Science.gov

Sample records for factor-alpha induced expression

  1. Arsenite enhances tumor necrosis factor-{alpha}-induced expression of vascular cell adhesion molecule-1

    SciTech Connect

    Tsou, T.-C. . E-mail: tctsou@nhri.org.tw; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-11-15

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-{alpha} (TNF-{alpha}), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-{alpha}-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-{kappa}B (NF-{kappa}B). To elucidate the role of GSH in regulation of AP-1, NF-{kappa}B, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific {gamma}-glutamylcysteine synthetase ({gamma}-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-{alpha}-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-{kappa}B activations by TNF-{alpha}. Moreover, we found that depletion of GSH would also attenuate the TNF-{alpha}-induced VCAM-1 expression with a down-regulation of the TNF-{alpha}-induced NF-{kappa}B activation and without significant effect on AP-1. On the other hand, the TNF-{alpha}-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-{kappa}B activity, suggesting that activation of both AP-1 and NF-{kappa}B was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-{alpha}-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-{kappa}B activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines.

  2. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    PubMed

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jess-Ortega, Nereyda; Santos-Lpez, Gerardo; Vallejo-Ruiz, Vernica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-?) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-? expression was evaluated. Both TNF-? mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-? promoter. In the presence of NEP the activity of TNF-? promoter increased significantly compared with the control (83.52.9 vs. 30.92.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-? promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-? promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-? promoter mediated by NEP (41.53.2, 70% inhibition; and 80.67.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-? expression. PMID:24657783

  3. Effects of schisandrin B pretreatment on tumor necrosis factor-alpha induced apoptosis and Hsp70 expression in mouse liver.

    PubMed

    Ip, S P; Che, C T; Kong, Y C; Ko, K M

    2001-01-01

    Tumor necrosis factor-alpha (TNFalpha) could cause apoptosis in hepatic tissue of D-galactosamine sensitized mice, as evidenced by the increase in the extent of DNA fragmentation. The hepatic apoptosis induced by TNFalpha was associated with hepatocellular damage as assessed by plasma alanine aminotransferase activity. Schisandrin B (Sch B) pretreatment at daily doses ranging from 0.5 to 2 mmol/kg for 3 days caused a dose-dependent protection against TNFalpha-induced apoptosis in mice. The hepatoprotection was accompanied by a parallel reduction in the extent of hepatocellular damage. The same Sch B pretreatment regimens increased hepatic Hsp70 level in a dose-dependent manner. The relevance of Sch B-induced increase in Hsp70 expression to the prevention of TNFalpha-triggered hepatic apoptosis remains to be elucidated. PMID:11525242

  4. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  5. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  6. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  7. B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome.

    PubMed

    Wolf, F W; Sarma, V; Seldin, M; Drake, S; Suchard, S J; Shao, H; O'Shea, K S; Dixit, V M

    1994-02-01

    B94 was originally described as a novel tumor necrosis factor-alpha-inducible primary response gene in endothelial cells which was also induced in an in vitro model of angiogenesis. To further characterize its expression, we cloned the mouse homologue and mapped its developmental and tissue specific expression. The predicted amino acid sequence of mouse B94 was found to be 83% similar to its human homologue. The gene was localized to mouse chromosome 12 just centromeric to the immunoglobulin heavy chain locus, in a region that is often rearranged in T-cell neoplasms. To explore the possibility that B94 is expressed during vasculogenesis and other developmental processes, the expression of its transcript was determined during mouse development by in situ hybridization. In 10-day embryos B94 was expressed prominently in the myocardium and in the aortic arch. By the 15th day of gestation, expression was restricted largely to the liver, the bone forming regions of the jaw, the aortic endothelium, and the nasopharynx: a pattern that was maintained until just prior to birth. Postnatally, expression shifted to the red pulp of the spleen and the thymic medulla. B94 expression was extinguished in most adult tissues but was detectable in lymphopoietic tissues including the spleen, tonsil, and lymphatic aggregates in the gut. Consistent with this was the finding that mononuclear progenitor cells in bone marrow and mature peripheral blood monocytes expressed B94. A truncated testis-specific transcript previously identified by Northern blot analysis was determined to result from the use of an alternate polyadenylation signal which was surprisingly located within the open reading frame. This shorter transcript was expressed at high levels exclusively in late stage spermatids. Immunostaining with an affinity-purified polyclonal antiserum revealed B94 to be localized to the acrosomal compartment of mature sperm. These studies demonstrate that B94 expression is tightly regulated during development and suggests distinct roles for B94 in myelopoiesis and spermatogenesis. PMID:8106408

  8. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes.

    PubMed

    Vaday, G G; Schor, H; Rahat, M A; Lahat, N; Lider, O

    2001-04-01

    The inflammatory response is marked by the release of several cytokines with multiple roles in regulating leukocyte activities, including the secretion of matrix metalloproteinases (MMPs). Although the effects of individual cytokines on monocyte MMP expression have been studied extensively, few studies have examined the influence of combinations of cytokines, which are likely present at inflammatory sites. Herein, we report our investigation of the combinatorial effects of tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta on MMP-9 synthesis. We found that TGF-beta suppressed TNF-alpha-induced MMP-9 secretion by MonoMac-6 monocytic cells in a dose-dependent manner, with a maximal effect of TGF-beta observed at 1 ng/ml. Such suppression was likely regulated at the pretranslational level, because steady-state mRNA levels of TNF-alpha-induced MMP-9 were reduced by TGF-beta, and pulse-chase radiolabeling also showed a decrease in new MMP-9 protein synthesis. The suppressive effects of TGF-beta were time dependent, because short exposures to TNF-alpha before TGF-beta or simultaneous exposure to both cytokines efficiently reduced MMP-9 secretion. Expression of the tissue inhibitor of metalloproteinases (TIMP)-1 and TNF-alpha receptors was unaffected by either cytokine individually or in combination. Affinity binding with radiolabeled TGF-beta demonstrated that levels of TGF-beta receptors were not increased after preincubation with TGF-beta. Suppression of TNFalpha-induced MMP-9 secretion by TGF-beta correlated with a reduction in prostaglandin E2 (PGE2) secretion. Furthermore, the effect of TGF-beta or indomethacin on blockage of TNF-alpha-stimulated MMP-9 production was reversed by the addition of either exogenous PGE2 or the cyclic AMP (cAMP) analogue Bt2cAMP. Thus, we concluded that TGF-beta acts as a potent suppressor of TNF-alpha-induced monocyte MMP-9 synthesis via a PGE2- and cAMP-dependent mechanism. These results suggest that various combinations of cytokines that are present at inflammatory sites, as well as their balance during different stages of inflammation, may provide the signals necessary for directing MMP-mediated leukocyte activities. PMID:11310848

  9. Temperature-dependent modulation of lipopolysaccharide-induced interleukin-1 beta and tumor necrosis factor alpha expression in cultured human astroglial cells by dexamethasone and indomethacin.

    PubMed Central

    Velasco, S; Tarlow, M; Olsen, K; Shay, J W; McCracken, G H; Nisen, P D

    1991-01-01

    In bacterial meningitis, LPS induces production in cerebrospinal fluid of the cytokines IL-1 beta and tumor necrosis factor alpha (TNF alpha), which are the principle mediators of meningeal inflammation. IL-1 beta and TNF alpha induce fever, and elevated temperature may affect cytokine expression. Dexamethasone treatment improves outcome in bacterial meningitis possibly by inhibiting IL-1 beta and TNF alpha. In this report, the effects of elevated temperature and dexamethasone on LPS-stimulated IL-1 beta and TNF alpha mRNA gene expression and protein synthesis were studied in human astrocytoma cell lines and primary cultures of human fetal astrocytes. Cells cultured at 40 degrees C exhibited smaller peaks of IL-1 beta and TNF alpha transcription and protein synthesis compared with cells cultured at 37 degrees C. The addition of dexamethasone before, during, or after exposure of the cells to LPS resulted in temperature-dependent inhibition of IL-1 beta transcription and protein synthesis. The most extensive inhibition occurred in pretreated cells cultured at 37 degrees C. Cotreatment with LPS and dexamethasone also inhibited TNF alpha mRNA transcription at both temperatures. The effects of another antiinflammatory agent, indomethacin, on LPS induction of IL-1 beta and TNF alpha mRNA were temperature and cell line dependent. These findings provide a possible explanation for the efficacy of dexamethasone treatment of bacterial meningitis and support the proposal that fever may be beneficial to the host in this disease. Images PMID:2022738

  10. Tumor necrosis factor-{alpha} induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-{kappa}B in A549 cells

    SciTech Connect

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung; Lee, Chiang-Wen; Wu, C.-Y.; Cheng, C.-Y.; Yang, C.-M.

    2008-06-15

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-{alpha} (TNF-{alpha}) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-{alpha} in human A549 cells remain unclear. Here, we showed that TNF-{alpha} induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-{kappa}B (helenalin), and transfection with dominant negative mutants of ERK2 ({delta}ERK) and JNK ({delta}JNK), and siRNAs for MEK1, p42 and JNK2. TNF-{alpha}-stimulated phosphorylation of p42/p44 MAPK and JNK were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of {delta}ERK and {delta}JNK. Furthermore, the involvement of NF-{kappa}B in TNF-{alpha}-induced MMP-9 production was consistent with that TNF-{alpha}-stimulated degradation of I{kappa}B-{alpha} and translocation of NF-{kappa}B into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-{kappa}B was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-{alpha} in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-{alpha}-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-{kappa}B MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-{alpha}-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-{kappa}B are essential for TNF-{alpha}-induced MMP-9 gene expression.

  11. Glatiramer acetate inhibition of tumor necrosis factor-alpha-induced RANTES expression and release from U-251 MG human astrocytic cells.

    PubMed

    Li, Q Q; Burt, D R; Bever, C T

    2001-06-01

    Glatiramer acetate is an approved drug for the treatment of multiple sclerosis (MS). RANTES is a beta-family chemokine that manifests chemoattractant activity for T lymphocytes and monocytes/macrophages implicated in the pathogenesis of MS lesions. However, the effect of glatiramer acetate on the regulation of RANTES secretion in glial cells is unknown. In the present study, we demonstrate for the first time that treatment of human U-251 MG astrocytic cells with glatiramer acetate blocks tumor necrosis factor-alpha (TNF-alpha)-induced RANTES mRNA and protein in a dose- and time-dependent manner. This effect is attributed to inhibition of transcription and a 40% decrease in transcript stability. Furthermore, our electrophoretic mobility shift assays of nuclear extracts from TNF-alpha-treated cells reveal an increase in DNA-binding activity specific for the nuclear factor-kappa B (NF-kappaB) binding site, in the 5'-flanking promoter region of the human RANTES gene, and that this increase in NF-kappaB binding activity is prevented by pretreatment with glatiramer acetate or the NF-kappaB inhibitors. These findings suggest that glatiramer acetate may exert its therapeutic effect in MS partially through inhibiting NF-kappaB activation and chemokine production. PMID:11389171

  12. Childhood nephrotic syndrome in relapse is associated with down-regulation of monocyte CD14 expression and lipopolysaccharide-induced tumour necrosis factor-alpha production.

    PubMed

    Chen, S P; Cheung, W; Heng, C K; Jordan, S C; Yap, H K

    2003-10-01

    Interleukin-13 (IL-13) is a known modulator of monocyte function, down-regulating monocyte surface markers such as CD14 and proinflammatory cytokines. We have shown previously that lymphocyte IL-13 gene expression was up-regulated during relapses in children with steroid-responsive nephrotic syndrome (SRNS). In this study, we examined the monocyte mRNA expression and lipopolysaccharide (LPS)-stimulated intracellular production of tumour necrosis factor-alpha (TNF-alpha) and IL-8 in children with SRNS during relapse and remission. Additionally, we investigated CD14 mRNA levels, CD14 surface expression and its soluble component (sCD14) in serum. Our results showed that the percentages of TNF-alpha positive monocytes following LPS stimulation were significantly lower in nephrotic children in relapse (64.4 +/- 13.7%) compared to remission (81.6 +/- 9.0%, P < 0.005). This was associated with down-regulation of CD14 mRNA, as well as both membrane and sCD14 in patients with nephrotic relapse (82.9 +/- 10.1% and 1.23 +/- 0.30 micro g/ml, respectively) compared to remission (93.9 +/- 3.2% and 1.77 +/- 0.82 micro g/ml, respectively) (P < 0.003). Although we demonstrated a decrease in LPS-stimulated intracellular production of TNF-alpha in monocytes from patients with nephrotic relapse, we were unable to show a concomitant decrease in mRNA expression during relapses. This could be explained by down-regulation of gene expression at the translational rather than transcriptional level. In conclusion, it is conceivable that up-regulation of T-cell IL-13 production in children with active nephrotic relapse was associated with suppression of monocyte CD14 expression, down-regulating pro-inflammatory cytokine production, and could account for the increased susceptibility to bacterial sepsis seen in nephrotic children in active relapse. PMID:12974763

  13. Inhibition of lipopolysaccharide-induced I-kappaB degradation and tumor necrosis factor-alpha expression by acriflavine, an antimicrobial agent.

    PubMed

    Choi, S H; Cho, J Y; Chung, Y S; Hong, E; Han, Y; Kim, S G

    2000-10-01

    Acriflavine neutral (ACF) has been used for treatment of microbial infections for humans and fishes. Effects of ACF on the nuclear factor-kappaB (NF-kappaB) activation and tumor necrosis factor-alpha (TNF-alpha) production by lipopolysaccharide (LPS), an endotoxin, were examined in rat and RAW264.7 cells. Gel retardation analysis revealed that LPS (1 microg/kg) activated NF-kappaB in the liver, whereas pretreatment of rats with ACF (10 mg/kg) completely prevented the NF-kappaB activation. Selectivity of the NF-kappaB DNA binding was confirmed by immunodepletion with anti-p65 and anti-p50 antibodies. Translocation of NF-kappaB to the nucleus is preceded by phosphorylation and proteolytic degradation of inhibitor-kappaBalpha (I-kappaBalpha) subunit. Whereas the level of I-kappaBalpha protein was rapidly decreased after treatment of rats with LPS (1 microg/kg), ACF treatment prior to LPS attenuated the decrease in I-kappaBalpha protein level. LPS-induced increase in the production of TNF-alpha, the principal inflammatory mediator, was prevented by ACF pretreatment by 80%. Stimulation of RAW264.7 cells with 1 microg/ml of LPS caused an increase in DNA binding activity of NF-kappaB, which was 80% inhibited by 1 microg/ml of ACF. LPS reduced I-kappaBalpha level in RAW264.7 cells by 77%. ACF attenuated LPS-induced decrease in I-kappaBalpha protein in a concentration-dependent manner. Production of TNF-alpha by LPS from RAW264.7 cells was decreased by 84% in the presence of ACF. Data showed that ACF inhibited LPS-induced NF-kappaB activation through inhibition of I-kappaBalpha degradation and TNF-alpha production in both rat and RAW264.7 cells. Inhibition of NF-kappaB activation and TNF-alpha production may be associated with the anti-inflammatory activity of ACF. PMID:10963850

  14. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB.

    PubMed

    Kasof, G M; Lu, J J; Liu, D; Speer, B; Mongan, K N; Gomes, B C; Lorenzi, M V

    2001-11-29

    The tumor necrosis factor (TNF) receptor family are ligand-regulated transmembrane proteins that mediate apoptosis as well as activation of the transcription factor NF-kappaB. Exogenous expression of DR6, a recently identified member of the TNF receptor family, induced apoptosis in untransformed or tumor-derived cells and the apoptotic function of DR6 was inhibited by co-expression of Bcl-2, Bcl-x(L) or the inhibitor-of-apoptosis (IAP) family member, survivin. Expression of a dominant negative mutant of FADD failed to protect from DR6-mediated apoptosis indicating that unlike TNFR1 and Fas, DR6 induced apoptosis via a FADD-independent mechanism. Despite the ability of exogenous DR6 expression to induce apoptosis, DR6 mRNA and protein were found to be elevated in prostate tumor cell lines and in advanced stages of prostate cancer. Analysis of several anti-apoptotic proteins revealed that Bcl-x(L) levels and serine 32 phosphorylation of IkappaB, the natural inhibitor of NF-kappaB, were similarly elevated in cells expressing high levels of DR6, suggesting that NF-kappaB-regulated survival proteins may protect from DR6-induced apoptosis and that DR6 is a target of NF-kappaB regulation. Treatment of LnCAP cells with TNF-alpha resulted in increases in both DR6 mRNA and protein levels, and this induction was suppressed by inhibitors of NF-kappaB. Similarly, treatment of cells expressing high levels of DR6 with indomethacin and ibuprofen, compounds also known to perturb NF-kappaB function, resulted in a dose-dependent decrease in DR6 protein and mRNA levels. These results demonstrate that TNF-alpha signaling induces the expression of a member of its own receptor family through activation of NF-kappaB. PMID:11753679

  15. An inhibitory effect of tumor necrosis factor-alpha antagonist to gene expression in monocrotaline-induced pulmonary hypertensive rats model

    PubMed Central

    Kwon, Jung Hyun; Kim, Kwan Chang; Cho, Min-Sun; Kim, Hae Soon; Sohn, Sejung

    2013-01-01

    Purpose Tumor necrosis factor (TNF)-? is thought to contribute to pulmonary hypertension. We aimed to investigate the effect of infliximab (TNF-? antagonist) treatment on pathologic findings and gene expression in a monocrotaline-induced pulmonary hypertension rat model. Methods Six-week-old male Sprague-Dawley rats were allocated to 3 groups: control (C), single subcutaneous injection of normal saline (0.1 mL/kg); monocrotaline (M), single subcutaneous injection of monocrotaline (60 mg/kg); and monocrotaline + infliximab (M+I), single subcutaneous injection of monocrotaline plus single subcutaneous injection of infliximab (5 mg/kg). The rats were sacrificed after 1, 5, 7, 14, or 28 days. We examined changes in pathology and gene expression levels of TNF-?, endothelin-1 (ET-1), endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP)2, and tissue inhibitor of matrix metalloproteinase (TIMP). Results The increase in medial wall thickness of the pulmonary arteriole in the M+I group was significantly lower than that in the M group on day 7 after infliximab treatment (P<0.05). The number of intra-acinar muscular arteries in the M+I group was lower than that in the M group on days 14 and 28 (P<0.05). Expression levels of TNF-?, ET-1, ERA, and MMP2 were significantly lower in the M+I group than in the M group on day 5, whereas eNOS and TIMP expressions were late in the M group (day 28). Conclusion Infliximab administration induced early changes in pathological findings and expression levels of TNF-?, and MMP2 in a monocrotaline-induced pulmonary hypertension rat model. PMID:23559973

  16. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion.

    PubMed

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2015-01-01

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage. PMID:26459511

  17. Propofol Inhibits Lipopolysaccharide-Induced Tumor Necrosis Factor-Alpha Expression and Myocardial Depression through Decreasing the Generation of Superoxide Anion in Cardiomyocytes

    PubMed Central

    Tang, Jing; Hu, Ji-Jie; Lu, Chun-Hua; Liang, Jia-Ni; Xiao, Jin-Fang; Liu, You-Tan; Lin, Chun-Shui; Qin, Zai-Sheng

    2014-01-01

    TNF-? has been shown to be a major factor responsible for myocardial depression in sepsis. The aim of this study was to investigate the effect of an anesthetic, propofol, on TNF-? expression in cardiomyocytes treated with LPS both in vivo and in vitro. In cultured cardiomyocytes, compared with control group, propofol significantly reduced protein expression of gp91phox and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2) and p38 MAPK, which associates with reduced TNF-? production. In in vivo mice studies, propofol significantly improved myocardial depression and increased survival rate of mice after LPS treatment or during endotoxemia, which associates with reduced myocardial TNF-? production, gp91phox, ERK1/2, and p38 MAPK. It is concluded that propofol abrogates LPS-induced TNF-? production and alleviates cardiac depression through gp91phox/ERK1/2 or p38 MAPK signal pathway. These findings have great clinical importance in the application of propofol for patients enduring sepsis. PMID:25180066

  18. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    PubMed Central

    Meyer, Swanhild U.; Krebs, Stefan; Thirion, Christian; Blum, Helmut; Krause, Sabine; Pfaffl, Michael W.

    2015-01-01

    Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate the understanding of transcriptomic networks underlying inhibited muscle differentiation in inflammatory diseases. PMID:26447881

  19. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1.

    PubMed Central

    Mulligan, M. S.; Vaporciyan, A. A.; Miyasaka, M.; Tamatani, T.; Ward, P. A.

    1993-01-01

    Lung injury following deposition of IgG immune complexes is neutrophil-dependent and requires both tumor necrosis factor alpha (TNF alpha) and CD18. In the current studies, we have evaluated the relationship between TNF alpha and expression of intracellular adhesion molecule-1 (ICAM-1) in vitro and in vivo. In both rat pulmonary artery endothelial cells and human umbilical vein endothelial cells, TNF alpha induced an early (within 60 minutes) increase in ICAM-1 expression, followed by a peak at 6 to 8 hours, with relatively stable expression at 24 hours. Expression of E-selectin did not show the early phase (within 60 minutes) of up-regulation, peaked at 4 hours, and then declined thereafter. Using a radioimmunochemical assay in vivo, it was demonstrated that intrapulmonary deposition of IgG immune complexes caused a progressive increase in ICAM-1 expression in lung over an 8-hour period. In animals pretreated with antibody to TNF alpha, the intrapulmonary expression of ICAM-1 was significantly reduced. These results were confirmed by immunoperoxidase analysis of lung tissue. It was also shown that airway instillation of TNF alpha caused up-regulation of ICAM-1 in lung. These data support the concept that deposition of IgG immune complexes in lung induces intrapulmonary up-regulation of ICAM-1 in a manner that is TNF alpha-dependent. Images Figure 2 Figure 7 PMID:7685152

  20. HIV-1 Tat Protein Induces PD-L1 (B7-H1) Expression on Dendritic Cells through Tumor Necrosis Factor Alpha- and Toll-Like Receptor 4-Mediated Mechanisms

    PubMed Central

    Plans, Rmi; BenMohamed, Lbachir; Leghmari, Kaoutar; Delobel, Pierre; Izopet, Jacques

    2014-01-01

    ABSTRACT Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 145 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-?) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-?- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV-1) Tat on the PD-1/PD-L1 coinhibitory pathway on human monocyte-derived dendritic cells (MoDCs). We found that treatment of MoDCs from either healthy or HIV-1-infected patients with HIV-1 Tat protein stimulated the expression of PD-L1. We demonstrate that this stimulation was mediated through an indirect mechanism, involving tumor necrosis factor alpha (TNF-?) and Toll-like receptor 4 (TLR4) pathways, and resulted in compromised ability of Tat-treated MoDCs to functionally stimulate T-cell proliferation. PMID:24696476

  1. Dexamethasone treatment of tumor necrosis factor-alpha challenged organ of Corti explants activates nuclear factor kappa B signaling that induces changes in gene expression that favor hair cell survival.

    PubMed

    Dinh, C T; Bas, E; Chan, S S; Dinh, J N; Vu, L; Van De Water, T R

    2011-08-11

    The objective was to determine the role of nuclear factor kappa B (NF?B) in dexamethasone base (DXMb) protection of auditory hair cells from tumor necrosis factor-alpha (TNF?)-induced loss on gene expression and cell signaling levels. Organ of Corti (OC) explants from 3-day-old rats were cultured under one of the following conditions: (1) media only--no treatment; (2) media+TNF?; (3) media+TNF?+DXMb; (4) media+TNF?+DXMb+NF?B-Inhibitor (NF?B-I); or (5) media+TNF?+DXMb+NF?BI-Scrambled control (NF?BI-C). A total of 60 organ of Corti explants (OC) were stained with FITC-Phalloidin after 96 h in culture (conditions 1-5) for hair cell counts and imaging of surface characteristics. A total of 108 OC were used for gene expression studies (i.e. B-actin, Bax, Bcl-2, Bcl-xl, and TNFR1) after 0, 24, or 48 h in vitro (conditions 1-4). A total of 86 OC were cultured (conditions 1-3) for 48 h, 36 of which were used for phosphorylated NF?B (p-NF?B) ELISA studies and 50 for whole mount anti-p-NF?B immunostain experiments. TNF?+DXMb exposed cultures demonstrated significant upregulation in anti-apoptotic Bcl-2 and Bcl-xl genes and downregulation in pro-apoptotic Bax gene expression; DXMb treatment of TNF? explants also lowered the Bax/Bcl-2 ratio and inhibited TNFR1 upregulation. After inhibiting NF?B activity with NF?B-I, the gene expression profile following TNF?+DXMb treatment now mimics that of TNF?-challenged OC explants. The levels of p-NF?B and the degree of nuclear translocation are significantly greater in TNF?+DXMb exposed OC explants than observed in the TNF? and control groups in the middle+basal turns of OC explants. These findings were supported by the results of the hair cell counts and the imaging results obtained from the whole mount OC specimens. DXMb protects against TNF?-induced apoptosis of auditory hair cells in vitro via activation of NF?B signaling in hair cell nuclei, and regulation of the expression levels of anti- and pro-apoptotic genes and a pro-inflammatory gene. PMID:21571041

  2. Expression of tumour necrosis factor alpha and accumulation of fibronectin in coronary artery restenotic lesions retrieved by atherectomy.

    PubMed Central

    Clausell, N.; de Lima, V. C.; Molossi, S.; Liu, P.; Turley, E.; Gotlieb, A. I.; Adelman, A. G.; Rabinovitch, M.

    1995-01-01

    BACKGROUND--The formation of coronary artery neointima experimentally induced in piglets after cardiac transplantation is related to an immune-inflammatory reaction associated with increased expression of T cells and inflammatory mediators (tumour necrosis factor alpha and interleukin 1 beta) and upregulation of fibronectin. In vivo blockade of tumour necrosis factor alpha in rabbits after cardiac transplantation results in reduced neointimal formation. The objective of this study was to investigate the hypothesis that coronary restenosis after atherectomy or percutaneous balloon angioplasty is associated with a similar inflammatory cascade initiated by mechanical injury. METHODS--Specimens taken at coronary atherectomy were analysed from 16 patients. Nine had had the procedure performed twice, firstly, to remove a primary lesion, and secondly, to remove a restenotic lesion. Seven had percutaneous balloon angioplasty after removal of restenotic tissue. Coronary atherectomy specimens were analysed by immunohistochemistry for the presence of T cells, macrophages, major histocompatibility complex II, interleukin 1 beta, tumour necrosis factor alpha, fibronectin, and the receptor for hyaluronan mediated motility. RESULTS--The groups were clinically and angiographically similar with equivalent lumens before and after atherectomy. Restenotic lesions had increased expression of tumour necrosis factor alpha and fibronectin compared with the primary lesions (P < 0.05 for both). There was also a trend towards a greater number of T cells and increased expression of interleukin 1 beta. CONCLUSIONS--Restenosis is associated with increased expression of tumour necrosis factor alpha and fibronectin, suggesting that an immune-inflammatory reaction probably contributes to neointimal formation and may represent a form of wound healing and repair secondary to mechanical injury. Images PMID:7626352

  3. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia.

    PubMed Central

    Brenner, D A; Buck, M; Feitelberg, S P; Chojkier, M

    1990-01-01

    The mechanisms responsible for decreased serum albumin levels in patients with cachexia-associated infection, inflammation, and cancer are unknown. Since tumor necrosis factor-alpha (TNF alpha) is elevated in cachexia-associated diseases, and chronic administration of TNF alpha induces cachexia in animal models, we assessed the regulation of albumin gene expression by TNF alpha in vivo. In this animal model of cachexia, Chinese hamster ovary cells transfected with the functional gene for human TNF alpha were inoculated into nude mice (TNF alpha mice). TNF alpha mice became cachectic and manifested decreased serum albumin levels, albumin synthesis, and albumin mRNA levels. However, even before the TNF alpha mice lost weight, their albumin mRNA steady-state levels were decreased approximately 90%, and in situ hybridization revealed a low level of albumin gene expression throughout the hepatic lobule. The mRNA levels of several other genes were unchanged. Hepatic nuclei from TNF alpha mice before the onset of weight loss were markedly less active in transcribing the albumin gene than hepatic nuclei from control mice. Therefore, TNF alpha selectively inhibits the genetic expression of albumin in this model before weight loss. Images PMID:2295699

  4. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    SciTech Connect

    Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333 ; Shin, Nara; Jeong, Mira; Korea University of Science and Technology, Yusong, Daejeon 305-333 ; Kim, Mi Sun; Kim, Mi Jeong; Yoon, Suk Ran; Chung, Jin Woong; Departments of Biological Science, Dong-A University, Busan ; Kim, Tae-Don; Korea University of Science and Technology, Yusong, Daejeon 305-333 ; Choi, Inpyo; Korea University of Science and Technology, Yusong, Daejeon 305-333

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappa B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.

  5. Increased Leptin Expression in Mice with Bacterial Peritonitis is Partially Regulated by Tumor Necrosis Factor Alpha

    PubMed Central

    Moshyedi, Armin K.; Josephs, Michael D.; Abdalla, Eddie K.; MacKay, Sally L. D.; Edwards, Carl K.; Copeland, Edward M.; Moldawer, Lyle L.

    1998-01-01

    Plasma leptin and ob gene mRNA levels were increased in mice following bacterial peritonitis, and blocking an endogenous tumor necrosis factor alpha (TNF-?) response blunted the increase. However, plasma leptin concentrations did not correlate with the associated anorexia. We conclude that leptin expression is under partial regulatory control of TNF-? in peritonitis, but the anorexia is not dependent on increased leptin production. PMID:9529118

  6. Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells

    PubMed Central

    Shiozaki, Atsushi; Shimizu, Hiroki; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Kubota, Takeshi; Fujiwara, Hitoshi; Okamoto, Kazuma; Iitaka, Daisuke; Nakashima, Shingo; Nako, Yoshito; Liu, Mingyao; Otsuji, Eigo

    2014-01-01

    AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-α)-induced gene expression in human gastric adenocarcinoma cells. METHODS: Knockdown experiments were conducted with claudin 1 small interfering RNA (siRNA), and the effects on the cell cycle, apoptosis, migration and invasion were analyzed in human gastric adenocarcinoma MKN28 cells. The gene expression profiles of cells were analyzed by microarray and bioinformatics. RESULTS: The knockdown of claudin 1 significantly inhibited cell proliferation, migration and invasion, and increased apoptosis. Microarray analysis identified 245 genes whose expression levels were altered by the knockdown of claudin 1. Pathway analysis showed that the top-ranked molecular and cellular function was the cellular movement related pathway, which involved MMP7, TNF-SF10, TGFBR1, and CCL2. Furthermore, TNF- and nuclear frctor-κB were the top-ranked upstream regulators related to claudin 1. TNF-α treatment increased claudin 1 expression and cell migration in MKN28 cells. Microarray analysis indicated that the depletion of claudin 1 inhibited 80% of the TNF-α-induced mRNA expression changes. Further, TNF-α did not enhance cell migration in the claudin 1 siRNA transfected cells. CONCLUSION: These results suggest that claudin 1 is an important messenger that regulates TNF-α-induced gene expression and migration in gastric cancer cells. A deeper understanding of these cellular processes may be helpful in establishing new therapeutic strategies for gastric cancer. PMID:25548484

  7. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Hardie, William D; Davidson, Cynthia; Ikegami, Machiko; Leikauf, George D; Le Cras, Timothy D; Prestridge, Adrienne; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2008-06-01

    Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury. PMID:18424623

  8. Lipopolysaccharide-induced interleukin-10 in mice: role of endogenous tumor necrosis factor-alpha.

    PubMed

    Barsig, J; Ksters, S; Vogt, K; Volk, H D; Tiegs, G; Wendel, A

    1995-10-01

    Interleukin (IL)-10 is known to protect mice against the lethal effects of lipopolysaccharides (LPS) and is considered to be an anti-inflammatory cytokine which suppresses the production of pro-inflammatory cytokines. We have examined the interactions of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) with IL-10. Neutralization of TNF-alpha in murine bone marrow-derived macrophages resulted in a significant reduction of LPS-inducible IL-10 production. In mice, injection of 5 mg/kg LPS induced circulating IL-10 with a biphasic time course exhibiting an early peak 1.5 h after challenge (synchronous with TNF-alpha) and, after a nadir at 6 h, a second increase between 8 and 12 h. Treatment of mice with neutralizing anti-mouse TNF-alpha antiserum significantly increased LPS-induced IL-10 plasma levels between 1.5 and 6 h but diminished those at 12 h, while circulating IL-6, interferon-gamma (IFN-gamma) and granulocyte colony-stimulating factor (G-CSF) concentrations were attenuated overall, without a biphasic response. Analysis of LPS-induced IL-10 mRNA expression in different tissues 1 h and 8 h after LPS or LPS plus anti-TNF-alpha revealed that the amount of transcripts in the liver correlated with circulating early and late IL-10 levels. Our findings suggest that endogenous TNF-alpha down-regulates the early and up-regulates the late LPS-induced IL-10 synthesis in vivo and that the liver is the major source of circulating IL-10 after stimulation with LPS. PMID:7589088

  9. Tumour necrosis factor alpha is not an essential component of verotoxin 1-induced toxicity in mice.

    PubMed

    Wolski, Vince M; Soltyk, Anna M; Brunton, James L

    2002-06-01

    Previous studies have shown that tumour necrosis factor alpha (TNF-alpha) gene transcription is induced in the mouse kidney in response to Shiga-like toxin 1 (Stx 1, or Verotoxin 1, VT1) administration, suggesting that local TNF-alpha expression plays a role in renal pathogenesis caused by the toxin. Further, TNF-alpha neutralizing antibody pretreatment of mice orally infected with VT-producing Escherichia coli (VTEC) protected the animals from disease development and death. We examined the role of TNF-alpha release in response to parenteral challenge with purified VT1. Mice injected with 10- and 100-fold the 50% lethal dose (LD(50)) of VT1 showed a weak, transient elevation of serum TNF-alpha only at the higher toxin dose. TNF-alpha was not detected in the urine of mice at either dose. Treatment of BALB/c mice with a neutralizing anti-TNF-alpha antibody prior to administration of 3 LD(50) of toxin failed to protect the mice from VT1-mediated toxicity. Further, TNF-alpha knock-out mice administered 3 LD(50) of VT1 were not protected against the lethal effects of the toxin relative to the wild-type animals. These findings suggest that VT1 is a poor inducer of TNF-alpha in vivo and that the low levels of the cytokine released in response to toxin challenge do not play a direct role in potentiating the toxicity of VT1 in mice. Strong toxin accumulation in the kidney but not in the brain was demonstrated by immunohistochemistry after intraperitoneal administration of VT1. Tubular damage and extensive apoptosis in the kidney, together with a 10-fold increase in levels of blood urea nitrogen, suggest that mice died of acute renal failure. PMID:12137753

  10. Expression of tumour necrosis factor alpha and its receptors in carcinoma of the breast.

    PubMed Central

    Pusztai, L.; Clover, L. M.; Cooper, K.; Starkey, P. M.; Lewis, C. E.; McGee, J. O.

    1994-01-01

    The expression of tumour necrosis factor alpha (TNF-alpha) and its two distinct receptors, TNF-R p55 and TNF-R p75, was assessed by immunocytochemistry in 28 primary breast cancer and three reduction mammoplasty specimens ('normal' breast tissue). Expression of TNF-alpha or TNF-R p75 was not detectable in normal breast tissue or in non-malignant breast tissue adjacent to the tumours. By contrast, TNF-R p55 was expressed by occasional stromal cells in normal tissue. TNF-alpha was expressed focally in 50% of the tumours studied, being largely localised to macrophage-like cells in the stroma. TNF-R p55 was expressed by a population of stromal cells in all the tumours examined, and a varying proportion of neoplastic cells in 75% of these tissues. TNF-R p75 was detected in about 70% of the tumours, immunoreactivity being confined mainly to cells in the stroma. In this preliminary study there was no association between the above cytokine parameters and such measures of tumour biology as lymph node status, tumour grade, proliferative activity or degree of angiogenesis. However, there was a correlation between the expression of TNF-R p55 by blood vessels and the number of leucocytes present. Images Figure 1 PMID:7519867

  11. Route of feeding influences the production and expression of tumor necrosis factor alpha in burned rats.

    PubMed

    Cui, X L; Iwasa, M; Kuge, H; Sasaguri, S; Ogoshi, S

    2001-01-01

    The effect of nutritional route on tumor necrosis factor alpha (TNF-alpha) production in burned rats was examined. Scald burns covering about 30% of the whole body surface area were inflicted on 43 male Wistar rats weighing about 200g. The animals were divided into three groups: CHOW (n = 10), total parenteral nutrition (TPN) (n = 22), and total enteral nutrition (TEN) (n = 11), continuously given a chow diet, TPN solution, or an enteral diet, respectively, for 7 days after the burn injury. The rate of detection of TNF-alpha in plasma on day 7 was significantly higher in the TPN group than in the CHOW or TEN groups. The messenger RNA (mRNA) expression of TNF-alpha was significantly increased in the spleen, lungs, liver, and ileum of the rats receiving TPN compared with the CHOW and TEN rats. On the other hand, the expression of TNF-alpha mRNA was markedly decreased in the thymus of the TPN group compared with the CHOW group. The mortality rate in the TPN group (63.6%) was higher than that in the CHOW (0.0%) or TEN (27.3%) groups on day 7 after burn injury. These data suggest that TPN increases the expression of TNF-alpha mRNA in organ tissues and systemic TNF-alpha production, and reduces the survival rate of rats after thermal injury, but TEN does not. PMID:11495157

  12. Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alvelor machrophage and failed to induce apoptosis through activation of nuclear factor-kappaB (NF-kappaB)

    EPA Science Inventory

    Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and...

  13. Effects of hyperoxia on tumor necrosis factor alpha and Grobeta expression in newborn rabbit lungs.

    PubMed

    Varughese, R; Nayak, J L; LoMonaco, M; O'Reilly, M A; Ryan, R M; D'Angio, C T

    2003-01-01

    Chemokines have been implicated in the pathogenesis of many inflammatory processes, including bronchopulmonary dysplasia in mechanically ventilated premature infants. We hypothesized that early expression of the proinflammatory cytokine, tumor necrosis factor alpha (TNFalpha), would be followed by later expression of the downstream chemokine, Grobeta, in the oxygen-injured newborn lung. Reverse transcriptase-polymerase chain reaction (RT-PCR) and ribonuclease protection assay (RPA) were used to assess TNFalpha and Grobeta mRNA expression in lung RNA samples from newborn rabbits exposed to > 95% O2 for 8-9 days, followed by 60% O2 for a further 2-4 weeks or from control rabbits exposed to air. Four lung samples per condition were collected every 2 days from day 0 to day 14, and at days 22 and 36. Rabbit alveolar macrophages (AM) stimulated in vitro with bacterial lipopolysaccharide served as positive controls ( n = 8). Grobeta mRNA expression in rabbit lung samples increased with oxygen exposure until day 8, then returned toward baseline levels. This corresponded to previously described elevations in neutrophil number in the lungs. TNFalpha mRNA expression in lung samples was below the limit of detection by RPA and showed no upregulation in hyperoxic lung samples by RT-PCR. TNFalpha activity was assessed in lung lavage ( n = 2 samples per condition per time) using an L929 cell line bioassay and was not increased in hyperoxic animals. The expression of Grobeta mRNA without antecedent or concurrent TNFalpha mRNA expression or activity makes it unlikely that Grobeta in the hyperoxic newborn rabbit lung is elaborated in response to a stimulus by TNFalpha. PMID:14749938

  14. Proliferating cell nuclear antigen in oesophageal diseases; correlation with transforming growth factor alpha expression.

    PubMed Central

    Jankowski, J; McMenemin, R; Yu, C; Hopwood, D; Wormsley, K G

    1992-01-01

    This study was designed to correlate mucosal proliferation in Barrett's oesophagus with expression of a growth promoting peptide, transforming growth factor alpha (TGF alpha). Oesophageal mucosa was studied from 50 patients with oesophageal disease who had been treated by oesophagectomy. Histological analysis showed a range of oesophageal pathology - 18 patients had gastric type Barrett's mucosa, 18 had intestinal type Barrett's mucosa, and 14 had oesophageal adenocarcinomas. Sections were stained immunohistochemically for proliferating cell nuclear antigen (PCNA) (an index of cellular proliferation) and TGF alpha. PCNA immunostaining was seen mainly in the basal cells of the neck/foveolar epithelial compartment of the glands in Barrett's oesophagus. However, in mucosa with high grade dysplasia, the proliferative compartment extended upwards into the superficial layers of the glands. At least 2000 cells were counted in each patient to determine the proportion with PCNA immunoreactivity (PCNA labelling index). The labelling index was highest in adenocarcinoma (25%) and in Barrett's intestinal type mucosa with high grade dysplasia (26%) compared with intestinal type mucosa with no significant dysplasia (20%) and Barrett's gastric type mucosa (12%). There was a significant positive correlation between PCNA labelling indices and TGF alpha expression in Barrett's mucosa (p less than 0.01). In glands showing high grade dysplasia, TGF alpha immunoreactivity was seen in the same regions of the glands as PCNA immunoreactivity, indicating the possibility of involvement of TGF alpha in (pre) neoplastic proliferation in Barrett's oesophagus. Images Figure 2 Figure 5 PMID:1351861

  15. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a suppressor of PKC activity.

  16. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  17. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    SciTech Connect

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.; Tzeng, T.-T.; Sun, Y.-W.; Wung, B.-S.

    2008-06-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.

  18. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    SciTech Connect

    Tsou, T.-C. . E-mail: tctsou@nhri.org.tw; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.

  19. Tumor Necrosis Factor Alpha and Interleukin 1? Up-Regulate Gastric Mucosal Fas Antigen Expression in Helicobacter pylori Infection

    PubMed Central

    Houghton, JeanMarie; Macera-Bloch, Lisa S.; Harrison, Lawrence; Kim, Kyung H.; Korah, Reju M.

    2000-01-01

    Fas-mediated gastric mucosal apoptosis is gaining attention as a cause of tissue damage due to Helicobacter pylori infection. We explored the effects of H. pylori directly, and the effects of the inflammatory environment established subsequent to H. pylori infection, on Fas-mediated apoptosis in a nontransformed gastric mucosal cell line (RGM-1). Exposure to H. pylori-activated peripheral blood mononuclear cells (PBMCs), but not H. pylori itself, induced Fas antigen (Fas Ag) expression, indicating a Fas-regulatory role for inflammatory cytokines in this system. Of various inflammatory cytokines tested, only interleukin 1? and tumor necrosis factor alpha induced Fas Ag expression, and removal of either of these from the conditioned medium abrogated the response. When exposed to Fas ligand, RGM-1 cells treated with PBMC-conditioned medium underwent massive and rapid cell death, interestingly, with a minimal effect on total cell numbers early on. Cell cycle analysis revealed a substantial increase in S phase cells among cells exposed to Fas ligand, suggesting an increase in their proliferative response. Taken together, these data indicate that the immune environment secondary to H. pylori infection plays a critical role in priming gastric mucosal cells to undergo apoptosis or to proliferate based upon their Fas Ag status. PMID:10678925

  20. Carrageenan Primes Leukocytes To Enhance Lipopolysaccharide-Induced Tumor Necrosis Factor Alpha Production

    PubMed Central

    Ogata, Masanori; Matsui, Takashi; Kita, Toshiro; Shigematsu, Akio

    1999-01-01

    We have previously reported that pretreatment with carrageenan (CAR) enhances lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) production in and lethality for mice. Whole blood cultured in vitro was used to show that CAR pretreatment results in about a 200-fold increase in LPS-induced TNF-α production. CAR by itself did not induce TNF-α production. However, CAR-treated cultured medium sensitized whole blood to make more LPS-induced TNF than did saline-treated cultured medium in vitro. It was also demonstrated that CAR pretreatment increases TNF-α mRNA levels of both blood cells and peritoneal exudate cells, but not of bone marrow cells. Immunoelectron microscopic analysis revealed that polymorphonuclear leukocytes and macrophages are TNF-α-producing cells in CAR-treated mice. In CAR-treated mice, TNF-α was seen early after LPS injection in leukocytes in hepatic sinusoids and on the surfaces of endothelial cells. TNF-α was also detected late after LPS injection in hepatocytes which become edematous. These results suggest that CAR primes leukocytes to produce TNF-α in response to LPS and that they play an important role in the pathogenesis of liver injury. PMID:10377102

  1. Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression.

    PubMed Central

    Beuscher, H U; Rödel, F; Forsberg, A; Röllinghoff, M

    1995-01-01

    The ability of the enteropathogenic Yersinia enterocolitica to survive and proliferate in host tissue depends on a 70-kb plasmid known to encode a number of released Yersinia outer proteins that act as virulence factors by inducing cytotoxicity and inhibiting phagocytosis. This study demonstrates that one of the Yersinia outer proteins, the 41-kDa YopB, suppresses the production of tumor necrosis factor alpha (TNF-alpha), a macrophage-derived cytokine with central roles in the regulation of immune and inflammatory responses to infection. This conclusion is based on several lines of evidence. First, in macrophage cultures, suppression of TNF-alpha mRNA expression was induced by culture supernatant (CS+) of plasmid-bearing yersiniae, the effect which was blocked by anti-YopB antiserum. Second, suppression of TNF-alpha production, but not of interleukin-1 (IL-1) and IL-6, was induced by purified YopB. Third, in Yersinia-infected mice, no increase in TNF-alpha mRNA expression was observed in Peyer's patches, the primary site of bacterial invasion, compared with IL-1 (alpha and beta) mRNA. Finally, administration of anti-YopB antiserum to mice prior to infection with Y. enterocolitica increased TNF activity levels in Peyer's patches and coincided with a reduction in bacterial growth. The results thus provide direct evidence for a secreted eubacterial virulence factor that mediates selective suppression of TNF-alpha production. Although suppression of this single cytokine response is probably not sufficient to facilitate survival of the infecting organisms, the results suggest that suppression of TNF-alpha production by YopB significantly contributes to the evasion of Y. enterocolitica from antibacterial host defense. PMID:7890384

  2. Heparin and enoxaparin enhance endotoxin-induced tumor necrosis factor-alpha production in human monocytes.

    PubMed Central

    Heinzelmann, M; Miller, M; Platz, A; Gordon, L E; Herzig, D O; Polk, H C

    1999-01-01

    OBJECTIVE: To determine whether heparin or the low-molecular-weight heparin enoxaparin alter lipopolysaccharide (LPS)-induced monocyte activation. SUMMARY BACKGROUND DATA: Heparin is widely used in clinical practice to inhibit the coagulation cascade. However, heparin also is a naturally occurring glucosaminoglycan and a pleiotropic immunomodulator that binds to a variety of proteins. LPS is a component of gram-negative bacteria and is thought to be responsible for many of the deleterious effects seen in sepsis. The binding of LPS to CD14 induces a signaling cascade that results in the release of many inflammatory mediators, including tumor necrosis factor-alpha (TNF-alpha). METHODS: Monocytes from healthy volunteers were isolated and cultured in the presence of saline, LPS (10 ng/ml), heparin (0.1 to 1000 microg/ml), or enoxaparin (0.1 to 1000 microg/ml). In blocking experiments, cells were pretreated for 60 minutes with the monoclonal anti-CD14 antibody MY4 (10 microg/ml) or with isotype-matched control IgG2 (10 microg/ml). TNF-alpha values were measured with enzyme-linked immunosorbent assay. Significance was assessed with analysis of variance. RESULTS: Heparin (10 to 1000 microg/ml) and enoxaparin (1000 microg/ml) significantly enhanced LPS-induced TNF-alpha release. Heparin (1000 microg/ml) or enoxaparin (1000 microg/ml) did not produce TNF-alpha in the absence of LPS. Blockade of CD14 abrogated both LPS-induced TNF-alpha release and the effect of heparin or enoxaparin to enhance LPS-induced TNF-alpha release. CONCLUSIONS: The effect of heparin to enhance LPS-induced TNF-alpha release is a biologic phenomenon that reveals a novel and potentially important host defense mechanism during endotoxemia and sepsis. Binding of LPS to CD14 is necessary to induce this phenomenon, suggesting that both heparin and enoxaparin induce signaling mechanisms that are downstream from the initial binding of LPS on CD14. PMID:10203088

  3. The -308 polymorphism in the promoter region of the tumor necrosis factor-alpha (TNF-alpha) gene and ex vivo lipopolysaccharide-induced TNF-alpha expression in patients with aggressive periodontitis and/or type 1 diabetes mellitus.

    PubMed

    Prez, Claudio; Gonzlez, Fermn E; Pavez, Violeta; Araya, Aida V; Aguirre, Adam; Cruzat, Andrea; Contreras-Levicoy, Juan; Dotte, Andrs; Aravena, Octavio; Salazar, Lorena; Cataln, Diego; Cuenca, Jimena; Ferreira, Arturo; Schiattino, Irene; Aguilln, Juan C

    2004-01-01

    Several single-nucleotide polymorphisms (SNPs) have been identified in the TNF-alpha gene promoter. The transition G-->A at position -308 generates the TNF-alpha1 (G/G) and TNF-alpha2 (G/A or A/A) alleles, where the polymorphic TNF-alpha2 allele is associated with a high, in vitro TNF-alpha expression and an increased susceptibility to diverse illnesses. Here we study the association of the -308 TNF-alpha SNP with the susceptibility for developing aggressive periodontitis (AP), AP combined with type 1 diabetes mellitus (DM) and DM. We also explore the TNF-alpha capability expression and the presence of the -308 polymorphism. For this purpose we recruited 27 individuals with AP (AP+ group), 27 individuals with AP combined with DM (AP+/DM+ group), and 27 individuals with DM without signs of periodontitis upon clinical examination (DM+ group). The control group was comprised of 30 subjects. Genotyping for TNF-alpha promoter was performed by PCR-RFLP analysis. For TNF-alpha expression we used a blood culture system. PMID:15627647

  4. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774.A1 Macrophage

    PubMed Central

    Park, Sungdo; Choi, Young-Sill; Park, Sang-Hee; Kim, Young-Rok; Chu, Hyuk; Hwang, Kyu-Jam; Park, Mi-Yeoun

    2013-01-01

    Objectives The objective of this study was to isolate a Brucella lon mutant and to analyze the cytokine response of B. lon mutant during macrophage infection. Methods A wild-type Brucella abortus strain was mutagenized by Tn5 transposition. From the mouse macrophage J774.A1 cells, total RNA was isolated at 0 hours, 6 hours, 12 hours, and 24 hours after infection with Brucella. Using mouse cytokine microarrays, we measured transcriptional levels of the cytokine response, and validated our results with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay to confirm the induction of cytokine messenger RNA (mRNA). Results In host J774.A1 macrophages, mRNA levels of T helper 1 (Th1)-type cytokines, including tumor necrosis factor-alpha (TNF-?), interferon-gamma (IFN-?), interleukin-2 (IL-2), and IL-3, were significantly higher in the lon mutant compared to wild-type Brucella and the negative control. TNF-? levels in cell culture media were induced as high as 2?g/mL after infection with the lon mutant, a greater than sixfold change. Conclusion In order to understand the role of the lon protein in virulence, we identified and characterized a novel B. lon mutant. We compared the immune response it generates to the wild-type Brucella response in a mouse macrophage cell line. We demonstrated that the B. lon mutants induce TNF-? expression from the host J774.A1 macrophage. PMID:24524018

  5. Hamamelitannin from Hamamelis virginiana inhibits the tumour necrosis factor-alpha (TNF)-induced endothelial cell death in vitro.

    PubMed

    Habtemariam, Solomon

    2002-01-01

    The tumour necrosis factor-alpha (TNF) inhibitory activity of hamamelitannin from Hamamelis virginiana was investigated by assessing the TNF-mediated EAhy926 endothelial cell death and adhesiveness to monocytes. Treatment of the cells by TNF (25 ng/ml) and actinomycin D (0.1ng/ml) resulted in significant DNA fragmentation (34+/-0.6, n=4) and cytotoxicity (97+/-4.5%, n=6) following treatment for 8 and 24h, respectively. One to 100 microM concentrations of hamamelitannin inhibited the TNF-mediated endothelial cell death and DNA fragmentation in a dose-dependent manner. One hundred % protection against TNF-induced DNA fragmentation and cytotoxicity was obtained for hamamelitannin concentrations higher than 10 microM. The protective effect of hamamelitannin was comparable with that of a related compound epigallocatechin gallate while gallic acid was a weak protective agent (<40% protection). EAhy926 endothelial cells upregulated (by 4- to 7-fold) the surface expression of intercellular adhesion molecule-1 (ICAM-1) and adhesiveness to monocytic U937 cells after treatment with TNF (0.5ng/ml) for 6 or 24h. Concentrations (1-100 microM) of hamamelitannin that inhibited the TNF-mediated cell death and DNA fragmentation, however, failed to inhibit the TNF-induced ICAM-1 expression and EAhy926 cell adhesiveness to U937 cells. Thus, hamamelitannin inhibits the TNF-mediated endothelial cell death without altering the TNF-induced upregulation of endothelial adhesiveness. The observed anti-TNF activity of hamamelitannin may explain the antihamorrhaegic use of H. virginiana in traditional medicine and its claimed use as a protective agent for UV radiation. PMID:11602283

  6. The immediate early genes of human cytomegalovirus upregulate tumor necrosis factor-alpha gene expression.

    PubMed Central

    Geist, L J; Monick, M M; Stinski, M F; Hunninghake, G W

    1994-01-01

    Cytomegalovirus (CMV) is an important cause of disease in the immunocompromised patient and CMV infection is associated with predominantly mononuclear inflammatory response. Since products of the CMV immediate early (IE) gene region are potent trans-activators, we used the monocyte cell line THP-1 and a transient transfection assay to determine if these viral proteins upregulate expression of the TNF gene. The IE genes of CMV upregulated TNF gene activity as judged by increases in promoter activity, steady state mRNA, and protein production. The presence or absence of the 3' untranslated region of the TNF gene did not affect gene expression induced by the IE gene products. These studies suggest that activation of TNF gene expression by the CMV IE gene products may, in part, account for the inflammatory response associated with CMV infections. Images PMID:8113386

  7. Shiga Toxin 1-Induced Inflammatory Response in Lipopolysaccharide-Sensitized Astrocytes Is Mediated by Endogenous Tumor Necrosis Factor Alpha?

    PubMed Central

    Landoni, Vernica I.; de Campos-Nebel, Marcelo; Schierloh, Pablo; Calatayud, Cecilia; Fernandez, Gabriela C.; Ramos, M. Victoria; Rearte, Brbara; Palermo, Marina S.; Isturiz, Martn A.

    2010-01-01

    Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-?) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-?B activation or AST-derived TNF-?. Our results suggest that TNF-? is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury. PMID:20008539

  8. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  9. Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis.

    PubMed

    Zaman, Mohammad Mahabub-Uz; Nomura, Teruaki; Takagi, Tsuyoshi; Okamura, Tomoo; Jin, Wanzhu; Shinagawa, Toshie; Tanaka, Yasunori; Ishii, Shunsuke

    2013-12-01

    Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α-d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α-cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis. PMID:24144979

  10. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    SciTech Connect

    Ohtsubo, Hideki; Ichiki, Toshihiro Imayama, Ikuyo; Ono, Hiroki; Fukuyama, Kae; Hashiguchi, Yasuko; Sadoshima, Junichi; Sunagawa, Kenji

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting of propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.

  11. ARID3B Induces Tumor Necrosis Factor Alpha Mediated Apoptosis While a Novel ARID3B Splice Form Does Not Induce Cell Death

    PubMed Central

    Joseph, Stancy; Deneke, Victoria E.; Cowden Dahl, Karen D.

    2012-01-01

    Alternative splicing is a common occurrence in many cancers. Alternative splicing is linked with decreased apoptosis and chemoresistance in cancer cells. We previously demonstrated that ARID3B, a member of the AT-rich interactive domain (ARID) family of DNA binding proteins, is overexpressed in ovarian cancer. Therefore we wanted to assess the effect of ARID3B splice forms on cell viability. We identified a novel splice form of the ARID3B gene (designated as ARID3B Sh), which lacks the C-terminal exons 5–9 present in the full-length isoform (ARID3B Fl). ARID3B Fl is expressed in a variety of cancer cell lines. Expression of ARID3B Sh varied by cell type, but was highly expressed in most ovarian cancer lines. ARID3B is modestly transcriptionally activated by epidermal growth factor receptor (EGFR) signaling through the PEA3 transcription factor. We further found that ARID3B Fl is predominantly nuclear but is also present at the plasma membrane and in the cytosol. Endogenous ARID3B Sh is present in nuclear fractions, yet, when overexpressed ARID3B Sh accumulates in the cytosol and membrane fractions. The differential localization of these isoforms suggests they have different functions. Importantly, ARID3B Fl overexpression results in upregulation of pro-apoptotic BIM and induces Tumor Necrosis Factor alpha (TNFα) and TNF-related apoptosis inducing ligand (TRAIL) induced cell death. The ARID3B Fl-induced genes include TNFα, TRAIL, TRADD, TNF-R2, Caspase 10 and Caspase 7. Interestingly, ARID3B Sh does not induce apoptosis or expression of these genes. ARID3B Fl induces death receptor mediated apoptosis while the novel splice form ARID3B Sh does not induce cell death. Therefore alternative splice forms of ARID3B may play different roles in ovarian cancer progression. PMID:22860069

  12. Evaluation of Cucurbita maxima extract against scopolamine-induced amnesia in rats: implication of tumour necrosis factor alpha.

    PubMed

    Jawaid, Talha; Shakya, Ashok K; Siddiqui, Hefazat Hussain; Kamal, Mehnaz

    2014-01-01

    Cucurbita maxima (CM) seed oil is commonly used in Indian folk medicine to treat various ailments. We have investigated the effect of CM seed oil on memory impairment induced by scopolamine in rats. Male adult Wistar rats were administered scopolamine 1 mg/kg body weight, i.p. or 1.25 mg/kg body weight, s.c. to induce memory impairment. The nootropic agent piracetam 100 mg/kg body weight, i.p. and CM seed oil 100 and 200 mg/kg body weight, p.o. were administered daily for five consecutive days. The memory function was evaluated in the Morris water maze (MWM) test, the social recognition test (SRT), the elevated plus maze (EPM) test, and the pole climbing test (PCT). Acetylcholinesterase (AChE) activity and oxidative stress parameters were estimated in the cortex, hippocampus, and cerebellum of the brains after completion of the behavioural studies. The effects of scopolamine on the levels of the tumour necrosis factor alpha (TNF-?) transcript were also investigated. Scopolamine caused memory impairment in all the behavioural paradigms along with a significant increase in the AChE activity and oxidative stress in the brain. Scopolamine also caused a significant increase in the expression of TNF-? in the hippocampus. CM seed oil exhibited antiamnesic activity as indicated by a significant reduction in the latency time in the MWM test and decreased social interaction during trial 2 in the SRT. Further, treatment with CM seed oil significantly decreased the AChE activity and malondialdehyde levels and increased the glutathione level in brain regions. CM seed oil also significantly decreased the expression of TNF-? in the hippocampus. The effect of CM seed oil on behavioural and biochemical parameters was comparable to that observed in rats treated with piracetam. These results indicate that CM seed oil may exert antiamnesic activity which may be attributed to the inhibition of AChE and inflammation as well as its antioxidant activity in the brain. PMID:25711042

  13. The promoting effect of tumour necrosis factor alpha in radiation-induced cell transformation.

    PubMed Central

    Guo, R. F.; Gong, Y. F.

    1998-01-01

    The ability of tumour necrosis factor alpha (TNF-alpha), a potent endogenous inflammatory agent, to promote malignant transformation of Syrian hamster embryo cells (SHE) initiated by a 0.5-Gy dose of alpha-particles was investigated. Opsonized zymosan particles, which were phagocytosed by a human macrophage-like cell line, triggered TNF-alpha production from U937 cells. This cell supernatant could significantly increase the transformation frequency (TF) of primary SHE cells previously irradiated by a 0.5-Gy dose of alpha-particles. The TF decreased significantly if monoclonal antibody against TNF-alpha was added to the supernatant. Similarly, recombinant human TNF-alpha (rhTNF-alpha) increased the TF of alpha-irradiated primary SHE cells to an even greater extent. Addition of TNF-alpha to subcultures of irradiated SHE cells permitted the continuous propagation of these primary cells. In contrast, both TNF-alpha-treated control and alpha-irradiated cells without subsequent TNF-alpha treatment senesced after 7-15 passages. Irradiated SHE cells treated continuously with TNF-alpha could be subcultured over 40 passages and produced fibrosarcomas upon inoculation into nude mice. Our results provide the first evidence that TNF-alpha released by activated macrophages may contribute to the process of malignant transformation initiated by low-dose alpha-particles. PMID:9579824

  14. Thermotherapy-induced reduction in glioma invasiveness is mediated by tumor necrosis factor-alpha.

    PubMed

    Qin, L J; Zhang, T; Jia, Y S; Zhang, Y B; Zhang, Y X; Wang, H T

    2015-01-01

    Thermotherapy has been proven to be effective for the treatment of various tumors, including glioma. We determined whether tumor necrosis factor-alpha (TNF-α) is involved in the regulation of the biological processes of glioma development. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry were used to investigate the levels of TNF-α mRNA and heat shock factor-1 (HSF1) protein, respectively, in glioma cells. Radioimmunoassay was used to dynamically monitor the contents of TNF-α in the nutrient fluid of C6 cells after thermotherapy treatment. Crystal violet staining was used to determine glioma invasiveness. The most obvious increases in HSF1 protein and TNF-α mRNA in C6 cells were observed at 30 and 60 min after thermotherapy, respectively. In addition, the radioactivity of TNF-α in the culture fluid of the C6 cells reached a peak after 120 min of thermotherapy. In addition, glioma invasiveness decreased and the concentration of TNF-α reached a maximum after 120 min of thermotherapy. Our results show that the decrease in thermotherapy-mediated glioma invasiveness is due to the accelerated release of TNF-α, which could promote the release of HSF1 from neurospongioma cells. PMID:26436502

  15. Expression of neu protein, epidermal growth factor receptor, and transforming growth factor alpha in breast cancer. Correlation with clinicopathologic parameters.

    PubMed Central

    Lundy, J.; Schuss, A.; Stanick, D.; McCormack, E. S.; Kramer, S.; Sorvillo, J. M.

    1991-01-01

    The major objectives of this study were twofold: to determine 1) if growth factors or growth factor receptors were expressed similarly or differently in a clinically well-characterized group of breast cancer patients and 2) if these phenotypic characteristics were associated with any of the commonly used prognostic parameters. Formalin-fixed paraffin-embedded tumor tissue from 51 node-positive breast cancer patients were analyzed for the expression of neu, epidermal growth factor-receptor (EGF-R), and transforming growth factor alpha (TGF alpha) using immunoperoxidase staining. Positive membranous staining for neu was observed in 15 (29%) tumors. Over-expression of neu was observed in high-grade, estrogen-receptor-negative tumors (P less than 0.05). Epidermal growth factor receptor was expressed in 22 (43%) of the tumors analyzed and found to a greater degree in estrogen-receptor-negative and high-grade tumors (P less than 0.025). A significant correlation between neu and EGF-R expression was also noted. Tumors expressing membranous staining of neu had a greater than 70% chance of expressing EGF-R (P less than 0.01). Expression of TGF alpha was found in 68% of tumors and TGF alpha was detected in grade 1 and 2 tumor to a greater degree than EGF-R. The authors conclude that assaying tumors for these antigens may give additional phenotypic characteristics that can give further insight into the biology of breast cancer. Images Figure 1 Figure 2 Figure 3 PMID:1711294

  16. Immunocytochemical increased evidence of inducible nitric oxide synthase, tumor necrosis factor-alpha, and adrenocorticotropic hormone in human peritumoral lymph nodes.

    PubMed

    Rossi, Aldo; Landolfo, Giovanni; Sassi, Davide; Franchini, Antonella; Ottaviani, Enzo

    2002-03-01

    In the current study, mesenteric and peritumoral lymph nodes surgically removed from patients with colon-rectum cancer were studied. Morphologic and immunocytochemical investigations demonstrated that mesenteric (control) and peritumoral lymph nodes of a same patient showed the same morphologic structure, but a different immunocytochemical pattern. Indeed, an increased immunoreactivity to anti-inducible nitric oxide synthase, anti-tumor necrosis factor-alpha, and anti-adrenocorticotropic hormone antibodies in the lymphatic tissue of peritumoral lymph nodes compared with mesenteric lymph nodes was observed. These findings suggest that in colon-rectum cancer, the pathologic event induces an increased expression of the molecules involved in the processes of inflammation and carcinogenesis that occurs earlier than the appearance of morphologic modifications. PMID:11893036

  17. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti ; Shelat, Harnath; Xue, Qun; Willerson, James T.; The Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas ; De Caterina, Raffaele; Geng, Yong-Jian; The Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  18. Cloning and expression analysis of rainbow trout Oncorhynchus mykiss tumour necrosis factor-alpha.

    PubMed

    Laing, K J; Wang, T; Zou, J; Holland, J; Hong, S; Bols, N; Hirono, I; Aoki, T; Secombes, C J

    2001-03-01

    A rainbow trout (Oncorhynchus mykiss) gene for tumor necrosis factor (TNF) has been cloned and sequenced. The cDNA contains an open reading frame of 738 nucleotides that translate into a 246 amino-acid putative peptide, with a 5' untranslated region (UTR) of 140 bp and a 3' UTR of 506 bp. Two potential N-linked glycosylation sites exist in the translation. The genomic sequence measures 2007 bp and contains three introns that intercept four coding exons. Expression studies using RT-PCR have shown that the trout TNF gene is constitutively expressed in the gill and kidney of unstimulated fish. Trout TNF expression could be up-regulated by stimulation of isolated head kidney leucocytes with lipopolysaccharide (LPS). Similarly, stimulation of a trout macrophage cell line (RTS11) with LPS resulted in an increased transcript level, as did incubation with recombinant trout interleukin (IL)-1 beta. The optimal timing for induction of TNF expression in trout macrophages was determined using recombinant trout IL-1 beta, where a clear induction was apparent by 2 h and peaked at 4 h. Evidence that this TNF gene is equivalent to mammalian TNF-alpha is discussed. PMID:11231283

  19. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  20. Regulation of the calcium-sensing receptor expression by 1,25-dihydroxyvitamin D3, interleukin-6, and tumor necrosis factor alpha in colon cancer cells.

    PubMed

    Fetahu, Irfete S; Hummel, Doris M; Manhardt, Teresa; Aggarwal, Abhishek; Baumgartner-Parzer, Sabina; Kllay, Enik?

    2014-10-01

    Anti-proliferative effects of calcium in the colon are mediated, at least in part, via the calcium-sensing receptor (CaSR), a vitamin D target gene. The expression of CaSR decreases during colorectal tumor progression and the mechanisms regulating its expression are poorly understood. The CaSR promoter harbors vitamin D elements responsive to 1,25-dihydroxyvitamin D3 (1,25D3) and NF-?B, STAT, and SP1 binding sites accounting for responsiveness to proinflammatory cytokines. Therefore, in the current study we investigated the impact of 1,25D3, tumor necrosis factor alpha (TNF?), and interleukin (IL)-6 on CaSR expression in a differentiated (Caco2/AQ) and in a moderately differentiated (Coga1A) colon cancer cell line. 1,25D3 induced CaSR expression in both cell lines. Treatment with TNF? was accompanied by a 134-fold induction of CaSR in Coga1A (p<0.01). In Caco2/AQ cells the expression of CaSR was upregulated also by IL-6 (3.5-fold). Our data demonstrated transcriptional and translational activation of the CaSR by 1,25D3, TNF?, and IL-6 in a time- and cell line-dependent manner. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24176760

  1. Tumor Necrosis Factor Alpha-Induced Hypoxia-Inducible Factor 1??-Catenin Axis Regulates Major Histocompatibility Complex Class I Gene Activation through Chromatin Remodeling

    PubMed Central

    Ghosh, Sadashib; Paul, Arkoprovo

    2013-01-01

    Hypoxia-inducible factor 1? (HIF-1?) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1? is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-?)-induced inflammation in MHC-I gene regulation was investigated. A TNF-?-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1?, ?F-??, and ?-catenin activities. While knockdown of HIF-1? and ?-catenin abrogated TNF-?-induced MHC-I activation, NF-?B had no effect. ?-Catenin inhibition abrogated HIF-1? activation and vice versa, and this HIF-1??-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with ?-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site ? on the MHC-I promoter in a ?-catenin-dependent manner. ?-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-?-induced MHC-I expression. ?-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1?/?-catenin-dependent manner. PMID:23671189

  2. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis.

    PubMed

    Sang, Chenglin; Zhang, Yongxian; Chen, Fangjing; Huang, Ping; Qi, Jin; Wang, Pingshan; Zhou, Qi; Kang, Hui; Cao, Xuecheng; Guo, Lei

    2016-03-01

    The proinflammatory cytokines, especially tumor necrosis factor alpha (TNF-α), have been shown to inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and bone formation in estrogen-deficiency-induced osteoporosis, but the mechanisms of TNF-α impaired bone formation remain poorly understood. Semaphorins have been shown to regulate cell growth, cell migration, and cell differentiation in a variety of tissues, including bone tissue. Here, we identified a novel mechanism whereby TNF-α, suppressing Semaphorin3B expression contributes to estrogen-deficiency-induced osteoporosis. In this study, we found that TNF-α could decrease Semaphorin3B expression in osteogenic differentiation of MSCs. Overexpression of Semaphorin3B in MSCs attenuated the inhibitory effects of TNF-α on MSCs proliferation and osteoblastic differentiation. Mechanistically, activation of the Wnt/β-catenin signaling markedly rescued TNF-α-inhibited Semaphorin3B expression, suggesting that Wnt/β-catenin signaling was involved in the regulation of Semaphorin3B expression by TNF-α. Taken together, our results revealed a novel function for Semaphorin3B and suggested that suppressed Semaphorin3B may contribute to impaired bone formation by elevated TNF-α in estrogen-deficiency-induced osteoporosis. This study may indicate a therapeutic target gene of Semaphorin3B for osteoporosis. PMID:26723579

  3. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    SciTech Connect

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu ; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  4. Tumor Necrosis Factor-Alpha Up-Regulates ICAM-1 Expression and Release in Intestinal Myofibroblasts by Redox-Dependent and -Independent Mechanisms.

    PubMed

    Fontani, Filippo; Domazetovic, Vladana; Marcucci, Tommaso; Vincenzini, Maria Teresa; Iantomasi, Teresa

    2016-02-01

    Intercellular adhesion molecule-1 (ICAM-1) is distributed and expressed on cell surface and is present in circulation as soluble form (sICAM-1). Tumor necrosis factor-alpha (TNF?) and radical oxygen species (ROS) up-regulate the expression of ICAM-1. This study demonstrates for the first time in 18 Co cells, a myofibroblast cell line derived from human colonic mucosa, an up-regulation of ICAM-1 expression and sICAM-1 release induced by oxidative stress and TNF? stimulation. The intracellular redox state was modulated by L-buthionine-S,R-sulfoximine (BSO) or N-acetylcysteine (NAC), inhibitor and precursor respectively of GSH synthesis. ROS production increases in cells treated with BSO or TNF?, and this has been related to an up-regulation of ICAM-1 expression and sICAM-1 release. The involvement of metalloproteinases in ICAM-1 release has been demonstrated. Moreover, also expression and activation of A disintegrin and metalloproteinase 17, a membrane-bound enzyme known as TNF?-converting enzyme (TACE), have been related to ROS levels. This suggests the possible involvement of TACE in the cleavage of ICAM-1 on cell surface in condition of oxidative stress. NAC down-regulates the expression and release of ICAM-1 as well as the expression and activation of TACE. However, in TNF? stimulated cells NAC treatment reduces only in part ICAM-1 expression and sICAM-1 release. Given this TNF? may also act on these events by a redox-independent mechanism. J. Cell. Biochem. 117: 370-381, 2016. 2015 Wiley Periodicals, Inc. PMID:26177712

  5. Erythromycin Inhibits Tumor Necrosis Factor Alpha and Interleukin 6 Production Induced by Heat-Killed Streptococcus pneumoniae in Whole Blood

    PubMed Central

    Schultz, Marc J.; Speelman, Peter; Zaat, Sebastian; van Deventer, Sander J. H.; van der Poll, Tom

    1998-01-01

    To determine the effects of penicillin and erythromycin on cytokine production induced by heat-killed Streptococcus pneumoniae (HKSP), we studied the effects of those drugs on cytokine production induced by S. pneumoniae in human whole blood in vitro and ex vivo. In whole blood in vitro, erythromycin, but not penicillin, caused a dose-dependent decrease in HKSP-induced production of tumor necrosis factor alpha (TNF) and interleukin 6 (IL-6), while the production of IL-10, IL-12, and gamma interferon was inhibited only at the highest erythromycin concentration tested (10−3 M). The production of TNF and IL-6 in whole blood obtained from healthy subjects after a 30-min infusion of erythromycin (1,000 mg) was lower after ex vivo stimulation with HKSP than that in blood drawn before the infusion. Inhibition of TNF contributed to erythromycin-induced inhibition of IL-6 synthesis. Inhibition of TNF and IL-6 production by erythromycin may have a negative impact on host defense mechanisms during pneumococcal pneumonia. PMID:9660992

  6. Effects of tumour necrosis factor alpha and interleukin-6 on progesterone and calcium ionophore-induced acrosome reaction.

    PubMed

    Lampiao, F; du Plessis, S S

    2009-06-01

    For human spermatozoa to successfully fertilize the oocyte, they need to undergo a timely acrosome reaction (AR). Factors which disturb the AR may lead to fertilization failure. The objective of this study was to investigate the effects of two cytokines namely tumour necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) on the spontaneous, calcium ionophore-induced and progesterone-induced human sperm AR. Twenty-two normal semen samples were treated with increasing concentrations of TNF-alpha and IL-6 after spermatozoa were isolated by a double wash swim-up method. The AR was induced by calcium ionophore A23187 and progesterone. The AR was determined by using fluorescein isothiacyanate Pisum sativum agglutinin and observed under fluorescence microscope. Both TNF-alpha and IL-6 could decrease the spontaneous, ionophore and progesterone-induced AR (p < 0.05) in a dose-dependent manner. TNF-alpha showed a more potent inhibiting effect than IL-6 by inhibiting the AR at lower concentrations. This study has demonstrated that TNF-alpha and IL-6 play a role in inhibiting both the non-physiological as well as physiologically elicited AR by calcium ionophore and progesterone respectively. PMID:18798763

  7. Transforming growth factor alpha protection against drug-induced injury to the rat gastric mucosa in vivo.

    PubMed Central

    Romano, M; Polk, W H; Awad, J A; Arteaga, C L; Nanney, L B; Wargovich, M J; Kraus, E R; Boland, C R; Coffey, R J

    1992-01-01

    This study was designed to determine whether transforming growth factor alpha (TGF alpha) protects rat gastric mucosa against ethanol- and aspirin-induced injury. Systemic administration of TGF alpha dose-dependently decreased 100% ethanol-induced gastric mucosal injury; a dose of 50 micrograms/kg delivered intraperitoneally 15 min before ethanol decreased macroscopic mucosal injury by > 90%. At the microscopic level, TGF alpha prevented deep gastric necrotic lesions and reduced disruption of surface epithelium. Pretreatment with orogastric TGF alpha (200 micrograms/kg) only partially (40%) decreased macroscopic ethanol damage. Intraperitoneal administration of TGF alpha at a dose of 10 micrograms/kg, which does not significantly inhibit gastric acid secretion, decreased aspirin-induced macroscopic damage by > 80%. TGF alpha protection does not seem to be mediated by prostaglandin, glutathione, or ornithine decarboxylase-related events, as evidenced by lack of influence of the inhibition of their production. Pretreatment with the sulfhydryl blocking agent N-ethylmaleimide partially abolished (40%) the protective effect of TGF alpha. In addition, systemic administration of TGF alpha resulted in a two-fold increase in tyrosine phosphorylation of phospholipase C-gamma 1 and in a time- and dose-dependent increase in levels of immunoreactive insoluble gastric mucin; these events occurred in a time frame consistent with their participation in the protective effect of TGF alpha. Images PMID:1281834

  8. Constitutive expression of tumor necrosis factor-alpha in cytotoxic cells of teleosts and its role in regulation of cell-mediated cytotoxicity.

    PubMed

    Praveen, Kesavannair; Evans, Donald L; Jaso-Friedmann, Liliana

    2006-02-01

    Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are the main killer cell populations of the immune system. The mechanisms by which these cells recognize target cells vary considerably, while the effector molecules used to facilitate target cell death are highly conserved. The main pathways utilized by killer cells consist of granule exocytosis and those mediated by members of the TNF superfamily. Nonspecific cytotoxic cells (NCC) are the first identified cytotoxic cell population in teleosts. We have previously demonstrated the expression of granzymes and Fas ligand in these cells. This is the first report of the expression of tumor necrosis factor-alpha in these killer cells. A cDNA coding for TNF was cloned and sequenced from NCC purified from Nile tilapia (Oreochromis niloticus). Factors regulating the transcriptional modulation of TNF in these cells were identified by RT-PCR analysis. The mature form of tilapia TNF was expressed as a recombinant protein and biological activities were analyzed. Using a cross-reacting anti-TNF polyclonal antibody, analysis of TNF expression suggested that tilapia NCC constitutively express the membrane-bound as well as secreted forms of TNF. Recombinant tilapia TNF effectively induced cytotoxicity in the mammalian cell line WEHI, although to a lesser extent compared to the murine TNF. Treatment with recombinant TNF protected NCC from activation-induced cell death. Recombinant tilapia TNF was also effective in upregulation of granzyme transcription in tilapia NCC. These data suggest that teleost TNF may play a role in diverse effector functions of cytotoxic cells from ectotherms, similar to the biological functions described for mammalian TNF. PMID:16199264

  9. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma.

    PubMed Central

    Leek, R. D.; Landers, R.; Fox, S. B.; Ng, F.; Harris, A. L.; Lewis, C. E.

    1998-01-01

    Angiogenesis is an essential requirement for tumour growth and metastasis and is regulated by a complex network of factors produced by both stromal cells and neoplastic cells within solid tumours. The cytokine tumour necrosis factor alpha (TNF-alpha) and the enzyme thymidine phosphorylase (TP) are two factors known to promote tumour angiogenesis. We have demonstrated recently that high numbers of tumour-associated macrophages (TAMs) are significantly associated with increased tumour angiogenesis and poor prognosis in invasive carcinoma of the breast. We have also shown that TAMs are a major source of TNF-alpha in invasive breast carcinomas, and that macrophage-like stromal cells as well as tumour cells synthesize TP in such tumours. However, little is known of the factors that regulate the production or activity of these factors in the tumour microenvironment. As TNF-alpha has been shown to up-regulate TP expression in tumour cells in vitro we performed an immunohistochemical study to investigate the possibility that TNF-alpha may be involved in the regulation of TP expression by malignant breast epithelial cells in vivo. To do this, we used a cocktail of non-neutralizing monoclonal anti-TNF-alpha antibodies to visualize both TNF-alpha-expressing macrophages and TNF-alpha bound to its receptors on tumour cells and endothelial cells in a series of 93 invasive carcinomas of the breast. A semiquantitative grading system was then used to compare these staining patterns with that for TP in the same biopsies. TNF-alpha immunoreactivity was also compared with various important tumour variables known to relate to outcome in this disease (microvessel density, node status, grade, stage, receptor status and macrophage infiltration), as well as relapse-free and overall survival data for these patients. Our data show significant positive correlations between TNF-alpha bound to its receptors on tumour cells and: (1) TP protein production by tumour cells, and (2) axillary lymph node status (i.e. metastasis). These results suggest that tumour cell responsiveness to TNF-alpha produced by neighbouring TAMs may play a part in the regulation of TP expression by tumour cells as well as their metastatic behaviour. This may explain, in part, the relationship between increased macrophage infiltration and angiogenesis in breast cancer, and further supports the contention that TAMs may represent an important target for future anti-angiogenic therapies. Images Figure 1 PMID:9649140

  10. Involvement of the membrane form of tumour necrosis factor-alpha in lipopolysaccharide-induced priming of mouse peritoneal macrophages for enhanced nitric oxide response to lipopolysaccharide.

    PubMed Central

    Ancuta, P; Fahmi, H; Pons, J F; Le Blay, K; Chaby, R

    1997-01-01

    We studied the pathways of macrophage response to lipopolysaccharide (LPS). When mouse macrophages pre-exposed to LPS were restimulated with this agent, reduced tumour necrosis factor-alpha (TNF-alpha) responses (desensitization/endotoxin tolerance) were accompanied by increased (priming) nitric oxide (NO) responses. Priming was also inducible with recombinant interferon-beta (IFN-beta). The requirement of TNF-alpha biosynthesis in the LPS-induced priming was also suggested by the observation that both anti-TNF-alpha serum and pentoxifylline inhibited this effect. However, addition of mouse recombinant TNF-alpha (mrTNF-alpha) did not enhance the priming induced by LPS or IFN-beta, and preincubation with mrTNF-alpha alone, or in association with other cytokines produced by macrophages (interleukin-1 beta, interleukin-6, or leukaemia inhibitory factor), did not induce a priming effect. We found however, that pentoxifylline, which blocked the priming, also decreased the level of membrane-bound TNF-alpha. Furthermore, exposure to compound BB-3103 (a metalloproteinase inhibitor that blocks the processing of membrane-bound TNF-alpha yielding to the secreted cytokine) enhanced the priming effect, the expression of membrane TNF-alpha and the specific binding of LPS. These observations suggest that the membrane form of TNF-alpha is involved in the interaction of LPS with a receptor required for LPS-induced priming. PMID:9415035

  11. Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture.

    PubMed Central

    Bour, E. S.; Ward, L. K.; Cornman, G. A.; Isom, H. C.

    1996-01-01

    Apoptosis occurs naturally in the liver and increases in specific pathogenic processes. We previously described the use of a chemically defined medium supplemented with epidermal growth factor and dimethylsulfoxide to maintain rat hepatocytes in a highly differentiated state for more than 30 days (long-term culture). In this study, we showed that hepatocytes in long-term dimethylsulfoxide culture have definite advantages over using cells in short-term culture (cells in culture for 2 to 4 days) to study apoptosis. We demonstrated that treatment with tumor necrosis factor (TNF)-alpha induced apoptosis (detected morphologically and by formation of an oligonucleosomal DNA ladder) only in hepatocytes that had been subjected to dimethylsulfoxide removal. Neither treatment with TNF-alpha alone or dimethylsulfoxide removal alone induced apoptosis. Apoptosis could be induced by concentrations as low as 500 U of TNF-alpha/ml. Although a DNA ladder was not detected by 12 hours after TNF-alpha treatment, it was easily identified by 24 hours. We conclude that this system can be used 1) to examine the underlying mechanism by which TNF-alpha causes apoptosis in hepatocytes and 2) to study induction of apoptosis in hepatocytes by other agents. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8579111

  12. The synergistic effect of phytohemagglutinin and interferon-gamma on the expression of tumor necrosis factor-alpha from RAW 264.7 cells.

    PubMed

    Chang, Sung Ho; Mun, Se Hwan; Ko, Na Young; Lee, Jun Ho; Jun, Myung Ha; Seo, Jin Young; Kim, Young Mi; Choi, Wahn Soo; Her, Erk

    2005-04-15

    Tumor necrosis factor-alpha (TNF-alpha) is a major cytokine of host immune reaction by foreign agents. Phytohemagglutinin (PHA) is a dynamic contributor to mitogenic stimulation and augmentation of host immune defense. Interferon-gamma (IFN-gamma) induces induction of cytokines in macrophages and lymphocytes. The aim of this study was to examine the synergistic effects of PHA plus low dose IFN-gamma on TNF-alpha mRNA production, cytosolic levels, and secretion in RAW 264.7 cells. The cells were stimulated with PHA or IFN-gamma using various concentrations for various times. The effects of PHA on TNF-alpha expression appeared in dose- and time-dependent manners. The maximum doses of PHA and IFN-gamma to produce them were 300 microg/ml PHA and 10 ng/ml IFN-gamma. The optimum time of PHA for the TNF-alpha mRNA production and release were 6 and 7 h after stimulation, respectively, whereas the time of IFN-gamma on them was achieved at 3 and 8 h. Although the TNF-alpha mRNA production, cytosolic levels, and secretion from the cells were slightly detected under 10 microg/ml PHA and 1 ng/ml IFN-gamma, the combination of PHA (10 microg/ml) and IFN-gamma (1 ng/ml) greatly increased them, indicating the synergistic effect of PHA plus low dose IFN-gamma on TNF-alpha expression. PMID:15790519

  13. Enhancement of antigen- and mitogen-induced human T lymphocyte proliferation by tumor necrosis factor-alpha.

    PubMed

    Yokota, S; Geppert, T D; Lipsky, P E

    1988-01-15

    The capacity of human recombinant tumor necrosis factor-alpha (rTNF alpha) to modulate human T cell proliferation was examined. To examine the effect of rTNF alpha on the responding T cell directly, T cell activation was studied in the absence of viable accessory cells (AC). Highly purified AC-depleted peripheral blood T4 or T8 cells were stimulated with immobilized monoclonal antibodies to the cluster of differentiation (CD)3 molecular complex, an AC-independent stimulus. rTNF alpha augmented anti-CD3-stimulated T4 and T8 cell proliferation. The capacity of rTNF alpha to enhance T cell proliferation varied inversely with the density of immobilized anti-CD3 and the number of responding cells in each culture. The capacity of rTNF alpha to enhance antigen-induced T4 cell proliferation was also examined. Antigen-bearing paraformaldehyde-fixed antigen-presenting cells induced modest T4 cell proliferation when cultured in flat-bottomed wells; this response was enhanced by rTNF alpha. The results demonstrate that rTNF alpha has direct effects on T cells, facilitating their capacity to proliferate in response to mitogens and antigens. These data indicate that rTNF alpha may play an immunoregulatory role, enhancing the proliferation of T lymphocytes. PMID:3257243

  14. Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-alpha.

    PubMed

    de Lima, Flvia Mafra; Bjordal, Jan M; Albertini, Regiane; Santos, Fbio V; Aimbire, Flavio

    2010-09-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Bronchial smooth muscle (BSM) hyperreactivity is associated with increased Ca+2 sensitivity and increased RhoA mRNA expression. In the current study, we investigated if LLLT could reduce BSM contraction force and RhoA mRNA expression in tumor necrosis factor-alpha (TNF-alpha)-induced BSM hyperreactivity. In the study, 112 male Wistar rats were divided randomly into 16 groups, and BSM was harvested and suspended in TNF-alpha baths for 6 and 24 h, respectively. Irradiation with LLLT was performed with a wavelength of 660 nm for 42 s with a dose of 1.3 J/cm2. This LLLT dose was administered once in the 6-h group and twice in the 24-h group. LLLT significantly decreased contraction force in BSM at 6 h (TNF-alpha + LLLT: 11.65+/-1.10 g/100 mg of tissue) (F=3115) and at 24 h (TNF-alpha+?LLLT: 14.15+/-1.1 g/100 mg of tissue) (F=3245, p<0.05) after TNF-alpha, respectively, when compared to vehicle-bathed groups (control). LLLT also significantly decreased the expression of RhoA mRNA in BSM segments at 6 h (1.22+/-0.20) (F=2820, p<0.05) and 24 h (2.13+/-0.20) (F=3324, p<0.05) when compared to BSM segments incubated with TNF-alpha without LLLT irradiation. We conclude that LLLT administered with this protocol, reduces RhoA mRNA expression and BSM contraction force in TNF-alpha-induced BSM hyperreactivity. PMID:20393772

  15. Tumor necrosis factor-alpha mediates acid aspiration-induced systemic organ injury.

    PubMed Central

    Goldman, G; Welbourn, R; Kobzik, L; Valeri, C R; Shepro, D; Hechtman, H B

    1990-01-01

    Acid aspiration-induced systemic organ injury is mediated by the sequestration of activated neutrophils (PMN). In other settings cytokines have been shown to increase neutrophil-endothelial adhesion, a requisite for injury. This study tests whether the systemic leukosequestration and permeability following localized aspiration is mediated by tumor necrosis factor (TNF)-alpha-induced synthesis of an adhesion protein. Anesthetized rats underwent tracheostomy and insertion of a fine-bore cannula into the anterior segment of the left lung. This was followed by the instillation of either 0.1 mL 0.1 N HCI (n = 18) or 0.1 mL saline in control rats (n = 18). Localized aspiration induced generalized pulmonary leukosequestration with 95 PMN/10 high-power fields (HPF) in the aspirated lung and 46 PMN/10 HPF in the nonaspirated lung, higher than control values of 7 PMN/10 HPF and 5 PMN/10 HPF in saline- and nonsaline-aspirated sides, respectively (p less than 0.05). The leukosequestration was associated with permeability edema shown by increased protein concentrations in bronchoalveolar lavage (BAL) of 3900 micrograms/mL in the aspirated and 2680 micrograms/mL in the nonaspirated side, higher than saline with 482 micrograms/mL and 411 micrograms/mL, respectively (p less than 0.05). There was generalized pulmonary edema following aspiration measured by increase in wet-to-dry weight ratios (w/d) of 6.6 in the aspirated and 5.1 in the nonaspirated lung, higher than control values of 3.5 and 3.4, respectively (p less than 0.05). Localized aspiration led to systemic leukosequestration documented by increases in myeloperoxidase activity (units/g tissue) of 2.2 and 1.7 in heart and kidney, higher than control values of 0.3 and 0.4, respectively (p less than 0.05). This event was associated with edema of these organs with w/d ratios of 4.6 and 4.3, relative to control values of 3.0 and 3.4 (p less than 0.05). Treatment of animals (n = 18) 20 minutes after aspiration with anti-TNF-alpha antiserum (rabbit anti-murine) but not normal rabbit serum (n = 18) reduced lung leukosequestration in the aspirated and nonaspirated segments (61 and 32 PMN/10HPF), BAL protein concentration (1490 and 840 micrograms/mL), and w/d ratio (4.3 and 3.7) (all p less than 0.05). In the heart and kidney there were reductions in myeloperoxidase activity (0.7 and 0.6) and w/d ratio (3.5 and 3.6) (both p less than 0.05). Treatment of rabbits (n = 18) with the protein synthesis inhibitor cycloheximide, 0.2 mg/kg/hr was as effective as TNF-alpha antiserum in modifying aspiration injury.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2222016

  16. Induction of stromelysin gene expression by tumor necrosis factor alpha is inhibited by dexamethasone, salicylate, and N-acetylcysteine in synovial fibroblasts.

    PubMed

    Morin, I; Li, W Q; Su, S; Ahmad, M; Zafarullah, M

    1999-06-01

    Proinflammatory cytokines, altered connective tissue metabolism, and overexpression of matrix metalloproteinases (MMPs) such as stromelysin compared to tissue inhibitors of metalloproteinases (TIMPs) result in synovial inflammation and erosion of arthritic cartilage. Tumor necrosis factor alpha (TNF-alpha) is a major synovial inflammatory mediator responsible for inhibiting extracellular matrix (ECM) synthesis and stimulating degradation of cartilage ECM by activated MMPs in arthritic joints. To suppress these effects and to gain insight into the mechanism of TNF-alpha action, we identified the inhibitors of TNF-alpha stimulation of stromelysin gene expression. In bovine synovial fibroblasts, TNF-alpha did not affect a recently identified inhibitor, TIMP-3, but induced stromelysin mRNA expression in a dose- and time-dependent fashion (3- to 5-fold) which required de novo protein synthesis. Stimulation by TNF-alpha was potently inhibited (99-100%) by the synthetic glucocorticoid, dexamethasone. Sodium salicylate dose-dependently inhibited (100%) the TNF-alpha action. Indomethacin and ibuprofen were partially inhibitory. Free radical scavenger antioxidant, N-acetylcysteine (but not other antioxidants) also suppressed the TNF-alpha induction (36-100%) of stromelysin suggesting involvement of reactive oxygen species in the induction process. TNF-alpha induction of stromelysin gene expression can therefore be inhibited at the gene expression level by several pharmacological agents which are likely to function via arachidonic acid metabolites, free radical scavenging or interference with the activator protein 1, polyoma virus enhancer A-binding protein 3, and nuclear factor kappaB classes of transcription factors. Our results may help to elucidate the mechanism of TNF-alpha action and explain the beneficial role of these agents in the treatment of inflammatory diseases. PMID:10336562

  17. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells.

    PubMed Central

    Andoh, A; Fujiyama, Y; Sumiyoshi, K; Sakumoto, H; Okabe, H; Bamba, T

    1997-01-01

    The increased expression of decay-accelerating factor (DAF) has been detected in intestinal epithelial cells at the inflamed mucosa. In this study, we examined the effects of tumour necrosis factor (TNF)-alpha on DAF expression in three intestinal epithelial cell lines. DAF mRNA expression was evaluated by Northern blot analysis, and DAF protein expression was analysed by biotin labelling and immunoprecipitation. TNF-alpha induced a marked increase in DAF mRNA and protein expression in HT-29, T84 and Caco-2 cells. In HT-29 cells, the effects of TNF-a on DAF mRNA accumulation were observed in a dose-dependent manner; DAF mRNA accumulation reached a maximum at 3-6 hr, and then gradually decreased. These effects of TNF-alpha required de novo protein synthesis. Messenger RNA stability studies suggested that TNF-alpha partially regulated DAF gene expression by a posttranscriptional mechanism. Moreover, the combination of TNF-alpha and interleukin (IL)-4 induced an additive increase in DAF mRNA accumulation in HT-29 and T84 cells. In human intestinal epithelial cells, TNF-alpha acts as a potent inducer of DAF mRNA expression, indicating an important role for TNF-alpha in the regulation of DAF expression at the inflamed mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:9155641

  18. The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha.

    PubMed Central

    Schulz, R; Panas, D L; Catena, R; Moncada, S; Olley, P M; Lopaschuk, G D

    1995-01-01

    1. Myocardial dysfunction during septic shock is associated with enhanced production of cytokines such as interleukin-1 beta (IL-1 beta) and tumour necrosis factor-alpha (TNF-alpha). These cytokines depress cardiac mechanical function by a mechanism which is not well defined. 2. Bacterial endotoxin or cytokines cause the expression of Ca(2+)-independent nitric oxide (NO) synthase in cardiac myocytes, vascular endothelial cells and endocardial endothelial cells, causing enhanced production of NO. As NO has negative inotropic actions on cardiac muscle, we tested the sum effects of IL-1 beta plus TNF-alpha in the intact heart to determine whether enhanced expression of NO synthase activity in the cells that comprise the heart is involved in cardiac depression associated with cytokine stimulation. 3. Rat isolated working hearts perfused with IL-1 beta plus TNF-alpha showed a markedly greater depression in contractile function, measured as cardiac work, after 2 h of perfusion compared with time-matched control hearts. The depressant action of IL-1 beta plus TNF-alpha was first apparent after 1 h of perfusion; no early (15 min) cardiac depressant actions were seen. 4. The competitive inhibitor of Ca(2+)-dependent and Ca(2+)-independent NO synthases, NG-nitro-L-arginine methyl ester (L-NAME, 3 microM) when given concurrently with IL-1 beta plus TNF-alpha prevented the loss in contractile function such that these hearts after 2 h of perfusion had similar function to time-matched controls. L-NAME did not acutely reverse the loss of contractile function in hearts exposed for 2 h to IL-1 beta plus TNF-alpha.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7536096

  19. Tumor Necrosis Factor Alpha Transcription in Macrophages Is Attenuated by an Autocrine Factor That Preferentially Induces NF-κB p50

    PubMed Central

    Baer, Mark; Dillner, Allan; Schwartz, Richard C.; Sedon, Constance; Nedospasov, Sergei; Johnson, Peter F.

    1998-01-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-α. This activity, termed TNF-α-inhibiting factor (TIF), suppressed the induction of TNF-α expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-α expression by macrophage conditioned medium was associated with selective induction of the NF-κB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-α promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-α gene. Repression of the TNF-α promoter by TIF required a distal region that includes three NF-κB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-α promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-α expression in activated macrophages. TIF is distinct from the known TNF-α-inhibiting factors IL-4, IL-10, and transforming growth factor β and may represent a novel cytokine. PMID:9742085

  20. Apical effect of diosmectite on damage to the intestinal barrier induced by basal tumour necrosis factor-alpha.

    PubMed Central

    Mahraoui, L; Heyman, M; Plique, O; Droy-Lefaix, M T; Desjeux, J F

    1997-01-01

    BACKGROUND: In many digestive diseases the intestinal barrier is weakened by the release of proinflammatory cytokines, including tumour necrosis factor-alpha (TNF alpha). AIM: To investigate the protective effect of apical diosmectite on the intestinal dysfunction induced by the proinflammatory cytokine TNF alpha. METHODS: Filter grown monolayers of the intestinal cell line HT29-19A were incubated for 48 hours in basal medium containing 10 ng/ml TNF alpha and 5 U/ml interferon-gamma (IFN gamma). Next, 1, 10, or 100 mg/ml diosmectite was placed in the apical medium for one hour. Intestinal function was then assessed in Ussing chambers by measuring ionic conductance (G) and apicobasal fluxes of 14C-mannitol (Jman), and intact horseradish peroxidase. In control intestinal monolayers, diosmectite did not significantly modify G, Jman, or intact horseradish peroxidase. RESULTS: After incubation with TNF alpha and IFN gamma, intestinal function altered, as shown by the increases compared with control values for G (22.8 (3.7) v (9.6 (0.5) mS/cm2), Jman (33.8 (7.5) v 7.56 (0.67) micrograms/h x cm2), and intact horseradish peroxidase (1.95 (1.12) v 0.14 (0.04) micrograms/h x cm2). G and Jman were closely correlated, suggesting that the increase in permeability was paracellular. Treatment with diosmectite restored al the variables to control values. CONCLUSIONS: Basal TNF alpha disrupts the intestinal barrier through the tight junctions, and apical diosmectite counteracts this disruption. PMID:9135522

  1. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins.

    PubMed

    Qin, Bolin; Qiu, Wei; Avramoglu, Rita Kohen; Adeli, Khosrow

    2007-02-01

    There is growing evidence suggesting intestinal insulin resistance and overproduction of apolipoprotein (apo) B48-containing chylomicrons in insulin-resistant states. In the current study, we investigated the potential role of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the development of insulin resistance and aberrant lipoprotein metabolism in the small intestine in a Syrian golden hamster model. TNF-alpha infusion decreased whole-body insulin sensitivity, based on in vivo euglycemic clamp studies in chow-fed hamsters. Analysis of intestinal tissue in TNF-alpha-treated hamsters indicated impaired phosphorylation of insulin receptor-beta, insulin receptor substrate-1, Akt, and Shc and increased phosphorylation of p38, extracellular signal-related kinase-1/2, and Jun NH(2)-terminal kinase. TNF-alpha infusion also increased intestinal production of total apoB48, triglyceride-rich lipoprotein apoB48, and serum triglyceride levels in both fasting and postprandial (fat load) states. The effects of TNF-alpha on plasma apoB48 levels could be blocked by the p38 inhibitor SB203580. Ex vivo experiments using freshly isolated enterocytes also showed TNF-alpha-induced p38 phosphorylation and intestinal apoB48 overproduction, effects that could be blocked by SB203580. Interestingly, TNF-alpha increased the mRNA and protein mass of intestinal microsomal triglyceride transfer protein without altering apoB mRNA levels. Enterocytes were found to have detectable levels of both TNF-alpha receptor types (p55 and p75), and antibodies against either of the two TNF-alpha receptors partially blocked the stimulatory effect of TNF-alpha on apoB48 production and p38 phosphorylation. In summary, these data suggest that intestinal insulin resistance can be induced in hamsters by TNF-alpha infusion, and it is accompanied by intestinal overproduction of apoB48-containing lipoproteins. TNF-alpha-induced stimulation of intestinal lipoprotein production appears to be mediated via TNF-alpha receptors and the p38 mitogen-activated protein kinase pathway. PMID:17259391

  2. Tumor necrosis factor-alpha-induced activation of RhoA in airway smooth muscle cells: role in the Ca2+ sensitization of myosin light chain20 phosphorylation.

    PubMed

    Hunter, Irene; Cobban, Hannah J; Vandenabeele, Peter; MacEwan, David J; Nixon, Graeme F

    2003-03-01

    Tumor necrosis factor-alpha (TNF), an inflammatory cytokine, has a potentially important role in the pathogenesis of bronchial asthma and may contribute to airway hyper-responsiveness. Recent evidence has revealed that TNF can increase the Ca(2+) sensitivity of agonist-stimulated myosin light chain(20) (MLC(20)) phosphorylation and contractility in guinea pig airway smooth muscle (ASM). In the present study, the potential intracellular pathways responsible for this TNF-induced Ca(2+) sensitization were investigated. In permeabilized cultured guinea pig ASM cells, recombinant human TNF stimulated an increase in Ca(2+)-activated MLC(20) phosphorylation under Ca(2+) "clamp" conditions. This increased MLC(20) phosphorylation was inhibited by preincubation with the Rho-kinase inhibitor Y27632. TNF also increased the proportion of GTP-bound RhoA, as measured using rhotekin Rho-binding domain, in a time course compatible with a role in the TNF-induced Ca(2+) sensitization. In cultured human ASM cells, recombinant human TNF also activated RhoA with a similar time course. In addition, TNF stimulated phosphorylation of the regulatory subunit of the myosin phosphatase, which was inhibited by Y27632. Although human ASM cells expressed both receptor subtypes, TNF-R1 and TNF-R2, the activation of RhoA was predominantly via stimulation of the TNF-R1, although RhoA did not immunoprecipitate with the TNF-R1. In conclusion, the TNF-induced increase in the Ca(2+) sensitivity of MLC(20) phosphorylation is through stimulation of the TNF-R1 receptor and via a RhoA/Rho-kinase pathway leading to inhibition of the myosin light chain phosphatase. This intracellular mechanism may contribute to TNF-induced airway hyper-responsiveness. PMID:12606782

  3. Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B.

    PubMed Central

    Collart, M A; Baeuerle, P; Vassalli, P

    1990-01-01

    This study characterizes the interaction of murine macrophage nuclear proteins with the tumor necrosis factor alpha (TNF-alpha) promoter. Gel retardation and methylation interference assays showed that stimulation of TNF-alpha gene transcription in peritoneal exudate macrophages was accompanied by induction of DNA-binding proteins that recognized with different affinities four elements related to the kappa B consensus motif and a Y-box motif. We suggest that the basal level of TNF-alpha expression in macrophages is due to the binding of a constitutive form of NF-kappa B, present at low levels in nuclei from resting thioglycolate exudate peritoneal macrophages, to some if not all of the kappa B motifs; we postulate that this constitutive form contains only the 50-kilodalton (kDa) DNA-binding protein subunits of NF-kappa B, not the 65-kDa protein subunits (P. Baeuerle and D. Baltimore, Genes Dev. 3:1689-1698, 1989). Agents such as glucocorticoids, which decrease TNF-alpha transcription, diminished the basal level of nuclear NF-kappa B. Stimulation of Stimulation of TNF-alpha transcription in macrophages by lipopolysaccharide, gamma interferon, or cycloheximide led to an increased content of nuclear NF-kappa B. This induced factor represents a different form of NF-kappa B, since it generated protein-DNA complexes of slower mobility; we propose that this induced form of NF-kappa B contains both the 50- and 65-kDa protein subunits, the latter ones being necessary to bind NF-kappa B to its cytoplasmic inhibitor in uninduced cells (Baeuerle and Baltimore, Genes Dev., 1989). In resting cells, this inducible form of NF-kappa B was indeed detectable in the cytosol after deoxycholate treatment.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2181276

  4. Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-{alpha} following ozone inhalation

    SciTech Connect

    Fakhrzadeh, Ladan; Laskin, Jeffrey D.; Laskin, Debra L.

    2008-03-15

    Alveolar macrophages (AM) and inflammatory mediators including nitric oxide and peroxynitrite contribute to ozone-induced lung injury. The generation of these mediators is regulated, in part, by the transcription factor NF-{kappa}B. We previously demonstrated a critical role for NF-{kappa}B p50 in ozone-induced injury. In the present studies mechanisms regulating NF-{kappa}B activation in the lung after ozone inhalation were analyzed. Treatment of wild type (WT) mice with ozone (0.8 ppm, 3 h) resulted in a rapid increase in NF-{kappa}B binding activity in AM, which persisted for at least 12 h. This was not evident in mice lacking TNF{alpha} which are protected from ozone-induced injury; there was also no evidence of nitric oxide or peroxynitrite production in lungs from these animals. These data demonstrate that TNF{alpha} plays a role in NF-{kappa}B activation and toxicity. TNF{alpha} signaling involves PI-3-kinase (PI3K)/protein kinase B (PKB), and p44/42 MAP kinase (MAPK) which are important in NF-{kappa}B activation. Ozone Inhalation resulted in rapid and transient increases in p44/42 MAPK and PI3K/PKB in AM from WT mice, which was evident immediately after exposure. Caveolin-1, a transmembrane protein that negatively regulates PI3K/PKB and p44/42 MAPK signaling, was downregulated in AM from WT mice after ozone exposure. In contrast, ozone had no effect on caveolin-1, PI3K/PKB or p44/42 MAPK expression in AM from TNF{alpha} knockout mice. These data, together with our findings that TNF{alpha} suppressed caveolin-1 expression in cultured AM, suggest that TNF{alpha} and downstream signaling mediate activation of NF-{kappa}B and the regulation of inflammatory genes important in ozone toxicity, and that this process is linked to caveolin-1.

  5. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1?-Mediated NF-?B Activation and Down-Regulation of TRAF2 Expression

    PubMed Central

    Hu, Ping; Han, Zhang; Couvillon, Anthony D.; Kaufman, Randal J.; Exton, John H.

    2006-01-01

    NF-?B is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-?B and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1? through the adapter protein TRAF2. ER stress-induced NF-?B activation is impaired in IRE1? knockdown cells and IRE1??/? MEFs. We found, however, that inhibiting NF-?B significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-?) was IRE1? and NF-?B dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-?-induced activation of NF-?B and c-Jun N-terminal kinase and turns TNF-? from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-? induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor. PMID:16581782

  6. Facile purification of Escherichia coli expressed tag-free recombinant human tumor necrosis factor alpha from supernatant.

    PubMed

    Zhang, Chun; Liu, Yongdong; Zhao, Dawei; Li, Xiunan; Yu, Rong; Su, Zhiguo

    2014-03-01

    Fusing affinity tag at N-terminus was reported to decrease the biological activity of the recombinant human tumor necrosis factor alpha. Although preparation of tag-free rhTNF-? has already been achieved, the processes were yet laborious, especially in large scale. In this paper, tag-free rhTNF-? was almost equally synthesized by Escherichia coli in both soluble and insoluble forms. A two-step ion exchange chromatography, DEAE-Sepharose combined with CM-Sepharose, was developed to purify the soluble specie from supernatant after cell lysis. Native PAGE and HP-SEC showed the rhTNF-? extracted from supernatant existed in a homogeneous form. HP-SAX and SDS-PAGE analysis demonstrated the purity of the final fraction was over 98% with a very high recovery of 75%. Circular dichroism spectrum demonstrated that ?-sheet structure was dominant and fluorescence analysis suggested no dramatic exposure of aromatic amino acid residues on the protein surface. Bioassay indicated that purified rhTNF-? was biologically active with a specific activity of approximately 2.010(7)U/mg. All these results suggested that this two-step ion exchange chromatography is efficient for preparation of biologically active tag-free rhTNF-? from supernatant. PMID:24412132

  7. Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice.

    PubMed

    Amiri, P; Locksley, R M; Parslow, T G; Sadick, M; Rector, E; Ritter, D; McKerrow, J H

    1992-04-16

    Schistosomiasis (bilharzia) is a parasitic disease caused by several species of schistosome worms (blood flukes). The key pathogenic event in this disease is the formation of granulomas around schistosome eggs trapped in portal venules of the liver. Granulomas are a distinctive form of chronic inflammation characterized by localized aggregation of activated macrophages around an inciting stimulus. Each granuloma evolves to form a fibrous scar; in schistosomiasis, the result is widespread hepatic fibrosis and portal hypertension. To identify the specific immune signal molecules necessary for granuloma formation, we studied schistosome infections in severe combined immunodeficient (SCID) mice, which have normal macrophages but lack functional B or T lymphocytes. Here we report that the immunoregulatory cytokine tumour necrosis factor alpha is necessary and sufficient to reconstitute granuloma formation in schistosome-infected SCID mice. Moreover, we find that the parasitic worms require tumour necrosis factor alpha for egg-laying and for excretion of eggs from the host. The implication of this latter result is that the parasite has adapted so successfully to its host that it uses a host-derived immunoregulatory protein as a signal for replication and transmission. PMID:1560843

  8. Nuclear Factor-Kappa B Family Member RelB Inhibits Human Immunodeficiency Virus-1 Tat-Induced Tumor Necrosis Factor-Alpha Production

    PubMed Central

    Kiebala, Michelle; Polesskaya, Oksana; Yao, Zhenqiang; Perry, Seth W.; Maggirwar, Sanjay B.

    2010-01-01

    Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorder (HAND) is likely neuroinflammatory in origin, believed to be triggered by inflammatory and oxidative stress responses to cytokines and HIV protein gene products such as the HIV transactivator of transcription (Tat). Here we demonstrate increased messenger RNA for nuclear factor-kappa B (NF-?B) family member, transcription factor RelB, in the brain of doxycycline-induced Tat transgenic mice, and increased RelB synthesis in Tat-exposed microglial cells. Since genetic ablation of RelB in mice leads to multi-organ inflammation, we hypothesized that Tat-induced, newly synthesized RelB inhibits cytokine production by microglial cells, possibly through the formation of transcriptionally inactive RelB/RelA complexes. Indeed, tumor necrosis factor-alpha (TNF?) production in monocytes isolated from RelB deficient mice was significantly higher than in monocytes isolated from RelB expressing controls. Moreover, RelB overexpression in microglial cells inhibited Tat-induced TNF? synthesis in a manner that involved transcriptional repression of the TNF? promoter, and increased phosphorylation of RelA at serine 276, a prerequisite for increased RelB/RelA protein interactions. The Rel-homology-domain within RelB was necessary for this interaction. Overexpression of RelA itself, in turn, significantly increased TNF? promoter activity, an effect that was completely blocked by RelB overexpression. We conclude that RelB regulates TNF? cytokine synthesis by competitive interference binding with RelA, which leads to downregulation of TNF? production. Moreover, because Tat activates both RelB and TNF? in microglia, and because Tat induces inflammatory TNF? synthesis via NF-?B, we posit that RelB serves as a cryoprotective, anti-inflammatory, counter-regulatory mechanism for pathogenic NF-?B activation. These findings identify a novel regulatory pathway for controlling HIV-induced microglial activation and cytokine production that may have important therapeutic implications for the management of HAND. PMID:20686703

  9. Lipopolysaccharide-Induced Tumor Necrosis Factor Alpha Production by Human Monocytes Involves the Raf-1/MEK1-MEK2/ERK1-ERK2 Pathway

    PubMed Central

    van der Bruggen, Tjomme; Nijenhuis, Suzanne; van Raaij, Estia; Verhoef, Jan; Sweder van Asbeck, B.

    1999-01-01

    During gram-negative sepsis, human monocytes are triggered to produce large quantities of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-?) in response to endotoxin (lipopolysaccharide [LPS]). Several studies have identified signal transduction pathways that are activated by LPS, including activation of nuclear factor-?B (NF-?B) and activation of mitogen-activated protein kinases (MAPKs), including ERK1 and ERK2, c-Jun N-terminal kinase, and p38. In this study, the relevance of ERK1 and ERK2 activation for LPS-induced TNF-? production by primary human monocytes has been addressed with PD-098059, which specifically blocks activation of MAPK kinase (MEK) by Raf-1. TNF-? levels in the monocyte culture supernatant, induced by 10 ng of LPS/ml, were reduced by PD-098059 (50 ?M). In addition, PD-098059 also reduced TNF-? mRNA expression when cells were stimulated for 1 h with LPS. On the other hand, LPS-induced interleukin-10 (IL-10) levels in the monocyte supernatant were only slightly inhibited by PD-098059. Ro 09-2210, a recently identified MEK inhibitor, completely abrogated TNF-? levels at nanomolar concentrations. IL-10 levels also were strongly reduced. To show the efficacy of PD-098059 and Ro 09-2210, ERK1 and -2 activation was monitored by Western blotting with an antiserum that recognizes the phosphorylated (i.e., activated) forms of ERK1 and ERK2. Addition of LPS to human monocytes resulted in activation of both ERK1 and ERK2 in a time- and concentration (50% effective concentration between 1 and 10 ng of LPS/ml)-dependent manner. Activation of ERK2 was blocked by PD-098059 (50 ?M), whereas ERK1 seemed to be less affected. Ro 09-2210 completely prevented LPS-induced ERK1 and ERK2 activation. LPS-induced p38 activation also was prevented by Ro 09-2210. These data further support the view that the ERK signal transduction pathway is causally involved in the synthesis of TNF-? by human monocytes stimulated with LPS. PMID:10417144

  10. Changes in distribution, morphology, and tumor necrosis factor-alpha secretion of alveolar macrophage subpopulations during the development of bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Everson, M. P.; Chandler, D. B.

    1992-01-01

    Previous studies indicate that heterogeneous alveolar macrophages (AM) play a pivotal role in events associated with bleomycin-induced pulmonary fibrosis. A critical role has been suggested for tumor necrosis factor-alpha (TNF-alpha), a product of activated macrophages, in this fibrotic process. The present study examined whether the characteristics and function (TNF-alpha secretion) of rat AM subpopulations were altered during the development of bleomycin-induced fibrosis. After intratracheal bleomycin treatment, AM were separated into 18 density-defined subpopulations. Bleomycin treatment altered the distribution and morphology of AM subpopulations of densities 1.017 to 1.061 g/ml at all time points studied (4, 14, and 28 days). Subpopulations of densities 1.090 to 1.141 g/ml were affected only at 4 days after bleomycin treatment. Tumor necrosis factor-alpha secretion increased with time in 14- and 28-day samples of bleomycin-treated rats, particularly in subpopulations of densities 1.075 to 1.097 g/ml. These data indicate that alterations in the distribution, morphology, and function of AM subpopulations accompany the development of bleomycin-induced pulmonary fibrosis. When coupled with previous studies suggesting that TNF-alpha plays a role in the fibrotic process in this disease model, these data indicate that AM of densities 1.075 to 1.097 g/ml are responsible for the production of TNF-alpha associated with bleomycin-induced pulmonary fibrosis. PMID:1371205

  11. In vitro and in vivo expressions of transforming growth factor-alpha and tyrosine kinase receptors in human non-small-cell lung carcinomas.

    PubMed Central

    Liu, C.; Tsao, M. S.

    1993-01-01

    The mRNA expression of transforming growth factor-alpha (TGF-alpha), epidermal growth factor receptor (EGFR), c-erbB-2 and c-met proto-oncogenes in eight newly established cell lines and 29 primary tumors of human non-small-cell lung carcinoma (NSCLC) have been investigated. In vitro, the expressions of TGF-alpha, c-erbB-2, and c-met were consistently high in adenocarcinomas, while EGFR was expressed highest in a squamous cell carcinoma cell line. There was linear correlation between the levels of expression of TGF-alpha and EGFR or c-erbB-2, and between EGFR and c-erbB-2. The c-met expression was also correlated with those of TGF-alpha, EGFR, and c-erbB-2. In vivo, The mean mRNA levels of TGF-alpha, EGFR, and c-met, but not c-erbB-2, were higher in carcinomas than in normal lung tissues (2.8, 1.7, and 3.0 times, respectively); however, only adenocarcinomas expressed a significantly higher level of c-erbB-2 than their corresponding normal tissues (2.2 times). In 20 patients whose paired normal and tumor tissue were examined, the percentage of cases with greater than twofold increase in expression in carcinomas than normal were 55% for both TGF-alpha and EGFR, 30% for c-erbB-2, and 47% for c-met. Among the histological subtypes of NSCLC, a higher percentage of adenocarcinomas than squamous cell carcinomas over-expressed these genes, especially c-erbB-2 and c-met. Over-expression is rarely the result of gene amplification. The results suggest a differential expression of growth factor and receptor genes among the various histological subtypes of NSCLCs. Images Figure 1 Figure 4 PMID:8097369

  12. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-?) production in macrophages treated with LPS. The TNF-? secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-? secretion. PMID:25366263

  13. Tumour necrosis factor alpha, interferon gamma and substance P are novel modulators of extrapituitary prolactin expression in human skin.

    PubMed

    Langan, Ewan A; Vidali, Silvia; Pigat, Natascha; Funk, Wolfgang; Lisztes, Erika; Bíró, Tamás; Goffin, Vincent; Griffiths, Christopher E M; Paus, Ralf

    2013-01-01

    Human scalp skin and hair follicles (HFs) are extra-pituitary sources of prolactin (PRL). However, the intracutaneous regulation of PRL remains poorly understood. Therefore we investigated whether well-recognized regulators of pituitary PRL expression, which also impact on human skin physiology and pathology, regulate expression of PRL and its receptor (PRLR) in situ. This was studied in serum-free organ cultures of microdissected human scalp HFs and skin, i.e. excluding pituitary, neural and vascular inputs. Prolactin expression was confirmed at the gene and protein level in human truncal skin, where its expression significantly increased (p = 0.049) during organ culture. There was, however, no evidence of PRL secretion into the culture medium as measured by ELISA. PRL immunoreactivity (IR) in female human epidermis was decreased by substance P (p = 0.009), while neither the classical pituitary PRL inhibitor, dopamine, nor corticotropin-releasing hormone significantly modulated PRL IR in HFs or skin respectively. Interferon (IFN) γ increased PRL IR in the epithelium of human HFs (p = 0.044) while tumour necrosis factor (TNF) α decreased both PRL and PRLR IR. This study identifies substance P, TNFα and IFNγ as novel modulators of PRL and PRLR expression in human skin, and suggests that intracutaneous PRL expression is not under dopaminergic control. Given the importance of PRL in human hair growth regulation and its possible role in the pathogenesis of several common skin diseases, targeting intracutaneous PRL production via these newly identified regulatory pathways may point towards novel therapeutic options for inflammatory dermatoses. PMID:23626671

  14. Tumour Necrosis Factor Alpha, Interferon Gamma and Substance P Are Novel Modulators of Extrapituitary Prolactin Expression in Human Skin

    PubMed Central

    Langan, Ewan A.; Vidali, Silvia; Pigat, Natascha; Funk, Wolfgang; Lisztes, Erika; Br, Tams; Goffin, Vincent; Griffiths, Christopher E. M.; Paus, Ralf

    2013-01-01

    Human scalp skin and hair follicles (HFs) are extra-pituitary sources of prolactin (PRL). However, the intracutaneous regulation of PRL remains poorly understood. Therefore we investigated whether well-recognized regulators of pituitary PRL expression, which also impact on human skin physiology and pathology, regulate expression of PRL and its receptor (PRLR) in situ. This was studied in serum-free organ cultures of microdissected human scalp HFs and skin, i.e. excluding pituitary, neural and vascular inputs. Prolactin expression was confirmed at the gene and protein level in human truncal skin, where its expression significantly increased (p?=?0.049) during organ culture. There was, however, no evidence of PRL secretion into the culture medium as measured by ELISA. PRL immunoreactivity (IR) in female human epidermis was decreased by substance P (p?=?0.009), while neither the classical pituitary PRL inhibitor, dopamine, nor corticotropin-releasing hormone significantly modulated PRL IR in HFs or skin respectively. Interferon (IFN) ? increased PRL IR in the epithelium of human HFs (p?=?0.044) while tumour necrosis factor (TNF) ? decreased both PRL and PRLR IR. This study identifies substance P, TNF? and IFN? as novel modulators of PRL and PRLR expression in human skin, and suggests that intracutaneous PRL expression is not under dopaminergic control. Given the importance of PRL in human hair growth regulation and its possible role in the pathogenesis of several common skin diseases, targeting intracutaneous PRL production via these newly identified regulatory pathways may point towards novel therapeutic options for inflammatory dermatoses. PMID:23626671

  15. Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation

    SciTech Connect

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-06-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.

  16. Increases in tumor necrosis factor-alpha in response to thyroid hormone-induced liver oxidative stress in the rat.

    PubMed

    Fernandez, Virginia; Videla, Luis A; Tapia, Gladys; Israel, Yedy

    2002-07-01

    Thyroid hormone-induced calorigenesis contributes to liver oxidative stress and promotes an increased respiratory burst activity in Kupffer cells, which could conceivably increase the expression of redox-sensitive genes, including those coding for cytokines. Our aim was to test the hypothesis that L-3,3',5-triiodothyronine (T3)-induced liver oxidative stress would markedly increase the production of TNF-alpha by Kupffer cells and its release into the circulation. Sprague-Dawley rats receive a single dose of 0.1 mg T3/kg or vehicle (controls) and determinations of liver O2 consumption, serum TNF-alpha, rectal temperature, and serum T3 levels, were carried out at different times after treatment. Hepatic content of total reduced glutathione (GSH) and biliary glutathione disulfide (GSSG) efflux were measured as indices of oxidative stress. In some studies, prior to T3 injection animals were administered either (i) the Kupffer cell inactivator gadolinium chloride (GdCl3), (ii) the antioxidants alpha-tocopherol and N-acetyl-L-cysteine (NAC), or (iii) an antisense oligonucleotide against TNF-alpha (ASO TJU-2755). T3 elicited an 80-fold increase in the serum levels of TNF-alpha at 22h after treatment, which coincided with the onset of thyroid calorigenesis. Pretreatment with GdCl3, alpha-tocopherol, NAC, and ASO TJU-2755 virtually abolished this effect and markedly reduced T3-induced liver GSH depletion and the increases in biliary GSSG efflux. It is concluded that the hyperthyroid state in the rat increases the circulating levels of TNF-alpha by actions exerted at the Kupffer cell level and these are related to the oxidative stress status established in the liver by thyroid calorigenesis. PMID:12180121

  17. Changes in body composition and dietary intake induced by tumor necrosis factor alpha and corticosterone--individually and in combination.

    PubMed

    Raina, N; Jeejeebhoy, K N

    1998-12-01

    Previous studies have shown that anorexia and reduced food intake are the main causes of weight loss in rats infused with tumor necrosis factor alpha (TNF-alpha), with no influence on corticosterone concentrations. In contrast, in clinical sepsis, muscle wasting due to increased catabolism is associated with increased corticosteroid concentrations. We hypothesized that in the rat model, corticosterone potentiates the catabolic effect of TNF-alpha in amounts that by itself does not influence muscle catabolism. Orally fed rats were divided into 3 treatment groups: continuous infusion of TNF-alpha (TNF; 100 microg x kg(-1) x d(-1)), corticosterone (Cort; 50 microg x g(-1) x d(-1)), or both (TNF+Cort). Each group was compared with a respective pair-fed (PF) group. In addition an ad libitum (AL)-fed group receiving an infusion of physiologic saline was studied to observe unrestricted food intake and weight gain. After 4 d of infusion, dietary intake and weight gain were significantly higher in the Cort and AL groups than in the TNF and TNF+Cort groups. Although wet liver weights and protein contents were significantly higher in the Cort, TNF, and TNF+Cort groups than in their respective PF group, the TNF and TNF+Cort groups had lower relative carcass weights. The weight and protein content of the diaphragm were lower and nitrogen excretion was higher in the TNF+Cort group than in the respective PF group. The results suggest that TNF-alpha plus corticosterone had a specific catabolic effect on the diaphragm. In addition, together they increased overall nitrogen excretion. PMID:9846860

  18. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-?), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-?, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-?, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  19. Recombinant tumor necrosis factor alpha and interleukin 1 alpha increase expression of c-abl protooncogene mRNA in cultured human marrow stromal cells.

    PubMed

    Andrews, D F; Nemunaitis, J J; Singer, J W

    1989-09-01

    Analysis of protooncogene RNA expression in marrow stromal cells from long-term marrow culture demonstrated high levels of c-abl 5-, 6-, and 7-kilobase (kb) RNA transcripts. In experiments on three independently derived simian virus 40-transformed marrow stromal cell lines, the expression of these c-abl transcripts was further increased in response to recombinant tumor necrosis factor alpha (1000 units/ml) and interleukin 1 alpha (10 units/ml). Although lymphocyte-conditioned medium predominantly up-regulated the 5-kb transcript, interleukin 1 alpha primarily affected the 6-kb transcript. The up-regulation of the 5-kb c-abl message correlated with up-regulation of the granulocyte/macrophage colony-stimulating factor transcript and down-regulation of procollagen I transcripts in transformed cells. These data suggest that c-abl plays roles in the regulation of extracellular matrix expression and in the regulation of hematopoietic growth factors by stromal cells. PMID:2672004

  20. Bacteriocins from lactic acid bacteria increases tumor necrosis factor-alpha expression in a rat kidney model of chronic rejection.

    PubMed

    Zhu, L H; Li, C; Wu, J A; Liang, J G; Shi, Y F

    2008-12-01

    Chronic allograft dysfunction is the primary cause of graft loss after the first posttransplantation year. Bacteriocins are biologically active proteins exhibiting antimicrobial properties against other bacterial species, which are usually closely related to the producer organism. The objective of our study was to determine whether lactic acid bacterial bacteriocins were associated with tumor necrosis factor (TNF)-alpha observed in a rat kidney model of chronic rejection. Using a kidney model of chronic rejection in the rat, we administered cyclosporine (CsA) immunosuppression (5 mg/kg/d). One group of animals was treated with bacteriocins, and the other was left untreated. Grafts were harvested after transplantation for standard histological studies. The expression of TNF-alpha was demonstrated using immunohistochemistry of frozen sections of the grafts. We observed a greater increase in the expression of TNF-alpha among the group treated with bacteriocins compared with the untreated group. These results showed that lactic acid bacterial bacteriocins were associated with TNF-alpha in our kidney graft model. PMID:19100480

  1. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes.

    PubMed Central

    Musgrove, E A; Lee, C S; Sutherland, R L

    1991-01-01

    This study documents a biphasic change in the rate of cell cycle progression and proliferation of T-47D human breast cancer cells treated with synthetic progestins, consisting of an initial transient acceleration in transit through G1, followed by cell cycle arrest and growth inhibition. Both components of the response were mediated via the progesterone receptor. The data are consistent with a model in which the action of progestins is to accelerate cells already progressing through G1, which are then arrested early in G1 after completing a round of replication, as are cells initially in other phases of the cell cycle. Such acceleration implies that progestins act on genes or gene products which are rate limiting for cell cycle progression. Increased production of epidermal growth factor and transforming growth factor alpha, putative autocrine growth factors in breast cancer cells, does not appear to account for the initial response to progestins, since although the mRNA abundance for these growth factors is rapidly induced by progestins, cells treated with epidermal growth factor or transforming growth factor alpha did not enter S phase until 5 to 6 h later than those stimulated by progestin. The proto-oncogenes c-fos and c-myc were rapidly but transiently induced by progestin treatment, paralleling the well-known response of these genes to mitogenic signals in other cell types. The progestin antagonist RU 486 inhibited progestin regulation of both cell cycle progression and c-myc expression, suggesting that this proto-oncogene may participate in growth modulation by progestins. Images PMID:1922031

  2. Tumor necrosis factor alpha increases P-glycoprotein expression in a BME-UV in vitro model of mammary epithelial cells.

    PubMed

    Al-Bataineh, Mohammad M; van der Merwe, Deon; Schultz, Bruce D; Gehring, Ronette

    2010-11-01

    P-glycoprotein is an efflux pump belonging to the ATP-binding cassette super-family that influences the bioavailability and disposition of many drugs. Mammary epithelial cells express various drug transporters including P-glycoprotein, albeit at low level during lactation. During inflammatory reactions, which can be associated with changes in epithelial barrier functions, pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-?) are elevated in milk and serum. In this study, the role of TNF-? in the regulation of P-glycoprotein was determined in cultured BME-UV cells, an immortalized bovine mammary epithelial cell line. The protein production of P-glycoprotein and mRNA expression of bABCB1, the gene encoding P-glycoprotein, were increased after 24?h of TNF-? exposure. The highest observed effects for TNF-? on the regulation of P-glycoprotein was after 72?h of exposure. Protein and mRNA expression also increased significantly after 120?h of TNF-? exposure, but was lower than the level observed in the cells exposed to TNF-? for 72?h. The apical to basolateral flux of digoxin, a P-glycoprotein substrate, was decreased in the TNF-?-exposed epithelium. This effect was reversed when verapamil or ketoconazole, compounds known to interact with P-glycoprotein, were added together with digoxin into the donor compartment. Probenecid, a compound known to interact with organic anion transporters, but not P-glycoprotein, did not increase the flux of digoxin. This model has important implications for understanding the barrier function of the mammary epithelium and provides insight into the role of P-glycoprotein in the accumulation and/or removal of xenobiotics from milk and/or plasma. PMID:21104926

  3. Effects of acute lindane intoxication and thyroid hormone administration in relation to nuclear factor-kappaB activation, tumor necrosis factor-alpha expression, and Kupffer cell function in the rat.

    PubMed

    Valencia, César; Cornejo, Pamela; Romanque, Pamela; Tapia, Gladys; Varela, Patricia; Videla, Luis A; Fernández, Virginia

    2004-03-14

    Nuclear factor-kappaB (NF-kappaB) DNA binding, tumor necrosis factor-alpha (TNF-alpha) expression, and parameters related to liver oxidative stress and Kupffer cell function were assessed in control rats and in animals given 3,3',5-triiodothyronine (T3) (0.1 mg T3/kg) and/or lindane (50 mg/kg; 4 h after T3). Liver NF-kappaB DNA binding and serum TNF-alpha levels were enhanced by the combined T3-lindane administration after 16-22 h, effects that were lower than those elicited by the separate treatments and coincided with increased hepatic TNF-alpha mRNA levels. Thyroid calorigenesis occurred independently of lindane, whereas T3, lindane and T3-lindane groups showed liver glutathione (GSH) depletion, with higher protein carbonyl levels in lindane and T3-lindane groups. Carbon-induced O2 consumption/carbon uptake ratios were not altered by T3 or lindane compared to controls, whereas combined T3-lindane administration elicited a 92% diminution with enhancement in the sinusoidal efflux of lactate dehydrogenase (LDH). In conclusion, depression of T3- or lindane-induced liver NF-kappaB activation and TNF-alpha expression occurred after their combined treatment, effects that correlate with the impairment of the respiratory burst activity of Kupffer cells and exacerbation of liver injury. PMID:15019085

  4. Rapid Local Expression of Interleukin-12, Tumor Necrosis Factor Alpha, and Gamma Interferon after Cutaneous Francisella tularensis Infection in Tularemia-Immune Mice

    PubMed Central

    Stenmark, Stephan; Sunnemark, Dan; Bucht, Anders; Sjstedt, Anders

    1999-01-01

    Francisella tularensis LVS is an effective live vaccine strain used for cutaneous vaccination against tularemia in man. In mice, injection of LVS causes invasive disease and subsequent development of immunity that is characterized by effective control of otherwise lethal doses of the organism. In the present investigation, it is shown that LVS-immune mice controlled an intradermal infection much more effectively than did naive mice; bacterial counts in skin samples were 1.5 to 2.0 log10 lower 24 h after injection and 6 log10 lower 72 h after injection in immune mice. Moreover, in contrast to naive mice, no bacteria were demonstrated in samples from livers and spleens of immune mice. By immunohistochemistry, skin samples from immune mice showed an intense staining for interleukin-12 (IL-12) and a moderate staining for tumor necrosis factor alpha (TNF-?) at 24 h postinoculation, after which staining for both cytokines faded. In naive mice, the staining for IL-12 was weak at all time points and no staining for TNF-? was observed. No staining for gamma interferon (IFN-?) was observed in any group before 72 h. At that time point, skin samples from immune mice showed moderate staining and skin samples from naive mice showed weak staining. Reverse transcriptase PCR showed an induction of mRNA of the three cytokines in the skin within the first day after injection. A quantitative analysis demonstrated higher IFN-? and TNF-? mRNA levels in immune mice at 24 h postinoculation. In conclusion, immunization with F. tularensis LVS conferred a capability to respond to cutaneous reinfection, with rapid local expression of IL-12, TNF-?, and IFN-?, and this expression was paralleled by containment and mitigation of the infection. The cytokine response may be part of a local barrier function of the skin, important to host protection against tularemia. PMID:10085019

  5. Studies on the role of tumor necrosis factor- alpha (TNF-?) in hepatocytes induced apoptosis in vaccinated, Schistosoma mansoni-challenged mice.

    PubMed

    Etewa, Samia E; Abd El-Aal, Naglaa F; Abdel-Rahman, Sara A; Abd El Bary, Eman H; El-Shafei, Mahmoud A

    2015-04-01

    Tumour Necrosis Factor-alpha (TNF-?) plays a complex role in pathophysiological changes caused by schistosomiasis in the liver cells as induced apoptosis. So, The highlighted experimentally the role of TNF-? in hepatocytes apoptosis, using that as an assessment of the efficacy of antischistosomal vaccination by mixed crude antigens preparations [Cercarial antigen preparation (CAP) + soluble worm antigen preparation (SWAP) + soluble egg antigen(SEA)] by parasitological, histo-pathological and histochemical studies using Feulgen stain of hepatoytes DNA, a serological study also of serum TNF-? level by ELISA. Fifty two laboratory bred Albino male mice, were used in this study. They were classified into four groups (13 mice in each group), G1: normal control, G2 as infected control while G3 supported by Freund's Adjuvant (F. Adj) then infected and G4 vaccinated with combined antigens (CAP, SWAP and SEA) + F. Adj, then infected. Mice were sacrificed by cervical dislocation 9 weeks post infection, parasitological (Kato-Katz thick smear for egg count), histopathologial {haematoxylin and eosin (H&E) staining of hepatic sections}, histochemical (feulgen staining of hepatocytes DNA) and ELISA to estimate serum TNF-? level were performed. The data showed that vaccination with combined antigens showed protective effect on vaccinated then Schistosoma challenged mice, hepatocytes induced apoptosis was directly proportional with the TNF-? serum level, and the protection degree of potential combined vaccine was inversely proportional with serum TNF-? level and induced apoptosis. PMID:26012218

  6. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum

    PubMed Central

    Pru, James K; Lynch, Maureen P; Davis, John S; Rueda, Bo R

    2003-01-01

    The microvasculature of the corpus luteum (CL), which comprises greater than 50% of the total number of cells in the CL, is thought to be the first structure to undergo degeneration via apoptosis during luteolysis. These studies compared the apoptotic potential of various cytokines (tumor necrosis factor ?, TNF?; interferon gamma, IFN?; soluble Fas ligand, sFasL), a FAS activating antibody (FasAb), and the luteolytic hormone prostaglandin F2? (PGF2?) on CL-derived endothelial (CLENDO) cells. Neither sFasL, FasAb nor PGF2? had any effect on CLENDO cell viability. Utilizing morphological and biochemical parameters it was evident that TNF? and IFN? initiated apoptosis in long-term cultures. However, TNF? was the most potent stimulus for CLENDO cell apoptosis at early time points. Unlike many other studies described in non-reproductive cell types, TNF? induced apoptosis of CLENDO cells occurs in the absence of inhibitors of protein synthesis. TNF?-induced death is typically associated with acute activation of distinct intracellular signaling pathways (e.g. MAPK and sphingomyelin pathways). Treatment with TNF? for 530 min activated MAPKs (ERK, p38, and JNK), and increased ceramide accumulation. Ceramide, a product of sphingomyelin hydrolysis, can serve as an upstream activator of members of the MAPK family independently in numerous cell types, and is a well-established pro-apoptotic second messenger. Like TNF?, treatment of CLENDO cells with exogenous ceramide significantly induced endothelial apoptosis. Ceramide also activated the JNK pathway, but had no effect on ERK and p38 MAPKs. Pretreatment of CLENDO cells with glutathione (GSH), an intracellular reducing agent and known inhibitor of reactive oxygen species (ROS) or TNF?-induced apoptosis, significantly attenuated TNF?-induced apoptosis. It is hypothesized that TNF? kills CLENDO cells through elevation of reactive oxygen species, and intracellular signals that promote apoptosis. PMID:12646059

  7. Matrix metalloproteinase 9 (MMP9) expression in preeclamptic decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells.

    TOXLINE Toxicology Bibliographic Information

    Lockwood CJ; Oner C; Uz YH; Kayisli UA; Huang SJ; Buchwalder LF; Murk W; Funai EF; Schatz F

    2008-06-01

    Extravillous trophoblasts (EVTs) invade human decidua via sequential integrin-mediated binding and proteolysis of basement membrane proteins in the extracellular matrix (ECM). In preeclampsia, shallow EVT invasion impairs spiral artery and arteriole remodeling to reduce uteroplacental blood flow. Excess decidual cell-expressed matrix metalloproteinases (MMPs) 2 and 9, in response to preeclampsia-related interleukin 1 beta (IL1B) and tumor necrosis factor alpha (TNF), may inappropriately degrade these basement membrane proteins and impede EVT invasion. This study found significantly higher immunohistochemical MMP9 levels in decidual cells and adjacent interstitial trophoblasts in placental sections of preeclamptic versus gestational age-matched control women. In contrast, immunostaining for MMP2 and tissue inhibitor of matrix metalloproteinases 1 and 2 (TIMP1 and TIMP2) were similar in preeclamptic and control groups. First-trimester decidual cells were incubated with estradiol (E(2)) or E(2) + medroxyprogesterone acetate (MPA), with or without TNF or IL1B. As measured by ELISA, both cytokines elicited concentration-dependent increases in secreted MMP9 levels that were unaffected by MPA. In contrast, secreted levels of MMP2, TIMP1, and TIMP2 were unchanged in all treatment groups. Substrate gel zymography and Western blotting confirmed that each cytokine increased secreted levels of MMP9 but not MMP2. Similarly, quantitative RT-PCR found that TNF and IL1B enhanced MMP9, but not MMP2, mRNA levels. At the implantation site, inflammatory cytokine-enhanced MMP9 may promote preeclampsia by disrupting the decidual ECM to interfere with normal stepwise EVT invasion.

  8. Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice

    PubMed Central

    Biesmans, Steven; Bouwknecht, Jan A.; Ver Donck, Luc; Langlois, Xavier; Acton, Paul D.; De Haes, Patrick; Davoodi, Nima; Meert, Theo F.; Hellings, Niels; Nuydens, Rony

    2015-01-01

    Clinical observations indicate that activation of the TNF-? system may contribute to the development of inflammation-associated depression. Here, we tested the hypothesis that systemic upregulation of TNF-? induces neuroinflammation and behavioral changes relevant to depression. We report that a single intraperitoneal injection of TNF-? in mice increased serum and brain levels of the proinflammatory mediators TNF-?, IL-6, and MCP-1, in a dose- and time-dependent manner, but not IL-1?. Protein levels of the anti-inflammatory cytokine IL-10 increased in serum but not in the brain. The transient release of immune molecules was followed by glial cell activation as indicated by increased astrocyte activation in bioluminescent Gfap-luc mice and elevated immunoreactivity against the microglial marker Iba1 in the dentate gyrus of TNF-?-challenged mice. Additionally, TNF-?-injected mice were evaluated in a panel of behavioral tests commonly used to study sickness and depressive-like behavior in rodents. Our behavioral data imply that systemic administration of TNF-? induces a strong sickness response characterized by reduced locomotor activity, decreased fluid intake, and body weight loss. Depressive-like behavior could not be separated from sickness at any of the time points studied. Together, these results demonstrate that peripheral TNF-? affects the central nervous system at a neuroimmune and behavioral level. PMID:26290874

  9. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  10. Effect of retinoic acid and vitamin D on the expression of interleukin-1 beta, tumour necrosis factor-alpha and interleukin-6 in the human monocytic cell line U937.

    PubMed

    Taimi, M; Defacque, H; Commes, T; Favero, J; Caron, E; Marti, J; Dornand, J

    1993-06-01

    We have previously described a synergism between the two physiological hormones, retinoic acid (RA) and 1 alpha,25-dihydroxyvitamin D3 (VD) in the induction of U937 cell differentiation towards a more mature state. Herein, we investigated the regulation of cytokine production during RA and/or VD treatment of U937 cells. Cell differentiation was followed by measurement of their capacity to give oxidative responses, and interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha) and IL-6 gene and protein expression were determined in RA/VD-treated cells, activated or not with lipopolysaccharide (LPS). The undifferentiated and RA-treated U937 cells were unable to produce monokines even when they were stimulated by LPS. VD induced the monokine mRNA expression in U937 cells but failed to induce protein release. However, unlike RA, it primed the cells to secrete monokines upon endotoxin stimulation. A large enhancement of the production of the monokines both at mRNA and protein levels was observed in the U937 cells exposed to the combination of RA + VD. Nevertheless, protein release required a further step of activation of the RA + VD-primed cells. The co-inducer effect of RA and VD was not observed in HL-60 or THP-1 cells and seems to be restricted to U937 cells. These results on cytokine expression support our previous finding that a combination of RA and VD brings the U937 cells to a high stage of myeloid differentiation with major characteristics of monocytes/macrophages. PMID:8344702

  11. Effect of retinoic acid and vitamin D on the expression of interleukin-1 beta, tumour necrosis factor-alpha and interleukin-6 in the human monocytic cell line U937.

    PubMed Central

    Taimi, M; Defacque, H; Commes, T; Favero, J; Caron, E; Marti, J; Dornand, J

    1993-01-01

    We have previously described a synergism between the two physiological hormones, retinoic acid (RA) and 1 alpha,25-dihydroxyvitamin D3 (VD) in the induction of U937 cell differentiation towards a more mature state. Herein, we investigated the regulation of cytokine production during RA and/or VD treatment of U937 cells. Cell differentiation was followed by measurement of their capacity to give oxidative responses, and interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha) and IL-6 gene and protein expression were determined in RA/VD-treated cells, activated or not with lipopolysaccharide (LPS). The undifferentiated and RA-treated U937 cells were unable to produce monokines even when they were stimulated by LPS. VD induced the monokine mRNA expression in U937 cells but failed to induce protein release. However, unlike RA, it primed the cells to secrete monokines upon endotoxin stimulation. A large enhancement of the production of the monokines both at mRNA and protein levels was observed in the U937 cells exposed to the combination of RA + VD. Nevertheless, protein release required a further step of activation of the RA + VD-primed cells. The co-inducer effect of RA and VD was not observed in HL-60 or THP-1 cells and seems to be restricted to U937 cells. These results on cytokine expression support our previous finding that a combination of RA and VD brings the U937 cells to a high stage of myeloid differentiation with major characteristics of monocytes/macrophages. Images Figure 1 PMID:8344702

  12. Paradoxical reactions induced by tumor necrosis factor-alpha antagonists: A literature review based on 46 cases.

    PubMed

    Olteanu, Rodica; Zota, Alexandra

    2016-01-01

    Anti-tumor necrosis factor (TNF?) agents have acquired a prominent place in the treatment options for inflammatory disorders. Among the side effects of these agents are the so-called paradoxical reactions which have increasingly been reported in recent years. A review of literature was carried out using Medline (PubMed) database from January 2010 to December 2014 to collect all published articles on cases of anti-TNF?-induced psoriasis and psoriatic arthritis. Published articles were identified, reviewed and the relevant data extracted. A total of 22 studies (46 patients) fulfilled the inclusion criteria and were selected for analysis. Of the 46 patients, 45 (97.8%) developed psoriasis and 1 (2.1%) psoriatic arthritis. The mean age of patients was 47 years; three (6.5%) patients had a past history of psoriasis. Infliximab caused cutaneous reactions in the most number, 26 (56.5%) cases. Thirty seven (80.4%). patients developed primary plaque-type psoriasis. Women accounted for 86.9% of patients. There was complete resolution of psoriasis in 12 (26%) patients despite differences in the therapeutic approach. Cessation of the incriminated drug led to resolution of cutaneous lesions in 5 (10.8%), switching to another TNF? antagonist led to resolution in 6 (13%) and one (2.1%) patient improved despite continuation of the drug. As for the lone case of psoriatic arthritis, drug withdrawal did not result in improvement; only switching to another anti-TNF? agent helped. Since our sample was small, it was not adequately powered to draw any firm conclusions. However, in this analysis, we found that paradoxical reactions occurred predominantly in adult women, there were only isolated cases with a personal history of psoriasis, infliximab was responsible for most cases of these reactions and the most prevalent form was plaque-type psoriasis. The decision whether to continue or discontinue the triggering anti-TNF? agent should be individualized as results are highly variable. PMID:26728803

  13. Protein kinase C activation modulates tumour necrosis factor-alpha priming of human neutrophils for zymosan-induced leukotriene B4 release.

    PubMed Central

    Petersen, M M; Steadman, R; Williams, J D

    1992-01-01

    Neutrophil (PMN) activation by the yeast component zymosan involves the complement receptor type 3 (CD11b/CD18). Recombinant human tumour necrosis factor-alpha (rhTNF-alpha) augmented the zymosan-stimulated leukotriene B4 (LTB4) release from PMN, reaching a fourfold increase at 10(-9) M. Co-incubation of PMN with 10(-9) M rhTNF-alpha and staurosporine resulted in a further dose-dependent increase, which became significantly greater than a purely additive effect at a staurosporine concentration of 10 nM. This synergy was maintained at all doses of staurosporine tested. In addition, doses of phorbol 12-myristate 13-acetate (PMA) that do not activate protein kinase C (PKC) (below 10(-9) M) also augmented the zymosan-stimulated release of LTB4. However, doses of PMA above 10(-9) M progressively inhibited the response to levels below that of zymosan alone. Staurosporine at 50 nM completely prevented, and 10(-9) M rhTNF-alpha partially but significantly (P less than 0.02 at 10(-8) M PMA, P less than 0.01 at 10(-7) M PMA) reversed, this high-dose PMA inhibition. PKC activation thus opposes the priming effect of rhTNF-alpha on neutrophils, while PKC inhibition may enhance the ability of rhTNF-alpha to prime PMN for zymosan activation. The combined effect of rhTNF-alpha and staurosporine suggests an intracellular synergy rather than simply a direct action due to increased zymosan receptor expression. Thus there appear to be mechanisms whereby the responses of neutrophils may be augmented without activating PKC. Indeed, kinase activation may even exert a degree of feedback control that is antagonized by rhTNF-alpha treatment. PMID:1312994

  14. Simian immunodeficiency virus-induced alterations in monocyte production of tumor necrosis factor alpha contribute to reduced immune activation in sooty mangabeys.

    PubMed

    Mir, Kiran D; Bosinger, Steven E; Gasper, Melanie; Ho, On; Else, James G; Brenchley, Jason M; Kelvin, David J; Silvestri, Guido; Hu, Shiu-Lok; Sodora, Donald L

    2012-07-01

    Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent viral replication in the context of CD4(+) T cell depletion and elevated immune activation associated with disease progression. In contrast, simian immunodeficiency virus (SIV) infection of African-origin sooty mangabeys (SM) generally does not result in simian AIDS despite high viral loads and therefore affords a unique model in which to study the immunologic contributions to a nonpathogenic lentiviral disease outcome. A key feature of these natural SIV infections is the maintenance of low levels of immune activation during chronic infection. Our goal was to delineate the contribution of monocytes to maintaining low levels of immune activation in SIV-infected SM. Utilizing an ex vivo whole-blood assay, proinflammatory cytokine production was quantified in monocytes in response to multiple Toll-like receptor (TLR) ligands and a specific, significant reduction in the tumor necrosis factor alpha (TNF-α) response to lipopolysaccharide (LPS) was observed in SIV-infected SM. In contrast, monocytes from hosts of pathogenic infections (HIV-infected humans and SIV-infected Asian macaques) maintained a robust TNF-α response. In SIV-infected SM, monocyte TNF-α responses to low levels of LPS could be augmented by the presence of plasma from uninfected control animals. The impact of LPS-induced TNF-α production on immune activation was demonstrated in vitro, as TNF-α blocking antibodies inhibited downstream CD8(+) T cell activation in a dose-dependent manner. These data demonstrate an association between nonpathogenic SIV infection of SM and a reduced monocyte TNF-α response to LPS, and they identify a role for monocytes in contributing to the suppressed chronic immune activation observed in these natural hosts. PMID:22553338

  15. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.

  16. Induction of plasminogen activator inhibitor 1 gene expression in murine liver by lipopolysaccharide. Cellular localization and role of endogenous tumor necrosis factor-alpha.

    PubMed Central

    Fearns, C.; Loskutoff, D. J.

    1997-01-01

    We previously demonstrated that lipopolysaccharide (LPS) induces plasminogen activator inhibitor 1 (PAI-1) gene expression primarily in endothelial cells in most organs of the mouse, with maximal induction by 3 hours. Here we show that induction in the liver occurs in a distinctly different pattern. For example, the increase in PAI-1 mRNA in liver was biphasic with an initial peak at 1 to 2 hours and a second peak at 6 to 8 hours. Moreover, in situ hybridization experiments revealed that PAI-1 mRNA was induced in both endothelial cells and hepatocytes. The endothelial cell response was monophasic and maximal between 1 and 4 hours, whereas the hepatocyte response was biphasic, peaking at 2 hours and again at 6 to 8 hours. To determine possible mechanisms involved in the induction of PAI-1 by LPS, we analyzed the tissues for changes in tumor necrosis factor (TNF)-alpha LPS caused a rapid induction of TNF-alpha mRNA in Kupffer cells, detectable within 15 minutes. Pretreatment of mice with anti-TNF antiserum before challenge with LPS reduced the subsequent increase in plasma levels of PAI-1 by 50 to 70% and significantly reduced the level of induction of PAI-1 mRNA in the liver at both early and late times. Pretreatment appeared to inhibit induction primarily within hepatocytes. These results suggest that LPS may induce PAI-1 in endothelial cells and hepatocytes by different mechanisms. Images Figure 3 Figure 4 Figure 7 PMID:9033272

  17. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells.

    PubMed

    Lee, Hyo-Jeong; Jung, Deok-Beom; Sohn, Eun Jung; Kim, Hanna Hyun; Park, Moon Nyeo; Lew, Jae-Hwan; Lee, Seok Geun; Kim, Bonglee; Kim, Sung-Hoon

    2012-01-01

    Although cryptotanshinone (CT) was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1? in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1? accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1? siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1? during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1? to VEGF promoter. Furthermore, CT at 10?mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1?, AEG1, and VEGF as a potent chemotherapeutic agent. PMID:23243443

  18. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor {alpha} signalling

    SciTech Connect

    Taylor, Catherine A.; Sun Zhong; Cliche, Dominic O.; Ming, Hong; Eshaque, Bithi; Jin Songmu; Hopkins, Marianne T.; Thai, Boun; Thompson, John E. . E-mail: jet@sciborg.uwaterloo.ca

    2007-02-01

    Eukaryotic translation initiation factor 5A (eIF5A) is thought to function as a nucleocytoplasmic shuttle protein. There are reports of its involvement in cell proliferation, and more recently it has also been implicated in the regulation of apoptosis. In the present study, we examined the effects of eIF5A over-expression on apoptosis and of siRNA-mediated suppression of eIF5A on expression of the tumour suppressor protein, p53. Over-expression of either eIF5A or a mutant of eIF5A incapable of being hypusinated was found to induce apoptosis in colon carcinoma cells. Our results also indicate that eIF5A is required for expression of p53 following the induction of apoptosis by treatment with Actinomycin D. Depiction of eIF5A localization by indirect immunofluorescence has indicated, for the first time, that the protein is rapidly translocated from the cytoplasm to the nucleus by death receptor activation or following treatment with Actinomycin D. These findings collectively indicate that unhypusinated eIF5A may have pro-apoptotic functions and that eIF5A is rapidly translocated to the nucleus following the induction of apoptotic cell death.

  19. Tumor Necrosis Factor Alpha Induces a Serotonin Dependent Early Increase in Ciliary Beat Frequency and Epithelial Transport Velocity in Murine Tracheae

    PubMed Central

    Weiterer, Sebastian; Schulte, Dagmar; Mller, Sabrina; Kohlen, Thomas; Uhle, Florian; Weigand, Markus A.; Henrich, Michael

    2014-01-01

    The tracheal epithelium prevents via its highly effective clearance mechanism the contamination of the lower airways by pathogens. This mechanism is driven by ciliary bearing cells which are not only in contact with the gas phase; in addition they are also influenced by inflammatory mediators. These mediators can alter the protective function of the epithelium. Since the pro-inflammatoric cytokine tumor necrosis factor-? (TNF-?) plays a pivotal role within the inflammatory cascade, we investigated its effect onto the tracheal epithelium measured by its ciliary beat frequency and the particle transport velocity. In organ explant experiments the ciliary beat frequency and the particle transport velocity were measured under the application of TNF-? using tracheae from male C57BL6J mice. We observed a dose dependent TNF-? induced increase of both particle transport velocity and ciliary beat frequency. Knock out mice experiments made evident that the increase was depended on the expression of tumor necrosis factor receptor 1 (TNF-R1). The increases in ciliary beat frequency as well as the accelerated particle transport velocity were either inhibited by the unspecific serotonin antagonist methysergide or by cyproheptadine a specific 5-HT2 receptor antagonist. Thus, acetylcholine antagonists or nitric oxide synthase (NOS) inhibitors failed to inhibit the TNF-? induced activation. In conclusion, TNF-? may play a pivotal role in the protection of lower airways by inducing ciliary activity and increase in particle transport velocity via TNF-R1 and 5-HT2 receptor. PMID:24626175

  20. Treatment of virus-induced myocardial injury with a novel immunomodulating agent, vesnarinone. Suppression of natural killer cell activity and tumor necrosis factor-alpha production.

    PubMed Central

    Matsui, S; Matsumori, A; Matoba, Y; Uchida, A; Sasayama, S

    1994-01-01

    Controversy still exists concerning the therapy for viral myocarditis which manifests a wide variety of clinical symptoms. Vesnarinone, a quinolinone derivative that was developed as a positive inotropic agent with complex actions, including phosphodiesterase inhibition and cation channel modification, has recently been confirmed to improve the prognosis of patients with chronic heart failure. However, the precise mechanism of this beneficial effect is not yet clearly understood. In this study, using a murine model of acute viral myocarditis resulting from encephalomyocarditis virus infection, survival and myocardial damage were markedly improved by treatment with vesnarinone. In contrast, survival was not improved by treatment with amrinone, a phosphodiesterase inhibitor. Although vesnarinone did not inhibit viral replication or protect myocytes from viral direct cell injury, it did inhibit the increase in natural killer cell activity after viral infection. On the other hand, amrinone failed to inhibit natural killer cell activity. Both vesnarinone and amrinone suppressed the production of tumor necrosis factor-alpha. Therefore, we postulate that vesnarinone exerted its beneficial effects through an inhibition of natural killer cell activity, and that it serves as an immunomodulator providing new therapeutic possibilities for the treatment of viral myocarditis and/or immunological disorders. Images PMID:8083362

  1. Transforming growth factor-alpha mRNA and epidermal growth factor receptor mRNA expression in normal and neoplastic mammary glands of four strains of mice with different mammary tumor potentials.

    PubMed

    Tsunoda, S; Ikezaki, Y; Nagasawa, H

    1997-10-01

    Transforming growth factor-alpha (TGF alpha) and epidermal growth factor receptor (EGF-R) mRNAs were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) in the normal and neoplastic mammary glands of four strains of mice with different mammary tumor potentials (from highest to lowest potential): SHN, GR/A, SLN and C3H/He. At 2 months of age, when the mammary glands of these strains consisted mostly of normal tissue, the samples examined showed the positive expressions of both TGF alpha and EGF-R mRNAs in all strains (4-6 mice per group), except for EGF-R mRNA in the SLN mice, expressed in only 2 of 4 samples associated with no end-bud formation in the mammary glands. At 10 months, all of the samples from all four strains had a positive expression of TGF alpha mRNA. The EGF-R mRNA expression paralleled the degree of the formation of preneoplastic hyperplastic alveolar nodules (HAN) in all strains. These findings indicate that TGF alpha and EGF-R participate in the growth of the mammary glands, and that EGF-R especially contributes to the formation of end-buds at younger ages and to that of preneoplastic HAN at later ages. All of the samples of mammary tumors from four strains had positive expressions of both TGF alpha and EGF-R mRNAs. PMID:9450392

  2. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6.

    PubMed

    Le Vee, Marc; Lecureur, Valrie; Stieger, Bruno; Fardel, Olivier

    2009-03-01

    Tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 are proinflammatory cytokines known to alter expression of drug transporters in rodent liver. However, their effects toward human hepatic transporters remain poorly characterized. Therefore, this study was designed to analyze the effects of these cytokines on drug transporter expression in primary human hepatocytes. Exposure to 100 ng/ml TNF-alpha or 10 ng/ml IL-6 for 48 h was found to down-regulate mRNA levels of major sinusoidal influx transporters, including sodium-taurocholate cotransporting polypeptide (NTCP), organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, organic cation transporter (OCT) 1, and organic anion transporter 2. TNF-alpha and IL-6 concomitantly reduced NTCP and OATP1B1 protein expression and NTCP, OATP, and OCT1 transport activities. IL-6, but not TNF-alpha, was also found to decrease mRNA expression of the canalicular transporters multidrug resistance 1 gene, multidrug resistance gene-associated protein (MRP) 2, and breast cancer resistance protein (BCRP); it concomitantly decreased MRP2 and BCRP protein expression. TNF-alpha, unlike IL-6, markedly reduced bile salt export pump mRNA levels and increased BCRP protein expression. Expression of the sinusoidal MRP3 efflux pump was found to be up-regulated at protein level by both TNF-alpha and IL-6. Taken together, these data show that TNF-alpha and IL-6 similarly altered expression of sinusoidal drug transporters and rather differentially that of canalicular efflux transporters. Such pronounced changes in hepatic transporter expression are likely to contribute to both cholestasis and alterations of pharmacokinetics caused by inflammation in humans. PMID:19074973

  3. Peroxisome proliferator activated receptor-? agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

    PubMed

    De Nuccio, C; Bernardo, A; Cruciani, C; De Simone, R; Visentin, S; Minghetti, L

    2015-09-01

    The activation of the nuclear receptor peroxisome proliferator-activated receptor-? (PPAR-?) is known to exert anti-inflammatory and neuroprotective effects and PPAR-? agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-? agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-? by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-? is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-? effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-? damage is mediated by mitochondrial function impairment. PPAR-? agonists protected OL progenitors against the inhibitory activities of both TNF-? and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-? agonist pioglitazone increased the expression of PGC-1? (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-? agonist protection against TNF-? damage. PMID:26210873

  4. The oestrogen-like effect of 4-hydroxytamoxifen on induction of transforming growth factor alpha mRNA in MDA-MB-231 breast cancer cells stably expressing the oestrogen receptor.

    PubMed Central

    Levenson, A. S.; Tonetti, D. A.; Jordan, V. C.

    1998-01-01

    Oestrogens and antioestrogens modulate the synthesis of transforming growth factor alpha (TGF-alpha) in breast cancer cells. The purpose of the present report was to examine regulation of TGF-alpha gene expression by oestradiol (E2) and antioestrogens in MDA-MB-231 breast cancer cells transfected with either the wild-type or mutant oestrogen receptor (ER). We recently reported the concentration-dependent E2 stimulation of TGF-alpha mRNA in MDA-MB-231 ER transfectants (Levenson et al, 1997). We now report that 4-hydroxytamoxifen (4-OHT) shows oestrogen-like effects on the induction of TGF-alpha gene expression in our transfectants. Accumulation of TGF-alpha mRNA in response to both E2 and 4-OHT but not in response to the pure antioestrogen ICI 182,780 suggests that E2-ER and 4-OHT-ER complexes can bind to an oestrogen response element (ERE), located in the promoter region of the TGF-alpha gene and can activate transcription of the gene. Surprisingly, no activation of luciferase expression was observed after transient transfection of the TGF-alpha ERE/luciferase reporter constructs. Possible activation of an alternative ER-mediated pathway responsible for the regulation of TGF-alpha gene expression in the ER transfectants is discussed. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9667651

  5. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice

    PubMed Central

    Clausen, Bettina H; Lambertsen, Kate L; Babcock, Alicia A; Holm, Thomas H; Dagnaes-Hansen, Frederik; Finsen, Bente

    2008-01-01

    Background Interleukin-1? (IL-1?) and tumor necrosis factor-? (TNF-?) are expressed by microglia and infiltrating macrophages following ischemic stroke. Whereas IL-1? is primarily neurotoxic in ischemic stroke, TNF-? may have neurotoxic and/or neuroprotective effects. We investigated whether IL-1? and TNF-? are synthesized by overlapping or segregated populations of cells after ischemic stroke in mice. Methods We used flow cytometry and immunohistochemistry to examine cellular co-expression of IL-1? and TNF-? at 6, 12 and 24 hours after permanent middle cerebral artery occlusion in mice, validating the results by the use of bone marrow chimeric mice. Results We found that IL-1? and TNF-? were expressed in largely segregated populations of CD11b+CD45dim microglia and CD11b+CD45high macrophages, with cells expressing both cytokines only rarely. The number of Gr1+ granulocytes producing IL-1? or TNF-? was very low, and we observed no IL-1?- or TNF-?-expressing T cells or astrocytes. Conclusion Taken together, the results show that IL-1? and TNF-? are produced by largely segregated populations of microglia and macrophages after ischemic stroke in mice. Our findings provide evidence of a functional diversity among different subsets of microglia and macrophages that is potentially relevant to future design of anti-inflammatory therapies in stroke. PMID:18947400

  6. TERATOGENIC EFFECTS OF RETINOIC ACID ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-ALPHA

    EPA Science Inventory

    Background: EGF and TGF regulate cell proliferation and differentiation in the embryo. The induction of cleft palate (CP) by all trans retinoic acid (RA) was associated with altered expression of TGF, EGF receptor and binding of EGF. The present study uses knockout (KO) mice to e...

  7. Tumor necrosis factor-alpha inhibits collagen alpha1(I) gene expression and wound healing in a murine model of cachexia.

    PubMed Central

    Buck, M.; Houglum, K.; Chojkier, M.

    1996-01-01

    The mechanisms responsible for impaired wound healing in patients with cachexia-associated infection, inflammation, and cancer are unknown. As tumor necrosis factor (TNF)-alpha is elevated in these diseases, and TNF-alpha inhibits collagen alpha1(I) gene expression in cultured fibroblasts, we analyzed whether chronically elevated serum TNF-alpha affects collagen metabolism in vivo by inoculating nude mice with Chinese hamster ovary cells secreting TNF-alpha (TNF-alpha mice) or control Chinese hamster ovary cells (control mice). Before the onset of weight loss, TNF-alpha mice had a selective decrease in collagen synthesis and collagen alpha1(I) mRNA in the skin. In addition, TNF-alpha mice displayed impaired healing of incisional and excisional skin wounds, compared with control animals, before the onset of cachexia. The expression of transforming growth factor-beta1, a potent fibrogenic factor, was inhibited by TNF-alpha in the skin. In studies with transgenic mice expressing the human growth hormone under the direction of 5' regulatory regions of the human collagen alpha1(I) gene, TNF-alpha treatment inhibited the expression of the collagen alpha1(I) human growth hormone transgene containing -2.3 kb of the 5' region, whereas transgene expression directed by -0.44 kb of the 5' region was not affected. These experiments suggest that TNF-alpha may play an important role in the impaired wound healing of chronic diseases that are characterized by a high production of this cytokine and provide insights for potential therapeutic approaches. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8686743

  8. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    PubMed Central

    Carvalho, Denise Maciel; Garcia, Fernanda Gonçalves; Terra, Ana Paula Sarreta; Lopes Tosta, Ana Cristina; Silva, Luciana de Almeida; Castellano, Lúcio Roberto; Silva Teixeira, David Nascimento

    2014-01-01

    Background. During dengue virus (DV) infection, monocytes produce tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1) on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1) serum levels and innate immune response (TLR4 expression and TNF-α/NO production) of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA), TNF-α production by peripheral blood mononuclear cells (PBMCs), and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF) was detected compared to patients with dengue hemorrhagic fever (DHF). Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production) when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes. PMID:25580138

  9. Neonatal exposure to estradiol-17β modulates tumour necrosis factor alpha and cyclooxygenase-2 expression in brain and also in ovaries of adult female rats.

    PubMed

    Shridharan, Radhika Nagamangalam; Krishnagiri, Harshini; Govindaraj, Vijayakumar; Sarangi, SitiKantha; Rao, Addicam Jagannadha

    2016-02-01

    The sexually dimorphic organization in perinatal rat brain is influenced by steroid hormones. Exposure to high levels of estrogen or endocrine-disrupting compounds during perinatal period may perturb this process, resulting in compromised reproductive physiology and behavior as observed in adult In our recent observation neonatal exposure of the female rats to estradiol-17β resulted in down-regulation of TNF-α, up-regulation of COX-2 and increase in SDN-POA size in pre-optic area in the adulthood. It is known that the control of reproductive performance in female involves a complex interplay of the hypothalamus, pituitary, and ovary. The present study was undertaken to understand the possible molecular mechanism involved in changes observed in the ovarian morphology and expression of selected genes in the ovary. Administration of estradiol-17β (100 μg) on day 2 and 3 after birth revealed up-regulation of ER-α, ER-β, COX-2 and down-regulation of TNF-α expression. Also the decrease in the ovarian weight, altered ovarian morphology and changes in the 2D protein profiles were also seen. This is apparently the first report documenting that neonatal estradiol exposure modulates TNF-α and COX-2 expression in the ovary as seen during adult stage. Our results permit us to suggest that cues originating from the modified brain structure due to neonatal exposure of estradiol-17β remodel the ovary at the molecular level in such a way that there is a disharmony in the reproductive function during adulthood and these changes are perennial and can lead to infertility and changes of reproductive behavior. PMID:26872318

  10. Increased Expression of Interleukin-5 (IL-5), IL-13, and Tumor Necrosis Factor Alpha Genes in Intestinal Lymph Cells of Sheep Selected for Enhanced Resistance to Nematodes during Infection with Trichostrongylus colubriformis

    PubMed Central

    Pernthaner, Anton; Cole, Sally-Ann; Morrison, Lilian; Hein, Wayne R.

    2005-01-01

    Cytokine gene expression in cells migrating in afferent and efferent intestinal lymph was monitored for extended time periods in individual sheep experimentally infected with the nematode Trichostrongylus colubriformis. Animals from stable selection lines with increased levels of either genetic resistance (R) or susceptibility (S) to nematode infection were used. Genes for interleukin-5 (IL-5), IL-13, and tumor necrosis factor alpha (TNF-α), but not for IL-4, IL-10, or gamma interferon (IFN-γ), were consistently expressed at higher levels in both afferent and efferent lymph cells of R sheep than in S sheep. However, only minor differences were observed in the surface phenotypes and antigenic and mitogenic responsiveness of cells in intestinal lymph between animals from the two selection lines. The IL-4 and IL-10 genes were expressed at higher levels in afferent lymph cells than in efferent lymph cells throughout the course of the nematode infection in animals of both genotypes, while the proinflammatory TNF-α gene was relatively highly expressed in both lymph types. These relationships notwithstanding, expression of the IL-10 and TNF-α genes declined significantly in afferent lymph cells but not in efferent lymph cells during infection. Collectively, the results showed that R-line sheep developed a strong polarization toward a Th2-type cytokine profile in immune cells migrating in lymph from sites where the immune response to nematodes was initiated, although the IFN-γ gene was also expressed at moderate levels. Genes or alleles that predispose an animal to develop this type of response appear to have segregated with the R selection line and may contribute to the increased resistance of these animals. PMID:15784560

  11. Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signaling pathways.

    PubMed

    Remacle-Bonnet, M M; Garrouste, F L; Heller, S; André, F; Marvaldi, J L; Pommier, G J

    2000-04-01

    Resistance of cancer cells against apoptosis induced by death factors contributes to the limited efficiency of immune- and drug-induced destruction of tumors. We report here that insulin and insulin-like growth factor-I (IGF-I) fully protect HT29-D4 colon carcinoma cells from IFN-gamma/tumor necrosis factor-alpha (TNF) induced apoptosis. Survival signaling initiated by IGF-I was not dependent on the canonical survival pathway involving phosphatidylinositol 3'-kinase. In addition, neither pp70(S6K) nor protein kinase C conveyed IGF-I antiapoptotic function. Inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) with the MAPK/ERK kinase inhibitor PD098059 and MAPK/p38 with the specific inhibitor SB203580 partially reversed, in a nonadditive manner, the IGF-I survival effect. Inhibition of nuclear factor kappaB (NF-kappaB) activity by preventing degradation of the inhibitor of NF-kappaB (IkappaB-alpha) with BAY 11-7082 also blocked in part the IGF-I antiapoptotic effect. However, the complete reversal of the IGF-I effect was obtained only when NF-kappaB and either MAPK/ERK or MAPK/p38 were inhibited together. Because these pathways are also those used by TNF to signal inflammation and survival, these data point to a cross talk between IGF-I- and TNF-induced signaling. We further report that TNF-induced IL-8 production was indeed strongly enhanced upon IGF-I addition, and this effect was totally abrogated by both MAPK and NF-kappaB inhibitors. The IGF-I antiapoptotic function was stimulus-dependent because Fas- and IFN/Fas-induced apoptosis was not efficiently inhibited by IGF-I. This was correlated with the weak ability of Fas ligation to enhance IL-8 production in the presence or absence of IGF-I. These findings indicate that the antiapoptotic function of IGF-I in HT29-D4 cells is based on the enhancement of the survival pathways initiated by TNF, but not Fas, and mediated by MAPK/p38, MAPK/ERK, and NF-kappaB, which act in concert to suppress the proapoptotic signals. In agreement with this model, we show that it was possible to render HT29-D4 cells resistant to Fas-induced apoptosis provided that IGF-I and TNF receptors were activated simultaneously. PMID:10766192

  12. PLASMA TUMOR NECROSIS FACTOR-ALPHA CONCENTRATIONS DURING THE TRANSITION PERIOD OF COWS FED EITHER AD LIBITUM OR RESTRICTED DIETS DURING THE DRY PERIOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tumor necrosis factor-alpha (TNF-') is a pro-inflammatory cytokine that upregulates mRNA expression of suppressors of cytokine signaling (SOCS) and induces nitric oxide (NO) production. Both SOCS and NO inhibit intracellular growth hormone (GH) signaling and uncouple the somatotropic axis. Expressio...

  13. Inhibition of leucocyte adhesion molecule upregulation by tumor necrosis factor alpha: a novel mechanism of action of sulphasalazine.

    PubMed Central

    Greenfield, S M; Hamblin, A S; Shakoor, Z S; Teare, J P; Punchard, N A; Thompson, R P

    1993-01-01

    The effects of the cytokine tumour necrosis factor alpha and the calcium ionophore A23187 upon CD11a, CD11b, CD11c and CD18 leucocyte membrane expression was analysed in whole blood using monoclonal antibodies and flow cytometry. Both agents significantly increased the density of CD11b/CD18 membrane expression on monocytes and granulocytes, but had no effects on adhesion molecule expression on lymphocytes. The effects of sulphasalazine, 5-aminosalicylic acid (5-ASA) and sulphapyridine upon adhesion molecule upregulation were then examined; 10(-3) and 10(-4) M sulphasalazine and 5-ASA significantly reduced tumour necrosis factor alpha induced CD11b/CD18 upregulation on monocytes and granulocytes but had no effects upon A23187 mediated upregulation. Sulphapyridine was inactive. These results suggest that sulphasalazine and 5-ASA may interfere with mechanisms of leucocyte recruitment in inflammatory bowel disease. PMID:8094364

  14. Acetaldehyde-induced interleukin-1beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells.

    PubMed

    Hsiang, Chien-Yun; Wu, Shih-Lu; Cheng, Shin-Ei; Ho, Tin-Yun

    2005-10-01

    Alcoholic liver disease (ALD) is one of the most common liver diseases in the world. Increased levels of proinflammatory cytokines, including interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), have been correlated with the patients affected by ALD. However, the direct effect of alcohol in the induction of IL-1beta and TNF-alpha has not been clarified. In this study, we demonstrated that acetaldehyde, the metabolic product of ethanol, was able to induce IL-1beta and TNF-alpha production in HepG2 cells. Nuclear factor-kappaB (NF-kappaB), the transcription factor involved in the regulation of cytokine production, was also activated by acetaldehyde through inhibitory kappaB-alpha (IkappaB-alpha) phosphorylation and degradation. However, the NF-kappaB inhibitors, such as aspirin, cyclosporin A and dexamethasone, inhibited both the acetaldehyde-induced NF-kappaB activity and the induced cytokine production. Therefore, these data suggested that acetaldehyde stimulated IL-1beta and TNF-alpha production via the regulation of NF-kappaB signaling pathway. By screening 297 controlled Chinese medicinal herbs supervised by Committee on Chinese Medicine and Pharmacy at Taiwan, we found that Coptis chinensis (Huang-Lien) and Phellodendron amurense (Huang-Po) were capable of inhibiting acetaldehyde-induced NF-kappaB activity. Berberine, the major ingredient of these herbs, abolished acetaldehyde-induced NF-kappaB activity and cytokine production in a dose-dependent manner. Moreover, its inhibitory ability was through the inhibition of induced IkappaB-alpha phosphorylation and degradation. In conclusion, we first linked the acetaldehyde-induced NF-kappaB activity to the induced proinflammatory cytokine production in HepG2 cells. Our findings also suggested the potential role of berberine in the treatment of ALD. PMID:16132116

  15. Effect of aspirin on prostaglandin E2 formation and transforming growth factor alpha expression in human rectal mucosa from individuals with a history of adenomatous polyps of the colon.

    PubMed

    Barnes, C J; Hamby-Mason, R L; Hardman, W E; Cameron, I L; Speeg, K V; Lee, M

    1999-04-01

    Colorectal cancer is the second-most frequent cause of cancer mortality in the United States. Human epidemiology and laboratory studies indicate that aspirin may be an effective colorectal cancer chemopreventive agent. This study was designed to determine whether treatment with 81 mg of aspirin per day for 3 months would alter two putative surrogate end point biomarkers of chemoprevention of colorectal cancer [i.e., mucosal prostaglandin E2 (PGE2) formation and transforming growth factor alpha (TGF-alpha) expression] in normal-appearing rectal mucosa from individuals with a history of adenomatous polyps. Rectal biopsies were obtained by flexible sigmoidoscopy at three sequential time points: (a) after a 1-month placebo run-in period (baseline), (b) after 3 months of ingesting 81 mg of aspirin (as a single tablet) once per day, and (c) after 3 months of ingesting a placebo tablet once per day (washout period). Daily aspirin significantly suppressed PGE2 formation, but this significant suppression was completely reversed when aspirin was withdrawn. The extent of TGF-alpha staining in rectal crypts was also reduced significantly (P = 0.039) by daily aspirin. After a 3-month placebo-washout period, however, the mean extent of TGF-alpha staining was not significantly different from either baseline or the aspirin time point. Thus, 81 mg of aspirin daily significantly reduced rectal mucosal PGE2 formation and TGF-alpha expression in patients with a history of adenomatous polyps. These putative surrogate end point biomarkers may be useful intermediate end points in future colorectal cancer chemoprevention trials. PMID:10207634

  16. The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals.

    PubMed

    Williams, Kristi L; Lich, John D; Duncan, Joseph A; Reed, William; Rallabhandi, Prasad; Moore, Christopher; Kurtz, Sherry; Coffield, V McNeil; Accavitti-Loper, Mary A; Su, Lishan; Vogel, Stefanie N; Braunstein, Miriam; Ting, Jenny P-Y

    2005-12-01

    The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) alpha and Mycobacterium tuberculosis. Monarch-1 reduces NFkappaB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFkappaB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFkappaB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFalpha, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation. PMID:16203735

  17. Cytosine-Phosphorothionate-Guanine Oligodeoxynucleotides Exacerbates Hemophagocytosis by Inducing Tumor Necrosis Factor-Alpha Production in Mice after Bone Marrow Transplantation.

    PubMed

    Liu, Jiajia; Guo, Yong-Mei; Onai, Nobuyuki; Ohyagi, Hideaki; Hirokawa, Makoto; Takahashi, Naoto; Tagawa, Hiroyuki; Ubukawa, Kumi; Kobayashi, Isuzu; Tezuka, Hiroyuki; Minamiya, Yoshihiro; Ohteki, Toshiaki; Sawada, Kenichi

    2016-04-01

    Hemophagocytic syndrome (HPS) is frequently associated with hematopoietic stem cell transplantation and is treated with some benefit derived from TNF-α inhibitors. However, the mechanisms of how HPS occurs and how a TNF-α inhibitor exerts some benefit to HPS management have remained unclear. We evaluated the effect of toll-like receptor (TLR) ligands, especially focusing on cytosine-phosphorothionate-guanine oligodeoxynucleotide (CpG), a TLR9 ligand, on HPS in mice that underwent transplantation with syngeneic or allogeneic bone marrow (BM) cells (Syn-BMT, Allo-BMT), or with allogeneic BM cells plus splenocytes to promote graft-versus-host disease (GVHD mice). Hemophagocytosis was a common feature early after all BMT, but it subsided in Syn-BMT and Allo-BMT mice. In GVHD mice, however, hemophagocytosis persisted and was accompanied by upregulated production of IFN-γ but not TNF-α, and it was suppressed by blockade of IFN-γ but not TNF-α. A single injection of the TLR9 ligand CpG promoted HPS in all BMT mice and was lethal in GVHD mice, accompanied by greatly upregulated production of TNF-α, IL-6, and IFN-γ. Blocking of TNF-α, but not IL-6 or IFN-γ, suppressed CpG-induced HPS in all BMT mice and rescued GVHD mice from CpG-induced mortality. Thus, TLR9 signaling mediates TNF-α-driven HPS in BMT mice and is effectively treated through TNF-α inhibition. PMID:26740374

  18. Induced autocrine signaling through the epidermal growth factor receptor contributes to the response of mammary epithelial cells to tumor necrosis factor alpha

    SciTech Connect

    Chen, Wan-Nan U.; Woodbury, Ronald L.; Kathmann, Loel E.; Opresko, Lee; Zangar, Richard C.; Wiley, H S.; Thrall, Brian D.

    2004-04-30

    In contrast to the well-known cytotoxic effects of tumor necrosis factor a (TNF) in many mammary cancer cells, we have found that TNF stimulates the proliferation and motility of human mammary epithelial cells (HMEC). Since the response of HMEC to TNF is similar to effects mediated by epidermal growth factor receptor (EGFR) activation, we explored the potential role of cross-talk through the EGFR signaling pathways in mediating cellular responses to TNF. Using a microarray enzyme-linked immunoassay, we found that exposure to TNF stimulated the dose-dependent shedding of the EGFR ligand transforming growth factor a (TGFa). Both proliferation and motility of HMEC induced by TNF was prevented either by inhibiting membrane protein shedding with a metalloprotease inhibitor, by blocking EGFR kinase activity, or by limiting ligand-receptor interactions with an antagonistic anti-EGFR antibody. EGFR activity was also necessary for TNF-induced release of MMP-9, a matrix metalloprotease thought to be an essential regulator of mammary cell migration. The cellular response to TNF was associated with a biphasic temporal pattern of extracellular signal-regulated kinase (ERK) phosphorylation, which was EGFR-dependent and modulated by inhibition of metalloprotease-mediated shedding. Significantly, the late phase of ERK phosphorylation, detectable within 4 hours after exposure, was blocked by the metalloprotease inhibitor batimastat, indicating that autocrine signaling through ligand shedding was responsible for this secondary wave of ERK activity. Our results indicate a novel and important role for metalloprotease activation and EGFR transmodulation in mediating the cellular response to TNF.

  19. Uniocular Anterior Chamber Inoculation of a Tumor Necrosis Factor Alpha-Expressing Recombinant of Herpes Simplex Virus Type 1 Results in More Rapid Destruction and Increased Viral Replication in the Retina of the Uninoculated Eye?

    PubMed Central

    Fields, Mark A.; Zheng, Mei; Wall, Pam; Oberg, Scott; Atherton, Sally S.

    2008-01-01

    Tumor necrosis factor alpha (TNF-?) has been shown to have a protective role in the eyes and brains of herpes simplex virus type 1 (HSV-1)-infected mice. To determine whether overexpression of TNF-? affected the course of virus infection following uniocular anterior chamber inoculation, a recombinant of HSV-1 that produces TNF-? constitutively (KOSTNF) was constructed. BALB/c mice were injected with the TNF-? recombinant, a recombinant containing the pCI plasmid, a recombinant rescue virus, or the parental virus. Flow cytometry and immunohistochemistry were used to identify virus-infected cells and to determine the numbers and types of infiltrating inflammatory cells in the uninjected eyes. Virus titers were determined by plaque assay. There were no differences among the groups in virus titers or the route and timing of virus spread in the injected eyes or in the suprachiasmatic nuclei. However, in the uninjected eyes of KOSTNF-infected mice, TNF-? expression was increased and there were more viral antigen-positive cells and immune inflammatory cells. There was earlier microscopic evidence of retinal infection and destruction in these mice, and the titers of virus in the uninjected eyes were significantly increased in KOSTNF-infected mice on day 7 postinfection compared with those of KOSpCI-, KOS6?rescue-, or KOS6?-infected mice. The results suggest that instead of moderating infection and reducing virus spread, overexpression of TNF-? has deleterious effects due to increased inflammation and virus infection that result in earlier destruction of the retina of the uninoculated eye. PMID:18321975

  20. Roles of tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, platelet-activating factor, and arachidonic acid metabolites in interleukin-1-induced resistance to infection in neutropenic mice.

    PubMed Central

    Vogels, M T; Hermsen, C C; Huys, H L; Eling, W M; van der Meer, J W

    1994-01-01

    Treatment with a single low dose (80 to 800 ng) of interleukin-1 (IL-1) 24 h before a lethal bacterial challenge in granulocytopenic and in normal mice enhances nonspecific resistance. The mechanism behind this protection has only partially been elucidated. Since IL-1 induces production of tumor necrosis factor alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet-activating factor (PAF), and arachidonic acid metabolites, we investigated the potential role of these substances in IL-1-induced protection. Low doses of murine TNF-alpha but not of human TNF-alpha enhanced survival, suggesting an effect via the type II TNF receptor rather than the type I TNF receptor, which has little species specificity. In line with this TNF-alpha-induced protection from infection, pretreatment with a low dose of a rat anti-murine TNF-alpha monoclonal antibody tended to inhibit IL-1-induced protection, suggesting a role of TNF-alpha as a mediator of IL-1-induced enhanced resistance to infection. Pretreatment with higher doses of anti-TNF-alpha, however, showed a dose-related protective effect per se, which could be further enhanced by a suboptimal dose of IL-1. A combination of optimal doses of anti-TNF-alpha and IL-1 produced an increase in survival similar to that produced by separate pretreatments. This lack of further enhancement of survival by combined optimal pretreatments suggests a similar mechanism of protection, most likely attenuation of deleterious effects of overproduced proinflammatory cytokines like TNF-alpha during lethal infection. Pretreatment with different doses of GM-CSF before a lethal Pseudomonas aeruginosa challenge in neutropenic mice did not enhance survival. Different doses of WEB 2170, a selective PAF receptor antagonist, of MK-886, a selective inhibitor of leukotriene biosynthesis, or of several cyclooxygenase inhibitors did not reduce the protective effect of IL-1 pretreatment. We conclude that IL-1-induced nonspecific resistance is partially mediated by induction of TNF-alpha and not by GM-CSF, PAF, and arachidonic acid metabolites. The mechanism of action of IL-1 seems to be similar to that of anti-TNF-alpha. PMID:8168971

  1. Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICP0 Protein Inhibits Tumor Necrosis Factor Alpha-Induced NF-κB Activation by Interacting with p65/RelA and p50/NF-κB1

    PubMed Central

    Zhang, Jie; Wang, Kezhen

    2013-01-01

    NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1. PMID:24067962

  2. Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins.

    TOXLINE Toxicology Bibliographic Information

    Greenwel P; Tanaka S; Penkov D; Zhang W; Olive M; Moll J; Vinson C; Di Liberto M; Ramirez F

    2000-02-01

    Extracellular matrix (ECM) formation and remodeling are critical processes for proper morphogenesis, organogenesis, and tissue repair. The proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) inhibits ECM accumulation by stimulating the expression of matrix proteolytic enzymes and by downregulating the deposition of structural macromolecules such as type I collagen. Stimulation of ECM degradation has been linked to prolonged activation of jun gene expression by the cytokine. Here we demonstrate that TNF-alpha inhibits transcription of the gene coding for the alpha2 chain of type I collagen [alpha2(I) collagen] in cultured fibroblasts by stimulating the synthesis and binding of repressive CCAAT/enhancer proteins (C/EBPs) to a previously identified TNF-alpha-responsive element. This conclusion was based on the concomitant identification of C/EBPbeta and C/EBPdelta as TNF-alpha-induced factors by biochemical purification and expression library screening. It was further supported by the ability of the C/EBP-specific dominant-negative (DN) protein to block TNF-alpha inhibition of alpha2(I) collagen but not TNF-alpha stimulation of the MMP-13 protease. The DN protein also blocked TNF-alpha downregulation of the gene coding for the alpha1 chain of type I collagen. The study therefore implicates repressive C/EBPs in the TNF-alpha-induced signaling pathway that controls ECM formation and remodeling.

  3. Tumor Necrosis Factor Alpha Inhibits Type I Collagen Synthesis through Repressive CCAAT/Enhancer-Binding Proteins

    PubMed Central

    Greenwel, Patricia; Tanaka, Shizuko; Penkov, Dmitri; Zhang, Wen; Olive, Michelle; Moll, Jonathan; Vinson, Charles; Di Liberto, Maurizio; Ramirez, Francesco

    2000-01-01

    Extracellular matrix (ECM) formation and remodeling are critical processes for proper morphogenesis, organogenesis, and tissue repair. The proinflammatory cytokine tumor necrosis factor alpha (TNF-?) inhibits ECM accumulation by stimulating the expression of matrix proteolytic enzymes and by downregulating the deposition of structural macromolecules such as type I collagen. Stimulation of ECM degradation has been linked to prolonged activation of jun gene expression by the cytokine. Here we demonstrate that TNF-? inhibits transcription of the gene coding for the ?2 chain of type I collagen [?2(I) collagen] in cultured fibroblasts by stimulating the synthesis and binding of repressive CCAAT/enhancer proteins (C/EBPs) to a previously identified TNF-?-responsive element. This conclusion was based on the concomitant identification of C/EBP? and C/EBP? as TNF-?-induced factors by biochemical purification and expression library screening. It was further supported by the ability of the C/EBP-specific dominant-negative (DN) protein to block TNF-? inhibition of ?2(I) collagen but not TNF-? stimulation of the MMP-13 protease. The DN protein also blocked TNF-? downregulation of the gene coding for the ?1 chain of type I collagen. The study therefore implicates repressive C/EBPs in the TNF-?-induced signaling pathway that controls ECM formation and remodeling. PMID:10629048

  4. Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins.

    PubMed

    Greenwel, P; Tanaka, S; Penkov, D; Zhang, W; Olive, M; Moll, J; Vinson, C; Di Liberto, M; Ramirez, F

    2000-02-01

    Extracellular matrix (ECM) formation and remodeling are critical processes for proper morphogenesis, organogenesis, and tissue repair. The proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) inhibits ECM accumulation by stimulating the expression of matrix proteolytic enzymes and by downregulating the deposition of structural macromolecules such as type I collagen. Stimulation of ECM degradation has been linked to prolonged activation of jun gene expression by the cytokine. Here we demonstrate that TNF-alpha inhibits transcription of the gene coding for the alpha2 chain of type I collagen [alpha2(I) collagen] in cultured fibroblasts by stimulating the synthesis and binding of repressive CCAAT/enhancer proteins (C/EBPs) to a previously identified TNF-alpha-responsive element. This conclusion was based on the concomitant identification of C/EBPbeta and C/EBPdelta as TNF-alpha-induced factors by biochemical purification and expression library screening. It was further supported by the ability of the C/EBP-specific dominant-negative (DN) protein to block TNF-alpha inhibition of alpha2(I) collagen but not TNF-alpha stimulation of the MMP-13 protease. The DN protein also blocked TNF-alpha downregulation of the gene coding for the alpha1 chain of type I collagen. The study therefore implicates repressive C/EBPs in the TNF-alpha-induced signaling pathway that controls ECM formation and remodeling. PMID:10629048

  5. Human Cytomegalovirus Blocks Tumor Necrosis Factor Alpha- and Interleukin-1?-Mediated NF-?B Signaling?

    PubMed Central

    Montag, Christina; Wagner, Jutta; Gruska, Iris; Hagemeier, Christian

    2006-01-01

    NF-?B plays an important role in the early cellular response to pathogens by activating genes involved in inflammation, immune response, and cell proliferation and survival. NF-?B is also utilized by many viral pathogens, like human cytomegalovirus (HCMV), to activate their own gene expression programs, reflecting intricate roles for NF-?B in both antiviral defense mechanisms and viral physiology. Here we show that the NF-?B signaling pathway stimulated by proinflammatory cytokines tumor necrosis factor alpha (TNF-?) and interleukin-1? (IL-1?) becomes inhibited in HCMV-infected cells. The block to NF-?B signaling is first noticeable during the early phase of infection but is fully established only at later times. Biochemical and genetic evidence demonstrates that the viral inhibition of proinflammatory signaling by distinct cytokines occurs upstream of the convergence point of NF-?B-activating pathways, i.e., the I?B kinase complex, and that it is mediated via different mechanisms. Consistent with this, we further show that an HCMV variant that has lost the ability to downregulate TNF-?-induced NF-?B signaling also fails to downregulate surface expression of TNF receptor 1, thereby mechanistically linking the inhibition of TNF-?-induced NF-?B signaling by HCMV to TNF receptor targeting. Our data support a model whereby HCMV inhibits cytokine-induced NF-?B signaling at later times during infection, and we suggest that this contributes to the inhibition of the cell's antiviral defense program. PMID:17005669

  6. Tissue angiotensinogen gene expression induced by lipopolysaccharide in hypertensive rats.

    PubMed

    Nyui, N; Tamura, K; Yamaguchi, S; Nakamaru, M; Ishigami, T; Yabana, M; Kihara, M; Ochiai, H; Miyazaki, N; Umemura, S; Ishii, M

    1997-10-01

    There is now convincing evidence that various tissues express their own tissue renin-angiotensin system, which may be regulated independently of the systemic renin-angiotensin system. However, little information is available on the regulation of the tissue renin-angiotensin system. We investigated the regulation of tissue angiotensinogen gene expression with respect to the development of hypertension. We measured basal and lipopolysaccharide-stimulated plasma angiotensinogen concentrations by radioimmunoassay and examined the expression of tissue angiotensinogen by Northern blot analysis in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) at 4 and 13 weeks of age. Basal plasma angiotensinogen concentration in SHR was comparable to that in WKY at 4 weeks of age and was significantly higher than that in WKY at 13 weeks of age. Lipopolysaccharide induced a significant increase in plasma angiotensinogen concentration in both WKY and SHR at 4 and 13 weeks of age. At 4 weeks of age, the basal levels of angiotensinogen mRNA in the liver, fat, adrenal, and aorta were higher in WKY than in SHR. At 13 weeks of age, the basal levels of angiotensinogen mRNA in the fat, adrenal, aorta, spleen, and kidney were higher in WKY than in SHR, while that in the liver did not differ significantly between the two strains. At 4 weeks of age, pretreatment with lipopolysaccharide increased the angiotensinogen mRNA levels in the liver, fat, adrenal, and aorta in both WKY and SHR. At 13 weeks of age, pretreatment with lipopolysaccharide increased the angiotensinogen mRNA levels in the liver, aorta, and adrenal; decreased those in the spleen; and had no effect in the kidney in both WKY and SHR. Interestingly, lipopolysaccharide increased the angiotensinogen mRNA level in fat only in SHR, with no effect in WKY, at 13 weeks of age. Lipopolysaccharide stimulated tumor necrosis factor-a mRNA expression in fat of WKY and SHR, and the increase in tumor necrosis factor-alpha mRNA level in SHR was significantly greater than that in WKY. Therefore, the increased tumor necrosis factor-alpha mRNA expression may be involved in the increased lipopolysaccharide-induced expression of angiotensinogen gene in fat of SHR at 13 weeks of age. These data suggest that the transcriptional and probably posttranscriptional regulation of angiotensinogen mRNA differs between SHR and WKY, that the regulation of angiotensinogen gene expression is tissue-specific, and that the altered expression of the angiotensinogen gene may be involved in the development of hypertension. PMID:9336385

  7. Lichenoid Reactions in Association with Tumor Necrosis Factor Alpha Inhibitors

    PubMed Central

    Basile, Amy; Bair, Brooke; Fivenson, David

    2015-01-01

    In this manuscript, a clinical case of a patient treated with adalimumab for Behcets disease develops lichen planopilaris. A variety of mucocutaneous lichenoid eruptions have recently been described in association with tumor necrosis factor alpha inhibitors. The authors briefly discuss the clinical and pathological presentation of lichen planopilaris as well as a potential pathogenesis of cutaneous adverse effects seen as the result of tumor necrosis factor alpha inhibitor therapy. They review all case reports of lichen planopilaris occurring on tumor necrosis factor alpha inhibitors and suggest its classification as a fourth recognized pattern on this therapy. PMID:26155327

  8. Cultured alveolar macrophages from patients with idiopathic pulmonary fibrosis (IPF) show dysregulation of lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) inductions.

    PubMed

    Freeburn, Robin W; Armstrong, Lynne; Millar, Ann B

    2005-01-01

    Regulation of the pulmonary host defence mechanism is crucial for protection of the lung without pathological consequences. This is exemplified in the normal lung by the induction of both the pro-inflammatory cytokine TNF-alpha, its receptors and the anti-inflammatory cytokine IL-10 by bacterial lipopolysaccharide (LPS). We have evaluated this mechanism in patients with idiopathic pulmonary fibrosis (IPF). Alveolar macrophages (AM) were obtained by bronchoalveolar lavage from 21 subjects with IPF and 12 healthy volunteers. Constitutive and LPS-stimulated AM production of TNF-alpha, TNF soluble receptors CD120a and CD120b, and IL-10 at the protein and mRNA level were measured by bioassay, ELISA and competitive PCR respectively. AM from IPF subjects were more susceptible to LPS induction of TNF-alpha protein (P = 0.03) and transcription of IL-10 mRNA (P = 0.01) and IL-10R1 (P = 0.01) expression in comparison to controls. In contrast, increased CD120b was present as protein and mRNA compared to controls (P = 0.02). AM from IPF subjects were at least as susceptible to down-regulation of LPS-induced TNF-alpha levels by exogenous IL-10 as normal controls (94% versus 63%). These data suggest that there is dysregulation of LPS-induced TNF-alpha and IL-10 in AM from IPF subjects. Further studies are required to elucidate these observations, which may, in turn, give additional insight into the pathogenesis of this disease. PMID:15809201

  9. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha

    PubMed Central

    Cai, Weibo; Kerner, Zachary J.; Hong, Hao; Sun, Jiangtao

    2013-01-01

    Tumor necrosis factor-alpha (TNF-?), a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-? is severely limited by its toxicity. Currently, TNF-? is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-?, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-?. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-? conjugate, scFv/TNF-? fusion proteins, and peptide/TNF-? fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-?-based therapeutics into clinical investigation. PMID:24115841

  10. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients.

    PubMed

    Kumsiri, Ratchanok; Troye-Blomberg, Marita; Pattanapanyasat, Kovit; Krudsood, Srivicha; Maneerat, Yaowapa

    2016-02-01

    Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-? and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-? levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-? levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (p<0.001) groups. At admission, a strong significant negative correlation was found between specific IgG and sCD23 (r=-0.762, p=0.028), and TNF-? and IgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-? (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-? and the malaria-specific IgG may correlate with protection against falciparum malaria. PMID:26519199

  11. Methyl ester of avenathramide-C inhibits tumor necrosis factor-alpha (TNF-alpha) and interlenkin-Ibeta(IL-beta)-induced NF-kappaB activation in endothelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atherosclerosis is a chronic inflammatory disease accompanied by the expression of endothelial proinflammatory molecules. Avenanthramides (Avn) are polyphenols which are present exclusively in oats. We have reported the avenanthramide-enriched mixture extracted from oats significantly suppressed int...

  12. Phenol induced acute cutaneous inflammation (AI) in mice: Diminished response in mast cell-deficient (W/W sup v ) mice and evidence of a role for tumor necrosis factor-alpha (TNF)

    SciTech Connect

    Wershil, B.K.; Wang, Z.S.; Gordon, J.R.; Galli, S.J. Harvard Medical School, Boston, MA )

    1991-03-11

    AI can be induced by a variety of chemical agents. The authors examined AI in mast cell-deficient (WBB6F{sub 1}-W/W{sup v}) and congenic normal (WBB6F{sub 1}-+/+) mice; AI was induced by the epicutaneous application to the ear of phenol (2 mg), benzalkonium chloride (BC; 1 mg) and ethyl phenylpropiolate (EPP, 2 or 5 mg). Phenol induced significantly greater swelling in +/+ than in W/W{sup v} mice. No difference in swelling was seen in +/+ versus W/W{sup v} mice with BC or EEP. Phenol application induced significantly greater neutrophil infiltration in +/+ than in W/W{sup v} mice. Mast cells represent a rich source of TNF and TNF has been shown to participate in the neutrophil accumulation seen in mast cell-dependent, IgE-mediated cutaneous late phase reactions. The authors injected +/+ mice i.d. with 20 {mu}l of 1:100 dilution of a polyclonal rabbit anti-mouse TNF antiserum or 20 {mu}l of medium and then applied 2 mg phenol at the same sites. At 24 hrs, significantly less neutrophil accumulation was seen in the ear treated with anti-TNF antibodies than in the control ear. The authors conclude that mast cells may participate in phenol-induced AI, and that TNF contributes to this response.

  13. Transactivation of human immunodeficiency virus type 1 long terminal repeats by cell surface tumor necrosis factor alpha.

    PubMed Central

    Tadmori, W; Mondal, D; Tadmori, I; Prakash, O

    1991-01-01

    Tumor necrosis factor alpha (TNF-alpha) is expressed in secreted and cell surface (csTNF-alpha) forms by activated monocytic and T cells. In this report, we demonstrate that csTNF-alpha may predominantly regulate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) activation in the promonocytic cell line U937 and in the Epstein-Barr virus-transformed B-cell line BH1. Anti-TNF-alpha antibody suppressed both the constitutive expression of the HIV-1 LTR in BH1 cells and the expression induced by phorbol 12-myristate 13-acetate in U937 cells. This suppression was found to be mediated via csTNF-alpha. No correlation between the HIV-1 LTR activation and the secretion of TNF-alpha was evident in these cell lines. Suppression of TNF-alpha secretion by cyclosporin A or by a serine protease inhibitor did not suppress the HIV-1 LTR activation. These observations suggest a novel biological role for csTNF-alpha in the immunopathogenesis of AIDS. PMID:1942242

  14. Tumor necrosis factor-alpha induced enhancement of cryosurgery

    NASA Astrophysics Data System (ADS)

    Goel, Raghav; Paciotti, Guilio F.; Bischof, John C.

    2008-02-01

    Local recurrence of cancer after cryosurgery is related to the inability to monitor and predict destruction of cancer (temperatures > -40°C) within an iceball. We previously reported that a cytokine adjuvant TNF-α could be used to achieve complete cancer destruction at the periphery of an iceball (0 to -40°C). This study is a further development of that work in which cryosurgery was performed using cryoprobes operating at temperatures > -40°C. LNCaP Pro 5 tumor grown in a dorsal skin fold chamber (DSFC) was frozen at -6°C after TNF-α incubation for 4 or 24 hours. Tumors grown in the hind limb were frozen with a probe tip temperature of -40°C, 4 or 24 hours after systemic injection with TNF-α. Both cryosurgery alone or TNF-α treatment alone caused only a minimal damage to the tumor tissue at the conditions used in the study. The combination of TNF-α and cryosurgery produced a significant damage to the tumor tissue in both the DSFC and the hind limb model system. This augmentation in cryoinjury was found to be time-dependent with 4-hour time period between the two treatments being more effective than 24-hour. These results suggests the possibility of cryotreatment at temperatures > -40°C with the administration of TNF-α.

  15. CT-2576, an inhibitor of phospholipid signaling, suppresses constitutive and induced expression of human immunodeficiency virus.

    PubMed Central

    Leung, D W; Peterson, P K; Weeks, R; Gekker, G; Chao, C C; Kaplan, A H; Balantac, N; Tompkins, C; Underiner, G E; Bursten, S

    1995-01-01

    Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication. Images Fig. 1 Fig. 3 Fig. 5 PMID:7761405

  16. Tumor necrosis factor alpha inhibits olfactory regeneration in a transgenic model of chronic rhinosinusitisassociated olfactory loss

    PubMed Central

    Turner, Justin H.; Liang, Kai Li; May, Lindsey; Lane, Andrew P.

    2010-01-01

    Background Olfactory loss is a debilitating symptom of chronic rhinosinusitis (CRS). Although olfactory sensory neurons (OSNs) are normally regenerated constantly in the olfactory epithelium (OE), a transgenic model of CRS-associated olfactory loss (inducible olfactory inflammation [IOI] mouse) shows that inflammation causes widespread OSN loss without progenitor cell proliferation. In this study, we further examine whether the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) inhibits olfactory regeneration. Methods IOI mice underwent either unilateral bulbectomy or sham surgery and then were induced to express TNF-alpha in the OE for 1 week. After death, the mice were assessed histologically and with bromodeoxyuridine staining to determine the effect of TNF-alpha on olfactory regeneration. Results In the absence of TNF-alpha, bulbectomy was associated with death of OSNs, followed by robust proliferation of neural progenitors and regrowth of the OE. At 12 days postbulbectomy, OE thickness on the operated side had recovered to >80% of the unoperated side. In mice in which TNF-alpha expression was induced, significantly reduced proliferation was observed, associated with failure of normal reconstitution of OE thickness. Conclusion The mechanism of olfactory dysfunction in CRS remains incompletely understood. Previous studies with a transgenic mouse model suggested that inflammation inhibits progenitor cell proliferation and olfactory regeneration. Here, the role of the CRS-associated cytokine TNF-alpha was investigated using surgical ablation of the olfactory bulb to stimulate synchronous OSN turnover. We find that TNF-alpha expression prevents normal OE recovery, supporting the role of suppressed olfactory regeneration in the pathophysiology of CRS-associated olfactory loss. PMID:21243089

  17. Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor {alpha} via {alpha}5{beta}1 integrin in HL-60 cells.

    SciTech Connect

    Xie, B.; Laouar, A.; Huberman, E.; Center for Mechanistic Biology and Biotechnology

    1998-05-08

    Tumor necrosis factor-{alpha} (TNF-{alpha}) gene is one of the early response genes induced by phorbol 12-myristate 13-acetate (PMA) in human HL-60 myeloid leukemia cells. In the present study, we examined the role of the TNF-{alpha} autocrine loop in PMA-induced macrophage differentiation and gene expression of 92- and 72-kDa gelatinases (MMP-9 and MMP-2). In HL-60 cells, PMA inhibited cell proliferation and induced cell adhesion and spreading, expression of surface maturation marker OKM1 and phagocytic activity, as well as the expression of both gelatinases, which all characterize the macrophage phenotype. In contrast, TNF-{alpha} alone was only effective in inhibiting cell proliferation. Blocking the endogenous TNF-{alpha} activity with neutralizing anti-TNF-{alpha} antibodies abolished all these PMA-induced events with the exception of MMP-2 gene expression. Since fibronectin (FN)-mediated cell adhesion and spreading are prerequisite for both macrophage differentiation and MMP-9 gene expression in HL-60 cells, we hypothesized that TNF-{alpha} might be involved in modulating the expression of either the FN or its integrin receptor genes. Whereas PMA substantially enhanced the steady state mRNA and protein levels of both FN and {alpha}5{beta}1 integrins, TNF-{alpha} alone had little effect on the expression of these genes. However, anti-TNF-{alpha} antibodies blocked PMA-induced augmentation of both alpha 5 and beta 1 integrin gene expression without affecting the expression of the FN gene. Our results suggest that TNF-{alpha} may regulate macrophage differentiation and critical matrix-degrading activities of myeloid progenitor cells in an autocrine manner by augmenting surface levels of the {alpha}5{beta}1 integrin, thus promoting interactions with the extracellular matrix, a key event for maturation and migration of these cells during inflammation.

  18. Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1beta-mediated NF-kappaB signaling.

    PubMed

    Montag, Christina; Wagner, Jutta; Gruska, Iris; Hagemeier, Christian

    2006-12-01

    NF-kappaB plays an important role in the early cellular response to pathogens by activating genes involved in inflammation, immune response, and cell proliferation and survival. NF-kappaB is also utilized by many viral pathogens, like human cytomegalovirus (HCMV), to activate their own gene expression programs, reflecting intricate roles for NF-kappaB in both antiviral defense mechanisms and viral physiology. Here we show that the NF-kappaB signaling pathway stimulated by proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) becomes inhibited in HCMV-infected cells. The block to NF-kappaB signaling is first noticeable during the early phase of infection but is fully established only at later times. Biochemical and genetic evidence demonstrates that the viral inhibition of proinflammatory signaling by distinct cytokines occurs upstream of the convergence point of NF-kappaB-activating pathways, i.e., the IkappaB kinase complex, and that it is mediated via different mechanisms. Consistent with this, we further show that an HCMV variant that has lost the ability to downregulate TNF-alpha-induced NF-kappaB signaling also fails to downregulate surface expression of TNF receptor 1, thereby mechanistically linking the inhibition of TNF-alpha-induced NF-kappaB signaling by HCMV to TNF receptor targeting. Our data support a model whereby HCMV inhibits cytokine-induced NF-kappaB signaling at later times during infection, and we suggest that this contributes to the inhibition of the cell's antiviral defense program. PMID:17005669

  19. The development of novel inhibitors of tumor necrosis factor-alpha production based on substituted [5,5]-bicyclic pyrozolones

    SciTech Connect

    Laufersweiler, Matthew; Brugel, Todd; Clark, Michael; Golebiowski, Adam; Bookland, Roger; Laughlin, Steven; Sabat, Mark; Townes, Jennifer; VanRens, John; De, Biswanath; Hsieh, Lily; Heitmeyer, Sandra; Juergens, Karen; Brown, Kimberly; Mekel, Marlene; Walter, Richard; Janusz, Michael

    2010-11-16

    Novel substituted [5,5]-bicyclic pyrzazolones are presented as inhibitors of tumor necrosis factor-{alpha} (TNF-{alpha}) production. Many of these compounds show low nanomolar activity against lipopolysaccaride (LPS)-induced TNF-{alpha} production in THP-1 cells. This class of molecules was co-crystallized with mutated p38, and several analogs showed good oral bioavailability in the rat. Oral activity of these compounds in the rat iodoacetate model for osteoarthritis is discussed.

  20. Dual function of interleukin-1beta for the regulation of interleukin-6-induced suppressor of cytokine signaling 3 expression.

    PubMed

    Yang, Xiang-Ping; Albrecht, Ute; Zakowski, Vera; Sobota, Radoslaw M; Häussinger, Dieter; Heinrich, Peter C; Ludwig, Stephan; Bode, Johannes G; Schaper, Fred

    2004-10-22

    Interleukin-6 (IL-6) exerts pro- as well as anti-inflammatory activities in response to infection, injury, or other stimuli that affect the homeostasis of the organism. IL-6-induced expression of acute-phase protein genes in the liver is tightly regulated through both IL-6-induced feedback inhibitors and the activity of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. In previous studies mechanisms for how IL-1beta counteracts IL-6-dependent acute-phase protein gene induction have been proposed. Herein we analyzed IL-1beta-mediated regulation of IL-6-induced expression of the feedback inhibitor SOCS3. In hepatocytes IL-1beta alone does not induce SOCS3 expression, but it counteracts SOCS3-promoter activation in long term studies. Surprisingly, short term stimulation revealed IL-1beta to be a potent enhancer of SOCS3 expression in concert with IL-6. This activity of IL-1beta does not depend on IL-1beta-dependent STAT1-serine phosphorylation but on NF-kappaB-dependent gene induction. Such a regulatory network allows IL-1beta to counteract IL-6-dependent expression of acute-phase protein genes without inhibiting IL-6-induced SOCS3 expression and provides a reasonable mechanism for the IL-1beta-dependent inhibition of acute-phase gene induction, because reduced SOCS3 expression would lead to enhanced IL-6 activity. PMID:15308667

  1. Tumour necrosis factor-alpha concentration in severely asthmatic children.

    PubMed

    Massoud, M N; el-Nawawy, A A; el-Nazar, S Y; Abdel-Rahman, G M

    2000-01-01

    We assessed tumour necrosis factor-alpha (TNF-alpha) concentrations in 80 asthmatic children, 26 with severe asthma in early-phase reaction, 26 with severe asthma in late-phase reaction, 28 with severe asthma controlled in between attacks with oral prednisone and 20 matched control children. TNF-alpha was measured in patients' plasma and in a supernatant of lipopolysaccharide-stimulated (LPS) peripheral blood mononuclear (PBM) cells. TNF-alpha concentrations in plasma and the supernatant of LPS-stimulated cells were positively correlated and the concentration also correlated positively with the time lapse between the start of the asthma attack and the time of blood sampling. TNF-alpha concentration was significantly higher in the late-phase reaction group compared to the other groups, indicating a need to counteract its release and/or effects early in asthma patients. PMID:11556034

  2. Salmonellae activate tumor necrosis factor alpha production in a human promonocytic cell line via a released polypeptide.

    PubMed Central

    Ciacci-Woolwine, F; Kucera, L S; Richardson, S H; Iyer, N P; Mizel, S B

    1997-01-01

    Invasive strains of Salmonella spp. cause both systemic and localized infections in humans. The ability to resist infection and some aspects of the tissue pathology associated with the presence of Salmonella in the gastrointestinal tract have been shown to be mediated in part by the induction of tumor necrosis factor alpha (TNF-alpha), a proinflammatory cytokine produced by activated macrophages and lymphocytes. Recent reports indicate that TNF-alpha is involved in the induction of human immunodeficiency virus replication by Salmonella in the latently infected human promonocytic cell line U1. In the present study, we investigated the effects of Salmonella on TNF-alpha production in U1 cells and a related cell line, U38. Unlike Escherichia coli or Yersinia enterocolitica, salmonellae rapidly induce TNF-alpha expression in these cells through a released factor(s). Time course experiments show that the kinetics of TNF-alpha production by U38 cells stimulated with Salmonella conditioned medium closely resemble those observed in response to live Salmonella. The observation that TNF-alpha levels are elevated by 60 min after exposure to either bacteria or their conditioned medium suggests that the soluble inducer is continuously released or shed by the bacteria and that the signal acts rapidly to increase TNF-alpha production. Furthermore, the ability to produce the TNF-alpha inducer is shared by at least four Salmonella serotypes and does not correlate with the abilities to invade and to survive within phagocytes. Treatment of active conditioned medium with trypsin, but not low pH, high temperature, or urea, significantly inhibits its TNF-alpha-inducing effect on U38 cells, a finding which points to a polypeptide product of Salmonella as the mediator of TNF-alpha production. Gel filtration chromatography of Salmonella conditioned medium reveals two peaks of activity, consistent with molecular masses of approximately 150 and 110 kDa. PMID:9353043

  3. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  4. Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells.

    PubMed

    Torrente, Y; El Fahime, E; Caron, N J; Del Bo, R; Belicchi, M; Pisati, F; Tremblay, J P; Bresolin, N

    2003-01-01

    Migration of transplanted myogenic cells occurs during both embryogenesis and regeneration of skeletal muscles and is important for successful myoblast transplantation, but little is known about factors that promote chemotaxis of these cells. Tumor necrosis factor-alpha (TNF-alpha) is known to induce chemotactic effect on several cell types. In this study, we investigated its influence on the in vitro and in vivo motility of C2C12 and primary myoblasts. In the in vitro test performed in the blind-well Boyden chambers, we showed that TNF-alpha (50-400 U/ml) significantly enhanced the ability of myogenic cells to migrate. The dose-response curve for this factor was bell shaped, with maximum activity in the 200 U/ml range. In the in vivo test, intramuscular administration of TNF-alpha was performed by an Alzet pump connected to a perforated polyethylene microtube inserted in the tibialis anterior (TA) of CD1 mice. In these experiments, myoblasts were injected under the muscle epimysium. The recipient mice were immunosuppressed with FK506. Our results showed that, 5 days after myoblast transplantation, cells migrated further in the muscles infused with TNF-alpha than in the muscles not exposed to TNF-alpha. TNF-alpha not only has a chemotactic activity but may also modify cell migration via its action on matrix metalloproteinase (MMP) expression. The proteolytic activities of the MMPs secreted in the muscles were thus also assessed by gelatin zymography. The results showed an increased of MMP-2 and MMP-9 transcripts in the TNF-alpha-infused muscles injected with myogenic cells. Myoblast migration during transplantation may be enhanced by overlapping gradients of several effector molecules such as TNF-alpha, interferon-gamma (INF-gamma), and interleukins, released at the site of muscle injury. We propose that TNF-alpha may promote myoblast migration directly through chemotactic activity and indirectly by enhancing MMP activity at the site of muscle injury. PMID:12693669

  5. Chlamydia muridarum T-Cell Antigens Formulated with the Adjuvant DDA/TDB Induce Immunity against Infection That Correlates with a High Frequency of Gamma Interferon (IFN-?)/Tumor Necrosis Factor Alpha and IFN-?/Interleukin-17 Double-Positive CD4+ T Cells?

    PubMed Central

    Yu, Hong; Jiang, Xiaozhou; Shen, Caixia; Karunakaran, Karuna P.; Jiang, Janina; Rosin, Nicole L.; Brunham, Robert C.

    2010-01-01

    Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog, it may not be suitable for human vaccine development. Therefore, in this study, we evaluated protection against Chlamydia infection in the genital tract in C57BL/6 mice immunized with Chlamydia-specific membrane proteins PmpG-1, PmpE/F-2, and major outer membrane protein (MOMP; as a reference) or a combination of them formulated with one of three adjuvants, CpG oligodeoxynucleotide (CpG-ODN), AbISCO-100 (AbISCO), or DDA/TDB (dimethyldioctadecylammonium bromide/d-(+)-trehalose 6,6?-dibehenate). The results show that immunization with the CpG-ODN formulation failed to provide protection against Chlamydia infection; the AbISCO formulation conferred moderate protection, and the DDA/TDB formulation showed the highest degree of protective efficacy. The combination of PmpG-1, PmpE/F-2, and MOMP proteins formulated with DDA/TDB exhibited the greatest degree of protection among all vaccine groups studied. Moreover, this vaccine combination also engendered significant protection in BALB/c mice, which have a different major histocompatibility complex (MHC) background. We measured cell-mediated immune cytokine responses in mice immunized with PmpG-1 mixed with each of the three adjuvants. The results demonstrate that mice immunized with the DDA/TDB formulation induced the strongest gamma interferon (IFN-?) and interleukin-17 (IL-17) responses, characterized by the highest frequency of IFN-?/tumor necrosis factor alpha (TNF-?) and IFN-?/IL-17 double-positive CD4+ T cells. In conclusion, a Chlamydia vaccine based on the recombinant proteins PmpG-1, PmpE/F-2, and MOMP delivered in a DDA/TDB adjuvant conferred protection against infection that correlated with IFN-?/TNF-? and IFN-?/IL-17 double-positive CD4+ T cells. PMID:20231405

  6. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease.

    PubMed

    Rossi, Daniela; Brambilla, Liliana; Valori, Chiara F; Crugnola, Andrea; Giaccone, Giorgio; Capobianco, Raffaella; Mangieri, Michela; Kingston, Ann E; Bloc, Alain; Bezzi, Paola; Volterra, Andrea

    2005-12-23

    The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease. PMID:16253995

  7. Protective role of ascorbic acid isolated from Cissus quadrangularis on NSAID induced toxicity through immunomodulating response and growth factors expression.

    PubMed

    Jainu, Mallika; Mohan, Kunju Vijai

    2008-12-20

    The present study investigate the effect of ascorbic acid, the major bioactive component isolated from Cissus quadrangularis extract (CAA) on inflammatory cytokines and growth factors in non-steroidal anti-inflammatory drug (NSAID) induced gastric ulcer. Analysis of serum cytokine profile using enzymelinked immunosorbent assay (ELISA) showed a drastic increase in interleukin (IL)-1beta, IL-6, tumour necrosis factor-alpha (TNF)-alpha, interferon-gamma (IFN-gamma) and decrease in IL-10, Il-4 and prostaglandin E2 (PGE2) levels in NSAID (aspirin) treated rats. The reduction of growth factors such as transforming growth factor-alpha (TGF)-alpha and vascular endothelial cell growth factor (VEGF) by aspirin was determined by immunohistochemistry method. Administration of CAA produced significant protection against aspirin induced gastric toxicity by showing significant increase in PGE2, TGF-alpha, VEGF expression and accompanied by a significant inhibition of nitric oxide and regulating the levels of cytokines in rats. These findings suggest that CAA prevents gastric ulcer formation due to its immunomodulatory effect, antioxidant activity along with the ability to modulate PG synthesis and up-regulation of the growth factors. PMID:18773975

  8. Interferon-inducible protein-10 is highly expressed in rats with experimental nephrosis.

    PubMed Central

    Gmez-Chiarri, M.; Ortiz, A.; Gonzlez-Cuadrado, S.; Sern, D.; Emancipator, S. N.; Hamilton, T. A.; Barat, A.; Plaza, J. J.; Gonzlez, E.; Egido, J.

    1996-01-01

    Interferon-inducible protein (IP)-10 is a small glycoprotein member of a family of chemotactic cytokines structurally related to interleukin-8. We have recently described the induction of IP-10 mRNA in mouse mesangial cells stimulated with lipopolysacharide, interferon-gamma, and tumor necrosis factor-alpha. To further evaluate a possible role for this chemokine in renal injury, we have studied IP-10 in an experimental model of nephrosis induced in rats by adriamycin. High levels of glomerular IP-10 mRNA expression and glomerular and tubulointerstitial IP-10 protein were seen on day 21, coinciding with maximal proteinuria, glomerular tumor necrosis factor mRNA expression, and interstitial cellular infiltrates. Maintenance on a low protein diet not only delayed the appearance of proteinuria and interstitial cellular infiltrate but also decreased glomerular IP-10 mRNA expression. Isolated normal glomeruli and cultured glomerular epithelial and mesangial cells from normal rats expressed IP-10 mRNA upon stimulation with 100 U/ml interferon or 1 microgram/ml lipopolysaccharide for 3 hours. IP-10 mRNA expression was also inducible by lipopolysaccharide and cytokines in NRK 49F renal interstitial fibroblasts and, to a lesser extent, in NRK 52E tubular epithelial cells. Furthermore, IP-10 protein was inducible in murine mesangial cells. We conclude that IP-10 is highly inducible in vitro and in vivo in resident glomerular and tubulointerstitial cells. IP-10 may participate in the modulation of renal damage in experimental nephrosis. Images Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8546219

  9. Serotonin inhibition of tumor necrosis factor-alpha synthesis by human monocytes.

    PubMed

    Arzt, E; Costas, M; Finkielman, S; Nahmod, V E

    1991-01-01

    Serotonin inhibited in a concentration dependent way (10(-3) M to 10(-10) M) the LPS induced Tumor Necrosis Factor-alpha synthesis both, when added to the monocyte cultures from the beginning and when added together with the activating stimulus 8 hours before the end of the culture. The inhibitory effect was specifically blocked by the 5-HT1 and 5-HT2 serotonin antagonist methysergide and the 5-HT2 receptor antagonist ketanserin. This indicates that only the 5-HT2 receptor family (5-HT2 or 5-HT1C) may be involved in the inhibitory effect. Serotonin seems to play an important immunomodulatory role in macrophage functions. PMID:2046478

  10. Xylitol Inhibits Inflammatory Cytokine Expression Induced by Lipopolysaccharide from Porphyromonas gingivalis

    PubMed Central

    Han, Su-Ji; Jeong, So-Yeon; Nam, Yun-Ju; Yang, Kyu-Ho; Lim, Hoi-Soon; Chung, Jin

    2005-01-01

    Porphyromonas gingivalis is one of the suspected periodontopathic bacteria. The lipopolysaccharide (LPS) of P. gingivalis is a key factor in the development of periodontitis. Inflammatory cytokines play important roles in the gingival tissue destruction that is a characteristic of periodontitis. Macrophages are prominent at chronic inflammatory sites and are considered to contribute to the pathogenesis of periodontitis. Xylitol stands out and is widely believed to possess anticaries properties. However, to date, little is known about the effect of xylitol on periodontitis. The aim of the present study was to determine tumor necrosis factor alpha (TNF-?) and interleukin-1? (IL-1?) expression when RAW 264.7 cells were stimulated with P. gingivalis LPS (hereafter, LPS refers to P. gingivalis LPS unless stated otherwise) and the effect of xylitol on the LPS-induced TNF-? and IL-1? expression. The kinetics of TNF-? and IL-1? levels in culture supernatant after LPS treatment showed peak values at 1 h (TNF-?) and 2 to 4 h (IL-1?), respectively. NF-?B, a transcription factor, was also activated by LPS treatment. These cytokine expressions and NF-?B activation were suppressed by pretreatment with pyrrolidine dithiocarbamate (an inhibitor of NF-?B). Pretreatment with xylitol inhibited LPS-induced TNF-? and IL-1? gene expression and protein synthesis. LPS-induced mobilization of NF-?B was also inhibited by pretreatment with xylitol in a dose-dependent manner. Xylitol also showed inhibitory effect on the growth of P.?gingivalis. Taken together, these findings suggest that xylitol may have good clinical effect not only for caries but also for periodontitis by its inhibitory effect on the LPS-induced inflammatory cytokine expression. PMID:16275942

  11. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages.

    PubMed

    Tesh, V L; Ramegowda, B; Samuel, J E

    1994-11-01

    Infections with Shiga toxin-producing Shigella dysenteriae type 1 and Shiga-like toxin (SLT)-producing Escherichia coli cause outbreaks of bloody diarrhea in which patients are at risk for developing life-threatening complications involving the renal and central nervous systems. Histopathology studies and in vitro experiments suggested that the toxins damage toxin receptor-expressing endothelial cells (EC) lining glomerular and central nervous system capillaries. In the presence of inducible host factors (cytokines), EC sensitivity to SLT toxicity was increased approximately 1 million-fold. We hypothesized that to manifest the vascular lesions characteristic of infection with toxin-producing bacteria, two signals were needed: systemic toxins and elevated proinflammatory cytokines (tumor necrosis factor alpha [TNF-alpha], interleukin 1 [IL-1], and IL-6). Human EC do not secrete these cytokines when stimulated with SLTs in vitro, suggesting that additional cells may be involved in pathogenesis. Therefore, we carried out comparative analyses of the capacity of purified (endotoxin-free) SLTs and lipopolysaccharides (LPS) to induce cytokine mRNA and proteins from murine macrophages. The cells were essentially refractory to SLT cytotoxicity, expressing low to undetectable levels of toxin receptor. SLTs and LPS induced TNF activity and IL-6 expression from macrophages, although dose response and kinetics of cytokine induction differed. LPS was a more effective inducing agent than SLTs. SLT-I-induced TNF activity and IL-6 expression were delayed compared with induction mediated by LPS. IL-1 alpha production required approximately 24 h of exposure to SLTs or LPS. Macrophages from LPS-hyporesponsive C3H/HeJ mice produced low levels of TNF activity when treated with SLT-I, suggesting that LPS and SLTs may utilize separate signaling pathways for cytokine induction. PMID:7927791

  12. Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype.

    PubMed Central

    Cook, P W; Piepkorn, M; Clegg, C H; Plowman, G D; DeMay, J M; Brown, J R; Pittelkow, M R

    1997-01-01

    Amphiregulin (AR) is a heparin-binding, heparin-inhibited member of the epidermal growth factor (EGF) family and an autocrine growth factor for human keratinocytes. Previous studies have shown that AR expression is increased in psoriatic epidermis. To test the hypothesis that aberrant AR expression is central to the development of psoriatic lesions, we constructed a transgene (K14-ARGE) encoding a human keratin 14 promoter-driven AR gene. Our results indicate that transgene integration and subsequent expression of AR in basal keratinocytes correlated with a psoriasis-like skin phenotype. Afflicted mice demonstrated shortened life spans, prominent scaling and erythematous skin with alopecia, and occasional papillomatous epidermal growths. Histologic examination revealed extensive areas of marked hyperkeratosis with focal parakeratosis, acanthosis, dermal and epidermal lymphocytic and neutrophilic infiltration, and dilated blood vessels within the papillary dermis. Our results reveal that AR exerts activity in the skin that is distinct from that of transgenic transforming growth factor-alpha or other cytokines, and induces skin pathology with striking similarities to psoriasis. Our observations also link the keratinocyte EGF receptor-ligand system to psoriatic inflammation, and suggest that aberrant expression of AR in the epidermis may represent a critical step in the development or propagation of psoriatic lesions. PMID:9410906

  13. Survivin expression induced by doxorubicin in cholangiocarcinoma

    PubMed Central

    Chang, Qing; Liu, Zheng-Ren; Wang, Da-Yu; Kumar, Manoj; Chen, Yi-Bei; Qin, Ren-Yi

    2004-01-01

    AIM: To study the role of survivin expression induced by chemotherapy agent (doxorubicin) in the development and anti-chemotherapy of cholangiocarcinoma. METHODS: Expression of survivin was detected by SP immunohi stochemical te chnique in 33 cases of cholangiocarcinoma, 28 cases of adjacent noncancerous bile duct, and 5 cases of benign bile duct lesions. Low concentration of doxorubicin (0.05 mg/l) was added in cultured cholangiocarcinoma cell line (QBC939). The expression of survivin was detected by RT-PCR and Western blot at 24 h and 48 h after adding doxorubicin. RESULTS: Survivin was expressed in 24 of 33 cholangiocar-cinoma cases (72.7%). In contrast, no expression of survivin in adjacent noncancerous and benign bile duct lesions was observed (P < 0.01). No correlation was found between survivin expression and clinical features. Doxorubicin could markedly (P < 0.001) up-regulate survivin mRNA and protein expression of QBC939 cells. CONCLUSION: Overexpression of survivin in cholangiocar-cinomas may play an important role in the development of cholangiocarcinoma, its relationship with prognosis of cholangiocarcinoma deserves further investigation. Higher expression of survivin is induced by doxorubicin in QBC939. Survivin expression may resist apoptosis induced by chemotherapy agents. PMID:14760769

  14. Evaluation of Tumor Necrosis Factor Alpha Polymorphism Frequencies in Endometriosis

    PubMed Central

    Abutorabi, Roshanak; Baradaran, Azar; Sadat Mostafavi, Fatemeh; Zarrin, Yasaman; Mardanian, Farahnaz

    2015-01-01

    Background The pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-?), is a pathogenic element for a number of disorders. Previous studies have reported that the -1031 T/C and -238 G/A polymorphisms in the promoter region of the TNF-? gene are important factors in reproductive-related disorders. One of the most common gynecological diseases of women during the reproductive years is endometriosis. This study aims to assess an association between the -1031 T/C, -238 G/A and -308 G/A polymorphisms of the TNF-? gene promoter region to endometriosis. Materials and Methods In this case-control study, we enrolled 65 endometriosis patients and 65 matched healthy control women by simple sampling. Polymerase chain reaction (PCR) analysis was used to analyze -1031 T/C, -238 G/A and -308 G/A polymorphisms in the TNF-? gene promoter region. Statistical analysis was performed using the chi-square test. P values less than 0.05 were considered statistically significant. Results We found a strong association between the -1031 T/C polymorphism in the promoter region of the TNF-? gene with endometriosis (P=0.001). There were no significant associations between the -238 G/A (P=0.243) and -308 G/A (P=1) polymorphisms with endometriosis and again endometriosis stages have no association with these polymorphisms. Conclusion The -1031 T/C polymorphism and CC genotype can be used as a relevant marker to identify women at risk of developing endometriosis. PMID:26644856

  15. Localization of transforming growth factor-alpha in human appendageal tumors.

    PubMed Central

    Finzi, E.; Ho, T.; Anhalt, G.; Hawkins, W.; Harkins, R.; Horn, T.

    1992-01-01

    Transforming growth factor-alpha (TGF alpha) is a potent mitogen for epithelial cells that has been localized to normal human appendageal epithelia. To further understand the role of TGF alpha in human appendages, we examined TGF alpha expression immunohistochemically in 17 types of human appendageal tumors differentiating toward hair follicles, eccrine, apocrine, and sebaceous glands. In order of decreasing degrees of differentiation, tumors could be divided into hyperplasias, adenomas, benign epitheliomas, and primordial epitheliomas. Using an antibody that recognizes primarily the 6-kd and 13-kd forms of TGF alpha, TGF alpha immunostaining in 16 of 17 tumor types analyzed was found to follow a similar pattern, with expression in hyperplasias greater than adenomas greater than benign epitheliomas greater than primordial epitheliomas. Within a given tumor, TGF alpha expression also correlated well with the known differentiation state of the tumor cell types. The results suggest that TGF alpha expression is directly correlated with the differentiation state of hair follicle, eccrine, apocrine, and sebaceous tumors in human skin, and raises the possibility that TGF alpha may play a role in the differentiation of appendageal epithelia. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1519669

  16. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  17. Gastric Metaplasia Induced by Helicobacter pylori Is Associated with Enhanced SOX9 Expression via Interleukin-1 Signaling.

    PubMed

    Serizawa, Takako; Hirata, Yoshihiro; Hayakawa, Yoku; Suzuki, Nobumi; Sakitani, Kosuke; Hikiba, Yohko; Ihara, Sozaburo; Kinoshita, Hiroto; Nakagawa, Hayato; Tateishi, Keisuke; Koike, Kazuhiko

    2015-01-01

    Histopathological changes of the gastric mucosa after Helicobacter pylori infection, such as atrophy, metaplasia, and dysplasia, are considered to be precursors of gastric cancer, yet the mechanisms of histological progression are unknown. The aim of this study was to analyze the histopathological features of the gastric mucosa in mice infected with H. pylori strain PMSS1 in relation to gastric stem cell marker expression. C57BL/6J mice infected with PMSS1 were examined for histopathological changes, levels of proinflammatory cytokines, and expression of stem cell markers. Histopathological gastritis scores, such as atrophy and metaplasia, and levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), were increased after PMSS1 infection. Expression levels of the cell proliferation and stem cell markers CD44 and SOX9 were also significantly increased in PMSS1-infected mice. Importantly, almost all metaplastic cells induced by PMSS1 infection expressed SOX9. When IL-1 receptor (IL-1R) knockout mice were infected with PMSS1, metaplastic changes and expression levels of stem cell markers were significantly decreased compared with those in wild-type (WT) mice. In conclusion, H. pylori infection induced the expression of cytokines and stem cell markers and histopathological metaplasia in the mouse gastric mucosa. SOX9 expression, in particular, was strongly associated with metaplastic changes, and these changes were dependent on IL-1 signaling. The results suggested the importance of SOX9 in gastric carcinogenesis. PMID:26644382

  18. Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme.

    PubMed

    Nishi, Eiichiro; Hiraoka, Yoshinori; Yoshida, Kazuhiro; Okawa, Katsuya; Kita, Toru

    2006-10-13

    Like other members of the epidermal growth factor family, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a transmembrane protein that can be shed enzymatically to release a soluble growth factor. Ectodomain shedding is essential to the biological functions of HB-EGF and is strictly regulated. However, the mechanism that induces the shedding remains unclear. We have recently identified nardilysin (N-arginine dibasic convertase (NRDc)), a metalloendopeptidase of the M16 family, as a protein that specifically binds HB-EGF (Nishi, E., Prat, A., Hospital, V., Elenius, K., and Klagsbrun, M. (2001) EMBO J. 20, 3342-3350). Here, we show that NRDc enhances ectodomain shedding of HB-EGF. When expressed in cells, NRDc enhanced the shedding in cooperation with tumor necrosis factor-alpha-converting enzyme (TACE; ADAM17). NRDc formed a complex with TACE, a process promoted by phorbol esters, general activators of ectodomain shedding. NRDc enhanced TACE-induced HB-EGF cleavage in a peptide cleavage assay, indicating that the interaction with NRDc potentiates the catalytic activity of TACE. The metalloendopeptidase activity of NRDc was not required for the enhancement of HB-EGF shedding. Notably, a reduction in the expression of NRDc caused by RNA interference was accompanied by a decrease in ectodomain shedding of HB-EGF. These results indicate the essential role of NRDc in HB-EGF ectodomain shedding and reveal how the shedding is regulated by the modulation of sheddase activity. PMID:16923819

  19. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption.

    PubMed Central

    Teraki, Y.; Moriya, N.; Shiohara, T.

    1994-01-01

    The mechanism(s) and the factor(s) that contribute to preferential localization of fixed drug eruption (FDE) lesions to certain skin sites remain speculative. Previous studies suggested that populations of T cells residing in the lesional epidermis may be involved in selective destruction of the epidermis in FDE. In this study, to define the earliest cellular and molecular events with potential relevance to activation of the epidermal T cells, expression of adhesion molecules on keratinocytes (KC) and vascular endothelium was examined sequentially in the lesional skin of FDE patients after challenge with the causative drug. Rapid and intense intercellular adhesion molecule-1 (ICAM-1) expression was induced on the vascular endothelium and KC as early as 1.5 hours after challenge, at which time E-selectin and vascular cell adhesion molecule-1 (VCAM-1) were not up-regulated. In vitro studies using skin organ culture showed that the lesional KC and endothelium responded more rapidly and intensely to express ICAM-1 to tumor necrosis factor-alpha or interferon-gamma compared with those in the nonlesional skin. Surprisingly, such selective induction of KC ICAM-1 restricted to the lesional skin was also observed after exposure to the causative drug alone in skin organ culture. Pretreatment of the lesional skin with anti-tumor necrosis factor completely abrogated in vitro induction of KC ICAM-1 expression by the drug. Drug-induced, TNF-alpha-dependent KC ICAM-1 expression in the lesional skin suggests that induction of ICAM-1 expression by the lesional KC after ingestion of the drug would probably provide a localized initiating stimulus for activation of the disease-associated epidermal T cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7915886

  20. Expression of Osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro.

    PubMed

    Zhao, Yanhong; Wang, Chunling; Li, Shu; Song, Hui; Wei, Fulan; Pan, Keqing; Zhu, Kun; Yang, Pishan; Tu, Qisheng; Chen, Jake

    2008-06-01

    Osterix (Osx) is an osteoblast-specific transcription factor required for the differentiation of pre-osteoblasts into functional osteoblasts. This study sought to examine the changes of Osx expression in periodontal ligament cells (PDLC) subjected to mechanical force, and to investigate whether Osx is involved in the mechanical stress-induced differentiation of PDLC. Human PDLC were exposed to centrifugal force for 1-12 h. Real-time polymerase chain reaction (PCR), western blot, and immunofluorescence assays were used to examine the mRNA and protein expression of Osx and its subcellular localization. Furthermore, PDLC were transfected with the expression vector pcDNA3.1 flag-Osx and subjected to mechanical force for 6 h. The changes in alkaline phosphatase (ALP) activity and in the expression of core-binding factor alpha1 (Cbfa1), ALP, osteopontin, bone sialoprotein, osteocalcin, and collagen I were measured. After the application of mechanical force, Osx was upregulated in a time-dependent manner at both mRNA and protein levels, and Osx protein was translocated from the cytosol into the cell nuclei. Overexpression of Osx did not affect the expression of Cbfa1, but it significantly enhanced the ALP activity and the mRNA expression of all the aforementioned osteogenic marker genes, all of which increased further under mechanical stress. These results suggest that Osx might play an important role in the mechanical stress-induced osteogenic differentiation of PDLC and therefore be involved in alveolar bone remodeling during orthodontic therapy. PMID:18471237

  1. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans.

    PubMed

    Greiwe, J S; Cheng, B; Rubin, D C; Yarasheski, K E; Semenkovich, C F

    2001-02-01

    Skeletal muscle protein and function decline with advancing age but the underlying pathophysiology is poorly understood. To test the hypothesis that the catabolic cytokine tumor necrosis factor alpha (TNF-alpha) contributes to this process, we studied the effects of aging and resistance exercise on TNF-alpha expression in human muscle. Using in situ hybridization, TNF-alpha message was localized to myocytes in sections of skeletal muscle from elderly humans. Both TNF-alpha mRNA and protein levels were elevated in skeletal muscle from frail elderly (81+/-1 year) as compared to healthy young (23+/-1 year) men and women. To determine whether resistance exercise affects TNF-alpha expression, frail elderly men and women were randomly assigned to a training group or to a nonexercising control group. Muscle biopsies were performed before and after 3 months. Muscle TNF-alpha mRNA and protein levels decreased in the exercise group but did not change in the control group. Muscle protein synthesis rate in the exercise group was inversely related to levels of TNF-alpha protein. These data suggest that TNF-alpha contributes to age-associated muscle wasting and that resistance exercise may attenuate this process by suppressing skeletal muscle TNF-alpha expression. PMID:11156963

  2. The protective effects of ambroxol on radiation lung injury and influence on production of transforming growth factor beta1 and tumor necrosis factor alpha.

    PubMed

    Xia, De-Hong; Xi, Lei; Xv, Chen; Mao, Wei-Dong; Shen, Wei-Sheng; Shu, Zhong-Qin; Yang, Hong-Zhi; Dai, Min

    2010-09-01

    The aim of this article was to investigate the effect of ambroxol on radiation lung injury and the expression of transforming growth factor beta(1) (TGF-beta(1)), as well as tumor necrosis factor alpha (TNF-alpha) in plasma. Totally, 120 patients with locally advanced lung cancer in radiotherapy were randomized into treatment and control groups. Patients in the treatment group took ambroxol orally at a dosage of 90 mg, three times per day for 3 months from the beginning of radiotherapy. The expression of TGF-beta(1) and TNF-alpha in plasma was analyzed. The clinical symptoms and lung diffusing capacity were monitored using high resolving power computed tomography. The level of TGF-beta(1) in the control group was increased (11.8 +/- 5.5 ng/ml), whereas in ambroxol-treated patients, the increase was not significant (5.6 +/- 2.6 ng/ml, P < 0.001). Radiotherapy-induced elevation of TNF-alpha levels, seen in control patients, was also abolished after treatment with ambroxol (5.1 +/- 1.0 vs. 2.4 +/- 0.8 ng/ml, P < 0.001). In the treatment group, carbon monoxide diffusion capacity was not significantly decreased at 6, 12, and 18 months post-radiotherapy, compared with the control group (P < 0.05). Ambroxol decreased the expression of TGF-beta(1) and TNF-alpha, and minimized the diminishment of lung diffusion capacity after radiotherapy. PMID:19636975

  3. Effect of methyl derivatives of dopamine on tumor necrosis factor alpha and lipid peroxidation.

    PubMed

    Perianayagam, Mary C; Requintina, Pura J; Jaber, Bertrand L; Oxenkrug, Gregory F

    2007-12-01

    We recently demonstrated that melatonin, N-acetylserotonin (NAS), and N-acetyldopamine (NAD) attenuate the synthesis of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-alpha) and the generation of oxidant radicals. In this study, we examined whether acetyl and methyl derivatives of dopamine modulate LPS-stimulated TNF-alpha synthesis and LPS- and iron-induced lipid peroxidation. Differentiated THP-1-derived human monocytes were coincubated with Escherichia coli and rising concentrations of NAS, NAD, N-methyldopamine (NMD), or 4-O-methyldopamine (4-O-MD). After 24 h, TNF-alpha was measured in cell supernatants. In addition, lipid peroxidation was induced by adding FeCl(2) solution to mouse brain tissue homogenates in the presence of rising concentrations of NAS, NAD, NMD, or 4-O-MD. Incubating THP-1-derived monocytes with rising concentrations of NAS, NAD, NMD, or 4-O-MD markedly decreased LPS-stimulated TNF-alpha production, which was dose dependent and on the order of 96%-98%. Rising concentrations of NMD markedly inhibited lipid peroxidation by 59%-98%. Our results indicated that the inhibitory effect of NAS, NAD, NMD, or 4-O-MD on LPS-induced TNF-alpha production and FeCl(2)-stimulated lipid peroxidation is robust and dose dependent. PMID:18077578

  4. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins.

    PubMed Central

    Kandil, H M; Berschneider, H M; Argenzio, R A

    1994-01-01

    Prostaglandins stimulate electrogenic anion secretion and inhibit sodium chloride absorption in cryptosporidium induced pig diarrhoea. Because tumour necrosis factor alpha (TNF alpha) is an early mediator of inflammation and stimulates prostaglandin secretion, we investigated its effect on intestinal ion transport. Cryptosporidium infected pig ileum showed higher macrophage infiltration and tissue TNF alpha-like activity than uninfected tissues (p < 0.05, n = 4 and p < 0.05, n = 12, respectively). TNF alpha treatment of control porcine ileal mucosa increased the short circuit current (Isc), a measurement of net anion secretion in this model (p < 0.001, n = 23). This effect was blocked by 10(-6) M indomethacin and Cl- replacement. Neither acute treatment nor preincubation of colonic intestinal epithelial cell monolayers (T84) with TNF alpha stimulated the Isc. However, co-mounting of TNF alpha preincubated pig jejunal fibroblasts (P2JF) monolayers back to back with untreated T84 monolayers dose-dependently induced an indomethacin sensitive increase in Isc compared with values in untreated co-mounted monolayers (p < 0.001, n = 11). These data suggest that in infectious diarrhoea, TNF alpha may induce Cl- secretion through a paracrine mechanism involving prostaglandin release from subepithelial cells, for example fibroblasts. PMID:8063221

  5. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation

    PubMed Central

    1993-01-01

    We have examined the mechanism of thalidomide inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF- alpha) production and found that the drug enhances the degradation of TNF-alpha mRNA. Thus, the half-life of the molecule was reduced from approximately 30 to approximately 17 min in the presence of 50 micrograms/ml of thalidomide. Inhibition of TNF-alpha production was selective, as other LPS-induced monocyte cytokines were unaffected. Pentoxifylline and dexamethasone, two other inhibitors of TNF-alpha production, are known to exert their effects by means of different mechanisms, suggesting that the three agents inhibit TNF-alpha synthesis at distinct points of the cytokine biosynthetic pathway. These observations provide an explanation for the synergistic effects of these drugs. The selective inhibition of TNF-alpha production makes thalidomide an ideal candidate for the treatment of inflammatory conditions where TNF-alpha-induced toxicities are observed and where immunity must remain intact. PMID:8496685

  6. Loss of ADAM17-Mediated Tumor Necrosis Factor Alpha Signaling in Intestinal Cells Attenuates Mucosal Atrophy in a Mouse Model of Parenteral Nutrition.

    PubMed

    Feng, Yongjia; Tsai, Yu-Hwai; Xiao, Weidong; Ralls, Matthew W; Stoeck, Alex; Wilson, Carole L; Raines, Elaine W; Teitelbaum, Daniel H; Dempsey, Peter J

    2015-11-01

    Total parenteral nutrition (TPN) is commonly used clinically to sustain patients; however, TPN is associated with profound mucosal atrophy, which may adversely affect clinical outcomes. Using a mouse TPN model, removing enteral nutrition leads to decreased crypt proliferation, increased intestinal epithelial cell (IEC) apoptosis and increased mucosal tumor necrosis factor alpha (TNF-?) expression that ultimately produces mucosal atrophy. Upregulation of TNF-? signaling plays a central role in mediating TPN-induced mucosal atrophy without intact epidermal growth factor receptor (EGFR) signaling. Currently, the mechanism and the tissue-specific contributions of TNF-? signaling to TPN-induced mucosal atrophy remain unclear. ADAM17 is an ectodomain sheddase that can modulate the signaling activity of several cytokine/growth factor receptor families, including the TNF-?/TNF receptor and ErbB ligand/EGFR pathways. Using TPN-treated IEC-specific ADAM17-deficient mice, the present study demonstrates that a loss of soluble TNF-? signaling from IECs attenuates TPN-induced mucosal atrophy. Importantly, this response remains dependent on the maintenance of functional EGFR signaling in IECs. TNF-? blockade in wild-type mice receiving TPN confirmed that soluble TNF-? signaling is responsible for downregulation of EGFR signaling in IECs. These results demonstrate that ADAM17-mediated TNF-? signaling from IECs has a significant role in the development of the proinflammatory state and mucosal atrophy observed in TPN-treated mice. PMID:26283731

  7. L-arginine enhances nitrative stress and exacerbates tumor necrosis factor-alpha toxicity to human endothelial cells in culture: prevention by propofol.

    PubMed

    Xia, Zhengyuan; Luo, Tao; Liu, Hui-min; Wang, Fang; Xia, Zhong-yuan; Irwin, Michael G; Vanhoutte, Paul M

    2010-04-01

    Supplementation of L-arginine, a nitric oxide precursor, during the late phase of myocardial ischemia/reperfusion increases myocyte apoptosis and exacerbates myocardial injury, but the underlying mechanism is unclear. During myocardial ischemia/reperfusion, apoptosis of endothelial cells precedes that of cardiomyocyte. Tumor necrosis factor-alpha (TNF) production is increased during myocardial ischemia/reperfusion, which may exacerbate myocardial injury by inducing endothelial cell apoptosis. We postulated that L-arginine may exacerbate TNF-induced endothelial cell apoptosis by enhancing peroxynitrite-mediated nitrative stress. Cultured human umbilical vein endothelial cells were either not treated (control) or treated with TNF alone or with TNF in the presence of L-arginine, the nonselective nitric oxide synthase inhibitor N (omega)-nitro-L-arginine (L-NNA), propofol (an anesthetic that scavenges peroxynitrite), or L-arginine plus propofol, respectively, for 24 hours. TNF increased intracellular superoxide and hydrogen peroxide production accompanied by increases of inducible nitric oxide synthase (iNOS) protein expression and nitric oxide production. This was accompanied by increased protein expression of nitrotyrosine, a fingerprint of peroxynitrite and an index of nitrative stress, and increased endothelial cell apoptosis. L-arginine did not enhance TNF-induced increases of superoxide and peroxynitrite production but further increased TNF-induced increase of nitrotyrosine production and exacerbated TNF-mediated cell apoptosis. L-NNA and propofol, respectively, reduced TNF-induced nitrative stress and attenuated TNF cellular toxicity. The L-arginine-mediated enhancement of nitrative stress and TNF toxicity was attenuated by propofol. Thus, under pathological conditions associated with increased TNF production, L-arginine supplementation may further exacerbate TNF cellular toxicity by enhancing nitrative stress. PMID:20125033

  8. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation.

    PubMed Central

    Ames, R S; Holskin, B; Mitcho, M; Shalloway, D; Chen, M J

    1990-01-01

    We have previously shown that expression of the adenovirus E1A 12S or 13S products in NIH 3T3 fibroblasts induces susceptibility to the cytotoxic actions of tumor necrosis factor alpha (TNF alpha). A large number of studies have mapped the multiple biological functions of the 12S and 13S products to three highly conserved regions (CR) within the E1A sequence. Here we used plasmids coding for E1A deletion and point mutants in these regions to generate target cell lines for TNF alpha cytotoxicity assays to determine which regions and functions are necessary for the induction of TNF alpha sensitivity. Expression of CR1 was required for the induction of TNF alpha sensitivity. This finding did not reflect a requirement for transforming or transcriptional repression activity, since some mutants that were defective in both of these properties were able to induce TNF alpha sensitivity. CR2 transformation-defective point mutants, but not a CR2/3 region deletion mutant, were also able to induce sensitivity. In addition, NIH 3T3 cells expressing the retroviral transcription activators tat from human immunodeficiency virus type 1 and tax from human T-lymphotropic virus type I were not sensitive to TNF alpha. However, the possibility that E1A-mediated transcriptional activation can augment the induction of TNF alpha sensitivity is not excluded. Comparison of data from previous biological studies with the TNF alpha cytotoxicity assays presented here suggested that the mechanism by which E1A induces sensitivity to TNF alpha in NIH 3T3 cells is independent of many of the known E1A biological functions, including transformation in cooperation with ras, immortalization, induction of DNA synthesis in quiescent cells, and transcriptional repression. A novel E1A-mediated effect may be involved, although our data do not exclude the possibility that sensitization to TNF alpha is mediated through E1A binding to cellular proteins. Images PMID:2143540

  9. Macrophage tropism of feline leukemia virus (FeLV) of subgroup-C and increased production of tumor necrosis factor-alpha by FeLV-infected macrophages.

    PubMed

    Khan, K N; Kociba, G J; Wellman, M L

    1993-05-15

    Erythroid aplasia is induced in cats by feline leukemia virus (FeLV) of subgroup C but not by FeLV of subgroup A. In an investigation of the role of macrophages in FeLV-C-induced diseases, the concentrations of FeLV and tumor necrosis factor-alpha (TNF-alpha) were compared between feline peritoneal macrophages incubated with FeLV of subgroup A or C. FeLV of both subgroups infected macrophages, but expression of FeLV-C was 21-fold higher than FeLV-A in peritoneal macrophages (P = .004). The supernatants of FeLV-C-inoculated macrophage cultures contained significantly higher levels of TNF-alpha (70 +/- 14 U/mL) at 72 hours postincubation compared with FeLV-A-inoculated (38 +/- 8 U/mL) and uninoculated (31 +/- 8 U/mL) cultures. Moreover, a positive correlation was shown between cell-associated FeLV surface glycoprotein gp70 and TNF-alpha expression in FeLV-C-infected macrophages by immunofluorescence (r = .6; P = .001), measured with a computer-assisted, laser-based digital imaging system. The addition of TNF-alpha to a uniform population of FeLV-infected cells (feline embryonic fibroblasts) caused an enhancement of viral expression (P < .05). These results indicate that FeLV-C has tropism for macrophages, FeLV expression is positively correlated with TNF-alpha expression in macrophages, and TNF-alpha enhances FeLV replication in fibroblasts. We suggest that FeLV-C infection of macrophages and secretion of TNF-alpha may be important in hematopoietic suppression in FeLV-C-infected cats. PMID:8387834

  10. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  11. Hypoxia induces apelin expression in human adipocytes.

    PubMed

    Geiger, K; Muendlein, A; Stark, N; Saely, C H; Wabitsch, M; Fraunberger, P; Drexel, H

    2011-06-01

    Adipokines play a central role in the development of diseases associated with insulin resistance and obesity. Hypoxia in adipose tissue leads to a dysregulation of the expression of adipokines. The effect of hypoxia on the more recently identified adipokine apelin in human adipocytes is unclear. Therefore, we aimed at investigating the role of hypoxia on the expression of the adipokine apelin. Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured under hypoxic conditions for varying time periods. A modular incubator chamber was used to create a hypoxic tissue culture environment (defined as 1% O(2), 94% N, and 5% CO(2)). In addition, hypoxic conditions were mimicked by using CoCl(2). The effect of hypoxia on the expression of the investigated adipokines was measured by real-time PCR and the secretion of apelin was quantified by ELISA. Induction of hypoxia significantly induced mRNA expression of leptin and apelin in differentiated SGBS adipocytes compared with the normoxic control condition. Expression of adiponectin was significantly decreased by hypoxia. In addition, the amount of secreted apelin protein in response to hypoxia was elevated compared to untreated cells. Furthermore, we could demonstrate that the observed hypoxia-induced induction of apelin mRNA expression is in the first phase dependent on HIF-1α. In our study, we could demonstrate for the first time that apelin expression and secretion by human adipocytes are strongly induced under hypoxic conditions and that the early response on hypoxia with apelin induction is dependent on HIF-1α. PMID:21448846

  12. Surface and intracellular Fas expression associated with cytokine-induced apoptosis in rodent islet and insulinoma cells.

    PubMed

    Augstein, P; Wachlin, G; Berg, S; Bahr, J; Salzsieder, C; Hehmke, B; Heinke, P; Salzsieder, E

    2003-04-01

    During the process of insulitis in the pathogenesis of type I (insulin-dependent) diabetes mellitus, proinflammatory cytokines induce expression of the death receptor Fas on the surface of pancreatic beta-cells and thereby contribute to the enhanced susceptibility of beta-cells for apoptosis. The aim of this study was to compare cell-surface and intracellular Fas expression associated with cytokine-induced apoptosis in commonly used beta-cell models such as isolated islets and insulinoma lines derived from mouse and rat. The cell line NIT-1 responded to the interleukin (IL)-1beta+interferon (IFN)-gamma stimulus with translocation of Fas to the cell surface. Likewise, islet cells from non-obese diabetic (NOD) mice and BB/OK rats expressed increasing amounts of the Fas receptor on their surfaces after exposure to IL-1beta in combination with IFN-gamma and tumour necrosis factor-alpha. Moreover, islets obtained from BB/OK rats at an age near the onset of diabetes had an increased surface expression of Fas compared with young rats. In contrast, western blot analysis of cell lysates from cytokine-exposed islets and insulinoma cells revealed total Fas expression levels comparable to those of untreated controls. In conclusion, islets from BB/OK rats and NOD mice, in addition to NIT-1 insulinoma cells, responded to cytokine exposure with surface expression of the Fas receptor, whereas in cell lysates the levels of expression of Fas were found to be independent of cytokine exposure. Taken together, the findings indicate that cytokine-treated beta-cells might possess two pools of Fas protein, one of which is inducible by cytokines and accounts for surface Fas expression, whereas the other is constitutively expressed in cytoplasmic compartments. The underlying mechanisms, including possible interactions between these two sources of cellular Fas expression, need to be investigated in future studies. PMID:12683940

  13. Priming of neutrophils with tumor necrosis factor-alpha measured as Fc gamma receptor-mediated respiratory burst correlates with increased complement receptor 3 membrane density.

    PubMed

    Asman, B; Gustafsson, A; Bergstrm, K

    1996-01-01

    Hyperactive or primed neutrophils which damage tissue via cytokines and membrane receptors may be implicated in the pathogenesis of inflammatory conditions. The purpose of this study was to elucidate the priming mechanism in neutrophils by assessing changes in membrane receptors and the Fc gamma R-mediated respiratory burst, measured as chemiluminescence. Purified neutrophilic granulocytes from healthy volunteers were preincubated with recombinant human tumor necrosis factor-alpha. This had a priming effect, increasing both the Fc gamma receptor-mediated luminol-enhanced chemiluminescence and the membrane expression of the C3bi receptor (CRB) (r = 0.843). The membrane densities of Fc gamma RII, Fc gamma RIII, and CR1 were unaffected by tumor necrosis factor-alpha. The mechanism of increased chemiluminescence may involve redistribution of the Fc gamma receptors and cooperation with upregulated CR3, facilitating crosslinking of the receptors. The experiments were performed in a buffer without divalent cations, since these increased the background activity and abolished the priming effect of tumor necrosis factor-alpha. In conclusion, a simultaneous increase in the Fc gamma R-mediated respiratory burst and CR3 density after priming with tumor necrosis factor-alpha indicates a cooperation between Fc gamma R and CR3. PMID:9007613

  14. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha.

    PubMed Central

    White, E; Sabbatini, P; Debbas, M; Wold, W S; Kusher, D I; Gooding, L R

    1992-01-01

    The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance. Images PMID:1317006

  15. Role of BNIP3 in TNF-induced cell death--TNF upregulates BNIP3 expression.

    PubMed

    Ghavami, Saeid; Eshraghi, Mehdi; Kadkhoda, Kamran; Mutawe, Mark M; Maddika, Subbareddy; Bay, Graham H; Wesselborg, Sebastian; Halayko, Andrew J; Klonisch, Thomas; Los, Marek

    2009-03-01

    Tumor necrosis factor alpha (TNF) is a cytokine that induces caspase-dependent (apoptotic) and caspase-independent (necrosis-like) cell death in different cells. We used the murine fibrosarcoma cell line model L929 and a stable L929 transfectant over-expressing a mutated dominant-negative form of BNIP3 lacking the C-terminal transmembrane (TM) domain (L929-DeltaTM-BNIP3) to test if TNF-induced cell death involved pro-apoptotic Bcl2 protein BNIP3. Treatment of cells with TNF in the absence of actinomycin D caused a rapid fall in the mitochondrial membrane potential (DeltaPsim) and a prompt increase in reactive oxygen species (ROS) production, which was significantly less pronounced in L929-DeltaTM-BNIP3. TNF did not cause the mitochondrial release of apoptosis inducing factor (AIF) and Endonuclease G (Endo-G) but provoked the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 at similar levels in both L929 and in L929-DeltaTM-BNIP3 cells. We observed TNF-associated increase in the expression of BNIP3 in L929 that was mediated by nitric oxide and significantly inhibited by nitric oxide synthase inhibitor N5-(methylamidino)-L-ornithine acetate. In L929, lysosomal swelling and activation were markedly increased as compared to L929-DeltaTM-BNIP3 and could be inhibited by treatment with inhibitors to vacuolar H+-ATPase and cathepsins -B/-L. Together, these data indicate that TNF-induced cell death involves BNIP3, ROS production, and activation of the lysosomal death pathway. PMID:19321129

  16. Association of Transforming Growth Factor Alpha Polymorphisms with Nonsyndromic Cleft Lip and Palate in Iranian Population

    PubMed Central

    Ebadifar, Asghar; Hamedi, Roya; Khorram Khorshid, Hamid Reza; Saliminejad, Kioomars; Kamali, Koorosh; Aghakhani Moghadam, Fatemeh; Esmaeili Anvar, Nazanin; Ameli, Nazilla

    2015-01-01

    Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital anomalies and the etiology of orofacial clefts is multifactorial. Transforming growth factor alpha (TGFA) is expressed at the medial edge epithelium of fusing palatal shelves during craniofacial development. In this study, the association of two important TGFA gene polymorphisms, BamHI (rs11466297) and RsaI (rs3732248), with CL/P was evaluated in an Iranian population. Methods: The frequencies of BamHI and RsaI variations were determined in 105 unrelated Iranian subjects with nonsyndromic CL/P and 218 control subjects using PCR and RFLP methods, and the results were compared with healthy controls. A p-value of <0.05 was considered statistically significant. Results: The BamHI AC genotype was significantly higher (p=0.016) in the patients (12.4%) than the control group (5.0%). The BamHI C allele was significantly higher (p=0.001; OR=3.4, 95% CI: 1.67.4) in the cases (8.0%) compared with the control group (2.5%). Conclusion: Our study showed that there was an association between the TGFA BamHI variation and nonsyndromic CL/P in Iranian population. PMID:26605011

  17. Inhibition of hepatic ketogenesis by tumor necrosis factor-alpha in rats.

    PubMed

    Beylot, M; Vidal, H; Mithieux, G; Odeon, M; Martin, C

    1992-11-01

    Tumor necrosis factor-alpha (TNF-alpha) stimulates hepatic lipogenesis. Therefore, it could play a role in the control of ketogenesis. To test this hypothesis, we measured simultaneously free fatty acids (FFA; [1-13C]palmitate) and ketone body (KB; [3,4-13C2]acetoacetate) kinetics, before and after intraperitoneal injection of saline or TNF-alpha, in postabsorptive rats or rats starved for 24 h. In both groups of rats, TNF-alpha injection did not modify insulinemia and induced a moderate increase of FFA concentrations and appearance rates (P < 0.05). Despite increased FFA availability, ketogenesis was impaired after TNF-alpha injection, as shown by lower KB concentrations and appearance rates; this effect was more important in postabsorptive than in starved rats. The percentage of FFA flux used for ketogenesis was decreased by TNF-alpha in the postabsorptive group (P < 0.05) and starved (P < 0.05) rats. In both groups, maximal liver acetyl-coenzyme A carboxylase activity and estimated phosphorylation state were not modified by TNF-alpha injection, but hepatic concentrations of citrate were increased (P < 0.05). This increased citrate level could be related to a mobilization of glucose stored as glycogen since liver glycogen was decreased by TNF-alpha injection (P < 0.05). In conclusion, TNF-alpha injection in rats decreased hepatic ketogenesis. This action could be related to an increased mobilization and utilization of carbohydrate stores. PMID:1443123

  18. Transforming growth factor-{alpha} enhances corneal epithelial cell migration by promoting EGFR recycling.

    PubMed

    McClintock, Jennifer L; Ceresa, Brian P

    2010-07-01

    PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF. PMID:20181835

  19. The role of tumour necrosis factor-alpha in acquired immunodeficiency syndrome.

    PubMed

    Odeh, M

    1990-12-01

    Tumour necrosis factor-alpha (TNF) is a primary mediator in the pathogenesis of infection, tissue injury and inflammation. It is synthesised by various activated, phagocytic and non-phagocytic cells, and a wide variety of infectious or inflammatory stimulae are capable of triggering TNF biosynthesis. Recent studies indicate that overproduction of TNF in septicaemia is a critical step in triggering septic shock and multiple organ damage. Intravenous administration of recombinant human TNF induced the same types of derangement in cardiovascular homatologic, inflammatory and metabolic homeostasis that are found with endotoxic or septic shock. Chronic TNF production causes a potentially lethal syndrome of cachexia, anaemia, and protein and lipid wasting. Several investigators have recently demonstrated elevated levels of serum TNF in patients with acquired immunodeficiency syndrome (AIDS), these levels being closely correlated with the severity of the disease. This review discusses the role of TNF in the pathophysiology of AIDS and of several disorders associated with the latter. In addition, it discusses the interactions between TNF and several agents used in AIDS therapy, and suggests the use of TNF-antagonists in combination as a therapeutic regimen for AIDS patients. PMID:2126279

  20. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease

    PubMed Central

    Kondamudi, Phani Krishna; Kovelamudi, Hemalatha; Nayak, Pawan G.; Rao, Mallikarjuna Chamallamudi; Shenoy, Rekha Raghuveer

    2015-01-01

    Background: The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). Materials and Methods: Male Wistar rats (200220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 L of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 L of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24th day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. Results: The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. Conclusion: These findings show that DHZ can be a promising molecule for the treatment of IBD. PMID:26664018

  1. Effects of Tumor Necrosis Factor Alpha Blocker Adalimumab in Experimental Spinal Cord Injury

    PubMed Central

    ivi, Soner; cal, zgr; Glbahar, zlem

    2015-01-01

    Objective Tumor necrosis factor alpha (TNF-?) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-? agent, adalimumab, on spinal cord clip compression injury in rats. Methods Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. Results Animals that received anti-TNF-? agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. Conclusion These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats. PMID:25733985

  2. Retinoic acid modulates chromatin to potentiate tumor necrosis factor alpha signaling on the DIF2 promoter.

    PubMed

    Witcher, Michael; Pettersson, Filippa; Dupr-Richer, Daphne; Padovani, Alessandra; Summers-Deluca, Leslie; Baldwin, Albert S; Miller, Wilson H

    2008-02-01

    Transcriptional activation by nuclear hormone receptors is well characterized, but their cooperation with other signaling pathways to activate transcription remains poorly understood. Tumor necrosis factor alpha (TNFalpha) and all-trans retinoic acid (RA) induce monocytic differentiation of acute promyelocytic leukemia (APL) cells in a synergistic manner. We used the promoter of DIF2, a gene involved in monocytic differentiation, to model the mechanism underlying the cooperative induction of target genes by RA and TNFalpha. We show a functional RA response element in the DIF2 promoter, which is constitutively bound by PML/RARalpha in APL cells. RA stimulates release of corepressors and recruitment of chromatin modifying proteins and additional transcription factors to the promoter, but these changes cause only a modest induction of DIF2 mRNA. Co-stimulation with RA plus TNFalpha facilitates binding of NF-kappaB to the promoter, which is crucial for full induction of transcription. Furthermore, RA plus TNFalpha greatly enhanced the level of RNA Pol II phosphorylation on the DIF2 promoter, via synergistic recruitment of TFIIH. We propose that RA mediates remodeling of chromatin to facilitate binding of transcription factors, which cooperate to enhance Pol II phosphorylation, providing a mechanism whereby nuclear receptors interact with other signaling pathways on the level of transcription. PMID:18039708

  3. Immunolocalization of tumor necrosis factor alpha in turbot (Scophthalmus maximus, L.) tissues.

    PubMed

    Ronza, Paolo; Losada, Ana Paula; Villamarn, Antonio; Bermdez, Roberto; Quiroga, Mara Isabel

    2015-08-01

    Tumor necrosis factor alpha (TNF?) is a cytokine involved in a broad spectrum of cellular and organismal responses. Its main function, as a potent pro-inflammatory mediator, has been demonstrated in numerous teleost species and there are many reports on the modulation of TNF? gene expression under pathological conditions. Nevertheless, there is still scarce knowledge about the tissue distribution and type of cells that express this cytokine in fish species, which would help to further investigate its biological activities. These studies are hampered by the lack of molecular markers for teleost that hinder the development of morphological techniques, like immunohistochemistry. The aim of this work was to develop an immunohistochemical technique for the detection of TNF? in paraffin-embedded organs from healthy turbot (Scophthalmus maximus), an economically-important marine fish species. A commercial anti-human TNF? antibody, whose specificity was confirmed by western blot analysis, was used. Immunoreactive cells were observed in higher numbers in the lymphohematopoietic organs, kidney, spleen and thymus, although TNF?-positive cells were also present in the digestive tract, liver, heart, gills and skin. Similarly to non-fish species, monocytes/macrophages appeared to be the main producers of this cytokine; nevertheless, the presence of immunoreactive rodlet cells in different tissues was also reported. The nature and distribution of the labeled cells appeared to be related with a strategic localization for defense response to antigenic challenge. The relative abundance of TNF?-positive cells in the lymphohematopoietic organs also suggests that this cytokine may have a broader role in the normal physiology of those organs. The immunohistochemical technique allowed the in-situ characterization of TNF? expression, representing a valid tool to investigate the immune response of turbot. PMID:25957885

  4. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology. PMID:19460424

  5. Human recombinant tumor necrosis factor alpha infusion mimics endotoxemia in awake sheep.

    PubMed

    Johnson, J; Meyrick, B; Jesmok, G; Brigham, K L

    1989-03-01

    The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury. PMID:2708260

  6. Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements.

    PubMed

    Lpez-Cabrera, M; Muoz, E; Blzquez, M V; Ursa, M A; Santis, A G; Snchez-Madrid, F

    1995-09-15

    The human activation antigen CD69 is a member of the C-type animal lectin superfamily that functions as a signal-transmitting receptor. Although the expression of CD69 can be induced in vitro on cells of most hematopoietic lineages with a wide variety of stimuli, in vivo it is mainly expressed by T-lymphocytes located in the inflammatory infiltrates of several human diseases. To elucidate the mechanisms that regulate the constitutive and inducible expression of CD69 by leukocytes, we isolated the promoter region of the CD69 gene and carried out its functional characterization. Sequence analysis of the 5'-flanking region of the CD69 gene revealed the presence of a potential TATA element 30 base pairs upstream of the major transcription initiation site and several putative binding sequences for inducible transcription factors (NF-kappa B, Egr-1, AP-1), which might mediate the inducible expression of this gene. Transient expression of CD69 promoter-based reporter gene constructs in K562 cells indicated that the proximal promoter region spanning positions -78 to +16 contained the cis-acting sequences necessary for basal and phorbol 12-myristate 13-acetate-inducible transcription of the CD69 gene. Removal of the upstream sequences located between positions -78 and -38 resulted in decreased promoter strength and abolished the response to phorbol 12-myristate 13-acetate. We also found that tumor necrosis factor-alpha (TNF-alpha) is capable of inducing the surface expression of the CD69 molecule as well as the promoter activity of fusion plasmids that contain 5'-flanking sequences of the CD69 gene, suggesting that this cytokine may regulate in vivo the expression of CD69.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7665567

  7. Contamination with Mycoplasma spp. induces interleukin-13 expression by human skin fibroblasts in culture.

    PubMed

    Zurita-Salinas, C S; Palacios-Boix, A; Yez, A; Gonzlez, F; Alcocer-Varela, J

    1996-09-01

    The mycoplasmas comprise a discrete group of microorganisms that are known to exert a range of effects upon cells derived from the immune system. Some of these interactions turn out to be immunomodulatory, such as polyclonal stimulation of T and B cells or enhancement of the cytolytic potential of macrophages, NK cells and T lymphocytes. Immunologically committed cells, when infected with mycoplasmas, can also increase the production of cytokines (IL-1, IL-2, IL-4 and IL-6), interferon (IFN) gamma, tumor necrosis factor-alpha (TNF-alpha) and colony-stimulating factors (particularly GM-CSF). Moreover, mycoplasmas are potent inductors of cytokine secretion by fibroblasts in culture. Since growth factors are determinants for the activation and proliferation of immunocompetent cells in vitro, we decided to investigate if these effects are concordant with the finding of mycoplasma contamination. In order to address this question, we compared the pattern of lymphokine secretion by normal-derived human fibroblasts in culture with and without Mycoplasma spp. contamination. We found those human fibroblasts that have been contaminated with mycoplasma show production of IL-13 at the transcriptional level. This effect coincides with discrete morphological changes as compared to uncontaminated human fibroblasts. This is the first report to acknowledge that mycoplasma contamination can induce mRNA expression for IL-13 in cultured human fibroblasts. PMID:8880137

  8. Titanium implants induce expression of matrix metalloproteinases in bone during osseointegration.

    PubMed

    Shubayev, Veronica I; Brnemark, Rickard; Steinauer, Joanne; Myers, Robert R

    2004-01-01

    Implanted pure titanium fixtures are able to completely integrate with bone, in part because of the formation of a strong extracellular matrix (ECM) bond at the titanium-bone interface. In this study, we used a rodent femur model of intramedullary osseointegration to analyze the changes in immunoreactivity of ECM-controlling matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinase-3 (TIMP-3), and tumor necrosis factor alpha (TNF-alpha) during osseointegration. We observed dramatic increases in MMP-2, MMP-9, MMP-7, TIMP-3, and TNF-alpha in osteocytes, osteoclasts, haversian canals, and the interface matrix in bone ipsilateral to the titanium implant. An increase in TIMP-3, MMP-9, and MMP-7 in hypertrophied chondrocytes and the vascular component of the epiphysial growth plate was also observed in experimental bone. These findings were not seen in contralateral or sham-operated bone, where the titanium fixtures were threaded into the femur and immediately removed. Our data link titanium-induced bone remodeling to changes in expression and distribution of MMPs. PMID:15685464

  9. Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells.

    PubMed

    Kinter, A L; Poli, G; Maury, W; Folks, T M; Fauci, A S

    1990-09-01

    The chronically infected promonocytic clone U1 expresses low-to-undetectable constitutive levels of human immunodeficiency virus (HIV). Virus replication in these cells can be increased up to 25-fold by phorbol esters (phorbol-12-myristate-13-acetate), recombinant cytokines such as tumor necrosis factor-alpha, and cytokine-enriched mononuclear cell supernatants. We have tested specific activators of protein kinases (PK) and PK inhibitors (isoquinolinesulfonamide derivatives), as well as calcium-mobilizing agents, for their effect on constitutive and induced virus expression in U1 cells. Virus expression was measured by reverse transcriptase, Western blot, and nuclear run-on analysis. Activation of PKC by 1-oleyl,2-acetylglycerol, a synthetic analog of the natural ligand 1,2-diacylglycerol, and bryostatin 1 (a recently described specific PKC activator) resulted in a two- to eightfold increase in virus production. In contrast, activators of cyclic-nucleotide-dependent PKs were not effective in inducing virus expression. PK inhibitors were tested for their effect on HIV upregulation by cytokines and other inducing agents. The isoquinolinesulfonamide derivative H7, a potent inhibitor of PKC activation, effectively blocked (70 to 90%) HIV induction by cytokines and phorbol-12-myristate-13-acetate. The derivative HA1004, which is more selective for cyclic-nucleotide-dependent kinases, did not suppress viral induction. In addition, increases in intracellular calcium levels dramatically enhanced HIV production induced by both specific PKC activators and cytokines. These results indicate that activation of PKC is a common pathway involved in the upregulation of HIV expression in chronically infected cells stimulated by cytokines and other inducing agents. PMID:2200885

  10. Expression of fibroblast growth factors in ultraviolet radiation-induced corneal tumors and corneal tumor cell lines from Monodelphis domestica.

    PubMed

    Sabourin, C L; Kusewitt, D F; Applegate, L A; Budge, C L; Ley, R D

    1993-01-01

    Chronic exposure of the gray, short-tailed opossum, Monodelphis domestica, to ultraviolet radiation (UVR) induces highly vascularized mesenchymal tumors of the cornea. Cell lines derived from these UVR-induced corneal tumors and the corneal tumors themselves were examined for the presence of mRNA coding for basic and acidic fibroblast growth factors (FGF), transforming growth factors-beta and -alpha (TGF-beta and TGF-alpha), epidermal growth factor (EGF), and tumor necrosis factor-alpha (TNF-alpha). Basic FGF was expressed in the cell lines derived from corneal tumors and in the corneal tumors. Expression of basic FGF was high in one corneal tumor. Transcripts for acidic FGF were detected only in the corneal tumor cell lines, not in primary tumors. TGF-beta expression was detected in the corneal tumors and tumor-derived cell lines. TGF-alpha, EGF, and TNF-alpha transcripts were not detectable in any opossum material; however, homologous gene sequences for TGF-alpha and EGF were detected on Southern blots of opossum genomic DNA. Southern blot analysis revealed no evidence of amplification or rearrangement of the genes for basic FGF or acidic FGF in the UVR-induced corneal tumor that expressed high levels of basic FGF. Opossum basic FGF, which stimulated the proliferation of fetal bovine heart endothelial cells, was purified by heparin affinity chromatography from a UVR-induced corneal tumor and a corneal tumor cell line. Immunoblotting of opossum basic FGF from a corneal tumor cell line using antiserum to bovine basic FGF showed two prominent immunoreactive bands of 17.5 and 18.5 kDa. Expression of basic FGF and acidic FGF may play a role in the development and progression of UVR-induced corneal tumors in M. domestica. PMID:7683886

  11. Characterization of the rat transforming growth factor alpha gene and identification of promoter sequences.

    PubMed Central

    Blasband, A J; Rogers, K T; Chen, X R; Azizkhan, J C; Lee, D C

    1990-01-01

    We have determined the complete nucleotide sequence of rat transforming growth factor alpha (TGF alpha) mRNA and characterized the six exons that encode this transcript. These six exons span approximately 85 kilobases of genomic DNA, with exons 1 to 3 separated by particularly large introns. What had previously been thought to represent a species-specific difference in the size of the TGF alpha precursor (proTGF alpha) is now shown to be due to microheterogeneity in the splicing of exons 2 and 3. This results from a tandem duplication of the acceptor CAG and gives rise to two alternate forms (159 and 160 amino acids) of the integral membrane precursor. Exon 6, which encodes the 3' untranslated region of TGF alpha mRNA, also encodes, on the opposite strand, a small (approximately 200-nucleotide) transcript whose sequence predicts an open reading frame of 51 amino acids. Expression of this latter transcript does not appear to be coregulated with that of TGF alpha mRNA. Primer extension and S1 nuclease analyses of authentic TGF alpha transcripts revealed two major and multiple minor 5' ends which span more than 200 base pairs of DNA in a G + C-rich region that lacks canonical CCAAT or TATA sequences. The 5' ends of six independently derived cDNAs localized to five different sites in this same region. Restriction fragments that overlap these transcription start sites and extend approximately 300 base pairs in the 5' direction faithfully promote transcription in vitro with HeLa cell nuclear extracts. In addition, they direct the expression of the bacterial chloramphenicol acetyltransferase gene in transient-transfection assays. Images PMID:2325647

  12. NF-kappa B activation in tumor necrosis factor alpha-stimulated neutrophils is mediated by protein kinase Cdelta. Correlation to nuclear Ikappa Balpha.

    PubMed

    Vancurova, I; Miskolci, V; Davidson, D

    2001-06-01

    The transcription factor NF-kappaB is critical for the expression of multiple genes involved in inflammatory responses and apoptosis. However, the signal transduction pathways regulating NF-kappaB activation in human neutrophils in response to stimulation with tumor necrosis factor-alpha (TNFalpha) are undefined. Since recent studies implicated activation of NF-kappaB as well as protein kinase C-delta (PKCdelta) in neutrophil apoptosis, we investigated involvement of PKCdelta in the activation of NF-kappaB in TNFalpha-stimulated neutrophils. Specific inhibition of PKCdelta by rottlerin prevented IkappaBalpha degradation and NF-kappaB activation in TNFalpha-stimulated neutrophils. This regulation of NF-kappaB activation by PKCdelta was specific only for TNFalpha signaling, since lipopolysaccharide- or interleukin-1beta-induced NF-kappaB activation and IkappaBalpha degradation were not inhibited by rottlerin. In addition, we show that in human neutrophils, but not monocytes, IkappaBalpha localizes in significant amounts in the nucleus of unstimulated cells, and the amount of IkappaBalpha in the nucleus, as well as in the cytoplasm, correlates with the NF-kappaB DNA binding. These results suggest that in human neutrophils, the presence of IkappaBalpha in the nucleus may function as a safeguard against initiation of NF-kappaB dependent transcription of pro-inflammatory and anti-apoptotic genes, and represents a distinct and novel mechanism of NF-kappaB regulation. PMID:11274209

  13. Enhancement of slow-wave sleep by tumor necrosis factor-alpha is mediated by cyclooxygenase-2 in rats.

    PubMed

    Terao, A; Matsumura, H; Yoneda, H; Saito, M

    1998-12-01

    Tumor necrosis factor-alpha (TNFalpha) was infused into the subarachnoid space of the rat rostral basal forebrain, which was previously defined as a prostaglandin (PG) D2-sensitive, sleep-promoting zone. TNFalpha increased the amount of slow-wave sleep (SWS), decreased that of paradoxical sleep (PS), and caused fever and anorexia. The TNFalpha-induced SWS enhancement, fever and anorexia were all blocked by co-infusion of diclofenac, a non-selective cyclooxygenase (COX) inhibitor, and by pretreatment with NS-398, a COX-2-specific inhibitor. In striking contrast, the TNFalpha-induced suppression of PS was not affected by the inhibitors. These results indicate that COX-2-mediated hyperproduction of PGs is critically involved in the enhancement of SWS, fever, and anorexia but not in the suppression of PS, caused by TNFalpha infused into the PGD2-sensitive zone. PMID:9875706

  14. Dissecting Cellulitis of the Scalp Responding to Intravenous Tumor Necrosis Factor-alpha Antagonist

    PubMed Central

    Wollina, Uwe; Gemmeke, Astrid; Koch, Andr

    2012-01-01

    The authors present the case of a 30-year-old male patient with a severe and long-standing dissecting cellulitis of the scalp. The disease did not respond to conventional treatment, including oral antibiotics, isotretinoin, and prednisolone. Quality of life was significantly impaired. After introduction of anti-tumor necrosis factor-alpha treatment (infliximab), the malodorous discharge stopped, inflammation was reduced significantly, nodules became flat, and pain decreased. The treatment was well tolerated although he developed a temporary psoriasiform rash after the second intravenous infusion. In conclusion, anti-tumor necrosis factor-alpha treatment is a new therapeutic option in this severe and recalcitrant disorder. PMID:22708007

  15. LXR antagonists induce ABCD2 expression.

    PubMed

    Gondcaille, Catherine; Genin, Emmanuelle C; Lopez, Tatiana E; Dias, Alexandre M M; Geillon, Flore; Andreoletti, Pierre; Cherkaoui-Malki, Mustapha; Nury, Thomas; Lizard, Gérard; Weinhofer, Isabelle; Berger, Johannes; Kase, Eili T; Trompier, Doriane; Savary, Stéphane

    2014-02-01

    X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2,ABCD3 and CTNNB1 (the gene encoding for beta-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRalpha) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD. PMID:24239766

  16. Endotoxin-induced cytokine gene expression in vivo. II. Regulation of tumor necrosis factor and interleukin-1 alpha/beta expression and suppression.

    PubMed Central

    Ulich, T. R.; Guo, K. Z.; Irwin, B.; Remick, D. G.; Davatelis, G. N.

    1990-01-01

    Tumor necrosis factor alpha (TNF alpha) mRNA is present in a preformed intracellular pool in the spleen, liver, and small bowel of naive rats. Endotoxin (Salmonella typhus lipopolysaccharide) injected intravenously induces little or no increase in whole-organ TNF mRNA levels at 15', 30', 1 degree, 2 degrees, or 4 degrees, whereas serum TNF levels are markedly elevated at 1 and 2 hours. Dexamethasone pretreatment of rats suppresses LPS-induced serum TNF concentrations, but does not suppress TNF mRNA levels in the spleen or bowel. Tachyphylaxis experiments demonstrate that a second injection of endotoxin 2 hours after an initial injection fails to induce a second peak of serum TNF, although TNF mRNA levels in the spleen and bowel remain at the levels found in naive rats. Corynebacterium parvum upregulates endotoxin-induced serum TNF release and intravenous injection of IL-1 induces the release of serum TNF but neither alters whole-organ TNF mRNA levels. Interleukin-1 alpha (IL-1 alpha) mRNA was not constitutively detected in whole-organ RNA preparations of the spleen, liver, and small bowel of naive rats. Endotoxin induces IL-1 alpha mRNA most easily appreciated in the spleen beginning at 1 hour, peaking at 2 to 4 hours, and disappearing by 6 hours. Interleukin-1 beta (IL-1 beta) mRNA was not constitutively detected in the organs examined or was present in small amounts. Endotoxin induces IL-1 beta mRNA beginning at 0.5 hours, peaking at 1 hour, and disappearing by 6 hours. Dexamethasone pretreatment prevents the LPS-induced appearance of IL-1 alpha mRNA and suppresses but does not completely inhibit the appearance of IL-1 beta mRNA. C. parvum upregulates endotoxin-induced IL-1 mRNA expression. Intravenous injection of TNF or IL-1 both induce IL-1 mRNA expression. In conclusion, TNF mRNA is constitutively expressed and TNF mRNA levels as analyzed in whole-organ RNA preparations do not change in concert with serum TNF protein levels during conditions of endotoxemia, dexamethasone treatment, tachyphylaxis, priming with C. parvum, or after injection of IL-1. In contrast, IL-1 mRNA expression during endotoxemia, dexamethasone treatment, priming with C. parvum, or after injection of TNF or IL-1 shows clear increases and decreases in whole-organ RNA preparations. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:2240164

  17. Differential regulation of C-terminal splice variants of the glutamate transporter GLT-1 by tumor necrosis factor-alpha in primary cultures of astrocytes.

    PubMed

    Focant, Marylène C; Goursaud, Stéphanie; Nizet, Yannick; Hermans, Emmanuel

    2011-06-01

    The high-affinity glutamate transporter GLT-1 plays a key role in the control of the glutamate homeostasis in the central nervous system and protects neurons against excitotoxicity. Splice variants of the original transcript have been identified and their involvement in neurodegenerative disorders has been proposed. However, the functions and the regulations of these isoforms remain unclear. In this study, we focused our interest on the expression of two C-terminal splice variants of GLT-1 (GLT-1a and b) in primary astrocyte cultures exposed to distinct chemical environments. While GLT-1a and GLT-1b mRNAs were both increased in response to treatment with N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dBcAMP), the culture supplement G5 or tumor necrosis factor-alpha (TNF-α), the regulation of GLT-1b appeared quicker and was more pronounced. Besides, using validated antibodies, we evidenced a differential regulation of the two proteins in cells exposed to TNF-α. Thus, while dBcAMP and the G5 supplement stimulated the expression of both isoforms at 3 and 7 days, a transient upregulation of GLT-1a was induced by TNF-α, which contrasts with the sustained induction of the GLT-1b isoform. These results shed light on the complex influence of the pro-inflammatory cytokine TNF-α on GLT-1a mRNA and protein expression and on the necessity to distinctly consider the GLT-1 isoforms with appropriate tools in studies addressing the regulation of glutamate transporters. PMID:21371514

  18. Effects of ultrasound on the structure and function of tumor necrosis factor-alpha.

    PubMed

    Tian, Zhong-Min; Wan, Ming-Xi; Wang, Bo; Wang, Su-Pin; Wu, Xiao-Ming; Ruan, Yu-Song

    2003-09-01

    The objective of this study was to investigate the effects of ultrasound on the structure and function of human tumor necrosis factor-alpha (TNF-alpha) and to study whether TNF-alpha underwent a denaturation process and the molecular structure was damaged when it was irradiated by ultrasound. The samples of TNF-alpha were dissolved in aqueous solution and filled into polystyrene tubes. High intensity ultrasound processor (20 kHz frequency, burst mode, 0.5 duty factor, 100-500 W total electrical power, 0-20 min total treatment time) was used during the treatment. The biologic activity of TNF-alpha was determined by its toxic activity towards TNF-alpha sensitive cell line L929 in the presence of actinomycin D. The methods of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) were used to detect the integrity of TNF-alpha molecule after it was irradiated by ultrasound. The results showed TNF-alpha could keep its biological activity, instead of undergoing a denaturation process, when it is irradiated by ultrasound in the aqueous solution; at the same time, the aggregates of TNF-alpha formed by the recombinant DNA E. coli could be dissociated through the molecular vibration induced by ultrasound energy. The biologic activity of TNF-alpha was not reduced, but small quantities of TNF-alpha molecular structure were damaged during the process of sonication. These features of TNF-alpha molecule irradiated by ultrasound probably gave TNF-alpha the advantage in being used in the drug microencapsulation and provided a new drugs formulation for tumor therapy. PMID:14553811

  19. Inflammatory Cascades Driven by Tumor Necrosis Factor-Alpha Play a Major Role in the Progression of Acute Liver Failure and Its Neurological Complications

    PubMed Central

    Chastre, Anne; Blanger, Mireille; Beauchesne, Elizabeth; Nguyen, Bich N.; Desjardins, Paul; Butterworth, Roger F.

    2012-01-01

    Background/aims Acute liver failure (ALF) due to ischemic or toxic liver injury is a clinical condition that results from massive loss of hepatocytes and may lead to hepatic encephalopathy (HE), a serious neuropsychiatric complication. Although increased expression of tumor necrosis factor-alpha (TNF-?) in liver, plasma and brain has been observed, conflicting results exist concerning its roles in drug-induced liver injury and on the progression of HE. The present study aimed to investigate the therapeutic value of etanercept, a TNF-? neutralizing molecule, on the progression of liver injury and HE in mice with ALF resulting from azoxymethane (AOM) hepatotoxicity. Methods/Principal Findings Mice were administered saline or etanercept (10 mg/kg; i.p.) 30 minutes prior to, or up to 6 h after AOM. Etanercept-treated ALF mice were sacrificed in parallel with vehicle-treated comatose ALF mice and controls. AOM induced severe hepatic necrosis, leading to HE, and etanercept administered prior or up to 3 h after AOM significantly delayed the onset of coma stages of HE. Etanercept pretreatment attenuated AOM-induced liver injury, as assessed by histological examination, plasma ammonia and transaminase levels, and by hepatic glutathione content. Peripheral inflammation was significantly reduced by etanercept as shown by decreased plasma IL-6 (4.1-fold; p<0.001) and CD40L levels (3.7-fold; p<0.001) compared to saline-treated ALF mice. Etanercept also decreased IL-6 levels in brain (1.2-fold; p<0.05), attenuated microglial activation (assessed by OX-42 immunoreactivity), and increased brain glutathione concentrations. Conclusions These results indicate that systemic sequestration of TNF-? attenuates both peripheral and cerebral inflammation leading to delayed progression of liver disease and HE in mice with ALF due to toxic liver injury. These results suggest that etanercept may provide a novel therapeutic approach for the management of ALF patients awaiting liver transplantation. PMID:23166746

  20. Coexpression of transforming growth factor-alpha and pidermal growth factor receptor in capillary hemangioblastomas of the central nervous system.

    PubMed Central

    Reifenberger, G.; Reifenberger, J.; Bilzer, T.; Wechsler, W.; Collins, V. P.

    1995-01-01

    The expression of epidermal growth factor receptor (EGFR) and the pre-pro form of one of its ligands, transforming growth factor-alpha (TGF-alpha), was studied by Northern blotting in a series of 14 capillary hemangioblastomas of the central nervous system. A constant coexpression of EGFR and pre-pro-TGF-alpha mRNAs was found. Immunocytochemical investigation of an extended series of 51 capillary hemangioblastomas revealed that the stromal cells in these tumors showed immunoreactivity with monoclonal antibodies to EGFR and TGF-alpha. Analysis of gene dosage by Southern blotting in 20 tumors indicated a normal gene copy number of EGFR and TGF alpha in all cases. Our findings suggest that autocrine and/or juxtacrine growth stimulation via the EGFR may contribute to tumor growth in capillary hemangioblastomas. Images Figure 2 Figure 1 Figure 3 PMID:7639324

  1. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  2. Alveolar macrophages in AIDS patients: increased spontaneous tumour necrosis factor-alpha production in Pneumocystis carinii pneumonia.

    PubMed Central

    Krishnan, V L; Meager, A; Mitchell, D M; Pinching, A J

    1990-01-01

    In order to assess the role of alveolar macrophages and their products in the control of Pneumocystis carinii pneumonia (PCP) and other infections in AIDS, bronchoalveolar lavage cells and peripheral blood mononuclear cells from HIV-positive AIDS/ARC patients (with and without PCP) and HIV-negative patients were counted and cultured in vitro; spontaneous and LPS-induced tumour necrosis factor-alpha (TNF-alpha) production was measured. Markedly increased spontaneous TNF-alpha production by alveolar macrophages and, to a lesser extent, peripheral blood monocytes was found in HIV-positive patients with active PCP but not in patients without the infection. Higher TNF production was associated with lower counts of Pneumocystis in the bronchoalveolar lavage fluid. These results suggest that TNF-alpha production by macrophages may play an important role in the control of Pn. carinii infection in AIDS. PMID:2357841

  3. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model. PMID:14680076

  4. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high sequence identity as well as a conserved pattern of transcript abundance changes after gravity stimulation between corn pulvinus tissue and Arabidopsis root apices. The functions of these genes in gravitropic responses are currently being analyzed and should give us important information about evolutionary conserved elements in plant gravity signal transduction. (This research was funded by NASA). Kimbrough, J. M., R. Salinas-Mondragon, et al. (2004). "The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex." Plant Physiol. 136(1): 2790-2805. Moseyko, N., T. Zhu, et al. (2002). "Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays." Plant Physiol 130(2): 720-8. Salinas-Mondragon, R., A. Brogan, et al. (2005). "Gravity and light: integrating transcriptional regulation in roots." Gravit Space Biol Bull 18(2): 121-2.

  5. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells.

    PubMed Central

    Mehlen, P; Kretz-Remy, C; Briolay, J; Fostan, P; Mirault, M E; Arrigo, A P

    1995-01-01

    The small stress protein heat-shock protein 27 (hsp27) is an oligomeric phosphoprotein, constitutively expressed in most human cells, which enhances cellular resistance to tumour necrosis factor alpha (TNF alpha). This phenomenon correlates with dramatic changes in hsp27 cellular location, structural organization and phosphorylation. To gain a better understanding of the molecular mechanisms regulating these properties of hsp27, we investigated whether they were a consequence of the intracellular production of reactive oxygen species (ROS) generated by TNF alpha. Here, we report that, in T47D carcinoma cell lines, the rapid burst of intracellular ROS production and changes in hsp27 locale, structural organization and phosphoisoform composition induced by TNF alpha were abolished by the overexpression of the antioxidant enzyme seleno-glutathione peroxidase (GSHPx). These effects were greatly diminished when GSHPx-expressing cells were grown in the absence of selenium, a cofactor that is essential for seleno-GSHPx activity, indicating that they are directly linked to the increased GSHPx activity. Moreover, in growing T47D cells, GSHPx expression induced intracellular redistribution of hsp27 and decreased the phosphorylation of this protein without altering its pattern of oligomerization. In contrast, the heat-mediated phosphorylation of hsp27 was not altered by decreased intracellular ROS levels. Hence, in growing and TNF-treated cells, several hsp27 properties appear to be modulated by fluctuations in intracellular ROS levels. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8526844

  6. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage

    PubMed Central

    2013-01-01

    Introduction The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints. Methods We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1?) as well as tumor necrosis factor alpha (TNF-?) were tested with a modified Boyden chamber assay. The influence of IL-1? and TNF-? was additionally examined by scratch assays and outgrowth experiments. Results A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1? and TNF-? significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC. Conclusion These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1? and TNF-? inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo. PMID:24034344

  7. Characterization of a tumor necrosis factor. alpha. (TNF-. alpha. ) inhibitor: Evidence of immunological cross-reactivity with the TNF receptor

    SciTech Connect

    Seckinger, P.; Zhang, Jianhua; Hauptmann, B.; Dayer, J.M. )

    1990-07-01

    Previous studies have shown that urine of febrile patients contains a tumor necrosis factor {alpha} inhibiting activity (TNF-{alpha} Inh) when tested in a cytotoxicity assay using the tumor necrosis factor {alpha} (TNF-{alpha})-susceptible cell line L929. In the present study, the authors investigated the relationship between the TNF-{alpha} Inh and a potential soluble form of the receptor, as the former has been shown to block TNF-{alpha} activities by binding to the ligand. They demonstrate that human TNF-{alpha} is affected to a greater extent than is murine TNF-{alpha}. This species specificity of the inhibitor correlates with the binding studies of TNF receptor interactions already reported. They raised a polyclonal antibody to TNF-{alpha} Inh that neutralizes its activity and does not recognize TNF-{alpha}. Solubilized cross-linked {sup 125}I-labeled TNF-{alpha} receptor complex could be immunoprecipitated by using either anti-TNF-{alpha} or anti-TNF-{alpha} Inh antibody, suggesting immunological cross-reactivity between the receptor and the inhibitor. By using fluorescein isothiocyanate-coupled TNF-{alpha}, it was possible to visualize by fluorescence-activated cell sorter analysis the TNF-{alpha} receptor on phytohemagglutinin/interleukin 2-activated T cells. A similar increase of immunofluorescence intensity of the activated T cells was observed by using anti-TNF-{alpha} Inh antibody revealed with a fluorescein isothiocyanate-coupled goat anti-rabbit IgG1 conjugate, suggesting that the TNF-{alpha} Inh is also expressed as a membrane protein. Taken together, their results suggest that the TNF-{alpha} Inh originally described might be a soluble form of the TNF receptor itself.

  8. Effects of Puerariae Radix Extract on Endotoxin Receptors and TNF-? Expression Induced by Gut-Derived Endotoxin in Chronic Alcoholic Liver Injury

    PubMed Central

    Peng, Jing-Hua; Cui, Tuan; Sun, Zhao-Lin; Huang, Fu; Chen, Liang; Xu, Lin; Feng, Qin; Hu, Yi-Yang

    2012-01-01

    Kudzu (Pueraria lobata) is one of the earliest medicinal plants used to treat alcohol abuse in traditional Chinese medicine for more than a millennium. However, little is known about its effects on chronic alcoholic liver injury. Therefore, the present study observed the effects of puerariae radix extract (RPE) on chronic alcoholic liver injury as well as Kupffer cells (KCs) activation to release tumor necrosis factor alpha (TNF-?) induced by gut-derived endotoxin in rats and macrophage cell line. RPE was observed to alleviate the pathological changes and lipids deposition in liver tissues as well as the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic gamma-glutamyl transpeptidase (GGT) activity. Meanwhile, RPE inhibited KCs activation and subsequent hepatic TNF-? expression and downregulated the protein expression of endotoxin receptors, lipopolysaccharide binding protein (LBP), CD14, Toll-like receptor (TLR) 2, and TLR4 in chronic alcohol intake rats. Furthermore, an in vitro study showed that RPE inhibited the expression of TNF-? and endotoxin receptors, CD14 and TLR4, induced by LPS in RAW264.7 cells. In summary, this study demonstrated that RPE mitigated liver damage and lipid deposition induced by chronic alcohol intake in rats, as well as TNF-? release, protein expression of endotoxin receptors in vivo or in vitro. PMID:23133491

  9. Induction of tumor necrosis factor alpha in murine macrophages with various strains of Coxiella burnetii and their lipopolysaccharides.

    PubMed

    Kubes, M; Kuzmov, Z; Gajdosov, E; Ihnatko, R; Mucha, V; Toman, R; Kovcov, E

    2006-01-01

    The ability of various strains of Coxiella burnetii (C.b.) and their phase I and II lipopolysaccharides (LPSs) to induce tumor necrosis factor alpha (TNF-alpha) in peritoneal Balb/c mouse macrophages in vitro was investigated. Considerable differences in the induction ability were observed in dependence on the strain applied. In a TNF-alpha bioassay, the most effective inducers were both corpuscles and LPSs of the strains Priscilla and Scurry, followed by Nine Mile, Luga, and Henzerling I. In contrast, in ELISA, the most effective inducers were LPSs of the strains Luga and Henzerling, followed by Nine Mile, Priscilla, and Scurry. The role of toll-like receptor 4 (TLR4) in the induction was confirmed by the use of C3H/HeJ mouse macrophages. Thus, the induction of TNF-alpha was much higher in Balb/c mouse macrophages than that in TLR4-deficient C3H/HeJ mouse macrophages. Differences in the results of the bioassay and those of ELISA suggest a role of another secreted factor(s) induced with C.b. in murine macrophages that could act synergically with TNF-alpha in L929 cells in the bioassay. The observed differences in TNF-alpha induction might play a role in the pathobiology of Q fever. PMID:16808326

  10. Protective role of 17-?-estradiol towards IL-6 leukocyte expression induced by intense training in young female athletes.

    PubMed

    Tringali, Cristina; Scala, Loredana; Silvestri, Ilaria; Vitale, Jacopo; Scurati, Raffaele; Michielon, Giovanni; Alberti, Giampietro; Venerando, Bruno

    2014-01-01

    Exercise performed at a competitive level could deeply modify the immune system and the cytokine response of athletes. In this report, we demonstrated that young elite female artistic gymnasts (n = 16; age: 9-15 years) showed an increase of interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-?) mRNA expression in blood mononuclear cells (PBMCs), in comparison to girls performing the same sport at a recreational level (n = 16; age: 10-15 years). The increase of IL-6 and TNF-? mRNAs appeared to be directly linked to the intensity and duration of the training. Moreover, in elite athletes engaged in artistic gymnastics or in synchronised swimming (n =34; age: 9-15 years), IL-6 gene expression appeared to be modulated by the levels of circulating oestrogens: pre-pubertal athletes (n = 20; age: 11 1 years) revealed a higher increase in IL-6 than pubertal athletes (n = 14; age: 14 1.6 years). In pre-pubertal athletes, body mass index (BMI) percentile was inversely correlated with the increase of both IL-6 and TNF-?. The consequence of these events was the shift of the cytokine profile towards a pro-inflammatory status. These modifications, induced by training performed at an elite level, might negatively affect the growth of female children athletes. PMID:24016202

  11. Inducible expression based on regulated recombination: a single vector strategy for stable expression in cultured cells.

    PubMed Central

    Angrand, P O; Woodroofe, C P; Buchholz, F; Stewart, A F

    1998-01-01

    When fused to the ligand binding domain (LBD) of steroid hormone nuclear receptors, site-specific recombinases (SSRs) acquire a ligand-dependent activity. Here, we describe the use of SSR-LBD fusion proteins in an inducible expression system, introduced into cells in a single step. A single transgene contains a constitutively active, bi-directional enhancer/promoter, which directs expression, on one side, of an SSR-LBD fusion protein gene and, on the other, a selectable marker/inducible gene cassette. The selectable marker, the puromycin acetyltransferase (pac) gene, is used for stable genomic integration of the transgene and is flanked by recombination target sites. The inducible gene is not expressed because the pac gene lies between it and the promoter. Activation of the SSR-LBD by a ligand induces recombination and the pac gene is excised. The inducible gene is thus positioned next to the promoter and so is expressed. This describes a ligand-inducible expression strategy that relies on regulated recombination rather than regulated transcription. By inducible expression of diptheria toxin, evidence that this system permits inducible expression of very toxic proteins is presented. The combination of the complete regulatory circuit and inducible gene in one transgene relates expression of the selectable marker gene to expression from the bi-directional enhancer/promoter. We exploit this relationship to show that graded increases in selection pressure can be used to select for clones with different induction properties. PMID:9628928

  12. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  13. Development of a Recombinant Xenogeneic Tumor Necrosis Factor Alpha Protein Vaccine To Protect Mice from Experimental Colitis.

    PubMed

    Wan, Yang; Li, Meng; Zhang, Hailong; Zheng, Xiuran; Yu, Chaoheng; He, Gu; Luo, Yan; Yang, Li; Wei, Yuquan

    2015-12-01

    Previous studies have highlighted the efficacy of tumor necrosis factor alpha (TNF-?) inhibitors, including monoclonal antibodies and soluble receptors, in the treatment and management of intestinal bowel disease (IBD). However, because of the immunogenicity of xenogeneic TNF-? inhibitors, antidrug antibodies (ADAs) can be triggered after repeated administration. An alternative way to target TNF-? is active immunization to elicit the production of high titers of neutralizing antibodies. In this study, we prepared a xenogeneic TNF-? protein vaccine and studied the protective effects in experimental colitis models. The xenogeneic TNF-? protein vaccine could overcome self-tolerance and induce TNF-?-specific neutralizing antibody. Moreover, the xenogeneic TNF-? protein vaccine could protect mice from acute and chronic colitis induced by dextran sodium sulfate (DSS). One possible explanation for this protective effect is the production of TNF-?-specific neutralizing antibody, which absorbed the biological activity of mouse TNF-? (mTNF-?) and failed to induce T lymphocyte apoptosis. In summary, use of the xenogeneic TNF-? protein vaccine may be a potent therapeutic strategy for IBD. PMID:26466602

  14. Tumour necrosis factor-alpha activates a calcium sensitization pathway in guinea-pig bronchial smooth muscle.

    PubMed

    Parris, J R; Cobban, H J; Littlejohn, A F; MacEwan, D J; Nixon, G F

    1999-07-15

    1. The effects of tumour necrosis factor-alpha (TNF) on guinea-pig bronchial smooth muscle contractility were investigated. 2. The Ca2+-activated contractile response of permeabilized bronchial smooth muscle strips was significantly increased after incubation with 1 microgram ml-1 TNF for 45 min. This TNF-induced effect was not due to a further increase in intracellular Ca2+. 3. The TNF-induced Ca2+ sensitization was, at least partly, the result of an increase in myosin light chain20 phosphorylation. 4. The intracellular signalling pathway involved in this effect of TNF was further investigated. Sphingomyelinase, a potential mediator of TNF, had no effect on Ca2+ sensitivity of permeabilized bronchial smooth muscle. Also, p42/p44 mitogen-activated protein kinase (p42/p44mapk), activated by TNF in some cell types, did not show an increased activation in bronchial smooth muscle after TNF treatment. 5. In conclusion, TNF may activate a novel signalling pathway in guinea-pig bronchial smooth muscle leading to an increase in myosin light chain20 phosphorylation and a subsequent increase in Ca2+ sensitivity of the myofilaments. This pathway does not appear to involve sphingomyelinase-liberated ceramides or activation of p42/p44mapk. Given the importance of TNF in asthma, this TNF-induced Ca2+ sensitization of the myofilaments may represent a mechanism responsible for airway hyper-responsiveness. PMID:10381600

  15. Interferon alpha induction of metallothionein in rat liver is not linked to interleukin-1, interleukin-6, or tumor necrosis factor alpha.

    PubMed

    Guevara-Ortiz, Juan Manuel; Omar-Castellanos, Victor; León-Chávez, Bertha Alicia; Achanzar, William E; Brambila, Eduardo

    2005-08-01

    Synthesis of metallothionein (MT) is induced by interferon-alpha (IFN-alpha) in vitro and in vivo. In addition, IFN-alpha promotes redistribution of zinc (Zn) from the plasma to the liver in mice. However, it is not clear if IFN-alpha induces hepatic MT synthesis directly or indirectly via liberation of other cytokines. In order to address this issue, we determined hepatic MT levels, Zn concentration in plasma, liver, and urine, and plasma levels interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha) in rats following intramuscular injection of human IFN-alpha (1.5 x 10(6) UI/m(2)). Animals were housed in metabolic cages and sacrificed at various times after IFN-alpha administration. Zn concentrations in serum, urine, and hepatic tissue were determined by atomic absorption spectrophotometry. MT protein was measured using the MT silver saturation method and expression of MT-1 and MT-2 mRNA was measured by RT-PCR. Plasma levels of rat IL-1, IL-6, and TNFalpha were determined using an ELISA method. Hepatic MT levels began to increase at 2 h following IFN-alpha administration and reached maximum levels at 12 h post-treatment. Induction of MT gene expression was confirmed by increases in MT-1 and MT-2 mRNA levels 6, 12, and 18 h after IFN-alpha administration. IFN-alpha treatment also resulted in biphasic increases in hepatic Zn, with levels peaking at 2 h, the time-point when MT levels are first increased, and again at 18 h. Concurrently, there were decreases in serum Zn levels at these time points, suggesting IFN-alpha induced movement of Zn from the blood to hepatic tissue. The decrease in serum Zn was not due to increased excretion since urinary Zn levels were unaffected following IFN-alpha treatment. IFN-alpha administration had no effect on plasma IL-1, IL-6, and TNFalpha levels. These results show that IFN-alpha promotes the increase of hepatic MT levels and plasma/liver redistribution directly, without IL-1, IL-6, or TNFalpha participation. PMID:16005709

  16. Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes.

    PubMed Central

    Armstrong, L.; Jordan, N.; Millar, A.

    1996-01-01

    BACKGROUND: Regulation of the inflammatory response within the human lung is essential to prevent this important part of the normal host defence response becoming a pathological process. Tumour necrosis factor alpha (TNF-alpha) is a cytokine involved in the pathogenesis of shock and in granuloma formation, tissue necrosis, and fibrosis in many organ systems including the lung. Interleukin 10 (IL-10) has been proposed as having an inhibitory effect on the production of several inflammatory cytokines including TNF-alpha. METHODS: The effect of IL-10 administration on TNF-alpha production was explored in human alveolar macrophages and peripheral blood monocytes from matched individuals. The effects of IL-10 on TNF-alpha protein production were determined by sandwich enzyme linked immunosorbant assay (ELISA), whereas the TNF-alpha mRNA response was established by Northeren blotting using a TNF-alpha specific oligonucleotide probe. The protein synthesis inhibitors actinomycin D and cyclohexamide were utilised to monitor IL-10 effects on mRNA degradation and de novo protein synthesis, respectively. RESULTS: The lipopolysaccharide-mediated TNF-alpha production in alveolar macrophages was reduced from 3.508 (0.629) to 2.035 (0.385) ng/ml by 100 U/ml IL-10. Lipopolysaccharide-induced TNF-alpha production in peripheral blood monocytes was reduced from 2.035 (0.284) to 0.698 (0.167) ng/ml. TNF-alpha gene expression was also inhibited in both alveolar macrophages and peripheral blood monocytes; lipopolysaccharide-induced TNF-alpha mRNA was reduced by 47.8 (15.2)% and 83.1 (4.2)%, respectively, by IL-10. The IL-10 mediated suppression of TNF-alpha mRNA was unaffected by addition of cyclohexamide, suggesting that de novo protein synthesis was not required for TNF-alpha inhibition. mRNA stability experiments indicated no acceleration in lipopolysaccharide-induced TNF-alpha mRNA degradation in response to IL-10. CONCLUSIONS: These findings suggest that IL-10 is a potent inhibitor of TNF-alpha expression and release from alveolar macrophages and peripheral blood monocytes, and thus it may have an important role in the cytokine network of the pulmonary immune response. Images PMID:8711645

  17. Regulated in Development and DNA Damage 1 Is Necessary for Hyperglycemia-induced Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rodents*

    PubMed Central

    Dennis, Michael D.; Kimball, Scot R.; Fort, Patrice E.; Jefferson, Leonard S.

    2015-01-01

    Vascular endothelial growth factor (VEGF) is considered a major role player in the pathogenesis of diabetic retinopathy, yet the mechanisms regulating its expression are not fully understood. Our laboratory previously demonstrated that diabetes-induced VEGF expression in the retina was dependent on the repressor of mRNA translation 4E-BP1. Interaction of 4E-BP1 with the cap-binding protein eIF4E regulates protein expression by controlling the selection of mRNAs for translation. The process is regulated by the master kinase mTOR in complex 1 (mTORC1), which phosphorylates 4E-BP1, thus promoting its disassociation from eIF4E. In the present study, we investigated the role of the Akt/mTORC1 repressor REDD1 (regulated in development and DNA damage) in diabetes-induced VEGF expression. REDD1 expression was induced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in Mller cells concomitant with increased VEGF expression. In Mller cells, hyperglycemic conditions attenuated global rates of protein synthesis and cap-dependent mRNA translation concomitant with up-regulated cap-independent VEGF mRNA translation, as assessed by a bicistronic luciferase reporter assay. Hyperglycemic conditions also attenuated mTORC1 signaling and enhanced 4E-BP1 binding to eIF4E. Furthermore, ectopic expression of REDD1 in Mller cells was sufficient to promote both increased 4E-BP1 binding to eIF4E and VEGF expression. Whereas the retina of wild-type mice exhibited increased expression of VEGF and tumor necrosis factor alpha (TNF-?) 4 weeks after streptozotocin administration, the retina of REDD1 knock-out mice failed to do so. Overall, the results demonstrate that REDD1 contributes to the pathogenesis of diabetes in the retina by mediating the pathogenic effects of hyperglycemia. PMID:25548280

  18. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha.

    PubMed

    Zapolska-Downar, Danuta; Siennicka, Aldona; Kaczmarczyk, Mariusz; Ko?odziej, Blanka; Naruszewicz, Marek

    2004-04-01

    Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment. PMID:15068815

  19. The increased gastroprotective effect of pioglitazone in cholestatic rats: role of nitric oxide and tumour necrosis factor alpha

    PubMed Central

    Moezi, Leila; Janahmadi, Zeinab; Amirghofran, Zahra; Nekooeian, Ali Akbar; Dehpour, Ahmad R

    2014-01-01

    The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30mg/kg) for 7days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-?), IL-1? and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-? in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-?. PMID:24456333

  20. Alpha-quartz-induced chemokine expression by rat lung epithelial cells: effects of in vivo and in vitro particle exposure.

    PubMed Central

    Driscoll, K. E.; Howard, B. W.; Carter, J. M.; Asquith, T.; Johnston, C.; Detilleux, P.; Kunkel, S. L.; Isfort, R. J.

    1996-01-01

    Chemokines are chemotactic cytokines that can play a key role in leukocyte recruitment to sites of tissue injury or infection. Previous studies have demonstrated that exposure to alpha-quartz as well as other noxious particles increases chemokine gene expression in rat lung, although the cells responsible for chemokine expression and the mechanisms underlying this response have remained unclear. The present studies demonstrate that exposure of rats to alpha-quartz induced expression of mRNA for the chemokine macrophage-inflammatory protein (MIP)-2 in epithelial cells lining the terminal bronchioles and alveolar ducts as well as macrophages and alveolar type II cells in the more distal lung. Treatment of rats with an anti-MIP-2 antiserum before alpha-quartz exposure markedly attenuated neutrophilic infiltration of the lungs demonstrating an important role for MIP-2 in alpha-quartz-induced pulmonary inflammation. In vitro exposure of primary cultures of rat alveolar type II cells or the rat alveolar type II cell line RLE-6TN to tumor necrosis factor-alpha, endotoxin, or alpha-quartz increased mRNA for MIP-2 as well as the structurally and functionally similar chemokine cytokine-induced neutrophil chemoattractant but not the chemokine MIP-1 alpha. The alpha-quartz-induced increase in epithelial MIP-2 mRNA resulted, at least in part, from increased gene transcription and was associated with the release of active MIP-2 protein. Induction of RLE-6TN MIP-2 and cytokine-induced neutrophil chemoattractant mRNA expression was not unique to alpha-quartz, being also increased by crocidolite asbestus fibers but not by titanium dioxide or MMVF-10 glass fibers. These findings indicate that epithelial cells contribute to chemokine expression in rat lung after exposure to alpha-quartz and potentially other noxious particles and suggest that alpha-quartz-activated MIP-2 expression in vivo results, at least in part, from a direct action of the particles on the lung epithelium. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8909252

  1. Molecular cloning and characterization of beluga whale (Delphinapterus leucas) interleukin-1beta and tumor necrosis factor-alpha.

    PubMed Central

    Denis, F; Archambault, D

    2001-01-01

    Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are cytokines produced primarily by monocytes and macrophages with regulatory effects in inflammation and multiple aspects of the immune response. As yet, no molecular data have been reported for IL-1beta and TNF-alpha of the beluga whale. In this study, we cloned and determined the entire cDNA sequence encoding beluga whale IL-1beta and TNF-alpha. The genetic relationship of the cytokine sequences was then analyzed with those from several mammalian species, including the human and the pig. The homology of beluga whale IL-1beta nucleic acid and deduced amino acid sequences with those from these mammalian species ranged from 74.6 to 86.0% and 62.7 to 77.1%, respectively, whereas that of TNF-alpha varied from 79.3 to 90.8% and 75.3 to 87.7%, respectively. Phylogenetic analyses based on deduced amino acid sequences showed that the beluga whale IL-1beta and TNF-alpha were most closely related to those of the ruminant species (cattle, sheep, and deer). The beluga whale IL-1beta- and TNF-alpha-encoding sequences were thereafter successfully expressed in Escherichia coli as fusion proteins by using procaryotic expression vectors. The fusion proteins were used to produce beluga whale IL-1beta- and TNF-alpha-specific rabbit antisera. Images Figure 3. Figure 4. Figure 5. PMID:11768130

  2. Increased hypoxia-inducible factor 1α expression in lung cells of horses with recurrent airway obstruction

    PubMed Central

    2012-01-01

    Background Recurrent airway obstruction (RAO, also known as equine heaves) is an inflammatory condition caused by exposure of susceptible horses to organic dusts in hay. The immunological processes responsible for the development and the persistence of airway inflammation are still largely unknown. Hypoxia-inducible factor (Hif) is mainly known as a major regulator of energy homeostasis and cellular adaptation to hypoxia. More recently however, Hif also emerged as an essential regulator of innate immune responses. Here, we aimed at investigating the potential involvement of Hif1-α in myeloid cells in horse with recurrent airway obstruction. Results In vitro, we observed that Hif is expressed in equine myeloid cells after hay dust stimulation and regulates genes such as tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A). We further showed in vivo that airway challenge with hay dust upregulated Hif1-α mRNA expression in myeloid cells from the bronchoalveolar lavage fluid (BALF) of healthy and RAO-affected horses, with a more pronounced effect in cells from RAO-affected horses. Finally, Hif1-α mRNA expression in BALF cells from challenged horses correlated positively with lung dysfunction. Conclusion Taken together, our results suggest an important role for Hif1-α in myeloid cells during hay dust-induced inflammation in horses with RAO. We therefore propose that future research aiming at functional inactivation of Hif1 in lung myeloid cells could open new therapeutic perspectives for RAO. PMID:22621400

  3. A Genome-Wide RNA Interference Screen Identifies Caspase 4 as a Factor Required for Tumor Necrosis Factor Alpha Signaling

    PubMed Central

    Nickles, Dorothee; Falschlehner, Christina; Metzig, Marie

    2012-01-01

    Tumor necrosis factor alpha (TNF-?) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-? pathway activity has been realized in several diseases, and antagonists of TNF-? have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-? receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-?, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-? signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-?B activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-?-induced NF-?B signaling that is required for the activation of I?B kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE). PMID:22733992

  4. Human tumour necrosis factor-alpha (TNF-alpha) directly stimulates arachidonic acid release in human neutrophils.

    PubMed Central

    Atkinson, Y H; Murray, A W; Krilis, S; Vadas, M A; Lopez, A F

    1990-01-01

    The ability of tumour necrosis factor-alpha (TNF-alpha) to directly stimulate phospholipid turnover from human neutrophils was studied. Stimulation with recombinant human (rH) TNF-alpha induced the release of significant amounts of radioactivity from [3H]arachidonic acid-labelled neutrophils. This stimulation was equipotent to that induced by the bacterial tripeptide formyl-methionyl-leucylphenylalanine (FMLP). The time of maximum stimulated release varied between donors, with the most common maximal stimulation being 45 min. Dose-response experiments indicated that 100-1000 U/ml rH TNF-alpha were required for the maximum stimulatory effect. High-performance liquid chromatography analysis of the supernatants revealed that the radioactivity was associated with arachidonic acid, but not with its metabolites, indicating that TNF-alpha stimulates the release of arachidonic acid from cellular phospholipids but does not stimulate its metabolism. A comparison of TNF-alpha with other cytokines indicated that stimulation of arachidonic acid release paralleled the 'priming' of neutrophils for enhanced superoxide production, raising the possibility that phospholipid turnover and priming of neutrophils are causally related. PMID:2162326

  5. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  6. Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP?)-induced loss of mesencephalic dopaminergic neurons.

    PubMed

    Khan, M M; Zaheer, S; Nehman, J; Zaheer, A

    2014-09-26

    Inflammation mediated by glial activation appears to play a critical role in the pathogenesis of Parkinson disease (PD). Glia maturation factor (GMF), a proinflammatory protein predominantly localized in the central nervous system was isolated, sequenced and cloned in our laboratory. We have previously demonstrated immunomodulatory and proinflammatory functions of GMF, but its involvement in 1-methyl-4-phenylpyridinium (MPP(+)), active metabolite of classical parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), inducing loss of dopaminergic (DA) neurons has not been studied. Here we show that altered expression of GMF has direct consequences on the production of reactive oxygen species (ROS) and nuclear factor-kappa B (NF-?B)- mediated production of inflammatory mediators by MPP(+). We examined MPP(+)-induced DA neuronal loss in primary cultures of mouse mesencephalic neurons/glia obtained from GMF-deficient (GMF knockout (GMF-KO)) and GMF-containing wild-type (Wt) mice. We demonstrate that deficiency of GMF in GMF-KO neurons/glia led to decreased production of ROS and downregulation of NF-?B-mediated production of tumor necrosis factor-alpha (TNF-?) and interleukin-1beta (IL-1?) as compared to Wt neurons/glia. Additionally, overexpression of GMF induced DA neurodegeneration, whereas GMF downregulation by GMF-specific shRNA protected DA neurons from MPP-induced toxicity. Subsequently, GMF deficiency ameliorates antioxidant balance, as evidenced by the decreased level of lipid peroxidation, less ROS production along with increased level of glutathione; and attenuated the DA neuronal loss via the downregulation of NF-?B-mediated inflammatory responses. In conclusion, our overall data indicate that GMF modulates oxidative stress and release of deleterious agents by MPP(+) leading to loss of DA neurons. Our study provides new insights into the potential role of GMF and identifies targets for therapeutic interventions in neurodegenerative diseases. PMID:25016212

  7. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex frontal, temporal (auditory), and medial temporal under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensorymotor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensorymotor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  8. Synergistic antiproliferative activity of tumor necrosis factor alpha (TNF-alpha) and lovastatin.

    PubMed

    Sora, M K; Kruszewski, A A; Stok?osa, T; Czyzyk, J; Lasek, W; Malejczyk, J; Jakbisiak, M

    1994-01-01

    We assessed the antiproliferative effect of tumor necrosis factor alpha (TNF-alpha) and lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, alone and in combination, on two murine tumor cell lines. Recombinant TNF-alpha inhibited proliferation of murine MmB16 melanoma cells in a concentration-dependent fashion but stimulated growth of murine L1210 leukemia cells at 0.1 ng/ml concentration. Lovastatin inhibited proliferation both of murine MmB16 melanoma cells and of murine L1210 leukemia cells in a concentration-dependent fashion. In combination with tumor necrosis factor alpha lovastatin inhibited synergistically growth of both cell lines as assessed by isobologram analysis. Our data show that lovastatin, a cholesterol synthesis inhibitor, introduced to the clinic to treat hypercholesterolemia, used either as a single or in combination with TNF-alpha inhibits growth of MmB16 melanoma and L1210 leukemia cells. PMID:7487365

  9. Interleukin-10 and tumour necrosis factor-alpha serum levels in chronic Chagas disease patients.

    PubMed

    Vasconcelos, R H T; Azevedo, E de A N; Diniz, G T N; Cavalcanti, M da G A de M; de Oliveira, W; de Morais, C N L; Gomes, Y de M

    2015-07-01

    In Chagas disease, chronically infected individuals may be asymptomatic or may present cardiac or digestive complications, and it is well known that the human immune response is related to different clinical manifestations. Different patterns of cytokine levels have been previously described in different clinical forms of this disease, but contradictory results are reported. Our aim was to evaluate the serum levels of interleukin-10 and tumour necrosis factor-alpha in patients with asymptomatic and cardiac Chagas disease. The serum interleukin-10 levels in patients with cardiomyopathy were higher than those in asymptomatic patients, mainly in those without heart enlargement. Although no significant difference was observed in serum tumour necrosis factor-alpha levels among the patients, we found that cardiac patients also present high levels of this cytokine, largely those with heart dilatation. Therefore, these cytokines play an important role in chronic Chagas disease cardiomyopathy. Follow-up investigations of these and other cytokines in patients with chronic Chagas disease need to be conducted to improve the understanding of the immunopathology of this disease. PMID:25728555

  10. Sensitive Immunoassay of a Biomarker Tumor Necrosis Factor-[alpha] Based on Poly(guanine)-Functionalized Silica Nanoparticle Label

    SciTech Connect

    Wang, Jun; Liu, Guodong; Engelhard, Mark H.; Lin, Yuehe

    2006-10-01

    A novel electrochemical immunosensor for the detection of tumor necrosis factor-alpha (TNF-a) based on poly(guanine)-functionalized silica nanoparticles (NPs) label is presented. The detection of mouse TNF-a via immunological reaction is based on a dual amplification: 1) a large amount of guanine residues is introduced on the electrode surface through the silica nanoparticle and immunoreaction, 2) mediator-induced catalytic oxidation of guanine, which results in great enhancement of anodic current. The synthesized silica NP conjugates were characterized with atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemistry. These experiments confirmed that poly[G] and avidin were immobilized on the surface of silica NPs. The performance of the electrochemical immunosensor was evaluated and some experiment parameters (e.g., concentration of Ru(bpy)32+, incubation time of TNF-a, etc.) were optimized. The detection of limit for TNF-a is found to be 5.0x10-11 g mL-1 (2.0 pM), which corresponds to 60 attomoles TNF-a in 30 uL. This immunosensor based on the poly[G] functionalized silica NP label offers great promise for rapid, simple, cost-effective analysis of biological samples.

  11. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart.

    PubMed Central

    Yokoyama, T; Vaca, L; Rossen, R D; Durante, W; Hazarika, P; Mann, D L

    1993-01-01

    To define the mechanism(s) responsible for the negative inotropic effects of tumor necrosis factor-alpha (TNF alpha) in the adult heart, we examined the functional effects of TNF alpha in the intact left ventricle and the isolated adult cardiac myocyte. Studies in both the ventricle and the isolated adult cardiac myocyte showed that TNF alpha exerted a concentration- and time-dependent negative inotropic effect that was fully reversible upon removal of this cytokine. Further, treatment with a neutralizing anti-TNF alpha antibody prevented the negative inotropic effects of TNF alpha in isolated myocytes. A cellular basis for the above findings was provided by studies which showed that treatment with TNF alpha resulted in decreased levels of peak intracellular calcium during the systolic contraction sequence; moreover, these findings did not appear to be secondary to alterations in the electrophysiological properties of the cardiac myocyte. Further studies showed that increased levels of nitric oxide, de novo protein synthesis, and metabolites of the arachidonic acid pathway were unlikely to be responsible for the TNF alpha-induced abnormalities in contractile function. Thus, these studies constitute the initial demonstration that the negative inotropic effects of TNF alpha are the direct result of alterations in intracellular calcium homeostasis in the adult cardiac myocyte. Images PMID:8227345

  12. Increased intestinal protein synthesis during sepsis and following the administration of tumour necrosis factor alpha or interleukin-1 alpha.

    PubMed Central

    von Allmen, D; Hasselgren, P O; Higashiguchi, T; Frederick, J; Zamir, O; Fischer, J E

    1992-01-01

    The influence of sepsis on intestinal protein synthesis was studied in rats. Sepsis was induced by caecal ligation and puncture (CLP); control rats were sham-operated. Protein synthesis was measured in vivo in the jejunum and ileum following a flooding dose of [14C]leucine. At 8 h after CLP the protein synthesis rate was increased by approx. 15% in jejunal mucosa, and at 16 h after CLP, the protein synthesis rate was increased by 50-60% in the mucosa and seromuscular layer of both jejunum and ileum. In a second series of experiments, rats were treated with recombinant tumour necrosis factor alpha (rTNF alpha) or recombinant interleukin-1 alpha (rIL-1 alpha) administered at a total dose of 300 micrograms/kg body weight over 16 h. Control rats received corresponding volumes of solvent. Treatment with rTNF alpha resulted in an approx. 25% increase in mucosal protein synthesis in jejunum. Following treatment with rIL-1 alpha, protein synthesis increased by 25% in jejunal mucosa and almost doubled in ileal mucosa. The results suggest that sepsis stimulates intestinal protein synthesis and that this response may, at least in part, be mediated by TNF and/or IL-1. PMID:1530589

  13. A synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the TNF?-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-?B-mediated GRO? expression.

    PubMed

    Lee, Da Young; Lee, Da Hyun; Jung, Jung You; Koh, Dongsoo; Kim, Geum-Soog; Ahn, Young-Sup; Lee, Young Han; Lim, Yoongho; Shin, Soon Young

    2016-01-01

    2-Hydroxy-3',5,5'-trimenthoxyochalcone (DK-139) is a synthetic chalcone-derived compound. This study evaluated the biological activity of DK-139 on the inhibition of tumor metastasis. Growth-regulated oncogene-alpha (GRO?) plays an important role in the progression of tumor development by stimulating angiogenesis and metastasis. In this study, DK-139 inhibited tumor necrosis factor alpha (TNF?)-induced GRO? gene promoter activity by inhibiting of I?B kinase (IKK) in MDA-MB231 cells. In addition, DK-139 prevented the TNF?-induced cell migration, F-actin formation, and invasive capability of MDA-MB-231 cells. These findings suggest that DK-139 is a potential drug candidate for the inhibition of tumor cell locomotion and invasion via the suppression of NF-?B-mediated GRO? expression. PMID:26602275

  14. N-Formyl-Methionyl-Leucyl-Phenylalanine Inhibits both Gamma Interferon- and Interleukin-10-Induced Expression of Fc?RI on Human Monocytes

    PubMed Central

    Beigier-Bompadre, Macarena; Barrionuevo, Paula; Alves-Rosa, Fernanda; Rubel, Carolina J.; Palermo, Marina S.; Isturiz, Martn A.

    2001-01-01

    Three different classes of receptors for the Fc portion of immunoglobulin G (Fc?Rs), Fc?RI, Fc?RII, and Fc?RIII, have been identified on human leukocytes. One of them, Fc?RI, is a high-affinity receptor capable of induction of functions that include phagocytosis, respiratory burst, antibody-dependent cell-mediated cytotoxicity (ADCC), and secretion of cytokines. This receptor is expressed on mononuclear phagocytes, and this expression is regulated by cytokines and hormones such as gamma interferon (IFN-?), IFN-?, interleukin-10 (IL-10), and glucocorticoids. We have recently demonstrated that the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) is capable of inducing a time-dependent downregulation of both Fc?RIIIB and Fc?RII in human neutrophils, altering Fc?R-dependent functions. Considering the biological relevance of the regulation of Fc?RI, we investigated the effect of FMLP on the overexpression of Fc?RI induced by both IFN-? and IL-10 on human monocytes. We demonstrate that FMLP significantly abrogated IFN-?- and IL-10-induced Fc?RI expression, although its basal level of expression was not altered. However, other IFN-?-mediated effects such as the overexpression of the major histocompatibility complex class II antigens and the enhancement of lipopolysaccharide-induced secretion of tumor necrosis factor alpha were not affected by FMLP treatment. The formyl peptide completely inhibited the IFN-?- and IL-10-induced enhancement of ADCC and phagocytosis carried out by adherent cells. The inhibitory effect of FMLP on Fc?RI upregulation could exert an important regulatory effect during the evolution of bacterial infections. PMID:11238229

  15. An IPTG Inducible Conditional Expression System for Mycobacteria.

    PubMed

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K; Sambandamurthy, Vasan K; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of ?-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain. PMID:26247874

  16. An IPTG Inducible Conditional Expression System for Mycobacteria

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K.; Sambandamurthy, Vasan K.; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain. PMID:26247874

  17. Induction of macrophage-mediated production of tumor necrosis factor alpha by an L-form derived from Staphylococcus aureus.

    PubMed Central

    Kuwano, K; Akashi, A; Matsu-ura, I; Nishimoto, M; Arai, S

    1993-01-01

    We investigated the capability of an L-form derived from Staphylococcus aureus to induce tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. The activity for TNF-alpha induction was found in the membrane fraction of the L-form but not in the cytoplasmal fraction purified by the sucrose step gradient centrifugation. TNF-alpha mRNA was also detected in macrophages stimulated with L-form membranes. L-form induced TNF-alpha production in macrophages from both lipopolysaccharide-responsive and -unresponsive mouse strains. Regardless of the presence of polymyxin B, the activity of TNF-alpha induction of L-form was mostly found in the phenol layer, but not in the aqueous layer, both of which were prepared by phenol extraction method. Fractions of L-form membranes representing molecular masses of approximately between 29 and 36 kDa were primarily responsible for inducing the production of TNF-alpha consistently. Moreover, this stimulatory effect was abolished by digestion with Streptomyces griseus protease. In Western blot (immunoblot) analysis with anti-lipoteichoic acid antibody, two bands (65 and 45 kDa) were observed in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phenol layer, whereas one band (14 kDa) was observed in either the aqueous layer or lipoteichoic acid of S. aureus. These results suggest that the component in the membrane of the L-form, distinct from cell wall components such as teichoic acid or lipopolysaccharide, possesses the capability to stimulate TNF-alpha production by macrophages. Images PMID:8478057

  18. Interleukin-12-induced adhesion molecule expression in murine liver.

    PubMed Central

    Myers, K. J.; Eppihimer, M. J.; Hall, L.; Wolitzky, B.

    1998-01-01

    Systemically administered interleukin (IL)-12 causes liver inflammation in mice characterized by Kupffer cell proliferation and hypertrophy, hepatocyte necrosis, and multifocal accumulations of leukocytes in the hepatic parenchyma and around portal tracts and central veins. We have used both immunohistochemical staining and radiolabeled antibody quantitation to examine adhesion molecule expression in the livers of mice dosed daily with murine IL-12. Cells infiltrating livers of IL-12-treated mice were primarily mononuclear leukocytes expressing LFA-1, VLA-4, MAC-1, and CD18 adhesion molecules but little L-selectin. Kupffer cells constitutively expressed LFA-1 and smaller amounts of MAC-1, and high levels of ICAM-1 were constitutively expressed by liver sinusoidal lining cells, portal tract, and central vein endothelia. With IL-12 treatment, existing ICAM-1 expression was up-regulated and de novo expression occurred along bile duct epithelia. VCAM-1 levels were dramatically increased, with induced expression occurring along portal tract and central vein endothelia and scattered bile duct epithelial cells and in aggregations of cells in perivascular areas and the liver parenchyma. Although constitutive expression of E- and P-selectin was negligible, Il-12 induced a moderate rise in E-selectin levels. These increases in adhesion molecule expression may have implications for the therapeutic use of IL-12, especially in patients with liver disease or autoimmune conditions where augmented adhesion molecule expression may be critical to disease pathogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9466572

  19. RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption.

    PubMed

    Zheng, Hong; Yu, Xuefeng; Collin-Osdoby, Patricia; Osdoby, Philip

    2006-06-01

    Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases. PMID:16613848

  20. Critical Roles of Glucocorticoid-Induced Leucine Zipper in Infectious Bursal Disease Virus (IBDV)-Induced Suppression of Type I Interferon Expression and Enhancement of IBDV Growth in Host Cells via Interaction with VP4

    PubMed Central

    Li, Zhonghua; Wang, Yongqiang; Li, Xiang; Li, Xiaoqi; Cao, Hong

    2013-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although IBDV-induced immunosuppression has been well established, the underlying exact molecular mechanism for such induction is not very clear. We report here the identification of IBDV VP4 as an interferon suppressor by interaction with the glucocorticoid-induced leucine zipper (GILZ) in host cells. We found that VP4 suppressed the expression of type I interferon in HEK293T cells after tumor necrosis factor alpha (TNF-?) treatment or Sendai virus (SeV) infection and in DF-1 cells after poly(IC) stimulation. In addition, the VP4-induced suppression of type I interferon could be completely abolished by knockdown of GILZ by small interfering RNA (siRNA). Furthermore, knockdown of GILZ significantly inhibited IBDV growth in host cells, and this inhibition could be markedly mitigated by anti-alpha/beta interferon antibodies in the cell cultures (P < 0.001). Thus, VP4-induced suppression of type I interferon is mediated by interaction with GILZ, a protein that appears to inhibit cell responses to viral infection. PMID:23152515

  1. Express yourself: bold individuals induce enhanced morphological defences

    PubMed Central

    Hulthn, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Hollander, Johan; Brnmark, Christer

    2014-01-01

    Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey's lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences. PMID:24335987

  2. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    PubMed Central

    2011-01-01

    Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata) were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA), an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia. PMID:21767382

  3. Airway-specific inducible transgene expression using aerosolized doxycycline.

    PubMed

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M; Fontaine, Benjamin A; Tager, Andrew M; Rajagopal, Jayaraj

    2013-12-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter-driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell-specific transgene expression using a cytokeratin 5 (also known as keratin 5)-driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  4. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    PubMed Central

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  5. Impact of Residual Inducer on Titratable Expression Systems

    PubMed Central

    Afroz, Taliman; Luo, Michelle L.; Beisel, Chase L.

    2015-01-01

    Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on all-or-none systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering. PMID:26348036

  6. Cloning of the DNA-binding subunit of human nuclear factor. kappa. B: The level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor. alpha

    SciTech Connect

    Meyer, R.; Hatada, E.N.; Bartsch, C.; Scheidereit, C. ); Hohmann, H.P.; Haiker, M.; Roethlisberger, U.; Lahm, H.W.; Schlaeger, E.J.; van Loon, A.P.G.M. )

    1991-02-01

    The DNA binding subunit of nuclear factor {kappa}B (NF-{kappa}B), a B-cell protein that interacts with the immunoglobulin {kappa} light-chain gene enhancer, has been purified from nuclei of human HL-60 cells stimulated with tumor necrosis factor {alpha} (TNF{alpha}), and internal peptide sequences were obtained. Overlapping cDNA clones were isolated and sequenced. The encoded open reading frame of about 105 kDa contained at its N-terminal half all six tryptic peptide sequences, suggesting that the 51-kDa NF-{kappa}B protein is processed from a 105-kDa precursor. An in vitro synthesized protein containing most of the N-terminal half of the open reading frame bound specifically to an NF-{kappa}B binding site. This region also showed high homology to a domain shared by the Drosophila dorsal gene and the avian and mammalian rel (proto)oncogene products. The level of the 3.8-kilobase mRNA was strongly increased after stimulation with TNF{alpha} or phorbol ester. Thus, both factors not only activate NF-{kappa}B protein, as described previously, but also induce expression of the gene encoding the DNA-binding subunit of NF-{kappa}B.

  7. Effect of transforming growth factor-alpha on inositol phospholipid metabolism in human epidermoid carcinoma cells

    SciTech Connect

    Kato, M.; Takenawa, T.; Twardzik, D.R.

    1988-08-01

    Transforming growth factor-alpha (TGF-alpha) stimulates (in a dose-dependent manner) the incorporation of (/sup 32/P)Pi into phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) in the human epidermoid carcinoma cell line (A431). The effect of TGF-alpha on the incorporation was found to be similar to that of EGF. On the other hand, a striking difference in the activation of diacylglycerol (DG) kinase activity was seen between TGF-alpha and EGF. At least 100 times more TGF-alpha was required to achieve maximal stimulation of DG kinase activity relative to EGF. These results suggest that the activation of DG kinase by TGF-alpha may involve a mechanism independent from or subsequent to activation of the EGF receptor.

  8. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro.

    PubMed

    Iino, Y; Toriyama, M; Kudo, K; Natori, Y; Yuo, A

    1992-10-01

    The mechanism of clinical effectiveness of low-dose and long-term erythromycin (EM) treatment for diffuse panbronchiolitis, sinobronchial syndrome, and associated otitis media with effusion was investigated by studying the effects of EM on tumor necrosis factor alpha (TNF-alpha) production by cultured human monocytes stimulated with lipopolysaccharide. At concentrations of 0.1 microgram/mL or more, EM inhibited TNF-alpha release from human monocytes stimulated by lipopolysaccharide in a dose-dependent manner. Of the other macrolides tested, roxithromycin, an EM derivative, also showed significant inhibition of TNF-alpha production, whereas josamycin failed to inhibit TNF-alpha release from monocytes. Nonmacrolidic drugs such as minocycline hydrochloride, ofloxacin, or penicillin G had no significant effect on TNF-alpha production. These results suggest that the clinical improvement of chronic respiratory diseases by EM may depend on the suppression of production of inflammatory cytokines such as TNF-alpha. PMID:1416647

  9. Bilateral diaphragmatic paralysis associated with the use of the tumor necrosis factor-alpha inhibitor adalimumab.

    PubMed

    Benjamin, Mina Mecheal; Martin, Alan William; Rosenblatt, Randall Lee

    2014-04-01

    A 51-year-old woman was referred for evaluation of progressive dyspnea of 3 months- duration. She had received 3 doses of adalimumab for treatment of rheumatoid arthritis prior to the onset of her dyspnea. Her chest examination revealed absent diaphragmatic movement with inspiration. Spirometry showed a severe restrictive defect. Radiologic studies confirmed the diagnosis of bilateral diaphragmatic paralysis. Laboratory and radiologic workup excluded other possible causes of the diagnosis. Adalimumab was discontinued, and she was treated with bilevel positive airway pressure ventilation and intravenous immunoglobulin. Three months later, the diaphragmatic paralysis persisted. This is the second reported case of bilateral diaphragmatic paralysis occurring in a patient who had received adalimumab. Acute neuropathies are rare side effects of tumor necrosis factor-alpha inhibitors. PMID:24688191

  10. Effects of fibronectin and group B streptococci on tumour necrosis factor-alpha production by human culture-derived macrophages.

    PubMed Central

    Peat, E B; Augustine, N H; Drummond, W K; Bohnsack, J F; Hill, H R

    1995-01-01

    Group B streptococci (GBS) are an important cause of sepsis and shock in the new-born. We have previously reported that GBS induce the production of tumour necrosis factor-alpha (TNF-alpha) by human monocytes and culture-derived macrophages. We have also shown that fibronectin (FN) promotes interaction between GBS and human phagocytes. In the present study, we investigated the effect of FN and GBS on the production of TNF-alpha by adult and neonatal culture-derived macrophages. We report that soluble FN alone was a strong stimulus for the production of TNF-alpha by culture-derived macrophages (FN 50 micrograms/ml = 623.33 +/- 47 pg/ml TNF, versus media alone 3 +/- 1.5 pg/ml; P < 0.0001). While GBS also induce the production of TNF-alpha by macrophages, the addition of FN to GBS had more than an additive effect on TNF-alpha levels. FN-mediated TNF-alpha production by macrophages was inhibited by both soluble arginine-glycine-aspartic acid (RGD) peptide (71%; P < 0.0001) and anti-beta 3-integrin monoclonal antibody 7G2 (54%; P < 0.0001). Neonatal culture-derived macrophages produced significantly more TNF-alpha in response to GBS (356.4 pg/ml +/- 27.7) than adult cells did (222.0 pg/ml +/- 21.0; P = 0.037), and dramatically more in response to FN alone (neonatal 1931.0 pg/ml +/- 23.0 versus adult 463.5 43.5 pg/ml; P < 0.0001). FN may contribute to the high levels of TNF-alpha production implicated in the pathophysiology of GBS sepsis and shock. PMID:7751028

  11. Adherence of Haemophilus somnus to tumor necrosis factor-alpha-stimulated bovine endothelial cells in culture.

    PubMed Central

    Kwiecien, J M; Little, P B; Hayes, M A

    1994-01-01

    Vascular thrombosis and tissue infarction is a principal lesion in Haemophilus somnus septicemia known also as thrombotic meningoencephalitis. This study was undertaken to examine whether tumor necrosis factor-alpha (TNF-alpha) can influence the adherence of H. somnus to cultured bovine aortic endothelial cells (BAEC). Confluent BAEC were exposed to 0-100 nM of human recombinant TNF-alpha for 12-48 h. Suspensions of different strains of H. somnus (approximately 1.5-3 x 10(8) labelled with [methyl-3H]-thymidine, were added to BAEC and incubated for 1.5 h. Initial studies with one pathogenic (P) strain and one non-pathogenic (NP) strain revealed that both strains adhered to normal endothelial cells but minimally to subendothelial matrix remaining after removal of BAEC. Adherence to BAEC was reduced by an excess of unlabelled H. somnus of the same strain. Adherence was enhanced for both strains by exposure of BAEC to TNF-alpha in a manner that increased with TNF-alpha concentration and with duration of exposure to TNF-alpha prior to addition of bacteria. A survey of adherence of six live P strains and six NP strains demonstrated considerable variation but no difference in adherence between P and NP strains to normal or to TNF-alpha-stimulated BAEC. However, TNF-alpha consistently increased adhesion of each strain to BAEC. Both P and NP strains caused more severe cytotoxic changes in TNF-alpha-treated BAEC. Tumor necrosis factor-alpha also increased adhesion of formalin-killed bacteria of P and NP strains.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. PMID:7954124

  12. A riboswitch-based inducible gene expression system for mycobacteria.

    PubMed

    Seeliger, Jessica C; Topp, Shana; Sogi, Kimberly M; Previti, Mary L; Gallivan, Justin P; Bertozzi, Carolyn R

    2012-01-01

    Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb. PMID:22279533

  13. Influence of ?S-globin haplotypes and hydroxyurea on tumor necrosis factor-alpha levels in sickle cell anemia

    PubMed Central

    Laurentino, Marlia Rocha; Maia, Pedro Aurio; Barbosa, Maritza Cavalcante; Bandeira, Izabel Cristina Justino; Rocha, Lilianne Brito da Silva; Gonalves, Romelia Pinheiro

    2014-01-01

    Background: Sickle cell anemia is a chronic inflammatory disease characterized by an increased production of proinflammatory cytokines including tumor necrosis factor-alpha. Hydroxyurea, by decreasing the polymerization of hemoglobin, reduces inflammatory states. The effect of the genetic polymorphisms of sickle cell patients on tumor necrosis factor-alpha levels remains unknown. Objective: The aim of this study was to investigate the association of tumor necrosis factor-alpha levels with ?-globin haplotypes and the use of hydroxyurea. Methods: A cross-sectional study was performed of 67 patients with sickle cell anemia diagnosed at steady-state in a referral hospital in Fortaleza, Cear, Brazil. A group of 26 healthy individuals was used as control. ?S-haplotype analysis was performed by restriction fragment length polymorphism-polymerase chain reaction. The tumor necrosis factor-alpha levels were measured by the enzyme-linked immunosorbent assay test. Laboratory data (complete blood count and fetal hemoglobin) and information regarding the use of hydroxyurea were obtained from medical records. Statistical analysis was performed using R software with the Kruskal-Wallis and Mann-Whitney tests. Statistical significance was established for p-values < 0.05 for all analyses. Results: The mean age of the participants was 35.48 years. Patients with sickle cell anemia had significantly higher tumor necrosis factor-alpha levels than controls (p-values < 0.0001). Tumor necrosis factor-alpha levels were lower in sickle cell anemia patients who were receiving hydroxyurea treatment than those who were not (p-value = 0.1249). Sickle cell anemia patients with Bantu/n genotype had significantly higher levels than patients with the Bantu/Benin genotype (p-value = 0.0021). Conclusion: In summary, ?S-globin haplotypes, but not hydroxyurea therapy, have a role in modulating tumor necrosis factor-alpha levels in sickle cell anemia adults at steady-state. Many previous studies have investigated prognosis and inflammatory states in sickle cell anemia patients, but the discovery that tumor necrosis factor-alpha levels vary according to the genetic polymorphism of the patient is a new finding. PMID:24790537

  14. The anti-inflammatory activity of the polyphenol resveratrol may be partially related to inhibition of tumour necrosis factor-alpha (TNF-alpha) pre-mRNA splicing.

    PubMed

    Leiro, Jos M; Varela, Monica; Piazzon, M Carla; Arranz, Juan A; Noya, Manuel; Lamas, Jesus

    2010-02-01

    The present study shows for the first time that the polyphenol resveratrol (RESV) blocks processing of tumour necrosis factor-alpha (TNF-alpha) pre-mRNA in mature mRNA. This study was carried out in turbot (Psetta maxima (L.)), a fish species that we are using to evaluate the effects of RESV on the inflammatory response in vertebrates. Treatment of turbot head kidney leucocytes with polysaccharides from the seaweed Ulva rigida (ulvan) resulted in an increase in TNF-alpha expression. RESV did not inhibit transcription but almost completely inhibited the production of mRNA in ulvan-induced cells and caused a notable increase in the level of unspliced TNF-alpha pre-mRNA. RESV also induced accumulation of IL-1beta pre-mRNA at the expense of mature mRNA, although the effects on IL-1beta were less evident than those on TNF-alpha. However, the housekeeping gene was not affected by RESV. We also evaluated the effects of RESV in vivo under an inflammatory stimulus and found an inhibitory effect on TNF-alpha and IL-1beta pre-mRNA splicing in turbot head kidney at 24 and 48h post-injection. In addition, RESV also reduced migration of cells to the peritoneal cavity under the same inflammatory stimulus. The results show that this fish species may be a useful model for analysing the effects of RESV on TNF-alpha and IL-1beta expression, and suggest that RESV could be used to decrease the levels of pro-inflammatory cytokines in vivo and to reduce inflammatory reactions in certain inflammatory diseases. PMID:19945165

  15. Suppression of lymphokine-activated killer (LAK) cell induction mediated by interleukin-4 and transforming growth factor-beta 1: effect of addition of exogenous tumour necrosis factor-alpha and interferon-gamma, and measurement of their endogenous production.

    PubMed Central

    Brooks, B; Chapman, K; Lawry, J; Meager, A; Rees, R C

    1990-01-01

    Recombinant human interleukin-4 (rhIL-4) and transforming growth factor-beta 1 (TGF-beta 1) suppressed the induction of lymphokine-activated killer (LAK) activity induced by recombinant human interleukin-2 (rhIL-2) in peripheral blood lymphocytes. DNA synthesis and the expression of the p55 alpha chain of the IL-2 receptor (Tac antigen) were also inhibited. The inhibitory effect was greatest when these factors were added during the first 48 h of a 4-day culture, with reduced cytolytic activity against both natural killer (NK) resistant and NK-sensitive tumour cell line targets. The suppressive action of both cytokines was accompanied by a reduction in tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) levels in lymphocyte culture supernatants. Recombinant human IFN-gamma (rhIFN-gamma), but not recombinant human TNF-alpha (rhTNF-alpha) was able to overcome the inhibitory effect of recombinant human interleukin-4 (rhIL-4) on LAK induction and DNA synthesis but not Tac antigen expression. However, cytotoxicity induced by rhIFN-gamma alone was also suppressed by rhIL-4 and TGF-beta 1, inferring that rhIFN-gamma-mediated abrogation of rhIL4 suppression was not simply a direct IL-2-independent effect on cytotoxicity. In addition, rhIL-4 did not increase TGF-beta production from rhIL-2-activated peripheral blood mononuclear cells, suggesting that rhIL-4 did not mediate reduction of rhIL-2 responses through the induction of TGF-beta release. PMID:2124961

  16. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    SciTech Connect

    Sharma, Som D.; Katiyar, Santosh K.

    2010-05-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  17. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system. PMID:15843898

  18. Skeletal muscle injury induces hepatocyte growth factor expression in spleen.

    PubMed

    Suzuki, Shunichi; Yamanouchi, Keitaro; Soeta, Chie; Katakai, Yuko; Harada, Rie; Naito, Kunihiko; Tojo, Hideaki

    2002-04-01

    Hepatocyte growth factor (HGF) is present in skeletal muscle and facilitates skeletal muscle regeneration by activating quiescent satellite cells and stimulating their proliferation. However, possible involvement of HGF from non-muscle organs during muscle regeneration is still uncovered. Since liver injury induces HGF expression in distal HGF-producing organs such as lung, kidney and spleen, we examined if this is the case in muscle injury in analogy. In rat femoral muscle, HGF protein levels were elevated within 1 h after muscle injury, with a simultaneous proteolytic activation of HGF protein. Semiquantitative RT-PCR analysis revealed an elevation of HGF mRNA expression after muscle injury in the liver and spleen, and also an increase of HGF protein levels in the spleen, suggesting the presence of endocrine HGF-inducing factor(s) during muscle regeneration. Indeed, the sera from the rat with muscle regeneration were capable of inducing HGF mRNA expression when applied to primary cultured spleen cells from intact rats. These results indicated that skeletal muscle injury induces HGF expression in the non-muscle HGF-producing organs, especially in the spleen, and suggested the possible involvement of non-muscle organ-derived HGF in activation/proliferation of satellite cells during muscle regeneration. PMID:11922624

  19. Gene expression profiling of replicative and induced senescence

    PubMed Central

    Purcell, Maggie; Kruger, Adele; Tainsky, Michael A

    2014-01-01

    Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence. PMID:25483067

  20. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    PubMed

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers. PMID:26603296

  1. Thyrotropin modifies activation of nuclear factor kappaB by tumour necrosis factor alpha in rat thyroid cell line.

    PubMed Central

    Kikumori, T; Kambe, F; Nagaya, T; Funahashi, H; Seo, H

    2001-01-01

    We have recently demonstrated that nuclear factor kappaB (NF-kappaB) mediates the tumour necrosis factor alpha (TNF-alpha)-dependent expression of the gene encoding interleukin 6 (IL-6) in rat thyroid FRTL-5 cells cultured in the presence of thyrotropin (TSH). In the present study we investigated how TSH is involved in the activation of NF-kappaB by TNF-alpha in the cells. Electrophoretic mobility-shift assay revealed that, in the absence of TSH, TNF-alpha activated a single protein-DNA complex containing the p50 subunit but not other NF-kappaB subunits such as p65. In contrast, two distinct protein-DNA complexes were activated in the presence of TSH: the faster-migrating complex contained only p50 subunit; the slower-migrating complex consisted of p65-p50 heterodimer. This TSH effect was mimicked by forskolin and thyroid-stimulating antibodies obtained from patients with Graves's disease, suggesting that an increase in intracellular cAMP is responsible for the induction of different NF-kappaBs by TNF-alpha. A transient transfection study with a luciferase reporter gene driven by multimerized NF-kappaB sites demonstrated that TNF-alpha increased the luciferase activities only in the presence of TSH, and that this increase was inhibited by the co-transfection of mutant p65, which prevented the function of wild-type p65 in a dominant-negative manner. Accordingly, TNF-alpha activated the expression of the IL-6 gene in the presence of TSH but not in its absence. Although the expression of the p105 gene, another known target for NF-kappaB, was increased by TNF-alpha in the absence of TSH, the presence of TSH further increased the mRNA level. Taken together, these observations indicate that the presence of TSH is crucial for the NF-kappaB-mediated actions of TNF-alpha on thyroid follicular cells. PMID:11237861

  2. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression. PMID:17850650

  3. Estrogen induces Vav1 expression in human breast cancer cells.

    PubMed

    Du, Ming-juan; Chen, Xiang-dong; Zhou, Xiao-li; Wan, Ya-juan; Lan, Bei; Zhang, Cui-zhu; Cao, Youjia

    2014-01-01

    Vav1, a guanine nucleotide exchange factor (GEF) for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17?-estradiol (E2), a typical estrogen receptor (ER) ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM), and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be ? form, not ?. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE). Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) analyses suggested that ER? might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells. PMID:24905577

  4. Estrogen Induces Vav1 Expression in Human Breast Cancer Cells

    PubMed Central

    Du, Ming-juan; Chen, Xiang-dong; Zhou, Xiao-li; Wan, Ya-juan; Lan, Bei; Zhang, Cui-zhu; Cao, Youjia

    2014-01-01

    Vav1, a guanine nucleotide exchange factor (GEF) for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17?-estradiol (E2), a typical estrogen receptor (ER) ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM), and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be ? form, not ?. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE). Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) analyses suggested that ER? might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells. PMID:24905577

  5. An immunohistochemical method for the detection of tumour necrosis factor alpha in cytospins of human bronchoalveolar lavage cells.

    PubMed

    Hamilton, S; Healy, M; Corris, P; Scott, R

    1995-06-01

    An immunohistochemical method for assessing the level of tumour necrosis factor-alpha in alveolar macrophages obtained by brochoalveolar lavage is described. Cytospins of mixed populations of lung cells were incubated first with a monoclonal antibody to CD68 and then with a specific peroxidase-labelled second antibody in a two-step reaction for the detection of the macrophage marker CD68. A second similarly based two-step reaction for the detection of tumour necrosis factor-alpha followed. Both reactions were visualized, on completion, using different coloured peroxidase substrates which produced a third colour in the event of dual deposition of the substrates. Dual substrate deposition was indicative of alveolar macrophages positive for tumour necrosis factor-alpha. This method has provided a specific and reproducible semi-quantitative test for the presence of tumour necrosis factor-alpha in human activated alveolar macrophages, which can be performed retrospectively on clinical material. A range of concentrations of the cytokine has been demonstrated in individual samples. This dual detection method has the potential for detection of any cell-associated protein product by minor modification of the described method. PMID:7558899

  6. Tumor Necrosis Factor-alpha Stimulates the Overproduction of Intestinal Apolipoprotein B48-containing Very Low Density Lipoproproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tumor necrosis factor-alpha(a)(TNFa), a proinflammatory cytokine, is involved in obesity-associated pathologies including type 2 diabetes and atherosclerosis. TNFa enhanced postprandial apoB48-VLDL1 overproduction by about 89% compared with the control after 90 min olive oil loading; TNFa did not si...

  7. Augmentation of the neutrophil response to Naegleria fowleri by tumor necrosis factor alpha.

    PubMed Central

    Ferrante, A

    1989-01-01

    Conditioned medium from phytohemagglutinin-stimulated human mononuclear leukocytes, previously shown to activate neutrophils for amoeba killing, was found to contain high levels of tumor necrosis factor alpha (TNF-alpha) by an enzyme-linked immunosorbent assay. The effects of human recombinant TNF-alpha on the response of human neutrophils to the pathogenic free-living amoeba Naegleria fowleri was studied in vitro. The data showed that recombinant human TNF-alpha augmented the neutrophil respiratory burst (assessed by the cytochrome c reduction assay and lucigenin-dependent chemiluminescence assay) in response to amoebae opsonized with human serum. The priming effects of TNF-alpha were transient; marked enhancement was found with short 5- to 30-min preincubations of neutrophils with the cytokine. The enhancement of oxygen radical production was evident with 20 U of TNF-alpha per 10(6) neutrophils and continued to increase with up to 100 U. TNF-alpha also augmented the neutrophil lysosomal enzyme release in response to N. fowleri. The results support previous reports suggesting an important role of neutrophil cytokine activation for effective immunity against free-living amoebae. PMID:2777375

  8. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease.

    PubMed Central

    Murch, S H; Braegger, C P; Walker-Smith, J A; MacDonald, T T

    1993-01-01

    This study determined the location and tissue density of cells immunoreactive for tumour necrosis factor alpha (TNF alpha) in intestinal specimens from 24 patients with chronic inflammatory bowel disease (15 with Crohn's disease, nine with ulcerative colitis) and 11 controls. There was significantly increased density of TNF alpha immunoreactive cells in the lamina propria of both ulcerative colitis and Crohn's disease specimens, although the distribution of these cells differed in the two conditions. In ulcerative colitis most of the TNF alpha immunoreactivity was seen in the subepithelial macrophages, with comparatively less in the deep lamina propria, while in Crohn's disease immunoreactive cells were distributed evenly throughout the lamina propria. Increased submucosal immunoreactivity was found only in Crohn's disease, in which TNF alpha positive macrophages tended to cluster around arterioles and venules, often infiltrating and disrupting vascular endothelium. It is suggested that this degree of TNF alpha production probably contributes significantly to the pathogenesis of both Crohn's disease and ulcerative colitis, by impairing the integrity of epithelial and endothelial membranes, increasing inflammatory cell recruitment, and by prothrombotic effects on the vascular endothelium. Images Figure 2 PMID:8031350

  9. Characterization of the survival effect of tumour necrosis factor-alpha in human neutrophils.

    PubMed

    Walmsley, S R; Cowburn, A S; Sobolewski, A; Murray, J; Farahi, N; Sabroe, I; Chilvers, E R

    2004-06-01

    Granulocyte apoptosis has been proposed as a fundamental, injury-limiting granulocyte-clearance mechanism. As such, inhibition of this process may prevent the resolution of inflammation. Our previous studies have shown that TNFalpha (tumour necrosis factor-alpha) has a bi-modal influence on the rate of constitutive neutrophil apoptosis in vitro, causing early acceleration and late inhibition of this process. The pro-apoptotic effect is uniquely TNFR1 (TNF receptor 1) and TNFR2-dependent and the latter survival process is mediated via phosphoinositide 3-kinase and NF-kappaB (nuclear factor-kappaB) activation. In the present study, we show that, in contrast with GM-CSF (granulocyte/macrophage colony-stimulating factor), the delayed addition (i.e. at 6 h) of TNFalpha increases its survival effect despite substantial loss of neutrophil TNFR1 and TNFR2 at that time. This paradox was resolved using PBMC (peripheral blood mononuclear cell)-deplete and 5% PBMC-replete neutrophil cultures, where the enhanced survival effect observed after delayed TNFalpha addition was shown to be PBMC-dependent. TNFR2-blocking antibodies had no effect on the late survival effect of TNFalpha, implying a TNFR1-dependent process. Finally, I-kappaBalpha (inhibitory kappaB-alpha) and NF-kappaB time-course studies demonstrated that the survival effects of both GM-CSF and TNFalpha could be explained by maintenance of functional NF-kappaB. PMID:15157159

  10. Plasma Levels of Tumor Necrosis Factor-Alpha and Interleukin-6 in Obsessive Compulsive Disorder

    PubMed Central

    Konuk, N.; Tek?n, I. O.; Ozturk, U.; Atik, L.; Atasoy, N.; Bektas, S.; Erdogan, A.

    2007-01-01

    Aim. Recent research implicated place of an immune mechanism in the pathophysiology of obsessive-compulsive disorder (OCD). Despite increasing evidence involvement of cytokine release in OCD, results of the studies are inconsistent. The aim of this study was to evaluate the plasma levels of the cytokines; tumor necrosis factor-alpha (TNF-?) and interleukin-6 (IL-6) in OCD patients. Methods. Plasma concentrations of TNF-? and IL-6 were measured in 31 drug-free outpatients with OCD, and 31-year age and sex-matched healthy controls. TNF-? and IL-6 concentrations in blood were determined by enzyme-linked immunosorbent assay (ELISA). Results. Both TNF-? and IL-6 levels showed statistically significant increases in OCD patients compared to controls (P < .000, P < .001, resp.). In addition, the age of onset was negatively correlated with TNF-? level (r = ?.402, P = .025) and duration of illness was weakly correlated with IL-6 levels (r : .357; P : .048) in patients group. Conclusion. OCD patients showed increases in TNF-? and IL-6 levels compared to the healthy controls. This study provides evidence for alterations in the proinflamatory cytokines which suggest the involvement of the immune system in the pathophysiology of OCD. PMID:17497035

  11. Using different drift gases to change separation factors (alpha) in ion mobility spectrometry

    PubMed

    Asbury; Hill

    2000-02-01

    The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas. PMID:10695145

  12. Tumor Necrosis Factor-Alpha and Polycystic Ovarian Syndrome: A Clinical, Biochemical, and Molecular Genetic Study

    PubMed Central

    Kodati, Vijayalakshmi; Erukkambattu, Jayashankar; Katragadda, Anuradha; Addepally, Uma; Hasan, Qurratulain

    2014-01-01

    Background: Tumor necrosis factor-alpha (TNF-?) appears to be linked with hyperandrogenism (HA), increased insulin resistance (IR), and obesity (Ob), which were common features noted with polycystic ovarian syndrome (PCOS). Our aim was to study the role of TNF-? in the pathogenesis of IR and Ob in PCOS, as well as a C850T (rs1799724) polymorphism in the promoter region of the TNF-? gene, in a group of 204 PCOS patients and 204 age-matched healthy controls. Results: Significant differences were observed between PCOS patients and controls. All the PCOS had elevated body mass index, waist circumference, waist-to-hip ratio, fasting insulin, homeostatic model assessment (HOMA) score, and serum TNF-? when compared with controls (p<0.05). Genotype distribution for the C-850T polymorphism was observed with the frequency of the variant T allele being 0% in the PCOS group and 9% in the control group (p=0.0032). Conclusions: In conclusion, our present results suggest that the TNF-? system might contribute to the pathogenesis of HA, Ob, and IR in PCOS independent of a polymorphism of the TNF-? C850T (rs1799724) in our population. PMID:25083576

  13. Interleukin-6 and tumor necrosis factor-alpha values in elk neonates

    USGS Publications Warehouse

    Barber-Meyer, S. M.; Johnson, C.R.; Murtaugh, M.P.; Mech, L.D.; White, P.J.

    2007-01-01

    Serological indicators of general condition would be helpful for monitoring or assessing ungulate wildlife. Toward that end, we report the 1st reference values for 2 cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-??), in neonatal elk (Cervus elaphus). We obtained blood samples from 140 calves ??? 6 days old in Yellowstone National Park during summer 2003-2005. TL-6 values ranged from 0 to 1.21 pg/ml with a median of 0.03 pg/ml. TNF-?? values ranged from 0 to 225.43 pg/ml with a median of 1.85 pg/ml. IL-6 and TNF-?? concentrations were not significant predictors of elk calf survival through 21 days. Development of ungulate-based IL-6 and TNF-?? assays that provide greater sensitivity than cross-reacting human-based assays could be helpful in monitoring ungulate condition and health status comparisons among herds. Such information could provide indirect assessments of range quality or environmental influences among herds. ?? 2007 American Society of Mammalogists.

  14. Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation.

    PubMed

    Kido, Shinsuke; Kuriwaka-Kido, Rika; Imamura, Takeshi; Ito, Yuji; Inoue, Daisuke; Matsumoto, Toshio

    2009-12-01

    Molecular mechanism of mechanical stress-induced bone formation remains unclear. We demonstrate that mechanical unloading suppresses and reloading enhances Interleukin (IL)-11 gene expression in the hindlimb of mice in vivo. Mechanical stress to osteoblasts by fluid shear stress (FSS) in vitro rapidly and transiently enhances fosB gene transcription, stimulates binding of DeltaFosB/JunD complex to activator protein (AP)-1 site of the IL-11 gene promoter, and enhances IL-11 gene transcription. Anti-IL-11 antibody blocks mechanical stress-induced enhancement of osteoblastogenesis and suppression of adipogenesis, suggesting the requirement of IL-11 for the stimulation of osteoblast differentiation by mechanical stress. Down-regulation of DeltaFosB/JunD by small interfering RNA (siRNA) suppresses and overexpression of DeltaFosB/JunD enhances IL-11 gene promoter activity. Consistent with our previous observations that up-regulation of DeltaFosB depends upon activation of cyclic AMP response element-binding protein (CREB) via Ca(2+)-dependent activation of extracellular signal-regulated kinase (ERK) to phosphorylate CREB, mechanical stress-induced activation of IL-11 gene transcription is dependent upon Ca(2+)-ERK pathway. Present results also demonstrated that FSS to osteoblasts enhances canonical Wnt signaling in vitro, and that mechanical unloading induces and reloading suppresses the expression of a canonical Wnt signal inhibitor, dickkopf2 (Dkk2), in vivo. In addition, IL-11 siRNA enhances Dkk2 expression suppressed by FSS, and osteoblasts from IL-11 transgenic mice show reduced Dkk2 mRNA expression than those from wild-type mice. These observations are consistent with the notion that mechanical stress stimulates IL-11 gene transcription via an enhanced DeltaFosB/JunD binding to the IL-11 gene promoter, and that increased IL-11 enhances canonical Wnt signal at least in part via a reduction in Dkk2 expression to stimulate osteoblast differentiation. PMID:19665600

  15. Cytokine expression and signaling in drug-induced cellular senescence.

    PubMed

    Novakova, Z; Hubackova, S; Kosar, M; Janderova-Rossmeislova, L; Dobrovolna, J; Vasicova, P; Vancurova, M; Horejsi, Z; Hozak, P; Bartek, J; Hodny, Z

    2010-01-14

    Cellular senescence guards against cancer and modulates aging; however, the underlying mechanisms remain poorly understood. Here, we show that genotoxic drugs capable of inducing premature senescence in normal and cancer cells, such as 5-bromo-2'-deoxyuridine (BrdU), distamycin A (DMA), aphidicolin and hydroxyurea, persistently activate Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling and expression of interferon-stimulated genes (ISGs), such as MX1, OAS, ISG15, STAT1, PML, IRF1 and IRF7, in several human cancer cell lines. JAK1/STAT-activating ligands, interleukin 10 (IL10), IL20, IL24, interferon gamma (IFNgamma), IFNbeta and IL6, were also expressed by senescent cells, supporting autocrine/paracrine activation of JAK1/STAT. Furthermore, cytokine genes, including proinflammatory IL1, tumor necrosis factor and transforming growth factor families, were highly expressed. The strongest inducer of JAK/STAT signaling, cytokine production and senescence was BrdU combined with DMA. RNA interference-mediated knockdown of JAK1 abolished expression of ISGs, but not DNA damage signaling or senescence. Thus, although DNA damage signaling, p53 and RB activation, and the cytokine/chemokine secretory phenotype are apparently shared by all types of senescence, our data reveal so far unprecedented activation of the IFNbeta-STAT1-ISGs axis, and indicate a less prominent causative role of IL6-JAK/STAT signaling in genotoxic drug-induced senescence compared with reports on oncogene-induced or replicative senescence. These results highlight shared and unique features of drug-induced cellular senescence, and implicate induction of cancer secretory phenotype in chemotherapy. PMID:19802007

  16. Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte proliferation in transgenic mice.

    PubMed Central

    Webber, E. M.; Wu, J. C.; Wang, L.; Merlino, G.; Fausto, N.

    1994-01-01

    Transforming growth factor-alpha (TGF-alpha) expression is associated with hepatocyte DNA replication both in vivo and in culture. Our previous work using TGF-alpha transgenic mice showed that constitutive overexpression of this growth factor in the liver causes hepatic tumors in 75 to 80% of the animals at 12 to 15 months of age. To understand the cellular events by which TGF-alpha overexpression leads to abnormal liver growth, we examined hepatocyte proliferative activity in young and old TGF-alpha transgenic mice and hepatocyte ploidy in normal, dysplastic, and neoplastic livers of these animals. At 4 weeks of age, transgenic mice had higher liver weights and liver weight/body weight ratios than non-transgenic mice of the same age and hepatocyte proliferative activity, measured by 3H-thymidine incorporation after 3- and 7-day infusion, proliferating cell nuclear antigen staining, and mitotic index determination, was 2 to 3 times higher than in controls. In both transgenic and non-transgenic mice hepatocyte proliferation declined with age but the decrease was much more pronounced in control animals, so that at 8 months of age, hepatocyte replication was 8 to 10 times higher in transgenic animals. Surprisingly, however, transgenic and non-transgenic mice at this age had similar liver weight/body weight ratios. Labeling studies done in 3-month-old animals revealed that hepatocyte turnover was much faster in transgenic than in control animals, suggesting that a homeostatic compensatory mechanism involving cell death tended to restore normal liver weight/body weight ratios in older transgenic mice. Ploidy analyses showed that at 4 weeks of age transgenic mice had a higher proportion of diploid and tetraploid hepatocytes and that the hepatocellular tumors which developed in TGF-alpha transgenic mice at 13 months of age contained a higher fraction of diploid hepatocytes than that present in adjacent tissue or in dysplastic livers. The results demonstrate that constitutive overexpression of TGF-alpha causes increased hepatocyte proliferation and liver enlargement in young animals and is associated with a delay in the establishment of hepatic polyploidy. These findings as well as the response of transgenic mice to partial hepatectomy show that constitutive overexpression of TGF-alpha initially caused increased but regulated hepatocyte proliferation which in older animals was compensated in part by a faster cell turnover. At 8 to 10 months of age, proliferative activity may become constitutive in some TGF-alpha expressing hepatocytes.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 4 PMID:8053497

  17. Radiocurability by Targeting Tumor Necrosis Factor-{alpha} Using a Bispecific Antibody in Carcinoembryonic Antigen Transgenic Mice

    SciTech Connect

    Larbouret, Christel; Robert, Bruno; Linard, Christine; Teulon, Isabelle; Gourgou, Sophie M.Sc.; Bibeau, Frederic; Martineau, Pierre; Santoro, Lore; Pouget, Jean-Pierre; Pelegrin, Andre; Azria, David

    2007-11-15

    Purpose: Tumor necrosis factor-{alpha} (TNF-{alpha}) enhances radiotherapy (RT) killing of tumor cells in vitro and in vivo. To overcome systemic side effects, we used a bispecific antibody (BsAb) directed against carcinoembryonic antigen (CEA) and TNF-{alpha} to target this cytokine in a CEA-expressing colon carcinoma. We report the evaluation of this strategy in immunocompetent CEA-transgenic mice. Methods and Materials: The murine CEA-transfected colon carcinoma MC-38 was used for all experiments. In vitro, clonogenic assays were performed after RT alone, TNF-{alpha} alone, and RT plus TNF-{alpha}. In vivo, the mice were randomly assigned to treatment groups: control, TNF-{alpha}, BsAb, BsAb plus TNF-{alpha}, RT, RT plus TNF-{alpha}, and RT plus BsAb plus TNF-{alpha}. Measurements of endogenous TNF-{alpha} mRNA levels and evaluation of necrosis (histologic evaluation) were assessed per treatment group. Results: In vitro, combined RT plus TNF-{alpha} resulted in a significant decrease in the survival fraction at 2 Gy compared with RT alone (p < 0.00001). In vivo, we observed a complete response in 5 (50%) of 10, 2 (20%) of 10, 2 (18.2%) of 11, and 0 (0%) of 12 treated mice in the RT plus BsAb plus TNF-{alpha}, RT plus TNF-{alpha}, RT alone, and control groups, respectively. This difference was statistically significant when TNF-{alpha} was targeted with the BsAb (p = 0.03). The addition of exogenous TNF-{alpha} to RT significantly increased the endogenous TNF-{alpha} mRNA level, particularly when TNF-{alpha} was targeted with BsAb (p < 0.01). The percentages of necrotic area were significantly augmented in the RT plus BsAb plus TNF-{alpha} group. Conclusion: These results suggest that targeting TNF-{alpha} with the BsAb provokes RT curability in a CEA-expressing digestive tumor syngenic model and could be considered as a solid rationale for clinical trials.

  18. TNF alpha gene and protein expression in alveolar macrophages in acute and chronic hyperoxia-induced lung injury.

    PubMed

    Horinouchi, H; Wang, C C; Shepherd, K E; Jones, R

    1996-06-01

    Alveolar-capillary membrane remodeling, including microvessel wall thickening and interstitial fibrosis, is a well-known sequela of cell proliferation in the hyperoxia-injured lung. The array of growth molecules released locally that potentially mediate this response, and their cell(s) of origin, are currently being defined. To elucidate the role of tumor necrosis factor alpha (TNF alpha), an effector molecule of cell injury and proliferation, and the role of the alveolar macrophage (AM) as its source during the acute (1 to 24 h) and chronic stages (3 to 28 days) of hyperoxia-induced injury, we have analyzed gene and protein expression in cells recovered from rat lung by bronchoalveolar lavage. In the hyperoxic lung, cell number was similar to that in normal lung (1 x 10(6)) except on day 7, when it was higher (5 x 10(6)). Virtually all cells recovered from the normal and hyperoxic lung were AMs, with the exception that on days 3 and 7 of hyperoxia these cells represented 69% and 55% of the population, respectively, and polymorphonuclear leukocytes and lymphocytes the remainder. Probe specificity was confirmed by detection of TNF alpha RNA (1.6 kb) from lung cells recovered after lipopolysaccharide (LPS) treatment (positive control) and from the hyperoxic lung (at day 3), with an extremely low level of constitutive expression detected in cells from normal lung. In cytospin preparations, TNF alpha mRNA transcripts were detected in few AMs recovered from normal lung and in most AMs after LPS treatment. In the hyperoxic lung, a signal was detected at 3 h, when approximately 25% of the population was positive. The number of hybridizing cells then increased, being highest on day 7 (day 1 approximately 30%, day 3 approximately 58%, day 7 approximately 90%, day 28 approximately 65%). No expression of TNF alpha protein was detected in AMs from normal lung; positive cells were detected in the hyperoxic lung from day 1 and thereafter. We conclude from upregulation of the TNF alpha gene in a significant number of cells, and from the increase in the number expressing biologically active protein, that AMs are an important source of this molecule both in the acute and chronic stages of hyperoxic lung injury. It is anticipated that an increased understanding of the cellular sources of mediators effecting vascular and alveolar wall remodeling in vivo will contribute to the development of strategies to inhibit the response. PMID:8652183

  19. Microarray studies of psychostimulant-induced changes in gene expression.

    PubMed

    Yuferov, Vadim; Nielsen, David; Butelman, Eduardo; Kreek, Mary Jeanne

    2005-03-01

    Alterations in the expression of multiple genes in many brain regions are likely to contribute to psychostimulant-induced behaviours. Microarray technology provides a powerful tool for the simultaneous interrogation of gene expression levels of a large number of genes. Several recent experimental studies, reviewed here, demonstrate the power, limitations and progress of microarray technology in the field of psychostimulant addiction. These studies vary in the paradigms of cocaine or amphetamine administration, drug doses, route and also mode of administration, duration of treatment, animal species, brain regions studied and time of tissue collection after final drug administration. The studies also utilize different microarray platforms and statistical techniques for analysis of differentially expressed genes. These variables influence substantially the results of these studies. It is clear that current microarray techniques cannot detect small changes reliably in gene expression of genes with low expression levels, including functionally significant changes in components of major neurotransmission systems such as glutamate, dopamine, opioid and GABA receptors, especially those that may occur after chronic drug administration or drug withdrawal. However, the microarray studies reviewed here showed cocaine- or amphetamine-induced alterations in the expression of numerous genes involved in the modulation of neuronal growth, cytoskeletal structures, synaptogenesis, signal transduction, apoptosis and cell metabolism. Application of laser capture microdissection and single-cell cDNA amplification may greatly enhance microarray studies of gene expression profiling. The combination of rapidly evolving microarray technology with established methods of neuroscience, molecular biology and genetics, as well as appropriate behavioural models of drug reinforcement, may provide a productive approach for delineating the neurobiological underpinnings of drug responses that lead to addiction. PMID:15849024

  20. Viral gene expression potentiates reovirus-induced necrosis.

    PubMed

    Hiller, Bradley E; Berger, Angela K; Danthi, Pranav

    2015-10-01

    Infection of some cell types by reovirus evokes a caspase-independent form of cell death resembling necrosis. While reovirus strain T3D induces necrosis much more efficiently than strain T1L, which viral components contribute to this difference is not known. In this study, we identified that the sialic acid binding property of the reovirus ?1 protein affects necrosis efficiency. We found that in addition to sialic acid engagement by the virus particles, viral gene expression, in the form of viral RNA or protein synthesis, is also required for necrosis induction. Our studies reveal that sialic acid does not directly participate in necrosis induction by initiating a signaling pathway. Instead, sialic acid engagement augments necrosis induction indirectly, by increasing reovirus gene expression in each infected cell. Comparison of our results with previous studies suggests that reovirus-induced apoptosis and necrosis are initiated by distinct stages of viral infection. PMID:26226583

  1. Tumour necrosis factor-alpha interacts with laminin and functions as a pro-adhesive cytokine.

    PubMed

    Hershkoviz, R; Goldkorn, I; Lider, O

    1995-05-01

    Certain cytokines, chemokines and growth factors interact with components of the extracellular matrix (ECM) and, in particular, sulphated polysaccharides and proteoglycans. Recently, we demonstrated that tumour necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, can bind fibronectin (FN), a cell-adhesive glycoprotein of the ECM, and that TNF-alpha bound to FN enhances the binding of T cells to the glycoprotein. In the present study, we studied the interactions of TNF-alpha and laminin (LN), another glycoprotein present in basement membranes and extracellular matrices. 125I-labelled TNF-alpha was found to bind to immobilized LN, and more avidly to the E1 and P1 fragments of LN, which contain its integrin- and non-integrin-dependent cell-adhesive sites, suggesting that cryptic TNF-alpha-binding sites are exposed upon proteolytic fragmentation of LN by enzymes such as elastase or pepsin. The bound cytokine did not dissociate from the LN and its fragments during a 24-hr period, indicating that in vivo LN can serve to restrict TNF-alpha adjacent to inflammatory sites. The LN-associated TNF-alpha retained at least some of its biological activities, since both diffusible and, to a greater extent, LN-bound TNF-alpha elevated the beta 1-integrin-dependent adhesion to LN of phorbol ester-activated human CD4+ T cells. Thus, LN and TNF-alpha may act in concert to transmit synergistic activating signals to infiltrating leucocytes, and thereby regulate immune cell reactions in extravascular inflammatory tissue. PMID:7635514

  2. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants

    SciTech Connect

    Shaw, G.M.; Wasserman, C.R.; O`Malley, C.D.

    1996-03-01

    Results of studies determine whether women who smoke during early pregnancy are at increased risk of delivering infants with orofacial clefts have been mixed, and recently a gene-environment interaction between maternal smoking, transforming growth factor-alpha (TGFa), and clefting has been reported. Using a large population-based case-control study, we investigated whether parental periconceptional cigarette smoking was associated with an increased risk for having offspring with orofacial clefts. We also investigated the influence of genetic variation of the TGFa locus on the relation between smoking and clefting. Parental smoking information was obtained from telephone interviews with mothers of 731 (84.7% of eligible) orofacial cleft case infants and with mothers of 734 (78.2%) nonmalformed control infants. DNA was obtained from newborn screening blood spots and genotyped for the allelic variants of TGFa. We found that risks associated with maternal smoking were most elevated for isolated cleft lip with or without cleft palate, (odds ratio 2.1 [95% confidence interval 1.3-3.6]) and for isolated cleft palate (odds ratio 2.2 [1.1-4.5]) when mothers smoked {ge} 20 cigarrettes/d. These risks for white infants ranged from 3-fold to 11-fold across phenotypic groups. Paternal smoking was not associated with clefting among the offspring of nonsmoking mothers, and passive smoke exposures were associated with at most slightly increased risks. This study offers evidence that the risk for orofacial clefting in infants may be influenced by maternal smoke exposures alone as well as in combination (gene-environment interaction) with the presence of the uncommon TGFa allele. 56 refs., 5 tabs.

  3. Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-alpha.

    PubMed

    Chakraborty, G; Ziemba, S; Drivas, A; Ledeen, R W

    1997-11-01

    Purified myelin from mouse brain was found to contain two forms of neutral sphingomyelinase, one Mg2+ dependent and the other Mg2+ independent. The former had a pH optimum of 7.5 and Km of 0.35 mM, whereas the corresponding values for the latter were pH 8.0 and Km 3.03 mM. Specific activity of the Mg(2+)-dependent enzyme showed a rostral-caudal gradient, ranging from 75 nmol/mg protein/hr in myelin from cerebral hemispheres to 21 nmol/mg protein/hr in myelin from spinal cord. Relative specific activity was approximately 20% that of brain stem or cerebral hemisphere homogenate. Treatment of myelin with taurocholate or high salt concentration did not significantly reduce activity of the Mg(2+)-dependent enzyme. The activity of that enzyme did not change with time or in the presence or absence of protease inhibitors; by contrast, that of Mg(2+)-independent enzyme decreased sharply in the absence of protease inhibitors but rose in their presence. To test for the effect of tumor necrosis factor-alpha (TNF alpha) on myelin sphingomyelinase, mouse brain myelin was labeled in vivo by intracerebral injection of [3H]acetate into 18-20-day-old mice. After 40 hr, brain stems were removed, minced, and treated with TNF alpha in Krebs-Ringer solution, after which myelin was immediately isolated. Separation and counting of individual lipids revealed TNF alpha treatment to cause increased labeling of myelin ceramide and cholesterol ester with concomitant decrease in myelin sphingomyelin. Western blotting of myelin proteins using antibodies to the two TNF alpha receptors as probes revealed the presence of the p75 receptor. Implications of these findings in relation to possible mechanisms of autoimmune demyelination are discussed. PMID:9364332

  4. Estimation of salivary tumor necrosis factor-alpha in chronic and aggressive periodontitis patients

    PubMed Central

    Varghese, Sheeja S.; Thomas, Hima; Jayakumar, N. D.; Sankari, M.; Lakshmanan, Reema

    2015-01-01

    Introduction: Periodontitis is a chronic bacterial infection characterized by persistent inflammation, connective tissue breakdown and alveolar bone destruction mediated by pro-inflammatory mediators. Tumor necrosis factor-alpha (TNF-α) is an important pro-inflammatory mediator that produced causes destruction of periodontal tissues. Objective: The aim of the study is to estimate the salivary TNF-α in chronic and aggressive periodontitis and control participants and further correlate the levels with clinical parameter such as gingival index (GI), plaque index (PI), probing pocket depth (PPD) and clinical attachment loss. Materials and Methods: The study population consisted of 75 subjects age ranging from 25 to 55 years attending the outpatient section of Department of Periodontics, Saveetha Dental College and Hospital. The study groups included Groups 1, 2, and 3 with participants with healthy periodontium (n = 25), generalized chronic periodontitis (n = 25) and generalized aggressive periodontitis (n = 25), respectively. Salivary samples from the participants were used to assess the TNF-α levels using enzyme-linked immunosorbent assay. Results: GI and PI were found to be significantly higher in chronic and aggressive periodontitis compared to the controls. The mean TNF-α value in chronic periodontitis patients (12.92 ± 17.21 pg/ml) was significantly higher than in control subjects (2.15 ± 3.60 pg/ml). Whereas, in aggressive periodontitis patients the mean TNF-α (7.23 ± 7.67) were not significantly different from chronic periodontitis or healthy subjects. Among periodontitis participants, aggressive periodontitis subjects exhibited a significant positive correlation between the salivary TNF-α and PPD. Conclusion: Salivary TNF-α levels are significantly higher in chronic periodontitis than in healthy subjects, but there was no significant correlation with the clinical parameters. PMID:26604566

  5. Sputum tumour necrosis factor-alpha and leukotriene concentrations in cystic fibrosis.

    PubMed Central

    Greally, P; Hussein, M J; Cook, A J; Sampson, A P; Piper, P J; Price, J F

    1993-01-01

    It is postulated that a vigorous host inflammatory response in the cystic fibrosis lung contributes to lung injury. Tumour necrosis factor-alpha (TNF-alpha) may play a part in that process and in the generation of leukotrienes. Therefore, the relationships between sputum TNF-alpha, leukotriene concentration, and lung function abnormalities in 16 children with cystic fibrosis were investigated. Each subject provided sputum samples and performed spirometry. TNF-alpha was measured by enzyme linked immunosorbent assay; individual leukotrienes were separated using high performance liquid chromatography and quantified by radioimmunoassay. The geometric mean concentration of TNF-alpha was 129.7 pg/ml and 95% confidence interval 48.2 to 348.3. Mean (SEM) leukotriene B4 (LTB4) was 97.8 (22.9) pmol/g and total cysteinyl leukotrienes were 60.9 (14.8) pmol/g. Mean (SD) forced expiratory volume in one second (FEV1) of the group was 53 (15)% of predicted and forced vital capacity (FVC) was 65 (14)% of predicted. There was a significant positive correlation between TNF-alpha and both LTB4 and the total cysteinyl leukotriene sputum content. An inverse relationship existed between TNF-alpha and FEV1 and FVC. Moreover, a negative correlation was observed between sputum LTB4 and FEV1 and FVC. These results suggest that TNF-alpha and the leukotrienes may participate in the airways inflammation and airflow obstruction observed in cystic fibrosis subjects and support the hypothesis that TNF-alpha upregulates the 5-lipoxygenase pathway in vivo. PMID:8385438

  6. Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production

    PubMed Central

    Wicke, Corinna; Machicao, Fausto; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert

    2008-01-01

    Background The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. Methodology and Principal Findings Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = −0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = −0.36, p = 0.01). Conclusions and Significance We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis. PMID:18335040

  7. Hypoxia inducible factors regulate filaggrin expression and epidermal barrier function

    PubMed Central

    Wong, Waihay J.; Richardson, Theresa; Seykora, John T.; Cotsarelis, George; Simon, M. Celeste

    2014-01-01

    A functional epidermal skin barrier requires the formation of a cornified envelope from terminally differentiating keratinocytes. During this process, multiple genetic and environmental signals coordinately regulate protein expression and tissue differentiation. Here we describe a critical role for hypoxia-inducible factors (HIFs) in the regulation of filaggrin expression and skin barrier formation. Similar to other mammalian tissues, fetal epidermis in mice is normally O2-deprived. Simultaneous deletion of Hif1a and Hif2a in murine epidermis revealed defects in keratinocyte terminal differentiation and epidermal barrier formation. Mice lacking Hif1a and Hif2a in the epidermis exhibited dry flaky skin, impaired permeability barrier, and enhanced sensitivity to cutaneous allergens. These defects were correlated with stratum granulosum attenuation and reduced filaggrin expression. Hypoxic treatment of primary keratinocytes induced filaggrin (Flg) gene expression in a HIF1?- and HIF2?-dependent manner, suggesting that one mechanism by which Hif1a and Hif2a loss causes epidermal barrier defects in mice lies in Flg dysregulation. Therefore, low O2 tension is an essential component of the epidermal environment that contributes to skin development and function. PMID:24999590

  8. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  9. RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells.

    PubMed

    Wittrant, Yohann; Lamoureux, François; Mori, Kanji; Riet, Anne; Kamijo, Akira; Heymann, Dominique; Redini, Françoise

    2006-01-01

    The POS-1 murine model of osteolytic osteosarcoma was used to elucidate the molecular and cellular mechanisms involved in the development of primary bone tumors and associated lung metastasis. The POS-1 cell line is derived from an osteosarcoma tumor which develops spontaneously in C3H mice. The POS-1 cell line was characterized in vitro by mineralization capacity and expression of bone markers by semi-quantitative RT-PCR, compared to primary osteoblasts and bone marrow cells. POS-1 cells showed no mineralization capacity and exhibited an undifferentiated phenotype, expressing both osteoblastic and unexpected osteoclastic markers (TRAP, cathepsin K and RANK). Thereby, experiments were performed to determine whether RANK was functional, by studying the biological activity of murine RANKL through the receptor RANK expressed on POS-1 cells. Results revealed a RANKL-induced increase in ERK phosphorylation, as well as BMP-2 induction at the mRNA and protein levels, and a decrease of POS-1 cell proliferation in the presence of 10 ng/ml RANKL. BMP-2 induction is dependent on the ERK 1/2 signal transduction pathway, as its expression is abolished in the presence of UO126, a specific synthetic inhibitor of the ERK 1/2 pathway. Moreover, a 2-fold molar excess of soluble RANK blocks the RANKL-induced BMP-2 expression, demonstrating that the biological effects of RANKL observed in POS-1 cells are mediated by RANK. This is the first report describing a functional RANK expressed on osteosarcoma cells, as shown by its ability to induce signal transduction pathways and biological activity when stimulated by RANKL. PMID:16328004

  10. Co-expression analysis of differentially expressed genes in hepatitis C virus-induced hepatocellular carcinoma

    PubMed Central

    SONG, QINGFENG; ZHAO, CHANG; OU, SHENGQIU; MENG, ZHIBIN; KANG, PING; FAN, LIWEI; QI, FENG; MA, YILONG

    2015-01-01

    The aim of the current study was to investigate the molecular mechanisms underlying hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) using the expression profiles of HCV-infected Huh7 cells at different time points. The differentially expressed genes (DEGs) were identified with the Samr package in R software once the data were normalized. Functional and pathway enrichment analysis of the identified DEGs was also performed. Subsequently, MCODE in Cytoscape software was applied to conduct module analysis of the constructed co-expression networks. A total of 1,100 DEGs were identified between the HCV-infected and control samples at 12, 18, 24 and 48 h post-infection. DEGs at 24 and 48 h were involved in the same signaling pathways and biological processes, including sterol biosynthetic processes and tRNA amino-acylation. There were 22 time series genes which were clustered into 3 expression patterns, and the demarcation point of the 2 expression patterns that 401 overlapping DEGs at 24 and 48 h clustered into was 24 h post-infection. tRNA synthesis-related biological processes emerged at 24 and 48 h. Replication and assembly of HCV in HCV-infected Huh7 cells occurred mainly at 24 h post-infection. In view of this, the screened time series genes have the potential to become candidate target molecules for monitoring, diagnosing and treating HCV-induced HCC. PMID:25339452

  11. Responses to welding fumes: lung injury, inflammation, and the release of tumor necrosis factor-alpha and interleukin-1 beta.

    PubMed

    Antonini, J M; Krishna Murthy, G G; Brain, J D

    1997-01-01

    Possible mechanisms were examined whereby welding fumes may elicit injury and inflammation in the lungs. The effects of different welding fumes on lung macrophages and on the in vivo production of two inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), were assessed. Fume was collected during flux-covered manual metal are welding using a stainless steel consumable electrode (MMA-SS) and gas metal are welding using a mild steel electrode (GMA-MS). For the in vitro study, bronchoalveolar lavage was performed on untreated rats to recover lung macrophages, and the effects of the welding fumes on macrophage viability and respiratory burst were examined. In vivo, additional rats were intratracheally instilled with the welding fumes at a dose of 1 mg/100 g body weight. These rats were lavaged 1, 14, and 35 days postinstillation, and indicators of lung damage (cellular differential, albumin. TNF-alpha and IL-1 beta release, and lactate dehydrogenase and beta-n-acetyl glucosaminidase activities) were measured. In vitro, the MMA-SS fume was more cytotoxic to the macrophages and induced a greater release of reactive oxygen species as measured by the respiratory burst compared to the GMA-MS fume. In vivo, evidence of lung damage was observed for both fumes 1 day postinstillation. By 14 days, lung responses to the GMA-MS fume had subsided and were not different from the saline vehicle control group. Significant lung damage was still observed for the MMA-SS group at 14 days, but by 35 days, the responses had returned to control values. One day after the instillations, both welding fumes had detectable levels of TNF-alpha and IL 1 beta within the lavage fluid. However, the MMA-SS particles caused a significantly greater release of both cytokines in the lavage fluid than did the GMA-MS group. The results demonstrate that MMA-SS fume caused more pneumoloxicity than GMA-MS. This increased response may reflect enhanced macrophage activation, the increased production of reactive oxygen species, as well as secretion of TNF-alpha and IL-1 beta. PMID:9184789

  12. Tumor Necrosis Factor-alpha Potentiates the Cytotoxicity of Amiodarone in Hepa1c1c7 Cells: Roles of Caspase Activation and Oxidative Stress

    PubMed Central

    Ganey, Patricia E.

    2013-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-?) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, ?-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. ?-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity. PMID:23042730

  13. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    SciTech Connect

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi; Furukawa, Kaoru; Tanabe, Yamato; Matsugo, Seiichi; Sasaki, Soichiro; Mukaida, Naofumi

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  14. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  15. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  16. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    SciTech Connect

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun; Model Animal Research Center and The School of Medicine, Nanjing University, Nanjing 210095

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  17. Development of an anhydrotetracycline-inducible expression system for expression of a neopullulanase in B. subtilis.

    PubMed

    Heravi, Kambiz Morabbi; Watzlawick, Hildegard; Altenbuchner, Josef

    2015-11-01

    Bacillus subtilis is a widely used bacterium for production of heterologous and homologous proteins. The primary challenge in the production of proteins in B. subtilis is choosing a relevant expression system. In this study, we developed a robust expression system based on optimized PtetR of transposon Tn1721, which is repressible by its specific repressor, TetR. The first step of this work was focused on the optimization of structure and core elements of Tn1721 anhydrotetracycline-inducible promoters, PtetA and PtetR. Both promoters were inserted upstream of eGFP on a pUB110-derivative with high copy number. Reduction of the 18bp spacer region of both PtetA and PtetR to 17bp significantly increased their strength in B. subtilis. Nevertheless, only the optimized PtetR with 17bp spacer region (PtetR2) directed high level of eGFP expression. In the second step, regulation of the system was optimized by testing the expression of tetR using well-known promoters, such as PmtlA, PmtlR, PptsG and PpenP. Expression of tetR by PptsG resulted in a tight regulation of PtetR2-eGFP showing 44-fold induction. By using the final expression plasmid in B. subtilis, neopullulanase was produced up to 15% of the total soluble protein. PMID:26455535

  18. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    SciTech Connect

    Li Song; Zhang Junjie

    2009-01-09

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the {beta} isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which was inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.

  19. Parenchymal Expression of CD40 Exacerbates Adenovirus-Induced Hepatitis

    PubMed Central

    Yan, Jiabin; Jie, Zuliang; Hou, Lifei; Wanderley, Joao L.; Soong, Lynn; Gupta, Shalini; Qiu, Suimin; Chan, Tehsheng; Sun, Jiaren

    2011-01-01

    The healthy adult human liver expresses low levels of MHC II and undetectable levels of immune co-stimulatory molecules. However, high levels of MHC class II, CD40 and B7 family molecules are expressed in the activated Kupffer cells and hepatocytes of patients having viral hepatitis. The precise role of these molecules in viral clearance and immune-mediated liver injury is not well understood. We hypothesize that parenchymal CD40 expression enhances T-cell recruitment and effector functions, which may facilitate viral clearance and alleviate liver injury. To test this hypothesis, we generated novel, liver-specific, conditional CD40 transgenic mice, and challenged them i.v. with recombinant replication-deficient adenovirus carrying Cre recombinase (AdCre). Wild-type mice infected with AdCre developed a relatively mild course of viral hepatitis and recovered spontaneously. CD40 expression in the liver of transgenic animals, however, resulted in CD80 and CD86 expression. Dysregulation of population dynamics and effector functions of intrahepatic lymphocytes results in severe lymphocytic infiltration, apoptosis, necroinflammation, and serum alanine transferase (ALT) elevation in a dose-dependent fashion. To our surprise, an early expansion followed by a contraction of intrahepatic lymphocytes, especially CD8+ and NK cells, accompanied by increased granzyme B and IFN-? production, did not lead to a faster viral clearance in CD40 transgenic mice. Conclusion: Our results demonstrated that hepatic CD40 expression does not accelerate adenoviral clearance, but rather exacerbates liver injury. This study unveils a previously unknown deleterious effect of hepatic CD40 in adenovirus-induced liver inflammation. PMID:21360722

  20. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression.

    PubMed

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C; McConkey, Marie; Krill-Burger, John M; Dorfman, David M; Holson, Edward B; Bernstein, Bradley E; Orkin, Stuart H; Bauer, Daniel E; Ebert, Benjamin L

    2015-10-15

    Fetal hemoglobin (HbF, ?2?2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces ?-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing ?-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA-mediated knockdown significantly increased ?-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic ?-globin genes Hbb-?y and Hbb-?h1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the ?-globin gene region. In RNA-sequencing analysis of erythroblasts, ?-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in ?-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in ?-globin repression and represent a novel therapeutic target for SCD. PMID:26320100

  1. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression

    PubMed Central

    Renneville, Aline; Van Galen, Peter; Canver, Matthew C.; McConkey, Marie; Krill-Burger, John M.; Dorfman, David M.; Holson, Edward B.; Bernstein, Bradley E.; Orkin, Stuart H.; Bauer, Daniel E.

    2015-01-01

    Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA–mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34+ hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic β-globin genes Hbb-εy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD. PMID:26320100

  2. Effects of the tumour necrosis factor-alpha inhibitors pentoxifylline and thalidomide in short-term experimental oral mucositis in hamsters.

    PubMed

    Lima, V; Brito, G A C; Cunha, F Q; Rebouas, C G; Falco, B A A; Augusto, R F; Souza, M L P; Leito, B T; Ribeiro, R A

    2005-06-01

    Oral mucositis is a frequent side-effect of cancer therapy. A definitive method of prophylaxis or treatment is not yet available. As pentoxifylline (PTX) and thalidomide (TLD) have been shown to inhibit cytokine synthesis, we studied the effects of these cytokine inhibitors in an experimental oral mucositis model. Oral mucositis was induced in Golden hamsters by the administration of 5-fluorouracil (5-FU) followed by mechanical trauma of the cheek pouch. On days 4, 5, 10, 12, 14 and 16, lesions induced by 5-FU were examined macroscopically and microscopically, and the presence and intensity of hyperemia, erythema, edema, inflammatory cell infiltration, hemorrhagic areas, ulcers and abscesses were recorded. Saline (control), PTX (5, 15, 45 mg kg(-1)) or TLD (10, 30, 90 mg kg(-1)) were administered daily and animals were killed on day 10 for macroscopic and histological analysis and assay of myeloperoxidase (MPO) activity. Animals were weighed daily, and total and differential leukocyte counts were performed on peripheral blood. PTX and TLD were found to reduce the macroscopic and histological parameters of oral mucositis and MPO activity. PTX and TLD also reversed peripheral neutrophilia, but only PTX prevented weight loss. The results indicate a protective effect of PTX and TLD, suggesting an important role for tumour necrosis factor-alpha (TNF-alpha) in the pathophysiology of 5-FU induced-oral mucositis in hamsters. PMID:15953245

  3. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury.

    PubMed

    Gaur, Vaibhav; Kumar, Anil

    2012-04-01

    Involvement of the glutathione system is well established in stroke-induced memory dysfunction. The aim of the present study was to investigate the effects of celecoxib (a selective cyclooxygenase-2 [COX-2] inhibitor), nimesulide (a preferential COX-2 inhibitor), and ibuprofen (a nonselective COX-2 inhibitor) against bilateral common carotid artery occlusion (BCCAO)-induced memory dysfunction. BCCAO for 30 minutews, followed by 24-hour reperfusion, significantly delayed transfer latency in the plus-maze performance task and shortened fall-off time in the hanging-wire experimental test. Besides significant alterations in glutathione defense (i.e., glutathione S-transferase and redox ratio), increased acetylcholinesterase activity and proinflammatory marker (tumor necrosis factor alpha TNF-?) in the hippocampus was seen. Seven days of treatment with celecoxib (3 and 10?mg/kg, p.o.), nimesulide (10?mg/kg, p.o.), and ibuprofen (30?mg/kg, p.o.) significantly improved behavioral alterations and glutathione defense and attenuated acetylcholinesterase activity and TNF-? levels, as compared to the control (i.e., ischemic reperfusion) group. The present study highlights the neuroprotective effect of celecoxib and nimesulide against ischemia reperfusion injury-induced memory dysfunction, neuroinflammation, and oxidative damage. PMID:21995864

  4. Temporal Quantification of MAPK Induced Expression in Single Yeast Cells

    PubMed Central

    Pelet, Serge; Aymoz, Delphine; Durandau, Eric

    2013-01-01

    The quantification of gene expression at the single cell level uncovers novel regulatory mechanisms obscured in measurements performed at the population level. Two methods based on microscopy and flow cytometry are presented to demonstrate how such data can be acquired. The expression of a fluorescent reporter induced upon activation of the high osmolarity glycerol MAPK pathway in yeast is used as an example. The specific advantages of each method are highlighted. Flow cytometry measures a large number of cells (10,000) and provides a direct measure of the dynamics of protein expression independent of the slow maturation kinetics of the fluorescent protein. Imaging of living cells by microscopy is by contrast limited to the measurement of the matured form of the reporter in fewer cells. However, the data sets generated by this technique can be extremely rich thanks to the combinations of multiple reporters and to the spatial and temporal information obtained from individual cells. The combination of these two measurement methods can deliver new insights on the regulation of protein expression by signaling pathways. PMID:24121725

  5. Temporal quantification of MAPK induced expression in single yeast cells.

    PubMed

    Pelet, Serge; Aymoz, Delphine; Durandau, Eric

    2013-01-01

    The quantification of gene expression at the single cell level uncovers novel regulatory mechanisms obscured in measurements performed at the population level. Two methods based on microscopy and flow cytometry are presented to demonstrate how such data can be acquired. The expression of a fluorescent reporter induced upon activation of the high osmolarity glycerol MAPK pathway in yeast is used as an example. The specific advantages of each method are highlighted. Flow cytometry measures a large number of cells (10,000) and provides a direct measure of the dynamics of protein expression independent of the slow maturation kinetics of the fluorescent protein. Imaging of living cells by microscopy is by contrast limited to the measurement of the matured form of the reporter in fewer cells. However, the data sets generated by this technique can be extremely rich thanks to the combinations of multiple reporters and to the spatial and temporal information obtained from individual cells. The combination of these two measurement methods can deliver new insights on the regulation of protein expression by signaling pathways. PMID:24121725

  6. Rhamnose-Inducible Gene Expression in Listeria monocytogenes

    PubMed Central

    Teiserskas, Justinas; Loessner, Martin J.

    2012-01-01

    Acid production from rhamnose is a characteristic phenotype of Listeria monocytogenes. We report the identification of the rhamnose transport and utilization operon located at lmo2846 to lmo2851, including the rhamnose-dependent promoter Prha. Expression of reporter genes under control of Prha on a single copy integration vector demonstrated its suitability for inducible gene expression in L. monocytogenes. Transcription initiation from Prha is dose dependent, and a concentration as low as 100 µM rhamnose was found sufficient for induction. Moreover, Prha is subject to glucose catabolite repression, which provides additional options for strict control of expression. Infection of human THP1 macrophages revealed that Prha is repressed in intracellular L. monocytogenes, which is explained by the absence of rhamnose in the cytosol and possible interference by catabolite repression. The Prha promoter provides a novel and useful tool for triggering gene expression in extracellular L. monocytogenes, whereas intracellular conditions prevent transcription from this promoter. PMID:22927968

  7. RNA silencing as related to viroid induced symptom expression.

    PubMed

    Markarian, N; Li, H W; Ding, S W; Semancik, J S

    2004-02-01

    Evidence of post-transcriptional gene silencing (PTGS) in avocado infected by Avocado sunblotch viroid (ASBVd), the type species of family Avsunviroidae, was suggested by detection of ASBVd-specific 22-nucleotide RNAs. PTGS was observed in infected bleached and variegated symptomatic tissues as well as symptomless carrier foliar sources and fruit with typical sunblotch disease lesions. Tissues with the different symptom expressions, characterized by the presence of different predominant ASBVd variants, were found to induce PTGS at differential levels. Detection of the PTGS-associated small interfering RNAs (siRNAs) as well as relative concentration was also related to viroid titer. PTGS induced in Gynura aurantiaca infected with two closely-related variants of Citrus exocortis viroid, a member of family Pospiviroidae, was not directly related to viroid titer with initiation of symptoms. PMID:14745603

  8. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  9. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells.

    PubMed

    An, Huazhang; Yu, Yizhi; Zhang, Minghui; Xu, Hongmei; Qi, Runzi; Yan, Xiaoyi; Liu, Shuxun; Wang, Wenya; Guo, Zhenghong; Guo, Jun; Qin, Zhihai; Cao, Xuetao

    2002-05-01

    Toll-like receptors (TLR) are sentinel receptors capable of recognizing pathogen-associated molecule patterns (PAMP) such as lipopolysaccharide (LPS) and CpG-containing oligonucleotides (CpG ODN). TLR2 and TLR4 are major receptors for Gram-positive and Gram-negative bacterial cell wall components, respectively. TLR9 is necessary for CpG signalling. LPS or CpG ODN can activate immature dendritic cells (DC) and induce DC maturation characterized by production of cytokines, up-regulation of co-stimulatory molecules, and increased ability to activate T cells. However, little is known regarding the regulation of TLR gene expression in mouse DC. In this study, we investigated the regulation of TLR2, TLR4 and TLR9 gene expression by LPS in murine immature DC. TLR2, TLR4 and TLR9 mRNA were up-regulated following LPS stimulation. The up-regulation of TLR9 expression coincided with significantly increased production of tumour necrosis factor-alpha induced by LPS plus CpG ODN. While inhibition of extracellular signal-related kinase and NF-kappaB activation suppressed the up-regulation of the expression of TLR2, TLR4 and TLR9 mRNA, inhibition of p38 kinase prevented the up-regulation of TLR2 and TLR4 mRNA expression but enhanced the up-regulation of TLR9 expression. These results demonstrated that TLR2, TLR4 and TLR9 gene expression was differently regulated by LPS in mouse immature DC. Up-regulation of TLR2, TLR4 and TLR9 expression by LPS might promote the overall responses of DC to bacteria and help to explain the synergy between LPS and other bacterial products in the induction of cytokine production. PMID:11972630

  10. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats.

    PubMed

    Akarte, Atul Sureshrao; Srinivasan, B P; Gandhi, Sonia; Sole, Sushant

    2012-09-29

    Inhibitors of dipeptidyl peptidase-4 (DPP-IV), a key regulator of the actions of incretin hormones, exert antihyperglycemic effects in type 2 diabetic patients. A major question concerns the potential ability of long term DPP-IV inhibition to have beneficial disease-modifying effects, specifically to attenuate loss of pancreatic ?-cell mass due to oxidative stress induced inflammation. Here, we investigated the effects of a potent and selective DPP-4 inhibitor, an analog of vildagliptin (PKF-275-055), on glycemic control, pancreatic ?-cell mass, genes and proteins expressions, tumor necrosis factor-alpha, and nitric oxide in an n2-STZ diabetic model of rat with defects in insulin sensitivity and secretion. To induce NIDDM, streptozotocin (STZ) 90 mg/kg was administered i.p. to a group of 2 days old pups. Diabetic rats were administered orally with vildagliptin analog PKF-275-055. Saline treated animals served as diabetic control. Significant and dose-dependent correction of postprandial hyperglycemia was observed in diabetic rats following 8 weeks of chronic therapy. Treatment with PKF-275-055 showed increased the number of insulin-positive ?-cells in islets and improved the expressions of genes and proteins are responsible for insulin secretions. In addition, treatment of rats with PKF-275-055 significantly increased insulin content, glycogen content and total proteins content; and decreased the inflammatory markers i.e. nitric oxide and TNF-alpha. The present studies indicate that PKF-275-055 is a novel selective DPP-IV inhibitor having potential to reduce inflammation that might be a potential agent for type 2 diabetes. PMID:22800967

  11. Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy

    PubMed Central

    GONZLEZ-FERNNDEZ, REBECA; MORALES, MANUEL; AVILA, JULIO; MARTN-VASALLO, PABLO

    2012-01-01

    In the present study, we studied changes in gene expression induced by chemotherapy (CT) on normal peripheral blood leukocytes (PBLs), at baseline and following three CT cycles, in order to identify which genes were specifically affected and were potentially useful as biomarkers for a personalised prognosis and follow-up. A PBL subtraction cDNA library was constructed from four patients undergoing CT with paclitaxel and carboplatin (PC). mRNA from the PBLs was isolated prior to the patients receiving the first cycle and following the completion of the third cycle. The library was screened and the expression of the identified genes was studied in PBLs obtained from patients suffering from cancer prior to and following three cycles of PC and a reference group of patients undergoing treatment with Adriamycin-cyclophosphamide (AC). From the 1,200 screened colonies, 65 positive clones showed varied expression intensity and were sequenced; 27 of these were mitochondrial DNA and 38 clones (27 different) were coded for cytosolic and nuclear proteins. The genes that were studied in patients undergoing CT were ATM (ataxia-telangiectasia mutated gene), eIF4B (translation initiation factor 4B), MATR3 (Matrin 3), MORC3 (microrchidia 3), PCMTD2 (protein-L-isoaspartate O-methyltransferase), PDCD10 (programmed cell death gene 10), PSMB1 (proteasome subunit type ?), RMND5A (required for meiotic nuclear division 5 homologue A), RUNX2 (runt-related transcription factor 2), SACM1L (suppressor of actin mutations 1-like), TMEM66 (transmembrane protein 66) and ZNF644 (zinc finger protein 644). Certain variations were observed in the expression of the genes that are involved in drug resistance mechanisms, some of which may be secondary to non-desirable effects and others of which may cause the undesired effects of CT. The expression of genes with a dynamic cellular role showed a marked positive correlation, indicating that their upregulation may be involved in a specific pattern of cell survival versus apoptosis in response to the cell damage induced by CT. Whether these CT-induced changes are random or directed in a specific selection-evolution manner needs to be elucidated. PMID:22783446

  12. Early growth response protein 1 (EGR1) regulates pro-inflammatory gene expression in response to palmitate and TNF alpha in human placenta cells and is induced in obese placenta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity has been hypothesized to induce a pro-inflammatory response in the placenta. However, the specific factors contributing to this pro-infalmmatory response are yet to be determined. Our objective was to examine the effects of palmitic acid (PA), tumor necrosis factor alpha (TNF alph...

  13. Localization of transforming growth factor alpha and its receptor in gastric mucosal cells. Implications for a regulatory role in acid secretion and mucosal renewal.

    PubMed Central

    Beauchamp, R D; Barnard, J A; McCutchen, C M; Cherner, J A; Coffey, R J

    1989-01-01

    Transforming growth factor alpha (TGF alpha) shares with epidermal growth factor (EGF) structural homology (35%), a common cell-surface membrane receptor (TGF alpha/EGF receptor), and a nearly identical spectrum of biological activity, including inhibition of gastric acid secretion. Herein, we report expression of TGF alpha mRNA in normal gastric mucosa of the adult guinea pig, rat, and dog. TGF alpha mRNA was also detected in matched surgically resected gastric mucosa and adjacent gastric carcinoma from 10 patients, and in gastric mucosa adjacent to a benign ulcer from an additional patient. TGF alpha protein was quantitated by radioimmunoassay and was present in tumor and adjacent mucosa. TGF alpha/EGF receptor mRNA was also detected in gastric mucosa from all species studied. Localization of TGF alpha and TGF alpha/EGF receptor mRNA expression was examined in samples of unfractionated guinea pig gastric mucosa and from chief cell-enriched and parietal cell-enriched fractions. All samples exhibited TGF alpha and TGF alpha/EGF receptor expression. The TGF alpha signal was greatest in the parietal cell fraction (5.8-fold increase), but was also enhanced in the chief cell fraction (1.9-fold increase) relative to the unfractionated gastric mucosa. Like TGF alpha expression, TGF alpha/EGF receptor mRNA expression was most intense in the parietal cell-enriched fraction (7.8-fold increase), but was also increased in the chief cell-enriched fraction (2.7-fold increase) relative to the unfractionated guinea pig gastric mucosa. We conclude that TGF alpha and TGF alpha/EGF receptor genes are expressed in normal adult mammalian gastric mucosa. These findings, when interpreted in light of described actions of TGF alpha and EGF, provide evidence that local production of TGF alpha could play an important role in the regulation of acid secretion and mucosal renewal in the stomach. Images PMID:2760208

  14. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  15. Association between hepatocellular carcinoma and tumor necrosis factor alpha polymorphisms in South Korea

    PubMed Central

    Shin, Suk Pyo; Kim, Nam Keun; Kim, Ju Hwan; Lee, Ju Ho; Kim, Jung Oh; Cho, Sung Hwan; Park, Hana; Kim, Mi Na; Rim, Kyu Sung; Hwang, Seong Gyu

    2015-01-01

    AIM: To investigate associations between the tumor necrosis factor alpha (TNF-α) -1031 T>C, -863 C>A, -857 C>T, -308 G>A, and -238 G>A polymorphisms and HCC in Korea. METHODS: Hepatocellular carcinoma (HCC) cases were diagnosed at CHA Bundang Medical Center from June 1996 to August 2008. The association between TNF-α polymorphisms and HCC was analyzed in 157 HCC patients and 201 controls using a polymerase chain reaction-restriction fragment length polymorphism assay. We investigated five TNF-α polymorphisms, which are TNF-α -1031 T>C, -863 C>A, -857 C>T, -308 G>A, and -238 G>A. The TNF-α genotype frequencies, genotype combinations and haplotypes were analyzed to disclose the association with HCC. RESULTS: None of the TNF-α polymorphisms was significantly associated with HCC. However, nine genotype combinations had associations with increased likelihood of HCC. Among them, TNF-α -1031/-857/-238 TT/CC/GA (AOR = 18.849, 95%CI: 2.203-161.246, P = 0.007), TNF-α -1031/-308/-238 TT/GG/GA (AOR = 26.956, 95%CI: 3.071-236.584, P = 0.003), and TNF-α -1031/-238 TT/GA (AOR = 21.576, 95%CI: 2.581-180.394, P = 0.005) showed marked association with HCC. There were five haplotypes of TNF-α polymorphisms which were significantly associated with HCC. They are TNF-α -1031/-863/-857/-308/-238 T-C-C-G-A (OR = 25.824, 95%CI: 1.491-447.223, P = 0.0005), TNF-α -1031/-857/-308/-238 T-C-G-A (OR = 12.059, 95%CI: 2.747-52.950, P < 0.0001), TNF-α -1031/-857/-238 T-C-A (OR = 10.696, 95%CI: 2.428-47.110, P = 0.0001), TNF-α -1031/-308/-238 T-G-A (OR = 7.556, 95%CI: 2.173-26.280, P = 0.0002) and TNF-α -1031/-238 T-A (OR = 10.865, 95%CI: 2.473-47.740, P = 0.0001). Moreover, HCC Okuda stage III cases with the TNF-α -1031 CC genotype had better survival than those with the TT genotype (AOR = 5.795, 95%CI: 1.145-29.323). CONCLUSION: Although no single TNF-α polymorphism is associated with HCC in this study, some TNF-α genotype combinations and haplotypes are associated with HCC. In addition, HCC Okuda stage III cases with the TNF-α -1031 TT genotype may have a better prognosis than those with the CC genotype. PMID:26672513

  16. Roles of factorial noise in inducing bimodal gene expression

    NASA Astrophysics Data System (ADS)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  17. Mechanisms of deoxynivalenol-induced gene expression and apoptosis.

    PubMed

    Pestka, J J

    2008-09-01

    Fusarium infection of agricultural staples such as wheat, barley and corn with concurrent production of deoxynivalenol (DON) and other trichothecene mycotoxins is an increasingly common problem worldwide. In addition to its emetic effects, chronic dietary exposure to DON causes impaired weight gain, anorexia, decreased nutritional efficiency and immune dysregulation in experimental animals. Trichothecenes are both immunostimulatory or immunosuppressive depending on dose, frequency and duration of exposure as well as type of immune function assay. Monocytes, macrophages, as well as T- and B-lymphocytes of the immune system can be cellular targets of DON and other trichothecenes. In vitro exposure to low trichothecene concentrations upregulates expression both transcriptionally and post-transcriptionally of cytokines, chemokines and inflammatory genes with concurrent immune stimulation, whereas exposure to high concentrations promotes leukocyte apoptosis with concomitant immune suppression. DON and other trichothecenes, via a mechanism known as the 'ribotoxic stress response', bind to ribosomes and rapidly activate mitogen-activated protein kinases (MAPKs). The latter are important transducers of downstream signalling events related to immune response and apoptosis. Using cloned macrophages, two critical upstream transducers of DON-induced MAPK activation have been identified. One transducer is double-stranded RNA (dsRNA)-activated protein kinase (PKR), a widely expressed serine/threonine protein kinase that can be activated by dsRNA, interferon and other agents. The other transducer is haematopoetic cell kinase (Hck), a non-receptor associated Src oncogene family kinase. Pharmacological inhibitors and gene suppression studies have revealed that Hck and PKR contribute to DON-induced gene expression and apoptosis. PKR, Hck and other kinases bind to the ribosome and are activated following DON interaction. Future studies will focus on the sequence of molecular events at the ribosome level that drive selective activation of these upstream kinases. PMID:19238623

  18. Bitumen fume-induced gene expression profile in rat lung

    SciTech Connect

    Gate, Laurent . E-mail: laurent.gate@inrs.fr; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Herve; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stephane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 {sup o}C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  19. Lactobacillus fermentum ZYL0401 Attenuates Lipopolysaccharide-Induced Hepatic TNF-α Expression and Liver Injury via an IL-10- and PGE2-EP4-Dependent Mechanism

    PubMed Central

    Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan

    2015-01-01

    Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism. PMID:25978374

  20. Chicken amyloid arthropathy: serum amyloid A, interleukin-1beta, interleukin-6, tumour necrosis factor-alpha and nitric oxide profile in acute phase (12th hour).

    PubMed

    Sevimli, A; Blbl, T; Blbl, A; Yagci, A

    2013-01-01

    Acute phase response (APR) is part of the early defense system, which is triggered by different stimuli including, infection, trauma, stres, inflammation and neoplasia. The APR complex is a reaction which induces homeostasis and recovery. In this research, serum amyloid A (SAA), interlaukin (IL)-1beta, IL-6, tumour necrosis factor alpha (TNF-alpha) and nitric oxide (NO) levels were measured 12 hours following injection. For this purpose, Thirty-two 5 weeks old laying chicken were allocated into four groups and intra-articular injections of Freund's adjuvant were used to induce amylod arthropathy in Groups II, III and IV. Vitamin A in group II, and methylprednisolone in group IV were added to enhance and to reduce the severity of amyloidosis, respectively. At the end of the research, it was observed that TNF-alpha and NO increased significantly (P < 0.05) in vitamin A and methylprednisolone groups whereas SAA decreased significantly (P < 0.05) in all groups. It was also observed that IL-6 increased (P < 0.05) in vitamin A group and decreased in all other gorups however, IL-1beta decreased in vitamin A and methylprednisolone groups, while it was increased in the control group. The results of this study suggest that there is a positive correlation between serum TNF-alpha levels in acute and chronic phase in chickens with amyloid arthropathy. PMID:23971191

  1. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    SciTech Connect

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun; First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black-Right-Pointing-Pointer VCAM-1/VLA-4 mediated TNF-{alpha}-enhanced cell fusions.

  2. Hepatitis B virus induces hypoxia-inducible factor-2? expression through hepatitis B virus X protein.

    PubMed

    Hu, Jian-Li; Liu, Li-Ping; Yang, Sheng-Li; Fang, Xiefan; Wen, Lu; Ren, Quan-Guang; Yu, Chao

    2016-03-01

    A growing number of studies suggest that the hepatitis B virus X protein (HBx) enhances the protein stability of the hypoxia-inducible factor-1? (HIF-1?). However, the relationship between hepatitis B virus (HBV), HBx and hypoxia-inducible factor-2? (HIF-2?) has not yet been fully elucidated. Immunohistochemical analysis was employed to detect the expression of HIF-2? in normal liver, HBV-related chronic hepatitis, and HBV-related and non-HBV-related hepatocellular carcinoma (HCC) tissues. Quantitative real?time PCR (qPCR) and western blotting were used to investigate the impact of HBV and HBx on the expression of HIF?2?. Immunoprecipitation and immunofluorescence were applied to explore the underlying mechanisms. The HIF?2? expression was found to be higher in HBV?related chronic hepatitis tissues than in normal liver tissues. Furthermore, it was higher in HBV?related HCC tissues and HBV?integrated HepG2 cells than in the corresponding non?HBV?related HCC tissues and HepG2 cells. Both HBV and HBx enhanced the protein stability of HIF?2?. HBx?mediated upregulation of HIF?2? resulted mainly from an inhibition of the degradation of HIF?2? due to the binding of HBx to the von Hippel?Lindau protein (pVHL). In addition, HBx upregulated the expression of HIF?2? by activating the NF??B signaling pathway. Thus, the present study identified that HBV induces the HIF?2? expression through its encoded protein HBx. This upregulates the HIF-2? expression by binding to the pVHL activating the NF-?B signaling pathway. PMID:26647960

  3. Down-regulation of HSP60 expression by RNAi increases lipopolysaccharide- and cerulein-induced damages on isolated rat pancreatic tissues

    PubMed Central

    Lu, Shuai; Li, Kun; Feng, Jia-Yan; Li, Yan-Na; Gao, Zhi-Rong; Chen, Chang-Jie

    2010-01-01

    The objective of this study was to investigate the function of heat shock protein 60 (HSP60) on pancreatic tissues by applying HSP60 small interfering RNA (siRNA) to reduce HSP60 expression. Rat pancreas was isolated and pancreatic tissue snips were prepared, cultured, and stimulated with low and high concentrations of cerulein (10?11 and 10?5?mol/L) or lipopolysaccharide (LPS, 10 and 20?g/mL). Before the stimulation and 1 and 4h after the stimulation, the viability and the level of trypsinogen activation peptide (TAP) in the tissue fragments were determined and the levels of tumor necrosis factor-alpha (TNF-?) and interleukin 6 (IL-6) in the culture supernatants were measured. Real-time PCR and Western blotting were used to evaluate the HSP60 mRNA and protein expression. After the administration of siRNA to inhibit HSP60 expression in the isolated tissues, these injury parameters were measured and compared. The pancreatic tissues in the control (mock-interfering) group showed a decreased viability to varying degrees after being stimulated with cerulein or LPS, and the levels of TAP, TNF-?, and IL-6 increased significantly (p?expressions of HSP60 mRNA and protein were raised moderately after stimulating 1h with low concentrations of cerulein or LPS, but decreased with high concentrations of the toxicants. In particular, the expression of HSP60 protein was reduced significantly (p?induce injuries on isolated pancreatic tissues, but the induction effects are dependent on the duration of the stimulation and on the concentrations of the toxicants. HSP60 siRNA reduces HSP60 expression and worsens the cerulein- or LPS-induced injuries on isolated pancreatic tissues, suggesting that HSP60 has a protective effect on pancreatic tissues against these toxicants. PMID:20574674

  4. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness.

    PubMed

    Choi, M J; Cho, K H; Lee, S; Bae, Y J; Jeong, K J; Rha, S Y; Choi, E J; Park, J H; Kim, J M; Lee, J-S; Mills, G B; Lee, H Y

    2015-06-01

    Stress hormones have been implicated in both tumor initiation and progression. Human telomerase reverse transcriptase (hTERT) is overexpressed in cancer cells and associated with malignant tumor progression and poor outcome. We thus sought to determine whether the stress hormone norepinephrine (NE) could induce hTERT expression and subsequently ovarian cancer progression. Unexpectedly, NE induced hTERT transcript and protein expression, and subsequently ovarian cancer cell invasion. Pharmacologic inhibition of ?2-adrenergic receptor 2 and protein kinase A, as well as silencing of hypoxia-inducible factor-1? and c-Myc expression, profoundly attenuated NE-induced hTERT expression. Strikingly, stimulation of the cells with NE or ectopic expression of hTERT induced expression of Slug, ovarian cancer cell epithelial-mesenchymal transition (EMT) and invasion. Silencing of hTERT expression abrogated NE-induced ovarian cancer cell invasion, EMT and Slug expression. In addition, silencing of Slug expression significantly inhibited NE- and hTERT-induced ovarian cancer cell EMT and invasion. Moreover, continuous exposure to NE was sufficient to enhance in vivo hTERT expression and metastasis of ovarian cancer cells to the lung. Finally, we provide evidence that hTERT links Src to Slug expression in NE-induced ovarian cancer EMT and metastasis. We thus demonstrate a novel role of hTERT in stress hormone-induced ovarian cancer aggressiveness through inducing Slug, providing novel biomarkers and potential therapeutic targets for ovarian cancer. PMID:25151968

  5. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  6. Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination.

    PubMed

    Marro, Brett S; Grist, Jonathan J; Lane, Thomas E

    2016-02-15

    The functional role of the ELR(+) chemokine CXCL1 in host defense and disease following infection of the CNS with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was examined. Mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells were generated and this allowed for selectively increasing CNS expression of CXCL1 in response to JHMV infection and evaluating the effects on neuroinflammation, control of viral replication, and demyelination. Inducible expression of CNS-derived CXCL1 resulted in increased levels of CXCL1 protein within the serum, brain, and spinal cord that correlated with increased frequency of Ly6G(+)CD11b(+) neutrophils present within the CNS. Elevated levels of CXCL1 did not influence the generation of virus-specific T cells, and there was no difference in control of JHMV replication compared with control mice, indicating that T cell infiltration into the CNS is CXCL1-independent. Sustained CXCL1 expression within the CNS resulted in increased mortality that correlated with elevated neutrophil infiltration, diminished numbers of mature oligodendrocytes, and an increase in the severity of demyelination. Neutrophil ablation in CXCL1-transgenic mice reduced the severity of demyelination in mice, arguing for a role for these cells in white matter damage. Collectively, these findings illustrate that sustained CXCL1 expression amplifies the severity of white matter damage and that neutrophils can contribute to this process in a model of viral-induced neurologic disease. PMID:26773148

  7. Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination

    PubMed Central

    Marro, Brett S.; Grist, Jonathan J.

    2016-01-01

    The functional role of the ELR+ chemokine CXCL1 in host defense and disease following infection of the CNS with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was examined. Mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic proteinpositive cells were generated and this allowed for selectively increasing CNS expression of CXCL1 in response to JHMV infection and evaluating the effects on neuroinflammation, control of viral replication, and demyelination. Inducible expression of CNS-derived CXCL1 resulted in increased levels of CXCL1 protein within the serum, brain, and spinal cord that correlated with increased frequency of Ly6G+CD11b+ neutrophils present within the CNS. Elevated levels of CXCL1 did not influence the generation of virus-specific T cells, and there was no difference in control of JHMV replication compared with control mice, indicating that T cell infiltration into the CNS is CXCL1-independent. Sustained CXCL1 expression within the CNS resulted in increased mortality that correlated with elevated neutrophil infiltration, diminished numbers of mature oligodendrocytes, and an increase in the severity of demyelination. Neutrophil ablation in CXCL1-transgenic mice reduced the severity of demyelination in mice, arguing for a role for these cells in white matter damage. Collectively, these findings illustrate that sustained CXCL1 expression amplifies the severity of white matter damage and that neutrophils can contribute to this process in a model of viral-induced neurologic disease. PMID:26773148

  8. Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages

    PubMed Central

    Kwon, Seok J; Lee, Geun T; Lee, Jae-Ho; Kim, Wun J; Kim, Isaac Y

    2009-01-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-? (TGF-?) superfamily. In the present study, we investigated the effect of BMPs on the production of inducible nitric oxide synthase (iNOS) in the murine macrophage cell line, RAW 264.7, and in mouse peritoneal macrophages. Among the BMPs, only BMP-6 induced iNOS expression in a time-dependent and dose-dependent manner in both cell types. Induction of iNOS was inhibited by both cycloheximide and actinomycin D, indicating that the induction of iNOS expression by BMP-6 requires new protein synthesis. Mechanistic studies revealed that the BMP-6-induced iNOS expression requires both Smads and nuclear factor-kappa B (NF-?B) signalling pathways. Furthermore, induction of interleukin-1? (IL-1?) was necessary for iNOS induction by BMP-6. These observations suggest that BMP-6 stimulates macrophages to produce iNOS through IL-1? via Smad and NF-?B signalling pathways and that BMP-6 may be an important regulator of macrophages. PMID:19740337

  9. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice.

    PubMed

    Lee, Chan-Ho; Park, Sang-Won; Kim, Yeong Shik; Kang, Sam Sik; Kim, Jeong Ah; Lee, Seung Ho; Lee, Sun-Mee

    2007-10-01

    Glycyrrhizin is the major active component extracted from licorice (Glycyrrhiza glabra) roots, one of the most widely used herbal preparations for the treatment of liver disorders. This study evaluated the potential beneficial effect of glycyrrhizin in a mouse model of carbon tetrachloride (CCl(4))-induced liver injury. The mice were treated intraperitoneally with CCl(4) (0.5 ml/kg). They received glycyrrhizin (50, 100, 200, 400 mg/kg) 24 h and 0.5 h before and 4 h after administering CCl(4). The serum activities of aminotransferase and the hepatic level of malondialdehyde were significantly higher 24 h after the CCl(4) treatment, while the concentration of reduced glutathione was lower. These changes were attenuated by glycyrrhizin. CCl(4) increased the level of circulating tumor necrosis factor-alpha markedly, which was reduced by glycyrrhizin. The levels of hepatic inducible nitric oxide synthase, cyclooxygenase-2, and heme oxygenase-1 protein expression were markedly higher after the CCl(4) treatment. Glycyrrhizin diminished these alterations for inducible nitric oxide and cyclooxygenase-2 but the protein expression of heme oxygenase-1 was further elevated by the treatment of glycyrrhizin. CCl(4) increased the level of tumor necrosis factor-alpha, inducible nitric oxide synthase, cyclooxygenase-2, and heme oxygenase-1 mRNA expressions. The mRNA expression of heme oxygenase-1 was augmented by the glycyrrhizin treatment, while glycyrrhizin attenuated the increase in tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2 mRNA expressions. These results suggest that glycyrrhizin alleviates CCl(4)-induced liver injury, and this protection is likely due to the induction of heme oxygenase-1 and the downregulation of proinflammatory mediators. PMID:17917259

  10. PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina.

    PubMed

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Bucolo, Claudio; Saccone, Salvatore; Drago, Filippo; D'Agata, Velia

    2015-12-01

    Retinal hypoxia has been related to the pathogenesis of diabetic retinopathy. This event is mediated by the hypoxia-inducible factors (HIFs), including HIF-1?, HIF-2?, and HIF-3?. Previously, we have demonstrated the protective role of pituitary adenylate cyclase-activating peptide (PACAP) in the early phase of diabetic retinopathy. In the present work, we investigated whether PACAP effect in hyperglycemic retina is mediated through modulation of HIFs' expression. Diabetes was induced with a single injection of streptozotocin (STZ) in rats. After 1 week, a group of diabetic animals was treated with a single intravitreal injection of 100 ?M PACAP or saline solution. Then, changes in HIFs' expression levels were evaluated in the retina after 3 weeks of hyperglycemia. The expression of HIF-1? and HIF-2? was significantly (p?expression levels were significantly (p?expression of HIF-3? was significantly (p?expression. PMID:26202258

  11. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radoevi?, Katarina; Schuitemaker, Hanneke

    2015-10-01

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. PMID:26319741

  12. Verproside inhibits TNF-?-induced MUC5AC expression through suppression of the TNF-?/NF-?B pathway in human airway epithelial cells.

    PubMed

    Lee, Su Ui; Sung, Min Hee; Ryu, Hyung Won; Lee, Jinhyuk; Kim, Hui-Seong; In, Hyun Ju; Ahn, Kyung-Seop; Lee, Hyun-Jun; Lee, Hyeong-Kyu; Shin, Dae-Hee; Lee, Yongnam; Hong, Sung-Tae; Oh, Sei-Ryang

    2016-01-01

    Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of MUC5AC, are significant risk factors in asthma and chronic obstructive pulmonary disease (COPD) patients. Previously, we reported that verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a potent anti-asthmatic candidate drug in vivo. However, the molecular mechanisms underlying the pharmacological actions of verproside remain unknown. Here, we found that verproside significantly reduces the expression levels of tumor necrosis factor alpha (TNF-?)-induced MUC5AC mRNA and protein by inhibiting both nuclear factor kappa B (NF-?B) transcriptional activity and the phosphorylation of its upstream effectors such as I?B kinase (IKK)?, I?B?, and TGF-?-activated kinase 1 (TAK1) in NCI-H292 cells. Moreover, verproside attenuated TNF-?-induced MUC5AC transcription more effectively when combined with an IKK (BAY11-7082) or a TAK1 (5z-7-oxozeaenol) inhibitor than when administered alone. Importantly, we demonstrated that verproside negatively modulates the formation of the TNF-?-receptor (TNFR) 1 signaling complex [TNF-RSC; TNFR1-recruited TNFR1-associated death domain protein (TRADD), TNFR-associated factor 2 (TRAF2), receptor-interacting protein kinase 1 (RIP1), and TAK1], the most upstream signaling factor of NF-?B signaling. In silico molecular docking studies show that verproside binds between TRADD and TRAF2 subunits. Altogether, these results suggest that verproside could be a good therapeutic candidate for treatment of inflammatory airway diseases such as asthma and COPD by blocking the TNF-?/NF-?B signaling pathway. PMID:26318254

  13. Decreased calcitonin gene-related peptide expression in the dorsal root ganglia of TNF-deficient mice in a monoiodoacetate-induced knee osteoarthritis model

    PubMed Central

    Taniguchi, Aya; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Kubota, Go; Inage, Kazuhide; Sainoh, Takeshi; Nakamura, Junichi; Aoki, Yasuchika; Toyone, Tomoaki; Inoue, Gen; Suzuki, Miyako; Yamauchi, Kazuyo; Suzuki, Takane; Takahashi, Kazuhisa; Ohtori, Seiji; Orita, Sumihisa

    2015-01-01

    Background: The detailed mechanisms of knee osteoarthritis (OA) pain have not been clarified, but involvement of inflammatory cytokines such as tumor necrosis factor-alpha (TNF) has been suggested. The present study aimed to investigate the more detailed neurological involvement of TNF in joint pain using a TNF-knockout mouse OA model. Methods: The right knees of twelve-week-old C57BL/6J wild and TNF-deficient knockout (TNF-ko) mice (n=15, each group) were given a single intra-articular injection of 10 µg monoiodoacetate in 10 mL sterile saline. The left knees were only punctured as the control. Evaluations were performed immediately after the injection (baseline) and at 7, 14, and 28 days after the injection with a subsequent intra-articular injection of neurotracer into both knees. The animals were evaluated for immunofluorescence of the lumbar dorsal root ganglia (DRG) innervating the knee joints. The injected knees were observed macroscopically and mouse pain-related behaviors were scored. Results: Macroscopic observation showed similar knee OA development in both wild and TNF-ko mice. Calcitonin gene-related peptide (CGRP, a neuropeptide identified as a inflammatory pain-related biomarker) was significantly increased in DRG neurons innervating OA-induced knee joints with significantly less CGRP expression in TNF-ko animals. Pain-related behavior scoring showed a significant increase in pain in OA-induced joints, but there was no significant difference in pain observed between the wild and TNF-ko mice. Conclusions: The result of the present study indicates the possible association of TNF-alpha in OA pain but not OA development. PMID:26722492

  14. Bortezomib induces heme oxygenase-1 expression in multiple myeloma.

    PubMed

    Barrera, Lawrence N; Rushworth, Stuart A; Bowles, Kristian M; MacEwan, David J

    2012-06-15

    Multiple myeloma (MM) is a progressive malignant disorder characterized by accumulation of plasma cells in the bone marrow. MM remains an incurable disease with a 5-y survival rate of approximately 40%. While clinical response rates to first line chemotherapeutics are high, disease relapse is inevitable, and occurs because a small fraction of the original myeloma cells appear to be resistant to treatment. Heme oxygenase-1 (HO-1) is an Nrf2 transcription factor-regulated gene that is commonly induced following oxidative stress and cellular injury, functioning to decrease oxidative stress and inflammatory responses, protecting against apoptosis and altering the cell cycle. We and others have highlighted the role of HO-1 in providing cellular protection against chemotherapeutic drugs in a number of cancer cells, which we have highlighted here in this Extra View. Furthermore, we explored the expression of HO-1 in multiple myeloma cells in response to the key anti-myeloma drugs bortezomib and lenalidomide. We show here for the first time that bortezomib increases HO-1 expression in a time- and concentration-dependent manner. Moreover, we also observe that HO-1 is increased in lenalidomide-resistant MM cell lines. Altogether, we highlight a possible role for HO-1 in basal and acquired chemoresistance in MM. PMID:22617388

  15. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis

    PubMed Central

    Fritsch, Christine; Swietlicki, Elzbieta A.; Lefebvre, Olivier; Kedinger, Michele; Iordanov, Hristo; Levin, Marc S.; Rubin, Deborah C.

    2002-01-01

    The formation of the crypt-villus axis during gut ontogeny requires continued reciprocal interactions between the endoderm and mesenchyme. Epimorphin/syntaxin 2 (epimorphin) is a mesenchymal protein expressed in the fetal gastrointestinal tract during villus morphogenesis. To elucidate its role in gut ontogeny, the epimorphin cDNA was transfected, in sense and antisense orientations, into a rat intestinal myofibroblast cell line, MIC 216. To determine the effects of epimorphin on the epithelium, myofibroblasts were cocultured with the Caco2 cell line. Caco2 cells spread in a simple monolayer over antisense-transfected cells lacking epimorphin. In contrast, sense-transfected myofibroblasts induced Caco2 cells to form compact, round clusters with small lumens. These morphologic differences were preserved in Transwell cocultures in which cell-cell contact was prevented, suggesting that epimorphin’s effects were mediated by secreted factor(s). To determine the effects of epimorphin on crypt-villus axis formation in an in vivo model, rat gut endoderm was combined with epimorphin-transfected myofibroblasts and implanted into the chick intracoelomic cavity. The grafts in which epimorphin was overexpressed revealed multiple well-formed villi with crypt-like units, whereas those in which epimorphin expression was inhibited developed into round cystic structures without crypts or villi. Of several potential secreted morphogens, only the expression of bone morphogenetic protein 4 (Bmp4) was increased in the epimorphin-transfected cells. Incubation with noggin partially blocked the transfected myofibroblasts’ effects on Caco2 colony morphology. These results indicate that mesenchymal epimorphin has profound effects on crypt-villus morphogenesis, mediated in part by secreted factor(s) including the Bmp’s. PMID:12464668

  16. Glomerulonephritis-induced changes in kidney gene expression in rats.

    PubMed

    Pavkovic, Mira; Riefke, Bjrn; Frisk, Anna-Lena; Grticke, Ina; Ellinger-Ziegelbauer, Heidrun

    2015-12-01

    We investigated a glomerulonephritis (GN) model in rats induced by nephrotoxic serum (NTS) which contains antibodies against the glomerular basement membrane (GBM). The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003[2]). Male Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats were dosed once with 1, 2.5 and 5ml/kg nephrotoxic serum (NTS) or 1.5 and 5ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14days. To obtain insight into molecular processes during GN pathogenesis, mRNA expression was investigated in WKY and SD kidneys using Affymetrix's GeneChip Rat genome 230_2.0 arrays (GSE64265). The immunopathological processes during GN are still not fully understood and likely involve both innate and adaptive immunity. In the present study, several hundred mRNAs were found deregulated, which functionally were mostly associated with inflammation and regeneration. The ?-chain of the major histocompatibility complex class II RT1.B (Rt1-Bb) and complement component 6 (C6) were identified as two mRNAs differentially expressed between WKY and SD rat strains which could be related to known different susceptibilities to NTS of different rat strains; both were increased in WKY and decreased in SD rats (Pavkovic et al., 2015 [1]). Increased Rt1-Bb expression in WKY rats could indicate a stronger and more persistent cellular reaction of the adaptive immune system in this strain, in line with findings indicating adaptive immune reactions during GN. The complement cascade is also known to be essential for GN development, especially terminal cascade products like C6. PMID:26697341

  17. Glomerulonephritis-induced changes in kidney gene expression in rats

    PubMed Central

    Pavkovic, Mira; Riefke, Bjrn; Frisk, Anna-Lena; Grticke, Ina; Ellinger-Ziegelbauer, Heidrun

    2015-01-01

    We investigated a glomerulonephritis (GN) model in rats induced by nephrotoxic serum (NTS) which contains antibodies against the glomerular basement membrane (GBM). The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003[2]). Male Wistar Kyoto (WKY) and SpragueDawley (SD) rats were dosed once with 1, 2.5 and 5ml/kg nephrotoxic serum (NTS) or 1.5 and 5ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14days. To obtain insight into molecular processes during GN pathogenesis, mRNA expression was investigated in WKY and SD kidneys using Affymetrix's GeneChip Rat genome 230_2.0 arrays (GSE64265). The immunopathological processes during GN are still not fully understood and likely involve both innate and adaptive immunity. In the present study, several hundred mRNAs were found deregulated, which functionally were mostly associated with inflammation and regeneration. The ?-chain of the major histocompatibility complex class II RT1.B (Rt1-Bb) and complement component 6 (C6) were identified as two mRNAs differentially expressed between WKY and SD rat strains which could be related to known different susceptibilities to NTS of different rat strains; both were increased in WKY and decreased in SD rats (Pavkovic et al., 2015 [1]). Increased Rt1-Bb expression in WKY rats could indicate a stronger and more persistent cellular reaction of the adaptive immune system in this strain, in line with findings indicating adaptive immune reactions during GN. The complement cascade is also known to be essential for GN development, especially terminal cascade products like C6. PMID:26697341

  18. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro.

    PubMed

    Murray, J; Barbara, J A; Dunkley, S A; Lopez, A F; Van Ostade, X; Condliffe, A M; Dransfield, I; Haslett, C; Chilvers, E R

    1997-10-01

    Granulocyte apoptosis is an important mechanism underlying the removal of redundant neutrophils from an inflammatory focus. The ability of many proinflammatory agents to impede this event suggests that such agents act not only in a priming or secretagogue capacity but also increase neutrophil longevity by delaying apoptosis. We have examined whether this hypothesis holds true for all neutrophil priming agents, in particular tumor necrosis factor-alpha (TNF-alpha), which has been variably reported to either induce, delay, or have no effect on neutrophil apoptosis. After 20 hours coincubation TNF-alpha inhibited neutrophil apoptosis; however, more detailed analysis demonstrated its ability to promote apoptosis in a subpopulation of cells at earlier (2 to 8 hours) times. Formyl-Met-Leu-Phe, platelet-activating factor, inositol hexakisphosphate, lipopolysaccharide, leukotriene B4, and granulocyte-macrophage colony-stimulating factor all inhibited apoptosis at 6 and 20 hours. The early proapoptotic effect of TNF-alpha was concentration-dependent (EC50 2.8 ng/mL), abolished by TNF-alpha neutralizing antibody, and was not associated with any change in cell viability or recovery. Of relevance to the inflamed site, the ability of TNF-alpha to accelerate apoptosis was lost if neutrophils were primed with 1 micromol/L PAF or aged for 6 hours before TNF-alpha addition. The TNFR55-selective TNF-alpha mutants (E146K, R32W-S86T) induced neutrophil apoptosis but with a potency 14-fold lower than wild-type TNF-alpha. Although the TNFR75-selective mutant (D143F) did not induce apoptosis, blocking antibodies to both receptor subtypes abolished TNF-alpha-stimulated apoptosis. Hence, TNF-alpha has the unique ability to induce apoptosis in human neutrophils via a mechanism where TNFR75 facilitates the dominant TNFR55 death effect. This may be an important mechanism controlling neutrophil longevity and clearance in vivo. PMID:9326245

  19. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations.

    PubMed Central

    Halter, S. A.; Dempsey, P.; Matsui, Y.; Stokes, M. K.; Graves-Deal, R.; Hogan, B. L.; Coffey, R. J.

    1992-01-01

    Eight lines of transgenic mice expressing a mouse mammary tumor virus (MMTV) human transforming growth factor-alpha (TGF alpha) fusion gene were established. Three lines with distinctive phenotypes are presented. All have proliferative changes of the mammary gland. One line has sebaceous gland hyperplasia of the skin. Five histologic patterns of mammary gland hyperplasia based on two of these lines were identified: cystic hyperplasia, solid hyperplasia, dysplasia, adenoma, and adenocarcinoma. Human TGF alpha mRNA and protein were produced in all patterns but appeared reduced in solid hyperplasia, dysplasia, and adenocarcinoma. TGF alpha immunoreactivity in the mammary tissue, cystic fluid, and serum did not show significant differences; hyperplasia developed in 65% of multiparous mice and 45% of virgin mice by 12 months of age. Adenocarcinoma developed in 40% of multiparous mice and 30% of virgin mice by 16 months of age. These transgenic lines may provide useful models of mammary and sebaceous gland hyperplasia analogous to human disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 10 Figure 11 PMID:1316084

  20. Tumor necrosis factor alpha -238 G/A and -308 G/A polymorphisms and soluble TNF-? levels in chronic kidney disease: correlation with clinical variables.

    PubMed

    Vzquez-Huerta, Diana I; Alvarez-Rodrguez, Bertha A; Topete-Reyes, Jorge F; Muoz-Valle, Jos F; Parra-Michel, Renato; Fuentes-Ramrez, Francisco; Salazar-Lpez, Mara A; Valle, Yeminia; Reyes-Castillo, Zyanya; Cruz-Gonzlez, A; Brennan-Bourdon, Lorena M; Torres-Carrillo, Norma

    2014-01-01

    Chronic kidney disease (CKD) is characterized by accumulation of proinflammatory cytokines, mainly tumor necrosis factor alpha (TNF-?). Single nucleotide polymorphisms (SNPs) of TNFA gene, including -238 G/A and -308 G/A, have been associated with alteration in the soluble TNF-? (sTNF-?) expression. The aim was to investigate the association of -238 y -308 TNFA gene SNPs with sTNF-? levels in CKD patients. We included 150 CKD patients and 192 control subjects (CS). Both SNPs were genotyped with polymerase chain reaction-restriction fragment length polymorphism technique and sTNF-? levels were measured by enzyme-linked immunosorbent assay. The genotypic distribution of -238 and -308 SNPs was not significantly different between CKD patients and CS (p > 0.001). However, the sTNF-? levels were higher in CKD, compared to CS (p < 0.001). Also, sTNF-? correlated with creatinine (r = 0.279, p = 0.004), urea (r = 0.325, p = 0.001), phosphorus (r = 0.479, p = 0.001), glomerular filtration rate (r = -0.236, p = 0.019) and monocyte count (r = 0.276, p = 0.010). In conclusion, elevated sTNF-? levels are associated with CKD. However, the -238 and -308 TNFA gene SNPs were not associated with susceptibility to CKD and sTNF-? levels in a Mexican population. PMID:25232395

  1. Chemical synthesis in protein engineering: total synthesis, purification and covalent structural characterization of a mitogenic protein, human transforming growth factor-alpha.

    PubMed

    Woo, D D; Clark-Lewis, I; Chait, B T; Kent, S B

    1989-10-01

    Successful approaches to protein engineering required that the desired analogs be easily and rapidly obtained in sufficient quantities and purities for unambiguous structural and functional characterizations. Chemical synthesis is the method of choice for engineering small peptides. We now demonstrate that with improved methodologies and instrumentation, total chemical synthesis can be used to produce a small protein in a form suitable for engineering studies. Active human transforming growth factor-alpha (TGF-alpha), a 50 amino acid long protein with three disulfide bonds, has been synthesized and purified in multiple tens of mg amounts in less than 7 days. The purified human TGF-alpha migrated as a single band on SDS-polyacrylamide gels, ran as a single sharp major band at pI = 6.2 on isoelectric focusing gels, displayed an MW = 5546.2 (Th.5546.3) by mass spectrometry, contained three disulfide bonds and had EGF receptor binding, mitogenic and soft agar colony formation activities. The locations of disulfide bonds were found to be analogous to those found in epidermal growth factor (EGF) and in human TGF-alpha expressed in bacteria. PMID:2813340

  2. Tumor necrosis factor alpha and gamma interferon, but not hemorrhage or pathogen burden, dictate levels of protective fibrin deposition during infection.

    PubMed

    Mullarky, Isis K; Szaba, Frank M; Berggren, Kiera N; Kummer, Lawrence W; Wilhelm, Lindsey B; Parent, Michelle A; Johnson, Lawrence L; Smiley, Stephen T

    2006-02-01

    While coagulation often causes pathology during infectious disease, we recently demonstrated that fibrin, a product of the coagulation pathway, performs a critical protective function during acute toxoplasmosis (L. L. Johnson, K. N. Berggren, F. M. Szaba, W. Chen, and S. T. Smiley, J. Exp. Med. 197:801-806, 2003). Here, we investigate the mechanisms regulating the formation of this protective fibrin. Through comparisons of Toxoplasma-infected wild-type and cytokine-deficient mice we dissociate, for the first time, the relative fibrin-regulating capacities of pathogen products, host cytokines, and infection-stimulated hemorrhage. Remarkably, neither the pathogen burden nor hemorrhage is a primary regulator of fibrin levels. Rather, two type 1 cytokines exert dominant and counterregulatory roles: tumor necrosis factor alpha (TNF-alpha), acting via the type 1 TNF-alpha receptor, promotes fibrin deposition, while gamma interferon (IFN-gamma), acting via STAT1 and IFN-gamma receptors expressed on radioresistant cells, suppresses fibrin deposition. These findings have important clinical implications, as they establish that cytokines known to regulate pathological coagulation also dictate levels of protective fibrin deposition. We present a novel model depicting mechanisms by which the immune system can destroy infected tissue while independently restraining hemorrhage and promoting tissue repair through the deliberate deposition of protective fibrin. PMID:16428767

  3. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  4. Tumor Necrosis Factor Alpha and Gamma Interferon, but Not Hemorrhage or Pathogen Burden, Dictate Levels of Protective Fibrin Deposition during Infection

    PubMed Central

    Mullarky, Isis K.; Szaba, Frank M.; Berggren, Kiera N.; Kummer, Lawrence W.; Wilhelm, Lindsey B.; Parent, Michelle A.; Johnson, Lawrence L.; Smiley, Stephen T.

    2006-01-01

    While coagulation often causes pathology during infectious disease, we recently demonstrated that fibrin, a product of the coagulation pathway, performs a critical protective function during acute toxoplasmosis (L. L. Johnson, K. N. Berggren, F. M. Szaba, W. Chen, and S. T. Smiley, J. Exp. Med. 197:801-806, 2003). Here, we investigate the mechanisms regulating the formation of this protective fibrin. Through comparisons of Toxoplasma-infected wild-type and cytokine-deficient mice we dissociate, for the first time, the relative fibrin-regulating capacities of pathogen products, host cytokines, and infection-stimulated hemorrhage. Remarkably, neither the pathogen burden nor hemorrhage is a primary regulator of fibrin levels. Rather, two type 1 cytokines exert dominant and counterregulatory roles: tumor necrosis factor alpha (TNF-?), acting via the type 1 TNF-? receptor, promotes fibrin deposition, while gamma interferon (IFN-?), acting via STAT1 and IFN-? receptors expressed on radioresistant cells, suppresses fibrin deposition. These findings have important clinical implications, as they establish that cytokines known to regulate pathological coagulation also dictate levels of protective fibrin deposition. We present a novel model depicting mechanisms by which the immune system can destroy infected tissue while independently restraining hemorrhage and promoting tissue repair through the deliberate deposition of protective fibrin. PMID:16428767

  5. In Vitro Infection of Bovine Monocytes with Mycoplasma bovis Delays Apoptosis and Suppresses Production of Gamma Interferon and Tumor Necrosis Factor Alpha but Not Interleukin-10

    PubMed Central

    Mulongo, Musa; Prysliak, Tracy; Scruten, Erin; Napper, Scott

    2014-01-01

    Mycoplasma bovis is one of the major causative pathogens of bovine respiratory complex disease (BRD), which is characterized by enzootic pneumonia, mastitis, pleuritis, and polyarthritis. M. bovis enters and colonizes bovine respiratory epithelial cells through inhalation of aerosol from contaminated air. The nature of the interaction between M. bovis and the bovine innate immune system is not well understood. We hypothesized that M. bovis invades blood monocytes and regulates cellular function to support its persistence and systemic dissemination. We used bovine-specific peptide kinome arrays to identify cellular signaling pathways that could be relevant to M. bovis-monocyte interactions in vitro. We validated these pathways using functional, protein, and gene expression assays. Here, we show that infection of bovine blood monocytes with M. bovis delays spontaneous or tumor necrosis factor alpha (TNF-α)/staurosporine-driven apoptosis, activates the NF-κB p65 subunit, and inhibits caspase-9 activity. We also report that M. bovis-infected bovine monocytes do not produce gamma interferon (IFN-γ) and TNF-α, although the level of production of interleukin-10 (IL-10) is elevated. Our findings suggest that M. bovis takes over the cellular machinery of bovine monocytes to prolong bacterial survival and to possibly facilitate subsequent systemic distribution. PMID:24126524

  6. Epigenetic regulation of inducible gene expression in the immune system.

    PubMed

    Lim, Pek Siew; Li, Jasmine; Holloway, Adele F; Rao, Sudha

    2013-07-01

    T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation. PMID:23521628

  7. Induction of vascular leak syndrome by tumor necrosis factor-alpha alone.

    PubMed

    Park, Kyung-Yeon; Kim, Sung-Jo; Oh, Euichaul; Heo, Tae-Hwe

    2015-03-01

    Although TNF-? possesses promising anticancer activity, clinical application is limited partly due to cardiovascular toxicities. TNF-? effects on vessels are likely related to vascular toxicity, but much remains poorly understood. Similarly, IL-2 is an attractive treatment option for cancers but its clinical use is limited by the side effect of vascular leak syndrome (VLS). We report here that TNF-? alone can trigger VLS. Administration of recombinant TNF-? induced VLS in normal mice and TNF-? transgenic mice exhibited VLS. Perivascular infiltrates in the lungs and specific cytokines in serum were observed in VLS-induced mice. This study shed a new light on the critical role of the TNF-? in IL-2-induced or non IL-2-induced VLS and provides important points to TNF-? therapy. PMID:25776503

  8. Imaging Pulmonary Inducible Nitric Oxide Synthase Expression with PET

    PubMed Central

    Huang, Howard J.; Isakow, Warren; Byers, Derek E.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Kemp, Debra; Brody, Steven L.; Gropler, Robert J.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Pierce, Richard A.; Castro, Mario; Mach, Robert H.; Chen, Delphine L.

    2015-01-01

    Inducible nitric oxide synthase (iNOS) activity increases in acute and chronic inflammatory lung diseases. Imaging iNOS expression may be useful as an inflammation biomarker for monitoring lung disease activity. We developed a novel tracer for PET that binds to iNOS in vivo, 18F-NOS. In this study, we tested whether 18F-NOS could quantify iNOS expression from endotoxin-induced lung inflammation in healthy volunteers. Methods Healthy volunteers were screened to exclude cardiopulmonary disease. Qualifying volunteers underwent a baseline, 1-h dynamic 18F-NOS PET/CT scan. Endotoxin (4 ng/kg) was then instilled bronchoscopically in the right middle lobe. 18F-NOS imaging was performed again approximately 16 h after endotoxin instillation. Radiolabeled metabolites were determined from blood samples. Cells recovered by bronchoalveolar lavage (BAL) after imaging were stained immunohistochemically for iNOS. 18F-NOS uptake was quantified as the distribution volume ratio (DVR) determined by Logan plot graphical analysis in volumes of interest placed over the area of endotoxin instillation and in an equivalent lung region on the left. The mean Hounsfield units (HUs) were also computed using the same volumes of interest to measure density changes. Results Seven healthy volunteers with normal pulmonary function completed the study with evaluable data. The DVR increased by approximately 30%, from a baseline mean of 0.42 0.07 to 0.54 0.12, and the mean HUs by 11% after endotoxin in 6 volunteers who had positive iNOS staining in BAL cells. The DVR did not change in the left lung after endotoxin. In 1 volunteer with low-level iNOS staining in BAL cells, the mean HUs increased by 7% without an increase in DVR. Metabolism was rapid, with approximately 50% of the parent compound at 5 min and 17% at 60 min after injection. Conclusion 18F-NOS can be used to image iNOS activity in acute lung inflammation in humans and may be a useful PET tracer for imaging iNOS expression in inflammatory lung disease. PMID:25525182

  9. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice.

    PubMed

    Surguladze, David; Deevi, Dhanvanthri; Claros, Nidia; Corcoran, Erik; Wang, Su; Plym, Mary Jane; Wu, Yan; Doody, Jacqueline; Mauro, David J; Witte, Larry; Busam, Klaus J; Pytowski, Bronek; Rodeck, Ulrich; Tonra, James R

    2009-07-15

    Cancer patients receiving epidermal growth factor receptor (EGFR) antibody therapy often experience an acneiform rash of uncertain etiology in skin regions rich in pilosebaceous units. Currently, this condition is treated symptomatically with very limited, often anecdotal success. Here, we show that a monoclonal antibody targeting murine EGFR, ME1, caused a neutrophil-rich hair follicle inflammation in mice, similar to that reported in patients. This effect was preceded by the appearance of lipid-filled hair follicle distensions adjacent to enlarged sebaceous glands. The cytokine tumor necrosis factor-alpha (TNFalpha), localized immunohistochemically to this affected region of the pilosebaceous unit, was specifically up-regulated by ME1 in skin but not in other tissues examined. Moreover, skin inflammation was reduced by cotreatment with the TNFalpha signaling inhibitor, etanercept, indicating the involvement of TNFalpha in this inflammatory process. Interleukin-1, a cytokine that frequently acts in concert with TNFalpha, is also involved in this process given the efficacy of the interleukin-1 antagonist Kineret. Our results provide a mechanistic framework to develop evidence-based trials for EGFR antibody-induced skin rash in patients with cancer. PMID:19584274

  10. Tumour necrosis factor-alpha- vs. growth factor deprivation-promoted cell death: different receptor requirements for mediating nerve growth factor-promoted rescue.

    PubMed

    Pappas, Todd C; Decorti, Francesco; Macdonald, Nancy J; Neet, Kenneth E; Taglialatela, Giulio

    2003-04-01

    Physiological and pathological aging of the central nervous system (CNS) is characterized by functional neuronal impairments which may lead to perturbed cell homeostasis and eventually to neuronal death. Many toxic events may underlie age-related neurodegeneration. These include the effects of beta amyloid, Tau and mutated presenilin proteins, free radicals and oxidative stress, pro-inflammatory cytokines and lack of growth factor support, which can be individually or collectively involved. Taken individually, these toxicants can induce very diverse cell responses, thus requiring individually targeted corrective interventions upstream of common cell death (apoptotic) pathways. Recent preliminary evidence suggests that the pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha) and growth factor withdrawal can both activate a common apoptotic pathway in nerve growth factor (NGF)-responsive PC12 cells involving caspase 3, albeit through very distinct upstream pathways: the former through active signalling and the latter through passive or lack of survival signalling. Here, we show that NGF can rescue PC12 cells from both growth factor withdrawal- and TNFalpha-promoted cell death. However, NGF rescue from growth factor withdrawal requires NGF signalling through the high-affinity tyrosine kinase receptor (TrkA), while NGF rescue from TNFalpha-promoted cell death requires NGF signalling through the low-affinity p75NTR receptor. These results strengthen the idea that prevention of age- or pathology-associated neurodegeneration may require varied molecular approaches reflecting the diversity of the toxicants involved, possibly acting simultaneously. PMID:12882321

  11. Rabies Virus Ocular Disease: T-Cell-Dependent Protection Is under the Control of Signaling by the p55 Tumor Necrosis Factor Alpha Receptor, p55TNFR

    PubMed Central

    Camelo, Serge; Castellanos, Jaime; Lafage, Mireille; Lafon, Monique

    2001-01-01

    Following brain infection, the Challenge Virus Standard strain of rabies virus infects the retina. Rabies virus ocular infection induces the infiltration of neutrophils and predominantly T cells into the eye. The role of tumor necrosis factor alpha (TNF-?)-lymphotoxin signaling in the control of rabies virus ocular infection and inflammatory cell infiltration was assessed using mice lacking the p55 TNF-? receptor (p55TNFR?/? mice). The incidence of ocular disease and the intensity of retinal infection were greater in p55TNFR?/? mice than in C57BL/6 mice: the aggravation correlated with less neutrophil and T-cell infiltration. This indicates that cellular infiltration is under the control of the p55 TNF-? receptor and suggests that inflammatory cells may protect the eye against rabies virus ocular infection. The role of T cells following rabies virus ocular disease was assessed by comparison of rabies virus infection in nude mice with their normal counterparts. Indeed, the incidence and severity of the rabies virus ocular disease were higher in athymic nude mice than in BALB/c mice, indicating that T lymphocytes are protective during rabies virus ocular infection. Moreover, few T cells and neutrophils underwent apoptosis in rabies virus-infected retina. Altogether, these data suggest that T lymphocytes and neutrophils are able to enter the eye, escape the immune privilege status, and limit rabies virus ocular disease. In conclusion, rabies virus-mediated eye disease provides a new model for studying mechanisms regulating immune privilege during viral infection. PMID:11238868

  12. Factors Affecting Inducible Expression of Outer Membrane Protein A (OmpA) of Shigella dysenteriae Type-1 in Lactococcus lactis Using Nisin Inducible Controlled Expression (NICE).

    PubMed

    Yagnik, Bhrugu; Patel, Shivangi; Dave, Maitree; Sharma, Drashya; Padh, Harish; Desai, Priti

    2016-03-01

    Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host's proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ?htrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression. PMID:26843700

  13. Significance of hypoxia-inducible factor-1? expression with atrial fibrosis in rats induced with isoproterenol.

    PubMed

    Su, Fangju; Zhang, Weize; Chen, Yongqing; Ma, Ling; Zhang, Hanping; Wang, Fei

    2014-12-01

    Atrial interstitial fibrosis plays a dual role in inducing and maintaining atrial fibrillation (AF). Hypoxia-inducible factor-1? (HIF-1?) has been reported as closely associated with renal, liver and pulmonary fibrosis diseases. However, whether HIF-1? is involved in myocardial fibrosis, and the associations between HIF-1?, transforming growth factor-?1 (TGF-?1) and matrix metalloproteinase-9 (MMP-9) remain unknown. Therefore, this area warrants studying for the significance of AF diagnosis and treatment. The present study investigated the expression of HIF-1? in atrial fibrosis and its possible mechanism in isoproterenol (ISO)-induced rats. The three groups of rats; control, ISO and ISO plus sirolimus [also known as rapamycin (Rapa)], were treated for 15 days and sacrificed to remove the myocardial tissues. The expression levels of HIF-1?, TGF-?1 and MMP-9 and their associations with atrial fibrosis were examined through histomorphology and protein and mRNA levels. The protein and mRNA levels of HIF-1?, TGF-?1 and MMP-9 in the ISO group were increased markedly (P<0.01) compared with the control group, while those in the Rapa group were clearly decreased (P<0.01) compared with the ISO group. The protein and mRNA levels of HIF-1?, TGF-?1 and MMP-9 were positively correlated (P<0.01) with atrial fibrosis (collagen volume fraction index), as were the HIF-1?, TGF-? 1 and MMP-9 mRNA levels (P<0.01) and the mRNA levels between MMP-9 and TGF-? 1 (P<0.01). During the process of atrial fibrosis in ISO-induced rats, HIF-1? promotes the expression of TGF-?1 and MMP-9 protein, and thus is involved in in atrial fibrosis. PMID:25371714

  14. Tumor necrosis factor-alpha mediates activation of NF-?B and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways

    PubMed Central

    Dvoriantchikova, Galina; Ivanov, Dmitry

    2014-01-01

    Tumor necrosis factor-alpha (TNF) is an important mediator of the innate immune response in the retina. TNF can activate various signaling cascades, including NF-?B, nuclear factor kappaB (NF-?B) and c-Jun N-terminal kinase (JNK) pathways. The harmful role of these pathways, as well as of TNF, has previously been shown in several retinal neurodegenerative conditions including glaucoma and retinal ischemia. However, TNF and TNF-regulated signaling cascades are capable not only of mediating neurotoxicity, but of being protective. We performed this study to delineate the beneficial and detrimental effects of TNF signaling in the retina. To this end, we used TNF-treated primary retinal ganglion cell (RGC) and astrocyte cultures. Levels of expression of NF-?B subunits in RGCs and astrocytes were evaluated by quantitative RT-PCR (qRT-PCR) and Western blot (WB) analysis. NF-?B and JNK activity in TNF-treated cells was determined in a time-dependent manner using ELISA and WB. Gene expression in TNF-treated astrocytes was measured by qRT-PCR. We found that NF-?B family members were present in RGCs and astrocytes at the mRNA and protein levels. RGCs failed to activate NF-?B in the presence of TNF, a phenomenon that was associated with sustained JNK activation and RGC death. However, TNF initiated the activation of NF-?B and mediated transient JNK activation in astrocytes. These events were associated with glial survival and increased expression of neurotoxic pro-inflammatory factors. Our findings suggest that, in the presence of TNF, NF-?B and JNK signaling cascades are activated in opposite ways in RGCs and astrocytes. These events can directly and indirectly facilitate RGC death. PMID:25160799

  15. Assessing the likelihood of new-onset inflammatory bowel disease following tumor necrosis factor-alpha inhibitor therapy for rheumatoid arthritis and juvenile rheumatoid arthritis.

    PubMed

    Krishnan, Asha; Stobaugh, Derrick J; Deepak, Parakkal

    2015-04-01

    The association between inhibition of tumor necrosis factor-alpha (TNF-?) in patients with rheumatoid arthritis (RA) and juvenile rheumatoid arthritis (JRA) and the onset of inflammatory bowel disease (IBD) is unclear. We sought to evaluate this association by analyzing adverse events (AEs) reported to the Food and Drug Administration Adverse Event Reporting System (FAERS) with a standardized scoring tool for drug-induced AEs. A search of the FAERS for RA or JRA (January 2003-December 2011) reported with adalimumab, certolizumab pegol, etanercept, golimumab, or infliximab was performed. This dataset was then queried for cases indicating IBD. Full-length reports were accessed using the Freedom of Information Act and organized by age, sex, concomitant medications, co-morbidities, type of TNF-? inhibitor used, and diagnosis/treatment details. The Naranjo score was used to determine whether the drug-induced AEs were definite, probable, possible, or doubtful. There were 158 cases of IBD after TNF-? inhibitor exposure in RA or JRA patients. Use of the Naranjo score revealed that, in a majority of the cases (71.5 %), TNF-? inhibitor exposure was considered a 'possible' cause. A majority of the 'probable cases' in JRA were reported with etanercept (40 patients, 90.91 %). There were no 'definite' cases of anti-TNF-induced IBD. After applying the Naranjo scale, a weak association between new-onset IBD and TNF-? inhibitor therapy in RA patients and a moderately strong association especially with etanercept exposure in JRA patients was observed. However, causality cannot be determined due to limitations of the FAERS and the Naranjo score. PMID:25228459

  16. Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas.

    PubMed

    Zhang, Tiehui; Zhao, Binhai; Li, Jia; Zhang, Chunlei; Li, Hongzhi; Wu, Jiang; Zhang, Shiming; Hui, Guozhen

    2015-04-01

    In general, pituitary tumors are benign with low mitotic activity. Premature senescence has been considered to be a significant mechanism underlying this uniquely benign pituitary tumor. The present study aims to compare the expression of the associated proteins involved in premature senescence pathways among normal, aging and pituitary adenoma cells. We successfully induced the aging pituitary using continuous D?galactose (D?gal) injection as well as a prolactin?secreting pituitary tumor via diethylstilbestrol implants. Compared with normal pituitary cells, the aging pituitary tissues revealed increased expression of IL?6, C/EBP?, p53, p21 and p16 and decreased expression of pituitary tumor transforming gene. In contrast, the expression of IL?6, p21 and p16 was decreased in pituitary tumor cells compared with normal pituitary tissues. Taken together, multiple pathways including IL?6/C/EBP?, p53/p21 and p16 were activated in aging pituitary cells in response to D?gal treatment. However, all these pathways were immune to pituitary tumors treated by chronic estrogen. The findings and the involvement of cytokines in a highly prevalent natural disease model (pituitary adenomas) indicate a potential use of this pathway as a target for effective therapy for tumor silencing and prevention of adenoma progression towards malignancy. PMID:25482089

  17. Production of interleukin-8 (IL-8) by cultured endothelial cells in response to Borrelia burgdorferi occurs independently of secreted [corrected] IL-1 and tumor necrosis factor alpha and is required for subsequent transendothelial migration of neutrophils.

    PubMed Central

    Burns, M J; Sellati, T J; Teng, E I; Furie, M B

    1997-01-01

    Previous studies have shown that Borrelia burgdorferi, the spirochetal agent of Lyme disease, promotes inflammation by stimulating endothelial cells to upregulate adhesion molecules for leukocytes and to produce a soluble agent that is chemotactic for neutrophils. We determined that interleukin-8 (IL-8) was the chemotactic agent for neutrophils present in conditioned media from cultured human umbilical vein endothelial cells stimulated with B. burgdorferi. As few as one spirochete per endothelial cell stimulated production of IL-8 within 8 h of coincubation. When 10 spirochetes per endothelial cell were added, IL-8 was detected after 4 h of coculture. Production of IL-8 continued in a linear fashion for at least 24 h. Neutralizing antibodies against IL-8 reduced migration of neutrophils across spirochete-stimulated endothelial monolayers by 93%. In contrast, pretreatment of neutrophils with antagonists of platelet-activating factor did not inhibit migration. Increases in production of IL-8 and expression of the adhesion molecule E-selectin by endothelial cells in response to B. burgdorferi were not inhibited by IL-1 receptor antagonist or a neutralizing monoclonal antibody directed against tumor necrosis factor alpha, used either alone or in combination. These results suggest that activation of endothelium by B. burgdorferi is not mediated through the autocrine action of secreted IL-1 or tumor necrosis factor alpha. Rather, it appears that B. burgdorferi must stimulate endothelium either by a direct signaling mechanism or by induction of a novel host-derived proinflammatory cytokine. PMID:9119454

  18. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression

    PubMed Central

    Joyce, Elizabeth A; Popper, Stephen J; Falkow, Stanley

    2009-01-01

    Background We employed DNA microarray technology to investigate the host response to Streptococcus pneumoniae in a mouse model of asymptomatic carriage. Over a period of six weeks, we profiled transcript abundance and complexity in the Nasal Associated Lymphoid Tissue (NALT) to identify genes whose expression differed between pneumococcal-colonized and uncolonized states. Results Colonization with S. pneumoniae altered the expression of hundreds of genes over the course of the study, demonstrating that carriage is a dynamic process characterized by increased expression of a set of early inflammatory responses, including induction of a Type I Interferon response, and the production of several antimicrobial factors. Subsequent to this initial inflammatory response, we observed increases in transcripts associated with T cell development and activation, as well as wounding, basement membrane remodeling, and cell proliferation. Our analysis suggests that microbial colonization induced expression of genes encoding components critical for controlling JAK/STAT signaling, including stat1, stat2, socs3, and mapk1, as well as induction of several Type I Interferon-inducible genes and other antimicrobial factors at the earliest stages of colonization. Conclusion Examining multiple time points over six weeks of colonization demonstrated that asymptomatic carriage stimulates a dynamic host response characterized by temporal waves with distinct biological programs. Our data suggest that the usual response to the presence of the pneumocccus is an initial controlled inflammatory response followed by activation of host physiological processes such as response to wounding, basement membrane remodeling, and increasing cellular numbers that ultimately allow the host to maintain an intact epithelium and eventually mount a preventive adaptive immune response. PMID:19712482

  19. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo.

    PubMed Central

    Machnicki, M.; Zimecki, M.; Zagulski, T.

    1993-01-01

    The effects of bovine lactoferrin on the serum cytokine levels, induced by lipopolysaccharide (LPS) in mice, are described. Bovine lactoferrin (BLF) introduced intravenously, 24 hours before i.v. injection of 50 micrograms of LPS, significantly lowered the serum concentration of TNF-alpha. Doses of BLF lower than 100 micrograms as well as pretreatment of mice with BLF on days 6-2 or 12-2 hours before LPS challenge, were not effective. Moreover, BLF induces by itself a relatively high level of IL-6, peaking at 1 hour following injection. Pretreatment of LPS-injected mice with BLF causes, in addition, a small but statistically significant drop in IL-6 level. Human albumin, used as a control protein, did not cause any changes in the cytokine levels. The data reported herein provide a satisfactory explanation with regard to preventive activity of LF in infection. PMID:8217778

  20. Octylphenol induced gene expression in testes of Frog, Rana chensinensis.

    PubMed

    Li, Xinyi; Liu, Jia; Zhang, Yuhui

    2016-06-01

    Octylphenol (OP) is an endocrine-disrupting chemical (EDC), which can disrupt the reproductive system. To understand the effect of OP, a subtractive cDNA library was constructed using suppression subtractive hybridization (SSH) to identify alterations of gene transcription in the testes of the frog Rana chensinensis after OP exposure. Two hundred positive clones were selected and 134 sequences of gene fragments were produced from the subtractive library randomly. These genes were identified to be involved in metabolic process, cellular process, biological regulation, stimulus, immune system and female pregnancy process. In order to verify the efficiency of the subtractive cDNA library, PSG9 and PAPP-A were analyzed further as two representatives of differentially expressed transcription genes using semi-quantitative RT-PCR. Our result was the first successful construction of the subtractive cDNA library in frog testes after OP treatment. Based on this cDNA library, OP was shown to affect multiple physiological processes including inducing immune response, disrupting the steroid hormone synthesis and influencing spermatogenesis in the testis by up-regulation of specific genes. PMID:26896894

  1. In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas.

    PubMed

    Fenhalls, G; Wong, A; Bezuidenhout, J; van Helden, P; Bardin, P; Lukey, P T

    2000-05-01

    Human tuberculous granulomas from five adults undergoing surgery for hemoptysis were analyzed by nonradioactive in situ hybridization for tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), and interleukin-4 (IL-4) gene expression. All of the patients produced TNF-alpha mRNA. Three patients stained positive for both IFN-gamma and IL-4 mRNA; the other two stained positive for IFN-gamma but not IL-4 mRNA. Heterogeneity between the granulomas was observed in those patients staining positive for both IFN-gamma and IL-4 mRNA; these patients exhibited granulomas having IFN-gamma and not IL-4 mRNA as well as granulomas positive for both cytokine mRNAs. There was no evidence of caseation in these granulomas, and the cytokine patterns may represent events in the evolution of the granuloma. However, in those granulomas exhibiting caseous necrosis, very little IFN-gamma or IL-4 mRNA was observed, implying that progression of the granuloma is accompanied by a down regulation of T-cell responses. TNF-alpha mRNA expression was highest in patients with both IFN-gamma and IL-4 mRNA. Populations of CD68 positive macrophage-like cells within the granulomas produce mRNA for TNF-alpha, IFN-gamma, and IL-4. This implies that macrophages within the tuberculous granuloma may not be dependent on T-cell cytokines for modulation of their function but may be able to regulate their own activation state and that of the surrounding T cells. These findings have implications on the delivery of immunotherapies to patients with tuberculosis. PMID:10768979

  2. In Situ Production of Gamma Interferon, Interleukin-4, and Tumor Necrosis Factor Alpha mRNA in Human Lung Tuberculous Granulomas

    PubMed Central

    Fenhalls, Gael; Wong, Anthony; Bezuidenhout, Juanita; van Helden, Paul; Bardin, Philip; Lukey, Pauline T.

    2000-01-01

    Human tuberculous granulomas from five adults undergoing surgery for hemoptysis were analyzed by nonradioactive in situ hybridization for tumor necrosis factor alpha (TNF-?), gamma interferon (IFN-?), and interleukin-4 (IL-4) gene expression. All of the patients produced TNF-? mRNA. Three patients stained positive for both IFN-? and IL-4 mRNA; the other two stained positive for IFN-? but not IL-4 mRNA. Heterogeneity between the granulomas was observed in those patients staining positive for both IFN-? and IL-4 mRNA; these patients exhibited granulomas having IFN-? and not IL-4 mRNA as well as granulomas positive for both cytokine mRNAs. There was no evidence of caseation in these granulomas, and the cytokine patterns may represent events in the evolution of the granuloma. However, in those granulomas exhibiting caseous necrosis, very little IFN-? or IL-4 mRNA was observed, implying that progression of the granuloma is accompanied by a down regulation of T-cell responses. TNF-? mRNA expression was highest in patients with both IFN-? and IL-4 mRNA. Populations of CD68 positive macrophage-like cells within the granulomas produce mRNA for TNF-?, IFN-?, and IL-4. This implies that macrophages within the tuberculous granuloma may not be dependent on T-cell cytokines for modulation of their function but may be able to regulate their own activation state and that of the surrounding T cells. These findings have implications on the delivery of immunotherapies to patients with tuberculosis. PMID:10768979

  3. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression.

    PubMed

    Ahmed, Maha A E; El-Awdan, Sally A

    2015-07-01

    Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats. PMID:26187709

  4. Murine Hepatic miRNAs Expression and Regulation of Gene Expression in Diet-Induced Obese Mice

    PubMed Central

    Park, Jae-Ho; Ahn, Jiyun; Kim, Suna; Kwon, Dae Young; Ha, Tae Youl

    2011-01-01

    MicroRNAs are short, non-coding RNA molecules that regulate gene expression primarily by translational repression or by messenger RNA degradation. MicroRNAs play crucial roles in various biological processes. However, little is known regarding their role in obesity. We investigated differences of microRNA (miRNA) expression in liver tissue from diet-induced obese mice and potential effects of them on gene and protein expression. We used a miRNA microarray and quantitative RT-PCR to determine miRNA expression in murine liver tissue. Gene and protein expression were determined by qRT-PCR and Western blot analysis. Effects of miRNA by knock-down using RNAi or overexpression on putative target genes and/or proteins in a murine hepatic cell line were also investigated. MicroRNA array and qRT-PCR analsysis revealed that > 50 miRNAs were down- or upregulated more than 2-fold in the liver of diet-induced obese mice. While changes in expression of many genes were observed at the mRNA level, some were only altered at the protein level. Overexpression or knock-down of miR-107 in murine hepatic cells revealed that the expression of its putative target, fatty acid synthase, was dramatically decreased or increased, respectively. In conclusion, more than 50 hepatic miRNAs were dysregulated in diet-induced obese mice. Some of them regulate protein expression at translation level and others regulate mRNA expression at transcriptional level. MiR-107 is downregulated while FASN, a putative target of miR-107, was increased in diet-induced obese mice. These findings provide the evidence of the correlation of miRNAs and their targets in diet-induced obese mice. PMID:21120623

  5. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-?) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-? is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-? can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-? (0.2, 0.4, 0.7 and 1 ?g/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-? treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-? exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. PMID:24398264

  6. Effect of ascorbic acid and alpha-tocopherol supplementations on serum leptin, tumor necrosis factor alpha, and serum amyloid A levels in individuals with type 2 diabetes mellitus

    PubMed Central

    Jamalan, Mostafa; Rezazadeh, Mahin; Zeinali, Majid; Ghaffari, Mohammad Ali

    2015-01-01

    Objective: Diabetes mellitus Type 2 is one of the most widespread chronic metabolic diseases. In most cases, this type of diabetes is associated with alterations in levels of some inflammatory cytokines and hormones. Considering anti-inflammatory properties of plant extracts rich in ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E), anti-diabetic properties of these two well-known antioxidant vitamins were investigated through measurement of serum levels of high-sensitivity C-reactive protein (hs-CRP), insulin, leptin, tumor necrosis factor alpha (TNF-?), and serum amyloid A (SAA) in patients with diabetes mellitus type 2. Materials and Methods: Male patients (n=80) were randomly divided into two groups each consisted of 40 subjects. Test groups were supplemented with ascorbic acid (1000 mg/day) or alpha-tocopherol (300 mg/day) orally during four weeks. Before and after treatment, serum biochemical factors of subjects were measured and compared. Results: Our results showed that both ascorbic acid and alpha-tocopherol could induce significant anti-inflammatory effects by decreasing the level of inflammatory factors such as TNF-?, SAA, and hs-CRP in diabetes mellitus type 2 patients. Effects of alpha-tocopherol and ascorbic acid in decreasing serum leptin level were similar. Ascorbic acid in contrast to alpha-tocopherol diminished fasting insulin and HOMA index but had no effect on LDL serum level. Conclusion: Concerning the obtained results, it is concluded that consumption of supplementary vitamins C and E could decrease induced inflammatory response in patients with diabetes mellitus type 2. It is also possible that vitamin C and vitamin E supplementation can attenuate incidence of some proposed pathological effects of diabetes mellitus. PMID:26693410

  7. No association between tumor necrosis factor-alpha production and gene polymorphisms among inbred rat strains.

    PubMed

    Warl, Michiel C; van der Laan, Luc J W; Kusters, Johannes G; Pot, Raymond G J; Hop, Wim C J; Segeren, Katja C A; Ijzermans, Jan N M; Metselaar, Herold J; Tilanus, Hugo W

    2005-06-01

    Differences in spontaneous allograft acceptance after liver transplantation among inbred rat strains might be explained by variation in the local production of TNF-alpha as a potent mediator of the inflammatory response. In this study, we hypothesize that nucleotide differences in the rat Tnf gene influence TNF-alpha protein expression. As such, polymorphisms in the Tnf gene may also provide a possible explanation for differences in survival of allogeneic liver grafts among inbred rat strains. We therefore investigated the capacity of mononuclear cells to produce TNF-alpha in response to a mitogenic stimulus and the Tnf locus was sequenced in six different inbred rat strains. Among the six strains (AUG, BN, DA, LEW, PVG and WF), 44 nucleotide differences including 36 single nucleotide polymorphisms (SNPs), five simple sequence length polymorphisms, two deletions and one insertion, were found in the Tnf gene. Although, the inbred rat strains differed significantly in mean levels of maximum TNF-alpha production (P = 0.001), no associations were found with nucleotide differences within the Tnf gene. In conclusion, our results indicate that differential in vitro TNF-alpha responses among inbred rat strains are not associated with nucleotide differences within non-coding regulatory regions of the rat TNF-alpha gene. Without an established relationship between polymorphisms and expression of the TNF-alpha gene, it is preliminary to address a possible association of Tnf gene polymorphisms with rat liver allograft survival. PMID:15935297

  8. Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-alpha antagonists.

    PubMed

    Bendtzen, Klaus

    2013-04-01

    With the discovery of the central pathogenic role of tumor necrosis factor (TNF)-alpha in many immunoinflammatory diseases, specific inhibition of this pleiotropic cytokine has revolutionized the treatment of patients with several non-infectious inflammatory disorders. As a result, genetically engineered anti-TNF-alpha antibody constructs now constitute one of the heaviest medicinal expenditures in many countries. All currently used TNF antagonists may dramatically lower disease activity and, in some patients, induce remission. Unfortunately, however, not all patients respond favorably, and safety can be severely impaired by immunogenicity, i.e., the ability of a drug to induce anti-drug antibodies (ADA). Assessment of ADA is therefore an important component of the evaluation of drug safety in both pre-clinical and clinical studies and in the process of developing less immunogenic and safer biopharmaceuticals. Therapeutics diagnostics, also called theranostics, i.e., monitoring functional drug levels and neutralizing ADA in the circulation, is central to more effective use of biopharmaceuticals. Hence, testing-based strategies rather than empirical dose-escalation may provide more cost-effective use of TNF antagonists as this allows therapies tailored according to individual requirements rather than the current universal approach to diagnosis. The objective of the present review is to discuss the reasons for recommending theranostics to implement an individualized use of TNF antagonists and to highlight some of the methodological obstacles that have obscured cost-effective ways of using these therapies. PMID:23636137

  9. PiggyBac Transposon-based Inducible Gene Expression In Vivo After Somatic Cell Gene Transfer

    PubMed Central

    Saridey, Sai K; Liu, Li; Doherty, Joseph E; Kaja, Aparna; Galvan, Daniel L; Fletcher, Bradley S; Wilson, Matthew H

    2009-01-01

    Somatic cell gene transfer has permitted inducible gene expression in vivo through coinfection of multiple viruses. We hypothesized that the highly efficient plasmid-based piggyBac transposon system would enable long-term inducible gene expression in mice in vivo. We used a multiple-transposon delivery strategy to create a tetracycline-inducible expression system in vitro in human cells by delivering the two genes on separate transposons for inducible reporter gene expression along with a separate selectable transposon marker. Evaluation of stable cell lines revealed 100% of selected clones exhibited inducible expression via stable expression from three separate transposons simultaneously. We next tested and found that piggyBac-mediated gene transfer to liver or lung could achieve stable reporter gene expression in mice in vivo in either immunocompetent or immune deficient animals. A single injection of piggyBac transposons could achieve long-term inducible gene expression in the livers of mice in vivo, confirming our multiple-transposon strategy used in cultured cells. The plasmid-based piggyBac transposon system enables constitutive or inducible gene expression in vivo for potential therapeutic and biological applications without using viral vectors. PMID:19809403

  10. Tumor Necrosis Factor-alpha Levels in HIV-1 Seropositive Injecting Drug Users

    PubMed Central

    Ownby, Raymond L.; Kumar, Adarsh M.; Fernandez, J. Benny; Moleon-Borodowsky, Irina; Gonzalez, Louis; Eisdorfer, Seth; Waldrop-Valverde, Drenna; Kumar, Mahendra

    2013-01-01

    TNF-? is a highly pleiotropic cytokine and plays an important role in regulating HIV-1 replication. It may compromise the integrity of the blood-brain-barrier and, thus, may contribute to the neurotoxicity of HIV-1-infection. Both intravenous drug abuse (IDU) and HIV infection can increase TNF-? activity, but little information is available on the effects of a combination of these factors on TNF-?. We investigated plasma TNF-? levels and mRNA in the peripheral monocytes of 166 men and women in three groups: HIV-1-positive IDUs, HIV-1-negative IDUs, and HIV-negative non-IDU control participants. HIV-1-positive IDUs had higher TNF-? levels than HIV-1-negative IDUs who, in turn, had higher levels than controls. TNF-? mRNA expression in peripheral monocytes was significantly increased in both HIV-1-positive and negative IDUs compared to controls. These findings show that the effects of HIV infection and intravenous drug use may be additive in increasing TNF-? levels. Given the multiple effects of TNF-? in HIV infection, additional investigation of its role is needed. PMID:19347588

  11. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    PubMed Central

    Bloch, Olga; Broide, Efrat; Ben-Yehudah, Gilad; Cantrell, Dror; Shirin, Haim; Rapoport, Micha J.

    2015-01-01

    T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R) expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO) by high-energy (HE) diet and by streptozotocin (STZ) in Sprague Dawly (SD) rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis. PMID:25893200

  12. Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factor-Alpha.

    PubMed

    Zubkova, Ekaterina S; Beloglazova, Irina B; Makarevich, Pavel I; Boldyreva, Maria A; Sukhareva, Olga Yu; Shestakova, Marina V; Dergilev, Konstantin V; Parfyonova, Yelena V; Menshikov, Mikhail Yu

    2016-01-01

    Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-? on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-? enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-? led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1?, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-?-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-? triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-?-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-? plays a role in activation of ADSC angiogenic and regenerative potential. J. Cell. Biochem. 117: 180-196, 2016. 2015 Wiley Periodicals, Inc. PMID:26096299

  13. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  14. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    SciTech Connect

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. )

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  15. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells

    SciTech Connect

    Kobayashi, M.; Shimada, K.; Ozawa, T. )

    1990-09-01

    Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of (35S)sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and (3H)leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation.

  16. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor alpha, and estrogen receptor antagonist ICI 182,780.

    PubMed

    Hilakivi-Clarke, L; Cho, E; Raygada, M; Kenney, N

    1997-03-01

    High fetal/early postnatal levels of estrogen increase breast cancer risk, but the mechanisms remain unknown. Growth factors, such as transforming growth factor alpha (TGF alpha), may participate as secondary modifiers in this process. We characterized a modulatory role of early postnatal exposure to 17 beta-estradiol (E2) on the developing mammary gland morphology by treating intact female CD-1 mice with physiological doses of E2 (2-4 micrograms), human recombinant TGF alpha (4 micrograms), or an estrogen receptor (ER) antagonist ICI 182,780 (20 micrograms) during postnatal days 1-3. Early postnatal exposure of E2 stimulated mammary ductal growth by days 25 and 35, but by day 50 this was inhibited. The level of differentiation from terminal end buds (TEBs) to the lobulo-alveolar units (LAUs) also was reduced by day 50. The number of TEBs was increased throughout most of the development in the female mice exposed to E2 during early life. An exposure to TGF alpha or ICI 182,780 between postnatal days 1 and 3 stimulated ductal growth, formation of TEBs, and the differentiation of mammary epithelial structures. ICI 182,80 treatment also caused hyperplastic lobular-like structures in 54-day-old females. Thus, neonatal exposure to TGF alpha and ICI 182,780 induced both similar (increase in TEBs) and different (increase/decrease in lobulo-alveolar differentiation) developmental changes in the mouse mammary gland, when compared with an exposure to E2. A unique feature of the postnatal E2 treatment was that it inhibited ductal migration by days 50-54. Our data suggest than an exposure to E2 on postnatal days 1-3, possibly combined with secondary epigenetic alterations, leads to various changes within the developing mammary tree. These changes may be potential prerequisites for mammary tumorigenesis. PMID:9066785

  17. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  18. Dexamethasone-inducible green fluorescent protein gene expression in transgenic plant cells.

    PubMed

    Tang, Wei; Collver, Hilary; Kinken, Katherine

    2004-02-01

    Genomic research has made a large number of sequences of novel genes or expressed sequence tags available. To investigate functions of these genes, a system for conditional control of gene expression would be a useful tool. Inducible transgene expression that uses green fluorescent protein gene (gfp) as a reporter gene has been investigated in transgenic cell lines of cotton (COT; Gossypium hirsutum L.), Fraser fir [FRA; Abies fraseri (Pursh) Poir], Nordmann fir (NOR; Abies nordmanniana Lk.), and rice (RIC; Oryza sativa L. cv. Radon). Transgenic cell lines were used to test the function of the chemical inducer dexamethasone. Inducible transgene expression was observed with fluorescence and confocal microscopy, and was confirmed by northern blot analyses. Dexamethasone at 5 mg/L induced gfp expression to the nearly highest level 48 h after treatment in COT, FRA, NOR, and RIC. Dexamethasone at 10 mg/L inhibited the growth of transgenic cells in FRA and NOR, but not COT and RIC. These results demonstrated that concentrations of inducer for optimum inducible gene expression system varied among transgenic cell lines. The inducible gene expression system described here was very effective and could be valuable in evaluating the function of novel gene. PMID:15629039

  19. Alpha lipoic acid induces hepatic fibroblast growth factor 21 expression via up-regulation of CREBH.

    PubMed

    Bae, Kwi-Hyun; Min, Ae-Kyung; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2014-12-12

    Hepatic expression of fibroblast growth factor 21 (FGF21), one of the most promising therapeutic candidates for metabolic syndrome, is induced by multiple factors associated with fasting, including cyclic AMP response element-binding protein H (CREBH). Alpha lipoic acid (ALA), a naturally occurring thiol antioxidant, has been shown to induce metabolic changes that are similar to those induced by FGF21, including weight loss and increased energy expenditure. Here, we investigated the effect of ALA on hepatic FGF21 expression. ALA treatment enhanced CREBH and FGF21 mRNA expression and protein abundance in cultured hepatocytes. ALA increased FGF21 promoter activity by up-regulating CREBH expression and increasing CREBH binding to the FGF21 promoter, indicating that ALA up-regulates FGF21 at the transcriptional level. Moreover, inhibition of endogenous CREBH expression by siRNA attenuated ALA-induced FGF21 expression. Finally, treatment of mice with ALA enhanced fasting-induced up-regulation of CREBH and FGF21 in the liver and inhibited feeding-induced suppression of their expression. Consistently, ALA increased serum FGF21 levels in both fasted and fed mice. Collectively, these results indicate that ALA increases hepatic FGF21 expression via up-regulation of CREBH, identifying ALA as a novel positive regulator of FGF21. PMID:25449271

  20. C/EBPβ Mediates TNF-α-Induced Cancer Cell Migration by Inducing MMP Expression Dependent on p38 MAPK.

    PubMed

    Xia, Peiyi; Zhang, Rui; Ge, Gaoxiang

    2015-12-01

    Tumor necrosis factor (TNF)-α is a pleiotropic cytokine that triggers cell proliferation, cell death, or inflammation. Besides its cytotoxic effect on cancer cells, TNF-α exerts tumor promoting activity. Aberrant TNF-α signaling promotes cancer cell motility, invasiveness, and enhances cancer metastasis. Exaggerated tumor cell migration, invasion, and metastasis by TNF-α has been attributed to the activation of NF-κB signaling. It is yet to be elucidated if other signaling pathways and effector molecules are involved in TNF-α-induced cancer cell migration and metastasis. Expression of C/EBPβ, a transcription factor involved in metabolism, inflammation, and cancer, is increased upon TNF-α treatment. TNF-α induces C/EBPβ expression by enhancing its transcription and protein stability. Activation of p38 MAPK, but not NF-κB or JNK, is responsible for TNF-α-induced stabilization of C/EBPβ protein. C/EBPβ is involved in TNF-α-induced cancer cell migration. Knockdown of C/EBPβ inhibits TNF-α-induced cell migration, while overexpression of C/EBPβ increases migration of cancer cells. C/EBPβ is translated into transcriptional activator LAP1 and LAP2 and transcriptional repressor LIP utilizing alternative in-frame translation start sites. Despite TNF-α induces expression of all three isoforms, LAP1/2, but not LIP, promote cancer cell migration. TNF-α induced MMP1/3 expression, which was abrogated by C/EBPβ knockdown or p38 MAPK inhibition. MMP inhibitor or knockdown of MMP1/3 diminished TNF-α- and C/EBPβ-induced cell migration. Thus, C/EBPβ mediates TNF-α-induced cancer cell migration by inducing MMP1/3 expression, and may participate in the regulation of inflammation-associated cancer metastasis. PMID:25959126

  1. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon; Cancer Research Institute, Seoul National University, Seoul 110-799

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  2. Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide.

    PubMed

    Jiang, Yuan-xu; Dai, Zhong-liang; Zhang, Xue-ping; Zhao, Wei; Huang, Qiang; Gao, Li-kun

    2015-10-01

    This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 ?g kg(-1) h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 ?g kg(-1) h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 ?g kg(-1) h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-?) and interleukin-1? (IL-1?) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-? and IL-1? in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5. PMID:26489622

  3. The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene.

    PubMed Central

    Lih, C J; Cohen, S N; Wang, C; Lin-Chao, S

    1996-01-01

    Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling. Images Fig. 3 Fig. 4 Fig. 5 PMID:8643452

  4. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  5. Inducible transgenic expression in the short-lived fish Nothobranchius furzeri.

    PubMed

    Allard, J B; Kamei, H; Duan, C

    2013-05-01

    This study demonstrates inducible transgenic expression in the exceptionally short-lived turquoise killifish Nothobranchius furzeri, which is a useful vertebrate model for ageing research. Transgenic N. furzeri bearing a green fluorescent protein (Gfp) containing construct under the control of a heat shock protein 70 promoter were generated, heat shock-induced and reversible Gfp expression was demonstrated and germline transmission of the transgene to the F1 and F2 generations was achieved. The availability of this inducible transgenic expression system will make the study of ageing-related antagonistically pleiotropic genes possible using this unique vertebrate model organism. PMID:23639168

  6. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis

    PubMed Central

    Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D.; Hartsough, Edward; Mehta, Manisha; Harrold, Itrat; Anderson, Nicole; Feng, Hui; Smith, Lois E. H.; Jiang, Yan; Costello, Catherine E.

    2015-01-01

    Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2. PMID:26059764

  7. TUMOR NECROSIS FACTOR-ALPHA STIMULATES LIPOLYSIS IN DIFFERENTIATED HUMAN ADIPOCYTES THROUGH ACTIVATION OF EXTRACELLULAR SIGNAL-RELATED KINASE AND ELEVATION OF INTRACELLULAR CAMP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tumor necrosis factor-alpha (TNF-alpha) stimulates lipolysis in human adipocytes. However, the mechanisms regulating this process are largely unknown. We demonstrate that TNF-alpha increases lipolysis in differentiated human adipocytes by activation of mitogen-activated protein kinase kinase (MEK)-e...

  8. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    PubMed Central

    Huckleberry, Kylie A.; Kane, Gary A.; Mathis, Rita J.; Cook, Sarah G.; Clutton, Jonathan E.; Drew, Michael R.

    2015-01-01

    Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature granule cells but caused a more long-lasting suppression of zif268 expression in immature, adult-born granule cells. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature neurons or mediates learning-induced apoptosis of immature adult-born neurons. PMID:26347620

  9. Antibody-induced modulation of CD26 surface expression.

    PubMed Central

    Mattern, T; Reich, C; Duchrow, M; Ansorge, S; Ulmer, A J; Flad, H D

    1995-01-01

    The ability of different anti-CD26 monoclonal antibodies to modulate the expression of CD26 on human T lymphocytes was investigated. By means of a new non-radioactive method using fluorescein isothiocyanate (FITC)-labelled and unlabelled anti-CD26 monoclonal antibodies and flow cytometry, we measured the internalization and re-expression of CD26 on freshly isolated resting human T lymphocytes. The modulation of CD26 surface expression takes place in primarily CD26+ as well as in CD26- T lymphocytes, indicating the presence of an intracellular CD26 pool. In fact, with two different anti-CD26 monoclonal antibodies (Ta1 and M5) intracellular CD26 was detected out of which newly expressed CD26 might have originated. This intracellular CD26 pool appears to be maintained by continuous translation of CD26 mRNA. Images Figure 4 PMID:7790033

  10. Inducible and Reversible Lentiviral and Recombination Mediated Cassette Exchange (RMCE) Systems for Controlling Gene Expression

    PubMed Central

    Bersten, David C.; Sullivan, Adrienne E.; Li, Dian; Bhakti, Veronica; Bent, Stephen J.; Whitelaw, Murray L.

    2015-01-01

    Manipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells. We significantly improve the flexibility, usefulness and robustness of the Dox-inducible system by using Tetracycline (Tet) activator (Tet-On) variants which are more sensitive to Dox, have no background activity and are expressed from single Gateway-compatible constructs. We demonstrate the usefulness of these platforms in ectopic gene expression or gene knockdown in multiple cell lines, primary neurons and in FLP-In Col1a1 mouse embryonic stem cells. We also improve the flexibility of RMCE Dox-inducible systems by generating constructs that allow for tissue or cell type-specific Dox-inducible expression and generate a shRNA selection algorithm that can effectively predict potent shRNA sequences able to knockdown gene expression from single integrant constructs. These platforms provide flexible, reliable and broadly applicable inducible expression systems for studying gene function. PMID:25768837

  11. Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression.

    PubMed

    Chiang, Jui-Kun; Sung, Mao-Lin; Yu, Hong-Ren; Chang, Hsin-I; Kuo, Hsing-Chun; Tsai, Tzung-Chieh; Yen, Chia-Kuang; Chen, Cheng-Nan

    2011-04-01

    The mechanism of homocysteine-induced cell proliferation in human vascular smooth muscle cells (SMCs) remains unclear. We investigated the molecular mechanisms by which homocysteine affects the expression of cyclins A and D1 in human umbilical artery SMCs (HUASMCs). Homocysteine treatment induced proliferation of HUASMCs and increased the expression levels of cyclins A and D1. Knocking down either cyclin A or cyclin D1 by small interfering RNA (siRNA) inhibited homocysteine-induced cell proliferation. Furthermore, treatment with extracellular signal-related kinase (ERK) inhibitor (PD98059) and dominant negative Ras (RasN17) abolished homocysteine-induced cyclin A expression; and treatment with phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin) attenuated the homocysteine-induced cyclin D1 expression. Homocysteine also induced transient phosphorylation of ERK, Akt, and p70 ribosomal S6 kinase (p70S6K). Neutralizing antibody and siRNA for β1 integrin blocked cell proliferation, expression of cyclins A and D1, and phosphorylation of ERK and Akt. In conclusion, homocysteine-induced differential activation of Ras/ERK and PI3K/Akt/p70S6K signaling pathways and consequent expression of cyclins A and D1 are dependent on β1 integrin. Homocysteine may accelerate progression of atherosclerotic lesions by promoting SMC proliferation. PMID:20857402

  12. Homocysteine induces cardiac hypertrophy by up-regulating ATP7a expression

    PubMed Central

    Cao, Zhanwei; Zhang, Yanzhou; Sun, Tongwen; Zhang, Shuguang; Yu, Weiya; Zhu, Jie

    2015-01-01

    Aims: The aim of the study is to investigate the molecular mechanism by which homocysteine (Hcy) induces cardiac hypertrophy. Methods: Primary cardiomyocytes were obtained from baby Sprague-Dawley rats within 3 days after birth. Flow cytometry was used to measure cell sizes. Quantitative real-time polymerase chain reaction was performed to measure the expression of β-myosin heavy chain and atrial natriuretic peptide genes. Western blotting assay was employed to determine ATP7a protein expression. Cytochrome C oxidase (COX) activity test was used to evaluate the activity of COX. Atomic absorption spectroscopy was performed to determine copper content. siRNAs were used to target-silence the expression of ATP7a. Results: Hcy induced cardiac hypertrophy and increased the expression of cardiac hypertrophy-related genes. ATP7a was a key factor in cardiac hypertrophy induced by Hcy. Reduced ATP7a expression inhibited cardiac hypertrophy induced by Hcy. Elevated ATP7a expression induced by Hcy inhibited COX activity. Enhanced ATP7a expression inhibited COX activity by lowering intracellular copper content. Conclusions: Hcy elevates ATP7a protein expression, reduces copper content, and lowers COX activity, finally leading to cardiac hypertrophy. PMID:26722473

  13. Metabolism studies of a small-molecule tumor necrosis factor-alpha (TNF-?) inhibitor, UTL-5b (GBL-5b).

    PubMed

    Shaw, Jiajiu; Shay, Brian; Jiang, Jack; Valeriote, Frederick; Chen, Ben

    2012-06-01

    UTL-5b is an anti-inflammatory and anti-arthritic small-molecule tumor necrosis factor-alpha inhibitor and a structural analogue of the anti-arthritic drug, leflunomide. Leflunomide is known to be metabolized to teriflunomide, but the metabolites of UTL-5b have not been reported. The objective of this study was to investigate whether UTL-5b has a similar metabolic behavior as leflunomide. Preliminary studies showed that when exposed to microsomes in vitro with or without NADPH, UTL-5b disappeared within 30min. To further investigate the microsomal metabolism, liquid chromatography-ultraviolet (LC-UV) and LC/tandem mass spectrometry (LC-MS/MS) were employed to, respectively, monitor the microsomal metabolites and identify the structure of the metabolites using LC-full scan MS and LC combined with multiple-ion monitoring MS. Fragmentation determination was analyzed by two types of scans: product ion scans and precursor ion scan. The in vitro microsomal treatment of UTL-5b resulted in two major metabolites: 5-methylisoxazole-3-carboxylic acid and 2-chloroaniline. Thus, the in vitro metabolic behavior of UTL-5b appears to be different from that of leflunomide in that the isoxazole ring is cleaved. PMID:22052362

  14. A disaccharide that inhibits tumor necrosis factor alpha is formed from the extracellular matrix by the enzyme heparanase.

    PubMed

    Lider, O; Cahalon, L; Gilat, D; Hershkoviz, R; Siegel, D; Margalit, R; Shoseyov, O; Cohen, I R

    1995-05-23

    The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor alpha (TNF-alpha) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly. PMID:7761444

  15. Tumor necrosis factor-alpha is a potential diagnostic biomarker for chronic neuropathic pain after spinal cord injury.

    PubMed

    Xu, Jun; E, Xiaoqiang; Liu, Huiyong; Li, Feng; Cao, Yanhui; Tian, Jun; Yan, Jinglong

    2015-05-19

    Neuropathic pain (NP) is one of the most common complications after spinal cord injury (SCI), but no protein biomarkers has ever been introduced into clinical diagnosis. Previous studies implicated that toll-like receptor (TLR) 4 played a critical role in the development of NP in animal SCI models. Here, a total of 140 participants were recruited, 70 of them were SCI-NP subject and the rest 70 controls did not show neuropathic symptoms. TLR4 was upregulated significantly in SCI-NP patients compared with SCI-noNP subjects. Furthermore, we measured the concentrations of tumor necrosis factor-alpha (TNF-?) and interleukin-6 (IL-6), two TLR4 downstream pro-inflammatory cytokines, to assess their diagnostic values. Receiver operating characteristics (ROC) analysis revealed that TNF-? had great potential advantages to predict the progression of neuropathy, the risks of NP were strongly increased in SCI subjects with higher levels of TNF-? (odds ratio: 4.92; 95% confidence interval: 1.89-12.32). These results suggested neuro-immune activation contributed to the development of neuropathic disorder after SCI, and TNF-? could be a potential sensitive diagnostic biomarker for chronic neuropathic pain in SCI patients. PMID:25847150

  16. Tumor Necrosis Factor Alpha p55 Receptor Is Important for Development of Memory Responses to Blood-Stage Malaria Infection

    PubMed Central

    Li, Ching; Langhorne, Jean

    2000-01-01

    Tumor necrosis factor alpha (TNF-?) is associated with malarial pathology in both humans and mice. In Plasmodium chabaudi chabaudi (AS) infections, the production of TNF-? and reactive metabolites from macrophages are also thought to play a role in controlling acute parasitemia. Since many of the biological functions of TNF-? are effected through the p55 receptor (p55R), mice made defective in this receptor via a targeted gene disruption (p55R?/?) have been used to study its involvement in the immune response against P. chabaudi chabaudi and in the pathology associated with this infection. In the absence of the p55R, mice could overcome their primary infection, although higher acute-blood-stage parasitemias and more significant recrudescences were observed. Hypoglycemia, hypothermia, loss of erythrocytes, and loss of body weight, which occur transiently in this infection, were exacerbated by the lack of the p55R, but the differences were small, suggesting that other factors affect these symptoms. In contrast to wild-type (WT) mice, a second challenge infection in p55R?/? mice resulted in a course of infection similar to a primary infection. The malaria-specific immunoglobulin G antibody response of p55R?/? mice was lower than that of WT mice and was not increased by the second challenge infection. These data suggest that p55R?/? mice do not develop an efficient memory B-cell response against malarial infection and that this antibody response is important in immunity to reinfection. PMID:10992477

  17. Modulation of Anti-Tumor Necrosis Factor Alpha (TNF-?) Antibody Secretion in Mice Immunized with TNF-? Kinoid

    PubMed Central

    Semerano, Luca; Duvallet, Emilie; Delavalle, Laure; Bernier, Emilie; Laborie, Marion; Grouard-Vogel, Graldine; Larcier, Patrick; Bessis, Natacha; Boissier, Marie-Christophe

    2012-01-01

    Tumor necrosis factor alpha (TNF-?) blockade is an effective treatment for patients with TNF-?-dependent chronic inflammatory diseases, such as rheumatoid arthritis, Crohn's disease, and psoriasis. TNF-? kinoid, a heterocomplex of human TNF-? and keyhole limpet hemocyanin (KLH) (TNF-K), is an active immunotherapy targeting TNF-?. Since the TNF-K approach is an active immunization, and patients receiving this therapy also receive immunosuppressant treatment, we evaluated the effect of some immunosuppressive drugs on the generation of anti-TNF-? antibodies produced during TNF-K treatment. BALB/c mice were injected intramuscularly with TNF-K in ISA 51 adjuvant. Mice were also injected intraperitoneally with one of the following: phosphate-buffered saline, cyclophosphamide, methylprednisolone, or methotrexate. Anti-TNF-? and anti-KLH antibody levels were assessed by enzyme-linked immunosorbent assay and the anti-TNF-? neutralizing capacity of sera by L929 bioassay. Our results showed that current treatments used in rheumatoid arthritis, such as methylprednisolone and methotrexate, do not significantly alter anti-TNF-? antibody production after TNF-K immunization. In contrast, the administration of cyclophosphamide (200 mg/kg) after immunization significantly reduced anti-TNF-? antibody titers and their neutralizing capacity. PMID:22441388

  18. Transforming growth factor-alpha in vivo stimulates epithelial cell proliferation in digestive tissues of suckling rats.

    PubMed Central

    Hormi, K; Lehy, T

    1996-01-01

    BACKGROUND: The role that exogenous transforming growth factor-alpha (TGF-alpha) may exert on cell proliferation in vivo is poorly understood. AIM: To investigate the effect of rat TGF-alpha on epithelial cell proliferation in all suckling rat digestive tissues and to compare it with that of rat epidermal growth factor (EGF). ANIMAL AND METHODS: TGF-alpha and EGF were given three times daily either subcutaneously (10 or 20 micrograms/kg) or intraperitoneally (100 micrograms/kg) to rats from the ninth postnatal day. Cell proliferation was assessed through 5-bromo- 2-deoxyuridine incorporation and estimation of labelling indices. RESULTS: For both growth factors, the highest dose given for only two days significantly increased stomach and intestinal weights compared with controls (p < 0.05 to p < 0.001). The proliferative responded depended on the dose given, colonic mucosa being the most sensitive whereas oxyntic mucosa remained unresponsive. TGF-alpha was as potent as EGF in stimulating epithelial cell proliferation in antral, duodenal, and colonic mucosae. However, EGF was more active on oesophageal and jejunal cell proliferation whereas TGF-alpha was more active on pancreatic exocrine cell proliferation and the differences between the two growth factor treated groups were significant. CONCLUSIONS: These results prove for the first time the stimulating effect in vivo of exogenous rat TGF-alpha on epithelial cell proliferation in rat digestive tissues during the developmental period and support a functional role for TGF-alpha at that time. PMID:8944561

  19. Icariin Induces Synoviolin Expression through NFE2L1 to Protect Neurons from ER Stress-Induced Apoptosis

    PubMed Central

    Li, Fei; Gao, Beixue; Dong, Hongxin; Shi, Jingshan; Fang, Deyu

    2015-01-01

    By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin. PMID:25806530

  20. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  1. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  2. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression.

    PubMed

    Park, Sun Young; Jin, Mei Ling; Kim, Young Hun; Lee, Sang-Joon; Park, Geuntae

    2014-01-01

    Most complications of breast cancer are attributed to metastasis to distant organs, including lymph nodes, bone, lung and liver. Metastasis is considered the leading cause of mortality in patients with breast cancer. The emergence of anti-metastatic properties in breast cancer is an important clinical phenomenon affecting long-term survival. In the present study, we investigated the anti-invasive mechanism of sanguinarine by focusing on its role in inducing HO-1 in breast cancer cells. The results showed that sanguinarine inhibited TPA-induced MMP-9 and COX-2 mRNA and protein expression in a dose-dependent manner at non-cytotoxic concentrations. Similarly, the MMP-9 enzymatic activity and the PGE2 levels significantly decreased in MCF-7 breast cancer cells. TIMP-1 and TIMP-2, specific endogenous inhibitors of MMP-9, were slightly induced by sanguinarine. Subsequent studies revealed that sanguinarine suppressed TPA-induced NF-?B and AP-1 activation, as well as the phosphorylation of Akt and ERK. Furthermore, sanguinarine significantly inhibited TPA-induced invasion and migration in breast cancer cells. We also demonstrated that sanguinarine induced HO-1 expression, and that the inhibition of MMP-9 and COX-2 expression and the enzymatic activity of sanguinarine were abrogated by siRNA-mediated knockdown of HO-1 expression. Thus, knockdown of endogenous HO-1 decreased TPA-induced cell invasion. Overall, the results of the present study demonstrate that HO-1 plays a pivotal role in the anti-invasive response of sanguinarine in TPA-stimulated breast cancer cells. PMID:24220687

  3. X-Radiation Induces Non-Small-Cell Lung Cancer Apoptosis by Upregulation of Axin Expression

    SciTech Connect

    Han Yang; Wang Yan; Xu Hongtao; Yang Lianhe; Wei Qiang; Liu Yang; Zhang Yong; Zhao Yue; Dai Shundong; Miao Yuan; Yu Juanhan; Zhang Junyi; Li, Guang; Yuan Ximing; Wang Enhua

    2009-10-01

    Purpose: Axis inhibition (Axin) is an important negative regulator of the Wnt pathway. This study investigated the relationship between Axin expression and sensitivity to X-rays in non-small-cell lung cancer (NSCLC) to find a useful indicator of radiosensitivity. Methods and Materials: Tissue from NSCLC patients, A549 cells, and BE1 cells expressing Axin were exposed to 1-Gy of X-radiation. Axin and p53 expression levels were detected by immunohistochemistry and reverse transcription-PCR. Apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and FACS (fluorescence-activate cell sorter) analysis. Caspase-3 activity was determined by Western blotting. Phospho-JNK expression was determined by immunofluorescence. Results: The expression of Axin was significantly lower in NSCLC tissues than in normal lung tissues (p < 0.05). Axin expression correlates with differentiation, TNM staging, and lymph node metastasis of NSCLC (p < 0.05). Its expression negatively correlates with the expression of p53(mt) (p=0.000) and positively correlates with apoptosis (p=0.002). The prognosis of patients with high expression of Axin was better than those with low expression. X-radiation increases Axin expression in NSCLC tissue, and caspase-3 is significantly higher in samples in which Axin is increased (p < 0.05). Both X-radiation and Axin induce apoptosis of A549 and BE1 cells; however, the combination of the two enhances the apoptotic effect (p < 0.05). In A549 cells, inhibition of p53 blocks Axin-induced apoptosis, whereas in BE1 cells, the JNK pathway is required. Conclusions: Axin induces the p53 apoptotic pathway in cells where this pathway is intact; however, in cells expressing p53(mt), Axin induces apoptosis via the JNK pathway. Elevated Axin expression following X-ray exposure is a reliable indicator for determining the radiosensitivity of NSCLC.

  4. UCP2 protects hypothalamic cells from TNF-alpha-induced damage.

    PubMed

    Degasperi, Giovanna R; Romanatto, Talita; Denis, Raphael G P; Arajo, Eliana P; Moraes, Juliana C; Inada, Natlia M; Vercesi, Anbal E; Velloso, Lcio A

    2008-09-01

    Uncoupling protein 2 (UCP2) is highly expressed in the hypothalamus; however, little is known about the functions it exerts in this part of the brain. Here, we hypothesized that UCP2 protects hypothalamic cells from oxidative and pro-apoptotic damage generated by inflammatory stimuli. Intracerebroventricular injection of tumor necrosis factor alpha (TNF-alpha)-induced an increase of UCP2 expression in the hypothalamus, which was accompanied by increased expression of markers of oxidative stress and pro-apoptotic proteins. The inhibition of UCP2 expression by an antisense oligonucleotide enhanced the damaging effects of TNF-alpha. Conversely, increasing the hypothalamic expression of UCP2 by cold exposure reversed most of the effects of the cytokine. Thus, UCP2 acts as a protective factor against cellular damage induced by an inflammatory stimulus in the hypothalamus. PMID:18703058

  5. Nuclear respiratory factor 2 induces SIRT3 expression

    PubMed Central

    Satterstrom, F Kyle; Swindell, William R; Laurent, Galle; Vyas, Sejal; Bulyk, Martha L; Haigis, Marcia C

    2015-01-01

    The mitochondrial deacetylase SIRT3 regulates several important metabolic processes. SIRT3 is transcriptionally upregulated in multiple tissues during nutrient stresses such as dietary restriction and fasting, but the molecular mechanism of this induction is unclear. We conducted a bioinformatic study to identify transcription factor(s) involved in SIRT3 induction. Our analysis identified an enrichment of binding sites for nuclear respiratory factor 2 (NRF-2), a transcription factor known to play a role in the expression of mitochondrial genes, in the DNA sequences of SIRT3 and genes with closely correlated expression patterns. Invitro, knockdown or overexpression of NRF-2 modulated SIRT3 levels, and the NRF-2? subunit directly bound to the SIRT3 promoter. Our results suggest that NRF-2 is a regulator of SIRT3expression and may shed light on how SIRT3 is upregulated during nutrient stress. PMID:26109058

  6. Nuclear respiratory factor 2 induces SIRT3 expression.

    PubMed

    Satterstrom, F Kyle; Swindell, William R; Laurent, Galle; Vyas, Sejal; Bulyk, Martha L; Haigis, Marcia C

    2015-10-01

    The mitochondrial deacetylase SIRT3 regulates several important metabolic processes. SIRT3 is transcriptionally upregulated in multiple tissues during nutrient stresses such as dietary restriction and fasting, but the molecular mechanism of this induction is unclear. We conducted a bioinformatic study to identify transcription factor(s) involved in SIRT3 induction. Our analysis identified an enrichment of binding sites for nuclear respiratory factor 2 (NRF-2), a transcription factor known to play a role in the expression of mitochondrial genes, in the DNA sequences of SIRT3 and genes with closely correlated expression patterns. Invitro, knockdown or overexpression of NRF-2 modulated SIRT3 levels, and the NRF-2? subunit directly bound to the SIRT3 promoter. Our results suggest that NRF-2 is a regulator of SIRT3expression and may shed light on how SIRT3 is upregulated during nutrient stress. PMID:26109058

  7. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated pl