-situ proliferation. Results The amount of lipid extract expressed as percent of biopsy tissue weight was significantly reduced in AD skin while the levels of all analyzed bioactive lipid mediators were significantly elevated, with palmitoylethanolamide showing the highest increase. In dogs with AD, the number of MCs was significantly increased in both the subepidermal and the perifollicular compartments and their granule content was significantly decreased in the latter. Also, in situ proliferation of MCs was documented. Conclusions The levels of palmitoylethanolamide and other bioactive lipid mediators were shown to increase in AD skin compared to healthy samples, leading to the hypothesis that they may be part of the body’s innate mechanisms to

  12. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  13. Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo.

    PubMed

    Liu, Nei-Chi; Hsieh, Pei-Fang; Hsieh, Ming-Kun; Zeng, Zih-Ming; Cheng, Hsiao-Ling; Liao, Jiunn-Wang; Chueh, Pin Ju

    2012-03-14

    Cancer chemoprevention is employed to block or reverse the progression of malignancies. To date, several thousands of agents have been found to possess chemopreventative activity, one of which is capsaicin, a component of chili peppers that exhibits antigrowth activity against various cancer cell lines. However, the role of capsaicin in tumorigenesis remains controversial because both cancer prevention and promotion have been proposed. Here, we made the unexpected discovery that treatment with low concentrations of capsaicin up-regulates tNOX (tumor-associated NADH oxidase) expression in HCT116 human colon carcinoma cells in association with enhanced cell proliferation and migration, as evidenced by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Importantly, tNOX-knockdown in HCT116 cells by RNA interference reversed capsaicin-induced cell proliferation and migration in vitro and decreased tumor growth in vivo. Collectively, these findings provide a basis for explaining the tumor-promoting effect of capsaicin and might imply that caution should be taken when using capsaicin as a chemopreventive agent. PMID:22353011

  14. In Situ Normoxia Enhances Survival and Proliferation Rate of Human Adipose Tissue-Derived Stromal Cells without Increasing the Risk of Tumourigenesis

    PubMed Central

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Yong, Kar Wey; Poon, Chi Tat; Noor Azmi, Mat Adenan; Omar, Siti Zawiah; Chua, Kien Hui; Xu, Feng; Wan Safwani, Wan Kamarul Zaman

    2015-01-01

    Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics. PMID:25615717

  15. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production.

    PubMed

    Deters, A M; Schröder, K R; Smiatek, T; Hensel, Andreas

    2005-01-01

    Endogenous carbohydrates, especially oligo- and polysaccharides, participate in the regulation of a broad range of biological activities, e. g., signal transduction, inflammation, fertilisation, cell-cell-adhesion and act as in vivo markers for the determination of cell types. In the present study, water-soluble (WS) and gel-forming polysaccharides (GF) of ispaghula seed husk (Plantago ovata Forsskal, Plantaginaceae) were characterised as neutral and acidic arabinoxylans and tested under in vitro conditions for regulating activities on cell physiology of human keratinocytes and human primary fibroblasts. Only water-soluble polysaccharides exhibited strong and significant effects on cell physiology of keratinocytes and fibroblasts. Proliferation of cells of the spontaneously immortalised keratinocyte cell line HaCaT was significantly up-regulated in a dose-independent manner. Analysis of activated signal pathways by RNA analysis proved an effect of the acidic arabinoxylan on the expression of keratinocyte growth factor (KGF) in HaCaT cells. Differentiation behaviour of normal human keratinocytes (NHK) determined by involucrin was slightly influenced, due to the enhanced cell proliferation, leading to a cell-cell-mediated indirect induction of early differentiation. WS did not influence late differentiation, as determined by keratin K1 and K10 titres. PMID:15678371

  16. Quercus infectoria Gall Extract Enhanced the Proliferation and Activity of Human Fetal Osteoblast Cell Line (hFOB 1.19)

    PubMed Central

    HAPIDIN, Hermizi; ROZELAN, Dalila; ABDULLAH, Hasmah; WAN HANAFFI, Wan Nurhidayah; SOELAIMAN, Ima Nirwana

    2015-01-01

    Background: The present study investigated the effects of Quercus infectoria (QI) gall extract on the proliferation, alkaline phosphatase (ALP), osteocalcin, and the morphology of a human fetal osteoblast cell line (hFOB 1.19). Methods: The cells were cultured in Dulbecco’s modified eagle medium F12 supplemented with a 10% fetal bovine serum, a 1% penicillin/streptomycin and were treated with QI at various concentrations (0.1 to 99.0 μg/mL) for 72 hours. The levels of ALP and osteocalcin were measured at day 1, 3, 7, 10, and 14 and were compared among the negative control, pamidronate and QI groups. Results: The median effective concentration (EC50) of hFOB 1.19 treated with QI was 10.30 μg/mL. This concentration was more effective compared to the control drug, pamidronate (EC50 at 16.09 μg/mL). The ALP and osteocalcin levels of hFOB 1.19 treated with QI from day 7 and onwards were significantly increased in a time and concentration-dependent manner. Interestingly, from day 7 until day 14, the ALP and osteocalcin levels were highest in the cells treated with QI compared to the other two groups. The morphology of cells treated with QI was uniformly elongated, higher in number and over-confluent. Conclusion: After treatment with QI, cell proliferation enhanced and ALP and osteocalcin levels increased. PMID:25892946

  17. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis.

    PubMed

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Yong, Kar Wey; Poon, Chi Tat; Noor Azmi, Mat Adenan; Omar, Siti Zawiah; Chua, Kien Hui; Xu, Feng; Wan Safwani, Wan Kamarul Zaman

    2015-01-01

    Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics. PMID:25615717

  18. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    SciTech Connect

    Jia, Yanhan; Zhang, Yan; Qiao, Chunxia; Liu, Guijun; Zhao, Qing; Zhou, Tingting; Chen, Guojiang; Li, Yali; Feng, Jiannan; Li, Yan; Zhang, Qiuping; Peng, Hui

    2013-07-12

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer.

  19. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-12-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  20. Identification of a new CRMP5 isoform present in the nucleus of cancer cells and enhancing their proliferation.

    PubMed

    Brot, Sébastien; Malleval, Céline; Benetollo, Claire; Auger, Carole; Meyronet, David; Rogemond, Véronique; Honnorat, Jérôme; Moradi-Améli, Mahnaz

    2013-03-10

    Collapsin Response Mediator Protein 5 (CRMP5) belongs to a family of five cytosolic proteins highly expressed in the developing nervous system but downregulated in the adult brain. When expressed at the adult stage, CRMP5 is involved in neurological disorders. Indeed, CRMP5 is found expressed in cancer cells of some brain tumors, such as glioblastoma, or in small cell lung cancer causing paraneoplastic neurological syndromes as a result of cancer-induced auto-immune processes. Nevertheless, its role in cancer pathology is still obscure. Here, we show a new short isoform, derived from C-terminal processing of CRMP5, presenting a nuclear localization both in human glioblastoma, and in cancer cell lines (H69, GL15). By mutational analysis, we demonstrate that nuclear translocation occurs via nuclear localization signal (NLS), where the essential residue for nuclear location is K391. Direct CRMP5/ tubulin interaction, previously shown during brain development, does not occur for cytosolic CRMP5 in pathological conditions, leading to the suggestion that in cancer cells CRMP5 is not sequestered in the cytosol; therefore it may undergo C-terminal truncation allowing the exposure of the NLS for active translocation. Moreover, we show that the function associated with the CRMP5 nuclear targeting is an increase of cell proliferation activity. PMID:23298946

  1. Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis

    PubMed Central

    Chen, Tianpeng; Liu, Jin; Guo, Bingbing; Ma, Xiaonian; Sun, Peipei; Liu, Bin; Chen, Feng

    2015-01-01

    The objective of this study was to investigate the effect of light on lipid and starch accumulation in the oleaginous green algae Chlorella zofingiensis supplemented with glucose. C. zofingiensis, when fed with 30 g/L glucose, synthesized lipids up to 0.531 g/g dry weight; while in the presence of light, the lipid content dropped down to 0.352 g/g dry weight. Lipid yield on glucose was 0.184 g/g glucose, 14% higher than that cultured with light. The light-mediated lipid reduction was accompanied by the down-regulation of fatty acid biosynthetic genes at the transcriptional level. Furthermore, light promoted cell proliferation, starch accumulation, and the starch yield based on glucose. Taken together, light may attenuate lipid accumulation, possibly through the inhibition of lipid biosynthetic pathway, leading to more carbon flux from glucose to starch. This study reveals the dual effects of light on the sugar-fed C. zofingiensis and provides valuable insights into the possible optimization of algal biomass and lipid production by manipulation of culture conditions. PMID:26442783

  2. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation.

    PubMed

    Kelly, Patrick; Bailey, Candice L; Fueger, Patrick T; Newgard, Christopher B; Casey, Patrick J; Kimple, Michelle E

    2010-05-21

    Recent studies have implicated Epac2, a guanine-nucleotide exchange factor for the Rap subfamily of monomeric G proteins, as an important regulator of insulin secretion from pancreatic beta-cells. Although the Epac proteins were originally identified as cAMP-responsive activators of Rap1 GTPases, the role of Rap1 in beta-cell biology has not yet been defined. In this study, we examined the direct effects of Rap1 signaling on beta-cell biology. Using the Ins-1 rat insulinoma line, we demonstrate that activated Rap1A, but not related monomeric G proteins, promotes ribosomal protein S6 phosphorylation. Using isolated rat islets, we show that this signaling event is rapamycin-sensitive, indicating that it is mediated by the mammalian target of rapamycin complex 1-p70 S6 kinase pathway, a known growth regulatory pathway. This newly defined beta-cell signaling pathway acts downstream of cAMP, in parallel with the stimulation of cAMP-dependent protein kinase, to drive ribosomal protein S6 phosphorylation. Activated Rap1A promotes glucose-stimulated insulin secretion, islet cell hypertrophy, and islet cell proliferation, the latter exclusively through mammalian target of rapamycin complex 1, suggesting that Rap1 is an important regulator of beta-cell function. This newly defined signaling pathway may yield unique targets for the treatment of beta-cell dysfunction in diabetes. PMID:20339002

  3. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth1

    PubMed Central

    Corvinus, Florian M; Orth, Carina; Moriggl, Richard; Tsareva, Svetlana A; Wagner, Stefan; Pfitzner, Edith B; Baus, Daniela; Kaufmann, Roland; Huberb, Lukas A; Zatloukal, Kurt; Beug, Hartmut; Öhlschläger, Peter; Schütz, Alexander; Halbhuber, Karl-Jürgen; Friedrich, Karlheinz

    2005-01-01

    Abstract Colorectal carcinoma (CRC) is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRC-derived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth. PMID:16036105

  4. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation

    PubMed Central

    Perez-Villaroel, P.; Lee, C.; Cheng, F.; Knox, T.; Woods, D.M.; Barrios, K.; Powers, J.; Sahakian, E.; Wang, H.W.; Canales, J.; Marante, D.; Smalley, K.S.M.; Bergman, J.; Seto, E.; Kozikowski, A.; Pinilla-Ibarz, J.; Sarnaik, A.; Celis, E.; Weber, J.; Sotomayor, E.M.; Villagra, A.

    2015-01-01

    The median survival for metastatic melanoma is in the realm of 8–16 months and there are few therapies that offer significant improvement in overall survival. One of the recent advances in cancer treatment focuses on epigenetic modifiers to alter the survivability and immunogenicity of cancer cells. Our group and others have previously demonstrated that pan-HDAC inhibitors induce apoptosis, cell cycle arrest and changes in the immunogenicity of melanoma cells. Here we interrogated specific HDACs which may be responsible for this effect. We found that both genetic abrogation and pharmacologic inhibition of HDAC6 decreases in vitro proliferation and induces G1 arrest of melanoma cell lines without inducing apoptosis. Moreover, targeting this molecule led to an important upregulation in the expression of tumor associated antigens and MHC class I, suggesting a potential improvement in the immunogenicity of these cells. Of note, this anti-melanoma activity was operative regardless of mutational status of the cells. These effects translated into a pronounced delay of in vivo melanoma tumor growth which was, at least in part, dependent on intact immunity as evidenced by the restoration of tumor growth after CD4+ and CD8+ depletion. Given our findings, we provide the initial rationale for the further development of selective HDAC6 inhibitors as potential therapeutic anti-melanoma agents. PMID:25957812

  5. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  6. The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116.

    PubMed

    Abassi, Haila; Ayed-Boussema, Imen; Shirley, Sarah; Abid, Salwa; Bacha, Hassen; Micheau, Olivier

    2016-07-01

    Zearalenone (ZEN) and Aflatoxin B1 (AFB1) are fungal secondary metabolites produced by Fusarium and Aspergillus genera, respectively. These mycotoxins are found world-wide as corn and wheat contaminants. AFB1 is probably the most toxic and carcinogenic mycotoxin. It has been demonstrated to be mutagenic, genotoxic, and hepatocarcinogenic. ZEN is a non-steroidal estrogenic mycotoxin that displays hepatotoxicity, immunotoxicity and genotoxicity. Its mutagenic and carcinogenic properties have so far remained controversial and questionable. Using the colon carcinoma cell line HCT116, we will show here that ZEN, at low concentrations, enhances cell proliferation, increases colony formation and fastens cell migration after wound healing. The highest effect of ZEN was observed at a concentration 10 times lower as compared to AFB1. Our findings suggest thus that this mycotoxin exhibits carcinogenesis-like properties in HCT116 cells. PMID:27084041

  7. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    SciTech Connect

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter; Wells, Peter G.

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity in the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic

  8. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9.

    PubMed

    Nie, Fang; Liu, Tianming; Zhong, Liang; Yang, Xianggui; Liu, Yunhong; Xia, Hongwei; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; Chen, Tingmei

    2016-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR‑148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid‑mediated overexpression of miR‑148b promoted cell proliferation, increased the S‑phase population of the cell cycle and enhanced apoptosis in the 786‑O and OS‑RC‑2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit‑8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen‑activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c‑Jun N‑terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, overexpression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR‑148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway. PMID:26573018

  9. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    SciTech Connect

    Noh, Seol Ah Choi, Young-Im Cho, Jin-Seong Lee, Hyoshin

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  10. Sphingosine-1-phosphate receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination.

    PubMed

    Blanc, Caroline A; Grist, Jonathan J; Rosen, Hugh; Sears-Kraxberger, Ilse; Steward, Oswald; Lane, Thomas E

    2015-10-01

    The oral drug FTY720 affects sphingosine-1-phosphate (S1P) signaling on targeted cells that bear the S1P receptors S1P1, S1P3, S1P4, and S1P5. We examined the effect of FTY720 treatment on the biology of mouse neural progenitor cells (NPCs) after transplantation in a viral model of demyelination. Intracerebral infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in an acute encephalomyelitis, followed by demyelination similar in pathology to the human demyelinating disease, multiple sclerosis. We have previously reported that intraspinal transplantation of mouse NPCs into JHMV-infected animals resulted in selective colonization of demyelinated lesions, preferential differentiation into oligodendroglia accompanied by axonal preservation, and increased remyelination. Cultured NPCs expressed transcripts for S1P receptors S1P1, S1P2, S1P3, S1P4, and S1P5. FTY720 treatment of cultured NPCs resulted in increased mitogen-activated protein kinase phosphorylation and migration after exposure to the chemokine CXCL12. Administration of FTY720 to JHMV-infected mice resulted in enhanced migration and increased proliferation of transplanted NPCs after spinal cord engraftment. FTY720 treatment did not improve clinical disease, diminish neuroinflammation or the severity of demyelination, nor increase remyelination. These findings argue that FTY720 treatment selectively increases NPC proliferation and migration but does not either improve clinical outcome or enhance remyelination after transplantation into animals in which immune-mediated demyelination is initiated by the viral infection of the central nervous system. PMID:26435414

  11. Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models

    SciTech Connect

    Marino, Ana-Maria; Sofiadis, Anastasios; Baryawno, Ninib; Johnsen, John Inge; Larsson, Catharina; Vukojevic, Vladana; Ekstroem, Tomas J.

    2011-07-22

    Highlights: {yields} The histone deacetylase inhibitor 4-phenylbutyrate substantially enhance efficacy of the receptor tyrosine kinase inhibitors gefitinib or vandetanib in glioma and medulloblastoma cell lines. {yields} Cell death increases and clonogenic survival is reduced in the combination treatments, over mono-therapy. {yields} Combination treatments with these drugs may improve clinical outcome for cancer therapy. -- Abstract: We have investigated in vitro effects of anticancer therapy with the histone deacetylase inhibitor (HDACi) 4-phenylbutyrate (4-PB) combined with receptor tyrosine kinase inhibitors (RTKi) gefitinib or vandetanib on the survival of glioblastoma (U343MGa) and medulloblastoma (D324Med) cells. In comparison with individual effects of these drugs, combined treatment with gefitinib/4-PB or vandetanib/4-PB resulted in enhanced cell killing and reduced clonogenic survival in both cell lines. Our results suggest that combined treatment using HDACi and RTKi may beneficially affect the outcome of cancer therapy.

  12. The use of biomaterials for cell function enhancement: acceleration of fibroblast migration and promotion of stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Qin, Sisi

    , while remained constant for the cells on the flat surfaces. The increased speed on the 8microm fiber surfaces could be correlated with a 20% increase in the nuclear deformation, and a decrease around 30% in the number of focal adhesion during the same observation period. RNA expression of Myosin IIA, a protein which complexes to the actin and is responsible for exertion of traction forces during migration was not upregulated during this process. On the other hand, histochemical staining of Myosin IIA showed that the protein had re-organized into large fibers which spanned the length of the cells. Observation of the cell morphology indicated that a new mode of motion had been established. Rather than the classical retraction of the cytoplasm followed by center of mass translation, which was observed on the flat surfaces, the cells were now moving by a contractile motion around the nucleus similar to that found in muscular motion. This mode was found to be more efficient when undergoing oriented motion. In addition to orientation, surface mechanics are also important in the tissue regeneration process. This study demonstrated that mechanical factors are important for the maintenance of pluripotency and control of proliferation rates. CD34+ hematopoietic stem cells (HSCs) were transduced with ICD (intracellular domain)-Notch and plated on gelatin hydrogels, whose moduli were controlled by the crosslinking ratio. On the softer hydrogel, a synergy was achieved which resulted in more than a five-fold increase in proliferation and a four-fold increase in the preservation of stemness, while HSCs maintained their ability to differentiate into multiple blood cell lineages. These results point the way for achieving clinically significant expansion of human HSCs.

  13. bak deletion stimulates gastric epithelial proliferation and enhances Helicobacter felis-induced gastric atrophy and dysplasia in mice

    PubMed Central

    Duckworth, C. A.; Abuderman, A. A.; Burkitt, M. D.; Williams, J. M.; O'Reilly, L. A.

    2015-01-01

    Helicobacter infection causes a chronic superficial gastritis that in some cases progresses via atrophic gastritis to adenocarcinoma. Proapoptotic bak has been shown to regulate radiation-induced apoptosis in the stomach and colon and also susceptibility to colorectal carcinogenesis in vivo. Therefore we investigated the gastric mucosal pathology following H. felis infection in bak-null mice at 6 or 48 wk postinfection. Primary gastric gland culture from bak-null mice was also used to assess the effects of bak deletion on IFN-γ-, TNF-α-, or IL-1β-induced apoptosis. bak-null gastric corpus glands were longer, had increased epithelial Ki-67 expression, and contained fewer parietal and enteroendocrine cells compared with the wild type (wt). In wt mice, bak was expressed at the luminal surface of gastric corpus glands, and this increased 2 wk post-H. felis infection. Apoptotic cell numbers were decreased in bak-null corpus 6 and 48 wk following infection and in primary gland cultures following cytokine administration. Increased gastric epithelial Ki-67 labeling index was observed in C57BL/6 mice after H. felis infection, whereas no such increase was detected in bak-null mice. More severe gastric atrophy was observed in bak-null compared with C57BL/6 mice 6 and 48 wk postinfection, and 76% of bak-null compared with 25% of C57BL/6 mice showed evidence of gastric dysplasia following long-term infection. Collectively, bak therefore regulates gastric epithelial cell apoptosis, proliferation, differentiation, mucosal thickness, and susceptibility to gastric atrophy and dysplasia following H. felis infection. PMID:26159699

  14. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    SciTech Connect

    Yan, Judy; Tang, Damu

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  15. CMHX008, a Novel Peroxisome Proliferator-Activated Receptor γ Partial Agonist, Enhances Insulin Sensitivity In Vitro and In Vivo

    PubMed Central

    Song, Ying; Liu, Zhiguo; Li, Jibin; Gao, Rufei; Zhang, Yuyao; Mei, Hu; Guo, Tingwang; Xiao, Ling; Wang, Bochu; Wu, Chaodong; Xiao, Xiaoqiu

    2014-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders. PMID:25004107

  16. Activating transcription factor 2 in mesenchymal tumors.

    PubMed

    Endo, Makoto; Su, Le; Nielsen, Torsten O

    2014-02-01

    Activating transcription factor 2 (ATF2) is a member of activator protein 1 superfamily, which can heterodimerize with other transcription factors regulating cell differentiation and survival. ATF2 assembles into a complex with the synovial sarcoma translocation, chromosome 18 (SS18)-synovial sarcoma, X breakpoint (SSX) fusion oncoprotein, and the transducin-like enhancer of split 1 (TLE1) corepressor, driving oncogenesis in synovial sarcoma. The fusion oncoproteins in many other translocation-associated sarcomas incorporate transcription factors from the ATF/cAMP response element binding or E26 families, which potentially form heterodimers with ATF2 to regulate transcription. ATF2 may therefore play an important role in the oncogenesis of many mesenchymal tumors, but as yet, little is known about its protein expression in patient specimens. Herein we perform immunohistochemical analyses using a validated specific antibody for ATF2 expression and intracellular localization on a cohort of 594 malignant and 207 benign mesenchymal tumors representing 47 diagnostic entities. Melanoma served as a positive control for nuclear and cytoplasmic staining. High nuclear ATF2 expression was mainly observed in translocation-associated and/or spindle cell sarcomas including synovial sarcoma, desmoplastic small round cell tumor, endometrial stromal sarcoma, gastrointestinal stromal tumor, malignant peripheral nerve sheath tumor, and solitary fibrous tumor. Cytoplasmic ATF2 expression was less frequently seen than nuclear expression in malignant mesenchymal tumors. Benign mesenchymal tumors mostly showed much lower nuclear and cytoplasmic ATF2 expression. PMID:24289970

  17. CD19 regulation of human B cell responses. B cell proliferation and antibody secretion are inhibited or enhanced by ligation of the CD19 surface glycoprotein depending on the stimulating signal used.

    PubMed

    Callard, R E; Rigley, K P; Smith, S H; Thurstan, S; Shields, J G

    1992-05-15

    The regulation of human B cell proliferation and differentiation by the CD19 surface glycoprotein was investigated. As expected, proliferation induced by costimulation with anti-IgM plus IL-4 or IL-2, or with G28.8 antibody plus IL-4 was inhibited by antibody ligation of CD19. In contrast, proliferation of tonsillar B cells to mitogenic doses of PMA (5 ng/ml) or to EBV were enhanced, and proliferation of B cell lines to BCGF(low) was unaffected. Similarly, specific antibody responses by tonsillar B cells to influenza virus, and Ig secretion by the CESS lymphoblastoid cell line in response to IL-6 were inhibited, whereas polyclonal Ig production in response to EBV was enhanced. These results show that human B cell responses may be inhibited or enhanced by CD19 depending on the stimulating signal used. The difference in response to CD19 ligation did not depend on whether proliferation or differentiation was being measured, or whether stimulation was by surface Ig. In experiments using PMA as a T cell independent mitogen, it was found that ligation of CD19 inhibited proliferation of B cells costimulated with low doses of PMA plus G28.5 (CD40) antibody, but enhanced the response to higher (mitogenic) doses with or without costimulation with G28.5. The change from inhibition to enhancement occurred over a very small increase in PMA dose (0.5-1.0 ng/ml) that corresponded exactly to the lowest dose required for mitogenic activity. Finally, we showed that CD19 ligation inhibited the increase in surface expression of CD23, but not IgM, induced by IL-4, showing that CD19 ligation can have opposed effects on different responses to the same signal. Together our results suggest that CD19 activation of human B cells interacts with other signaling events to enhance or inhibit the subsequent response. PMID:1374445

  18. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Gao, Ping; Wang, Rui; Shen, Jian-Jun; Lin, Fang; Wang, Xi; Dong, Ke; Zhang, Hui-Zhong

    2008-11-01

    STK15 (Aurora A/BTAK) is an oncogenic serine/threonine kinase that plays a role in centrosome separation and in the formation of the mitotic bipolar spindle. It is highly expressed and constitutively activated in various human tumors including hepatocellular carcinoma (HCC). To investigate its possibility as a molecular target for future therapies directed against hepatocellular carcinoma, we constructed a tissue-specific RNA interference (RNAi) system mediated by hypoxia-inducible (HI) enhancer/alpha-fetoprotein (AFP) promoter and employed it to downregulate exogenous reporters (LUC and EGFP) and endogenous STK15 gene expression and analyzed the phenotypical changes in HCC cells. Results showed that the expression of exogenous reporters (LUC and EGFP) was specifically downregulated in hepatoma cells but not in non-hepatoma cells. Moreover, the specific downregulation of STK15 expression in hepatocellular carcinoma cells (HepG2) significantly inhibited in vitro cellular proliferation and in vivo tumorigenicity. Furthermore, we also found that the downregulation of STK15 expression led to cell arrest in the G(2)/M phase and finally apoptosis induction of HepG2 cells. Thus, the HI enhancer/AFP promoter-mediated RNAi targeting STK15 may be a potential therapeutic strategy for the treatment of hepatocellular carcinoma with tumor specificity and high efficacy. PMID:18803637

  19. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. PMID:27207035

  20. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid

    SciTech Connect

    Tang, X.-H.; Vivero, Marina; Gudas, Lorraine J.

    2008-01-01

    We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 {mu}M, 400 {mu}l for 4 days) by 1.59 {+-} 0.2-fold (p < 0.05). ATRA treatment (10 {mu}M) resulted in a 59.9 {+-} 9.8% increase (p < 0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.

  1. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation.

    PubMed

    Boudra, Rafik; Lagrafeuille, Rosyne; Lours-Calet, Corinne; de Joussineau, Cyrille; Loubeau-Legros, Gaëlle; Chaveroux, Cédric; Saru, Jean-Paul; Baron, Silvère; Morel, Laurent; Beaudoin, Claude

    2016-05-18

    The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer. PMID:27050906

  2. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  3. Enhanced Gastrointestinal Expression of Cytosolic Malic Enzyme (ME1) Induces Intestinal and Liver Lipogenic Gene Expression and Intestinal Cell Proliferation in Mice

    PubMed Central

    Al-Dwairi, Ahmed; Brown, Adam R.; Pabona, John Mark P.; Van, Trang H.; Hamdan, Hamdan; Mercado, Charles P.; Quick, Charles M.; Wight, Patricia A.; Simmen, Rosalia C. M.; Simmen, Frank A.

    2014-01-01

    The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1) is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown. We generated transgenic (Tg) mice expressing rat ME1 in the gastrointestinal epithelium under the control of the murine villin1 promoter/enhancer. Levels of intestinal ME1 protein (endogenous plus transgene) were greater in Tg than wildtype (WT) littermates. Effects of elevated intestinal ME1 on body weight, circulating insulin, select adipocytokines, blood glucose, and metabolism-related genes were examined. Male Tg mice fed a high-fat (HF) diet gained significantly more body weight than WT male littermates and had heavier livers. ME1-Tg mice had deeper intestinal and colon crypts, a greater intestinal 5-bromodeoxyuridine labeling index, and increased expression of intestinal lipogenic (Fasn, Srebf1) and cholesterol biosynthetic (Hmgcsr, Hmgcs1), genes. The livers from HF diet-fed Tg mice also exhibited an induction of cholesterol and lipogenic pathway genes and altered measures (Irs1, Irs2, Prkce) of insulin sensitivity. Results indicate that gastrointestinal ME1 via its influence on intestinal epithelial proliferation, and lipogenic and cholesterologenic genes may concomitantly impact signaling in liver to modify this tissue’s metabolic state. Our work highlights a new mouse model to address the role of intestine-expressed ME1 in whole body metabolism, hepatomegaly, and crypt cell proliferation. Intestinal ME1 may thus constitute a therapeutic target to reduce obesity-associated pathologies. PMID:25402228

  4. Post Treatment With an FGF Chimeric Growth Factor Enhances Epithelial Cell Proliferation to Improve Recovery From Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Hagiwara, Akiko; Umeda, Sachiko; Asada, Masahiro; Goto, Megumi; Oki, Junko; Suzuki, Masashi; Imamura, Toru; Akashi, Makoto

    2010-11-01

    Purpose: A fibroblast growth factor (FGF) 1-FGF2 chimera (FGFC) was created previously and showed greater structural stability than FGF1. This chimera was capable of stimulating epithelial cell proliferation much more strongly than FGF1 or FGF2 even without heparin. Therefore FGFC was expected to have greater biologic activity in vivo. This study evaluated and compared the protective activity of FGFC and FGF1 against radiation-induced intestinal injuries. Methods and Materials: We administered FGFC and FGF1 intraperitoneally to BALB/c mice 24 h before or after total-body irradiation (TBI). The numbers of surviving crypts were determined 3.5 days after TBI with gamma rays at doses ranging from 8 to 12 Gy. Results: The effect of FGFC was equal to or slightly superior to FGF1 with heparin. However, FGFC was significantly more effective in promoting crypt survival than FGF1 (p < 0.01) when 10 {mu}g of each FGF was administered without heparin before irradiation. In addition, FGFC was significantly more effective at promoting crypt survival (p < 0.05) than FGF1 even when administered without heparin at 24 h after TBI at 10, 11, or 12 Gy. We found that FGFC post treatment significantly promoted 5-bromo-2'-deoxyuridine incorporation into crypts and increased crypt depth, resulting in more epithelial differentiation. However, the number of apoptotic cells in FGFC-treated mice decreased to almost the same level as that in FGF1-treated mice. Conclusions: These findings suggest that FGFC strongly enhanced radioprotection with the induction of epithelial proliferation without exogenous heparin after irradiation and is useful in clinical applications for both the prevention and post treatment of radiation injuries.

  5. Constitutive Store-Operated Ca(2+) Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells.

    PubMed

    Zuccolo, Estella; Bottino, Cinzia; Diofano, Federica; Poletto, Valentina; Codazzi, Alessia Claudia; Mannarino, Savina; Campanelli, Rita; Fois, Gabriella; Marseglia, Gian Luigi; Guerra, Germano; Montagna, Daniela; Laforenza, Umberto; Rosti, Vittorio; Massa, Margherita; Moccia, Francesco

    2016-02-15

    Clonal endothelial progenitor cells (EPCs) have been implicated in the aberrant vascular growth that features infantile hemangioma (IH), the most common benign vascular tumor in childhood that may cause ulceration, bleeding, and/or permanent disfigurement. Endothelial colony-forming cells (ECFCs), truly endothelial EPCs endowed with clonal ability and capable of forming patent vessels in vivo, remodel their Ca(2+) toolkit in tumor-derived patients to acquire an adaptive advantage. Particularly, they upregulate the proangiogenic store-operated Ca(2+) entry (SOCE) pathway due to the overexpression of its underlying components, that is, stromal interaction molecule 1 (Stim1), Orai1, and transient receptor potential canonical 1 (TRPC1). The present work was undertaken to assess whether and how the Ca(2+) signalosome is altered in IH-ECFCs by employing Ca(2+) and nitric oxide (NO) imaging, real-time polymerase chain reaction, western blotting, and functional assays. IH-ECFCs display a lower intracellular Ca(2+) release in response to either pharmacological (i.e., cyclopiazonic acid) or physiological (i.e., ATP and vascular endothelial growth factor) stimulation. Conversely, Stim1, Orai1, and TRPC1 transcripts and proteins are normally expressed in these cells and mediate a constitutive SOCE, which is sensitive to BTP-2, La(3+), and Pyr6 and recharges the intracellular Ca(2+) pool. The resting SOCE in IH-ECFCs is also associated to an increase in their proliferation rate and the basal production of NO compared to normal cells. Likewise, the pharmacological blockade of SOCE and NO synthesis block IH-ECFC growth. Collectively, these data indicate that the constitutive SOCE activation enhances IH-ECFC proliferation by augmenting basal NO production and sheds novel light on the molecular mechanisms of IH. PMID:26654173

  6. Enhancement of the HIF-1α/15-LO/15-HETE Axis Promotes Hypoxia-Induced Endothelial Proliferation in Preeclamptic Pregnancy

    PubMed Central

    Liu, Qian; Zhang, Yanhua; Li, Huiying; Li, Peiling; Zhu, Daling

    2014-01-01

    Preeclampsia (PE) is an extremely serious condition in pregnant women and the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiological factors of this disorder remain elusive. The increased release of 15-hydroxyeicosatetraenoic acid (15-HETE) in the placenta of preeclamptic patients has been studied, but its exact role in PE pathogenesis remains unknown. Mounting evidence shows that PE is associated with placental hypoxia, impaired placental angiogenesis, and endothelial dysfunction. In this study, we confirmed the upregulated expression of hypoxia-inducible factor 1α (HIF-1α) and 15-lipoxygenase-1/2 (15-LO-1/2) in patients with PE. Production of the arachidonic acid metabolite, 15-HETE, also increased in the preeclamptic placenta, which suggests enhanced activation of the HIF-1α–15-LO–15-HETE axis. Furthermore, this study is the first to show that the umbilical cord of preeclamptic women contains significantly higher serum concentrations of 15-HETE than that of healthy pregnant women. The results also show that expression of 15-LO-1/2 is upregulated in both human umbilical vein endothelial cells (HUVECs) collected from preeclamptic women and in those cultured under hypoxic conditions. Exogenous 15-HETE promotes the migration of HUVECs and in vitro tube formation and promotes cell cycle progression from the G0/G1 phase to the G2/M + S phase, whereas the 15-LO inhibitor, NDGA, suppresses these effects. The HIF-1α/15-LO/15-HETE pathway is therefore significantly associated within the pathology of PE. PMID:24796548

  7. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs

    PubMed Central

    Nagayasu-Tanaka, Toshie; Anzai, Jun; Takaki, Shu; Shiraishi, Noriko; Terashima, Akio; Asano, Taiji; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL. PMID

  8. LONG-TERM INSULIN-LIKE GROWTH FACTOR-I EXPRESSION IN SKELETAL MUSCLES ATTENUATES THE ENHANCED IN VITRO PROLIFERATION ABILITY OF THE RESIDENT SATELLITE CELLS IN TRANSGENIC MICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue...

  9. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  10. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle.

    PubMed

    Drummond, Micah J; Glynn, Erin L; Fry, Christopher S; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2009-12-01

    Essential amino acids (EAA) stimulate muscle protein synthesis in humans. However, little is known about whether microRNAs (miRNA) and genes associated with muscle growth are expressed differently following EAA ingestion. Our purpose in this experiment was to determine whether miRNA and growth-related mRNA expressed in skeletal muscle are up- or downregulated in humans following the ingestion of EAA. We hypothesized that EAA would alter miRNA expression in skeletal muscle as well as select growth-related genes. Muscle biopsies were obtained from the vastus lateralis of 7 young adult participants (3 male, 4 female) before and 3 h after ingesting 10 g of EAA. Muscle samples were analyzed for muscle miRNA (miR-499, -208b, -23a, -1, -133a, and -206) and muscle-growth related genes [MyoD1, myogenin, myostatin, myocyte enhancer factor C (MEF2C), follistatin-like-1 (FSTL1), histone deacytylase 4, and serum response factor mRNA] before and after EAA ingestion using real-time PCR. Following EAA ingestion, miR-499, -208b, -23a, -1, and pri-miR-206 expression increased (P < 0.05). The muscle-growth genes MyoD1 and FSTL1 mRNA expression increased (P < 0.05), and myostatin and MEF2C mRNA were downregulated following EAA ingestion (P < 0.05). We conclude that miRNA and growth-related genes expressed in skeletal muscle are rapidly altered within hours following EAA ingestion. Further work is needed to determine whether these miRNA are post-transcriptional regulators of growth-related genes following an anabolic stimulus. PMID:19828686