These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Transcriptional regulation and energetics of alternative respiratory pathways in facultatively anaerobic bacteria  

Microsoft Academic Search

The facultatively anaerobic Escherichia coli is able to grow by aerobic and by anaerobic respiration. Despite the large difference in the amount of free energy that could maximally be conserved from aerobic versus anaerobic respiration, the proton potential and ?g?Phos are similar under both conditions. O2 represses anaerobic respiration, and nitrate represses fumarate respiration. By this the terminal reductases of

Gottfried Unden

1998-01-01

2

Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium  

E-print Network

Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium ferrireducens sp. nov. INTRODUCTION Fe(III) is often an abundant electron acceptor for microbial respiration other forms of respiration. However, it is becoming increasingly apparent that there is a wide

Lovley, Derek

3

Comparative antimicrobial susceptibility of aerobic and facultative bacteria from community-acquired bacteremia to ertapenem in Taiwan  

Microsoft Academic Search

BACKGROUND: Ertapenem is a once-a-day carbapenem and has excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The susceptibility of isolates of community-acquired bacteremia to ertapenem has not been reported yet. The present study assesses the in vitro activity of ertapenem against aerobic and facultative bacterial pathogens isolated from patients with community-acquired bacteremia by determining and comparing

Sai-Cheong Lee; Shie-Shian Huang; Chao-Wei Lee; Ning Lee; Wen-Bin Shieh; LK Siu

2007-01-01

4

Reduction of Uranium(VI) to Uranium (IV) by Three Facultative Anaerobes at High Concentrations  

NASA Astrophysics Data System (ADS)

Six bacteria species were isolated from a uranium mine in Limpopo, South Africa, and three facultative anaerobes reduced U(VI) to U(IV) and aided the removal of U(VI) from solution. The pure cultures showed a high reduction rate at pH 5 to 6 for concentrations 100-800 mg/L during the first 4 to 6 hours of incubation. A biological remediation process for removing U(VI) is desirable in the nuclear industry where more expensive environmentally non-friendly physical chemical processes have been used conventionally for decades.

Chabalala, Simphiwe; Chirwa, Evans M. N.

2010-01-01

5

Anaerobic bacteria from hypersaline environments.  

PubMed Central

Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described. PMID:8177169

Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

1994-01-01

6

Anaerobic bacteria from hypersaline environments.  

PubMed

Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described. PMID:8177169

Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

1994-03-01

7

The Continuous Culture of Anaerobic Bacteria  

Microsoft Academic Search

SUMMARY Modifications to an anaerobic continuous culture apparatus to allow pH control, and pH and Eh measurements, are described. Two anaerobic rumen bacteria were grown under different conditions, but as carbohydrate-limited cultures. The effects of growth rate, pH value and Eh value on yields of bacteria, enzyme activities and fermentation products are described. Optimum bacterial yields per mole of substrate

P. N. HOBSON; R. SUMMERS

1967-01-01

8

D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria  

NASA Astrophysics Data System (ADS)

The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of ?D values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in ?D values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar ?D values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between ?D and metabolism previously understood from aerobic bacteria is not universally applicable.

Osburn, M. R.; Sessions, A. L.

2012-12-01

9

Oxygen tolerance of fresh clinical anaerobic bacteria.  

PubMed Central

The oxygen tolerance and sensitivity of 57 freshly isolated anaerobic bacteria from clinical specimens was studied. All the organisms tolerated 8 h or more of exposure to oxygen in room air. Growth of the isolates in increasing oxygen concentrations demonstrated that the 57 isolates varied in oxygen sensitivity from strict to aerotolerant anaerobes. Comparison of the oxygen tolerance and sensitivity showed that the most tolerant organisms (best survival after prolonged exposure) included anaerobes capable of growth at only 0.4% or less O2 (strict) as well as those able to grow in as much as 10% O2. The least tolerant were predominately strict anaerobes. Decrease in the inoculum size from a concentration of 10(8) to 10(6) colony-forming units per ml had only a minor effect. The data indicate that the brief oxygen exposure with bench techniques in clinical laboratories would not be deleterious to the anaerobic bacteria present in clinical specimens. PMID:1176601

Tally, F P; Stewart, P R; Sutter, V L; Rosenblatt, J E

1975-01-01

10

Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan  

PubMed Central

Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

2014-01-01

11

Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan.  

PubMed

Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

2014-01-01

12

Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction  

NASA Technical Reports Server (NTRS)

The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.

Moser, D. P.; Nealson, K. H.

1996-01-01

13

Simple and convenient method for culturing anaerobic bacteria.  

PubMed Central

A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars. Images PMID:7034646

Behbehani, M J; Jordan, H V; Santoro, D L

1982-01-01

14

Differential Susceptibility of Bacteria to Mouse Paneth Cell ?-Defensins under Anaerobic Conditions.  

PubMed

Small intestinal Paneth cells secrete ?-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse ?-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. Typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that ?-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension. PMID:25383215

Mastroianni, Jennifer R; Lu, Wuyuan; Selsted, Michael E; Ouellette, André J

2014-01-01

15

Tolerance of anaerobic bacteria to chlorinated solvents.  

PubMed

The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation. PMID:24441515

Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

2014-01-01

16

Tolerance of Anaerobic Bacteria to Chlorinated Solvents  

PubMed Central

The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation. PMID:24441515

Koenig, Joanna C.; Groissmeier, Kathrin D.; Manefield, Mike J.

2014-01-01

17

Effects of Storage in an Anaerobic Transport System on Bacteria in Known Polymicrobial Mixtures and in Clinical Specimens  

PubMed Central

An anaerobic transport system (ATS) which provides for catalytic removal of oxygen was evaluated by using in vitro-prepared polymicrobial mixtures of logphase bacteria and clinical specimens. Inoculated swabs were stored at room temperature in (i) aerobic, (ii) anaerobic glove box, and (iii) ATS environments, and bacteria were quantitated after 2, 24, 48, and 72 h. Bacteria in a three-part mixture of Bacteroides fragilis, Peptostreptococcus anaerobius, and Escherichia coli and in a five-part mixture of B. fragilis, P. anaerobius, Fusobacterium nucleatum, Staphylococcus epidermidis, and Pseudomonas aeruginosa survived 72 h of storage in the ATS and anaerobic glove box environments, but the anaerobic species were inactivated in the aerobic storage except for B. fragilis in pure culture or in the three-part mixture. Changes in relative proportions among the species in a mixture were least in the ATS and anaerobic glove box environments and greatest during the aerobic storage, particularly in the five-part mixture. Bacteria present in pure or mixed culture in clinical specimens generally survived 72 h of storage in the ATS. These data indicate that changes in relative proportions occur with prolonged storage even under anaerobic conditions, but that the ATS would be most effective for preserving anaerobic bacteria and preventing drastic concentration changes and overgrowth of facultative and aerobic bacteria. Images PMID:370142

Hill, Gale B.

1978-01-01

18

Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group  

PubMed Central

Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

2013-01-01

19

Isolation, Culture Characteristics, and Identification of Anaerobic Bacteria from the Chicken Cecum  

PubMed Central

Studies on the anaerobic cecal microflora of the 5-week-old chicken were made to determine a suitable roll-tube medium for enumeration and isolation of the bacterial population, to determine effects of medium components on recovery of total anaerobes, and to identify the predominant bacterial groups. The total number of microorganisms in cecal contents determined by direct microscope cell counts varied (among six samples) from 3.83 × 1010 to 7.64 × 1010 per g. Comparison of different nonselective media indicated that 60% of the direct microscope count could be recovered with a rumen fluid medium (M98-5) and 45% with medium 10. Deletion of rumen fluid from M98-5 reduced the total anaerobic count by half. Colony counts were lower if chicken cecal extract was substituted for rumen fluid in M98-5. Supplementing medium 10 with liver, chicken fecal, or cecal extracts improved recovery of anaerobes slightly. Prereduced blood agar media were inferior to M98-5. At least 11 groups of bacteria were isolated from high dilutions (10-9) of cecal material. Data on morphology and physiological and fermentation characteristics of 90% of the 298 isolated strains indicated that these bacteria represented species of anaerobic gram-negative cocci, facultatively anaerobic cocci and streptococci, Peptostreptococcus, Propionibacterium, Eubacterium, Bacteroides, and Clostridium. The growth of many of these strains was enhanced by rumen fluid, yeast extract, and cecal extract additions to basal media. These studies indicate that some of the more numerous anaerobic bacteria present in chicken cecal digesta can be isolated and cultured when media and methods that have been developed for ruminal bacteria are employed. PMID:4596749

Salanitro, J. P.; Fairchilds, I. G.; Zgornicki, Y. D.

1974-01-01

20

Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report.  

PubMed

Antioxidants have been shown to help the growth of anaerobic bacteria. We were able to grow six anaerobe species (including Fusobacterium necrophorum and Ruminococcus gravus) and seven aerobic species all aerobically in Schaedler agar tubes and agar plates with high doses of ascorbic acid and/or glutathione. This may deeply change strategies for culturing bacteria. PMID:24820294

La Scola, B; Khelaifia, S; Lagier, J-C; Raoult, D

2014-10-01

21

The role of anaerobic bacteria in bacteremia.  

PubMed

Anaerobic bacteria remain an important cause of bloodstream infections and account for 1-17% of positive blood cultures. This review summarizes the epidemiology, microbiology, predisposing conditions, and treatment of anaerobic bacteremia (AB) in newborns, children, adults and in patients undergoing dental procedures. The majority of AB are due to Gram-negative bacilli, mostly Bacteroides fragilis group. The other species causing AB include Peptostreptococcus, Clostridium spp., and Fusobacterium spp. Many of these infections are polymicrobial. AB in newborns is associated with prolonged labor, premature rupture of membranes, maternal amnionitis, prematurity, fetal distress, and respiratory difficulty. The predisposing conditions in children include: chronic debilitating disorders such as malignant neoplasm, hematologic abnormalities, immunodeficiencies, chronic renal insufficiency, or decubitus ulcers and carried a poor prognosis. Predisposing factors to AB in adults include malignant neoplasms, hematologic disorders, transplantation of organs, recent gastrointestinal or obstetric gynecologic surgery, intestinal obstruction, diabetes mellitus, post-splenectomy, use of cytotoxic agents or corticosteroids, and an undrained abscess. Early recognition and appropriate treatment of these infections are of great clinical importance. PMID:20025984

Brook, Itzhak

2010-06-01

22

Growth of the facultative anaerobes from Antarctica, Alaska, and Patagonia at low temperatures  

NASA Astrophysics Data System (ADS)

Psychrotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychrotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychrotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.

Pikuta, Elena V.; Hoover, Richard B.

2004-11-01

23

Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA  

PubMed Central

SUMMARY Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM, and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologs, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

Isabella, Vincent M.; Clark, Virginia L.

2011-01-01

24

Metabolic Interactions Between Methanogenic Consortia and Anaerobic Respiring Bacteria  

Microsoft Academic Search

Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective\\u000a electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic\\u000a respiring bacteria are toxic to methanogenic consortia. Despite the potentially adverse effects, only few inorganic electron\\u000a acceptors potentially utilizable for anaerobic respiration have been investigated with respect

A. J. M. Stams; S. J. W. H. Oude Elferink; P. Westermann

2003-01-01

25

Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria  

Microsoft Academic Search

Aromatic and aliphatic hydrocarbons are the main constituents of petroleum and its refined products. Whereas degradation of hydrocarbons by oxygen-respiring microorganisms has been known for about a century, utilization of hydrocarbons under anoxic conditions has been investigated only during the past decade. Diverse strains of anaerobic bacteria have been isolated that degrade toluene anaerobically, using nitrate, iron(III), or sulfate as

Alfred M. Spormann; Friedrich Widdel

2000-01-01

26

Clinical review: Bacteremia caused by anaerobic bacteria in children  

PubMed Central

This review describes the microbiology, diagnosis and management of bacteremia caused by anaerobic bacteria in children. Bacteroides fragilis, Peptostreptococcus sp., Clostridium sp., and Fusobacterium sp. were the most common clinically significant anaerobic isolates. The strains of anaerobic organisms found depended, to a large extent, on the portal of entry and the underlying disease. Predisposing conditions include: malignant neoplasms, immunodeficiencies, chronic renal insufficiency, decubitus ulcers, perforation of viscus and appendicitis, and neonatal age. Organisms identical to those causing anaerobic bacteremia can often be recovered from other infected sites that may have served as a source of persistent bacteremia. When anaerobes resistant to penicillin are suspected or isolated, antimicrobial drugs such as clindamycin, chloramphenicol, metronidazole, cefoxitin, a carbapenem, or the combination of a beta-lactamase inhibitor and a penicillin should be administered. The early recognition of anaerobic bacteremia and administration of appropriate antimicrobial and surgical therapy play a significant role in preventing mortality and morbidity in pediatric patients. PMID:12133179

Brook, Itzhak

2002-01-01

27

Biochemistry and physiology of anaerobic bacteria  

SciTech Connect

We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

NONE

2000-05-18

28

Adhesion of anaerobic bacteria to platelet containers.  

PubMed

Anaerobic Propionibacterium acnes and Staphylococcus saccharolyticus are frequently isolated during platelet screening with anaerobic culture methods. Although neither P. acnes nor S. saccharolyticus proliferates during platelet storage, both species survive well in this environment. This study was aimed at determining whether strains of P. acnes and/or S. saccharolyticus form surface-attached bacterial cell aggregates, known as biofilms, under platelet storage conditions. We report that these organisms are able to adhere to the inner surface of platelet containers in tight interaction with activated platelets. PMID:24602052

Kumaran, D; Kalab, M; Rood, I G H; de Korte, D; Ramirez-Arcos, S

2014-08-01

29

Material and method for promoting the growth of anaerobic bacteria  

DOEpatents

A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

Adler, Howard I. (128 Indian La., Oak Ridge, TN 37830)

1984-01-01

30

Engineering We now know that some anaerobic bacteria gain  

E-print Network

Chemical Engineering We now know that some anaerobic bacteria gain energy through extracellular for respiration outside the cells. In addition to the fundamental implications for physiology and microbial communication, a physics-based understanding of this extracellular respiration will impact the transmission

31

Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(II)-oxidizing bacterium.  

PubMed

A neutrophilic Fe(II)-oxidizing bacterium was isolated from the redox zone of a low-salinity spring in Krasnodar krai (Russia), at the FeS-Fe(OH)(3) interface deposited at the sediment surface. The cells of strain Sp-1 were short, thin motile vibrioids with one polar flagellum dividing by binary fission. The optimal values and ranges for pH and temperature were pH 6.2 (5.5-8) and 35 °C (5-45 °C), respectively. The organism was a facultative anaerobe. Strain Sp-1 was capable of organotrophic, lithoheterotrophic and mixotrophic growth with Fe(II) as an electron donor. The denitrification chain was 'disrupted'. Oxidation of Fe(II) was coupled to reduction of NO3 - to NO2 - or of N(2) O to N(2) , as well as under microaerobic conditions, with O(2) as an electron acceptor. The DNA G+C content was 64.2 mol%. According to the results of phylogenetic analysis, the strain was 10.6-12% remote from the closest relatives, members of the genera Sneathiella, Inquilinus, Oceanibaculum and Phaeospirillum within the Alphaproteobacteria. Based on its morphological, physiological and taxonomic characteristics, together with the results of phylogenetic analysis, strain Sp-1 is described as a member of a new genus Ferrovibrio gen. nov., with the type species Ferrovibrio denitrificans sp. nov. and the type strain Sp-1(T) (= LMG 25817(T)  = VKM B-2673(T) ). PMID:22765162

Sorokina, Anna Y; Chernousova, Elena Y; Dubinina, Galina A

2012-10-01

32

Cellulose fermentation by nitrogen-fixing anaerobic bacteria  

SciTech Connect

In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

Canale-Parola, E.

1992-12-13

33

The isolation and properties of the predominant anaerobic bacteria in the caeca of chickens and turkeys  

Microsoft Academic Search

Several anaerobic techniques and a number of different media were compared for the isolation of the anaerobic bacteria from chicken and turkey caeca. Under optimal conditions it was possible to isolate more than 25 per cent of the total flora. An analysis was made of the anaerobic bacteria isolated from 5?week?old chickens, the organisms being divided into groups based on

Ella M. Barnes; C. S. Impey

1970-01-01

34

Microbiology (1998), 144, 15651573 Printed in Great Britain Phytase activity of anaerobic ruminal bacteria  

E-print Network

Microbiology (1998), 144, 1565­1573 Printed in Great Britain Phytase activity of anaerobic ruminal of obligately anaerobic ruminal bacteria. Measurable activities were demonstrated in strains of Selenomonas-or- ganisms that has not been examined are the strict anaerobes, in particular ruminal anaerobes, which

Selinger, Brent

35

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

SciTech Connect

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01

36

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

NASA Astrophysics Data System (ADS)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury. One strain of sulphate-reducing bacteria (Desulfovibrio desulphuricans ND132) can also methylate elemental mercury. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidize and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidize and methylate elemental mercury. In line with recent findings, we show that D.desulphuricans ND132 can both oxidize and methylate elemental mercury. We find that the rate of methylation of elemental mercury is about one-third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidize, but not methylate, elemental mercury. Geobacter sulphurreducens PCA is able to oxidize and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J.; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A.; Liang, Liyuan; Gu, Baohua

2013-09-01

37

Effect of solvents on obligately anaerobic bacteria.  

PubMed

Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria. PMID:18083050

Rodriguez Martinez, Maria Fernanda; Kelessidou, Niki; Law, Zoe; Gardiner, John; Stephens, Gill

2008-02-01

38

Superoxide dismutase in anaerobic bacteria of clinical significance.  

PubMed Central

Twenty-two anaerobic bacteria isolated from infected sites and normal fecal flora were assayed for superoxide dismutase (SOD). The organisms were also classified according to their oxygen tolerance into aerotolerant, intermediate, and extremely oxygen-sensitive groups. There was a correlation between the enzyme level and the oxygen tolerance, in that the aerotolerant and intermediate organisms had SOD, whereas the extremely oxygen-sensitive isolates had low or undetectable enzyme. Among the oxygen-tolerant organisms, gram-negative bacteria had higher levels of SOD than gram-positive organisms. Oxygen was shown to induce SOD production in a strain of Bacteriodes fragilis grown in minimal medium under continuous-culture conditions. Enzyme levels in this isolate grown under static conditions were lower in minimal medium than in complex medium, indicating that other components in the complex medium were stimulating the production of SOD. Our data suggest that the variation in oxygen tolerance of anaerobes is usually related to their level of SOD. It is postulated that SOD may be a virulence factor that allows pathogenic anaerobes to survive in oxygenated tissues until the proper reduced conditions are established for their growth. PMID:326669

Tally, F P; Goldin, B R; Jacobus, N V; Gorbach, S L

1977-01-01

39

The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi.  

PubMed

The polycentric anaerobic fungus Orpinomyces joyonii A4 was cultivated on microcrystalline cellulose alone and in association with the rumen chitinolytic bacterium Clostridium sp. strain ChK5, which shows strong phenotypic similarity to Clostridium tertium. The presence of strain ChK5 significantly depressed the solubilization of microcrystalline cellulose, the production of short-chain fatty acids (SCFA) and the release of endoglucanase by the fungus. Co-culture of the monocentric anaerobic fungus Neocallimastix frontalis strain RE1, Neocallimastix sp. strain G-1 and Caecomyces sp. strain SC2 with strain ChK5 also resulted in depressed fungal cellulolysis. Cell-free supernatant fluids from strain ChK5 inhibited the release of reducing sugars from carboxymethylcellulose by cell-free supernatant fluids from O. joyonii strain A4. Strain 007 of the cellulolytic anaerobe Ruminococcus flavefaciens was also shown to produce small amounts of soluble products upon incubation with colloidal chitin. Mixtures of culture supernates from this bacterium and from O. joyonii strain A4 showed cellulase activity that was less than that of the component cultures. It is suggested that the ability of some rumen bacteria to hydrolyse or transform chitin may be an important factor in the interactions between bacteria and fungi in the rumen. PMID:8862027

Kopecný, J; Hodrová, B; Stewart, C S

1996-09-01

40

Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater.  

PubMed

Anaerobic ammonium-oxidizing (anammox) bacteria perform an important step in the global nitrogen cycle: anaerobic oxidation of ammonium and reduction of nitrite to form dinitrogen gas (N(2)). Anammox organisms appear to be widely distributed in natural and artificial environments. However, their roles in groundwater ammonium attenuation remain unclear and only limited biomarker-based data confirmed their presence prior to this study. We used complementary molecular and isotope-based methods to assess anammox diversity and activity occurring at three ammonium-contaminated groundwater sites: quantitative PCR, denaturing gradient gel electrophoresis, sequencing of 16S rRNA genes, and (15)N-tracer incubations. Here we show that anammox performing organisms were abundant bacterial community members. Although all sites were dominated by Candidatus Brocadia-like sequences, the community at one site was particularly diverse, possessing four of five known genera of anammox bacteria. Isotope data showed that anammox produced up to 18 and 36% of N(2) at these sites. By combining molecular and isotopic results we have demonstrated the diversity, abundance, and activity of these autotrophic bacteria. Our results provide strong evidence for their important biogeochemical role in attenuating groundwater ammonium contamination. PMID:21786759

Moore, Tara A; Xing, Yangping; Lazenby, Brent; Lynch, Michael D J; Schiff, Sherry; Robertson, William D; Timlin, Robert; Lanza, Sadia; Ryan, M Cathryn; Aravena, Ramon; Fortin, Danielle; Clark, Ian D; Neufeld, Josh D

2011-09-01

41

Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties  

PubMed Central

Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

Jetten, Mike S. M.

2012-01-01

42

Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria  

PubMed Central

Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

2014-01-01

43

Draft Genome Sequence of Paenibacillus Strain P1XP2, a Polysaccharide-Degrading, Thermophilic, Facultative Anaerobic Bacterium Isolated from a Commercial Bioreactor Degrading Food Waste  

PubMed Central

The analysis of the ~5.8-Mb draft genome sequence of a moderately thermophilic, heterotrophic, facultative anaerobic bacterium, Paenibacillus strain P1XP2, identified genes for enzymes with the potential for degrading complex food wastes, a property consistent with the ecological habitat of the isolate. PMID:25635015

Adelskov, Joseph

2015-01-01

44

Draft Genome Sequence of Paenibacillus Strain P1XP2, a Polysaccharide-Degrading, Thermophilic, Facultative Anaerobic Bacterium Isolated from a Commercial Bioreactor Degrading Food Waste.  

PubMed

The analysis of the ~5.8-Mb draft genome sequence of a moderately thermophilic, heterotrophic, facultative anaerobic bacterium, Paenibacillus strain P1XP2, identified genes for enzymes with the potential for degrading complex food wastes, a property consistent with the ecological habitat of the isolate. PMID:25635015

Adelskov, Joseph; Patel, Bharat K C

2015-01-01

45

Co-occurrence of anaerobic bacteria in colorectal carcinomas  

PubMed Central

Background Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. Results We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. Conclusions A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue. PMID:24450771

2013-01-01

46

Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria  

SciTech Connect

Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

None

2010-07-01

47

Production of Value-added Products by Lactic Acid Bacteria  

Technology Transfer Automated Retrieval System (TEKTRAN)

Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

48

The Genome Sequences of Cellulomonas fimi and “Cellvibrio gilvus” Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of “Cellvibrio gilvus” to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov  

PubMed Central

Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies. PMID:23342046

Bramhacharya, Shanti; Jewell, Kelsea A.; Aylward, Frank O.; Mead, David; Brumm, Phillip J.

2013-01-01

49

Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes  

PubMed Central

Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

2011-01-01

50

Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants  

Microsoft Academic Search

Genetic diversity of pink-pigmented facultative methylotrophic bacteria belonging to the genus, Methylobacterium, was assessed using 16S ribosomal RNA (rRNA) gene sequencing, amplified ribosomal DNA restriction analysis (ARDRA), and differential\\u000a carbon-substrate utilization profile in the phyllosphere of cotton, maize, sunflower, soybean, and mentha plants. Methylobacterium populi, Methylobacterium thiocyanatum, Methylobacterium suomiense, M. aminovorans, and Methylobacterium fujisawaense were identified to colonize the phyllosphere

P. Raja; D. Balachandar; S. P. Sundaram

2008-01-01

51

Regulation of Multiple Carbon Monoxide Consumption Pathways in Anaerobic Bacteria  

PubMed Central

Carbon monoxide (CO), well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH), the protein complex that enables anaerobic CO-utilization, has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extraordinarily resistant to high CO concentrations, thriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: one clade (CooA-1) is found in the majority of CooA-containing bacteria, whereas the other clade (CooA-2) is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of concentrations. PMID:21808633

Techtmann, Stephen M.; Colman, Albert S.; Murphy, Michael B.; Schackwitz, Wendy S.; Goodwin, Lynne A.; Robb, Frank T.

2011-01-01

52

DESTRUCTION BY ANAEROBIC MESOPHILIC AND THERMOPHILIC DIGESTION OF VIRUSES AND INDICATOR BACTERIA INDIGENOUS TO DOMESTIC SLUDGES  

EPA Science Inventory

In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...

53

Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria  

Microsoft Academic Search

Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the

Alastair G. McEwan

1994-01-01

54

Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria : a review.  

SciTech Connect

In recent years, research on microbial degradation of explosives and nitroaromatic compounds has increased. Most studies of the microbial metabolism of nitroaromatic compounds have used aerobic microorganisms. Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Few review papers exist, and those deal mainly with aerobic bacterial degradation of explosives; none deals with anaerobic bacteria. In this paper, we review the anaerobic metabolic processes in the degradation of explosives and nitroaromatic compounds under sulfate-reducing and methanogenic conditions.

Boopathy, R.; Kulpa, C. F.; Manning, J.; Environmental Research; Univ. of Notre Dame

1998-01-01

55

Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell.  

PubMed

A facultatively anaerobic, prosthecate bacterium, strain Mfc52(T), was isolated from a microbial fuel cell inoculated with soil and fed with cellulose as the sole fuel. Cells were Gram-negative, non-spore-forming, straight or slightly curved rods, and some of them had one or two polar prosthecae (stalks). Cells reproduced by binary fission or by budding from mother cells having prosthecae. Strain Mfc52(T) fermented various sugars and produced lactate, acetate and fumarate. Ferric iron, nitrate, oxygen and fumarate served as electron acceptors, while sulfate and malate did not. Nitrate was reduced to nitrite. The DNA G+C content was 64.7 mol%. On the basis of 16S rRNA gene sequence phylogeny, strain Mfc52(T) was affiliated with the genus Rhizomicrobium in the class Alphaproteobacteria and most closely related to Rhizomicrobium palustre with a sequence similarity of 97 %. Based on these physiological and phylogenetic characteristics, the name Rhizomicrobium electricum sp. nov. is proposed; the type strain is Mfc52(T) (?= JCM 15089(T) ?= KCTC 5806(T)). PMID:20802060

Kodama, Yumiko; Watanabe, Kazuya

2011-08-01

56

Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci  

PubMed Central

The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

Bascomb, Shoshana; Manafi, Mammad

1998-01-01

57

Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1  

USGS Publications Warehouse

Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

2002-01-01

58

Identification of Anaerobic Selenate-Respiring Bacteria from Aquatic Sediments  

Microsoft Academic Search

The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize

Priya Narasingarao; Max M. Haggblom

2007-01-01

59

Oxygen regulated gene expression in Escherichia coli: Control of anaerobic respiration by the FNR protein  

Microsoft Academic Search

Molecular oxygen is an important regulatory signal in facultative anaerobic bacteria and controles the expression of a great variety of genes positively or negatively. The expression of anaerobic respiration and of related functions of E. coli is controlled by the positive gene regulator FNR, which activates transcription in the absence of O2. The regulated genes carry a FNR consensus sequence

Gottfried Unden; Martin Trageser

1991-01-01

60

The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans  

PubMed Central

The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, ?-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by ?-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration. PMID:16452431

Beller, Harry R.; Chain, Patrick S. G.; Letain, Tracy E.; Chakicherla, Anu; Larimer, Frank W.; Richardson, Paul M.; Coleman, Matthew A.; Wood, Ann P.; Kelly, Donovan P.

2006-01-01

61

Effects of Alternative Dietary Substrates on Competition between Human Colonic Bacteria in an Anaerobic Fermentor System  

Microsoft Academic Search

Duplicate anaerobic fermentor systems were used to examine changes in a community of human fecal bacteria supplied with different carbohydrate energy sources. A panel of group-specific fluorescent in situ hybridization probes targeting 16S rRNA sequences revealed that the fermentors supported growth of a greater proportion of Bacteroides and a lower proportion of gram-positive anaerobes related to Faecalibacterium prausnitzii, Ruminococcus flavefaciens-Ruminococcus

Sylvia H. Duncan; Karen P. Scott; Alan G. Ramsay; Hermie J. M. Harmsen; Gjalt W. Welling; Colin S. Stewart; Harry J. Flint

2003-01-01

62

Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria  

Microsoft Academic Search

MANY crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated1,2. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms3,4. On the other hand, oil wells and production fluids were shown to harbour anaerobic sulphate-reducing bacteria5-8, but

Petra Rueter; Ralf Rabus; Heinz Wilkest; Frank Aeckersberg; Fred A. Rainey; Holger W. Jannasch; Friedrich Widdel

1994-01-01

63

Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria.  

PubMed

A facultatively anaerobic, non-pigmented, non-spore-forming bacterium was isolated from a littoral wetland of a boreal lake located on Valaam Island, northern Russia, and designated strain P105(T). Cells of this isolate were Gram-negative, non-motile rods coated by S-layers with p2 lattice symmetry. Sugars were the preferred growth substrates. Under anoxic conditions, strain P105(T) was capable of fermentation and dissimilatory Fe(III) reduction. End products of fermentation were acetate, propionate and H2. Strain P105(T) was a mildly acidophilic, mesophilic organism, capable of growth at pH 4.0-7.2 (optimum pH 5.5-6.0) and at 4-35 °C (optimum at 20-28 °C). The major fatty acids were iso-C(15?:?0) and C(16?:?1)?7c; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid (isodiabolic acid). The major polar lipids were phosphocholine and phosphoethanolamine; the quinone was MK-8. The G+C content of the DNA was 60.5 mol%. 16S rRNA gene sequence analysis showed that strain P105(T) belongs to subdivision 3 of the Acidobacteria and is only distantly related (90% sequence similarity) to the only currently characterized member of this subdivision, Bryobacter aggregatus. The novel isolate differs from Bryobacter aggregatus in its cell morphology and ability to grow under anoxic conditions and in the presence of iron- and nitrate-reducing capabilities as well as quinone and polar lipid compositions. These differences suggest that strain P105(T) represents a novel genus and species, for which the name Paludibaculum fermentans gen. nov., sp. nov., is proposed. The type strain of Paludibaculum fermentans is P105(T) (?=?DSM 26340(T)?=?VKM B-2878(T)). PMID:24867171

Kulichevskaya, Irina S; Suzina, Natalia E; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Dedysh, Svetlana N

2014-08-01

64

Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen.  

PubMed Central

Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was directly related to the concentration of oxalate in the medium (1 to 111 mM), and cell yields were approximately 1.1 g (dry weight)/mol of oxalate degraded. Oxalate was stoichiometrically degraded to CO2 and formate. These anaerobes occupy a unique ecological niche and are distinct from any previously described oxalate-degrading bacteria. Images PMID:7425628

Dawson, K A; Allison, M J; Hartman, P A

1980-01-01

65

Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil  

Microsoft Academic Search

Culturable anaerobic bacterial populations on rice plant residue (straw and stubble with roots) in paddy field soil were found on the order of 109 CFU (colony-forming units) (g dry weight of plant residue)?1, and the percentages of spores were usually less than 1% of the total anaerobes. Anaerobic bacteria were isolated from each sample by picking up colonies on the

Hiroshi Akasaka; Tomoe Izawa; Katsuji Ueki; Atsuko Ueki

2003-01-01

66

Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria.  

PubMed

Several species of anaerobic bacteria display variable Gram stain reactions which often make identification difficult. A simple, rapid method utilizing a 3% solution of potassium hydroxide to distinguish between gram-positive and gram-negative bacterial was tested on 213 strains of anaerobic bacteria representing 19 genera. The Gram stain reaction and KOH test results were compared with the antibiotic disk susceptibilities (vancomycin and colistin) the preliminary grouping of anaerobic bacteria. All three procedures were in agreement for the majority of strains examined. Some strains of clostridia, eubacteria, and bifidobacteria stained gram negative or gram variable; the KOH and antibiotic disk susceptibility tests correctly classified these strains as gram-positive. The KOH test incorrectly grouped some strains of Bacteroides sp., Fusobacterium sp., Leptotrichia buccalis, and Veillonella parvula, but all Gram stain results for these strains were consistent for gram-negative bacteria. The KOH test is a useful supplement to the Gram stain and antibiotic disk susceptibility testing for the initial classification of anaerobic bacteria. PMID:6165736

Halebian, S; Harris, B; Finegold, S M; Rolfe, R D

1981-03-01

67

Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1.  

PubMed

Magnetospirillum sp. strain AMB-1 is a Gram-negative alpha-proteobacterium that synthesizes nano-sized magnetites, referred to as magnetosomes, aligned intracellularly in a chain. The potential of this nano-sized material is growing and will be applicable to broad research areas. It has been expected that genome analysis would elucidate the mechanism of magnetosome formation by magnetic bacteria. Here we describe the genome of Magnetospirillum sp. AMB-1 wild type, which consists of a single circular chromosome of 4967148 bp. For identification of genes required for magnetosome formation, transposon mutagenesis and determination of magnetosome membrane proteins were performed. Analysis of a non-magnetic transposon mutant library focused on three unknown genes from 2752 unknown genes and three genes from 205 signal transduction genes. Partial proteome analysis of the magnetosome membrane revealed that the membrane contains numerous oxidation/reduction proteins and a signal response regulator that may function in magnetotaxis. Thus, oxidation/reduction proteins and elaborate multidomain signaling proteins were analyzed. This comprehensive genome analysis will enable resolution of the mechanisms of magnetosome formation and provide a template to determine how magnetic bacteria maintain a species-specific, nano-sized, magnetic single domain and paramagnetic morphology. PMID:16303747

Matsunaga, Tadashi; Okamura, Yoshiko; Fukuda, Yorikane; Wahyudi, Aris Tri; Murase, Yaeko; Takeyama, Haruko

2005-01-01

68

The identification and antimicrobial susceptibility of anaerobic bacteria from pneumonic cattle lungs.  

PubMed

One hundred and forty-four lungs obtained postmortem from cattle with pneumonia were cultured for anaerobic bacteria. Forty-five lungs yielded 73 anaerobic isolates belonging to 20 species. The number of isolations of anaerobes from acute fibrinous or suppurative bronchopneumonias (32.5%) was slightly lower than from similar chronic bronchopneumonias (36.5%). Anaerobes were not recovered from 15 lungs showing macroscopic changes not of bacterial origin, nor from 13 healthy lungs. The predominant genera isolated were Bacteroides, Peptococcus, Fusobacterium and Clostridium. The most common species were P. indolicus (15 isolates), B. asaccharolyticus (nine), F. necrophorum (six), C. perfringens (four) and B. fragilis (four). There was a significant correlation between the presence of Corynebacterium pyogenes (p less than 0.001) or Escherichia coli (p less than 0.01) and the presence of anaerobes in the lungs. The isolated anaerobic bacteria were generally susceptible to ampicillin, penicillin G, cefoxitin, cephalothin, clindamycin, chloramphenicol, erythromycin, tetracycline and metronidazole. The B. fragilis and C. perfringens isolates showed multiple antibiotic resistance, and five P. indolicus isolates were resistant to tetracycline. PMID:6640410

Chirino-Trejo, J M; Prescott, J F

1983-07-01

69

Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.  

PubMed

The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P < 0.001) and 48 h (30/36 vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

2014-01-01

70

Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes  

Microsoft Academic Search

Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity\\u000a was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono\\u000a Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However,\\u000a these cultures grew equally well without added arsenate

Laurence G. Miller; Ronald S. Oremland

2008-01-01

71

Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria.  

PubMed

Purple non-sulfur phototrophic bacteria, exemplified by Rhodobacter capsulatus and Rhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth. PMID:7747929

McEwan, A G

1994-01-01

72

Degradation of BTEX by anaerobic bacteria: physiology and application  

Microsoft Academic Search

Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX)\\u000a is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation\\u000a of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are\\u000a introduced is possible. Anaerobic bioremediation is an attractive technology

Sander A. B. Weelink; Miriam H. A. van Eekert; Alfons J. M. Stams

2010-01-01

73

Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment  

Microsoft Academic Search

A fundamental obstacle in gene therapy for cancer treatment is the specific delivery of an anticancer gene product to a solid tumor. Although several strategies exist to control gene expression once a vector is directly introduced into a tumor, as yet no systemic delivery system exists that specifically targets solid tumors. Nonpathogenic, obligate anaerobic bacteria of the genus Clostridium have

MJ Lemmon; P van Zijl; ME Fox; ML Mauchline; AJ Giaccia; NP Minton; JM Brown

1997-01-01

74

Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man  

Microsoft Academic Search

Suspensions of isolated epithelial cells (colonocytes) from the human colon were used to assess utilisation of respiratory fuels which are normally available to the colonic mucosa in vivo. Cells were prepared from operative specimens of the ascending colon (seven) and descending colon (seven). The fuels that were used were the short chain fatty acid n-butyrate, produced only by anaerobic bacteria

W E Roediger

1980-01-01

75

Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine  

PubMed Central

The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

2014-01-01

76

In Vitro Activities of OPT-80 and Comparator Drugs against Intestinal Bacteria  

PubMed Central

The activities of OPT-80 against 453 intestinal bacteria were compared with those of seven other drugs. OPT-80 showed good activity against most clostridia, staphylococci, and enterococci, but streptococci, aerobic and facultative gram-negative rods, anaerobic gram-negative rods, and Clostridium ramosum were resistant. Poor activity against anaerobic gram-negative rods may maintain colonization resistance. PMID:15561877

Finegold, Sydney M.; Molitoris, Denise; Vaisanen, Marja-Liisa; Song, Yuli; Liu, Chengxu; Bolaños, Mauricio

2004-01-01

77

Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity  

PubMed Central

Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

2014-01-01

78

Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.  

PubMed

Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L

2014-01-01

79

Frequency of Resistance in Obligate Anaerobic Bacteria Isolated from Dogs, Cats, and Horses to Antimicrobial Agents  

PubMed Central

Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ? 16/8 ?g/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ? 2 ?g/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ? 32 ?g/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ? 8 ?g/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ? 32 ?g/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ? 2 ?g/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro. PMID:24025899

Taylor, A.; Fajt, V. R.

2013-01-01

80

In Vitro Activity of Ceftaroline against 623 Diverse Strains of Anaerobic Bacteria ?  

PubMed Central

The in vitro activities of ceftaroline, a novel, parenteral, broad-spectrum cephalosporin, and four comparator antimicrobials were determined against anaerobic bacteria. Against Gram-positive strains, the activity of ceftaroline was similar to that of amoxicillin-clavulanate and four to eight times greater than that of ceftriaxone. Against Gram-negative organisms, ceftaroline showed good activity against ?-lactamase-negative strains but not against the members of the Bacteroides fragilis group. Ceftaroline showed potent activity against a broad spectrum of anaerobes encountered in respiratory, skin, and soft tissue infections. PMID:20100877

Citron, D. M.; Tyrrell, K. L.; Merriam, C. V.; Goldstein, E. J. C.

2010-01-01

81

Routine Testing for Anaerobic Bacteria in Cerebrospinal Fluid Cultures Improves Recovery of Clinically Significant Pathogens  

PubMed Central

In North America, the widespread use of vaccines targeting Haemophilus influenzae type b and Streptococcus pneumoniae have dramatically altered the epidemiology of bacterial meningitis, while the methodology for culturing cerebrospinal fluid (CSF) specimens has remained largely unchanged. The aims of this study were 2-fold: to document the current epidemiology of bacterial meningitis at a tertiary care medical center and to assess the clinical utility of routinely querying for anaerobes in CSF cultures. To that end, we assessed CSF cultures submitted over a 2-year period. A brucella blood agar (BBA) plate, incubated anaerobically for 5 days, was included in the culture procedure for all CSF specimens during the second year of evaluation. In the pre- and postimplementation years, 2,353 and 2,302 CSF specimens were cultured, with 49 and 99 patients having positive culture results, respectively. The clinical and laboratory data for patients with positive cultures were reviewed. Anaerobic bacteria were isolated in the CSF samples from 33 patients post-BBA compared to two patients pre-BBA (P = 0.01). The anaerobic isolates included Bacteroides thetaiotaomicron (n = 1), Propionibacterium species (n = 15), and Propionibacterium acnes (n = 19) isolates; all of these isolates were recovered on the BBA. Eight of the 35 patients from whom anaerobic organisms were isolated received antimicrobial therapy. Although six of these patients had central nervous system hardware, two patients did not have a history of a neurosurgical procedure and had community-acquired anaerobic bacterial meningitis. This study demonstrates that the simple addition of an anaerobically incubated BBA to the culture of CSF specimens enhances the recovery of clinically significant anaerobic pathogens. PMID:24622102

Pittman, Meredith E.; Thomas, Benjamin S.; Wallace, Meghan A.; Weber, Carol J.

2014-01-01

82

Curved anaerobic bacteria in bacterial (nonspecific) vaginosis and their response to antimicrobial therapy.  

PubMed

Vaginal fluid samples from normal college students, college students with bacterial (nonspecific) vaginosis, and sexually transmitted disease clinic patients with bacterial vaginosis, before and after therapy with metronidazole, ampicillin, or amoxicillin, were evaluated by direct Gram stain and culture for the predominant anaerobic and facultative flora. Curved rods were detected by direct Gram stain of vaginal fluid from 31 (51%) of 61 women with bacterial vaginosis and none of 42 normal student controls (P less than 0.001). Curved, gram-variable to gram-negative organisms were recovered from six of these 31 women, seven other women with bacterial vaginosis, and no controls. All 13 isolates were anaerobic, motile, and oxidase-negative, produced succinic acid as their major metabolic product, and hydrolyzed starch. After treatment with ampicillin or amoxicillin (n = 10) or greater than or equal to 2 g of metronidazole (n = 9), no curved motile rods were detected by Gram stain or culture, although the minimal inhibitory concentration of metronidazole was greater than or equal 8 micrograms/ml for 11 of the 13 isolates tested. PMID:6631073

Spiegel, C A; Eschenbach, D A; Amsel, R; Holmes, K K

1983-11-01

83

Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.  

PubMed

This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. PMID:25301712

Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

2014-12-01

84

Isolation of Anaerobic Bacteria from Human Gingiva and Mouse Cecum by Means of a Simplified Glove Box Procedure1  

PubMed Central

An anaerobic glove box constructed of clear flexible vinyl plastic is described. It is sufficiently inexpensive and simple in operation to be used not only in research but also in a clinical laboratory by technicians without special training. Conventional bacteriological techniques may be used inside the glove box for culturing and transferring anaerobic bacteria. The box may be heated to 37 C and thus serve as an anaerobic incubator as well, permitting inspection of cultures at any time. Media may be prepared and agar plates may be poured on the laboratory bench in the conventional manner. An overlay of trace amounts of palladium black catalyst over plated agar media reduces the medium to an oxidation-reduction (O-R) potential of - 300 mv within 2 days after introduction into the glove box. In spite of its greater simplicity, the system matched or excelled the roll tube method with respect to all parameters tested, including O-R potential obtainable in the media, O2 concentration in the gas phase, and efficiency in isolating anaerobic bacteria from the mouse cecum. Comparative studies indicate that the conventional anaerobic jar method was inadequate for the isolation of strict anaerobes from human gingival specimens and from the mouse cecum. This was due to the exposure of specimens and media to air during plating on the open laboratory bench. Anaerobic jars were adequate for maintaining the proper conditions for growth of anaerobic bacteria once these had been established in the glove box. Images PMID:4890748

Aranki, Alexander; Syed, Salam A.; Kenney, Ernest B.; Freter, Rolf

1969-01-01

85

Genome sequence of Phaeobacter daeponensis type strain (DSM 23529T), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis  

PubMed Central

TF-218T is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218T contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218T possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system. PMID:24501652

Dogs, Marco; Teshima, Hazuki; Petersen, Jörn; Fiebig, Anne; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Ivanova, Natalia; Lapidus, Alla; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Göker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

2013-01-01

86

Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India  

PubMed Central

Background In this study a large random collection (n?=?2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007–2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (?2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6?-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. Conclusions Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. PMID:23951238

Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

2013-01-01

87

Light and electron microscopic studies of anaerobic curved bacteria isolated from the vagina.  

PubMed

Twenty strains of anaerobic curved rods isolated from vaginal secretion were studied with light and transmission electron microscopy. Ten of the strains were of a short (approx. 1.5 microns) Gram-variable type, while ten were of a long (approx. 3 microns) Gram-negative type. The former had one to four flagella and the latter between one and eight. The flagella originated from the concave aspect of the cells. Thin sections of both types of bacteria revealed an approximately 30 nm thick cell wall with no outer membrane, similar to that of most Gram-positive bacteria. An electron-dense zone in the middle of the cell wall, atypical of Gram-positive bacteria, was found, however. Amorphous and electron-translucent cytoplasmic inclusions, not membrane-enclosed, were detected. These inclusions stained metachromatically with Albert's stain. PMID:6598923

Skarin, A; Weibull, C; Mårdh, P A

1984-01-01

88

Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.  

PubMed

Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80 % after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

2015-02-01

89

Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria  

SciTech Connect

Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

1994-06-01

90

Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China.  

PubMed

Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem. PMID:24932882

Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

2014-12-01

91

Evaluation of the New Vitek 2 ANC Card for Identification of Medically Relevant Anaerobic Bacteria?  

PubMed Central

Of 261 anaerobic clinical isolates tested with the new Vitek 2 ANC card, 257 (98.5%) were correctly identified at the genus level. Among the 251 strains for which identification at the species level is possible with regard to the ANC database, 217 (86.5%) were correctly identified at the species level. Two strains (0.8%) were not identified, and eight were misidentified (3.1%). Of the 21 strains (8.1%) with low-level discrimination results, 14 were correctly identified at the species level by using the recommended additional tests. This system is a satisfactory new automated tool for the rapid identification of most anaerobic bacteria isolated in clinical laboratories. PMID:19386846

Mory, Francine; Alauzet, Corentine; Matuszeswski, Céline; Riegel, Philippe; Lozniewski, Alain

2009-01-01

92

Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils.  

PubMed

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1?×?10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2?g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3 % in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils. PMID:25242345

Shen, Li-Dong; Huang, Qian; He, Zhan-Fei; Lian, Xu; Liu, Shuai; He, Yun-Feng; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

2015-01-01

93

Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain  

PubMed Central

Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do. PMID:22666539

Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K.; Song, Erwei; Huang, Jian-Dong

2012-01-01

94

Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile  

NASA Astrophysics Data System (ADS)

Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N 2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus "Scalindua spp." dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml -1) and activity (up to 5.75 nmol N 2 L -1 d -1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.

Galán, Alexander; Molina, Verónica; Thamdrup, Bo; Woebken, Dagmar; Lavik, Gaute; Kuypers, Marcel M. M.; Ulloa, Osvaldo

2009-07-01

95

Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.  

PubMed

Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)). PMID:24880628

Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

2014-09-01

96

Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria.  

PubMed Central

A filter paper spot test with 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid as a substrate was used to study the prevalence of sialidase activity among gram-negative anaerobic and capnophilic bacteria. A total of 567 isolates representing four genera of obligate anaerobes and four genera of capnophilic organisms was tested. Sialidase activity was detected in 94% of 66 isolates from the Bacteroides fragilis group, 98% of 66 B. bivius isolates, and all isolates of the following species (number of isolates follows species name): B. capillosus, 4; B. levii, 2; B. denticola, 22; B. loescheii, 23; B. melaninogenicus, 32; B. forsythus, 44; and B. buccalis, 2. However, sialidase activity was detected in only 29% of 7 B. buccae isolates, 79% of 14 B. disiens isolates, and 55% of 11 B. oralis isolates. Sialidase activity was not detected among any of 13 isolates of B. gracilis, 12 isolates of B. ureolyticus, 61 isolates of B. intermedius, or 26 isolates of B. corporis. Porphyromonas (Bacteroides) asaccharolytica (20 isolates) and P. endodontalis (8 isolates) did not demonstrate sialidase activity, while 25 isolates of P. gingivalis were sialidase positive. Sialidase activity was found in 10 (100%) of 10 isolates of Capnocytophaga ochracea of C. sputigena but not in any of 4 C. gingivalis isolates. Other gram-negative anaerobic or capnophilic bacteria, including the following, were negative for sialidase activity: Fusobacterium nucleatum, 39 isolates; Wolinella recta, 19 isolates; Eikenella corrodens, 17 isolates; Haemophilus aphrophilus, 10 isolates; and Actinobacillus actinomycetemcomitans, 10 isolates. These data demonstrate sialidase activity in several species of the genera Bacteroides and Porphyromonas and suggest that this characteristic may be useful for identification. PMID:2108991

Moncla, B J; Braham, P; Hillier, S L

1990-01-01

97

Living Without Oxygen: Oxygen Tolerance in Bacteria  

NSDL National Science Digital Library

This activity focuses on chemical processes, such as nitrogen fixation and denitrification, which are carried out by bacteria. Often the efficacy of these processes is determined by the amount of oxygen present in the environment in which the bacteria live. Much of the time, these processes are carried out by facultatively anaerobic bacteria in the suboxic region of lakes, oceans, sediments, and leaf litter. Students will discover whether facultatively anaerobic photoautotrophs share the same tolerance for oxygen, how differences in oxygen tolerance can be tested, and of what significance the tolerance for oxygen is in the nitrogen cycle. They will practice aseptic technique, monitor the growth of bacterial cultures, display their results graphically, and propose environmental problems associated with the oxygen tolerance of nitrogen fixers and denitifiers.

Sharon Harris

98

Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.  

PubMed

The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. PMID:25308076

Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

2014-10-20

99

Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system.  

PubMed

Fixed nitrogen is released by anaerobic ammonium oxidation (anammox) and/or denitrification from (marine) ecosystems. Nitrite, the terminal electron acceptor of the anammox process, occurs in nature at very low concentrations and is produced via (micro)aerobic oxidation of ammonium or nitrate reduction. The coupling of sulfide-dependent denitrification to anammox is particularly interesting because besides hydrogen, sulfide is the most important reductant at the chemocline of anoxic marine basins and is abundant within sediments. Although at ?M concentrations, sulfide may be toxic and inhibiting anammox activity, a denitrifying microorganism could convert sulfide and nitrate at sufficiently high rates to allow anammox bacteria to stay active despite an influx of sulfide. To test this hypothesis, a laboratory scale model system containing a co-culture of anammox bacteria and the autotrophic denitrifier Sulfurimonas denitrificans?DSM1251 was started. Complementary techniques revealed that the gammaproteobacterial Sedimenticola sp. took over the intended role of Su.?denitrificans. A stable coculture of anammox bacteria and Sedimenticola sp. consumed sulfide, nitrate, ammonium and CO2 . Anammox bacteria contributed 65-75% to the nitrogen loss from the reactor. The cooperation between anammox and sulfide-dependent denitrification may play a significant role in environments where sulfur cycling is active and where actual sulfide concentrations stay below ?M range. PMID:24750895

Russ, Lina; Speth, Daan R; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran

2014-11-01

100

Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen.  

PubMed

In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions. PMID:20956064

Yan, Jia; Op den Camp, Huub J M; Jetten, Mike S M; Hu, Yong Y; Haaijer, Suzanne C M

2010-11-01

101

Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs  

PubMed Central

Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4?±?0.5?×?103 to 2.0?±?0.18?×?106 cells ml?1 and 6.6?±?0.51?×?102 to 4.9?±?0.36?×?104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

Li, Hui; Chen, Shuo; Mu, Bo-Zhong

2010-01-01

102

Dynamic and distribution of ammonia-oxidizing bacteria communities during sludge granulation in an anaerobic–aerobic sequencing batch reactor  

Microsoft Academic Search

The structure dynamic of ammonia-oxidizing bacteria (AOB) community and the distribution of AOB and nitrite-oxidizing bacteria (NOB) in granular sludge from an anaerobic–aerobic sequencing batch reactor (SBR) were investigated. A combination of process studies, molecular biotechniques and microscale techniques were employed to identify and characterize these organisms. The AOB community structure in granules was substantially different from that of the

Zhang Bin; Chen Zhe; Qiu Zhigang; Jin Min; Chen Zhiqiang; Chen Zhaoli; Li Junwen; Wang Xuan; Wang Jingfeng

2011-01-01

103

Interactions of Anaerobic Bacteria with Dental Stem Cells: An In Vitro Study  

PubMed Central

Background In patients with periodontitis, it is highly likely that local (progenitor) cells encounter pathogenic bacteria. The purpose of this in vitro study was to elucidate how human dental follicle stem cells (hDFSC) react towards a direct challenge with anaerobic periodontal pathogens under their natural oxygen-free atmosphere. HDFSC were compared to human bone marrow mesenchymal stem cells (hBMSC) and differentiated primary human gingival fibroblasts (hGiF), as well as permanent gingival carcinoma cells (Ca9-22). Methodology/Principal Findings The different cell types were investigated in a co-culture system with Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). The viability of the cells and pathogens under anaerobic conditions, as well as interactions in terms of adherence and internalization, were examined. Additionally, the release of pro-inflammatory interleukin-8 (IL-8) and anti-inflammatory interleukin-10 (IL-10) was quantified via enzyme-linked immunosorbent assay. The bacteria adhered less efficiently to hDFSC compared to Ca9-22 (P. gingivalis: 0.18% adherence to hDFSC; 3.1% adherence to Ca9-22). Similar results were observed for host cell internalization (F. nucleatum: 0.002% internalization into hDFSC; 0.09% internalization into Ca9-22). Statistically significantly less IL-8 was secreted from hDFSC after stimulation with F. nucleatum and P. gingivalis in comparison with hGiF (F. nucleatum: 2080.0 pg/ml – hGiF; 19.7 pg/ml – hDFSC). The IL-10 response of the differentiated cells was found to be low in relation to their pro-inflammatory IL-8 response. Conclusions/Significance The results indicate that dental stem cells are less prone to interactions with pathogenic bacteria than differentiated cells in an anaerobic environment. Moreover, during bacterial challenge, the stem cell immune response seems to be more towards an anti-inflammatory reaction. For a potential future therapeutic use of hDFSC, these findings support the idea of a save application. PMID:25369260

Biedermann, Anne; Kriebel, Katja; Kreikemeyer, Bernd; Lang, Hermann

2014-01-01

104

16S rRNA Gene Sequencing in Routine Identification of Anaerobic Bacteria Isolated from Blood Cultures?  

PubMed Central

A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times for identification were 1.5 days and 2.8 days, respectively. PMID:20071555

Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa; Holt, Hanne Marie; Søgaard, Per; Justesen, Tage

2010-01-01

105

In silico analysis of 16S ribosomal RNA gene sequencing?based methods for identification of medically important anaerobic bacteria  

PubMed Central

This study is the first study that provides useful guidelines to clinical microbiologists and technicians on the usefulness of full 16S rRNA sequencing, 5??end 527?bp 16S rRNA sequencing and the existing MicroSeq full and 500 16S rDNA bacterial identification system (MicroSeq, Perkin?Elmer Applied Biosystems Division, Foster City, California, USA) databases for the identification of all existing medically important anaerobic bacteria. Full and 527?bp 16S rRNA sequencing are able to identify 52–63% of 130 Gram?positive anaerobic rods, 72–73% of 86 Gram?negative anaerobic rods and 78% of 23 anaerobic cocci. The existing MicroSeq databases are able to identify only 19–25% of 130 Gram?positive anaerobic rods, 38% of 86 Gram?negative anaerobic rods and 39% of 23 anaerobic cocci. These represent only 45–46% of those that should be confidently identified by full and 527?bp 16S rRNA sequencing. To improve the usefulness of MicroSeq, bacterial species that should be confidently identified by full and/or 527?bp 16S rRNA sequencing but not included in the existing MicroSeq databases should be included. PMID:17046845

Woo, Patrick C Y; Chung, Liliane M W; Teng, Jade L L; Tse, Herman; Pang, Sherby S Y; Lau, Veronica Y T; Wong, Vanessa W K; Kam, Kwok?ling; Lau, Susanna K P; Yuen, Kwok?Yung

2007-01-01

106

The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales.  

PubMed

We performed a comparative analysis of the genome sequences of three anaerobic halophilic fermentative bacteria belonging to the order Halanaerobiales: Halanaerobium praevalens, the alkaliphilic "Halanaerobium hydrogeniformans", and the thermophilic Halothermothrix orenii to assess the amino acid composition of their proteins. Members of the Halanaerobiales were earlier shown to accumulate KCl rather than organic compatible solutes for osmotic balance, and therefore the presence of a dominantly acidic proteome was predicted. Past reports indeed showed a large excess of acidic over basic amino acids in whole-cell hydrolysates of selected members of the order. However, the genomic analysis did not show unusually high contents of acidic amino acids or low contents of basic amino acids. The apparent excess of acidic amino acids in these anaerobic halophiles reported earlier is due to the high content in their proteins of glutamine and asparagine, which yield glutamate and aspartate upon acid hydrolysis. It is thus suggested that the proteins of the Halanaerobiales, which are active in the presence of high intracellular KCl concentrations, do not possess the typical acidic signature of the 'halophilic' proteins of the Archaea of the order Halobacteriales or of the extremely halophilic bacterium Salinibacter. PMID:22527048

Elevi Bardavid, Rahel; Oren, Aharon

2012-05-01

107

An in Vitro Experimental Study on the Antimicrobial Activity of Silicone Oil against Anaerobic Bacteria.  

PubMed

Abstract Purpose: To investigate the in vitro antimicrobial activity of silicone oil against anaerobic agents, specifically Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium. Method: A 0.5 McFarland turbidity of Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium was prepared, and 0.1?mL was inoculated into 0.9?mL of silicone oil. Control inoculations were performed in anaerobic blood agar and fluid thioglycollate medium without silicone oil. Results: Propionibacterium acnes retained their viability on the 3rd day in the presence of silicone oil. In total, 9.7?×?10(6) colonies were enumerated from 1?mL of silicone oil. After a prolonged incubation of 7 days, the number of colonies observed was 9.2?×?10(6). The other bacteria disappeared after the 3rd day of incubation in silicone oil. Conclusions: Propionibacterium acnes, which is the most common chronic postoperative endophthalmitis agent, is thought to be resistant to silicone oil. PMID:25356916

Arici, Ceyhun; Aras, Cengiz; Tokman, Hrisi Bahar; Torun, Muzeyyen Mamal

2014-10-30

108

Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria  

PubMed Central

The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria. PMID:16535654

Loffler, F. E.; Champine, J. E.; Ritalahti, K. M.; Sprague, S. J.; Tiedje, J. M.

1997-01-01

109

[Anaerobic bacteria as a gene delivery system for breast cancer therapy].  

PubMed

A fundamental obstacle in systemic therapy for metastatic breast cancer patients is specific targeting of therapy directly to a solid tumor. Hypoxic or necrotic regions are characteristic of solid tumors in many murine and human tumors, including the majority of primary tumors of the breast. A strain of anaerobic bacteria such as Bifidobacterium or Clostridium selectively localizes to and proliferates in solid tumors after systemic application. Another approach uses attenuated Salmonella strains that need tumor-specific nutrients to selectively proliferate and is a potential gene delivery system. We constructed a plasmid, pBLES100-S-eCD, which included the cytosine deaminase gene. Transfected Bifidobacterium longum produced cytosine deaminase in the hypoxic tumor. Enzyme/pro-drug therapy was confirmed to be effective for systemic administration. PMID:18540373

Fujimori, Minoru

2008-06-01

110

Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.  

PubMed

Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r was the most suitable primer set for multiple molecular assessments of anammox bacteria in freshwater environments. PMID:23505422

Sonthiphand, Puntipar; Neufeld, Josh D

2013-01-01

111

Evaluating Primers for Profiling Anaerobic Ammonia Oxidizing Bacteria within Freshwater Environments  

PubMed Central

Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r was the most suitable primer set for multiple molecular assessments of anammox bacteria in freshwater environments. PMID:23505422

Sonthiphand, Puntipar; Neufeld, Josh D.

2013-01-01

112

Use of Cellulose-Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein  

Microsoft Academic Search

A new strain of acid-tolerant facultative anaerobic cellulose-degrading bacteria Bacillus cytaseus 21 (Mc Bethe ef Scales, 1912), which are capable to fixing atmospheric nitrogen, was isolated. This strain is intended for solid-phase fermentation and enrichment with protein of cellulose-containing waste of plant cultivation.

I. E. Smirnova; M. G. Saubenova

2001-01-01

113

Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems.  

PubMed

Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a recently discovered process that is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). This process constitutes a unique association between the two major global elements essential to life, carbon and nitrogen, and may act as an important and overlooked sink of the greenhouse gas methane. In recent years, more and more studies have reported the distribution of M. oxyfera-like bacteria and the occurrence of N-DAMO process in different natural ecosystems, including freshwater lakes, rivers, wetlands and marine ecosystems. Previous studies have estimated that a total of 2 %-6 % of current worldwide methane flux in wetlands could be consumed via the N-DAMO process. These findings indicate that N-DAMO is indeed a previously overlooked methane sink in natural ecosystems. Given the worldwide increase in anthropogenic nitrogen pollution, the N-DAMO process as a methane sink in reducing global warming could become more important in the future. The present mini-review summarises the current knowledge of the ecological distribution of M. oxyfera-like bacteria and the potential importance of the N-DAMO process in reducing methane emissions in various natural ecosystems. The potential influence of environmental factors on the N-DAMO process is also discussed. PMID:25398284

Shen, Li-Dong; Wu, Hong-Sheng; Gao, Zhi-Qiu

2015-01-01

114

Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor  

PubMed Central

Enrichment cultures of anaerobic ammonium oxidation (anammox) bacteria as planktonic cell suspensions are essential for studying their ecophysiology and biochemistry, while their cultivation is still laborious. The present study aimed to cultivate two phylogenetically distinct anammox bacteria, “Candidatus Brocadia sinica” and “Ca. Scalindua sp.” in the form of planktonic cells using membrane bioreactors (MBRs). The MBRs were continuously operated for more than 250 d with nitrogen loading rates of 0.48–1.02 and 0.004–0.09 kgN m?3 d?1 for “Ca. Brocadia sinica” and “Ca. Scalindua sp.”, respectively. Planktonic anammox bacterial cells were successfully enriched (>90%) in the MBRs, which was confirmed by fluorescence in-situ hybridization and 16S rRNA gene sequencing analysis. The decay rate and half-saturation constant for NO2? of “Ca. Brocadia sinica” were determined to be 0.0029–0.0081 d?1 and 0.47 mgN L?1, respectively, using enriched planktonic cells. The present study demonstrated that MBR enables the culture of planktonic anammox bacterial cells, which are suitable for studying their ecophysiology and biochemistry. PMID:24200833

Oshiki, Mamoru; Awata, Takanori; Kindaichi, Tomonori; Satoh, Hisashi; Okabe, Satoshi

2013-01-01

115

Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments  

NASA Astrophysics Data System (ADS)

Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously produced BHP while its less common stereoisomer (BHT isomer) has previously been associated with anoxic environments; however, its biological source remained unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four sediment cores and a surface sediment transect closely followed the distribution of ladderane fatty acids, unique biomarkers for bacteria performing anaerobic ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids likely shared the same biological source in Golfo Dulce. This was supported by examining the BHP lipid compositions of two enrichment cultures of a marine anammox species (‘Candidatus Scalindua profunda’), which were found to contain both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher relative abundance than BHT. However, a non-marine anammox enrichment contained only BHT, which explains the infrequence of BHT isomer observations in terrestrial settings, and indicates that marine anammox bacteria are likely responsible for at least part of the environmentally-observed marine BHT isomer occurrences. Given the substantially greater residence time of BHPs in sediments, compared to ladderanes, BHT isomer is a potential biomarker for past anammox activity.

Rush, Darci; Sinninghe Damsté, Jaap S.; Poulton, Simon W.; Thamdrup, Bo; Garside, A. Leigh; Acuña González, Jenaro; Schouten, Stefan; Jetten, Mike S. M.; Talbot, Helen M.

2014-09-01

116

Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes  

USGS Publications Warehouse

Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

Miller, L.G.; Oremland, R.S.

2008-01-01

117

Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.  

PubMed Central

Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

Lowe, S E; Jain, M K; Zeikus, J G

1993-01-01

118

Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria  

PubMed Central

We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3? to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein?1 min?1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein?1 min?1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3? by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3? ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 ?M. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3? reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein?1 min?1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2? to consumed NH4+ (?NO2?/?NH4+) and produced NO3? to consumed NH4+ (?NO3?/?NH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

2013-01-01

119

Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil.  

PubMed

One hundred and fifty soil samples collected from different crop fields in southern Ontario, Canada were screened to obtain microorganisms capable of transforming deoxynivalenol (DON) to de-epoxy DON (dE-DON). Microbial DON to dE-DON transformation (i.e. de-epoxydation) was monitored by using liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MS). The effects of growth substrates, temperature, pH, incubation time and aerobic versus anaerobic conditions on the ability of the microbes to de-epoxydize DON were evaluated. A mixed microbial culture from one composite soil sample showed 100% DON to dE-DON biotransformation in mineral salts broth (MSB) after 144 h of incubation. Treatments of the culture with selective antibiotics followed an elevated temperature (50°C) for 1.5 h considerably reduced the microbial diversity. Partial 16S-rRNA gene sequence analysis of the bacteria in the enriched culture indicated the presence of at least six bacterial genera, namely Serratia, Clostridium, Citrobacter, Enterococcus, Stenotrophomonas and Streptomyces. The enriched culture completely de-epoxydized DON after 60 h of incubation. Bacterial de-epoxydation of DON occurred at pH 6.0-7.5, and a wide array of temperatures (12-40°C). The culture showed rapid de-epoxydation activity under aerobic conditions compared to anaerobic conditions. This is the first report on microbial DON to dE-DON transformation under aerobic conditions and moderate temperatures. The culture could be used to detoxify DON contaminated feed and might be a potential source for gene(s) for DON de-epoxydation. PMID:22806774

Islam, Rafiqul; Zhou, Ting; Young, J Christopher; Goodwin, Paul H; Pauls, K Peter

2012-01-01

120

Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.  

PubMed

Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production. PMID:16454492

Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J

2006-01-01

121

Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.  

NASA Astrophysics Data System (ADS)

Carbonate biomineralization is considered as one of the main natural processes controlling CO2 levels in the atmosphere both in the past and at present time. Haloalcaliphilic Rhodovulum sp. A-20s isolated from soda lake in southern Siberia and halophilic neutrophilic Rhodovulum sp. S-1765 isolated from hypersaline water body in Crimea steppe represent a large group of phototrophic bacteria likely to be involved in CaCO3 formation in soda and saline lakes. These bacteria use organic substrates for non-oxygenic photosynthesis and thus may mediate CaCO3 precipitation without CO2 consumption in highly-saline, highly-alkaline, NaHCO3-rich solutions. In order to provide the link between surface properties of bacteria and their ability to precipitate Ca carbonate, we used a combination of electrophoretic mobility measurements, surface titration and Ca ion adsorption using dead (autoclaved), inactivated (NaN3 - treated) and live cells at 25 °C as a unction of pH (3-11) and NaCl concentrations (0.01, 0.1, 0.5 M). Zeta potential of both bacteria is identical for active, NaN3-inactivated and dead cells at high ionic strength (0.5 M NaCl). The pH of isoelectric point is below 3 and zeta-potential decreases or remain negative up to pH 11. However, at lower ionic strength (0.1 M and 0.01 M NaCl) for live cells the potential increases towards positive values in the alkaline solutions (pH of 9 to 10). Similar to previous results on cyanobacteria (Martinez et al., 2009) there is a net increase in zeta-potential towards more positive values at pH = 10.4 for active cells. In order to better understand this phenomenon, experiments with different concentration of Ca2+ and HCO3- ions as well as experiments with live cultures in the darkness have been carried out. The presence in solution of Ca2+ (0.01 and 0.001 M) and the absence of light in experiment do not change significantly the potential of the cells. However, the presence in solution of HCO3- strongly reduces the zeta-potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

2010-05-01

122

Analysis of 281,797 consecutive blood cultures performed over an eight-year period: trends in microorganisms isolated and the value of anaerobic culture of blood.  

PubMed

The results for 281,797 blood culture sets of specimens collected from adult patients at the Mayo Clinic over an approximately 8-year period (1 November 1984 through 30 November 1992) were analyzed in order to determine whether there were differences in the types of microorganisms isolated over this time and to assess the usefulness of anaerobic culturing of blood. Each blood culture set consisted of two aerobic blood cultures (Septi-Chek [Becton Dickinson, Sparks, MD] and Isolator [Wampole Laboratories, Cranbury, NJ]) and one anaerobic culture (nonvented tryptic or trypticase soy broth [NVTSB; Difco Laboratories, Detroit, or Becton Dickinson]). The relative frequency of isolation of aerobic and facultatively anaerobic gram-positive bacteria and obligately anaerobic bacteria increased over the second half of the 1984-1992 surveillance period. The value of the NVTSB anaerobic blood culture was demonstrated for diagnosing bloodstream infections caused by certain facultatively anaerobic bacteria in addition to obligately anaerobic bacteria and supported the inclusion of the NVTSB anaerobic blood culture as a standard part of the three-component blood culture set used at this institution. PMID:9114192

Cockerill, F R; Hughes, J G; Vetter, E A; Mueller, R A; Weaver, A L; Ilstrup, D M; Rosenblatt, J E; Wilson, W R

1997-03-01

123

Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†  

PubMed Central

Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

Tal, Yossi; Watts, Joy E. M.; Schreier, Harold J.

2006-01-01

124

Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots.  

PubMed

Facultatively anaerobic bacterial strains (A48(T), RR25 and RR54) were isolated from roots of living rice plants in an irrigated rice-field in Japan. The three strains had identical 16S rRNA gene sequences and showed almost the same phenotypic properties examined. Cells of the strains were Gram-negative, non-spore-forming rods. Reproduction of cells was by binary fission as well as by budding. Cells occurred singly or in pairs arranged angularly. Some cells, including dividing cells, were motile with a single polar flagellum. Cells developed a polar prostheca (stalk) with a holdfast-like structure and the cell with the stalk budded a daughter cell. The strains were chemoorganotrophs and utilized various sugars as growth substrates. The strains fermentatively produced acetate and lactate as well as small amounts of ethanol and H(2) from the substrates. Growth temperature and pH ranges for growth were 15-40 degrees C and pH 5.5-7.3 with optimum growth at 30-35 degrees C and pH 6.8. NaCl concentration range for growth was 0-1.0% (wt/vol) with an optimum at 0% (wt/vol). Catalase and oxidase activities were not detected. The strains reduced Fe(III) to Fe(II) in the presence of glucose, while they did not reduce nitrate, fumarate, malate or sulfate. The major cellular fatty acids of the strains were C18:1omega7, anteiso-C15:0, iso-C15:0, C16:0 and C18:0. Ubiquinone Q-10 was the major respiratory quinone and the genomic DNA G + C contents were 53.4-55.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed the strains in the class Alphaproteobacteria and the strains formed a novel deep branch in the phylogenetic trees constructed. Based on the differences in 16S rRNA gene sequences and phenotypic properties of the novel strains from those of their relatives, we proposed that the strains be assigned in the novel genus and species as Rhizomicrobium palustre gen. nov., sp. nov. The type strain of the novel species is strain A48(T) (= JCM 14971(T) = DSM 19867(T)). PMID:20647676

Ueki, Atsuko; Kodama, Yumiko; Kaku, Nobuo; Shiromura, Takuya; Satoh, Atsuya; Watanabe, Kazuya; Ueki, Katsuji

2010-06-01

125

Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.  

PubMed

Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

2001-11-01

126

Evaluation of VITEK Mass Spectrometry (MS), a Matrix-Assisted Laser Desorption Ionization Time-of-Flight MS System for Identification of Anaerobic Bacteria  

PubMed Central

Background By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. Methods We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Results Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. Conclusions The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria. PMID:25553283

Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Chong, Yunsop

2015-01-01

127

High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile.  

PubMed

The discovery of nitrite-dependent anaerobic methane oxidation (n-damo) mediated by 'Candidatus Methylomirabilis oxyfera' with nitrite and methane as substrates has connected biogeochemical carbon and nitrogen cycles in a new way. The paddy fields often carry substantial methane and nitrate, thus may be a favorable habitat for n-damo bacteria. In this paper, the vertical-temporal molecular fingerprints of M. oxyfera-like bacteria, including abundance and community composition, were investigated in a paddy soil core in Jiangyin, near the Yangtze River. Through qPCR investigation, high abundance of M. oxyfera-like bacteria up to 1.0 × 10(8) copies (g d.w.s.)(-1) in summer and 8.5 × 10(7) copies (g d.w.s.)(-1) in winter was observed in the ecotone of soil and groundwater in the paddy soil core, which was the highest in natural environments to our knowledge. In the ecotone, the ratio of M. oxyfera-like bacteria to total bacteria reached peak values of 2.80% in summer and 4.41% in winter. Phylogenetic analysis showed n-damo bacteria in the paddy soil were closely related to M. oxyfera and had high diversity in the soil/groundwater ecotone. All of the results indicated the soil/groundwater ecotone of the Jiangyin paddy field was a favorable environment for the growth of n-damo bacteria. PMID:25109910

Zhou, Leiliu; Wang, Yu; Long, Xi-En; Guo, Jianhua; Zhu, Guibing

2014-11-01

128

Molecular Evidence for the Broad Distribution of Anaerobic Ammonium-Oxidizing Bacteria in Freshwater and Marine Sediments  

PubMed Central

Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ?700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments. PMID:17021238

Penton, C. Ryan; Devol, Allan H.; Tiedje, James M.

2006-01-01

129

[Community structure and spatial distribution of anaerobic ammonium oxidation bacteria in the sediments of Chongming eastern tidal flat in summer].  

PubMed

The objectives of this study were to identify whether there were Anaerobic Ammonium Oxidation (ANAMMOX) bacteria in the surface sediments of Chongming eastern tidal flat in the Yangtze estuary and the feature of their community structure and spatial distribution. Based on the total DNA extracted from the surface sediments of Chongming eastern tidal flat, ANAMMOX-specific 16S rDNA fragments were amplified. PCR products were cloned and sequenced, and an ANAMMOX-specific 16S rDNA gene library was established. Phylogenetic tree was constructed using MEGA5 after the sequences were checked in the GenBank database. Phylogenetic analysis indicated that the clone sequences CM-L-7 and CM-L-18 had 98% identities with ANAMMOX bacteria Candidatus 'Scalindua sp.'. CM-L-13 had 94% identities with Candidatus 'Scalindua wagneri'. CM-M-6 had 94% identities with Candidatus 'Kuenenia sp.'. CM-M-22 had 95% identities with Anaerobic ammonium-oxidizing planctomycete JMK-1. CM-H-15 had 94% identities with Candidatus 'Kuenenia stuttgartiensis'. The results indicated that there were ANAMMOX bacteria in the surface sediments of Chongming eastern tidal flat, but the ANAMMOX species were diverse in different tidal flats: Candidatus 'Scalindua' was the predominant group in the low tidal flat, while Candidatus 'Kuenenia' was the major population in the high tidal flat and the middle tidal flat. In comparison with the high and low tidal flats, the community structure of ANAMMOX bacteria in the middle tidal flat was the most complicated. A portion of the sequences related to uncultivated bacteria outside the known ANAMMOX cluster, probably indicated that there were potential ANAMMOX bacteria in the sediments of Chongming eastern tidal flat. PMID:22624399

Zheng, Yan-Ling; Hou, Li-Jun; Lu, Min; Xie, Bing; Liu, Min; Li, Yong; Zhao, Hui

2012-03-01

130

Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria.  

PubMed

The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium "Candidatus Methylomirabilis oxyfera," which is affiliated with the NC10 phylum. So far, several "Ca. Methylomirabilis oxyfera" enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of "Ca. Methylomirabilis oxyfera," respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J P; Pol, Arjan; Jetten, Mike S M; Ettwig, Katharina F

2012-12-01

131

Phosphine generation by mixed- and monoseptic-cultures of anaerobic bacteria  

Microsoft Academic Search

A microbial basis for bioreductive generation of phosphine is proposed, which could account at least in part for the presence of this toxic gas in natural anaerobic environments and in sewage and landfill gases. Phosphine generation under anaerobic growth conditions was dependent upon both the culture inoculum source (animal faeces) and enrichment culture conditions. Phosphine was detected in headspace gases

R. o. Jenkins; T.-A. Morris; P. j. Craig; A. w. Ritchie; N. Ostah

2000-01-01

132

Survival of Aerobic and Anaerobic Bacteria in Purulent Clinical Specimens Maintained in the Copan Venturi Transystem and Becton Dickinson Port-a-Cul Transport Systems  

Microsoft Academic Search

Protection of anaerobic bacteria from exposure to oxygen during the transport of clinical specimens to the laboratory is crucial for the survival of these organisms. Because the use of swabs may encourage collection of superficial specimens that represent colonizing bacteria instead of the etiologic agents found deeper in the infected tissues, aspirates have always been preferable to swab systems for

DIANE M. CITRON; YUMI A. WARREN; MARIE K. HUDSPETH; ELLIE J. C. GOLDSTEIN

2000-01-01

133

Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow.  

PubMed

Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of a retention soil filter (RSF) for the removal of micropollutants as well as facultative pathogenic and antibiotic resistant bacteria from CSO. The removal of organic group parameters like total organic carbon was excellent and the removal efficiency for micropollutants of the RSF and the wastewater treatment plant (WWTP), which treats wastewater of the same origin during dry and normal weather conditions, was comparable. Compounds of high environmental concern like estrogens or certain pharmaceuticals, e.g. diclofenac, were completely eliminated or removed to a high degree during RSF passage. RSF treatment also reduced the number of E. coli, enterococci and staphylococci by 2.7, 2.2 and 2.4 log-units (median values), respectively. Obviously, some Staphylococcus species can better adapt to the conditions of the RSF than others as a shift of the abundance of the different species was observed when comparing the diversity of staphylococci obtained from the RSF influent and effluent. RSF treatment also decreased the absolute number of antibiotic resistant bacteria. The percentage of antibiotic resistant E. coli and staphylococci isolates also decreased during passage of the RSF, whereas the percentage of resistant enterococci did not change. For E. coli ampicillin and for enterococci and staphylococci erythromycin determined the antibiotic resistance level. The results demonstrate that RSFs can be considered as an adequate treatment option for CSO. The performance for the removal of micropollutants is comparable with a medium sized WWTP with conventional activated sludge treatment. The number of facultative pathogenic and antibiotic resistant bacteria was considerably decreased during RSF passage. However, as RSF effluents still contained antibiotic resistance genes and traces of micropollutants; receiving waters may still be at risk from negative environmental impacts. PMID:25479187

Scheurer, Marco; Heß, Stefanie; Lüddeke, Frauke; Sacher, Frank; Güde, Hans; Löffler, Herbert; Gallert, Claudia

2015-01-23

134

Aerobic Anoxygenic Phototrophic Bacteria  

PubMed Central

The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the ?-1, ?-3, and ?-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

Yurkov, Vladimir V.; Beatty, J. Thomas

1998-01-01

135

Inhibition of Methanogenesis by Methyl Fluoride: Studies of Pure and Defined Mixed Cultures of Anaerobic Bacteria and Archaea  

PubMed Central

Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor. PMID:16535736

Janssen, P. H.; Frenzel, P.

1997-01-01

136

Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria  

SciTech Connect

Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under aerobic conditions, and compound-specific carbon isotope analyses indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in {sup 13}C ({delta}{sup 13}C values are as low as {minus}95%). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of {sup 13}C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, their results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings in the predominant microbiological process.

Pancost, R.D.; Damste, J.S.S.; Lint, S. De; Maarel, M.J.E.C. van der; Gottschal, J.C.

2000-03-01

137

Isolation and Characterization of Anaerobic Bacteria for Symbiotic Recycling of Uric Acid Nitrogen in the Gut of Various Termites  

PubMed Central

Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

2012-01-01

138

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria.  

PubMed

Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future. PMID:24571074

Nagy, Elizabeth

2014-01-01

139

Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminai anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens  

Microsoft Academic Search

The production of organic acids by two anaerobic ruminal bacteria,Fibrobacter succinogenes S85 andRuminococcus flavefaciens FD-1, was compared with glucose, cellobiose, microcrystalline cellulose, Walseth cellulose (acid swollen cellulose), pulped\\u000a paper, and steam-exploded yellow poplar as substrates. The major end product produced byF. succinogenes from each of these substrates was succinate (69.5–83%), the principal secondary product was acetate (16–30.5%). Maximum succinate\\u000a productivity

R. R. Gokarn; M. A. Eiteman; S. A. Martin; K.-E. L. Eriksson

1997-01-01

140

Bloodstream infections due to anaerobic bacteria in cancer patients: epidemiology, etiology, risk factors, clinical presentation and outcome of anaerobic bacteremia.  

PubMed

Thirty one bacteremic episodes (BE) in 31 patients due to anaerobic bacteremia (AB) in 979 BE among 9986 admissions at a 360 beds National Cancer Institute within last 6 years were analyzed for time distribution, risk factors, clinical presentation and outcome. Overall incidence of AB was 3.6%, but the proportion to other groups of microorganisms is decreasing. 73% were Bacteroides fragilis, 10.8% Peptostreptococci and Propionibacteria and 5.4% Clostridia. The most common risk factor for AB was prior surgery, solid tumor as underlying disease, prophylaxis with quinolones and previous therapy with third generation cephalosporines. 48.4% of AB were polymicrobial. Infected wound was the most common source of infection in 38.7% of our cancer patients. Six patients (19.4%) presented septic shock, and 45.2% died, but only in 22.6% death was related to bacteremia. Comparing the groups of AB due to B. fragilis (BF) to non-Bacteroides spp. (NB)AB, infection-associated mortality was higher in BFAB in comparison to NBAB. Other risk factors such as hematologic malignancies, previous prophylaxis with quinolones, prior surgery and prior therapy with broad spectrum antimicrobials, were more frequently associated with BFAB. PMID:8931747

Spánik, S; Trupl, J; Kunová, A; Pichna, P; Helpianska, L; Ilavská, I; Kukucková, E; Lacka, J; Grausová, S; Stopková, K; Drgona, L; Krcméry, V

1996-01-01

141

Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator  

E-print Network

In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel ...

Lam, Raymond H. W.

142

A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis.  

PubMed

The Lon AAA+ protease degrades damaged or misfolded proteins in its intramolecular chamber. Its activity must be precisely controlled, but the mechanism by which Lon is regulated in response to different environments is not known. Facultative anaerobes in the Enterobacteriaceae family, mostly symbionts and pathogens, encounter both anaerobic and aerobic environments inside and outside the host's body, respectively. The bacteria characteristically have two cysteine residues on the Lon protease (P) domain surface that unusually form a disulfide bond. Here we show that the cysteine residues act as a redox switch of Lon. Upon disulfide bond reduction, the exit pore of the P-domain ring narrows by ?30%, thus interrupting product passage and decreasing activity by 80%; disulfide bonding by oxidation restores the pore size and activity. The redox switch (E°' = -227 mV) is appropriately tuned to respond to variation between anaerobic and aerobic conditions, thus optimizing the cellular proteolysis level for each environment. PMID:25383757

Nishii, Wataru; Kukimoto-Niino, Mutsuko; Terada, Takaho; Shirouzu, Mikako; Muramatsu, Tomonari; Kojima, Masaki; Kihara, Hiroshi; Yokoyama, Shigeyuki

2015-01-01

143

Assessment of routine use of an anaerobic bottle in a three-component, high-volume blood culture system.  

PubMed

The relative value of routine anaerobic blood culture for recovery of organisms and identification of episodes of bloodstream infection was assessed in a three-component, high-volume blood culture system which employs aerobic and anaerobic bottles of BacT/Alert (Organon-Teknika, Durham, N.C.) and aerobic cultures of Isolator (Wampole Laboratories, Cranbury, N.J.). The results of 5,595 blood culture sets from patients with suspected bloodstream infection were analyzed. Compared with either the aerobic BacT/Alert bottle or aerobic culture of Isolator, the BacT/Alert anaerobic bottle recovered significantly fewer isolates (242 versus 294, P < 0.05; 242 versus 298, P < 0.05) but did not detect significantly fewer episodes of bloodstream infection (141 versus 157, P > 0.05; 141 versus 147, P > 0.05). The BacT/Alert anaerobic bottle recovered significantly more isolates of obligately anaerobic bacteria (16 versus 4, P < 0.05; 16 versus 0, P < 0.05) and detected significantly more episodes of bloodstream infection caused by obligately anaerobic bacteria (10 versus 3, P < 0.05; 10 versus 0, P < 0.05) than either the aerobic bottle of BacT/Alert or the aerobic culture of Isolator. The combination of the BacT/Alert anaerobic bottle and the aerobic culture of Isolator recovered as may isolates (374 versus 377) and detected as many episodes of bloodstream infection (194 versus 191) as the combination of the aerobic bottle of BacT/Alert and the aerobic culture of Isolator, and both of these combinations identified at least 8% more isolates and detected at least 3% more bloodstream infections than the combination of the BacT/Alert aerobic and anaerobic bottles. Further analysis of the data revealed that the utility of the BacT/Alert anaerobic bottle, especially when combined with the aerobic culture of Isolator, resulted from not only enhanced recovery of obligately anaerobic bacteria but also effective recovery of facultatively anaerobic bacteria. These results demonstrate the utility of the anaerobic BacT/Alert bottle for detecting bloodstream infection caused by either facultatively anaerobic bacteria or obligately anaerobic bacteria and support the routine inclusion of anaerobic blood culture in the three-component blood culture system used in our hospital. PMID:8880517

Hellinger, W C; Cawley, J J; Alvarez, S; Hogan, S F; Harmesen, W S; Ilstrup, D M; Cockerill, F R

1996-10-01

144

Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria  

SciTech Connect

The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

Lenly J. Weathers; Lynn E. Katz

2002-05-29

145

Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria.  

PubMed Central

Anaerobic chambers and jars are the two conventional methods used in clinical microbiology laboratories to produce an anaerobic atmosphere. The evacuation-replacement method, the Oxoid AnaeroGen, the Merck Anaerocult A, the BBL GasPak, the BBL GasPakPlus, the Adams Scientific GasGendicator, the Difco Anaerobic, and the bioMérieux Generbox anaer systems were compared for the timed decrease in the oxygen concentration in an anaerobic jar. The experiment was repeated 10 times for each system. The oxygen concentration was measured with an oxygen analyzer series 3600 instrument (Orbisphere Laboratories, Neuchâtel-Geneva Switzerland). The BBL GasPak, the BBL GasPakPlus, the bioMérieux Generbox, the Adams Scientific GasGendicator, and the Difco Anaerobic systems contain sodium borohydride, which liberates hydrogen. The Anaerocult A system contains iron powder which binds the oxygen. The active ingredient of the AnaeroGen system is ascorbic acid. The times to reach an O2 concentration of 0.5% were 8 to 15 min for the evacuation-replacement method, 26 to 41 min for the AnaeroGen system, 60 to 93 min for the Anaerocult A system, and 22 to 419 min for the sodium borohydride systems. The AnaeroGen system, the Anaerocult A system, and the evacuation-replacement method never failed to produce an anaerobic atmosphere. The sodium borohydride systems failed in 10 of 70 runs. These results suggest that the evacuation-replacement method or the Oxoid AnaeroGen system should be used to produce an anaerobic atmosphere. The Anaerocult A system showed a good reproducibility, but the length of time required to reach an appropriately low level of oxygen was too long. Because of the high failure rate, the borohydride systems cannot be recommended. PMID:8784562

Imhof, A; Heinzer, I

1996-01-01

146

Identification of Anaerobic Bacteria by Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry with On-Plate Formic Acid Preparation  

PubMed Central

Identification of anaerobic bacteria using phenotypic methods is often time-consuming; methods such as 16S rRNA gene sequencing are costly and may not be readily available. We evaluated 253 clinical isolates of anaerobic bacteria using the Bruker MALDI Biotyper (Bruker Daltonics, Billerica, MA) matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system with a user-supplemented database and an on-plate formic acid-based preparation method and compared results to those of conventional identification using biochemical testing or 16S rRNA gene sequencing. A total of 179 (70.8%) and 232 (91.7%) isolates were correctly identified to the species and genus levels, respectively, using manufacturer-recommended score cutoffs. MALDI-TOF MS offers a rapid, inexpensive method for identification of anaerobic bacteria. PMID:23254126

Schmitt, Bryan H.; Cunningham, Scott A.; Dailey, Aaron L.; Gustafson, Daniel R.

2013-01-01

147

Role of Anaerobic Ciliates in Planktonic Food Webs: Abundance, Feeding, and Impact on Bacteria in the Field  

PubMed Central

We studied the dynamics of two populations of anaerobic ciliates, Plagiopyla sp. and Metopus sp., and of their potential prey, heterotrophic and phototrophic purple bacteria, in Lake Cisó throughout a 1-year cycle. The abundance of both ciliates was very low (less than 2 individuals per ml). During mixing, Plagiopyla ciliates exhibited high clearance rates (about 100 nl ciliate-1 h-1), its integrated abundance increased with a net doubling time of 47 days, and its potential doubling times, as calculated from the number of bacteria consumed, ranged between 5 and 8 days. During stratification, the activity of Plagiopyla ciliates was reduced and the population decreased; this was related to the higher amounts of sulfide present. The impact of predation by the Plagiopyla population on bacterioplankton was found to be insignificant, less than 0.1% of bacterial biomass consumed per day. Thus, anaerobic ciliates cannot control the bacterioplankton in Lake Cisó because of both the low abundance over the period studied and the low feeding rates during certain periods. A review of available field studies suggests that this conclusion can be extrapolated to most other anoxic systems. PMID:16349239

Massana, Ramon; Pedrós-Alió, Carlos

1994-01-01

148

Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods.  

PubMed Central

Volume and type of medium, carbohydrate concentration, carbohydrate ratios, and inoculum level were investigated as possible factors influencing total colony counts of anaerobic rumen bacteria obtained in roll tubes (18 by 150 mm). Colony counts were lower when the rumen fluid was clarified by centrifugation before inclusion in the medium; however, decreasing the volume of 40% rumen fluid glucose-cellobiose-starch-agar medium (RGCSA medium with 0.025% each of glucose and cellobiose and 0.05% starch, 4 ml per tube) was compared to the clarified rumen fluid medium and non-rumen fluid medium (medium 10) of Caldwell and Bryant (1966), 9 ml of each per tube. Total counts of rumen contents from sheep consuming four different types of rations were higher with the 4 ml of RGCSA medium than with the other two media. Dilution of the basal medium as a result of inoculum volume, as much as 1.5 ml per 4 ml of medium, did not appear to affect total counts. Colony counts and the simplicity of medium preparation and inoculation would favor the present method for routine use in estimating numbers of total viable anaerobic rumen bacteria, especially when large numbers of samples are involved. PMID:999275

Grubb, J A; Dehority, B A

1976-01-01

149

Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia.  

PubMed

Certain species of anaerobic bacteria have been shown to localise and germinate specifically in the hypoxic regions of tumours, resulting in tumour lysis. We propose an innovative approach to cancer gene therapy in which genetically engineered anaerobic bacteria of the genus Clostridium are used to achieve tumour-specific gene delivery. Our strategy involves enzyme/prodrug therapy, in which the Escherichia coli enzyme cytosine deaminase is used to convert the non-toxic prodrug 5-fluorocytosine to the active chemotherapeutic agent 5-fluorouracil. The E. coli gene encoding cytosine deaminase has been cloned into a clostridial expression vector and transformed into Clostridium beijerinckii, resulting in constitutive expression of cytosine deaminase and significant levels of active enzyme in the bacterial medium. When added to an in vitro clonogenic survival assay, supernatant from clostridia expressing cytosine deaminase increased the sensitivity of murine EMT6 carcinoma cells to 5-fluorocytosine approximately 500-fold. This high level of prodrug activation, combined with the specificity of clostridia for hypoxic regions of tumours, indicates a potential use in cancer gene therapy. PMID:8867865

Fox, M E; Lemmon, M J; Mauchline, M L; Davis, T O; Giaccia, A J; Minton, N P; Brown, J M

1996-02-01

150

Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria.  

PubMed

Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly. PMID:16423456

Georgiou, D; Aivasidis, A

2006-07-31

151

Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems  

NASA Astrophysics Data System (ADS)

Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR amplification of 16S rRNA (Ettwig et al. 2009) and pmoA (Luesken et al. 2011) genes followed by construction of clone libraries. Phylogenetic analysis revealed only one n-damo bacterium distantly related to uncultured anaerobic methanotrophs found in situ. It may represent a new cluster of NC10 bacteria with an identity of less than 96 and 86% to the 16S rRNA and pmoA genes of "Ca. Methylomirabilis oxyfera," respectively. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained from this sample in a static anaerobic culture with methane and nitrite at an in situ pH of 6.3. The bacterial abundance in enrichment was estimated using quantitative PCR and FISH (DBACT-0193-a-A probe) analysis and was found to increase up to 10 times for 120 days. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and their potential contribution to nitrogen and methane cycles in northern peatland ecosystems. We think that AOM may be more active in anthropogenic disturbed peatlands with greater supply of elements that could potentially serve as electron acceptors. In spite of generally low concentration, seasonal increases in nitrate content in drained peatlands may work as an important control of CH4 fluxes. The study was partially supported by RFBR research project # 12-05-01029_a.

Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

2014-05-01

152

One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production  

SciTech Connect

This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

Zeikus, J.G.; Jain, M.K.

1992-01-01

153

Trimethylamine Oxide: A Terminal Electron Acceptor in Anaerobic Respiration of Bacteria  

Microsoft Academic Search

Trimethylamine oxide (TMAO) stimulated both the anaerobic growth rate and the growth yield of Proteus NTHC 153. The molar growth yield from glucose and pyruvate in tryptone\\/ yeast extract medium doubled in the presence of TMAO, and the organism grew anaero- bically on the non-fermentable substrates L-lactate and formate when TMAO was added to the medium. We conclude that TMAO

A. R. STROM; JAN A. OLAFSEN; HELGE LARSEN

1979-01-01

154

A Study of the Relative Dominance of Selected Anaerobic Sulfate-Reducing Bacteria in a Continuous Bioreactor by Fluorescence in Situ Hybridization  

Microsoft Academic Search

The diversity and the community structure of sulfate-reducing bacteria (SRB) in an anaerobic continuous bioreactor used for\\u000a treatment of a sulfate-containing wastewater were investigated by fluorescence in situ hybridization. Hybridization to the 16S rRNA probe EUB338 for the domain Bacteria was performed, followed by a nonsense probe\\u000a NON338 as a control for nonspecific staining. Sulfate-reducing consortia were identified by using

B. Icgen; S. Moosa; S. T. L. Harrison

2007-01-01

155

The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions  

NASA Astrophysics Data System (ADS)

M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for understanding natural mechanisms in soil and will be useful for the development of new soil models in laboratory. Thus, by means of «cascade filtration» method there've been made some results on true size, quantity and biomass of bacteria. Development of a bacteria in various soil horizons and their layers in aerobic and anaerobic conditions and calculations of biomass of bacteria in upper layer horizon A and lower layer horizon B have also become the subjects of the studies. It was identified that the quantity of bacteria in aerobic conditions increase during the microbial succession while bacteria sized 230 and 380 nm were dominating. In anaerobic conditions the process of connecting cells sized 170 nm and bacteria is observed. Biomass of bacteria is higher in anaerobic conditions in upper layer horizon A because of elevated variety of bacteria. In horizon B in anaerobic conditions it is of maximum because of anaerobic situation in situ. Thus, distribution of bacteria's size depends on aeration of soil. That helps to acknowledge the receipt of theory of a great number of researchers about that fact that the size of bacteria in the soil in anaerobic conditions decrease under stress-factors. This work touches upon such a poorly investigated subject as nanobacteria in the soil. But this knowledge plays a significant role in land reclamation oil-cut and prognostication pollution of the soil by pathogenic bacteria.

Gorbacheva, M.

2012-04-01

156

Anaerobic biodegradation of ethylthionocarbamate by the mixed bacteria under various electron acceptor conditions.  

PubMed

Biodegradation behavior and kinetics of ethylthionocarbamate under nitrate, sulfate and ferric reducing conditions by mixed cultures enriched from the anaerobic digester sludge was investigated. The results showed that ethylthionocarbamate could be degraded independently by the mixed cultures coupled to nitrate, sulfate, and ferric reduction, and meanwhile, nitrite, sulfide, and ferrous were accumulated as a result of nitrate, sulfate and ferric reduction, respectively. Ferric was a more favorable terminal electron acceptor compared to nitrate and sulfate. The order of the electron acceptors with decreasing biodegradation rates of the ethylthionocarbamate was: ferric>nitrate>sulfate, and the corresponding maximum biodegradation rate was 7.240, 6.267, and 4.602 mg/(L·d), respectively. The anaerobic biodegradation of ethylthionocarbamate under various electron acceptor conditions can be accurately described by first order exponential decay kinetics. PMID:21963904

Chen, Shaohua; Gong, Wenqi; Mei, Guangjun; Han, Weiyi

2011-11-01

157

Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.  

PubMed

Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes. PMID:16180412

Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

2005-01-01

158

The incidence and significance of anaerobic bacteria in the equine uterus  

E-print Network

microscope slides and the slides were fixed and stained. Aseptic uterine biopsy samples were obtained with sterile biopsy forceps through double sterile palpation gloves. The uterine biopsy specimen was swabbed with two transport swabs. One swab was placed... into an anaerobic transport container, the other was placed into aerobic transport media for transport to the laboratory for bacterial isolation and subsequent identification. The endometrial biopsy sample was fixed in Bouin's solution and was later processed...

Bolinger, Dean Roger

2012-06-07

159

Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles  

Microsoft Academic Search

Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in\\u000a laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored\\u000a for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly\\u000a improved the process stability and efficiency, whereas aerobic pretreatment of

Ayrat M. Ziganshin; Thomas Schmidt; Frank Scholwin; Olga N. Il’inskaya; Hauke Harms; Sabine Kleinsteuber

2011-01-01

160

Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria.  

PubMed Central

Pseudomonas sp. strain T and Pseudomonas sp. strain K172 grow with toluene under denitrifying conditions. We demonstrated that anaerobic degradation of toluene was initiated by direct oxidation of the methyl group. Benzaldehyde and benzoate accumulated sequentially after toluene was added when cell suspensions were incubated at 5 degrees C. Strain T also grows anaerobically with m-xylene, and we demonstrated that degradation was initiated by oxidation of one methyl group. In cell suspensions incubated at 5 degrees C 3-methylbenzaldehyde and 3-methylbenzoate accumulated after m-xylene was added. Toluene- or m-xylene-grown strain T cells were induced to the same extent for oxidation of both hydrocarbons. In addition, the methyl group-oxidizing enzyme system of strain T also catalyzed the oxidation of each isomer of the chloro- and fluorotoluenes to the corresponding halogenated benzoate derivatives. In contrast, strain K172 only oxidized 4-fluorotoluene to 4-fluorobenzoate, probably because of the narrow substrate specificity of the methyl group-oxidizing enzymatic system. During anaerobic growth with toluene strains T and K172 produced two transformation products, benzylsuccinate and benzylfumarate. About 0.5% of the toluene carbon was converted to these products. PMID:7993091

Seyfried, B; Glod, G; Schocher, R; Tschech, A; Zeyer, J

1994-01-01

161

Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.  

PubMed

Purple non-sulfur bacteria (PNSB) were cultivated by food industry wastewater in the anaerobic membrane photo-bioreactor. Organic removal and biomass production and characteristics were accomplished via an explicit examination of the long term performance of the photo-bioreactor fed with real wastewater. With the support of infra-red light transmitting filter, PNSB could survive and maintain in the system even under the continual fluctuations of influent wastewater characteristics. The average BOD and COD removal efficiencies were found at the moderate range of 51% and 58%, respectively. Observed photosynthetic biomass yield was 0.6g dried solid/g BOD with crude protein content of 0.41 g/g dried solid. Denaturing gradient gel electrophoretic analysis (DGGE) and 16S rDNA sequencing revealed the presence of Rhodopseudomonas palustris and significant changes in the photosynthetic bacterial community within the system. PMID:23489563

Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

2013-08-01

162

Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses  

PubMed Central

Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2? m?3 s?1 or 2 × 10?9 mmol s?1 per aggregate) was located in a surface layer of 50 to 100 ?m thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 ?m from the aggregate surface) with a higher activity (1 to 6 mmol of S2? m?3 s?1 or 7 × 10?9 mol s?1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m?3 s?1 or 10?9 mmol s?1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m?3 s?1 or 5 × 10?9 mmol s?1 per aggregate) was located more inward, starting at ca. 100 ?m from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 ?m, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were present in the outer 300 ?m, and methanogens were distributed over the inner part in clusters with syntrophic bacteria. PMID:10508098

Santegoeds, Cecilia M.; Damgaard, Lars Riis; Hesselink, Gijs; Zopfi, Jakob; Lens, Piet; Muyzer, Gerard; de Beer, Dirk

1999-01-01

163

Reduction of Antibiotic-Resistant Bacteria Present in Food Animal Manures by Composting and Anaerobic Digestion  

E-print Network

Reduction of Antibiotic-Resistant Bacteria Present in Food Animal Manures by Composting digestion and composting at mesophilic or moderate temperature significantly reduced the antimicrobial resistance in animal manure. The most effective treatment was composting at thermophilic or high temperature

Jones, Michelle

164

The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria.  

PubMed

With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the influence of incubation time, exposure to oxygen and sample preparation on the quality of the spectrum using the Bruker system. Also, reproducibility and inter-examiner variability were determined. Twenty-six anaerobic species, representing 17 genera, were selected based on gram-stain characteristics, growth rate and colony morphology. Inter-examiner variation showed that experience in the preparation of the targets can be a significant variable. The influence of incubation time was determined between 24 and 96 h of incubation. Reliable species identification was obtained after 48 h of incubation for gram-negative anaerobes and after 72 h for gram-positive anaerobes. Exposure of the cultures to oxygen did not influence the results of the MALDI-TOF MS identifications of all tested gram-positive species. Fusobacterium necrophorum and Prevotella intermedia could not be identified after >24 h and 48 h of exposure to oxygen, respectively. Other tested gram-negative bacteria could be identified after 48 h of exposure to oxygen. Most of the tested species could be identified using the direct spotting method. Bifidobacterium longum and Finegoldia magna needed on-target extraction with 70% formic acid in order to obtain reliable species identification and Peptoniphilus ivorii a full extraction. Spectrum quality was influenced by the amount of bacteria spotted on the target, the homogeneity of the smear and the experience of the examiner. PMID:25039504

Veloo, A C M; Elgersma, P E; Friedrich, A W; Nagy, E; van Winkelhoff, A J

2014-12-01

165

Iron and Copper Act Synergistically To Delay Anaerobic Growth of Bacteria  

PubMed Central

Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an FoF1 ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

Bird, Lina J.; Coleman, Maureen L.

2013-01-01

166

Iron and copper act synergistically to delay anaerobic growth of bacteria.  

PubMed

Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an F(o)F(1) ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

Bird, Lina J; Coleman, Maureen L; Newman, Dianne K

2013-06-01

167

Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria.  

PubMed

The caecal microflora of Cara rats was incubated in the pH stat with glucose under anaerobic conditions, and the acid production was measured. In the presence of the sweeteners Acesulfame K, Cyclamate and Saccharin, inhibition of the fermentation of glucose was observed with ED50 values of 260, 251, and 140 mM, respectively. The nutritional relevance of these observations is probably slight; an interpretation in terms of bacterial physiology leads to the proposal that the sweeteners may act on glucose transport systems at the bacterial cytomembrane. PMID:2420077

Pfeffer, M; Ziesenitz, S C; Siebert, G

1985-12-01

168

Activity of the investigational fluoroquinolone finafloxacin and seven other antimicrobial agents against 114 obligately anaerobic bacteria.  

PubMed

The activity of finafloxacin against 73 strains of the Bacteroides fragilis group, 10 other Gram-negative anaerobic rods and 31 Clostridium difficile strains was determined by the broth microdilution technique. The activity was compared with that of moxifloxacin, levofloxacin, ciprofloxacin, clindamycin, imipenem, piperacillin/tazobactam and metronidazole. MIC(50/90) values (minimum inhibitory concentration, in ?g/mL, at which 50% and 90% of the isolates tested are inhibited, respectively) for finafloxacin for the different species were determined: B. fragilis group, 0.5/2; other Gram-negative rods, 0.06/0.25; and C. difficile, 4/16. Furthermore, the MICs against 11 selected B. fragilis strains were determined under acidic conditions and resulted in MIC(50/90) values for finafloxacin of 0.25/4 ?g/mL. Thus, finafloxacin shows promising activity against several pathogenic species of anaerobes. Furthermore, finafloxacin has increased activity against selected B. fragilis strains under acidic conditions compared with activity at neutral pH. PMID:25264128

Genzel, G H; Stubbings, W; Stîngu, C S; Labischinski, H; Schaumann, R

2014-11-01

169

Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi.  

PubMed Central

The presence of methanogens Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii increased the level of cellulose fermentation by 5 to 10% in cultures of several genera of anaerobic fungi. When Neocallimastix sp. strain L2 was grown in coculture with methanogens the rate of cellulose fermentation also increased relative to that for pure cultures of the fungus. Methanogens caused a shift in the fermentation products to more acetate and less lactate, succinate, and ethanol. Formate transfer in cocultures of anaerobic fungi and M. smithii did not result in further stimulation of cellulolysis above the level caused by H2 transfer. When Selenomonas ruminatium was used as a H2-consuming organism in coculture with Neocallimastix sp. strain L2, both the rate and level of cellulolysis increased. The observed influence of the presence of methanogens is interpreted to indicate a shift of electrons from the formation of electron sink carbon products to H2 via reduced pyridine nucleotides, favoring the production of additional acetate and probably ATP. It is not known how S. ruminantium exerts its influence. It might result from a lowered production of electron sink products by the fungus, from consumption of electron sink products or H2 by S. ruminantium, or from competition for free sugars which in pure culture could exert an inhibiting effect on cellulolysis. PMID:2082826

Marvin-Sikkema, F D; Richardson, A J; Stewart, C S; Gottschal, J C; Prins, R A

1990-01-01

170

Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: A perspective autotrophic nitrogen pollution control technology.  

PubMed

The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89mg(gVSSd)(-1), which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0°C, 30.15°C and 8.0°C, respectively. PMID:25461924

Zhang, Meng; Zheng, Ping; Wang, Ru; Li, Wei; Lu, Huifeng; Zhang, Jiqiang

2014-10-14

171

Use of Nucleic-Acid Homologies in the Taxonomy of Anaerobic Bacteria  

Microsoft Academic Search

Nucleic acid homology studies are providing a common base for establishing bacterial groups. Few phenotypic characteristics have consistently correlated with homology data among the various groups of organisms that we have investigated. However, there are correlations that are specific for a given group of bacteria such that nucleic-acid homology data can be used to select those phenotypic properties that will

JOHN L. JOHNSON

1973-01-01

172

The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2(-) inhibition.  

PubMed

Anammox bacteria are inhibited by nitrite, which is one of their substrates. By utilizing 2,4 dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, two uncouplers of respiration, we demonstrate that nitrite tolerance of anammox cells is strongly dependent on their ability to maintain a proton gradient, which may be the driving force for active nitrite transport system. PMID:25449017

Carvajal-Arroyo, José M; Puyol, Daniel; Li, Guangbin; Sierra-Álvarez, Reyes; Field, Jim A

2014-11-01

173

Dynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion  

E-print Network

of two different populations of microorganisms (acidogenic and methanogenic). The main result catalyzed by a consortium of different bacteria [10]. Co-digestion of several wastes (manure, sewage sludge and wastes from food processing industry) is another environmentally attractive method for the treatment

Boyer, Edmond

174

Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents.  

PubMed

Recent studies indicate that ammonia is an important electron donor for the oxidation of fixed nitrogen, both in the marine water column and sediments. This process, known as anammox, has so far only been observed in a large range of temperature habitats. The present study investigated the role of anammox in hydrothermal settings. During three oceanographic expeditions to the Mid-Atlantic Ridge, hydrothermal samples were collected from five vent sites, at depths ranging from 750 to 3650 m from cold to hot habitats. Evidence for the occurrence of anammox in these particular habitats was demonstrated by concurrent surveys, including the amplification of 16S rRNA gene sequences related to known anammox bacteria, ladderanes lipids analysis and measurement of a (14)N(15)N dinitrogen production in isotope-pairing experiments at 60 and 85 degrees C. Together these results indicate that new deep-branching anammox bacteria may be active in these hot habitats. PMID:18670398

Byrne, Nathalie; Strous, Marc; Crépeau, Valentin; Kartal, Boran; Birrien, Jean-Louis; Schmid, Markus; Lesongeur, Françoise; Schouten, Stefan; Jaeschke, Andrea; Jetten, Mike; Prieur, Daniel; Godfroy, Anne

2009-01-01

175

Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria  

Microsoft Academic Search

A mesophilic enrichment culture of sulphate-reducing bacteria isolated from the water phase of a North Sea oil tank using oil from the same tank as sole source of carbon and energy specifically depletes certain C1–C5 alkylbenzenes in crude oil during growth. The enrichment culture grows on oils of different origin and composition resulting in similar patterns of alkylbenzene depletion. Two

Heinz Wilkes; Chris Boreham; Gerda Harms; Karsten Zengler; Ralf Rabus

2000-01-01

176

Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor  

PubMed Central

The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (?ANME-2 = 0.167 · week?1), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (?ANME-1 = 0.218 · week?1). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 · week?1, and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures. PMID:16000782

Girguis, Peter R.; Cozen, Aaron E.; DeLong, Edward F.

2005-01-01

177

Molecular analysis of the spatial distribution of sulfate-reducing bacteria in three eutrophicated wastewater stabilization ponds  

Microsoft Academic Search

The spatial distribution of sulfate-reducing bacteria (SRB) within three eutrophicated wastewater stabilization ponds (anaerobic,\\u000a facultative and maturation) was assessed by terminal restriction fragment (TRF) polymorphism targeting the dissimilatory (bi)\\u000a sulfite reductase (dsrAB) gene. High sulfate reducing diversity was confirmed through the 93 and 78 TRFs found using Sau3A1 and Taq ?1 restriction enzymes. Statistical analysis using Simpson (D) and Shannon

Abdelaziz Belila; Ahmed Ghrabi; Abdennaceur Hassen

178

Anaerobic biodegradation of hydrocarbons  

Microsoft Academic Search

Anaerobic biodegradation of aliphatic and aromatic hydrocarbons is a promising alternative to aerobic biodegradation treatments in bioremediation processes. It is now proven that, besides toluene, benzene and ethylbenzene can be oxidized under anaerobic redox conditions. Anaerobic bacteria have also been shown capable of utilizing substrates not only in the pure form, but also in complex hydrocarbon mixtures, such as crude

Christof Holliger; Alexander JB Zehnder

1996-01-01

179

Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections.  

PubMed Central

Combinations of bacteria isolated from the root canals of teeth with necrotic pulps and periapical bone destruction were tested for their capacity to induce abscess formation and transmissible infections when inoculated subcutaneously into guinea pigs. Transmissible infections could be induced with combinations obtained from teeth with purulent apical inflammation, but not with combinations from symptomless teeth with chronic apical inflammation. All combinations which gave transmissible infections contained strains of Bacteroides melaninogenicus or B. asaccharolyticus (formerly B. melaninogenicus subsp. asaccharolyticus). The results suggest that purulent inflammation in the apical region in certain cases may be induced by specific combinations of bacteria in the root canal and that the presence of B. melaninogenicus or B. asaccharolyticus in such combinations is essential. However, with one exception, the strains needed the support of additional microorganisms to achieve pathogenicity. The results indicate that Peptostreptococcus micros was also essential. Histological sections of the lesions in the guinea pigs showed that all bacterial combinations induced acute inflammation with an accumulation of polymorphonuclear leukocytes and the formation of an abscess. However, the presence of B. melaninogenicus or B. asaccharolyticus in the combinations resulted in a failure of abscess resolution, with a gradually increaseing accumulation of polymorphonuclear leukocytes. Images PMID:489126

Sundqvist, G K; Eckerbom, M I; Larsson, A P; Sjögren, U T

1979-01-01

180

Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor  

Microsoft Academic Search

RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is a nitramine explosive that has contaminated soil and groundwater at military installations throughout the US. Although anaerobic RDX metabolism has been reported, the process is not well understood, as past studies have typically involved complex, undefined media with multiple potential electron donors and acceptors. In this study, bacteria enriched from RDX-contaminated aquifer sediments consumed RDX in a

Harry R. Beller

2002-01-01

181

Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora?  

PubMed Central

Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 ?g/ml. Ninety percent of the strains tested were inhibited by 256 ?g/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam. PMID:18955526

Finegold, S. M.; Molitoris, D.; Väisänen, M.-L.

2009-01-01

182

Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.  

PubMed

The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS?d)(-1) to 1.45gCOD·(gVSS?d)(-1) and 0.90gCOD·(gVSS?d)(-1) to 1.15gCOD·(gVSS?d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS?d)(-1) to 0.46gCOD·(gVSS?d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. PMID:25228232

Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

2014-09-13

183

Activity of Telithromycin (HMR 3647) against Anaerobic Bacteria Compared to Those of Eight Other Agents by Time-Kill Methodology†  

PubMed Central

Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO2. Macrolide-azalide-ketolide MICs were 0.004 to 32.0 ?g/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC ? 2.0 ?g/ml) against all anaerobes except Peptostreptococcus magnus and Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 ?g/ml. Amoxicillin-clavulanate had MICs of ?1.0 ?g/ml, while metronidazole was active (MICs, 0.03 to 2.0 ?g/ml) against all except Propionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (?99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred. PMID:10428930

Credito, Kim L.; Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.

1999-01-01

184

Anaerobic Mineralization of Quaternary Carbon Atoms: Isolation of Denitrifying Bacteria on Pivalic Acid (2,2-Dimethylpropionic Acid)  

Microsoft Academic Search

The degradability of pivalic acid was established by the isolation of several facultative denitrifying strains belonging to Zoogloea resiniphila ,t oThauera and Herbaspirillum, and to Comamonadaceae, related to (Aquaspi- rillum) and Acidovorax, and of a nitrate-reducing bacterium affiliated with Moraxella osloensis. Pivalic acid was completely mineralized to carbon dioxide. The catabolic pathways may involve an oxidation to dimethyl- malonate or

Christina Probian; Annika Wulfing; Jens Harder

2003-01-01

185

Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.  

PubMed

Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes. PMID:18500766

Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

2008-11-01

186

Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis.  

PubMed

Two novel genes encoding for heat and solvent stable lipases from strictly anaerobic extreme thermophilic bacteria Thermoanaerobacter thermohydrosulfuricus (LipTth) and Caldanaerobacter subterraneus subsp. tengcongensis (LipCst) were successfully cloned and expressed in E. coli. Recombinant proteins were purified to homogeneity by heat precipitation, hydrophobic interaction, and gel filtration chromatography. Unlike the enzymes from mesophile counterparts, enzymatic activity was measured at a broad temperature and pH range, between 40 and 90 degrees C and between pH 6.5 and 10; the half-life of the enzymes at 75 degrees C and pH 8.0 was 48 h. Inhibition was observed with 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride and phenylmethylsulfonylfluorid indicating that serine and thiol groups play a role in the active site of the enzymes. Gene sequence comparisons indicated very low identity to already described lipases from mesophilic and psychrophilic microorganisms. By optimal cultivation of E. coli Tuner (DE3) cells in 2-l bioreactors, a massive production of the recombinant lipases was achieved (53-2200 U/l) Unlike known lipases, the purified robust proteins are resistant against a large number of organic solvents (up to 99%) and detergents, and show activity toward a broad range of substrates, including triacylglycerols, monoacylglycerols, esters of secondary alcohols, and p-nitrophenyl esters. Furthermore, the enzyme from T. thermohydrosulfuricus is suitable for the production of optically pure compounds since it is highly S-stereoselective toward esters of secondary alcohols. The observed E values for but-3-yn-2-ol butyrate and but-3-yn-2-ol acetate of 21 and 16, respectively, make these enzymes ideal candidates for kinetic resolution of synthetically useful compounds. PMID:19579003

Royter, Marina; Schmidt, M; Elend, C; Höbenreich, H; Schäfer, T; Bornscheuer, U T; Antranikian, G

2009-09-01

187

Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater.  

PubMed

Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L(-1)) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA. PMID:24906831

Zhou, Ya-Zhen; Yang, Jie; Wang, Xiao-Li; Pan, Yue-Qing; Li, Hui; Zhou, Dong; Liu, Yong-Di; Wang, Ping; Gu, Ji-Dong; Lu, Qiang; Qiu, Yue-Feng; Lin, Kuang-Fei

2014-10-01

188

Controlled Clinical Comparison of BACTEC Plus Anaerobic/F to Standard Anaerobic/F as the Anaerobic Companion Bottle to Plus Aerobic/F Medium for Culturing Blood from Adults  

PubMed Central

To determine the optimal anaerobic companion bottle to pair with BACTEC Plus Aerobic/F medium for recovery of pathogenic microorganisms from adult patients with bacteremia and fungemia, we compared Plus Anaerobic/F bottles with Standard Anaerobic/F bottles, each of which was filled with 4 to 6 ml of blood. The two bottles were paired with a Plus Aerobic/F bottle filled with 8 to 12 ml of blood. A total of 14,011 blood culture sets were obtained. Of these, 11,583 sets were received with all three bottles filled adequately and 12,257 were received with both anaerobic bottles filled adequately. Of 818 clinically important isolates detected in one or both adequately filled anaerobic bottles, significantly more staphylococci (P < 0.001), streptococci (P < 0.005), Escherichia coli isolates (P < 0.02), Klebsiella pneumoniae isolates (P < 0.005), and all microorganisms combined (P < 0.001) were detected in Plus Anaerobic/F bottles. In contrast, significantly more anaerobic gram-negative bacilli were detected in Standard Anaerobic/F bottles (P < 0.05). Of 397 unimicrobial episodes of septicemia, 354 were detected with both pairs, 30 were detected with Plus Aerobic/F–Plus Anaerobic/F pairs only, and 13 were detected with Plus Aerobic/F–Standard Anaerobic/F pairs only (P < 0.05). Significantly more episodes of bacteremia caused by members of the family Enterobacteriaceae (P < 0.05) and aerobic and facultative gram-positive bacteria (P < 0.025) were detected with Plus Anaerobic/F bottles only. In a paired-bottle analysis, 810 of 950 isolates were recovered from both pairs, 90 were recovered from Plus Aerobic/F–Plus Anaerobic/F pairs only, and 50 were recovered from Plus Aerobic/F–Standard Anaerobic/F pairs only (P < 0.001). Paired Plus Aerobic/F–Plus Anaerobic/F bottles yielded significantly more staphylococci (P < 0.001), streptococci (P < 0.05), and members of the family Enterobacteriaceae (P <0.001). We conclude that Plus Anaerobic/F bottles detect more microorganisms and episodes of bacteremia and fungemia than Standard Anaerobic/F bottles as companion bottles to Plus Aerobic/F bottles in the BACTEC 9240 blood culture system. PMID:11230415

Wilson, Michael L.; Mirrett, Stanley; Meredith, Frances T.; Weinstein, Melvin P.; Scotto, Vincenzo; Reller, L. Barth

2001-01-01

189

Anaerobic Consumers of Monosaccharides in a Moderately Acidic Fen? †  

PubMed Central

16S rRNA-based stable isotope probing identified active xylose- and glucose-fermenting Bacteria and active Archaea, including methanogens, in anoxic slurries of material obtained from a moderately acidic, CH4-emitting fen. Xylose and glucose were converted to fatty acids, CO2, H2, and CH4 under moderately acidic, anoxic conditions, indicating that the fen harbors moderately acid-tolerant xylose- and glucose-using fermenters, as well as moderately acid-tolerant methanogens. Organisms of the families Acidaminococcaceae, Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae and the order Actinomycetales, including hitherto unknown organisms, utilized xylose- or glucose-derived carbon, suggesting that highly diverse facultative aerobes and obligate anaerobes contribute to the flow of carbon in the fen under anoxic conditions. Uncultured Euryarchaeota (i.e., Methanosarcinaceae and Methanobacteriaceae) and Crenarchaeota species were identified by 16S rRNA analysis of anoxic slurries, demonstrating that the acidic fen harbors novel methanogens and Crenarchaeota organisms capable of anaerobiosis. Fermentation-derived molecules are conceived to be the primary drivers of methanogenesis when electron acceptors other than CO2 are absent, and the collective findings of this study indicate that fen soils harbor diverse, acid-tolerant, and novel xylose-utilizing as well as glucose-utilizing facultative aerobes and obligate anaerobes that form trophic links to novel moderately acid-tolerant methanogens. PMID:18378662

Hamberger, Alexandra; Horn, Marcus A.; Dumont, Marc G.; Murrell, J. Colin; Drake, Harold L.

2008-01-01

190

Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. II. Thermoanaerobacter ethanolicus JW200 and its mutants in batch cultures and resting cell experiments  

SciTech Connect

Several thermophilic and extreme thermophilic anaerobic bacteria can utilize hemicellulose (xylan polymer) from birch- and beechwood directly. Thermoanaerobacter ethanolicus JW200 exhibited the highest ethanol formation, although the extracellular xylanase and xylosidase activities were very low. All bacteria rapidly utilized xylose before the polymers were utilized at a lower rate. With resting cell suspensions of T. ethanolicus and its mutants, the ethanol formation rates were as high as 60 mmol (2.76 g) and 30 mmol (1.3 g) ethanol per L per h from glucose and xylose, respectively. After 1 hr the ethanol productions in the concentrated cell suspensions were linear for over 10 h from glucose of xylose; however, with soluble starch (DE 10) the rates were increasing with time.From these experiments it is concluded that the continuous culture experiments with hemicellulosic material and/or starch have to be performed with recycling of the cells and the extracellular enzymes.

Wiegel, J.; Carreira, L.H.; Mothershed, C.P.; Puls, J.

1983-01-01

191

Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. III. Thermoanaerobacter ethanolicus JW200 and its mutants in batch cultures and resting cell experiments  

SciTech Connect

Several thermophilic and extreme thermophilic anaerobic bacteria can utilize hemicellulose (xylan polymer) from birch- and beechwood directly. Thermoanaerobacter ethanolicus JW200 exhibited the highest ethanol formation, although the extracellular xylanase and xylosidase activities were very low. All bacteria rapidly utilized xylose before the polymers were utilized at a lower rate. With resting cell suspensions of T. ethanolicus and its mutants, the ethanol formation rates were as high as 60 mmol (2.76 g) and 30 mmol (1.3 g) ethanol per liter per hour from glucose and xylose, respectively. After 1 hour the ethanol productions in the concentrated cell suspensions were linear for over 10 hours from glucose or xylose; however, with soluble starch (DE 10) the rates were increasing with time. From these experiments it is concluded that the contiuous culture experiments with hemicellulosic material and/or starch have to be performed with recycling of the cells and the extracellular enzymes. 25 references, 6 figures, 3 tables.

Wiegel, J.; Carreira, L.H.; Mothershed, C.P.; Puls, J.

1983-01-01

192

Evaluation of the in vitro activity of ertapenem and nine other comparator agents against 337 anaerobic bacteria.  

PubMed

Ertapenem activity in vitro was compared with that of nine reference antibiotics against 337 anaerobes by determining minimal inhibition concentrations (MICs). Amongst 246 Gram-negative anaerobes, 4, 8, 3, 4, 7, 2 and 52 strains showed resistance to ertapenem, amoxicillin/clavulanic acid, ticarcillin/clavulanic acid, piperacillin/tazobactam, cefoxitin, imipenem and clindamycin, respectively, and all strains were inhibited by metronidazole. Ertapenem MIC(50) values were 0.5, 0.25, 0.06 and anaerobes. PMID:16757152

Behra-Miellet, J; Dubreuil, L; Calvet, L

2006-07-01

193

Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep.  

PubMed Central

Comparisons were made, by light and electron microscopy, of the rumen epithelium of sheep fed conventionally and fed by infusion of volatile fatty acids and buffer into the rumen and casein into the abomasum. Similar bacterial colonization of the epithelium was observed in each case. The mitotic index of epithelial cells in infused sheep was high, as it was in barley-fed animals, while the mitotic index of cells from animals receiving roughage was low. The bacterial flora appeared to be actively digesting the epithelial cells. The fate of sloughed epithelial cells in the rumen fluid of sheep fed by infusion was also studied. The sloughed cells were rapidly digested, probably by their attached flora of facultatively anaerobic, highly proteolytic bacteria, leaving abundant highly keratinized remnants in rumen fluid. The importance of epithelial cell turnover and of proteolysis by partially facultative bacteria in the rumen is discussed. Images PMID:6772103

Dinsdale, D; Cheng, K J; Wallace, R J; Goodlad, R A

1980-01-01

194

Routine analysis of short-chain fatty acids for anaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection  

Microsoft Academic Search

The diagnosis of anaerobes can be difficult to perform, using classical biochemical tests. Characterization of metabolic end-products such as short-chain fatty acids (SCFA) was often used because of their reproducible biosynthesis. Despite this, SCFA are difficult to study using gas chromatography, due to their high volatility. Furthermore, the treatment of the samples are long and fastidious. Capillary electrophoresis and indirect

Michel Arellano; Pascal Jomard; Said El Kaddouri; Christine Roques; Françoise Nepveu; François Couderc

2000-01-01

195

A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches.  

PubMed

A new pmoA gene-based PCR primer set was designed for detection of nitrite-dependent anaerobic oxidation of methane (n-damo) bacteria from four different ecosystems, namely rice paddy soil, freshwater reservoir, reed bed, and sludge from wastewater treatment plant. This primer set showed high specificity and efficiency in recovering n-damo bacteria from these diverse samples. The obtained sequences showed 88-94 and 90-96% similarity to nucleotide and amino acid sequences, respectively, with the known NC10 phylum bacterium. According to the UniFrac principal coordinates analysis (PCoA), DNA sequences retrieved by the new PCR primer set in this study formed a separate group from the reported sequences, indicating higher diversity of n-damo in the environment. This newly designed PCR primer is capable of amplifying not only the currently known n-damo bacteria but also those that have not been reported, providing new information on the ecological diversity and distribution of this group of microorganisms in the ecosystem. PMID:24201910

Han, Ping; Gu, Ji-Dong

2013-12-01

196

Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.  

PubMed

The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp. PMID:22580321

Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Bary?a, Irena

2012-07-01

197

Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.  

PubMed

The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified. PMID:24012093

Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

2013-11-01

198

Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil.  

PubMed Central

A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available. PMID:8837415

Rabus, R; Fukui, M; Wilkes, H; Widdle, F

1996-01-01

199

REDUCTION AND IMMOBILIZATION OF RADIONUCLIDES AND TOXIC METAL IONS USING COMBINED ZERO VALENT IRON AND ANAEROBIC BACTERIA  

EPA Science Inventory

Large groundwater plumes contaminated with toxic metal ions, including radionuclides, exist at several DOE facilities. Previous research indicated that both zero valent iron and sulfate reducing bacteria can yield significant decreases in concentrations of redox sensitive metals ...

200

In Vitro Activities of Ramoplanin, Teicoplanin, Vancomycin, Linezolid, Bacitracin, and Four Other Antimicrobials against Intestinal Anaerobic Bacteria  

PubMed Central

By using an agar dilution method, the in vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, and five other agents were determined against 300 gram-positive and 54 gram-negative strains of intestinal anaerobes. Ramoplanin was active at ?2 ?g/ml against 287 of 300 (95.7%) gram-positive organisms, including 18 strains of Clostridium difficile for which MICs of ramoplanin were 0.25 to 0.5 ?g/ml; for 3 of these, linezolid MICs were 8 to 16 ?g/ml. Nineteen Clostridium innocuum strains for which the vancomycin MIC at which 90% of strains were inhibited was 16 ?g/ml were susceptible to ramoplanin at 0.06 to 0.25 ?g/ml and to teicoplanin at 0.125 to 1.0 ?g/ml. All strains of Eubacterium, Actinomyces, Propionibacterium, and Peptostreptococcus spp. were inhibited by ?0.25 ?g of ramoplanin per ml and ?1 ?g of vancomycin per ml. Ramoplanin was also active at ?4 ?g/ml against 15 of 22 of the Prevotella and Porphyromonas strains tested, but ramoplanin MICs for all 31 strains of the Bacteroides fragilis group, the Fusobacterium mortiferum-Fusobacterium varium group, and Veillonella spp. were ?256 ?g/ml. Ramoplanin displays excellent activity against C. difficile and other gram-positive enteric anaerobes, including vancomycin-resistant strains; however, it has poor activity against most gram-negative anaerobes and thus potentially has a lesser effect on the ecological balance of normal fecal flora. PMID:12821492

Citron, D. M.; Merriam, C. V.; Tyrrell, K. L.; Warren, Y. A.; Fernandez, H.; Goldstein, E. J. C.

2003-01-01

201

The effect of tannic compounds on anaerobic wastewater treatment  

Microsoft Academic Search

Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of

J. A. Field

1989-01-01

202

Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant  

PubMed Central

Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-?-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h. Images PMID:16347324

Nanninga, Henk J.; Gottschal, Jan C.

1987-01-01

203

Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method.  

PubMed

Quantitative monitoring method of two important trophic groups of bacteria in methanogenic communities was established and applied to six different anaerobic processes. The method we employed was based upon our previous sequence-specific rRNA cleavage method that allows quantification of rRNA of target groups so that the populations reflecting in situ activity could be determined. We constructed a set of scissor probes targeting the Chloroflexi group known as 'semi-syntrophic' heterotrophic bacteria and fatty acid-oxidizing syntrophs to determine their relative abundance in the processes. By using the method, we found that several reactors harbored a large amount of organisms belonging to the phylum Chloroflexi accounting for up to 20% of the total prokaryotic populations. Propionate-oxidizing syntrophs, Syntrophobacter, Smithella and Pelotomaculum were also found to be significant comprising up to 3.9% of the total populations, but their distribution is highly dependent on the process examined. This is the first clear, non-PCR based quantitative evidence that those organisms play active roles under in situ methanogenic conditions. PMID:22342314

Narihiro, Takashi; Terada, Takeshi; Ohashi, Akiko; Kamagata, Yoichi; Nakamura, Kazunori; Sekiguchi, Yuji

2012-05-01

204

Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments.  

PubMed

Samples were taken from sediment of the River Spittelwasser (district Bitterfeld, Germany), which is highly polluted with PCDD/Fs and other chloroorganic compounds. The sediment cores were separated into 10-20 cm thick layers, spiked with 50 microM of 1,2,3,4-tetrachlorodibenzo-p-dioxin and incubated for 8 months under anaerobic conditions in the presence of cosubstrates. Reductive dechlorination of the tetrachlorinated congener and formation of tri- and dichlorinated products were observed in all biologically active incubations. Analysis of subcultures spiked with 1,2,3- and 1,2,4-trichlorodibenzo-p-dioxin, respectively, revealed two different dechlorination pathways within the sediment cores. Pathway M was characterized by the simultaneous dechlorination of peri- and lateralchlorine atoms, whereas sequence SP was restricted to the dechlorination at positions flanked by chlorine atoms on both sides. PMID:11372852

Bunge, M; Ballerstedt, H; Lechner, U

2001-01-01

205

Structure and function of assemblages of Bacteria and Archaea in model anaerobic aquifer columns: can functional instability be practically beneficial?  

PubMed

Biodegradable organic carbon is often added to aquifers to stimulate microbial reduction of oxidized contaminants. This carbon also stimulates fermenters, which generate important metabolites that can fuel contaminant reduction and may enhance dissolution of hydrophobic compounds. Therefore, understanding how different methods of carbon addition affect the fermentative community will enable design of more effective remediation strategies. Our research objective was to evaluate the microbial communities that developed in model aquifer columns in response to pulsed or continuous molasses input. Results indicated that the continuously fed column produced relatively low concentrations of metabolic intermediates and had a greater proportion of Bacteria and methanogens, as measured by quantitative polymerase chain reaction, near the column inlet. In contrast, the pulsed-fed column generated periodic high concentrations of metabolic intermediates, with Bacteria and methanogens distributed throughout the length of the column. The community structures of Bacteria and Archaea, measured via automated ribosomal intergenic spacer analysis, in the pulsed-fed column were significantly different from those in the control column (not fed). The microbial community composition of the continuously fed column, however, became increasingly similar to the control column along the column length. These results demonstrate that a strategy of pulsed carbon addition leads to activity that is associated with functional instability, in terms of the production of periodic pulses of fermentation products and changing carbon concentration, and may be advantageous for remediation by producing large quantities of beneficial intermediates and resulting in more homogenously distributed biomass. PMID:22873515

Nelson, Denice K; Lapara, Timothy M; Novak, Paige J

2012-09-18

206

Host-Bacteria Crosstalk at the Dentogingival Junction  

PubMed Central

The dentogingival junction is of crucial importance in periodontal host defense both structurally and functionally. Oral bacteria exert a constant challenge to the host cells and tissues at the dentogingival junction. The host response is set up to eliminate the pathogens by the innate and adaptive defense mechanisms. In health, the commensal bacteria and the host defense mechanisms are in a dynamic steady state. During periodontal disease progression, the dental bacterial plaque, junctional epithelium (JE), inflammatory cells, connective tissue, and bone all go through a series of changes. The tissue homeostasis is turned into tissue destruction and progression of periodontitis. The classical study of Slots showed that in the bacterial plaque, the most remarkable change is the shift from gram-positive aerobic and facultatively anaerobic flora to a predominantly gram-negative and anaerobic flora. This has been later confirmed by several other studies. Furthermore, not only the shift of the bacterial flora to a more pathogenic one, but also bacterial growth as a biofilm on the tooth surface, allows the bacteria to communicate with each other and exert their virulence aimed at favoring their growth. This paper focuses on host-bacteria crosstalk at the dentogingival junction and the models studying it in vitro. PMID:22899931

Pöllänen, M. T.; Laine, M. A.; Ihalin, R.; Uitto, V.-J.

2012-01-01

207

In vitro activity of Biapenem plus RPX7009, a carbapenem combined with a serine ?-lactamase inhibitor, against anaerobic bacteria.  

PubMed

Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine ?-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC(90) for biapenem-RPX7009 was 1 ?g/ml, with a MIC(90) of 4 ?g/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 ?g/ml for both agents. The MIC(90)s for biapenem-RPX7009 were 0.25 ?g/ml for Prevotella spp., 0.125 ?g/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 ?g/ml for Fusobacterium mortiferum, 0.5 ?g/ml for Fusobacterium varium, ? 0.5 ?g/ml for Gram-positive cocci and rods, and 0.03 to 8 ?g/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (? 32 ?g/ml). Against Bacteroides strains with an imipenem MIC of 2 ?g/ml, biapenem-RPX7009 had MICs of 0.5 to 2 ?g/ml, with MICs of 0.5 to 32 ?g/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 ?g/ml, the MICs for biapenem-RPX7009 were 4 to 16 ?g/ml, with MICs of 8 to >32 ?g/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp. PMID:23529731

Goldstein, Ellie J C; Citron, Diane M; Tyrrell, Kerin L; Merriam, C Vreni

2013-06-01

208

The predominant bacteria isolated from radicular cysts  

PubMed Central

Purpose To detect predominant bacteria associated with radicular cysts and discuss in light of the literature. Material and methods Clinical materials were obtained from 35 radicular cysts by aspiration. Cultures were made from clinical materials by modern laboratory techniques, they underwent microbiologic analysis. Results The following are microorganisms isolated from cultures: Streptococcus milleri Group (SMG) (23.8%) [Streptococcus constellatus (19.1%) and Streptococcus anginosus (4.7%)], Streptococcus sanguis (14.3%), Streptococcus mitis (4.7%), Streptococcus cremoris (4.7%), Peptostreptococcus pevotii (4.7%), Prevotella buccae (4.7%), Prevotella intermedia (4.7%), Actinomyces meyeri (4.7%), Actinomyces viscosus (4.7%), Propionibacterium propionicum (4.7%), Bacteroides capillosus (4.7%), Staphylococcus hominis (4.7%), Rothia denticariosa (4.7%), Gemella haemolysans (4.7%), and Fusobacterium nucleatum (4.7%). Conclusions Results of this study demonstrated that radicular cysts show a great variety of anaerobic and facultative anaerobic bacterial flora. It was observed that all isolated microorganisms were the types commonly found in oral flora. Although no specific microorganism was found, Streptococcus spp. bacteria (47.5%) – especially SMG (23.8%) – were predominantly found in the microorganisms isolated. Furthermore, radicular cysts might be polymicrobial originated. Although radicular cyst is an inflammatory cyst, some radicular cyst fluids might be sterile. PMID:24011184

2013-01-01

209

Experimental otitis media in gerbils and chinchillas with Streptococcus pneumoniae, Haemophilus influenzae, and other aerobic and anaerobic bacteria.  

PubMed Central

To ascertain the usefulness of Mongolian gerbils as an inbred model for otitis media, 52 Mongolian gerbils (Meriones unguiculatus, strain MONT/Tum) were compared with 26 chinchillas (Chinchilla laniger) for susceptibility to Streptococcus pneumoniae type 3. Haemophilus influenzae type b, and a polymicrobic culture including anaerobes (Streptococcus intermedius, Propionibacterium acnes, Staphylococcus epidermidis, and Corynebacterium sp.). Organisms were inoculated percutaneously into the superior chamber of the middle ear bulla. The gerbils and chinchillas shared similar susceptibilities and responses to the inoculated organisms as determined by X-ray, otoscopic, histopathological, and microbiological determinations at 5 to 7 days. Koch's postulate studies proved the role of S. pneumoniae and H. influenzae in the pathology found in both animal models. The animals were also susceptible to the polymicrobic culture, although the relative virulence of the individual members of this mixture was low, suggesting that these species potentiated as a polymicrobic mixture. The Corynebacterium sp. appeared to elicit the greatest histopathological response in chronic (8-week) studies in gerbils. The gerbils were found to be useful as an alternative animal model for the study of otitis media of bacterial etiology. Images PMID:6979517

Fulghum, R S; Brinn, J E; Smith, A M; Daniel, H J; Loesche, P J

1982-01-01

210

Methylocella Species Are Facultatively Methanotrophic  

PubMed Central

All aerobic methanotrophic bacteria described to date are unable to grow on substrates containing carbon-carbon bonds. Here we demonstrate that members of the recently discovered genus Methylocella are an exception to this. These bacteria are able to use as their sole energy source the one-carbon compounds methane and methanol, as well as the multicarbon compounds acetate, pyruvate, succinate, malate, and ethanol. To conclusively verify facultative growth, acetate and methane were used as model substrates in growth experiments with the type strain Methylocella silvestris BL2. Quantitative real-time PCR targeting the mmoX gene, which encodes a subunit of soluble methane monooxygenase, showed that copies of this gene increased in parallel with cell counts during growth on either acetate or methane as the sole substrate. This verified that cells possessing the genetic basis of methane oxidation grew on acetate as well as methane. Cloning of 16S rRNA genes and fluorescence in situ hybridization with strain-specific and genus-specific oligonucleotide probes detected no contaminants in cultures. The growth rate and carbon conversion efficiency were higher on acetate than on methane, and when both substrates were provided in excess, acetate was preferably used and methane oxidation was shut down. Our data demonstrate that not all methanotrophic bacteria are limited to growing on one-carbon compounds. This could have major implications for understanding the factors controlling methane fluxes in the environment. PMID:15968078

Dedysh, Svetlana N.; Knief, Claudia; Dunfield, Peter F.

2005-01-01

211

Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR23 and RV23) against anaerobic bacteria  

Microsoft Academic Search

The activities of two antimicrobial peptides belonging to the temporin family (temporin-1DRa from Rana draytonii and temporin-1Va from Rana virgatipes) and two peptides with structural similarity to the bee venom peptide melittin (AR-23 from Rana tagoi and RV-23 from R. draytonii) were evaluated against a range of reference strains and clinical isolates of anaerobic bacteria. These peptides were selected because

Elisabeth Nagy; Tibor Pál; Ágnes Sonnevend; J. Michael Conlon

2007-01-01

212

Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors?  

PubMed Central

Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [?] = ?0.4 to ?1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (?10-nm diameter by 200-nm length), which cluster together, forming larger (?1,000-nm) rosettes composed of numerous individual shards (?100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

Baesman, Shaun M.; Bullen, Thomas D.; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S.; Beveridge, Terry J.; Oremland, Ronald S.

2007-01-01

213

Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors  

USGS Publications Warehouse

Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, D.; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

2007-01-01

214

Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater.  

PubMed

A membrane bioreactor (MBR) was developed for the treatment of anaerobically digested swine wastewater and to investigate the effect of ammonium nitrogen concentration on biological nitrogen removal and ammonia-oxidizing bacteria (AOB) community structures. The MBR achieved a high NH4(+)-N removal efficiency of 0.08 kgNMLSS(-1)d(-1) and removed 95% of the influent NH4(+)-N. The TN removal rate was highest of 82.62% at COD/TN and BOD5/TN ratios of 8.76 ± 0.30 and 3.02 ± 0.09, respectively. With the decrease in ammonium nitrogen concentrations, the diversity of the AOB community declined and showed a simple pattern of DGGE. However, the AOB population size remained high, with abundance of 10(7)-10(9) copies mL(-1). With the decrease of ammonium nitrogen concentrations, Nitrosomonas eutropha gradually disappeared, whereas Nitrosomonas sp. OZK11 showed constant adaptability to survive during each treatment stage. The selective effect of ammonium concentration on AOB species could be due to the affinity for NH4(+)-N. In this study, the changes of ammonium nitrogen concentrations in digested swine wastewater were found to have selective effects on the composition of AOB community, and biological nitrogen removal was improved by optimising the influencing parameters. PMID:24680388

Sui, Qianwen; Liu, Chong; Dong, Hongmin; Zhu, Zhiping

2014-09-01

215

Function and the biosynthesis of unusual corrinoids by a novel activation mechanism of aromatic compounds in anaerobic bacteria  

NASA Astrophysics Data System (ADS)

A corrinoid screening of several phylogenetically diverse ``archaebacteria'' revealed vitamin B12-like corrinoids. This indicates an optimized structure and function relationship of the corrinoids under different bacterial growth conditions during the early evolution of live. Some of these corrinoids have been substituted by modified corrinoids in growing cells without affecting the generation times of the bacteria. In this respect, the discovery of the unique para-cresolyl cobamide from the eubacterium Sporomusa ovata attracted attention. The unusual structure of this corrinoid was achieved by a biosynthesis proceeding via a novel and stereospecific activation mechanism of aromatic compounds. The corrinoid was detected both in the membrane fraction and in the soluble fraction of the cells. Methyltransfer is one of the probable functions of the para-cresolyl cobamide in Sporomusa.

Stupperich, E.; Eisinger, H. J.

216

Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate  

Microsoft Academic Search

In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The

Jan Schirawski; Gottfried Unden

1995-01-01

217

Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus  

PubMed Central

Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80°?C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

2012-01-01

218

Predatory prokaryotes: predation and primary consumption evolved in bacteria  

NASA Technical Reports Server (NTRS)

Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.

Guerrero, R.; Pedros-Alio, C.; Esteve, I.; Mas, J.; Chase, D.; Margulis, L.

1986-01-01

219

Anaerobic Metabolism 1 ANAEROBIC METABOLISM  

E-print Network

to aerobic metabolsm. This said, it is not uncommon to hear microbiologists talk about anaerobic respiration it for respiration. However, in many animals anaerobic metabolism may occur even when there are large amounts of O2Anaerobic Metabolism 1 ANAEROBIC METABOLISM 1 Introduction About the Next Three Sets of Class Notes

Prestwich, Ken

220

Anaerobic thermophiles.  

PubMed

The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely made this area of investigation more exciting. Particularly fascinating are their structural and physiological features allowing them to withstand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA-polymerase, thermostable enzymes), the search and applications successful exceeded preliminary expectations, but certainly further exploitations are still needed. PMID:25370030

Canganella, Francesco; Wiegel, Juergen

2014-01-01

221

Isolation and antimicrobial susceptibility of obligate anaerobic bacteria recovered from the uteri of dairy cows with retained fetal membranes and postparturient endometritis.  

PubMed

The uteri of 77 postparturient dairy cows were sampled. Samples were cultured aerobically and anaerobically, and the nature of bacterial growth was identified. A mixed aerobic and anaerobic bacterial infection was found in 55% of the samples. Actinomyces pyogenes was the predominant aerobic species; it was found in 70% of the samples, whereas Bacteroides melaninogenicus was the most frequent anaerobic species isolated. Altogether, 16 species belonging to the genus Bacteroides were identified with variable frequencies. It appears that more than one Bacteroides species colonizes the uterus of a given cow postpartum. The minimal inhibitory concentrations (MICs) of clindamycin, metronidazole, tetracycline and ciprofloxacin for 83 anaerobic isolates were determined. All isolates were susceptible to clindamycin (MIC90 of 0.064 microgram/ml) and all but two to metronidazole. Susceptibility to ciprofloxacin was variable, with a bimodal distribution of MIC values. The MIC of tetracycline for 90% of the isolates was > 256 micrograms/ml. PMID:8767765

Cohen, R O; Colodner, R; Ziv, G; Keness, J

1996-06-01

222

Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium.  

PubMed

Three strictly anaerobic, Gram-positive, non-spore-forming, rod-shaped, motile bacteria, designated strains ACB1(T), ACB7(T) and ACB8, were isolated from human subgingival dental plaque. All strains required yeast extract for growth. Strains ACB1(T) and ACB8 were able to grow on glucose, lactose, maltose, maltodextrin and raffinose; strain ACB7(T) grew weakly on sucrose only. The growth temperature range was 30-42 °C with optimum growth at 37 °C. Major metabolic fermentation end products of strain ACB1(T) were acetate and lactate; the only product of strains ACB7(T) and ACB8 was acetate. Major fatty acids of strain ACB1(T) were C(14?:?0), C(16?:?0), C(16?:?1)?7c dimethyl aldehyde (DMA) and C(18?:?1)?7c DMA. Major fatty acids of strain ACB7(T) were C(12?:?0), C(14?:?0), C(16?:?0), C(16?:?1)?7c and C(16?:?1)?7c DMA. The hydrolysate of the peptidoglycan contained meso-diaminopimelic acid, indicating peptidoglycan type A1?. Genomic DNA G+C content varied from 42 to 43.3% between strains. According to 16S rRNA gene sequence phylogeny, strains ACB1(T), ACB8 and ACB7(T) formed two separate branches within the genus Oribacterium, with 98.1-98.6% sequence similarity to the type strain of the type species, Oribacterium sinus. Predicted DNA-DNA hybridization values between strains ACB1(T), ACB8, ACB7(T) and O. sinus F0268 were <70%. Based on distinct genotypic and phenotypic characteristics, strains ACB1(T) and ACB8, and strain ACB7(T) are considered to represent two distinct species of the genus Oribacterium, for which the names Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov. are proposed. The type strains are ACB1(T) (?=?DSM 24637(T)?=?HM-481(T)?=?ATCC BAA-2638(T)) and ACB7(T) (?=?DSM 24638(T)?=?HM-482(T)?=?ATCC BAA-2639(T)), respectively. PMID:24824639

Sizova, Maria V; Muller, Paul A; Stancyk, David; Panikov, Nicolai S; Mandalakis, Manolis; Hazen, Amanda; Hohmann, Tine; Doerfert, Sebastian N; Fowle, William; Earl, Ashlee M; Nelson, Karen E; Epstein, Slava S

2014-08-01

223

Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?  

PubMed Central

Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

2011-01-01

224

Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.  

PubMed

Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD(+)) that are required to sustain an O(2)-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses. PMID:23149123

Nikel, Pablo I; de Lorenzo, Víctor

2013-01-01

225

Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. Year one technical progress report  

SciTech Connect

'The objective of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. The major goals for Year 1 were to establish the sulfate reducing mixed culture, to obtain sources of iron metal, and to conduct background experiments which will establish baseline rates for abiotic chromium reduction rates. Research completed to date is described.'

Weathers, L.J.; Katz, L.E.

1997-10-01

226

The anaerobic digestion process  

SciTech Connect

The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

1996-01-01

227

One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production. Progress report, June 1990--May 1992  

SciTech Connect

This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

Zeikus, J.G.; Jain, M.K.

1992-04-01

228

Titanium(III) Citrate as a Nontoxic Oxidation-Reduction Buffering System for the Culture of Obligate Anaerobes  

Microsoft Academic Search

An oxidation-reduction buffering system based on titanium(III) citrate eliminates any traces of oxygen in a culture medium, serves as an indicator for low oxidation-reduction potentials, and prevents the growth of facultative anaerobes, which frequently contaminate anaerobic cultures.

Alexander J. B. Zehnder; Karl Wuhrmann

1976-01-01

229

Anaerobic Infections in Children with Neurological Impairments.  

ERIC Educational Resources Information Center

Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

Brook, Itzhak

1995-01-01

230

Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation  

NASA Technical Reports Server (NTRS)

Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

Nealson, K. H.; Saffarini, D.

1994-01-01

231

The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor  

Microsoft Academic Search

The effect of different electron acceptors on substrate degradation was studied in pure and mixed cultures of various hydrogenotrophic homoacetogenic, methanogenic, sulfate-reducing, fumarate-reducing and nitrate-ammonifying bacteria. Two different species of these bacteria which during organic substrate degradation produce and consume hydrogen, were cocultured on a substrate which was utilized only by one of them. Hydrogen, which was excreted as intermediate

Ralf Cord-Ruwisch; Hans-Jiirgen Seitz; Ralf Conrad

1988-01-01

232

Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage  

Microsoft Academic Search

The aim of this investigation was to develop a system for the remediation of acid mine drainage using sulphate-reducing bacteria. An upflow porous medium bioreactor was inoculated with sulphate-reducing bacteria (SRB) and operated under acidic conditions. The reactor was operated under continuous flow and was shown to be capable of sulfate reduction at pH 4.5, 4.0, 3.5 and 3.25 in

Phillip Elliott; Santo Ragusa; David Catcheside

1998-01-01

233

Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin.  

PubMed

A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being bla TEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of bla TEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. PMID:25566232

Kirchner, Miranda; Mafura, Muriel; Hunt, Theresa; Abu-Oun, Manal; Nunez-Garcia, Javier; Hu, Yanmin; Weile, Jan; Coates, Anthony; Card, Roderick; Anjum, Muna F

2014-01-01

234

Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin  

PubMed Central

A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being blaTEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of blaTEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. PMID:25566232

Kirchner, Miranda; Mafura, Muriel; Hunt, Theresa; Abu-Oun, Manal; Nunez-Garcia, Javier; Hu, Yanmin; Weile, Jan; Coates, Anthony; Card, Roderick; Anjum, Muna F.

2014-01-01

235

Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste  

SciTech Connect

Highlights: ? Microaeration pretreatment was effective for brown water and food waste mixture. ? The added oxygen was consumed fully by facultative microorganisms. ? Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ? Microaeration pretreatment improved methane yield by 10–21%. ? Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.

Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2013-04-15

236

Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.  

PubMed

In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7 mg O2 l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO4(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. PMID:18634895

Hirasawa, Julia Sumiko; Sarti, Arnaldo; Del Aguila, Nora Katia Saavedra; Varesche, Maria Bernadete A

2008-10-01

237

Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts.  

PubMed

Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among world-wide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection. PMID:24233285

Brady, Cristina M; Asplen, Mark K; Desneux, Nicolas; Heimpel, George E; Hopper, Keith R; Linnen, Catherine R; Oliver, Kerry M; Wulff, Jason A; White, Jennifer A

2014-01-01

238

Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.  

PubMed

In rice paddy fields the bulk soil is anoxic, but oxygenated zones occur in the surrounding of the rice roots to where oxygen is transported via the aerenchyma system of the rice plants. In the anaerobic soil compartments sulfate is consumed by sulfate-reducing bacteria. In the rhizosphere the reduced sulfur compounds can be reoxidized by sulfur-oxidizing bacteria. Measurements of the potential activity of thiosulfate-oxidizing bacteria in soil slurries derived from planted rice soil microcosms showed turnover rates of 2-6 mumol d-1 g-dw-1. Thiosulfate was oxidized to sulfate with tetrathionate as intermediate. Most probable number (MPN) enumeration with three aerobic media and one anaerobic nitrate-amended medium showed that thiosulfate-oxidizing bacteria were abundant in paddy soil and in rhizosphere soil at numbers of 10(5) to 10(6) per gram dry weight soil. Nine isolates of S-oxidizing bacteria were obtained from enrichment cultures or from the highest dilutions of the MPN series and were affiliated to four different phylogenetic groups. These isolates were characterized by physiological properties and by comparative 16S rDNA sequence analysis. Three isolates (TA1-AE1, TA1-A1 and TA12-21) were shown to be facultatively chemolithoautotrophic strains of Ancylobacter aquaticus. Three further isolates (Tv6-2b, Z2A-6A and Z4A-2A) were also facultatively chemolithoautotrophic and were affiliated with the Xanthobacter sp. group, probably representing new strains of X. flavus or X. tagetidis. Strain SZ-2111 was phylogenetically related to Bosea thiooxidans. However, the genus Bosea is described as obligately heterotrophic, whereas strain 5Z-2111 was able to grow autotrophically. The isolates 5Z-C1 and TBW3 were obligate chemolithoautotrophs and were closely affiliated with Thiobacillus thioparus. Our results showed that S-oxidizing bacteria were abundant and active in rice paddy soil and consisted of physiologically and phylogenetically diverse populations. PMID:9924825

Stubner, S; Wind, T; Conrad, R

1998-12-01

239

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus  

Microsoft Academic Search

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and

Sara E. Blumer-Schuette; Inci Ozdemir; Dhaval Mistry; Susan Lucas; Alla L. Lapidus; Jan-Fang Cheng; Lynne A. Goodwin; Sam Pitluck; Miriam L Land; Loren John Hauser; Tanja Woyke; Natalia Mikhailova; Amrita Pati; Nikos C Kyrpides; N Ivanova; J. Chris Detter; Karen Walston Davenport; Cliff Han; Michael W. W. Adams; Robert M Kelly

2011-01-01

240

Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: Effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.  

PubMed

In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment. PMID:25514401

Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

2015-03-01

241

Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens.  

PubMed

An anaerobic phthalate isomer-degrading strain (JT(T)) that we previously isolated was characterized. In addition, a strictly anaerobic, mesophilic, syntrophic phthalate isomer-degrading bacterium, designated strain JI(T), was isolated and characterized in this study. Both were non-motile rods that formed spores. In both strains, the optimal growth was observed at temperatures around 37 degrees C and neutral pH. In syntrophic co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei, both strains could utilize two or three phthalate isomers for growth, and produce acetate and methane as end products. Strain JT(T) was able to grow on isophthalate, terephthalate, and a number of low-molecular weight aromatic compounds, such as benzoate, hydroquinone, 2-hydroxybenzoate, 3-hydroxybenzoate, 2,5-dihydroxybenzoate, 3-phenylpropionate in co-culture with M. hungatei. It could also grow on crotonate, hydroquinone and 2,5-dihydroxybenzoate in pure culture. Strain JI(T) utilized all of the three phthalate isomers as well as benzoate and 3-hydroxybenzoate for growth in co-culture with M. hungatei. No substrates were, however, found to support the axenic growth of strain JI(T). Neither strain JT(T) nor strain JI(T) could utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, Fe (III) or 4-hydroxybenzoate as electron acceptor. Phylogenetically, strains JT(T) and JI(T) were relatively close to the members of the genera Pelotomaculum and Cryptanaerobacter in 'Desulfotomaculum lineage I'. Physiological and chemotaxonomic characteristics indicated that the two isolates should be classified into the genus Pelotomaculum, creating two novel species for them. Here, we propose Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov. for strain JT(T) and strain JI(T), respectively. The type strains are strains JT(T) (= DSM 16121(T )= JCM 11824(T )= NBRC 100523(T)) and JI(T) (= JCM 12282(T) = BAA-1053(T)) for P. terephthalicum and P. isophthalicum, respectively. PMID:16404568

Qiu, Yan-Ling; Sekiguchi, Yuji; Hanada, Satoshi; Imachi, Hiroyuki; Tseng, I-Cheng; Cheng, Sheng-Shung; Ohashi, Akiyoshi; Harada, Hideki; Kamagata, Yoichi

2006-04-01

242

Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis  

PubMed Central

In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined. In addition to previously recognized CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, >60 phylogenetically diverse bacterial genera that are not typically associated with CF pathogenesis were also detected. A surprisingly large number of fermenting facultative and obligate anaerobes from multiple bacterial phyla was present in each sample. Many of the bacteria and sequences found were normal residents of the oropharyngeal microflora and with many containing opportunistic pathogens. Our data suggest that these undersampled organisms within the CF lung are part of a much more complex microbial ecosystem than is normally presumed. Characterization of these communities is the first step in elucidating potential roles of diverse bacteria in disease progression and to ultimately facilitate advances in CF therapy. PMID:20631810

Guss, Adam M; Roeselers, Guus; Newton, Irene L G; Young, C Robert; Klepac-Ceraj, Vanja; Lory, Stephen; Cavanaugh, Colleen M

2011-01-01

243

16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs.  

PubMed

Anammox, the oxidation of ammonium with nitrite to dinitrogen gas under anoxic conditions, is an important process in mesophilic environments such as wastewaters, oceans and freshwater systems, but little is known of this process at elevated temperatures. In this study, we investigated anammox in microbial mats and sediments obtained from several hot springs in California and Nevada, using geochemical and molecular microbiological methods. Anammox bacteria-specific ladderane core lipids with concentrations ranging between 0.3 and 52 ng g(-1) sediment were detected in five hot springs analyzed with temperatures up to 65 degrees C. In addition, 16S rRNA gene analysis showed the presence of genes phylogenetically related to the known anammox bacteria Candidatus Brocadia fulgida, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis (96.5-99.8% sequence identity) in three hot springs with temperatures up to 52 degrees C. Our data indicate that anammox bacteria may be able to thrive at thermophilic temperatures and thus may play a significant role in the nitrogen cycle of hot spring environments. PMID:19220858

Jaeschke, Andrea; Op den Camp, Huub J M; Harhangi, Harry; Klimiuk, Adam; Hopmans, Ellen C; Jetten, Mike S M; Schouten, Stefan; Sinninghe Damsté, Jaap S

2009-03-01

244

Siderophore Production by Pseudomonas stutzeri under Aerobic and Anaerobic Conditions?  

PubMed Central

The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory. PMID:17675442

Essén, Sofia A.; Johnsson, Anna; Bylund, Dan; Pedersen, Karsten; Lundström, Ulla S.

2007-01-01

245

Multicentre survey of the in-vitro activity of seven antimicrobial agents, including ertapenem, against recently isolated Gram-negative anaerobic bacteria in Greece.  

PubMed

The in-vitro activities of penicillin, ticarcillin-clavulanic acid, cefoxitin, imipenem, ertapenem, metronidazole and clindamycin were evaluated against 138 Gram-negative anaerobic isolates (82 Bacteroides fragilis group, 17 non-fragilis Bacteroides spp., 31 Prevotella spp., four Fusobacterium spp., two Veillonella spp., one Porphyromonas sp. and one Tissierella praeacuta) collected from six general hospitals in Athens, Greece. Overall rates of non-susceptibility (both resistant and intermediately-resistant) to penicillin and ticarcillin-clavulanic acid were 81.8% and 2.3%, respectively. The rates of non-susceptibility to cefoxitin and clindamycin were 30.3% and 31.1%, respectively, and that for metronidazole was 4.3% (four Prevotella spp. isolates, one Porphyromonas sp. isolate and one B. fragilis isolate). Only the single B. fragilis isolate was nim-positive by PCR. Only one B. fragilis isolate was resistant to both carbapenems tested, while six more Bacteroides spp. isolates were imipenem-susceptible and ertapenem-non-susceptible. The MIC range, MIC(50) and MIC(90) values were comparable for imipenem and ertapenem, although ertapenem MIC(90)s were one or two two-fold dilutions higher. PMID:16153256

Papaparaskevas, J; Pantazatou, A; Katsandri, A; Legakis, N J; Avlamis, A

2005-10-01

246

Inhibition of Nitrate Reduction by Chromium(VI) in Anaerobic Soil Microcosms?  

PubMed Central

Chromium is often found as a cocontaminant at sites polluted with organic compounds. For nitrate-respiring microbes, Cr(VI) may be not only directly toxic but may also specifically interfere with N reduction. In soil microcosms amended with organic electron donors, Cr(VI), and nitrate, bacteria oxidized added carbon, but relatively low doses of Cr(VI) caused a lag and then lower rates of CO2 accumulation. Cr(VI) strongly inhibited nitrate reduction; it occurred only after soluble Cr(VI) could not be detected. However, Cr(VI) additions did not eliminate Cr-sensitive populations; after a second dose of Cr(VI), bacterial activity was strongly inhibited. Differences in microbial community composition (assayed by PCR-denaturing gradient gel electrophoresis) driven by different organic substrates (glucose and protein) were smaller than when other electron acceptors had been used. However, the selection of bacterial phylotypes was modified by Cr(VI). Nine isolated clades of facultatively anaerobic Cr(VI)-resistant bacteria were closely related to cultivated members of the phylum Actinobacteria or Firmicutes. In Bacillus cereus GNCR-4, the nature of the electron donor (fermentable or nonfermentable) affected Cr(VI) resistance level and anaerobic nitrate metabolism. Our results indicate that carbon utilization and nitrate reduction in these soils were contingent upon the reduction of added Cr(VI). The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same organic substrate. We speculate that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it. PMID:19684175

Kourtev, Peter S.; Nakatsu, Cindy H.; Konopka, Allan

2009-01-01

247

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.  

PubMed

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity. PMID:21216991

Blumer-Schuette, Sara E; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Samuel; Land, Miriam L; Hauser, Loren J; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C; Ivanova, Natalia; Detter, John C; Walston-Davenport, Karen; Han, Shunsheng; Adams, Michael W W; Kelly, Robert M

2011-03-01

248

Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus?  

PubMed Central

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity. PMID:21216991

Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Land, Miriam L.; Hauser, Loren J.; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C.; Ivanova, Natalia; Detter, John C.; Walston-Davenport, Karen; Han, Shunsheng; Adams, Michael W. W.; Kelly, Robert M.

2011-01-01

249

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus  

SciTech Connect

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

Blumer-Schuette, Sara E. [North Carolina State University; Ozdemir, Inci [North Carolina State University; Mistry, Dhaval [North Carolina State University; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Walston Davenport, Karen [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Adams, Michael W. W. [University of Georgia, Athens, GA; Kelly, Robert M [North Carolina State University

2011-01-01

250

NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts  

Microsoft Academic Search

The kinetics and enzymology of d-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis cultures of C. utilis did not show fermentation of xylose; in Pa. tannophilus a very low rate of ethanol formation

Peter M. Bruinenberg; Peter H. M. Bot; Johannes P. Dijken; W. Alexander Scheffers

1984-01-01

251

Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria.  

PubMed

The activities of two antimicrobial peptides belonging to the temporin family (temporin-1DRa from Rana draytonii and temporin-1Va from Rana virgatipes) and two peptides with structural similarity to the bee venom peptide melittin (AR-23 from Rana tagoi and RV-23 from R. draytonii) were evaluated against a range of reference strains and clinical isolates of anaerobic bacteria. These peptides were selected because they show broad-spectrum growth inhibitory activity against reference strains of several medically important aerobic microorganisms and against clinical isolates of methicillin-resistant Staphylococcus aureus. All peptides showed relatively high potency (minimum inhibitory concentration (MIC)

Urbán, Edit; Nagy, Elisabeth; Pál, Tibor; Sonnevend, Agnes; Conlon, J Michael

2007-03-01

252

Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.  

PubMed

Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation. PMID:15374661

Kim, Jihoe; Hetzel, Marc; Boiangiu, Clara Dana; Buckel, Wolfgang

2004-10-01

253

Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio.  

PubMed

Four obligately anaerobic, thermophilic, sulfate-reducing bacterial strains, designated TGE-P1(T), TDV(T), TGL-LS1 and TSL-P1, were isolated from thermophilic (operated at 55 degrees C) methanogenic sludges from waste and wastewater treatment. The optimum temperature for growth of all the strains was in the range 55-60 degrees C. The four strains grew by reduction of sulfate with a limited range of electron donors, such as hydrogen, formate, pyruvate and lactate. In co-culture with the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH(T), strains TGE-P1(T), TGL-LS1 and TSL-P1 were able to utilize lactate syntrophically for growth. The DNA G+C contents of all the strains were in the range 34-35 mol%. The major cellular fatty acids of the strains were iso-C(17 : 0), iso-C(16 : 0), C(16 : 0) and anteiso-C(15 : 0). Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belong to the Thermodesulfovibrio clade of the phylum 'Nitrospirae'. On the basis of their physiological, chemotaxonomic and genetic properties, strains TGL-LS1 (=JCM 13214) and TSL-P1 (=JCM 13215) were classified as strains of Thermodesulfovibrio islandicus. Two novel species of the genus Thermodesulfovibrio are proposed to accommodate the other two isolates: Thermodesulfovibrio aggregans sp. nov. (type strain TGE-P1(T) =JCM 13213(T) =DSM 17283(T)) and Thermodesulfovibrio thiophilus sp. nov. (type strain TDV(T) =JCM 13216(T) =DSM 17215(T)). To examine the ecological aspects of Thermodesulfovibrio-type cells in the sludge from which the strains were originally isolated, an oligonucleotide probe targeting 16S rRNA of all Thermodesulfovibrio species was designed and applied to thin sections of thermophilic sludge granules. Fluorescence in situ hybridization using the probe revealed rod- or vibrio-shaped cells as a significant population within the sludge, indicating their important role in the original ecosystem. PMID:18984690

Sekiguchi, Yuji; Muramatsu, Mizuho; Imachi, Hiroyuki; Narihiro, Takashi; Ohashi, Akiyoshi; Harada, Hideki; Hanada, Satoshi; Kamagata, Yoichi

2008-11-01

254

Methanotrophic bacteria.  

PubMed Central

Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

Hanson, R S; Hanson, T E

1996-01-01

255

Physiology, biochemistry, and genetics of a pure culture of an obligatory anaerobic bacterium that utilizes 2,4,-6-trinitrotoluene (TNT) and biodegradation of RDX by pure cultures of obligatory anaerobic bacteria of the genus clostridium. Final report, 1 September 1993-31 August 1996  

SciTech Connect

In work supported by the US AFOSR (grant F49620-94-1-0306) we are conducting detailed biochemical and genetic studies of three strains of Clostridium bifernientans, obligatory anaerobic bacteria that appear to completely degrade a variety of nitroaromatic compounds, including 2,4,6-trinitrotoluene (TNT). We are determining the optimal physiological conditions for the degradative activities of C. bifermentans strains; and identifying and characterizing enzymes and genes involved in the biotransformation of nitroaromatic compounds by C. bifermentans. In our AASERT supplemental grant(AFOSR-93-1-O464) we expanded these goals to the explosive RDX (1,3,5-triaza-1, 3,5-trinitrocyclohexane). The AASERT grant funded two graduate students, who characterized the ability of C. bifermentans to degrade RDX (Regan, K. N., and R.L. Crawford, 1994. Biotechnol. Kett. 16: 1081- 1086), and prepared both genomic and plasmid DNA libraries from C. bifermentans. This genetic work will accelerate our progress toward our goal of characterizing the genetics of TNT/RDx degradation by our clostridia (K. Diedrich, M.S. thesis, University of Idaho; in preparation).

Crawford, R.L.; Crawford, D.L.

1996-09-01

256

Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae)  

PubMed Central

In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation. PMID:22489111

Huang, Shengwei; Sheng, Ping; Zhang, Hongyu

2012-01-01

257

Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae).  

PubMed

In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation. PMID:22489111

Huang, Shengwei; Sheng, Ping; Zhang, Hongyu

2012-01-01

258

Photoenhanced anaerobic digestion of organic acids  

DOEpatents

A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

Weaver, Paul F. (Golden, CO)

1990-01-01

259

Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation  

NASA Astrophysics Data System (ADS)

The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron extraction and confirming the photosystem required for light capture. The geobiological implications of this phenomenon related to nitrogen-fixation and the evolution of O2 on Earth will be discussed.

Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

2010-12-01

260

Antibacterial activity of medicinal plant extracts against periodontopathic bacteria.  

PubMed

This study was performed to evaluate the antibacterial activity of Althaea officinalis L. roots, Arnica montana L. flowers, Calendula officinalis L. flowers, Hamamelis virginiana L. leaves, Illicium verum Hook. fruits and Melissa officinalis L. leaves, against anaerobic and facultative aerobic periodontal bacteria: Porphyromonas gingivalis, Prevotella spp., Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peptostreptococcus micros and Actinomyces odontolyticus. The methanol extracts of H. virginiana and A. montana and, to a lesser extent, A. officinalis were shown to possess an inhibiting activity (MIC < or = 2048 mg/L) against many of the species tested. In comparison, M. officinalis and C. officinalis extracts had a lower inhibiting activity (MIC > or = 2048 mg/L) against all the tested species with the exception of Prevotella sp. Illicium verum methanol extract was not very active though it had a particular good activity against E. corrodens. The results suggest the use of the alcohol extracts of H. virginiana, A. montana and A. officinalis for topical medications in periodontal prophylactics. PMID:12820224

Iauk, L; Lo Bue, A M; Milazzo, I; Rapisarda, A; Blandino, G

2003-06-01

261

FACULTE DES SCIENCES UNIVERSITE DE GENEVE REGLEMENT D'ORGANISATION DE LA FACULTE DES SCIENCES  

E-print Network

FACULTE DES SCIENCES UNIVERSITE DE GENEVE REGLEMENT D'ORGANISATION DE LA FACULTE DES SCIENCES règlement d'organisation de la Faculté, en vue de son approbation par le rectorat ; d) peut proposer au décanat des modifications des règlements et plans d'études ainsi que du règlement d'organisation de la

Halazonetis, Thanos

262

FACULTE DES SCIENCES UNIVERSITE DE GENEVE REGLEMENT D'ORGANISATION DE LA FACULTE DES SCIENCES  

E-print Network

FACULTE DES SCIENCES UNIVERSITE DE GENEVE REGLEMENT D'ORGANISATION DE LA FACULTE DES SCIENCES Au règlement d'organisation de la Faculté, en vue de son approbation par le rectorat ; d) peut proposer au décanat des modifications des règlements et plans d'études ainsi que du règlement d'organisation de la

Rochaix, Jean-David

263

Rglement d'organisation Facult des lettres 2013 REGLEMENT D'ORGANISATION  

E-print Network

Règlement d'organisation Faculté des lettres 2013 REGLEMENT D'ORGANISATION de la FACULTE DES sexes. #12;Règlement d'organisation Faculté des lettres 2013 2 REGLEMENT D'ORGANISATION - FACULTE DES LETTRES CHAPITRE I : SUBDIVISIONS DE LA FACULTE DES LETTRES Article 1 ­ Organisation de la Faculté

Halazonetis, Thanos

264

Invited review: anaerobic fermentation of dairy food wastewater.  

PubMed

Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy food waste. PMID:22981583

Hassan, A N; Nelson, B K

2012-11-01

265

FACULT DES SCIENCES HUMAINES ET SOCIALES -SORBONNE  

E-print Network

FACULT� DES SCIENCES HUMAINES ET SOCIALES - SORBONNE LICENCE EN SCIENCES HUMAINES ET SOCIALES ANN�E UNIVERSITAIRE 2013-2014 MENTION SCIENCES DE L'�DUCATION L3 Faculté des Sciences humaines et sociales

Pellier, Damien

266

FACULT DES SCIENCES HUMAINES ET SOCIALES -SORBONNE  

E-print Network

FACULT� DES SCIENCES HUMAINES ET SOCIALES - SORBONNE LICENCE EN SCIENCES HUMAINES ET SOCIALES ANN�E UNIVERSITAIRE 2013-2014 MENTION SCIENCES DU Vaillant 92100 Boulogne-Billancourt L3, M1 et M2 Faculté des Sciences

Pellier, Damien

267

One of Two hemN Genes in Bradyrhizobium japonicum Is Functional during Anaerobic Growth and in Symbiosis  

PubMed Central

Previously, we screened the symbiotic gene region of the Bradyrhizobium japonicum chromosome for new NifA-dependent genes by competitive DNA-RNA hybridization (A. Nienaber, A. Huber, M. Göttfert, H. Hennecke, and H. M. Fischer, J. Bacteriol. 182:1472–1480, 2000). Here we report more details on one of the genes identified, a hemN-like gene (now called hemN1) whose product exhibits significant similarity to oxygen-independent coproporphyrinogen III dehydrogenases involved in heme biosynthesis in facultatively anaerobic bacteria. In the course of these studies, we discovered that B. japonicum possesses a second hemN-like gene (hemN2), which was then cloned by using hemN1 as a probe. The hemN2 gene maps outside of the symbiotic gene region; it is located 1.5 kb upstream of nirK, the gene for a Cu-containing nitrite reductase. The two deduced HemN proteins are similar in size (445 and 450 amino acids for HemN1 and HemN2, respectively) and share 53% identical (68% similar) amino acids. Expression of both hemN genes was monitored with the help of chromosomally integrated translational lacZ fusions. No significant expression of either gene was detected in aerobically grown cells, whereas both genes were strongly induced (?20-fold) under microaerobic or anaerobic conditions. Induction was in both cases dependent on the transcriptional activator protein FixK2. In addition, maximal anaerobic hemN1 expression was partially dependent on NifA, which explains why this gene had been identified by the competitive DNA-RNA hybridization approach. Strains were constructed carrying null mutations either in individual hemN genes or simultaneously in both genes. All mutants showed normal growth in rich medium under aerobic conditions. Unlike the hemN1 mutant, strains lacking a functional hemN2 gene were unable to grow anaerobically under nitrate-respiring conditions and largely failed to fix nitrogen in symbiosis with the soybean host plant. Moreover, these mutants lacked several c-type cytochromes which are normally detectable by heme staining of proteins from anaerobically grown wild-type cells. Taken together, our results revealed that B. japonicum hemN2, but not hemN1, encodes a protein that is functional under the conditions tested, and this conclusion was further corroborated by the successful complementation of a Salmonella enterica serovar Typhimurium hemF hemN mutant with hemN2 only. PMID:11157943

Fischer, Hans-Martin; Velasco, Leonardo; Delgado, Maria J.; Bedmar, Eulogio J.; Schären, Simon; Zingg, Daniel; Göttfert, Michael; Hennecke, Hauke

2001-01-01

268

A novel application of an anaerobic membrane process in wastewater treatment.  

PubMed

The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

2005-01-01

269

EFFECTS OF NEAR-ULTRAVIOLET IRRADIATION ON GROWTH AND OXIDATIVE METABOLISM OF BACTERIA  

Microsoft Academic Search

The effects of irradiation with near-ultraviolet light (360 m mu ) have ; been studied with Escherichia coli W and a strain of Pseudomonas aeruginosa. The ; growth of the aerobe P. aeruginosa was inhibited by light on minimal salts media ; containing succinate, glutamate, or glucose as sole carbon sources. The ; facultative anaerobe E. coli was capable of

E. R. Kashket; A. F. Brodie

1962-01-01

270

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-print Network

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase II - A Survey who took concrete steps to install an anaerobic digestion (AD) facility and documentation motivated by being able to reduce odor and use the digested solids as animal bedding. Neither

271

46 CFR 308.544 - Facultative binder, Form MA-315.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME...Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo...

2010-10-01

272

Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens  

NASA Technical Reports Server (NTRS)

Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

1995-01-01

273

Anaerobes in ejaculates of subfertile men.  

PubMed

The clinical significance of micro-organisms in semen samples of asymptomatic subfertile patients is a matter of constant debate. Usually little attention is paid to anaerobic bacteria as they are sensitive to transportation and culturing, and differentiation is difficult, costly and time-consuming. In the present study, special screening was carried out for anaerobes in ejaculates in addition to the routine microbial cultures of genital secretions of both partners. In addition to standard semen analysis and evaluation of sperm ability to penetrate cervical mucus (CM) in vivo (post-coital testing) and in vitro using a standardized test system, semen samples from 126 randomly chosen males of couples with a median duration of infertility of 4 years were examined for colonization with anaerobic bacteria. All couples were without clinical signs or symptoms of genital tract infection. The special care taken for anaerobic growth in semen samples gave a high rate of positive cultures and showed that nearly all ejaculates (99%) were colonized with anaerobic micro-organisms, and potentially pathogenic species were found in 71% of men. This rate was more than four times higher than that obtained with routine cultures and standard transportation (16%). Anaerobic bacterial growth of > or = 10(6) colony forming units (CFU)/ml was seen in 42% (total range 10(3)-10(8) CFU/ ml). In addition, aerobic growth was found in 96% (> or = 10(6) CFU/ml in 21%), potentially pathogenic species in 61% of semen specimens. There were no marked differences in the prevalence of anaerobic micro-organisms in patients with reduced or normal sperm count, motility or morphology. Nor was there any significant difference in anaerobic colonization between samples with impaired or good ability to penetrate CM of female partners (in vivo or in vitro), or the CM of fertile donors in the in-vitro sperm-cervical mucus penetration test (SCMPT) in this asymptomatic group of patients. There was no clear association between microbial colonization and subsequent fertility in vivo within an observation period of 6 months. The results of this study suggest that anaerobic bacteria are often not detected when routine methods for microbial evaluation are used. This should be considered during assisted reproduction and in patients with symptoms of genital tract infection and should lead to further studies in infertile patients where subclinical infection or inflammation is indicated by specific markers in semen samples. PMID:9080220

Eggert-Kruse, W; Rohr, G; Ströck, W; Pohl, S; Schwalbach, B; Runnebaum, B

1995-09-01

274

Anaerobes in biofilm-based healthcare-associated infections.  

PubMed

Anaerobic bacteria can cause an infection when they encounter a permissive environment within the host. These opportunistic pathogens are seldom recovered as single isolates but more frequently are involved in polymicrobial infections, together with other anaerobes or aerobes. Nowadays it's known that some anaerobic bacteria are also able to grow as biofilm even if this feature and its role in the healthcare-associated infections (HAIs) are still poorly characterized. As consequence, the involvement of biofilm-forming anaerobic bacteria in infections related to healthcare procedures, including surgery and medical devices implantation, is underestimated.The current knowledge on the role of biofilm-growing anaerobes in HAIs has been here reviewed, with particular reference to respiratory, intestinal, intra-abdominal, wound, and urogenital tract infections. Even if the data are still scarce, the ability to form biofilm of opportunistic anaerobic species and their possible role as causative agents of HAIs should alert even more clinicians and microbiologists on the need to search for anaerobes in clinical samples when their presence can be reasonably assumed. PMID:25366223

Vuotto, Claudia; Donelli, Gianfranco

2015-01-01

275

ANAEROBIC WASTEWATER TREATMENT PROCESS  

Microsoft Academic Search

Anaerobic wastewater treatment differs from conventional aerobic treatment. The absence of oxygen leads to controlled conversion of complex organic pollutions, mainly to carbon dioxide and methane. Anaerobic treatment has favourable effects like removal of higher organic loading, low sludge production, high pathogen removal, biogas gas production and low energy consumption. Psychrophilic anaerobic treatment can be an attractive option to conventional

B. Mrowiec; J. Suschka

276

Thioredoxin is Essential for Rhodobacter Sphaeroides Growth by Aerobic and Anaerobic Respiration  

Microsoft Academic Search

To investigate the biological role of thioredoxin in the facultative photosynthetic bacterium Rhodobacfer sphaeroides, attempts were made to construct a thioredoxin-def icient mutant by site-specif ic mutagenesis, using the Tn903 kanamycin resistance gene for selection. In situ and Southern hybridization analyses have demonstrated that the TmA- mutation is lethal for R. sphaeroides growth under anaerobic conditions with DMSO as terminal

Cede Pasternak; K. Assemat; J. D. Clement-Metral; G. Klug

1997-01-01

277

Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor ?  

PubMed Central

Anaerobic ammonium oxidation (anammox) is a promising new process to treat high-strength nitrogenous wastewater. Due to the low growth rate of anaerobic ammonium-oxidizing bacteria, efficient biomass retention is essential for reactor operation. Therefore, we studied the settling ability and community composition of the anaerobic ammonium-oxidizing granules, which were cultivated in an upflow anaerobic sludge blanket (UASB) reactor seeded with aerobic granules. With this seed, the start-up period was less than 160 days at a NH4+-N removal efficiency of 94% and a loading rate of 0.064 kg N per kg volatile suspended solids per day. The formed granules were bright red and had a high settling velocity (41 to 79 m h?1). Cells and extracellular polymeric substances were evenly distributed over the anaerobic ammonium-oxidizing granules. The high percentage of anaerobic ammonium-oxidizing bacteria in the granules could be visualized by fluorescent in situ hybridization and electron microscopy. The copy numbers of 16S rRNA genes of anaerobic ammonium-oxidizing bacteria in the granules were determined to be 4.6 × 108 copies ml?1. The results of this study could be used for a better design, shorter start-up time, and more stable operation of anammox systems for the treatment of nitrogen-rich wastewaters. PMID:20190088

Ni, Bing-Jie; Hu, Bao-Lan; Fang, Fang; Xie, Wen-Ming; Kartal, Boran; Liu, Xian-Wei; Sheng, Guo-Ping; Jetten, Mike; Zheng, Ping; Yu, Han-Qing

2010-01-01

278

Culturable heterotrophic bacteria associated with healthy and bleached scleractinian Madracis decactis and the fireworm Hermodice carunculata from the remote St. Peter and St. Paul Archipelago, Brazil.  

PubMed

We report on the first characterization of the culturable heterotrophic bacteria of the scleractinian Madracis decactis. In addition, we characterized the culturable bacteria associated with the fireworm Hermodice carunculata, observed predating partially bleached coral colonies. Our study was carried out in the remote St. Peter and St. Paul Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. We constituted a 403 isolates collection and subsequently characterized it by means of pyrH and 16S rRNA partial sequences. We identified Photobacterium, Bacillus, and Vibrio species as members of the culturable microbiota of healthy M. decactis. V. campbellii, V. harveyi, V. communis, and V. maritimus were the most commonly found Vibrio species in healthy corals, representing more than 60 % of all vibrio isolates. Most of the vibrios isolated from the fireworm's tissues (n = 143; >90 %) were identified as V. shiloi. However, we did not recover V. shiloi from bleached M. decactis. Instead, we isolated V. communis, a novel Photobacterium species, Bacillus, Kocuria, and Pseudovibrio, suggesting a possible role of other facultative anaerobic bacteria and/or environmental features (such as water quality) in the onset of bleaching in SPSPA's M. decactis. PMID:23979060

Moreira, Ana Paula B; Tonon, Luciane A Chimetto; Pereira, Cecilia do Valle P; Alves, Nelson; Amado-Filho, Gilberto M; Francini-Filho, Ronaldo Bastos; Paranhos, Rodolfo; Thompson, Fabiano L

2014-01-01

279

Spore-Forming Bacteria that Resist Sterilization  

NASA Technical Reports Server (NTRS)

A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

LaDuc, Myron; Venkateswaran, Kasthuri

2003-01-01

280

Control of nitrogen fixation by oxygen in purple nonsulfur bacteria  

Microsoft Academic Search

Some members of the facultatively phototrophic bacteria are able to grow diazotrophically in the presence of oxygen. As in\\u000a other diazotrophs, the nitrogenase of the phototrophic bacteria is highly sensitive to oxygen; therefore, both the function\\u000a and the expression of nitrogenase are strictly controlled by oxygen. This review focuses on the different levels of oxygen\\u000a control in the two most

Jürgen Oelze; Gesine Klein

1996-01-01

281

The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca M5a1 and other enteric bacteria display convergent evolution  

Microsoft Academic Search

Enteric bacteria (Enteriobacteriaceae) carry on their single chromosome about 4000 genes that all strains have in common (referred to here as “obligatory genes”), and up to 1300 “facultative” genes that vary from strain to strain and from species to species. In closely related species, obligatory and facultative genes are orthologous genes that are found at similar loci. We have analyzed

A. Shakeri-Garakani; A. Brinkkötter; K. Schmid; S. Turgut; J. W. Lengeler

2004-01-01

282

Application of enzymes in anaerobic digestion.  

PubMed

Owing to the very low economic value of brewer's spent grains, its utilisation for biogas production is very promising. The hydrolysis of ligno-cellulose is the rate limiting step in anaerobic digestion. Enzymatic pre-treatment promotes the hydrolysis of ligno-cellulose, breaking it down to lower molecular weight substances which are ready to be utilised by the bacteria. A cheap raw multi-enzyme produced by a solid state fermentation (SSF) process is a good substitute for expensive conventional enzyme. The SSF enzyme application to spent grain has been investigated by carrying out enzymatic solubility tests, hydrolytic experiments and two-step anaerobic fermentation of spent grain. Gas chromatograph analysis was conducted to quantify fatty acids concentrations, while CH(4), CO(2), O(2), H(2) and H(2)S were measured to determine biogas quality by means of a gas analyser. DS, oDS, pH were also measured to analyse the anaerobic digestion. The result shows that enzyme application promotes the hydrolysis of ligno-cellulose, indicated by higher enzymatic solubility and fatty acid concentration in a hydrolytic bioreactor. Moreover, biogas production is also increased. The quality of the gases produced is also enhanced. Since the anaerobic digestion can be operated in a stable performance, it can also be concluded that SSF enzyme is compatible with anaerobic digestion. PMID:18048974

Bochmann, G; Herfellner, T; Susanto, F; Kreuter, F; Pesta, G

2007-01-01

283

Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan  

NASA Astrophysics Data System (ADS)

Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

2011-04-01

284

Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.  

PubMed

Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater. PMID:21216490

Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

2011-04-01

285

46 CFR 308.545 - Facultative cargo policy, Form MA-316.  

Code of Federal Regulations, 2010 CFR

... false Facultative cargo policy, Form MA-316. 308.545 Section 308.545...545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained from the...

2010-10-01

286

Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography  

PubMed Central

Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the “actinorhizal” symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%–98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses. PMID:17151343

Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, Johann Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry, Alison M.; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, Maria Pilar; Goltsman, Eugene; Huang, Ying; Kopp, Olga R.; Labarre, Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez, Michele; Mastronunzio, Juliana E.; Mullin, Beth C.; Niemann, James; Pujic, Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt, Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde, Claudio; Wall, Luis G.; Wang, Ying; Medigue, Claudine; Benson, David R.

2007-01-01

287

[Study on technological characters of anaerobic-aerobic bioreactor landfill].  

PubMed

A technology of anaerobic-aerobic landfill bioreactor aimed at reusing landfill site is studied, and it's based on landfill bioreactor technology. A set of stimulating equipment is designed, and the technology characters are studied. In the anaerobic period, technological conditions are controlled by the means of leachate recirculation. The main experimental results are: pH, R1 rises to 6.7 - 7.8 in 6 weeks, and R2 is under 6.8 in 17 weeks; COD concentration of leachate, R1 declines to 10 617 mg/L in 13 weeks, while R2 rises to 60 000 mg/L in 5 weeks, and keeps stabilization in long time; the cumulating methane production, R1 reaches 44% in 8 weeks, while R2 almost cannot produce methane. The stabilization can be evaluated by pH of leachate, COD and BOD5/COD decreasing ratio, and cumulating methane production. They are main evidences to transform anaerobic period to aerobic period. In the aerobic period, odor and moisture are reduced by the means of aeration. The main experimental results are: ammonia concentration reduces to 1.16 mg/m3 in 19 days, and the odor concentration reduces to 19 in 23 days; the moisture of the wastes reduces to 26% in 14 days. The technological indexes to evaluate finishing of this period can be determined by the ultimately purpose of exploited wastes. Numerical modeling has been researched with the use of experimental data. The succession of microbes in the anaerobic-aerobic course is studied by RISA (ribosomal intergenic spacer analysis) analysis. There are 4 preponderant groups in this course, and some facultative anaerobes play important roles in the transition of anaerobic period to aerobic period. PMID:17639956

Chen, Zhu-Lei; Zhou, Chuan-Bin; Liu, Ting; Jiang, Juan; Cao, Li; Lü, Zhi-Zhong; Li, Xi-Kun; Li, Xiao-Bao

2007-04-01

288

In Vitro Activities of Telavancin and Six Comparator Agents against Anaerobic Bacterial Isolates?  

PubMed Central

The antimicrobial activities of telavancin and six comparators were evaluated against 460 isolates of anaerobic bacteria. Telavancin demonstrated excellent activity against gram-positive anaerobes (MIC90, 2 ?g/ml) and was the most potent agent tested against Clostridium difficile (MIC90, 0.25 ?g/ml). As expected, gram-negative isolates were not inhibited by telavancin. PMID:19581457

Finegold, Sydney M.; Bolanos, Mauricio; Sumannen, Paula H.; Molitoris, Denise R.

2009-01-01

289

Anaerobic thermophilic culture  

DOEpatents

A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01

290

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-print Network

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase I - A Survey of U concrete steps to install an anaerobic digestion (AD) facility and documentation of the factors to reduce odor and use the digested solids as animal bedding. Neither of these factors was a motivator

291

A simple and efficient method for preparing and dispensing anaerobic media  

Microsoft Academic Search

Summary An Oxford pipettor (model S-A) was used for simultaneously preparing and dispensing anaerobic media. Media prepared by this method have been successfully used for cultivation of extremely thermophilic bacteria.

B. K. C. Patel; H. W. Morgan; R. M. Daniel

1985-01-01

292

Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy  

E-print Network

Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria ...

Zaks, David P. M.

293

Saccharomyces cerevisiae live cells stimulate degradation and fermentation of cellulose by the rumen anaerobic  

E-print Network

Saccharomyces cerevisiae live cells stimulate degradation and fermentation of cellulose fermentation patterns and to increase numbers of rumen bacteria, especially cellulolytic species (Wallace and fermentation of cellulose by an anaerobic fungus, Neocallimastix frontalis MCH3, which is particularly

Paris-Sud XI, Université de

294

Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.  

PubMed

In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71?×?10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments. PMID:25219532

Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

2015-02-01

295

Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source  

Microsoft Academic Search

Five obligate anaerobes that were most closely related to Clostridium bifermentans, Clostridium celerecrescens, Clostridium saccharolyticum, Clostridium butyricum and Desulfovibrio desulfuricans by their 16S rRNA genes sequences were isolated from enrichment cultures using hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source. The above isolates transformed RDX at rates of 24.0, 5.4, 6.2, 2.5, 5.5 ?mol h?1 g (dry weight) of cells?1, respectively, to

Jian-Shen Zhao; Jim Spain; Jalal Hawari

2003-01-01

296

Intestinal Bacteria And The Hydrolysis Of Glycosidic Bonds  

Microsoft Academic Search

WITH the development of effective anaerobic techniques, the composition of the human intestinal bacterial flora is now more clearly understood. Although the detailed composition is dependent on the nature of the diet (see, for example, Hill et al., 1971), in all cases studied the predominant faecal bacteria are those of the non-sporing strictly anaerobic groups. The metabolic significance of the

GABRIELLE HAWKSWORTH; B. S. Drasar; M. J. Hili

1971-01-01

297

ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER  

SciTech Connect

During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

John R. Gallagher

2001-07-31

298

Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions.  

PubMed

Caulobacteria are presumed to be responsible for considerable mineralization of organic material in aquatic environments. In this study, a facultative, mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated from sediments which were taken from a shallow freshwater lake and then enriched with amendment of submerged macrophyte for three months. This strain seemed to evolve a capacity to adapt redox-fluctuating environments, and could degrade cellulose both aerobically and anaerobically. Cellulose degradation percentages under aerobic and anaerobic conditions were approximately 27% and 10% after a 240-h incubation in liquid mediums containing 0.5% cellulose, respectively. Either cellulose or cellobiose alone was able to induce activities of endoglucanase, exoglucanase, and ?-1,4-glucosidase. Interestingly, ethanol was produced as the main fermentative product under anaerobic incubation on cellulose. These results could improve our understanding about cellulose-degrading process in aquatic environments, and were also useful in optimizing cellulose bioconversion process for bioethanol production. PMID:23357088

Song, Na; Cai, Hai-Yuan; Yan, Zai-Sheng; Jiang, He-Long

2013-03-01

299

Equations and calculations for fermentations of butyric acid bacteria  

Microsoft Academic Search

Saccharolytic clostridia grow anaerobically on a variety of substrates, can produce a large number of useful prod- uct~,~-~ and thus appear to be very promising bacteria for production of organic chemicals from mono-, oligo-, and polysaccharides. Butyric acid bacteria (clostridia) in par- ticular, can anaerobically ferment a variety of sugars (hex- oses, pentoses, and oligosac~harides )~~~~~ to produce a variety

Eleftherios Terry Papoutsakis

1984-01-01

300

Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides.  

PubMed

All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment. PMID:17071828

Liapounova, Natalia A; Hampl, Vladimir; Gordon, Paul M K; Sensen, Christoph W; Gedamu, Lashitew; Dacks, Joel B

2006-12-01

301

Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides? †  

PubMed Central

All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment. PMID:17071828

Liapounova, Natalia A.; Hampl, Vladimir; Gordon, Paul M. K.; Sensen, Christoph W.; Gedamu, Lashitew; Dacks, Joel B.

2006-01-01

302

Pseudomonas aeruginosa, a facultative pathogen of red palm weevil, Rhynchophorus ferrugineus.  

PubMed

Pseudomonas aeruginosa was identified as a facultative pathogen of red palm weevil. Intra-haemocoelic injection of the pathogen within larvae and pre-pupae was more effective at killing the insects [with a median lethal dose (LD50) of 9×10(2) to 2×10(3) bacteria/insect] than inoculation by force feeding (LD50 of 10(5) to 4×10(5) bacteria/insect) or by wading the insects in a suspension of the pathogen (LD50 of 10(5) to 2×10(5) bacteria/insect). Injection of 3×10(3) bacteria/insect killed 69% of larvae; small larvae were more susceptible (LD50 of 9×10(5) bacteria/larva) than either larger larvae (LD50 of 10(3) bacteria/larva) or pre-pupa. The median time to death of the small larvae following injection of P. aeruginosa was about 6 days but that following force feeding or wading was about 8 days. A secondary invader, Serratia marcescens, had no effect on the pathogenicity of P. aeruginosa but hastened death of larvae by about 3 days. PMID:24415007

Banerjee, A; Dangar, T K

1995-11-01

303

Some unique features of alkaliphilic anaerobes  

NASA Astrophysics Data System (ADS)

This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

2013-09-01

304

Agar medium for gas-liquid chromatography of anaerobes.  

PubMed

This study evaluates a method of performing gas-liquid chromatography (GLC) by direct extraction of fatty acids from agar for identification of clinically significant anaerobic bacteria. The potential use of agar cultures for GLC was studied by comparing chromatograms of 117 clinically isolated anaerobes grown in peptone yeast glucose broth and chopped meat carbohydrate broth, and on enriched brucella blood agar. For 98 of 117 anaerobes, fatty acid patterns from agar cultures were similar to those in broth. Significant differences were only found with Streptococcus intermedius, Clostridium perfringens, Clostridium tertium, and Actinomyces species, which produced less of certain fatty acids on agar than in broth. Results of this study indicate that GLC of short chain fatty acids produced on agar medium by anaerobes, combined with simple tests such as Gram's stain and colonial morphology, may allow fir direct presumptive genus identification from an initial pure agar culture. PMID:3940426

Pankuch, G A; Appelbaum, P C

1986-01-01

305

Aerobic and anaerobic cecal bacterial flora of commercially processed broilers  

Technology Transfer Automated Retrieval System (TEKTRAN)

Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

306

Anaerobic respiration with elemental sulfur and with disulfides  

Microsoft Academic Search

Anaerobic respiration with elemental sulfur\\/polysulfide or organic disulfides is performed by several bacteria and archaea, but has only been investigated in a few organisms in detail. The electron transport chain that catalyzes polysulfide reduction in the Gram-negative bacterium Wolinella succinogenes consists of a dehydrogenase (formate dehydrogenase or hydrogenase) and polysulfide reductase. The enzymes are integrated in the cytoplasmic membrane with

Reiner Hedderich; Oliver Klimmek; Achim Kröger; Reinhard Dirmeier; Martin Keller; Karl O. Stetter

1998-01-01

307

Original article Effect of anaerobic fungi on glycoside hydrolase  

E-print Network

Original article Effect of anaerobic fungi on glycoside hydrolase and polysaccharide depolymerase; the cellulolytic bacteria and fungi established popula- tions in the 4 lambs that were similar to those observed in conventional animals. The presence of fungi led to an increase in the activity of most of the glycoside

Paris-Sud XI, Université de

308

Worldwide populations of APHIS CRACCIVORA have diverse facultative bacterial symbionts  

Technology Transfer Automated Retrieval System (TEKTRAN)

Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolution in a dynamic selective environment....

309

Bacteria Community in the Terrestrial Deep Subsurface Microbiology Research of the Chinese Continent Scientific Drilling  

NASA Astrophysics Data System (ADS)

Microbial communities in the deep drill cores from the Chinese Continent Scientific Drilling were analyzed with culture-independent and dependent techniques. Genomic DNA was extracted from two metamorphic rocks: S1 from 430 and S13 from 1033 meters below the ground surface. The 16S rRNA gene was amplified by polymerase chain reaction (PCR) followed by cloning and sequencing. The total cell number was counted using the 4',6-diamidino-2-phenylindole (DAPI) staining and biomass of two specific bacteria were quantified using real-time PCR. Enrichment was set up for a rock from 3911 meters below the surface in medium for authotrophic methanogens (i.e., CO2 + H2). The total cell number in S13 was 1.0 × 104 cells per gram of rock. 16S rRNA gene analysis indicated that low G + C Gram positive sequences were dominant (50 percent of all 54 clone sequenced) followed by the alpha-, beta, and gamma-Proteobacteria. Within the low G + C Gram positive bacteria, most clone sequences were similar to species of Bacillus from various natural environments (deserts, rivers etc.). Within the Proteobacteria, our clone sequences were similar to species of Acinetobacter, Acidovorax, and Aeromonas. The RT-RCP results showed that biomass of two particular clone sequences (CCSD1305, similar to Aeromonas caviae and CCSD1307, similar to Acidovorax facilis) was 95 and 1258 cells/g, respectively. A bacterial isolate was obtained from the 3911-m rock in methanogenic medium. It was Gram negative with no flagella, immobile, and facultative anaerobic, and grows optimally at 65oC. Phylogenetic analysis indicated that it was closely related to the genus of Bacillus. Physiological tests further revealed that it was a strain of Bacillus caldotenax.

Wang, Y.; Xia, Y.; Dong, H.; Dong, X.; Yang, K.; Dong, Z.; Huang, L.

2005-12-01

310

Comparison of media in the Anaerobe-Tek and Presumpto plate systems and evaluation of the Anaerobe-Tek system for identification of commonly encountered anaerobes.  

PubMed Central

Using a variety of sporeforming and nonsporeforming anaerobic bacteria, we compared 10 differential agar media of the Anaerobe-Tek (A/T) system recently marketed by Flow Laboratories, Inc. (McLean, Va.) with 10 comparable media in Presumpto quadrant plates (Presumpto 1, 2, and 3) developed by the Centers for Disease Control Anaerobic Bacteria Branch. The A/T identification system was evaluated by comparing the species identity of anaerobes determined as recommended by the manufacturer's instruction manual with the identity of the strains obtained by the Centers for Disease Control Anaerobe Reference Laboratory by using conventional procedures. We also compared reactions obtained with the Presumpto plates with a chopped meat glucose broth culture as a source of inoculum with those obtained by using a turbid cell suspension from growth on blood agar as inoculum. The agreement of results for the 16 characteristics compared ranged from 92.8 to 100%. Comparison of test results obtained with 10 media in the Presumpto plate and A/T systems from the examination of 223 strains of anaerobes, representing 54 different taxa, showed the following agreement between A/T and CDC systems: catalase production, esculin hydrolysis, glucose fermentation, and lecithinase production (100%); inhibition of growth by bile agar (99.6%); lipase production (99%); DNase (98.7%); fermentation of lactose and mannitol (98.2%); starch hydrolysis (96.9%); gelatin hydrolysis (96.4%); and casein hydrolysis (94.6%). Of the 204 strains of common anaerobes tested with the A/T system, only 70% were correctly identified to the species level. However, several strains could have been identified correctly with the A/T system if data on certain other characteristics had been included in the A/T data base. PMID:6761359

Lombard, G L; Whaley, D N; Dowell, V R

1982-01-01

311

Bacteria Museum  

NSDL National Science Digital Library

Who knew that bacteria had their own virtual museum? Here, visitors will "learn that not all bacteria are harmful, how they are used in industry, that they belong to the oldest living creatures on Earth", and many more interesting facts to discover about the diverse world of bacteria. The "Bacterial Species Files" tab at the top of the page, allows visitors to look up information on 40 different specific bacteria, from Anthrax to Yersinia enterocolitica. The information provided for each bacterium includes photographs, consumer guides, fact sheets, and scientific links. Visitors will find that the "Main Exhibits" tab addresses the basics about bacteria, as well as "Pathogenic Bacteria", "Evolution", "How We Fight Bacteria", and "Food and Water Safety". Visitors will surely enjoy the "Good Bacteria in Food" link found in the Food and Water Safety section, as it explains how some foods benefit from good bacteria, such as Swiss cheese, sausage, sauerkraut, chocolate, and coffee.

312

Gender comparisons in anaerobic power and anaerobic capacity tests.  

PubMed Central

The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gross work completed and relative to body weight. However, these differences are reduced when data is adjusted for body weight and further reduced when corrected for FFM. The study found no significant differences between men and women in either anaerobic power or anaerobic capacity when values were given relative to FFM. PMID:3730753

Maud, P J; Shultz, B B

1986-01-01

313

Brief report Nitrogen fixation by reductively dechlorinating bacteria  

E-print Network

biogeochemical cycles to control the nitrogen status of the anaerobic ecosystem. Introduction A wide range of manBrief report Nitrogen fixation by reductively dechlorinating bacteria Xiongfei Ju, Liping Zhao that reductively dechlorinat- ing bacteria are capable of fixing atmospheric nitrogen. Furthermore, N2 fixation

Sun, Baolin

314

Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria  

Microsoft Academic Search

Many thermophilic bacteria belong to groups with deep phylogenetic lineages and ancestral forms were established before the occurrence of eucaryotes that produced cellulose and hemicellulose. Thus they may have acquired their ?-glycanase genes from more recent mesophilic bacteria. Most research has focussed on extremely thermophilic eubacteria growing above 65°C under anaerobic conditions. Only recently have aerobic cellulolytic thermophiles been described

Peter L Bergquist; Moreland D Gibbs; Daniel D Morris; V. S. Junior Te'o; David J Saul; Hugh W Morgan

1999-01-01

315

ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS  

EPA Science Inventory

Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

316

THERMOPHILIC ANAEROBIC BIODEGRADATION OF PHENOLICS  

EPA Science Inventory

The report gives results of a series of anaerobic microbial acclimation and treatment performance tests with synthetic phenolic substrates. The research is a feasibility level assessment of substituting anaerobic biodegradation of phenolics for solvent extraction. The tests showe...

317

Evolution and Diversity of Clonal Bacteria: The Paradigm of Mycobacterium tuberculosis  

E-print Network

Evolution and Diversity of Clonal Bacteria: The Paradigm of Mycobacterium tuberculosis Tiago Dos, Faculte´ de Me´dicine, Universite´ Paris V, Paris, France Background. Mycobacterium tuberculosis complexR) genes in a comprehensive selection of M. tuberculosis complex strains from across the world

Paris-Sud XI, Université de

318

Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean  

Microsoft Academic Search

The vertical distribution of bacteriochlorophyll a, the numbers of infrared fluorescent cells, and the variable fluorescence signal at 880 nanometers wave- length, all indicate that photosynthetically competent anoxygenic phototrophic bacteria are abundant in the upper open ocean and comprise at least 11% of the total microbial community. These organisms are facultative photohetero- trophs, metabolizing organic carbon when available, but are

Zbigniew S. Kolber; F. Gerald Plumley; Andrew S. Lang; J. Thomas Beatty; Robert E. Blankenship; Cindy L. VanDover; Costantino Vetriani; Michal Koblizek; Christopher Rathgeber; Paul G. Falkowski

2001-01-01

319

Comparative Evaluation of Anaerobic Bacterial Communities Associated with Roots of Submerged Macrophytes Growing in Marine or Brackish Water Sediments  

EPA Science Inventory

Sediment microbial communities are important for seagrass growth and carbon cycling, however relatively few studies have addressed the composition of prokaryotic communities in seagrass bed sediments. Selective media were used enumerate culturable anaerobic bacteria associated ...

320

Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria*S  

E-print Network

are a relatively newly discovered group of anaerobic photosynthetic bacteria. All of the cultured heliobac- teria require organic carbon for anoxygenic growth, and several of the species can fix nitrogen (1, 2). Heliobacteria are the only cultured Gram-positive photosynthetic bacteria and are phylo- genetically related

Alvarez-Cohen, Lisa

321

Degradation of Phthalic Acids by Denitrifying, Mixed Cultures of Bacteria  

PubMed Central

Mixed cultures of bacteria, enriched from aquatic sediments, grew anaerobically on all three isomers of phthalic acid. Each culture grew anaerobically on only one isomer and also grew aerobically on the same isomer. Pure cultures were isolated from the phthalic acid (o-phthalic acid) and isophthalic acid (m-phthalic acid) enrichments that grew aerobically on phthalic and isophthalic acids. Cell suspension experiments indicated that protocatechuate is an intermediate of aerobic catabolism. Pure cultures which grew aerobically on terephthalic acid (p-phthalic acid) could not be isolated from the enrichments, and neither could pure cultures that grew anaerobically on any of the isomers. Cell suspension experiments suggested that separate pathways exist for the aerobic and anaerobic oxidation of phthalic acids. Each enrichment culture used only one phthalic acid isomer under anaerobic conditions, but all isomers were simultaneously adapted for the anaerobic catabolism of benzoate. Cells grown anaerobically on a phthalic acid immediately attacked the isomer under anaerobic conditions, whereas there was a lag before aerobic breakdown occurred, and, for phthalic and terephthalic acids, chloramphenicol stopped aerobic adaptation but had no effect on anaerobic catabolism. This work suggests that phthalic acids are biodegradable in anaerobic environments. PMID:16345769

Aftring, R. Paul; Chalker, Bruce E.; Taylor, Barrie F.

1981-01-01

322

Anaerobic treatment of effluents from an industrial polymers synthesis plant  

SciTech Connect

The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2,000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter-height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS {times} d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2,200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m{sup 3} {times} d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH{sub 4}/kg COD fed, biogas composition: 70--75% methane and a COD removal percentage > 75%.

Araya, P.; Aroca, G.; Chamy, R. [Univ. Catolica de Valparaiso (Chile). School of Biochemical Engineering] [Univ. Catolica de Valparaiso (Chile). School of Biochemical Engineering

1999-06-01

323

Anaerobic digestion of dairy manure with enhanced ammonia removal.  

PubMed

Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor. PMID:17257738

Uludag-Demirer, S; Demirer, G N; Frear, C; Chen, S

2008-01-01

324

Fg/tudiants/AESS/formulaires/Facult Pharma.Conv.Stage 26/08/2013 1/3 FACULTE DE PHARMACIE Anne acadmique  

E-print Network

Fg/étudiants/AESS/formulaires/Faculté Pharma.Conv.Stage 26/08/2013 1/3 FACULTE DE PHARMACIE Année stage : école qui accueille le stagiaire #12;Fg/étudiants/AESS/formulaires/Faculté Pharma.Conv.Stage 26

Cerf, Nicolas

325

The Facultative Symbiont Rickettsia Protects an Invasive Whitefly Against Entomopathogenic Pseudomonas syringae Strains.  

PubMed

Facultative endosymbionts can benefit insect hosts in a variety of ways, including context dependent roles such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies leading to host death and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. PMID:25217020

Hendry, Tory A; Hunter, Martha S; Baltrus, David A

2014-09-12

326

Anaerobic thermophilic culture system  

DOEpatents

A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01

327

Universit d'Ottawa Facult de gnie  

E-print Network

technologies * Kinetics of cell growth and recombinant protein expression of lactic acid bacteria, the most and purification of phytochemicals from plant biomass * Microalgae cultivation system development for combined

Petriu, Emil M.

328

Degradation of plant cell wall polysaccharides by rumen bacteria and fungi  

E-print Network

Degradation of plant cell wall polysaccharides by rumen bacteria and fungi E Forano V Broussolle R population consisting of obligate anaerobic bacteria, archaea, fungi and protozoa. The major structural polysaccharide breakdown have also been isolated from rumen bacteria and fungi, and their sequences have been

Paris-Sud XI, Université de

329

Anaerobic digestion of microalgal biomass after ultrasound pretreatment.  

PubMed

High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16-67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16-100%), hydrolysis rate (25-56%) and methane yield (6-33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS). PMID:25002372

Passos, Fabiana; Astals, Sergi; Ferrer, Ivet

2014-11-01

330

Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.  

PubMed

This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

2013-01-01

331

Degradation of methylmercury by bacteria isolated from environmental samples.  

PubMed

A total of 207 bacterial cultures, isolated from environmental samples, was screened for ability to degrade methylmercury. Of these, 30 were found positive for aerobic demethylation. Twenty-two of these were shown to be facultative anaerobes and 21 of these degraded methylmercury anaerobically. All positive species volatilized methylmercury aerobically, and methane was produced as a degradation product. Although methylmercury degradation was complete in most cases, material balances indicated some of the inorganic mercury formed was not volatilized and is presumed bound to the cells. All positive isolates were tolerant to at least 0.5 mug of methylmercury per ml, and the extent of volatilization of mercury increased with concentration to the threshold value. The results indicate that demethylating species are prevalent in the environment and may be important in suppressing the methylmercury content of sediments. PMID:4572979

Spangler, W J; Spigarelli, J L; Rose, J M; Flippin, R S; Miller, H H

1973-04-01

332

Supplementary Information Pre-enrichment procedure for enhanced start-up of anaerobic facultatively  

E-print Network

) biotic replicates and (c) control reactors to examine excreted metabolites. Red arrows show to peak zero of BES operation are from degassing of medium and reactor headspace with 20% CO2 and from sodium-up experiment without pre-enrichment step. Current density produced by two replicate reactors (B1 and B2

333

Potential application of anaerobic extremophiles for hydrogen production  

NASA Astrophysics Data System (ADS)

In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data with the rates of hydrogen productivity for S. americana ASpG1 isolated from soda Mono Lake in California.

Pikuta, Elena V.; Hoover, Richard B.

2004-11-01

334

ROLE OF INITIAL SUCROSE AND PH LEVELS ON NATURAL, HYDROGEN-PRODUCING, ANAEROBE GERMINATION  

Microsoft Academic Search

Anaerobic batch cultures were established to assess natural anaerobic sporulation, germination, and hydrogen production. Heat-shocked soil inocula obtained from a potato field was cultured using sucrose as the substrate. Eleven batch experimental results suggested that baking was an excellent heat-shock treatment to select for spore forming hydrogen-producing bacteria i.e. clostridia from the soil. Sucrose could induce clostridial spore germination and

Steven Van Ginkel; ShihWu Sung; Ling Li

2001-01-01

335

Comparison of the BACTEC MYCO/F Lytic bottle to the isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the Isolator tube for recovery of bacteria, mycobacteria, and fungi from blood.  

PubMed

The BACTEC MYCO/F Lytic blood culture bottle (Becton Dickinson Diagnostic Instrument Systems, Sparks, Md.) is designed to optimize the recovery of fungi and mycobacteria; however, this bottle also supports the growth of most aerobic bacteria. We compared the MYCO/F Lytic bottle with two other BACTEC bottles and the Isolator system for the recovery of bacteria as well as fungi and mycobacteria from blood. A total of 6,108 blood culture sets were inoculated with blood obtained from adult patients. Twenty-five to 28 ml of blood collected by a phlebotomy team for each blood culture set was randomly distributed into each of four blood culture receptacles: the Isolator tube (Wampole Laboratories, Cranbury, N.J.) and three BACTEC bottles: the MYCO/F Lytic bottle, the BACTEC Plus Aerobic/F bottle, and the BACTEC Anaerobic Lytic/10 bottle. The sediment from the Isolator tube was inoculated onto chocolate agar (CA), brain heart infusion agar (BHI), and Sabouraud dextrose agar (SDA) and into a BACTEC 13A bottle. Incubation durations were as follows: MYCO/F Lytic bottle, 42 days; Plus Aerobic/F bottle, 5 days; Anaerobic Lytic/10 bottle, 5 days; sediment from Isolator tube on CA, 3 days; sediment from Isolator tube on BHI, 30 days; sediment from Isolator tube on SDA, 30 days; and sediment from Isolator tube in a BACTEC 13A bottle, 42 days. Two isolates of Histoplasma capsulatum were recovered from the Isolator tube only. Three isolates of Mycobacterium tuberculosis complex were recovered: two isolates from the MYCO/F Lytic bottle only and one isolate from the Isolator tube (whose sediment was inoculated into the BACTEC 13A bottle) only. Two isolates of Cryptococcus neoformans were recovered: one from the MYCO/F Lytic bottle only and the other from the MYCO/F Lytic bottle and the Isolator tube (whose sediment was inoculated into the BACTEC 13A bottle). For potential pathogens overall, there was a statistical difference in recovery that favored the Isolator system over the MYCO/F Lytic bottle (P = 0.0015), including statistically significant differences for Staphylococcus aureus (P = 0.0001) and Streptococcus pneumoniae (P = 0.0313). However, there was no statistically significant difference between the two blood culture systems when detection of bloodstream infection was considered. The time to detection for all potential pathogens combined was less for the MYCO/F Lytic bottle than for the Isolator system (P = 0.0004). Overall, the potential pathogen recovery was greater for the BACTEC Plus Aerobic/F bottle than for either the Isolator system (P = 0.0003) or the MYCO/F Lytic bottle (P = 0.0001). However, the BACTEC Plus Aerobic/F bottle did not recover M. tuberculosis, H. capsulatum, or C. neoformans isolates. The combination of the Isolator system and MYCO/F Lytic bottle may be useful as a selective blood culture method to optimize the recovery of fungi and mycobacteria from blood. Compared with the manual Isolator system, the MYCO/F Lytic system has the advantage of less preanalytic processing and continuous automated monitoring of bottles for growth by the BACTEC 9240 instrument. PMID:11724848

Vetter, E; Torgerson, C; Feuker, A; Hughes, J; Harmsen, S; Schleck, C; Horstmeier, C; Roberts, G; Cockerill, F

2001-12-01

336

Carbon cycling by cellulose-fermenting nitrogen-fixing bacteria  

Microsoft Academic Search

The most abundant organic materials on Earth are plant polysaccharides such as cellulose and hemicelluloses. Inasmuch as vast quantities of these polymers are present in anaerobic environments (e.g., in soils and sediments), anaerobic microorganisms that ferment plant polysaccharides play a central role in carbon cycling on the planet as a source of CO2 and, indirectly, of CH4. Cellulose-fermenting bacteria from

S. B. Leschine; E. Canale-Parola

1989-01-01

337

Early anaerobic metabolisms  

PubMed Central

Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8?Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

2006-01-01

338

Bacteria Transformation  

NSDL National Science Digital Library

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

339

Production of Methane Biogas as Fuel Through Anaerobic Digestion  

Microsoft Academic Search

\\u000a Anaerobic digestion (AD) is a biotechnology by which biomass is converted by microbes to methane (CH4) biogas, which can then be utilized as a renewable fuel to generate heat and electricity. A genetically and metabolically\\u000a diverse community of microbes (mainly bacteria and methanogens) drives the AD process through a series of complex microbiological\\u000a processes in the absence of oxygen. During

Zhongtang Yu; Floyd L. Schanbacher

340

Genotypic Diversity of Anaerobic Isolates from Bloodstream Infections?  

PubMed Central

Accurate species determination for anaerobes from blood culture bottles has become increasingly important with the reemergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Our knowledge of the taxonomical diversity of anaerobes that cause bloodstream infections is extremely limited, because identification historically has relied on conventional methods. Over a 5-year period, we profiled anaerobic bacteremia at a large tertiary care hospital with 16S rRNA gene sequencing to gain a better understanding of the taxonomical diversity of the bacteria. Of 316 isolates, 16S rRNA gene sequencing and phylogenetic analysis identified 316 (100%) to the genus or taxonomical group level and 289 (91%) to the species level. Conventional methods identified 279 (88%) to the genus level and 208 (66%) to the species level; 75 (24%) were misidentified at the species level, and 33 (10%) results were inconclusive. High intragenus variability was observed for Bacteroides and Clostridium species, and high intraspecies variability was observed for Bacteroides thetaiotaomicron and Fusobacterium nucleatum. Sequence-based identification has potential benefits in comparison to conventional methods, because it more accurately characterizes anaerobes within taxonomically related clusters and thereby may enable better correlation with specific clinical syndromes and antibiotic resistance patterns. PMID:18322067

Simmon, Keith E.; Mirrett, Stanley; Reller, L. Barth; Petti, Cathy A.

2008-01-01

341

Genotypic diversity of anaerobic isolates from bloodstream infections.  

PubMed

Accurate species determination for anaerobes from blood culture bottles has become increasingly important with the reemergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Our knowledge of the taxonomical diversity of anaerobes that cause bloodstream infections is extremely limited, because identification historically has relied on conventional methods. Over a 5-year period, we profiled anaerobic bacteremia at a large tertiary care hospital with 16S rRNA gene sequencing to gain a better understanding of the taxonomical diversity of the bacteria. Of 316 isolates, 16S rRNA gene sequencing and phylogenetic analysis identified 316 (100%) to the genus or taxonomical group level and 289 (91%) to the species level. Conventional methods identified 279 (88%) to the genus level and 208 (66%) to the species level; 75 (24%) were misidentified at the species level, and 33 (10%) results were inconclusive. High intragenus variability was observed for Bacteroides and Clostridium species, and high intraspecies variability was observed for Bacteroides thetaiotaomicron and Fusobacterium nucleatum. Sequence-based identification has potential benefits in comparison to conventional methods, because it more accurately characterizes anaerobes within taxonomically related clusters and thereby may enable better correlation with specific clinical syndromes and antibiotic resistance patterns. PMID:18322067

Simmon, Keith E; Mirrett, Stanley; Reller, L Barth; Petti, Cathy A

2008-05-01

342

Radiosensitivity of subterranean bacteria in the Hungarian upper permian siltstone formation  

Microsoft Academic Search

The main purpose of this work was to study the radioresistance of subterranean aerobic and anaerobic isolates from the Hungarian Upper Permian Siltstone (Aleurolite) Formation, in order to assess the safety of potential sites of future underground repositories for nuclear waste. A total of 93 isolates were studied. The radiosensitivities of these aerobic and anaerobic bacteria isolates were determined: the

Gyöngyi Farkas; L. G. Gazsó; G. Diósi

2002-01-01

343

Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell  

E-print Network

power generation by obligate anaerobes or result in the loss in electron donor from aerobic respiration by facultative or other aerobic bacteria. In order to maintain anaerobic conditions in conventional anaerobic containing a proton exchange membrane was inoculated with an anaerobic marine sediment. Over a period

344

Microbial ecology of anaerobic digesters: the key players of anaerobiosis.  

PubMed

Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

2014-01-01

345

[Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].  

PubMed

Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

2013-01-01

346

Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica  

NASA Technical Reports Server (NTRS)

The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

1989-01-01

347

Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells.  

PubMed

Anaerobic/aerobic conditions affected bacterial community composition and the subsequent chlorophenols (CPs) degradation in biocathode microbial fuel cells (MFCs). Bacterial communities acclimated with either 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP) under anaerobiosis can degrade the respective substrates more efficiently than the facultative aerobic bacterial communities. The anaerobic bacterial communities well developed with 2,4-DCP were then adapted to 2,4,6-trichlorophenol (2,4,6-TCP) and successfully stimulated for enhanced 2,4,6-TCP degradation and power generation. A 2,4,6-TCP degradation rate of 0.10 mol/m(3)/d and a maximum power density of 2.6 W/m(3) (11.7 A/m(3)) were achieved, 138 and 13 % improvements, respectively compared to the controls with no stimulation. Bacterial communities developed with the specific CPs under anaerobic/aerobic conditions as well as the stimulated biofilm shared some dominant genera and also exhibited great differences. These results provide the most convincing evidence to date that anaerobic/aerobic conditions affected CPs degradation with power generation from the biocathode systems, and using deliberate substrates can stimulate the microbial consortia and be potentially feasible for the selection of an appropriate microbial community for the target substrate (e.g. 2,4,6-TCP) degradation in the biocathode MFCs. PMID:24902896

Huang, Liping; Shi, Yinghong; Wang, Ning; Dong, Yuesheng

2014-07-01

348

Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review  

NASA Astrophysics Data System (ADS)

Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

Hassan, Siti Roshayu; Dahlan, Irvan

2013-09-01

349

21 CFR 866.2120 - Anaerobic chamber.  

Code of Federal Regulations, 2010 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a...

2010-04-01

350

21 CFR 866.2120 - Anaerobic chamber.  

Code of Federal Regulations, 2012 CFR

...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a...

2012-04-01

351

Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.  

PubMed

It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella. PMID:20400539

Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

2010-07-01

352

Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS  

Microsoft Academic Search

Since the discovery of the anaerobic ammonium oxidizing (anammox) bacteria, many attempts have been made in order to identify\\u000a these environmentally important bacteria in natural environments. Anammox bacteria contain a unique class of lipids, called\\u000a ladderane lipids and here we present a novel method to detect viable anammox bacteria in sediments and waste water treatment\\u000a plants based on the use

Ingela Lanekoff; Roger Karlsson

2010-01-01

353

Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.  

PubMed

Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, ?-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro. PMID:25049258

Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

2014-10-01

354

Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.  

PubMed

Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater. PMID:18023800

Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

2007-10-01

355

Economic viability of anaerobic digestion  

SciTech Connect

The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

1996-01-01

356

Anaerobic Digestion of Piggery Waste  

Microsoft Academic Search

Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the

Velsen van A. F. M

1981-01-01

357

Anaerobic and Aerobic Beer Aging  

Microsoft Academic Search

Šavel J., Košin P., Brož A. (2010): Anaerobic and aerobic beer aging . Czech J. Food Sci., 28: 18-26. Yellow, orange, red and brown pigments are formed by air oxidation of single polyphenols or by thermal degradation of sugars to caramels. Caramels increase their colours during anaerobic heating or decrease them by air oxidation. Epicatechin and caramel undergo reversible redox

Budweiser Budvar

2010-01-01

358

Reduction of odors from a facultative pond using two different operating practices.  

PubMed

This paper presents the results of a proposed intervention to deal with the odor problems of a sewage treatment works (STW), which is located near a populated area. The STW consists of a facultative pond. Since this pond functions under close to anaerobic conditions, unpleasant odors are emitted. In this respect, two possible ways to deodorize the pond were evaluated. Firstly, the recirculation of effluent using 1/6 of the flow stream followed by aeration of the pond with a reduced power aerator. In order to study the efficiencies of the deodorization methodologies chemical analyses of the gases NH3 and H2S, olfactometric analyses and evaluation of the environmental perception of the population in relation to the odors originating from the STW, were carried out for each experimental situation. The results showed a significant reduction in odors when aeration with reduced power equipment was utilized in combination with recirculation of effluent in the pond. Reductions in emissions of H2S from 0.1345 mg/m3 to 0.0083 mg/m3 and of NH3 from 0.021 mg/m3 to 0.0073 mg/m3 were obtained. To analyze the behavior of the pond, its planktonic community was investigated, with a difference in species for the situations with and without odor being observed. PMID:16114684

Truppel, A; Camargos, J L M; da Costa, R H R; Belli Filho, P

2005-01-01

359

Cellulase production by the anaerobic digestion process  

SciTech Connect

An anaerobic digestion process is described for the production of cellulolytic enzymes using a methanogenic cellulose-enrichment culture. After a heat treatment designed to destroy all but spore-forming bacteria, this culture produced cellulase from a variety of cellulosic materials as well as from cellobiose. The enzyme system contained endo- and exoglucanase, acted on filter paper, and showed cellobiase and xylanase activities. It was stable at 2/sup 0/C under aerobic conditions and showed a pH optimum at 5 and a temperature optimum at 50/sup 0/C. Endoglucanase and filter paper activities were mostly exogenic, whereas cellobiase and xylanase activities were cell associated. The cellulolytic activity produced by this mixed culture was comparable to that of commercially available fungal preparations, and the process could be useful as an alternate source for these enzymes.

Khan, A.W.; van den Berg, L.

1981-01-01

360

Effect of Anaerobic Digestion and Application Method on the Presence and Survivability of E. coli and Fecal Coliforms in Dairy Waste Applied to Soil  

Microsoft Academic Search

Animal wastes are commonly used in a sustainable manner to fertilize crops. However, manures contain numerous pathogenic bacteria\\u000a that can impact animal and human health. Treatment of animal waste by anaerobic digestion has the potential to reduce pathogen\\u000a loading to land. This study was conducted to determine the fate of bacteria applied in raw and anaerobically digested dairy\\u000a slurries that

Olivia Saunders; Joe Harrison; Ann Marie Fortuna; Elizabeth Whitefield; Andy Bary

361

Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost ? †  

PubMed Central

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation. PMID:21317267

Sizova, M. V.; Izquierdo, J. A.; Panikov, N. S.; Lynd, L. R.

2011-01-01

362

Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.  

PubMed

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation. PMID:21317267

Sizova, M V; Izquierdo, J A; Panikov, N S; Lynd, L R

2011-04-01

363

Anaerobic degradation of toluene by pure cultures of denitrifying bacteria  

Microsoft Academic Search

Several denitrifying Pseudomonas spp., isolated with various aromatic compounds, were tested for the ability to degrade toluene in the absence of molecular oxygen. Four out of seven strains were able to degrade toluene in the presence of N2O. More than 50% of the 14C from ring-labelled toluene was released as CO2, and up to 37% was assimilated into cell material.

Riet J. Schocher; Birgit Seyfried; Francisco Vazquez; Josef Zeyer

1991-01-01

364

Third Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria  

Microsoft Academic Search

Results: Most Gram-negative bacilli except Fusobacterium spp. were resistant to penicillin. Piperacillin\\/ tazobactam, metronidazole, chloramphenicol, meropenem and amoxicillin\\/clavulanic acid were very active against all groups, but only 86% of Bacteroides fragilis group strains were susceptible to the latter. Cefoxitin, cefotetan and clindamycin were less active. In particular, only 62%, 52% and 48% of B. fragilis group strains were susceptible, respectively.

Ingrid Wybo; Denis Pierard; Inge Verschraegen; Marijke Reynders; Kristof Vandoorslaer; Geert Claeys; Michel Delmee; Youri Glupczynski; Bart Gordts; Margaretha Ieven; Pierrette Melin; Marc Struelens; Jan Verhaegen; Sabine Lauwers

365

Decolorization Screening of Synthetic Dyes by Anaerobic Methanogenic Sludge Using a Batch Decolorization Assay  

Microsoft Academic Search

The nonspecific ability of anaerobic sludge bacteria obtained from cattle dung slurry was investigated for 17 different dyes\\u000a in a batch assay system using sealed serum vials. Experiments using Reactive Violet 5 (RV 5) showed that sludge bacteria could\\u000a effectively decolorize solutions having dye concentrations up to 1000 mg l?1 with a decolorization efficiency of above 75% during 48 h

Haresh Keharia; Hardik Patel; Datta Madamwar

2004-01-01

366

Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium.  

PubMed

A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T). PMID:9828432

Doronina, N V; Trotsenko, Y A; Krausova, V I; Boulygina, E S; Tourova, T P

1998-10-01

367

Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography  

SciTech Connect

Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation of the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.

Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, J.Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry,Alison; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, M. Pilar; Ggoltsman, Eugene; Huang, Ying; Kopp, Olga; Labarre,Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez,Michele; Mastronunzio, Juliana E.; Mullin, Beth; Niemann, James; Pujic,Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt,Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde,Claudio; Wall, Luis; Wang, Ying; Medigue, Claudine; Benson, David R.

2006-02-01

368

Pseudomonas aeruginosa Anaerobic Respiration in Biofilms  

Microsoft Academic Search

Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration.

Sang Sun Yoon; Robert F. Hennigan; George M. Hilliard; Urs A. Ochsner; Kislay Parvatiyar; Moneesha C. Kamani; Holly L. Allen; Teresa R. DeKievit; Paul R. Gardner; Ute Schwab; John J. Rowe; Barbara H. Iglewski; Timothy R. McDermott; Ronald P. Mason; Daniel J. Wozniak; Robert E. W. Hancock; Matthew R. Parsek; Terry L. Noah; Richard C. Boucher; Daniel J. Hassett

2002-01-01

369

The phenomenon of granulation of anaerobic sludge  

Microsoft Academic Search

Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immobilization on mobile support materials: in the latter case, combined with settling of the anaerobic sludge aggregates.This dissertation focuses

L. W. Hulshoff Pol

1989-01-01

370

Anaerobic granulation technology for wastewater treatment  

Microsoft Academic Search

Anaerobic wastewater treatment using granular sludge reactors is a developing technology, in which granular sludge is the core component. So far, around 900 anaerobic granular sludge units have been operated worldwide. Although intensive research attention has been given to anaerobic granules in the past 20 years, the mechanisms responsible for anaerobic granulation and the strategy of how to expedite substantially

Yu Liu; Hai-Lou Xu; Kuan-Yeow Show; Joo-Hwa Tay

2002-01-01

371

Facult des arts et des sciences Dpartement de communication  

E-print Network

Faculté des arts et des sciences Département de communication Plans de cours cadre Cours des programmes de premier cycle en sciences de la communication Comité des études de premier cycle Adopté par l..................................................................................................................................3 COM 1150 Rédaction en communication 1

Parrott, Lael

372

Localisation des salles UFR SLHS : Facult des Lettres  

E-print Network

Promotion Formation Recherche des Sports 31 rue de l'épitaphe, 25000 Besançon IUT: Institut Universitaire de'Observatoire 25000 Besançon UFR ST : Faculté des Sciences 16 route de Gray, 25000 Besançon UPFR Sports : Unité de

Jeanjean, Louis

373

Schooling properties of an obligate and a facultative fish species  

E-print Network

Schooling properties of an obligate and a facultative fish species M. SORIA* , P. FREON § and P, Nouvelle-Calédonie, France Schooling fish species are conventionally subdivided into obligate interactions, Schooling behaviour, Polarity, Pelagic fish Running headline: Schooling properties of two fish

Paris-Sud XI, Université de

374

Reproductive strategy of a facultatively paedomorphic salamander Ambystoma talpoideum  

Microsoft Academic Search

The reproductive strategy of the salamander Ambystoma talpoideum was studied on an age-specific basis in five breeding populations using ponds subjected to different annual probabilities of drying. Ambystoma talpoideum is facultatively paedomorphic in semi-permanent ponds but sexually mature individuals occur only as terrestrial morphs in temporary ponds. Larvae of paedomorphs and terrestrial morphs mature at the same age but different

Raymond D. Semlitsch; Drawer E

1985-01-01

375

The action of antibiotics on the anaerobic digestion process.  

PubMed

Antibiotics can disturb the production of biogas during anaerobic digestion. This study shows a systematic approach to understanding how the different bacterial populations involved in the final conversion of organic matter into methane are inhibited by 15 antimicrobial agents with different specificities and modes of action. The results obtained show the following trends: (i) some inhibitors, such as the macrolide erythromycin, lack any inhibitory effect on biogas production; (ii) some antibiotics, with different specificities, have partial inhibitory effects on anaerobic digestion and decrease methane production by interfering with the activity of propionic-acid- and butyric-acid-degrading bacteria, (e.g. antibiotics that interfere with cell wall synthesis, RNA polymerase activity and protein synthesis, especially the aminoglycosides); (iii) the protein synthesis inhibitors chlortetracycline (IC50 40 mg l-1) and chloramphenicol (IC50 15-20 mg l-1) are very powerful inhibitors of anaerobic digestion. The majority of the antibiotics tested lacked activity against acetoclastic methanogens, being active only on the acetogenic bacteria. However, chloramphenicol and chlortetracycline could cause the complete inhibition of the acetoclastic methanogenic archaea. PMID:9008891

Sanz, J L; Rodríguez, N; Amils, R

1996-12-01

376

Anaerobic Biotransformation and Mobility of Pu and PuEDTA  

SciTech Connect

The objective of this report is to isolate anaerobic EDTA-degrading bacteria. Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

Xun, Luying

2005-06-01

377

Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.  

PubMed

As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ?relA ?spoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (?relA ?spoT ?relV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ?dksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ?relA ?spoT ?relV or ?dksA mutants was significantly attenuated. The ?relA ?spoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae. PMID:24648517

Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

2014-05-01

378

The life cycle of iron Fe(III) oxide: impact of fungi and bacteria  

NASA Astrophysics Data System (ADS)

Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral properties, in particular the influence of solubility, in the kinetics of microbial iron reduction. We used the facultative anaerobic gram-positive bacterium Shewanella putrefaciens as model iron reducing bacterium, with several ferrihydrite, hematite, goethite or lepidocrocite as electron acceptor, and lactate as electron donor. Maximum microbial Fe(III) reduction rates and solubility of Fe(III) phases were found to positively correlated in a Linear Free Energy Relationship suggesting a rate limitation by the electron transfer between iron reductases and a Fe(III) center, or by the subsequent desorption of Fe2+ from the iron oxide mineral surface.

Bonneville, Steeve

2014-05-01

379

Magnetotactic Bacteria  

Microsoft Academic Search

Bacteria with motility directed by the local geomagnetic field have been observed in marine sediments. These magnetotactic microorganisms possess flagella and contain novel structured particles, rich in iron, within intracytoplasmic membrane vesicles. Conceivably these particles impart to cells a magnetic moment. This could explain the observed migration of these organisms in fields as weak as 0.5 gauss.

Richard Blakemore

1975-01-01

380

Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids  

Microsoft Academic Search

Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE)

Diana Z. Sousa; M. Alcina Pereira; Alfons J. M. Stams; M. Madalena Alves; Hauke Smidt

2007-01-01

381

Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean  

Microsoft Academic Search

At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain mas- sive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that

Tina Treude; Antje Boetius; Katrin Knittel; Klaus Wallmann; Bo Barker Jørgensen

2003-01-01

382

ANAEROBIC BIOREMEDIATION-AN UNTAPPED POTENTIAL BIORREMEDIACION ANAEROBICA-UN POTENCIAL SIN EXPLOTAR  

Microsoft Academic Search

Recently there has been considerable interest in employing bioremediation technologies for treatment of wastes and for reclamation and restoration of contaminated ecosystems. In this technology, microorganisms or their constituents such as enzymes are used to degrade or transform the wastes. Though, contaminated ecosystems lack oxygen and favor the growth and activity of anaerobic bacteria, most of the bioremediation technology employs

N. Balagurusamy

2005-01-01

383

Anaerobic digestion of semi-solid organic waste: biogas production and its purification  

Microsoft Academic Search

The main objective of the present experimental investigation was to evaluate the effects of using different bacteria inoculums at identical technical settings on the anaerobic digestion process for the treatment of semi-solid organic waste available from the orthofruit market. As a possible means to improve the biogas production, as well as reduce their pollution potential, the idea of using recycled

G. Lastella; C. Testa; G. Cornacchia; M. Notornicola; F. Voltasio; Vinod Kumar Sharma

2002-01-01

384

TROP. LEPID. RES., 20(1):1-7, 2010 1CANFIELD & PIERCE: Facultative mimicry in pierid butterflies FACULTATIVE MIMICRY? THE EVOLUTIONARY SIgNIFICANCE  

E-print Network

TROP. LEPID. RES., 20(1):1-7, 2010 1CANFIELD & PIERCE: Facultative mimicry in pierid butterflies FACULTATIVE MIMICRY? THE EVOLUTIONARY SIgNIFICANCE OF SEASONAL FORMS IN SEVERAL INDO-AUSTRALIAN BUTTERFLIES, Harvard University, Cambridge, MA 02138 Abstract- Several Asian pierid butterflies exhibit a pattern

Pierce, Naomi E.

385

Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing.  

PubMed

A facultatively alkaliphilic, lactic-acid-producing and halophilic strain, designated SG103(T), was isolated from a fermented Polygonum indigo (Polygonum tinctorium Lour.) liquor sample for dyeing prepared in a laboratory. 16S rRNA gene sequence phylogeny suggested that SG103(T) is a member of the genus Gracilibacillus with the closest relatives being 'Gracilibacillus xinjiangensis' J2 (similarity: 97.06?%), Gracilibacillus thailandensis TP2-8(T) (97.06?%) and Gracilibacillus halotolerans NN(T) (96.87?%). Cells of the isolate stained Gram-positive and were facultatively anaerobic straight rods that were motile by peritrichous flagella. The strain grew at temperatures between 13 and 48 °C with the optimum at 39 °C. It grew in the range pH 7-10 with the optimum at pH 9. The isoprenoid quinone detected was menaquinone-7 (MK-7) and the DNA G+C content was 41.3 mol%. The whole-cell fatty acid profile mainly (>10?%) consisted of iso-C15?:?0, anteiso-C15?:?0 and anteiso-C17?:?0. Unlike other reported species of the genus Gracilibacillus, the strain lacked diphosphatidylglycerol as a major polar lipid. DNA-DNA hybridization experiments with strains exhibiting greater than 96.87?% 16S rRNA gene sequence similarity, 'G. xinjiangensis' J2, G. thailandensis TP2-8(T) and G. halotolerans NN(T), revealed 2±4?%, 4±9?% and 3±2?% relatedness, respectively. On the basis of the differences in phenotypic and chemotaxonomic characteristics, and the results of phylogenetic analyses based on 16S rRNA gene sequences and DNA-DNA relatedness data from reported species of the genus Gracilibacillus, strain SG103(T) merits classification as a members of a novel species, for which the name Gracilibacillus alcaliphilus sp. nov. is proposed. The type strain is SG103(T) (?=?JCM 17253(T)?=?NCIMB 14683(T)). PMID:24961683

Hirota, Kikue; Hanaoka, Yoshiko; Nodasaka, Yoshinobu; Yumoto, Isao

2014-09-01

386

Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone  

Microsoft Academic Search

Cold seeps in the Aleutian deep-sea trench support prolific benthic communities and generate carbonate precipitates which are dependent on carbon dioxide delivered from anaerobic methane oxidation. This process is active in the anaerobic sediments at the sulfate reduction-methane production boundary and is probably performed by archaea working in syntrophic co-operation with sulfate-reducing bacteria. Diagnostic lipid biomarkers of archaeal origin include

Marcus Elvert; Erwin Suess; Jens Greinert; Michael J. Whiticar

2000-01-01

387

Economic feasibility of anaerobic digesters  

SciTech Connect

Farms which have existing adequate manure utilization, such as storage and field application, would normally only consider an anaerobic digestion system based on its energy producing benefits relative to all costs of the system. This paper presents an economic feasibility analysis of a particular on-farm anaerobic digestion system and assesses the impact on feasibility of varying the oil and electricity prices. (Refs. 2).

Criner, G.K.

1987-01-01

388

Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes?  

PubMed Central

Nitrite-dependent anaerobic oxidation of methane (n-damo) and ammonium (anammox) are two recently discovered processes in the nitrogen cycle that are catalyzed by n-damo bacteria, including “Candidatus Methylomirabilis oxyfera,” and anammox bacteria, respectively. The feasibility of coculturing anammox and n-damo bacteria is important for implementation in wastewater treatment systems that contain substantial amounts of both methane and ammonium. Here we tested this possible coexistence experimentally. To obtain such a coculture, ammonium was fed to a stable enrichment culture of n-damo bacteria that still contained some residual anammox bacteria. The ammonium supplied to the reactor was consumed rapidly and could be gradually increased from 1 to 20 mM/day. The enriched coculture was monitored by fluorescence in situ hybridization and 16S rRNA and pmoA gene clone libraries and activity measurements. After 161 days, a coculture with about equal amounts of n-damo and anammox bacteria was established that converted nitrite at a rate of 0.1 kg-N/m3/day (17.2 mmol day?1). This indicated that the application of such a coculture for nitrogen removal may be feasible in the near future. PMID:21841030

Luesken, Francisca A.; Sánchez, Jaime; van Alen, Theo A.; Sanabria, Janeth; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Kartal, Boran

2011-01-01

389

Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria  

Microsoft Academic Search

Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumu- lations of elemental selenium (Se(0)). We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Seleni- halanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed

Ronald S. Oremland; Mitchell J. Herbel; Jodi Switzer Blum; Sean Langley; Terry J. Beveridge; Pulickel M. Ajayan; Thomas Sutto; Amanda V. Ellis; Seamus Curran

2004-01-01

390

Single cell protein production by photosynthetic bacteria grown on the clarified effluents of biogas plant  

Microsoft Academic Search

Anaerobically digested cow dung was separated by centrifugation into solid residue and liquid supernatant fractions. Clarified supernatant fraction, rich in volatile fatty acids, supported the growth of photosynthetic bacteria. Single cell protein from different photosynthetic bacteria, grown on clarified supernatant, was found to be rich in essential and sulphur amino acids. Rhodopseudomonas capsulata produced the best single cell protein.

Sudhanshu Vrati; G. B. Pant

1984-01-01

391

The function of sulfate-reducing bacteria in corrosion of potable water mains  

Microsoft Academic Search

Growing awareness of the detrimental effect of corrosion in conjunction with bacterial activity in potable drinking water systems has led to an increase in research sponsored by water companies. In particular, sulfate-reducing bacteria (SRB), found in anaerobic conditions underneath the main corrosion shell, are noted for their effects in promoting localized corrosion. This study investigates the presence of sulfate-reducing bacteria

A. D. Seth; R. G. J. Edyvean

2006-01-01

392

Chlortetracycline-Resistant Intestinal Bacteria in Organically Raised and Feral Swine ?  

PubMed Central

Organically raised swine had high fecal populations of chlortetracycline (CTC)-resistant (growing at 64 ?g CTC/ml) Escherichia coli, Megasphaera elsdenii, and anaerobic bacteria. By comparison, CTC-resistant bacteria in feral swine feces were over 1,000-fold fewer and exhibited lower taxonomic diversity. PMID:21821750

Stanton, Thad B.; Humphrey, Samuel B.; Stoffregen, William C.

2011-01-01

393

The ecology and biotechnology of sulphate-reducing bacteria  

Microsoft Academic Search

Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of

Alfons J. M. Stams; Gerard Muyzer

2008-01-01

394

Thiopseudomonas denitrificans gen. nov., sp. nov., isolated from anaerobic activated sludge.  

PubMed

A Gram-staining-negative, rod-shaped, motile and facultatively anaerobic bacterial strain, designated X2(T), was isolated from the sludge of an anaerobic, denitrifying, sulfide-removal bioreactor, and found to oxidize sulfide anaerobically with nitrate as electron acceptor. The strain grew at salinities of 0-3?% (w/v) NaCl (optimum, 0-1?%). Growth occurred at pH 6.0-10.0 (optimum, pH 8.0) and 10-37 °C (optimum, 30 °C). The genomic DNA G+C content was 59 mol%. Q-8 and Q-9 were detected as the respiratory quinones. The major fatty acids (>10?%) were C16?:?1?7c and/or C16?:?1?6c, C18?:?1?7c and C16?:?0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and one unidentified phospholipid. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain X2(T) formed a novel clade within the family Pseudomonadaceae, with the highest sequence similarity to Pseudomonas caeni KCTC 22292(T) (93.5?%). On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, it is proposed that this strain represents novel genus and species within the family Pseudomonadaceae, for which the name Thiopseudomonas denitrificans gen. nov., sp. nov. is proposed. The type strain is X2(T) (?=?CCTCC M 2013362(T)?=?DSM 28679(T)?=?KCTC 42076(T)). PMID:25326445

Tan, Wen-Bo; Jiang, Zhao; Chen, Chuan; Yuan, Ye; Gao, Ling-Fang; Wang, Hong-Fei; Cheng, Juan; Li, Wen-Jun; Wang, Ai-Jie

2015-01-01

395

Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes  

NASA Astrophysics Data System (ADS)

Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

2003-12-01

396

Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites.  

PubMed

Several hydrolytic and reductive bacterial enzymes (beta-glucuronidase, GN; beta-glucosidase, GS; arylsulphatase, AS; azoreductase, AR; nitroreductase, NR) involved in production of mutagenic or genotoxic metabolites were measured in human colonic contents. Cell-associated AS and extracellular GS were approximately twice as high in the distal colon compared with the proximal bowel, while AR changed little throughout the gut. Measurements of these enzymes in faeces from seven healthy donors confirmed that the majority were cell-associated, and demonstrated high levels of inter-individual variability. NR decreased four-fold between the proximal and distal colon while extracellular GN was reduced by 50%. Most probable number (MPN) analysis on faeces obtained from six healthy donors showed that counts of intestinal bacteria producing GS and AR were c. 10(10) and 10(11)/g, respectively, in all samples tested. Numbers of GN- and AS-forming organisms were between two and three orders of magnitude lower. Inter-individual carriage rates of bacterial populations synthesising NR were highly variable. Screening of 20 pure cultures of intestinal bacteria, belonging to six different genera, showed that Bacteroides ovatus, in particular, synthesised large amounts of GS, whereas B. fragilis, B. vulgatus and Bifidobacterium pseudolongum formed the highest cell-associated levels of GN. In general, bifidobacteria and Lactobacillus acidophilus did not produce significant amounts of AR. All five clostridia studied (Clostridium bifermentans, C. septicum, C. perfringens, C. sporogenes and C. butyricum) produced NR and AR, as did the bacteroides (B. fragilis, B. ovatus and B. vulgatus). Escherichia coli and C. perfringens formed large amounts of NR. Levels of AS production were invariably low and few of the organisms screened synthesised this enzyme. In-vitro studies investigating the effect of intestinal transit time on enzyme production, in a three-stage (V1-V3) continuous culture model of the colon operated at system retention times (R) of either 31.1 or 68.4 h, showed that specific activities of GS were up to four-fold higher (V3) at R = 31.1 h. Bacteriological analysis demonstrated that representative populations of colonic micro-organisms were maintained in the fermentation system, and indicated that changes in GS activity were not related to numbers of the predominant anaerobic or facultative anaerobic species within the model, but were explainable on the basis of substrate-induced modulation of bacterial metabolism. PMID:9879941

McBain, A J; Macfarlane, G T

1998-05-01

397

Bacteria and Foodborne Illness  

MedlinePLUS

... Some parasites and chemicals also cause foodborne illnesses. Bacteria Bacteria are tiny organisms that can cause infections of the GI tract. Not all bacteria are harmful to humans. Some harmful bacteria may ...

398

FACULTE DES SCIENCES AUTORISATION DE DISPENSE DE COURS DE LANGUE ANGLAISE*  

E-print Network

FACULTE DES SCIENCES AUTORISATION DE DISPENSE DE COURS DE LANGUE ANGLAISE* Après examen d : ........................................................................................................................................... .............................................................................................................................................................................. .............................................................................................................................................................................. Dispense autorisée pour le(s) cours

Cerf, Nicolas

399

Energetics and kinetics of anaerobic aromatic and fatty acid degradation  

SciTech Connect

The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, was studied in coculture with Desulfovibrio strain G11. The threshold value for benzoate degradation was dependent on the acetate concentration with benzoate threshold values ranging from 2.4 [mu]M at 20 mM acetate to 30.0 [mu]M at 65 mM acetate. Increasing acetate concentrations also inhibited the rate of benzoate degradation with a apparent K[sub i] for acetate inhibition of 7.0 mM. Lower threshold values were obtained when nitrate rather than sulfate was the terminal electron acceptor. These data are consistent with a thermodynamic explanation for the threshold, and suggest that there is a minimum Gibbs free energy value required for the degradation of benzoate. An acetoacetyl-CoA thiolase has been isolated from Syntrophomonas wolfei; it is apparently a key enzyme controlling the synthesis of poly-B-hydroxyalkanoate from acetyl-CoA in this organism. Kinetic characterization of the acetoacetyl-CoA thiolase from S. wolfei showed that it is similar in its structural, kinetic, and apparent regulatory properties to other biosynthetic acetoacetyl-CoA thiolases from phylogenetically distinct bacteria that synthesize PHA. Intracellular concentrations of CoA and acetyl-CoA are believed to be critical factors regulating the activity of the acetoacetyl-CoA thiolase in S. wolfei. We have also isolated and characterized several new halophilic anaerobic fermentative anaerobes. Phylogenetic analysis indicates that one of these bacteria is a new species in the genus, Haloanaerobium. Two other species appear to be members of the genus, Halobacteroides. Several halophilic acetoclastic methanogenic bacteria have also been isolated and their physiological properties are currently under investigation. We have also isolated an acetate-using dissimilatory iron-reducing bacterium.

McInerney, M.J.

1992-11-16

400

PILOT ANAEROBIC BIOLOGICAL TREATMENT OF PULP MILL EVAPORATOR FOUL CONDENSATE  

EPA Science Inventory

The performance of three new anaerobic biological treatment technologies were compared and evaluated. Data were obtained from the operation of pilot plants representative of the anaerobic filter, anaerobic upflow sludge bed, and anaerobic fluidized bed. A review of recent literat...

401

Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants.  

PubMed

We report here the existence of anaerobic nitrogen-fixing consortia (ANFICOs) consisting of N(2)-fixing clostridia and diverse nondiazotrophic bacteria in nonleguminous plants; we found these ANFICOs while attempting to overcome a problem with culturing nitrogen-fixing microbes from various gramineous plants. A major feature of ANFICOs is that N(2) fixation by the anaerobic clostridia is supported by the elimination of oxygen by the accompanying bacteria in the culture. In a few ANFICOs, nondiazotrophic bacteria specifically induced nitrogen fixation of the clostridia in culture. ANFICOs are widespread in wild rice species and pioneer plants, which are able to grow in unfavorable locations. These results indicate that clostridia are naturally occurring endophytes in gramineous plants and that clostridial N(2) fixation arises in association with nondiazotrophic endophytes. PMID:15128572

Minamisawa, Kiwamu; Nishioka, Kiyo; Miyaki, Taro; Ye, Bin; Miyamoto, Takuya; You, Mu; Saito, Asami; Saito, Masanori; Barraquio, Wilfredo L; Teaumroong, Neung; Sein, Than; Sato, Tadashi

2004-05-01

402

Parasitoids as vectors of facultative bacterial endosymbionts in aphids  

PubMed Central

Heritable bacterial endosymbionts play an important role in aphid ecology. Sequence-based evidence suggests that facultative symbionts such as Hamiltonella defensa or Regiella insecticola also undergo horizontal transmission. Other than through male-to-female transfer during the sexual generation in autumn, the routes by which this occurs remain largely unknown. Here, we tested if parasitoids or ectoparasitic mites can act as vectors for horizontal transfer of facultative symbionts. Using symbiont-specific primers for diagnostic PCR, we demonstrate for the first time, to our knowledge, that parasitoids can indeed transfer H. defensa and R. insecticola by sequentially stabbing infected and uninfected individuals of their host, Aphis fabae, establishing new, heritable infections. Thus, a natural route of horizontal symbiont transmission is also available during the many clonal generations of the aphid life cycle. No transmissions by ectoparasitic mites were observed, nor did parasitoids that emerged from symbiont-infected aphids transfer any symbionts in our experiments. PMID:22417790

Gehrer, Lukas; Vorburger, Christoph

2012-01-01

403

Parasitoids as vectors of facultative bacterial endosymbionts in aphids.  

PubMed

Heritable bacterial endosymbionts play an important role in aphid ecology. Sequence-based evidence suggests that facultative symbionts such as Hamiltonella defensa or Regiella insecticola also undergo horizontal transmission. Other than through male-to-female transfer during the sexual generation in autumn, the routes by which this occurs remain largely unknown. Here, we tested if parasitoids or ectoparasitic mites can act as vectors for horizontal transfer of facultative symbionts. Using symbiont-specific primers for diagnostic PCR, we demonstrate for the first time, to our knowledge, that parasitoids can indeed transfer H. defensa and R. insecticola by sequentially stabbing infected and uninfected individuals of their host, Aphis fabae, establishing new, heritable infections. Thus, a natural route of horizontal symbiont transmission is also available during the many clonal generations of the aphid life cycle. No transmissions by ectoparasitic mites were observed, nor did parasitoids that emerged from symbiont-infected aphids transfer any symbionts in our experiments. PMID:22417790

Gehrer, Lukas; Vorburger, Christoph

2012-08-23

404

Rickettsia as obligate and mycetomic bacteria.  

PubMed

Rickettsiae are well known as intracellular pathogens of animals, humans, and plants and facultative and unorganized symbionts of invertebrates. No close relative of mitochondria has yet been associated with nutritional or developmental dependency of its host cell or organism. We have found a mycetomic Rickettsia that is a strict obligatory symbiont of the parthenogenetic booklouse Liposcelis bostrychophila (Psocoptera). These rickettsiae show an evolutionary transition from a solitary to a primary mycetomic bacterium adapted to the development of its host. These intracellular and intranuclear bacteria reside in specialized cells in several tissues. Their distribution changes markedly with the development of their host. The most advanced phenotype is a paired mycetome in the abdomen, described for the first time for Rickettsia and this host order. The mycetomic rickettsiae of two parthenogenetic book lice species are in the spotted fever group and in the basal limoniae group. While mycetomic bacteria are well known for their metabolic or light-emitting functions, these rickettsiae have an essential role in the early development of the oocyte. Removal of the Rickettsia stops egg production and reproduction in the book louse. In two phylogenetically distant psocopteran species, Rickettsia are shown to be associated with four transitional stages from free bacteria, infected cells, through single mycetocytes to organ-forming mycetomes. PMID:17012243

Perotti, M Alejandra; Clarke, Heather K; Turner, Bryan D; Braig, Henk R

2006-11-01

405

Enumeration and characterization of nitrogen-fixing bacteria in an eelgrass ( Zostera marina ) bed  

Microsoft Academic Search

Marine nitrogen-fixing bacteria distributed in the eelgrass bed and seawater of Aburatsubo Inlet, Kanagawa, Japan were investigated using anaerobic and microaerobic enrichment culture methods. The present enrichment culture methods are simple and efficient for enumeration and isolation of nitrogen-fixing bacteria from marine environments. Mostprobable-number (MPN) values obtained for nitrogen-fixing bacteria ranged from 1.1×102 to 4.6×102\\/ml for seawater, 4.0×104 to 4.3×105\\/g

Wung Yang Shieh; Usio Simidu; Yoshiharu Maruyama

1989-01-01

406

Phylogenetic Diversity of Aerobic Saprotrophic Bacteria Isolated from the Daqing Oil Field  

Microsoft Academic Search

A diverse and active microbial community in the stratal waters of the Daqing oil field (China), which is exploited with the use of water-flooding, was found to contain aerobic chemoheterotrophic bacteria (including hydrocarbon-oxidizing ones) and anaerobic fermentative, sulfate-reducing, and methanogenic bacteria. The aerobic bacteria were most abundant in the near-bottom zones of injection wells. Twenty pure cultures of aerobic saprotrophic

T. N. Nazina; A. A. Grigor'yan; Yan-Fen Xue; D. Sh. Sokolova; E. V. Novikova; T. P. Tourova; A. B. Poltaraus; S. S. Belyaev; M. V. Ivanov

2002-01-01

407

Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters*  

PubMed Central

The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile, the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed, and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will accelerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process. PMID:18500782

Zhang, Lei; Zheng, Ping; Tang, Chong-jian; Jin, Ren-cun

2008-01-01

408

Quantitative real-time PCR analyses of sulfate-reducing bacteria in swine manure and the inhibitory effects of condensed tannins  

Technology Transfer Automated Retrieval System (TEKTRAN)

Odorous chemicals produced by anaerobic bacteria in stored swine manure are a nuisance and potential health hazard. One of the more odorous compounds is hydrogen sulfide (H2S), produced primarily by sulfate-reducing bacteria (SRB). However, little is known about these bacteria in stored swine manu...

409

Anaerobic treatment of atrazine bearing wastewater.  

PubMed

Performance of mixed microbial anaerobic culture in treating synthetic waste-water with high Chemical Oxygen Demand (COD) and varying atrazine concentration was studied. Performance of hybrid reactors with wood charcoal as adsorbent, with a dose of 10 g/l and 40 g/l, along with the microbial mass was also studied. All the reactors were operated in sequential mode with Hydraulic Retention Time (HRT) of 5 days. In all the cases, COD removal after 5 days was found to be above 81%. Initial COD was above 1,000 mg/l. From a hybrid reactor COD removal after 2 days was observed to be 90%. Atrazine reduction after 5 days by microbial mass alone was 43.8%, 40% and 33.2% with an initial concentration of 0.5, 1.0 and 2.0 mg/l respectively. MLSS on all the cases were almost same. Increasing MLSS concentration by about 2 fold did not increase the atrazine removal efficiency significantly. Maximum atrazine removal was observed to be 64% from the hybrid reactor with 10 g/l of wood charcoal and 69.4% from the reactor with 40 g/l of wood charcoal. Atrazine removal from the hybrid reactors after 15 days were observed to be 35.7% and 38.7%, which showed that the higher dose of wood charcoal in hybrid reactor did not improve the atrazine removal efficiency significantly. Specific methanogenic activity test showed no inhibitory effect of atrazine on methane producing bacteria. The performance of anaerobic microorganisms in removing atrazine with no external carbon source and inorganic nitrogen source was studied in batch mode. With an initial concentration of 1.0 mg/l, reduction of atrazine by the anaerobic microorganisms in absence of external carbon source after 35 days was observed to be 61.8% where as in absence of external carbon and inorganic nitrogen source the reduction was only 44.2% after 150 days. Volatilization loss of atrazine was observed to be insignificant. PMID:11411853

Ghosh, P K; Philip, L; Bandyopadhyay, M

2001-05-01

410

Impact of imposed anaerobic conditions and microbial activity on aqueous-phase solubility of polycyclic aromatic hydrocarbons from soil.  

PubMed

The influence of anaerobic conditions on aqueous-phase polycyclic aromatic hydrocarbon (PAH) bioavailability was investigated in laboratory microcosms. Highly aged (>70 years), PAH-contaminated soil was incubated under anaerobic conditions by using various anaerobic headspaces, anaerobic headspaces with an oxygen-scavenging complex (titanium(III) citrate) in the aqueous phase, or anaerobic headspaces with electron-acceptor amendments in the aqueous phase. Incubation of soil solely under anaerobic conditions resulted in increased aqueous concentrations of all PAHs tested (fluoranthene, pyrene, benz[a]anthracene, and benzo[a]pyrene). Benz[a]anthracene and benzo[a]pyrene extractable concentrations were above aqueous solubility, by as much as an order of magnitude for the latter. The degree of solubility increase observed was a function of molecular weight of the PAH regardless of initial soil concentration, suggesting formation of stable PAH-soluble organic matter associations. The soil samples incubated aerobically for 90 d before imposition of anaerobic conditions did not release PAHs to the aqueous phase. Methanogenic organisms and sulfate-reducing bacteria were seen to have the most significant effect on increases in aqueous-phase PAHs. Polycyclic aromatic hydrocarbons made more soluble under anaerobic conditions was available to be degraded or transformed under aerobic conditions. PMID:15719987

Pravecek, Tasha L; Christman, Russell F; Pfaender, Frederic K

2005-02-01

411

Reassessment of the routine anaerobic culture and incubation time in the BacT/Alert FAN blood culture bottles.  

PubMed

A total of 9,130 blood cultures were collected from adult patients with suspected bloodstream infections. The recommended 20 mL sample of blood was divided equally between the aerobic and anaerobic FAN bottles and monitored in the BacT/Alert Microbial Detection System for a total of 5 days. There were 757 clinically significant positive culture pairs from 291 patients. Significant differences were found with greater recovery of Pseudomonas aeruginosa (p < 0.001), Acinetobacter spp. (p = 0.002), coagulase-negative staphylococci other than Staphylococcus epidermidis (p = 0.002), and Candida spp. (p < 0.001) from the aerobic bottle and greater recovery of anaerobic bacteria (p < 0.001) from the anaerobic bottle. Significantly more episodes of P. aeruginosa bacteremia (p < 0.003) and candidemia (p < 0.001) were detected by the aerobic FAN bottle and significantly more episodes of anaerobic bacteremia (p < 0.001) were detected by the anaerobic FAN bottle (Table 2). No other significant differences between systems in their detection of bacteremias were noted. Anaerobic bacteremias were encountered in diverse and often unpredictable clinical settings. All clinically significant episodes of bloodstream infection were detected within 4 days of incubation of their cultures. We conclude routine, rather than selective, use of the anaerobic FAN bottle in the blood culture set and a 4-day incubation of blood cultures in the BacT/Alert aerobic and anaerobic FAN bottles is an appropriate routine procedure. PMID:10579087

Cornish, N; Kirkley, B A; Easley, K A; Washington, J A

1999-10-01

412

ANAEROBIC BIOTRANSFORMATION OF CONTAMINANTS IN THE SUBSURFACE  

EPA Science Inventory

Anaerobic conditions predominate in contaminated aquifers and are not uncommon in noncontaminated areas. Comparatively little is known about degradative processes and nutrient cycling under anaerobic conditions. However, it is apparent these processes are fundamentally differen...

413

Comparison of Bacteria and Archaea communities in municipal solid waste, individual refuse components, and leachate.  

PubMed

Refuse decomposition in landfills is a microbially mediated process that occurs primarily under anaerobic conditions. Because of limited moisture conditions, hydraulic transport as a means of cellular translocation within the landfill appears limited, especially during the initial stages of decomposition. Thus, microbial communities within the incoming refuse serve as a primary source of facultative and obligate anaerobic microorganisms that initiate refuse decomposition. Fresh residential refuse was collected five times over 26 months, and microbial communities in these samples were compared with those in individual refuse components and decomposed refuse. Bacterial and archaeal community structures were determined using T-RFLP. The Bacterial microbial community richness was correlated (r(2) = 0.91) with seasonal differences in ambient air temperature. Analysis of the results shows that fresh refuse is most likely not the source of methanogens in landfills. Microbial communities in the solid and leachate phases were different, indicating that both matrices must be considered when characterizing microbial diversity within a landfill. PMID:22092358

Staley, Bryan F; de los Reyes, Francis L; Barlaz, Morton A

2012-02-01

414

Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium  

PubMed Central

Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate Hö5 is designated as the type strain (DSM 5495). Images PMID:16348110

Huber, Harald; Stetter, Karl O.

1990-01-01

415