Science.gov

Sample records for facultative anaerobic bacteria

  1. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica. PMID:216188

  2. Recovery of anaerobic, facultative, and aerobic bacteria from clinical specimens in three anaerobic transport systems.

    PubMed Central

    Helstad, A G; Kimball, J L; Maki, D G

    1977-01-01

    With aspirated specimens from clinical infections, we evaluated the recovery of anaerobic, aerobic, and facultative bacteria in three widely used transport systems: (i) aspirated fluid in a gassed-out tube (FGT), (ii) swab in modified Cary and Blair transport medium (SCB), and (iii) swab in a gassed-out tube (SGT). Transport tubes were held at 25 degrees C and semiquantitatively sampled at 0, 2, 24, and 48 h. Twenty-five clinical specimens yielded 75 anaerobic strains and 43 isolates of facultative and 3 of aerobic bacteria. Only one anaerobic isolate was not recovered in the first 24 h, and then, only in the SGT. At 48 h, 73 anaerobic strains (97%) were recovered in the FGT, 69 (92%) in the SCB, and 64 (85%) in the SGT. Two problems hindered the recovery of anaerobes in the SCB and SGT systems: first die-off of organisms, as evidenced by a decrease in colony-forming units of 20 strains (27%) in the SCB and 25 strains (33%) in the SGT, as compared with 7 strains (9%) in the FGT, over 48 h; and second, overgrowth of facultative bacteria, more frequent with SCB and SGT. The FGT method was clearly superior at 48 h to the SCB and SGT systems in this study and is recommended as the preferred method for transporting specimens for anaerobic culture. PMID:328525

  3. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  4. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria.

    PubMed

    Fu, Huihui; Yuan, Jie; Gao, Haichun

    2015-10-15

    Facultative bacteria can grow under either oxic or anoxic conditions. While oxygen provides substantial advantages in energy yield by respiration, it can become life-threatening because of reactive oxygen species that derive from the molecule naturally. Thus, to survive and thrive in a given niche, these bacteria have to constantly regulate physiological processes to make maximum benefits from oxygen respiration while restraining oxidative stress. Molecular mechanisms and physiological consequences of oxidative stress have been under extensive investigation for decades, mostly on research model Escherichia coli, from which our understanding of bacterial oxidative stress response is largely derived. Nevertheless, given that bacteria live in enormously diverse environments, to cope with oxidative stress different strategies are conceivably developed. PMID:26319291

  5. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  6. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  7. Parotitis due to anaerobic bacteria.

    PubMed

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  8. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  9. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  10. Facultative to strict anaerobes ratio in the preterm infant microbiota

    PubMed Central

    Arboleya, Silvia; Solís, Gonzalo; Fernández, Nuria; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel

    2012-01-01

    During recent years there has been an increasing interest on the development of strategies for modulating the process of microbiota establishment in preterm infants. For successfully developing of such strategies, a detailed knowledge of the microbiota establishment process in these infants is needed. In a previous study we evidenced clear alterations in the process of microbiota establishment in preterm newborns when compared with a control group of full-term breast-fed infants. Here we have analyzed these data more in depth, corroborating a reduced proportion of strict anaerobes with respect to facultatives in the fecal microbiota of preterm infants. The potential benefits, as well as the side effects, of strategies aimed at counterbalancing this alteration in the facultative to strict anaerobes ratio are discussed in this addendum. PMID:22922559

  11. [Recovery of facultatives and anaerobes from frozen specimens with a polymicrobial nature].

    PubMed

    Kawamura, Chizuko; Nakamura, Toshihiko; Kaimori, Mitsuomi; Watanabe, Kunitomo

    2003-01-01

    Microbiological examination of frozen specimens is sometimes carried out in clinical microbiology and the result is used as an aid of diagnosis and/or treatment of polymicrobial infections. The study was carried out to reevaluate the merit of freezing specimens in clinical microbiology. A total of 10 specimens with a polymicrobial nature were included in this study. Before and after freezing specimens, we isolated facultative and anaerobic bacteria using a set of primary isolation media, consisting of three aerobic agar plates (MacConkey agar, blood agar and chocolate agar) and four pre-reduced anaerobic agar plates (HK Blood agar, HK blood agar with paromomycin (PM) and vancomycin (VM), phenyl ethyl-alcohol (PEA) agar and Bacteroides bile esculin (BBE) agar). All the procedures were done in a properly controlled anaerobic chamber. The number of isolates before and after freezing was 79 and 70, respectively. Among the strains isolated before freezing, 33 strains were recovered on the same kin of media artery freezing, without a remarkable decrease in the quantity. But 26 strains were not recovered and 2 strains were recovered with a remarkable decrease. Among 26 strains, 15 strains could be successfully backed up on the different kind of media. In conclusion, an anaerobic technique with an anaerobic chamber and a set of isolatin plates including blood agar, chocolate agar, HK blood agar, PEA blood agar, HK blood agar with PM and VM enable us to estimate the bacteriology before freezing from frozen specimens. PMID:14984303

  12. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.

    PubMed

    Zaybak, Zehra; Pisciotta, John M; Tokash, Justin C; Logan, Bruce E

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34 ± 4 mA/m(2). Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. PMID:24126154

  13. D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Sessions, A. L.

    2012-12-01

    The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of δD values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in δD values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar δD values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between δD and metabolism previously understood from aerobic bacteria is not universally applicable.

  14. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    PubMed

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source. PMID:24648142

  15. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan.

    PubMed

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  16. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  17. Determination of mercury and organomercurial resistance in obligate anaerobic bacteria.

    PubMed

    Rudrik, J T; Bawdon, R E; Guss, S P

    1985-03-01

    A methodology for determining the minimum inhibitory concentration of inorganic and organomercurial compounds for obligate anaerobic bacteria is described. A wide variation in the susceptibility of anaerobic clinical and sewage isolates was observed. Isolates of Bacteroides ruminicola and Clostridium perfringens resistant to mercury were examined for their plasmid content and ability to demonstrate inducible resistance. None of the resistant anaerobes contained any plasmids, while resistant facultative isolates from the same source contained several plasmids. In 24 h, resistant strains of clostridia and Bacteroides volatilized 20 and 43% of the 203Hg2+ added to cultures, while Escherichia coli R100 and a sewage isolate of Enterobacter cloacae volatilized 63 and 27%, respectively, of the added 203Hg2+. Attempts to induce mercury resistance in the aerobic isolates were successful, but no induction was seen in the anaerobes. Thus, mercury resistance in these anaerobic isolates was neither inducible nor plasmid mediated. PMID:4005712

  18. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains.

    PubMed

    Kumar, Gopalakrishnan; Bakonyi, Péter; Sivagurunathan, Periyasamy; Kim, Sang-Hyoun; Nemestóthy, Nándor; Bélafi-Bakó, Katalin; Lin, Chiu-Yue

    2015-08-01

    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80°C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L. PMID:25661265

  19. SUSCEPTIBILITY OF STRICT AND FACULTATIVE ANAEROBES ISOLATED FROM ENDODONTIC INFECTIONS TO METRONIDAZOLE AND β-LACTAMS

    PubMed Central

    Gaetti-Jardim, Elerson; Landucci, Luís Fernando; Lins, Samira Âmbar; Vieira, Evanice Menezes Marçal; de Oliveira, Sérgio Ricardo

    2007-01-01

    Endodontic infections are mixed aerobic-anaerobic infections and several microbial groups associated to these pathologies are also involved in orofacial infections. The goal of this study was to evaluate the susceptibility of microorganisms isolated from endodontic infections to β-lactams and metronidazole and verify the production of β-lactamases. Clinical specimens were collected from 58 endodontic infections of 52 patients. The microorganisms were isolated in selective and non-selective culture media, under anaerobiosis and aerobiosis, and identified using biochemical methods. In the susceptibility tests, it was used an agar dilution method, and Wilkins-Chalgren agar enriched with blood, hemin and menadione for the anaerobes, while Mueller- Hinton agar was employed for the facultative anaerobes. The production of β-lactamases was evaluated through the biological and chromogenic cephalosporin methods. All tested isolates were sensitive to imipenem and 99.3% to amoxicillin/clavulanate association, while 16.1% showed resistance to amoxicillin and penicillin G, and 4.89% to cefoxitin. Resistance to metronidazole was just found in facultative anaerobes. Production of β-lactamases was detected in 18.2% of the isolates and presented a correlation with resistance to β-lactams. PMID:19089195

  20. Anaerobic bacteria from hypersaline environments.

    PubMed Central

    Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

    1994-01-01

    Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the

  1. Growth of the Facultative Anaerobes from Antarctica, Alaska, and Patagonia at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.

  2. Oxygen Effect on the Low Temperature Tolerance of Facultative Anaerobes from Antarctica, Alaska, and Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychrotolerance as an adaptation to survival in extreme environments is widespread among many of the mesophilic microorganisms. Red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low-temperature in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of species as well as genetics could be remarkably changed due to -on and surviving m extreme environments. The cold shock genes for some of the studied strains of psychrotolerant facultative anaerobes already were published In this paper we present experimental data for psychrotolerant facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on the changing of anaerobic conditions to aerobic with cultivation at subzero temperatures.

  3. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  4. Attack on Lignified Grass Cell Walls by a Facultatively Anaerobic Bacterium

    PubMed Central

    Akin, Danny E.

    1980-01-01

    A filamentous, facultatively anaerobic microorganism that attacked lignified tissue in forage grasses was isolated from rumen fluid with a Bermuda grass-containing anaerobic medium in roll tubes. The microbe, designated 7-1, demonstrated various colony and cellular morphologies under different growth conditions. Scanning electron microscopy revealed that 7-1 attacked lignified cell walls in aerobic and anaerobic culture. 7-1 predominately degraded tissues reacting positively for lignin with the chlorine-sulfite stain (i.e., sclerenchyma in leaf blades and parenchyma in stems) rather than the more resistant acid phloroglucinol-positive tissues (i.e., lignified vascular tissue and sclerenchyma ring in stems), although the latter tissues were occasionally attacked. Turbidimetric tests showed that 7-1 in anaerobic culture grew optimally at 39°C at a pH of 7.4 to 8.0. Tests for growth on plant cell wall carbohydrates showed that 7-1 grew on xylan and pectin slowly in aerobic cultures but not with pectin and only slightly with xylan in anaerobic culture. 7-1 was noncellulolytic as shown by filter paper tests. The microbe used the phenolic acids sinapic, ferulic, and p-coumaric acids as substrates for growth; the more highly methoxylated acids were used more effectively. Images PMID:16345651

  5. Basic Laboratory Culture Methods for Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Strobel, Herbert J.

    Oxygen is either limiting or absent in many ecosystems. Anaerobic bacteria are often key players in such environments and these organisms have important roles in geo-elemental cycling, agriculture, and medicine. The metabolic versatility of anaerobes is exploited in a variety of industrial processes including fermented food production, biochemical synthesis, and bioremediation. There has been recent considerable interest in developing and enhancing technologies that employ anaerobes as biocatalysts. The study of anaerobic bacteria requires specialized techniques, and specific methods are described for the culture and manipulation of these microbes.

  6. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA.

    PubMed

    Isabella, Vincent M; Clark, Virginia L

    2011-10-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

  7. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  8. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds

    NASA Technical Reports Server (NTRS)

    Venkateswaran, K.; Dollhopf, M. E.; Aller, R.; Stackebrandt, E.; Nealson, K. H.

    1998-01-01

    A new bacterial species belonging to the genus Shewanella is described on the basis of phenotypic characterization and sequence analysis of its 16S rRNA-encoding and gyrase B (gyrB) genes. This organism, isolated from shallow-water marine sediments derived from the Amazon River delta, is a Gram-negative, motile, polarly flagellated, facultatively anaerobic, rod-shaped eubacterium and has a G&C content of 51.7 mol%. Strain SB2BT is exceptionally active in the anaerobic reduction of iron, manganese and sulfur compounds. SB2BT grows optimally at 35 degrees C, with 1-3% NaCl and over a pH range of 7-8. Analysis of the 16S rDNA sequence revealed a clear affiliation between strain SB2BT and members of the gamma subclass of the class Proteobacteria. High similarity values were found with certain members of the genus Shewanella, especially with Shewanella putrefaciens, and this was supported by cellular fatty acid profiles and phenotypic characterization. DNA-DNA hybridization between strain SB2BT and its phylogenetically closest relatives revealed low similarity values (24.6-42.7%) which indicated species status for strain SB2BT. That SB2BT represents a distinct bacterial species within the genus Shewanella is also supported by gyrB sequence analysis. Considering the source of the isolate, the name Shewanella amazonensis sp. nov. is proposed and strain SB2BT (= ATCC 700329T) is designated as the type strain.

  9. Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake.

    PubMed

    Wu, Xiao-Yue; Zheng, Gang; Zhang, Wen-Wu; Xu, Xue-Wei; Wu, Min; Zhu, Xu-Fen

    2010-11-01

    A facultatively anaerobic, alkaliphilic, spore-forming, Gram-positive-staining rod, designated Y1(T), was isolated under strictly anaerobic conditions from sediment of a soda lake in Jilin province, China. The strain was not dependent on Na(+) but was highly halotolerant and grew optimally in medium JY with 0.5 M Na(+) (0.06 M NaHCO(3) and 0.44 M NaCl). The optimum pH for growth was 9.0, with a range of pH 7.5-10.5. No growth occurred at pH 7.0 or 11.0. The strain was mesophilic, with a temperature range of 15-45 °C and optimum growth at 32 °C. Strain Y1(T) was able to use certain mono- and oligosaccharides. Soluble starch and casein were hydrolysed. The methyl red test, Voges-Proskauer test and tests for catalase and oxidase activities were negative. The predominant fatty acids were anteiso-C(15 : 0) and iso-C(15 : 0). Comparative 16S rRNA gene sequence analysis revealed 93.4-96.8 % sequence similarity to members of the genus Amphibacillus. The DNA G+C content was 37.7 mol% (T(m) method). The DNA-DNA relatedness of strain Y1(T) with respect to Amphibacillus tropicus DSM 13870(T) and Amphibacillus sediminis DSM 21624(T) was 48 and 37 %, respectively. On the basis of its phylogenetic position and the DNA-DNA relatedness data as well as its physiological and biochemical properties, strain Y1(T) represents a novel species of the genus Amphibacillus, for which the name Amphibacillus jilinensis sp. nov. is proposed. The type strain is Y1(T) (=CGMCC 1.5123(T) =JCM 16149(T)). PMID:19965990

  10. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    PubMed

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)). PMID:25866024

  11. Bacillus haikouensis sp. nov., a facultatively anaerobic halotolerant bacterium isolated from a paddy soil.

    PubMed

    Li, Jibing; Yang, Guiqin; Lu, Qin; Zhao, Yong; Zhou, Shungui

    2014-10-01

    A Gram-stain positive, rod-shaped, endospore-forming and facultatively anaerobic halotolerant bacterium, designated as C-89(T), was isolated from a paddy field soil in Haikou, Hainan Province, People's Republic of China. Optimal growth was observed at 37 °C and pH 7.0 in the presence of 4% NaCl (w/v). The predominant menaquinone was identified as MK-7, the major cellular fatty acids were identified as anteiso-C(15:0) and iso-C(15:0), and the major cellular polar lipids were identified as phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unknown phospholipids. The peptidoglycan type was determined to be based on meso-DAP. Based on 16S rRNA gene sequence similarity, the closest phylogenetic relatives were identified as Bacillus vietnamensis JCM 11124(T) (98.8% sequence similarity), Bacillus aquimaris JCM 11545(T) (98.6%) and Bacillus marisflavi JCM 11544(T) (98.5%). The DNA G+C content of strain C-89(T) was determined to be 45.4 mol%. The DNA-DNA relatedness values of strain C-89(T) with its closest relatives were below 18%. Therefore, on the basis of phylogenetic, chemotaxonomic, and phenotypic results, strain C-89(T) can be considered to represent a novel species within the genus Bacillus, for which the name Bacillus haikouensis sp. nov., is proposed. The type strain is C-89(T) (=KCTC 33545(T) = CCTCC AB 2014076(T)). PMID:25100188

  12. Computer-assisted identification of anaerobic bacteria.

    PubMed Central

    Kelley, R W; Kellogg, S T

    1978-01-01

    A computer program was developed to identify anaerobic bacteria by using simultaneous pattern recognition via a Bayesian probabilistic model. The system is intended for use as a rapid, precise, and reproducible aid in the identification of unknown isolates. The program operates on a data base of 28 genera comprising 238 species of anaerobic bacteria that can be separated by the program. Input to the program consists of biochemical and gas chromatographic test results in binary format. The system is flexible and yields outputs of: (i) most probable species, (ii) significant test results conflicting with established data, and (iii) differential tests of significance for missing test results. PMID:345970

  13. Facultative Anaerobe Caldibacillus debilis GB1: Characterization and Use in a Designed Aerotolerant, Cellulose-Degrading Coculture with Clostridium thermocellum

    PubMed Central

    Wushke, Scott; Levin, David B.; Cicek, Nazim

    2015-01-01

    Development of a designed coculture that can achieve aerotolerant ethanogenic biofuel production from cellulose can reduce the costs of maintaining anaerobic conditions during industrial consolidated bioprocessing (CBP). To this end, a strain of Caldibacillus debilis isolated from an air-tolerant cellulolytic consortium which included a Clostridium thermocellum strain was characterized and compared with the C. debilis type strain. Characterization of isolate C. debilis GB1 and comparisons with the type strain of C. debilis revealed significant physiological differences, including (i) the absence of anaerobic metabolism in the type strain and (ii) different end product synthesis profiles under the experimental conditions used. The designed cocultures displayed unique responses to oxidative conditions, including an increase in lactate production. We show here that when the two species were cultured together, the noncellulolytic facultative anaerobe C. debilis GB1 provided respiratory protection for C. thermocellum, allowing the synergistic utilization of cellulose even under an aerobic atmosphere. PMID:26048931

  14. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer

    SciTech Connect

    Pfiffner, S.M.; McInerney, M.J.; Jenneman, G.E.; Knapp, R.M.

    1986-06-01

    Over 200 bacterial strains were selected for anaerobic growth at 50/sup 0/C and extracellular polysaccharide production in a sucrose-mineral salts medium with NaNO/sub 3/ and up to 10% NaCl. The predominant cell type was an encapsulated gram-positive, motile, facultative spore-forming rod similar to Bacillus species. Strain SP018 grew and produced the polysaccharide on a variety of substrates at salinities up to 12% NaCl. Good polymer production only occurred anaerobically and was optimal between 4 and 10% NaCl. The ethanol-precipitated SP018 polymer was a charged heteropolysaccharide that contained glucose, mannose, arabinose, ribose, and low levels of allose and glucosamine. The SP018 polymer showed pseudoplastic behavior, was resistant to shearing, and had a higher viscosity at dilute concentrations and at elevated temperatures than xanthan gum. High-ionic-strength solutions reversibly decreased the viscosity of SP018 polymer solutions. The bacterium and the associated polymer have many properties that make them potentially useful for in situ microbially enhanced oil recovery processes.

  15. Isolation of Halotolerant, Thermotolerant, Facultative Polymer-Producing Bacteria and Characterization of the Exopolymer

    PubMed Central

    Pfiffner, S. M.; McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.

    1986-01-01

    Over 200 bacterial strains were selected for anaerobic growth at 50°C and extracellular polysaccharide production in a sucrose-mineral salts medium with NaNO3 and up to 10% NaCl. The predominant cell type was an encapsulated gram-positive, motile, facultative sporeforming rod similar to Bacillus species. Strain SP018 grew and produced the polysaccharide on a variety of substrates at salinities up to 12% NaCl. Good polymer production only occurred anaerobically and was optimal between 4 and 10% NaCl. The ethanol-precipitated SP018 polymer was a charged heteropolysaccharide that contained glucose, mannose, arabinose, ribose, and low levels of allose and glucosamine. The SP018 polymer showed pseudoplastic behavior, was resistant to shearing, and had a higher viscosity at dilute concentrations and at elevated temperatures than xanthan gum. High-ionic-strength solutions reversibly decreased the viscosity of SP018 polymer solutions. The bacterium and the associated polymer have many properties that make them potentially useful for in situ microbially enhanced oil recovery processes. PMID:16347080

  16. Effects of Storage in an Anaerobic Transport System on Bacteria in Known Polymicrobial Mixtures and in Clinical Specimens

    PubMed Central

    Hill, Gale B.

    1978-01-01

    An anaerobic transport system (ATS) which provides for catalytic removal of oxygen was evaluated by using in vitro-prepared polymicrobial mixtures of logphase bacteria and clinical specimens. Inoculated swabs were stored at room temperature in (i) aerobic, (ii) anaerobic glove box, and (iii) ATS environments, and bacteria were quantitated after 2, 24, 48, and 72 h. Bacteria in a three-part mixture of Bacteroides fragilis, Peptostreptococcus anaerobius, and Escherichia coli and in a five-part mixture of B. fragilis, P. anaerobius, Fusobacterium nucleatum, Staphylococcus epidermidis, and Pseudomonas aeruginosa survived 72 h of storage in the ATS and anaerobic glove box environments, but the anaerobic species were inactivated in the aerobic storage except for B. fragilis in pure culture or in the three-part mixture. Changes in relative proportions among the species in a mixture were least in the ATS and anaerobic glove box environments and greatest during the aerobic storage, particularly in the five-part mixture. Bacteria present in pure or mixed culture in clinical specimens generally survived 72 h of storage in the ATS. These data indicate that changes in relative proportions occur with prolonged storage even under anaerobic conditions, but that the ATS would be most effective for preserving anaerobic bacteria and preventing drastic concentration changes and overgrowth of facultative and aerobic bacteria. Images PMID:370142

  17. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  18. ANAEROBIC RESISTANCE TO HIGH LEVELS OF CADMIUM AND OTHER TOXIC METALS IN A FACULTATIVE ANAEROBE ISOLATED FROM PRISTINE SALT MARSH SEDIMENTS

    SciTech Connect

    SHARMA,P.K.; VAIRAVAMURTHY,A.; KIELECZAWA,J.

    1999-06-20

    The authors have isolated many Cd (II) resistant bacterial strains from relatively pristine sediments collected from salt marshes in Shelter Island, New York. Detailed studies are being performed on one isolate, strain Cd-1. Strain Cd-1 is metabolically diverse, halotolerant, Gram-negative, facultative anaerobe. It can resist high amounts of Cd (II), Cr (VI), As (V), Se (IV), Co (II), Pb (II), or Zn (II) under defined anaerobic conditions. With pyruvate as the energy source, Cd-1 can grow well at examined Cd (II) concentrations ranging up to 15 mM. It can resist Cd (II) with or without marine level NaCl concentration, under acidic or neutral conditions. It can resist Cd (II) under aerobic conditions as well. These features are novel for a heavy metal resistant bacterium.

  19. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae

    PubMed Central

    Pace, Laura A.; Ward, Lewis M.; Fischer, Woodward W.

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  20. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Pace, Laura A; Hemp, James; Ward, Lewis M; Fischer, Woodward W

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  1. Draft Genome Sequence of Paenibacillus Strain P1XP2, a Polysaccharide-Degrading, Thermophilic, Facultative Anaerobic Bacterium Isolated from a Commercial Bioreactor Degrading Food Waste

    PubMed Central

    Adelskov, Joseph

    2015-01-01

    The analysis of the ~5.8-Mb draft genome sequence of a moderately thermophilic, heterotrophic, facultative anaerobic bacterium, Paenibacillus strain P1XP2, identified genes for enzymes with the potential for degrading complex food wastes, a property consistent with the ecological habitat of the isolate. PMID:25635015

  2. Dispersal of non-sporeforming anaerobic bacteria from the skin.

    PubMed Central

    Benediktsdóttir, E.; Hambraeus, A.

    1982-01-01

    Dispersal of non-sporeforming anaerobic bacteria was studied. Skin samples were taken from the subjects, and dispersed from different parts of the body was examined. The number of anaerobic bacteria dispersed was not correlated to their density on the surface of skin area exposed. The highest density of anaerobic bacteria on the skin was found in the face and upper trunk, but the highest yield of anaerobic bacteria dispersed came from the lower trunk. The dominant anaerobic bacteria dispersed were Propionibacterium acnes, but Propionibacterium avidum, Propionibacterium granulosum and Gram-positive cocci were also isolated from the dispersal samples. Peptococcus magnus was the most common coccus isolated. For the less frequently isolated bacteria, the best correlation was found between the perineal flora and airborne bacteria. A comparison was also made of bacterial dispersal by naked and dressed subjects. The dispersal of both aerobic and anaerobic bacteria was higher when the subjects were dressed in conventional operating theatre cotton clothing than when they were naked. The increased dispersal of anaerobic bacteria when the subjects were dressed was mainly due to increased dispersal of Propionibacterium sp. PMID:6806353

  3. [Antimicrobial susceptibility testing of anaerobic bacteria].

    PubMed

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  4. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  5. Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil

    PubMed Central

    Tonouchi, Akio

    2009-01-01

    A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genus Thermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered an incertae sedis within the class Lecanoromycetes. PMID:20148171

  6. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  7. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  8. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans.

    SciTech Connect

    Beller, H R; Larimer, Frank W

    2006-02-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, {beta}-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by {beta}-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.

  9. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  10. Suigetsumonas clinomigrationis gen. et sp. nov., a Novel Facultative Anaerobic Nanoflagellate Isolated from the Meromictic Lake Suigetsu, Japan.

    PubMed

    Okamura, Takahiko; Kondo, Ryuji

    2015-09-01

    A novel facultative anaerobic bacterivorous nanoflagellate was isolated from the water just below the permanent oxic-anoxic interface of the meromictic Lake Suigetsu, Japan. We characterized the isolate using light and transmission electron microscopy and molecular phylogenetic analyses inferred from 18S rDNA sequences. The phylogenetic analyses showed that the isolate belonged to class Placididea (stramenopiles). The isolate showed key ultrastructural features of the Placididea, such as flagellar hairs with two unequal terminal filaments, microtubular root 2 changing in shape from an arced to an acute-angled shape, and a lack of an x-fiber in root 2. However, the isolate had a single helix in the flagellar transition region, which is a double helix in the two known placidid nanoflagellates Placidia cafeteriopsis and Wobblia lunata. Moreover, the isolate had different intracellular features compared with these two genera, such as the arrangement of basal bodies, the components of the flagellar apparatus, the number of mitochondria, and the absence (or presence) of paranuclear bodies. The 18S rDNA sequence was also phylogenetically distant from the clades of the known Placididae W. lunata and P. cafeteriopsis. Consequently, the newly isolated nanoflagellate was described as Suigetsumonas clinomigrationis gen. et sp. nov. PMID:26202992

  11. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pilkuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  12. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1

    USGS Publications Warehouse

    Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

    2002-01-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

  13. Carnobacterium Pleistocaenium sp. nov.: A Novel Psychrotolerant, Facultative Anaerobe Isolated from Permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2004-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRIT1(sup T), was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells with sizes 0.6-0.7 x 0.9-1.5 micrometers were observed. Growth occurred within the pH range 6.5-9.5 and optimum at pH 7.3-7.5. The temperature range of the new isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate requires NaCl (growth absent at 0 %) and growth was observed between 0 and 5% NaCl with optimum at 0.5% (w/v). The new isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were: acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The 16S rDNA sequence analysis showed 99.8% similarity of strain FTR1 with Carnobacterium alterfunditum, but the DNA-DNA hybridization between them demonstrated 39 plus or minus 5% homology. On the basis of genotypic and phenotypic characteristics, it is proposed that the strain FTR1(sup T) (= ATCC BAA-754(sup T) = JSM 12174(sup T) is assigned to the new species of the genus Carnobacterium with proposed name Carnobacterium pleistocaenium sp. nov.

  14. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  15. The Genome Sequences of Cellulomonas fimi and “Cellvibrio gilvus” Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of “Cellvibrio gilvus” to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov

    PubMed Central

    Bramhacharya, Shanti; Jewell, Kelsea A.; Aylward, Frank O.; Mead, David; Brumm, Phillip J.

    2013-01-01

    Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies. PMID:23342046

  16. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  17. Evaluation of a microtiter system for identification of anaerobic bacteria.

    PubMed Central

    Savuto, P S; Ellner, P D

    1984-01-01

    The Anaerobe Combo Panel (American MicroScan, Mahwah, N.J.) was evaluated for its ability to identify anaerobic bacteria. The frozen, 96-well panel utilizes 24 biochemical reactions and four antimicrobial agents for species identification. The Anaerobe Combo Panel was used to test 114 clinical isolates of strict anaerobes. Reactions were read after 48 h, and the results were compared with those obtained with the PRAS II system (Scott Laboratories, Inc., Fiskeville, R.I.). Discrepancies between the two systems were resolved by gas-liquid chromatography. With the Anaerobe Combo Panel, 84% of the organisms were able to grow, and 89% of these were correctly identified to genus level and 78% to species level. The Anaerobe Combo Panel was easy to inoculate and read, but some of the reactions were difficult to interpret, and not all of the derived codes were found in the code book. PMID:6378969

  18. Clinical review: Bacteremia caused by anaerobic bacteria in children

    PubMed Central

    Brook, Itzhak

    2002-01-01

    This review describes the microbiology, diagnosis and management of bacteremia caused by anaerobic bacteria in children. Bacteroides fragilis, Peptostreptococcus sp., Clostridium sp., and Fusobacterium sp. were the most common clinically significant anaerobic isolates. The strains of anaerobic organisms found depended, to a large extent, on the portal of entry and the underlying disease. Predisposing conditions include: malignant neoplasms, immunodeficiencies, chronic renal insufficiency, decubitus ulcers, perforation of viscus and appendicitis, and neonatal age. Organisms identical to those causing anaerobic bacteremia can often be recovered from other infected sites that may have served as a source of persistent bacteremia. When anaerobes resistant to penicillin are suspected or isolated, antimicrobial drugs such as clindamycin, chloramphenicol, metronidazole, cefoxitin, a carbapenem, or the combination of a beta-lactamase inhibitor and a penicillin should be administered. The early recognition of anaerobic bacteremia and administration of appropriate antimicrobial and surgical therapy play a significant role in preventing mortality and morbidity in pediatric patients. PMID:12133179

  19. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile.

    PubMed

    Falagán, Carmen; Johnson, D Barrie

    2016-01-01

    The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T). PMID:26498321

  20. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1T)

    SciTech Connect

    Huntemann, Marcel; Teshima, Hazuki; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1T)

    PubMed Central

    Huntemann, Marcel; Teshima, Hazuki; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22768362

  2. Trichococcus Patagoniensis sp. nov., a Facultative Anaerobe that grows at -5 C, Isolated from Penguin Guano in Chilean Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Krader, Paul E.; Tang, Jane

    2006-01-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagGl(sup T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 micrometers were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 C, with optimum growth at 28-30 C. Strain PmagG1(sup T) did not require NaCl, as growth was observed in the presence of 0-6.5% NaCl with optimum growth at 0.5% (w/v). Strain PmagGl(sup T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and Con. Strain PmagG1(sup T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(sup T) with Trichococcus collinsii ATCC BAA-296(sup T), but DNA-DNA hybridization between them demonstrated relatedness values of less than 45 plus or minus 1%. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16s rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47 plus or minus 1.5%. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(sup T) (=ATCC BAA-756(sup T)=JCM 12176(sup T)=CIP 108035(sup T)) as the type strain.

  3. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5 degrees C, isolated from penguin guano in Chilean Patagonia.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Whitman, William B; Krader, Paul E; Tang, Jane

    2006-09-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagG1(T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 mum were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 degrees C, with optimum growth at 28-30 degrees C. Strain PmagG1(T) did not require NaCl, as growth was observed in the presence of 0-6.5 % NaCl with optimum growth at 0.5 % (w/v). Strain PmagG1(T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and CO(2). Strain PmagG1(T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(T) with Trichococcus collinsii ATCC BAA-296(T), but DNA-DNA hybridization between them demonstrated relatedness values of <45+/-1 %. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16S rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47+/-1.5 %. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(T) (=ATCC BAA-756(T)=JCM 12176(T)=CIP 108035(T)) as the type strain. PMID:16957099

  4. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  5. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  6. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  7. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae.

    PubMed

    Podosokorskaya, Olga A; Kadnikov, Vitaly V; Gavrilov, Sergey N; Mardanov, Andrey V; Merkel, Alexander Y; Karnachuk, Olga V; Ravin, Nikolay V; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2013-06-01

    A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically. PMID:23297868

  8. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  9. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  10. Comparative Susceptibility of Anaerobic Bacteria to Minocycline, Doxycycline, and Tetracycline

    PubMed Central

    Chow, Anthony W.; Patten, Valerie; Guze, Lucien B.

    1975-01-01

    The comparative susceptibility of 622 recent clinical isolates of anaerobic bacteria to minocycline, doxycycline, and tetracycline was determined by an agar-dilution technique. In addition to Bacteroides fragilis, a variety of other anaerobic bacteria was resistant to achievable blood concentrations of tetracycline (55% inhibited by 6.25 μg/ml) and doxycycline (58% inhibited by 2.5 μg/ml). In contrast, minocycline was significantly more active (P < 0.05) than both doxycycline and tetracycline, and 70% of strains were inhibited by achievable blood concentrations of this antibiotic (2.5 μg/ml). The enhanced activity of minocycline was particularly striking for Peptococcus asaccharolyticus, P. magnus, P. prevotii, Peptostreptococcus anaerobius, and Bacteroides melaninogenicus. Further evaluation of the clinical efficacy of minocycline against anaerobic infections is indicated. PMID:1137358

  11. Susceptibility testing of anaerobic bacteria: myth, magic, or method?

    PubMed Central

    Wexler, H M

    1991-01-01

    The demand for susceptibility testing of anaerobes has increased, yet consensus as to procedure and interpretation in this area has not been achieved. While routine testing of anaerobic isolates is not needed, certain isolates in specific clinical settings should be tested. Also, laboratories may monitor their local antibiograms by doing periodic surveillance batch testing. The National Committee for Clinical Laboratory Standards has published a protocol of methods approved for susceptibility testing of anaerobic bacteria. Both agar and broth microdilution are included; however, the broth disk elution method is no longer approved by the National Committee for Clinical Laboratory Standards because of method-related interpretive errors. A number of newer methods are undergoing evaluation and seem promising. Clinicians and microbiologists reviewing susceptibility reports should be aware of sources of variability in the test results. Variables in susceptibility testing of anaerobes include the media and methods used, organisms chosen for testing, breakpoints chosen for interpretation, antibiotic, and determination of endpoint. Clustering of MICs around the breakpoint may lead to significant variability in test results. Adherence of testing laboratories to approved methods and careful descriptions of the method and the breakpoints used for interpretation would facilitate interlaboratory comparisons and allow problems of emerging resistance to be noted. A variety of resistance mechanisms occurs in anaerobic bacteria, including the production of beta-lactamase and other drug-inactivating enzymes, alteration of target proteins, and inability of the drug to penetrate the bacterial wall. Antimicrobial resistance patterns in the United States and abroad are described. PMID:1747863

  12. The aerobic and anaerobic bacteriology of perirectal abscesses.

    PubMed Central

    Brook, I; Frazier, E H

    1997-01-01

    The microbiology of perirectal abscesses in 144 patients was studied. Aerobic or facultative bacteria only were isolated in 13 (9%) instances, anaerobic bacteria only were isolated in 27 (19%) instances, and mixed aerobic and anaerobic flora were isolated in 104 (72%) instances. A total of 325 anaerobic and 131 aerobic or facultative isolates were recovered (2.2 anaerobic isolates and 0.9 aerobic isolates per specimen). The predominant anaerobes were as follows: Bacteroides fragilis group (85 isolates), Peptostreptococcus spp. (72 isolates), Prevotella spp. (71 isolates), Fusobacterium spp. (21 isolates), Porphyromonas spp. (20 isolates), and Clostridium spp. (15 isolates). The predominant aerobic and facultative bacteria were as follows: Staphylococcus aureus (34 isolates), Streptococcus spp. (28 isolates), and Escherichia coli (19 isolates). These data illustrate the polymicrobial aerobic and anaerobic microbiology of perirectal abscesses. PMID:9350771

  13. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization.

    PubMed

    Jayashree, Shanmugam; Vadivukkarasi, Ponnusamy; Anand, Kirupanithi; Kato, Yuko; Seshadri, Sundaram

    2011-08-01

    Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP-BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l(-l)), MDW 80 (301 mg l(-l)), M. komagatae (279 mg l(-l)), and MSF 34 (202 mg l(-l)), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs. PMID:21445558

  14. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core.

    PubMed

    Shen, Liang; Liu, Yongqin; Gu, Zhengquan; Xu, Baiqing; Wang, Ninglian; Jiao, Nianzhi; Liu, Hongcan; Zhou, Yuguang

    2015-07-01

    Strain B528-3(T), a Gram-stain-negative, rod-shaped, aerobic, facultatively psychrophilic bacterium with polar flagella, was isolated from an ice core drilled from Muztagh Glacier, Xinjiang, China. The novel isolate was classified into the genus Massilia. The 16S rRNA gene sequence of the novel isolate shares a pairwise similarity of less than 97% with those of all the type strains of the genus Massilia. The major fatty acids of strain B528-3(T) were summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH) (57.31%), C16:0 (11.46%) and C18:1ω7c (14.72%). The predominant isoprenoid quinone was Q-8. The DNA G + C content was 62.2 mol% (Tm). The major polar lipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. From the genotypic and phenotypic data, it is evident that strain B528-3(T) represents a novel species of the genus Massilia, for which the name Massilia eurypsychrophila sp. nov. is proposed. The type strain is B528-3(T) ( = JCM 30074(T) = CGMCC 1.12828(T)). PMID:25851590

  15. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    SciTech Connect

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  16. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.

    PubMed

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  17. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  18. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    PubMed

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. PMID:23648369

  19. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  20. Degradation potential and growth of anaerobic bacteria in produced water.

    PubMed

    Vieira, D S; Sérvulo, E F C; Cammarota, M C

    2005-08-01

    The efficiency of an anaerobic biological treatment for the reduction of essential contaminants of produced water from an offshore oilfield was investigated using a microbial consortium enriched with sulphate-reducing bacteria (SRB). Experiments were conducted in a bench bioreactor at 35 degrees C, 250 rpm, with intermittent purges of N2 gas in order to establish anaerobic conditions and to remove the H2S generated. The results showed that pH control effectively influenced the activity of the anaerobic bacteria leading to COD removal of 57%. Meanwhile, pH control was found to have no influence on the removal efficiencies of oil and grease and total phenols. In all experiments, removals of oil and grease and total phenols of 60% and 58-67%, respectively, were obtained after a 15-day process. In studies carried out with biomass reuse the reductions obtained were 61% for oil and grease and 78% for total phenols over the same period. Such results point to the technical feasibility of anaerobic biodegradation for oilfield wastewater treatment. PMID:16128390

  1. Effect of solvents on obligately anaerobic bacteria.

    PubMed

    Rodriguez Martinez, Maria Fernanda; Kelessidou, Niki; Law, Zoe; Gardiner, John; Stephens, Gill

    2008-02-01

    Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria. PMID:18083050

  2. In vitro evaluation of faropenem activity against anaerobic bacteria.

    PubMed

    Behra-Miellet, J; Dubreuil, L; Bryskier, A

    2005-02-01

    Faropenem, a new oral penem with broad spectrum activity, could be used as empirical treatment in infections due to unidentified anaerobes, but only a few investigations have been carried out on these bacteria. The aim of this study was to compare faropenem in vitro activity with that of positive antimicrobial controls (metronidazole, imipenem, meropenem, amoxicillin, amoxicillin-clavulanic acid, ticarcillin-clavulanic acid, cefotetan, cefoxitin and clindamycin) against 462 anaerobic bacterial strains. The reference agar dilution method was used according to the NCCLS standard. Faropenem demonstrated high antimicrobial activity, similar to that of both imipenem and meropenem (faropenem Minimal Inhibitory Concentrations 50% and 90% were 0.12 and 1 mg/L for all Gram-negative anaerobes, 0.25 and 1 mg/L for all Gram-positive anaerobes). Only 5 strains of the Bacteroides fragilis group (1.1% of all anaerobes) were resistant to faropenem, which compared favorably with that of other reference antianaerobic drugs. The results obtained confirm those previously reported. PMID:15828442

  3. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  4. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J.; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A.; Liang, Liyuan; Gu, Baohua

    2013-09-01

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury. One strain of sulphate-reducing bacteria (Desulfovibrio desulphuricans ND132) can also methylate elemental mercury. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidize and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidize and methylate elemental mercury. In line with recent findings, we show that D.desulphuricans ND132 can both oxidize and methylate elemental mercury. We find that the rate of methylation of elemental mercury is about one-third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidize, but not methylate, elemental mercury. Geobacter sulphurreducens PCA is able to oxidize and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  5. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    SciTech Connect

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A; Liang, Liyuan; Gu, Baohua

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  6. Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India

    PubMed Central

    Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

    2013-01-01

    Background In this study a large random collection (n = 2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007–2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6′-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families

  7. Susceptibility of Anaerobic Bacteria to 23 Antimicrobial Agents

    PubMed Central

    Sutter, Vera L.; Finegold, Sydney M.

    1976-01-01

    The antimicrobial susceptibility of 492 anaerobic bacteria, the majority of which were recent clinical isolates, was determined by the agar dilution technique. Penicillin G was active against most of the strains tested at 32 U or less/ml, but only 72% of Bacteroides fragilis strains were susceptible at this level and 9% required 256 U or more/ml. Ampicillin was effective against most of the strains except B. fragilis at 16 μg or less/ml. Amoxicillin was active against only 31% of B. fragilis, 76% of other Bacteroides species, and 67% of Fusobacterium species at 8 μg/ml. Two new penicillins, mezlocillin and azlocillin, were similar to ampicillin in their activity. Carbenicillin and ticarcillin inhibited all but a few strains at 128 μg or less/ml. BLP 1654 was somewhat more active than penicillin G against B. fragilis but had similar activity against other anaerobes. Cephalothin was inactive against B. fragilis, and only 65% of other Bacteroides species were inhibited by 32 μg or less/ml. It was effective against all other anaerobes at that level. Cefamandole showed somewhat greater activity than cephalothin against B. fragilis but generally less activity against gram-positive organisms. Cefazaflur (SKF 59962) was comparable to cephalothin against B. fragilis. Cefoxitin was distinctly more active than cephalothin against B. fragilis. These latter two agents were less active than cephalothin against the gram-positive anaerobes. Chloramphenicol remains active against anaerobic bacteria at 16 μg or less/ml, with rare exceptions. Thiamphenicol was similar to chloramphenicol in its activity. Clindamycin was very active against most of the anaerobes at 8 μg or less/ml. Erythromycin and josamycin were also tested, with josamycin showing greater activity against B. fragilis than either erythromycin or clindamycin. A new oligosaccharide, everninomicin B, was less active than clindamycin against B. fragilis but more active against clostridia and some of the other strains

  8. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification.

    PubMed Central

    Rainey, F A; Ward, N L; Morgan, H W; Toalster, R; Stackebrandt, E

    1993-01-01

    Small subunit rDNA sequences were determined for 20 species of the genera Acetogenium, Clostridium, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobium, and Thermobacteroides, 3 non-validly described species, and 5 isolates of anaerobic thermophilic bacteria, providing a basis for a phylogenetic analysis of these organisms. Several species contain a version of the molecule significantly longer than that of Escherichia coli because of the presence of inserts. On the basis of normal evolutionary distances, the phylogenetic tree indicates that all bacteria investigated in this study with a maximum growth temperature above 65 degrees C form a supercluster within the subphylum of gram-positive bacteria that also contains Clostridium thermosaccharolyticum and Clostridium thermoaceticum, which have been previously sequenced. This supercluster appears to be equivalent in its phylogenetic depth to the supercluster of mesophilic clostridia and their nonspore-forming relatives. Several phylogenetically and phenotypically coherent clusters that are defined by sets of signature nucleotides emerge within the supercluster of thermophiles. Clostridium thermobutyricum and Clostridium thermopalmarium are members of Clostridium group I. A phylogenetic tree derived from transversion distances demonstrated the artificial clustering of some organisms with high rDNA G+C moles percent, i.e., Clostridium fervidus and the thermophilic, cellulolytic members of the genus Clostridium. The results of this study can be used as an aid for future taxonomic restructuring of anaerobic sporogenous and asporogenous thermophillic, gram-positive bacteria. PMID:7687600

  9. GC/IR computer-aided identification of anaerobic bacteria

    NASA Astrophysics Data System (ADS)

    Ye, Hunian; Zhang, Feng S.; Yang, Hua; Li, Zhu; Ye, Song

    1993-09-01

    A new method was developed to identify anaerobic bacteria by using pattern recognition. The method is depended on GC / JR data. The system is intended for use as a precise rapid and reproduceable aid in the identification of unknown isolates. Key Words: Anaerobic bacteria Pattern recognition Computeraided identification GC / JR 1 . TNTRODUCTTON A major problem in the field of anaerobic bacteriology is the difficulty in accurately precisely and rapidly identifying unknown isolates. Tn the proceedings of the Third International Symposium on Rapid Methods and Automation in Microbiology C. M. Moss said: " Chromatographic analysis is a new future for clinical microbiology" . 12 years past and so far it seems that this is an idea whose time has not get come but it close. Now two major advances that have brought the technology forword in terms ofmaking it appropriate for use in the clinical laboratory can aldo be cited. One is the development and implementation of fused silica capillary columns. In contrast to packed columns and those of'' greater width these columns allow reproducible recovery of hydroxey fatty acids with the same carbon chain length. The second advance is the efficient data processing afforded by modern microcomputer systems. On the other hand the practical steps for sample preparation also are an advance in the clinical laboratory. Chromatographic Analysis means mainly of analysis of fatty acids. The most common

  10. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  11. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    PubMed

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    .7%) received empiric antimicrobial therapy. One hundred and one patients (82.8%) had polymicrobial aerobic/anaerobic isolates cultivated from the same specimens. Almost all aerobic bacteria were of endogenous origin and showed fully susceptible antimicrobial profile; only 8.7% (9/104) were multiresistant and considered as hospital acquired. Based on our findings, β-lactam/β-lactamase inhibitor combinations and metronidazole remain useful antimicrobials for empiric treatment of anaerobic infections, while carbapenems should be reserved for situations were multidrug resistant, aerobic or facultative Gram-negative bacteria are expected. However, a certain percentage of resistant isolates were observed for each of these agents. Therefore, periodic resistance surveillance in anaerobes is highly recommended in order to guide empirical therapy. PMID:25479237

  12. Anaerobic bacteria from the large intestine of mice.

    PubMed Central

    Harris, M A; Reddy, C A; Carter, G R

    1976-01-01

    Anaerobic bacteria from the colon of laboratory mice were enumerated and isolated using strict anaerobic techniques. Direct microscopic counts revealed 4.4 X 10(10) organisms in each gram (wet weight) of colon contents. Actual cultural counts averaged 3.2 X 10(10) organisms, which was 73% of the direct microscopic count. The tentatively identified genera were Bacteroides, Eubacterium, Fusobacterium, Lactobacillus, Peptostreptococcus, and Propionibacterium. Strains of Fusobacterium, Lactobacillus, Peptostreptococcus, and Propionibacterium were biochemically homogeneous. Strains of Bacteroides and Eubacterium, on the other hand, were biochemically heterogeneous and were subdivided into several distinct groups. The data indicate that many of the isolates are different from previously described species of the respective genera and may belong to new species. PMID:938042

  13. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  14. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake. PMID:942211

  15. Isoleucine Biosynthesis from 2-Methylbutyric Acid by Anaerobic Bacteria from the Rumen

    PubMed Central

    Robinson, Isadore M.; Allison, Milton J.

    1969-01-01

    Microorganisms in ruminal ingesta and pure cultures of anaerobic ruminal bacteria of different physiological and morphological groups incorporated 14C from labeled 2-methylbutyrate during growth. The radioactivity was incorporated mainly into lipid and protein. Isoleucine was the only labeled amino acid found in acid hydrolysates of protein from either pure or mixed cultures. Radioactivity in isoleucine synthesized from 2-methylbutyrate-1-14C was entirely in carbon-2. Thus, the carboxylation of 2-methylbutyrate is a pathway for synthesis of isoleucine different from that operative in many aerobic and facultative microorganisms. The specific activity of isoleucine from 2-methylbutyrate by Bacteroides rumminicola 23 increased with higher concentrations of 2-methylbutyrate (2.6 to 44 × 10−5m) in the growth medium. At the highest concentration, the specific activity of isoleucine synthesized was 40% of the specific activity of the 2-methylbutyrate in the growth medium. The use of enzymatic casein hydrolysate, oxytocin, or vasopressin rather than ammonia as nitrogen source for growth of strain 23 depressed the incorporation of 2-methylbutyrate into isoleucine. Synthesis of isoleucine from 2-methylbutyrate appears to be an important reaction in the rumen. PMID:5813342

  16. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  17. Rapid methods for biochemical testing of anaerobic bacteria.

    PubMed

    Schreckenberger, P C; Blazevic, D J

    1974-11-01

    Rapid biochemical tests for nitrate, indole, gelatin, starch, esculin, and o-nitrophenyl-beta-D-galactopyranoside were performed on 112 strains of anaerobic bacteria. All tests were incubated under aerobic conditions, and results were recorded within 4 h. The tests for nitrate, indole, and starch showed a 95% or greater correlation when compared to the standard biochemical tests. Tests for esculin and gelatin showed an agreement of 86 and 77%, respectively. PathoTec test strips for nitrate, indole, esculin, o-nitrophenyl-beta-D-galactopyranoside, Voges-Proskauer, and urease were also tested and showed encouraging results. PMID:4613268

  18. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria

    PubMed Central

    Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

  19. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    PubMed Central

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  20. A novel mode of lactate metabolism in strictly anaerobic bacteria.

    PubMed

    Weghoff, Marie Charlotte; Bertsch, Johannes; Müller, Volker

    2015-03-01

    Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-)  + 2 NAD(+)  → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes. PMID:24762045

  1. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  2. Lack of Activity of Sulfamethoxazole and Trimethoprim Against Anaerobic Bacteria

    PubMed Central

    Rosenblatt, J. E.; Stewart, P. R.

    1974-01-01

    The activity of sulfamethoxazole (SMX), trimethoprim (TMP), and the combination of the two was determined against a variety of anaerobic bacteria. Brucella agar was somewhat inhibitory for SMX and TMP but activity was good and equivalent in Diagnostic Sensitivity Test Agar (Oxoid) and Mueller-Hinton agar and the latter was selected for use in these studies. Agar dilution susceptibility tests showed that 95 of 98 anaerobic isolates were resistant to ≥100 μg of SMX per ml and 85 were resistant to ≥6.25 μg of TMP per ml. “Checkerboard” agar dilution studies of combined activity showed that 66 of 72 isolates were resistant to ≥ (100 μg of SMX per ml + 6.25 μg of TMP per ml) and only six isolates were susceptible to the synergistic activity of the combination. The majority of 32 isolates tested by the disk diffusion method were also resistant to SMX and TMP individually and to the combination 25-μg disk. Correlation between agar dilution minimal inhibitory concentration and disk zone size results was in general good for individual agents. Four Bacteroides fragilis isolates were inhibited by the combination 25-μg disk but were resistant to SMX + TMP by agar dilution “checkerboard.” This discrepancy may have been due to different incubation periods since disk results also showed resistance when read after 48 h (as is done with agar dilution) rather than the standard 24 h for disk tests. These studies suggest that SMX and TMP, either individually or in combination, are not active against the great majority of anaerobic bacteria. PMID:15828176

  3. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  4. Antimicrobials therapy of anaerobic infections.

    PubMed

    Brook, Itzhak

    2016-06-01

    Anaerobes predominant in the normal human skin and mucous membranes bacterial flora are often a cause of endogenous infections. Anaerobic bacteria are difficult to isolate from infectious sites, and are often overlooked. Anaerobic infections caused by anaerobes can occur in all body sites, including the central nervous system (CNS), oral cavity, head and neck, chest, abdomen, pelvis, skin and soft tissues. The treatment of these infections is complicated by the slow growth of these organisms, their polymicrobial nature and the growing resistance of anaerobes to antimicrobials agents. Antimicrobials are frequently the only form of therapy needed, but in others, they are an important adjunct to surgical drainage and correction of pathology. Because anaerobes are often recovered with aerobic and facultative bacteria, the chosen antimicrobials should cover all pathogens. The antimicrobials effective against anaerobic organisms are metronidazole, carbapenems, combinations of a beta-lactam and a beta-lactamase inhibitor, chloramphenicol, tigecycline and clindamycin. PMID:26365224

  5. Paper Chromatography as an Adjunct in the Identification of Anaerobic Bacteria

    PubMed Central

    Slifkin, M.; Hercher, H. J.

    1974-01-01

    Modified paper chromatography procedures for the analysis of fatty acids produced by anaerobic bacteria are described. Both ethylamine and hydroxylamine derivatives of fatty acids were prepared from inoculated anaerobic culture broth. The derivatives were spotted on chromatography paper and developed with appropriate solvents. Paper chromatography is a valuable alternative to gas liquid chromatography as an ancillary procedure in the identification of anaerobic bacteria in the clinical bacteriology laboratory. PMID:4596386

  6. Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

    2007-12-01

    In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

  7. Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent.

    PubMed

    Slobodkina, Galina B; Panteleeva, Angela N; Beskorovaynaya, Darya A; Bonch-Osmolovskaya, Elizaveta A; Slobodkin, Alexander I

    2016-02-01

    A novel thermophilic planctomycete (strain SVX8T) was isolated from a shallow submarine hydrothermal vent, Vulcano Island, Italy. The temperature range for growth was 30-68 °C, with an optimum at 55 °C. The pH range for growth was 5.0-9.0, with an optimum at pH 7.0-8.0. Growth was observed at NaCl concentrations ranging from 0.8 to 4.5 % (w/v) with an optimum at 2.5-3.5 % (w/v). The isolate grew anaerobically using a number of mono-, di- and polysaccharides as electron donors and nitrate or elemental sulfur as electron acceptors or by fermentation. Nitrate was reduced to nitrite; sulfur was reduced to sulfide. Strain SVX8T did not grow at atmospheric concentration of oxygen but grew microaerobically (up to 2 % oxygen in the gas phase). The G+C content of the DNA of strain SVX8T was 58.5 mol%. Based on phylogenetic position and phenotypic features, the new isolate is considered to represent a novel species belonging to a new genus in the order Planctomycetales, for which the name Thermostilla marina gen. nov., sp. nov. is proposed. The type strain of Thermostilla marina is SVX8T ( = JCM 19992T = VKM B-2881T). Strain SVX8T is the first thermophilic planctomycete isolated from a marine environment. PMID:26559645

  8. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  9. Novel [NiFe]- and [FeFe]-hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents.

    PubMed

    Schmidt, Oliver; Wüst, Pia K; Hellmuth, Susanne; Borst, Katharina; Horn, Marcus A; Drake, Harold L

    2011-09-01

    The concomitant occurrence of molecular hydrogen (H(2)) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H(2) production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H(2) producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content. PMID:21784904

  10. Novel [NiFe]- and [FeFe]-Hydrogenase Gene Transcripts Indicative of Active Facultative Aerobes and Obligate Anaerobes in Earthworm Gut Contents▿†

    PubMed Central

    Schmidt, Oliver; Wüst, Pia K.; Hellmuth, Susanne; Borst, Katharina; Horn, Marcus A.; Drake, Harold L.

    2011-01-01

    The concomitant occurrence of molecular hydrogen (H2) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H2 production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H2 producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content. PMID:21784904

  11. Two Pathways of Glutamate Fermentation by Anaerobic Bacteria

    PubMed Central

    Buckel, Wolfgang; Barker, H. A.

    1974-01-01

    Two pathways are involved in the fermentation of glutamate to acetate, butyrate, carbon dioxide, and ammonia—the methylaspartate and the hydroxyglutarate pathways which are used by Clostridium tetanomorphum and Peptococcus aerogenes, respectively. Although these pathways give rise to the same products, they are easily distinguished by different labeling patterns of the butyrate when [4-14C]glutamate is used as substrate. Schmidt degradation of the radioactive butyrate from C. tetanomorphum yielded equally labeled propionate and carbon dioxide, whereas nearly all the radioactivity of the butyrate from P. aerogenes was recovered in the corresponding propionate. This procedure was used as a test for the pathway of glutamate fermentation by 15 strains (9 species) of anaerobic bacteria. The labeling patterns of the butyrate indicate that glutamate is fermented via the methylaspartate pathway by C. tetani, C. cochlearium, and C. saccarobutyricum, and via the hydroxyglutarate pathway by Acidaminococcus fermentans, C. microsporum, Fusobacterium nucleatum, and F. fusiformis. Enzymes specific for each pathway were assayed in crude extracts of the above organisms. 3-Methylaspartase was found only in clostridia which use the methylaspartate pathway, including Clostridium SB4 and C. sticklandii, which probably degrade glutamate to acetate and carbon dioxide by using a second amino acid as hydrogen acceptor. High levels of 2-hydroxyglutarate dehydrogenase were found exclusively in organisms that use the hydroxyglutarate pathway. The data indicate that only two pathways are involved in the fermentation of glutamate by the bacteria analyzed. The methylaspartate pathway appears to be used only by species of Clostridium, whereas the hydroxyglutarate pathway is used by representatives of several genera. PMID:4813895

  12. Velvet pad surface sampling of anaerobic and aerobic bacteria: an in vitro laboratory model.

    PubMed Central

    Raahave, D; Friis-Møller, A

    1982-01-01

    Velvet pads have been evaluated in an experimental, laboratory model, simulating intraoperative sampling of Staphylococcus epidermis, Escherichia coli and Bacteroides fragilis. After sampling, the pad was placed in a transport medium and kept in an anaerobic atmosphere, before being shaken and rinsed, followed by anaerobic and aerobic culture. This technique permitted quantitatively high recoveries of the test bacteria. Velvet pad sampling could be a measure to determine the density of aerobic and anaerobic bacteria during operation in an effort to predict the risk of postoperative wound sepsis. Images PMID:6757273

  13. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    PubMed

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-01

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. PMID:26542569

  14. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  15. Antibacterial susceptibility of plaque bacteria.

    PubMed

    Newman, M G; Hulem, C; Colgate, J; Anselmo, C

    1979-07-01

    Selected anaerobic, capnophilic and facultative bacteria isolated from patients with various forms of periodontal health and disease were tested for their susceptibility to antibiotics and antimicrobial agents. Specific bactericidal and minimum inhibitory concentrations were compared to disc zone diameters, thereby generating new standards for the potential selection of antimicrobial agents. PMID:286720

  16. EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.

    PubMed

    Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W

    2016-01-01

    The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The susceptibility (MIC) of anaerobes was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. Inoculum contained 10(5) CFU per spot was cultured with Steers replicator upon the surface of agar with various tea tree oil concentrations or without oil (anaerobes growth control). Incubation the plates was performed in anaerobic jars under anaerobic conditions at 37 degrees C for 48 h. MIC was defined as the lowest concentrations of the essential oil completely inhibiting growth of anaerobic bacteria. Test results indicate, that among Gram-negative bacteria the most sensitive to essential oil were strains of Veillonella and Porphyromonas species. Essential oil in low concentrations (MIC in the range of = 0.12 - 0.5 mg/mL) inhibited growth of accordingly 80% and 68% strains. The least sensitive were strains of the genus Tannerella, Parabacteroides and Dialister (MIC 1.0 - 2.0 mg/mL). In the case of Gram-positive anaerobic bacteria the tea tree oil was the most active to strains of cocci of the genus Anaerococcus and Ruminococcus (MIC in range = 0.12 - 0.5 mg/mL) or strains of rods of the genus Eubacterium and Eggerthella (MIC = 0.25 mg/mL). Among Gram-positive rods the least sensitive were the strains of the genus Bifidobacterium ( MIC = 2.0 mg/mL). The tea tree oil was more active to Gram-positive than to Gram-negative anaerobic bacteria. PMID:27180431

  17. Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow.

    PubMed

    Scheurer, Marco; Heß, Stefanie; Lüddeke, Frauke; Sacher, Frank; Güde, Hans; Löffler, Herbert; Gallert, Claudia

    2015-01-01

    Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of a retention soil filter (RSF) for the removal of micropollutants as well as facultative pathogenic and antibiotic resistant bacteria from CSO. The removal of organic group parameters like total organic carbon was excellent and the removal efficiency for micropollutants of the RSF and the wastewater treatment plant (WWTP), which treats wastewater of the same origin during dry and normal weather conditions, was comparable. Compounds of high environmental concern like estrogens or certain pharmaceuticals, e.g. diclofenac, were completely eliminated or removed to a high degree during RSF passage. RSF treatment also reduced the number of E. coli, enterococci and staphylococci by 2.7, 2.2 and 2.4 log-units (median values), respectively. Obviously, some Staphylococcus species can better adapt to the conditions of the RSF than others as a shift of the abundance of the different species was observed when comparing the diversity of staphylococci obtained from the RSF influent and effluent. RSF treatment also decreased the absolute number of antibiotic resistant bacteria. The percentage of antibiotic resistant E. coli and staphylococci isolates also decreased during passage of the RSF, whereas the percentage of resistant enterococci did not change. For E. coli ampicillin and for enterococci and staphylococci erythromycin determined the antibiotic resistance level. The results demonstrate that RSFs can be considered as an adequate treatment option for CSO. The performance for the removal of micropollutants is comparable with a medium sized WWTP with conventional activated sludge

  18. Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations

    USGS Publications Warehouse

    Oremland, R.S.

    1989-01-01

    If the primordial atmosphere was reducing, then the first microbial ecosystem was probably composed of anaerobic bacteria. However, despite the presence of an oxygen-rich atmosphere, anaerobic habitats are important, commonplace components of the Earth's present biosphere. The geochemical activities displayed by these anaerobes impact the global cycling of certain elements (e.g., C, N, S, Fe, Mn, etc.). Methane provides an obvious example of how human-enhanced activities on a global scale can influence the content of a "radiative" (i.e., infrared absorbing) trace gas in the atmosphere. Methane can be oxidized by anaerobic bacteria, but this does not appear to support their growth. Acetylene, however, does support such growth. This may form the basis for future exobiological investigations of the atmospheres of anoxic, hydrocarbon-rich planets like Jupiter and Saturn, as well as the latter's satellite Titan. ?? 1989.

  19. Numbers and types of anaerobic bacteria isolated from clinical specimens since 1960.

    PubMed Central

    Holland, J W; Hill, E O; Altemeier, W A

    1977-01-01

    Between 1960 and 1974, 826 specimens, excluding stool, urine, sputum, and blood, yielded 689 (83%) positive cultures, of which 403 (58.5%) contained anaerobic bacteria. This represents 48.8% of the total specimens cultured. Isolates from 153 specimens obtained and stocked from 1965 to 1974 were reidentified by current criteria. Gram-negative bacilli, primarily bacteroides, were the most frequently isolated anaerobes, being found in 70% of 153 anaerobe-positive specimens and accounting for 42% of the total anaerobes isolated. Gram-positive cocci were second in occurrence, being found in 66% of 153 specimens and accounting for 40% of the total isolates. Bacteroides fragilis was by far the most frequently isolated species. Compairson of 14 years of cumulative data with data from current studies covering 1- to 2-year periods indicated that the anaerobes isolated from clinical material have not changed significantly in type or relative numbers. PMID:833266

  20. Multicenter Study of Antimicrobial Susceptibility of Anaerobic Bacteria in Korea in 2012

    PubMed Central

    Lee, Yangsoon; Park, Yeon-Joon; Kim, Mi-Na; Uh, Young; Kim, Myung Sook

    2015-01-01

    Background Periodic monitoring of regional or institutional resistance trends of clinically important anaerobic bacteria is recommended, because the resistance of anaerobic pathogens to antimicrobial drugs and inappropriate therapy are associated with poor clinical outcomes. There has been no multicenter study of clinical anaerobic isolates in Korea. We aimed to determine the antimicrobial resistance patterns of clinically important anaerobes at multiple centers in Korea. Methods A total of 268 non-duplicated clinical isolates of anaerobic bacteria were collected from four large medical centers in Korea in 2012. Antimicrobial susceptibility was tested by the agar dilution method according to the CLSI guidelines. The following antimicrobials were tested: piperacillin, piperacillin-tazobactam, cefoxitin, cefotetan, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, metronidazole, and tigecycline. Results Organisms of the Bacteroides fragilis group were highly susceptible to piperacillin-tazobactam, imipenem, and meropenem, as their resistance rates to these three antimicrobials were lower than 6%. For B. fragilis group isolates and anaerobic gram-positive cocci, the resistance rates to moxifloxacin were 12-25% and 11-13%, respectively. Among B. fragilis group organisms, the resistance rates to tigecycline were 16-17%. Two isolates of Finegoldia magna were non-susceptible to chloramphenicol (minimum inhibitory concentrations of 16-32 mg/L). Resistance patterns were different among the different hospitals. Conclusions Piperacillin-tazobactam, cefoxitin, and carbapemems are highly active β-lactam agents against most of the anaerobes. The resistance rates to moxifloxacin and tigecycline are slightly higher than those in the previous study. PMID:26206683

  1. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    PubMed

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P < 0.001) and 48 h (30/36 vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

  2. The identification and antimicrobial susceptibility of anaerobic bacteria from pneumonic cattle lungs.

    PubMed Central

    Chirino-Trejo, J M; Prescott, J F

    1983-01-01

    One hundred and forty-four lungs obtained postmortem from cattle with pneumonia were cultured for anaerobic bacteria. Forty-five lungs yielded 73 anaerobic isolates belonging to 20 species. The number of isolations of anaerobes from acute fibrinous or suppurative bronchopneumonias (32.5%) was slightly lower than from similar chronic bronchopneumonias (36.5%). Anaerobes were not recovered from 15 lungs showing macroscopic changes not of bacterial origin, nor from 13 healthy lungs. The predominant genera isolated were Bacteroides, Peptococcus, Fusobacterium and Clostridium. The most common species were P. indolicus (15 isolates), B. asaccharolyticus (nine), F. necrophorum (six), C. perfringens (four) and B. fragilis (four). There was a significant correlation between the presence of Corynebacterium pyogenes (p less than 0.001) or Escherichia coli (p less than 0.01) and the presence of anaerobes in the lungs. The isolated anaerobic bacteria were generally susceptible to ampicillin, penicillin G, cefoxitin, cephalothin, clindamycin, chloramphenicol, erythromycin, tetracycline and metronidazole. The B. fragilis and C. perfringens isolates showed multiple antibiotic resistance, and five P. indolicus isolates were resistant to tetracycline. PMID:6640410

  3. Populations of Anaerobic Phototrophic Bacteria in a Spartina alterniflora Salt Marsh

    PubMed Central

    Paterek, J. Robert; Paynter, M. J. B.

    1988-01-01

    Habitat-simulating media were used with the Hungate anaerobic roll tube technique to enumerate culturable anaerobic photosynthetic bacteria in sediment, tidal waters, and Spartina alterniflora plant samples collected from the salt marsh at Sapelo Island, Ga. No phototrophs were detected in samples of creekside (low marsh) sediment or in tidal waters in creekside regions. In the high marsh region, 90% of anaerobic phototrophic bacteria occurred in the top 5 mm of sediment and none were detected below 6 mm. There was a seasonal variation, with maximal populations occurring in summer and fall (mean, 4.4 × 105 phototrophs g of dry sediment−1) and minimal numbers occurring in winter (mean, 3.9 × 103 phototrophs g of dry sediment−1). During winter and late spring, phototrophs had a patchy distribution over the high marsh sediment surface. In contrast, during late summer they had a random uniform distribution. Tidal water collected over high marsh sediment contained an average of 8.7 × 102 phototrophs ml−1, with no significant seasonal variation. Anaerobic phototrophic bacteria were also cultured from the lower stem tissue of S. alterniflora growing in both the high (4.3 × 104 phototrophs g of dry tissue−1) and creekside (4.9 × 104 phototrophs g of dry tissue−1) marsh regions. Chromatium buderi, Chromatium vinosum, Thiospirillum sanguineum, Rhodospirillum molischianum, and Chlorobium phaeobacteroides were the predominant anaerobic phototrophic species cultured from high marsh sediment. The two Chromatium species were dominant. PMID:16347646

  4. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.

    PubMed

    Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  5. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    PubMed Central

    Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  6. Modified extraction procedure for gas-liquid chromatography applied to the identification of anaerobic bacteria.

    PubMed Central

    Thomann, W R; Hill, G B

    1986-01-01

    Chloroform and ether commonly are used as solvents to extract metabolic organic acids for analysis by gas-liquid chromatography in the identification of anaerobic bacteria. Because these solvents are potentially hazardous to personnel, modified extraction procedures involving the use of a safer solvent, methyl tert-butyl ether were developed which remained both simple to perform and effective for organism identification. PMID:3700623

  7. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples

    SciTech Connect

    Wang, Rong-Fu; Cao, Wei-Wen; Cerniglia, C.E.

    1996-04-01

    PCR procedures based on 16S rRNA genen sequence specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human feces and animal feces. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

  8. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  9. Three rapid methods compared with a conventional method for detection of urease production in anaerobic bacteria.

    PubMed Central

    Mills, C K; Grimes, B Y; Gherna, R L

    1987-01-01

    Three rapid methods (spot test, disk, and tube) for detecting urease production in anaerobic bacteria yielded results faster than the conventional method. The results were more consistent with the disk and tube methods than with the spot test. Blood agar plate growth gave more consistent results than growth from chopped-meat slants. PMID:3320087

  10. Evaluation of Port-A-Cul transport system for protection of anaerobic bacteria.

    PubMed

    Mena, E; Thompson, F S; Armfield, A Y; Dowell, V R; Reinhardt, D J

    1978-07-01

    The protection of anaerobes in Port-A-Cul (PAC) transport system (Bioquest, Div. of Becton, Dickinson &Co., Cockeysville, Md.) tubes and vials was studied. Ten species of obligately anaerobic bacteria commonly isolated from clinical specimens were used to prepare simulated swab and fluid specimens in high and low concentrations. Samples in PAC tubes and vials were held for 2, 24, and 48 h at ambient temperature and in a refrigerator. In addition, samples of the simulated specimens were exposed to controlled anaerobic and aerobic conditions in vented tubes and vials, with and without PAC medium, at ambient and refrigerator temperatures. Viable bacterial colony counts from specimens in PAC tubes and vials used as recommended by the manufacturer were consistently greater than those from specimens exposed to the different controlled conditions. The protection in PAC was about equal for specimens with either high or low concentrations of bacteria. Protection of the anaerobes in PAC was more obvious with swab than with fluid specimens. Quantitative recovery of anaerobes from refrigerated PAC samples, with few exceptions, was comparable to that from PAC samples held at ambient temperature. PMID:353071

  11. Removal Of Heavy Metals From Electroplating Wastewater By Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Ma, Wanggang; Sun, Peide; Song, Yingqi; Zhang, Yi; Yin, Jun

    2010-11-01

    Biosorption of heavy metals from simulated wastewater and the raw electroplating wastewater with "BM (Biosorption of Metals) bacteria" were investigated in this study. The influence of initial pH, biosorbents dose, concentration of ions, contact time and temperature on biosorption capacity of Cr(VI) and Ni(II) were studied. The optimum pH for biosorption of Cr(VI) was found to be low, and the removal efficiency of Cr(VI) was 98.60% with "BM bacteria" at pH 2. The removal efficiency of Ni(II) was increased with increasing the pH, and was enhanced up to 115% compared with the wastewater without BM bacteria. In this experiment, the "BM bacteria" efficiently removed Cu(II), Ni(II), Cr(VI), Zn(II) and COD from the raw electroplating wastewater, and the removal efficiencies were 98.92%, 99.92%, 99.86%, 99.93% and 45.20% respectively.

  12. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  13. Routine Testing for Anaerobic Bacteria in Cerebrospinal Fluid Cultures Improves Recovery of Clinically Significant Pathogens

    PubMed Central

    Pittman, Meredith E.; Thomas, Benjamin S.; Wallace, Meghan A.; Weber, Carol J.

    2014-01-01

    In North America, the widespread use of vaccines targeting Haemophilus influenzae type b and Streptococcus pneumoniae have dramatically altered the epidemiology of bacterial meningitis, while the methodology for culturing cerebrospinal fluid (CSF) specimens has remained largely unchanged. The aims of this study were 2-fold: to document the current epidemiology of bacterial meningitis at a tertiary care medical center and to assess the clinical utility of routinely querying for anaerobes in CSF cultures. To that end, we assessed CSF cultures submitted over a 2-year period. A brucella blood agar (BBA) plate, incubated anaerobically for 5 days, was included in the culture procedure for all CSF specimens during the second year of evaluation. In the pre- and postimplementation years, 2,353 and 2,302 CSF specimens were cultured, with 49 and 99 patients having positive culture results, respectively. The clinical and laboratory data for patients with positive cultures were reviewed. Anaerobic bacteria were isolated in the CSF samples from 33 patients post-BBA compared to two patients pre-BBA (P = 0.01). The anaerobic isolates included Bacteroides thetaiotaomicron (n = 1), Propionibacterium species (n = 15), and Propionibacterium acnes (n = 19) isolates; all of these isolates were recovered on the BBA. Eight of the 35 patients from whom anaerobic organisms were isolated received antimicrobial therapy. Although six of these patients had central nervous system hardware, two patients did not have a history of a neurosurgical procedure and had community-acquired anaerobic bacterial meningitis. This study demonstrates that the simple addition of an anaerobically incubated BBA to the culture of CSF specimens enhances the recovery of clinically significant anaerobic pathogens. PMID:24622102

  14. Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria

    PubMed Central

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C.; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc; Schmidt, Ingo

    2005-01-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed. PMID:15691967

  15. In vitro activity of ceftriaxone combined with tazobactam against anaerobic bacteria.

    PubMed

    Wüst, J; Hardegger, U

    1994-02-01

    The in vitro activity of ceftriaxone combined with tazobactam against 190 strains of anaerobic bacteria was compared with that of amoxicillin with clavulanic acid, ampicillin with sulbactam, piperacillin alone and with tazobactam, cefoxitin, and imipenem, i.e. beta-lactam antibiotics established in the treatment of anaerobic infections. All anaerobes tested were susceptible to < or = mg/l ceftriaxone when tazobactam was added at fixed ratios (ceftriaxone to tazobactam) of 2:1 and 8:1 and at constant concentrations of 2,4 and 8 mg/l, respectively. When 4 mg/l tazobactam was added, the MICs of ceftriaxone for 83 of 94 strains of the Bacteroides fragilis group were reduced by a factor of 8 to 512; for eight strains, this reduction was two to fourfold. Only the MICs of ceftriaxone for three Bacteroides fragilis strains were not influenced. PMID:8013494

  16. Clinical evaluation of a simple, rapid procedure for the presumptive identification of anaerobic bacteria.

    PubMed Central

    Holland, J W; Gagnet, S M; Lewis, S A; Stauffer, L R

    1977-01-01

    A simple, rapid procedure for the presumptive identification of anaerobic bacteria has been evaluated. Two hundred and thirty-five clinical isolates were identified using gas-liquid chromatography and 3-ml volumes of a few selected test media. These test media were stored aerobically and incubated in GasPak anaerobic jars. The average incubation time was 39 h. This procedure, when compared to the results of our standard identification procedure, correctly identified 98% of the isolates to the genus level, 83% to the species level, and 83% of Bacteroides fragilis and Bacteroides melaninogenicus to the subspecies level. Fifty-three of the isolates were also identified by using 0.5-ml volumes of test media stored, inoculated, and incubated in an anaerobic glove box. The 3-ml-and the 0.5-ml-volume procedures correctly identified comparable percentages of the 53 isolates. PMID:323283

  17. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    PubMed

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Logar, Romana Marinšek

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. PMID:25836034

  18. The effect of statherin and its shortened analogues on anaerobic bacteria isolated from the oral cavity.

    PubMed

    Kochańska, B; Kedzia, A; Kamysz, W; Maćkiewicz, Z; Kupryszewski, G

    2000-01-01

    The susceptibility (MIC) of 44 strains of anaerobic bacteria isolated from the oral cavity and 3 standard strains to statherin and its C-terminal fragments with sequences QYQQYTF, YQQYTF, QQYTF, QYTF and YTF was determined by means of plate dilution technique in Brucella agar with 5% content of defibrinated sheep's blood, menadione and hemin. The culture was anaerobic. As shown, at concentrations from 12.5 to 100 microg/ml statherin and its C-terminal fragments inhibited the growth of anaerobic bacteria isolated from the oral cavity. Peptostreptococcus strains were the most susceptible to statherin and YTF (MIC < or = 12.5 mg/ml), whereas the most susceptible to the peptides investigated were Fusobacterium necrogenes and Fusobacterium necrophorum strains: QYQQYTF, YQQYTF, QQYTF, QYTF (MIC < or = 12.5 microg/ml). Prevotella oralis, Bacteroides forsythus and Bacteroides ureolyticus strains exhibited the lowest susceptibility (MIC > 100 microg/ml). When analysing the bacteriostatic activity of statherin it should be pointed out that the concentrations of this peptide used in microbiological investigations are within the range of physiological concentrations determined for whole saliva when at rest and stimulated in healthy donors of 19-25 years of age. Since the anaerobes investigated may be involved in the diseases of periodontum, the results presented seem to have also a practical aspect, i.e. a possibility to apply the C-terminal fragments of statherin as a novel therapeutic agent, affecting favourably the oral cavity. PMID:11293657

  19. Susceptibility Testing of Anaerobic Bacteria with 100-μg Carbenicillin Disks

    PubMed Central

    Laslie, W. W.; Lambe, D. W.

    1976-01-01

    A total of 245 strains of anaerobic bacteria were examined for their susceptibility to carbenicillin by the disk test method and by minimum inhibitory concentration (MIC) determinations. Standard-curve studies with a strain of Bacteroides fragilis subsp. fragilis that was minimally susceptible to carbenicillin and Escherichia coli (ATCC 25922) demonstrated that a disk containing 100 μg of carbenicillin was suitable for testing susceptibility of anaerobes to carbenicillin. Thus, the diameter of zones around the 100-μg carbenicillin disks and MIC values were determined under the following test conditions: Mueller-Hinton agar supplemented with sheep blood, vitamin K1, and hemin; an incubation temperature of 35 C; and an atmosphere of 80% N2, 10% H2, and 10% CO2. The strains were separated into two populations by correlating zone diameters and geometric mean MICs. The disk test more clearly separated the resistant and susceptible populations and was more reproducible than the MIC test. Thus, a statistical analysis based on the distribution of zone diameters of susceptible and resistant strains was used to derive an interpretive scheme for anaerobic bacteria tested with 100-μg carbenicillin disks. The following interpretive scheme is recommended for testing anaerobes with 100-μg disks of carbenicillin: resistant, 8 mm or less; indeterminate, 9 to 12 mm; and susceptible, 13 mm or greater. PMID:984743

  20. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site.

    PubMed

    Sun, Weimin; Li, Yun; McGuinness, Lora R; Luo, Shuai; Huang, Weilin; Kerkhof, Lee J; Mack, E Erin; Häggblom, Max M; Fennell, Donna E

    2015-09-15

    Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions. PMID:26280684

  1. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  2. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria.

    PubMed Central

    Fry, B; Gest, H; Hayes, J M

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments. PMID:11536596

  3. FINAL REPORT. REDUCTION AND IMMOBILIZATION OF RADIONUCLIDES AND TOXIC METAL IONS USING COMBINED ZERO VALENT IRON AND ANAEROBIC BACTERIA

    EPA Science Inventory

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. An exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes ...

  4. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    PubMed

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  5. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  6. Metabolism of the /sup 18/O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. [Eubacterium limosum; Acetobacterium woodil; Syntrophococcus; Clostridium; Desulfotomaculum; Enterobacter

    SciTech Connect

    DeWeerd, J.A.; Saxena, A.; Nagle, D.P. Jr.; Sulflita, J.M.

    1988-05-01

    The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. We found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium, limosum, and a strain of Acetobacterium woodii metabolized 3-(methoxy-/sup 18/O)methoxybenzoic acid (3-anisic acid) to 3-(hydroxy-/sup 18/O)hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments.

  7. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm

  8. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment.

    PubMed

    Kampman, Christel; Hendrickx, Tim L G; Luesken, Francisca A; van Alen, Theo A; Op den Camp, Huub J M; Jetten, Mike S M; Zeeman, Grietje; Buisman, Cees J N; Temmink, Hardy

    2012-08-15

    Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO(2)(-)-N/Ld (using synthetic medium) and 37.8 mg NO(2)(-)-N/Ld (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention. PMID:22657102

  9. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  10. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  11. Effect of carbon dioxide on in vitro susceptibility of anaerobic bacteria to erythromycin.

    PubMed Central

    Goldstein, E J; Sutter, V L; Kwok, Y Y; Lewis, R P; Finegold, S M

    1981-01-01

    The activity of erythromycin against 317 strains of anaerobic bacteria, including 133 strains of the Bacteroides fragilis group, was tested by the agar dilution method in an anaerobic atmosphere with two different concentrations of carbon dioxide and without CO2. The effect of the atmosphere of incubation on the agar surface pH was also determined. All strains grew well in the GasPak (GP) environment. However, 3.5 and 30.3% of strains failed to grow in the 2 and 0% CO2 environments, respectively. The quality of growth was best in the GP environment and poorest in the 0% CO2 environment. Minimal inhibitory concentrations in the GP and 2% CO2 environments were frequently the same or one dilution lower in the 0% than in the GP environment. In the 0% CO2 atmosphere, minimal inhibitory concentrations were usually two to three dilutions lower than in the GP environment. Consequently, only 24% of B. fragilis strains were susceptible to erythromycin in the GP environment, whereas 77% were susceptible in the 0% CO2 environment. For Fusobacterium species, 12% were susceptible to erythromycin in the GP environment, and 73% were susceptible in the 0% CO2 environment. There was a comparable decrease in pH in all three atmospheres tested. In vitro susceptibility testing of erythromycin against anaerobic bacteria should be performed in an atmosphere containing carbon dioxide. PMID:6798927

  12. Broad Distribution of Diverse Anaerobic Ammonium-Oxidizing Bacteria in Chinese Agricultural Soils

    PubMed Central

    Shen, Li-dong; Liu, Shuai; Lou, Li-ping; Liu, Wei-ping; Xu, Xiang-yang; Zheng, Ping

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils. PMID:23747706

  13. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2014-12-01

    Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem. PMID:24932882

  14. Survival of anaerobic and aerobic bacteria in a nonsupportive gassed transport system.

    PubMed Central

    Chow, A W; Cunningham, P J; Guze, L B

    1976-01-01

    Survival of anaerobic and aerobic bacteria in a commercially available, non-supportive, gassed (oxygen-free) transport container (Anaport) was evaluated quantitatively. Saline-suspended obligate anaerobes survived significantly better in the gassed container in aerobic control tubes (P less than 0.025, t test), and counts were virtually unchanged after 8 h of holding. Similarly, initial counts and relative proportions of a mixture of Bacteroides fragilis and Staphylococcus aureus were maintained for 72 h. The value of the gassed transport system was less apparent when microorganisms were suspended in nutrient broth. The major advantage of the gassed transport system appears to be for holding of specimens collected by saline irrigation. PMID:1254710

  15. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions.

    PubMed Central

    Højberg, O; Binnerup, S J; Sørensen, J

    1997-01-01

    A technique was developed to study microcolony formation by silicone-immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a sudden lack of oxygen. In contrast, nitrate-respiring, fermenting bacteria, e.g., Bacillus and Escherichia spp., formed microcolonies under anaerobic conditions with or without the presence of nitrate and irrespective of aerobic or anaerobic preculture conditions. PMID:9212439

  16. MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria

    PubMed Central

    Li, Yang; Gu, Bing; Xia, Wenying; Fan, Kun; Mei, Yaning; Huang, Peijun; Pan, Shiyang

    2014-01-01

    Background Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an accurate, rapid and inexpensive technique that has initiated a revolution in the clinical microbiology laboratory for identification of pathogens. The Vitek 2 anaerobe and Corynebacterium (ANC) identification card is a newly developed method for identification of corynebacteria and anaerobic species. The aim of this study was to evaluate the effectiveness of the ANC card and MALDI-TOF MS techniques for identification of clinical anaerobic isolates. Methods Five reference strains and a total of 50 anaerobic bacteria clinical isolates comprising ten different genera and 14 species were identified and analyzed by the ANC card together with Vitek 2 identification system and Vitek MS together with version 2.0 database respectively. 16S rRNA gene sequencing was used as reference method for accuracy in the identification. Results Vitek 2 ANC card and Vitek MS provided comparable results at species level for the five reference strains. Of 50 clinical strains, the Vitek MS provided identification for 46 strains (92%) to the species level, 47 (94%) to genus level, one (2%) low discrimination, two (4%) no identification and one (2%) misidentification. The Vitek 2 ANC card provided identification for 43 strains (86%) correct to the species level, 47 (94%) correct to the genus level, three (6%) low discrimination, three (6%) no identification and one (2%) misidentification. Conclusions Both Vitek MS and Vitek 2 ANC card can be used for accurate routine clinical anaerobe identification. Comparing to the Vitek 2 ANC card, Vitek MS is easier, faster and more economic for each test. The databases currently available for both systems should be updated and further developed to enhance performance. PMID:24822113

  17. Anaerobic Roll Tube Media for Nonselective Enumeration and Isolation of Bacteria in Human Feces

    PubMed Central

    Eller, Charles; Crabill, Melvin R.; Bryant, Marvin P.

    1971-01-01

    Medium 10 (M10), developed for rumen bacteria and containing small amounts of sugars, starch, volatile fatty acids, hemin, Trypticase, yeast extract, cysteine, and sulfide, plus agar, minerals and CO2-HCO3-buffer, was used with the Hungate anaerobic method as a basal medium to evaluate the efficacy of various ingredients. Three-day-old colony counts from adults on normal diets (17 samples) were 0.55 × 1011 to 1.7 × 1011 per g (mean, 1.15 × 1011) for M10. Single deletion of volatile fatty acids, Trypticase, yeast extract, or sulfide did not reduce counts. Deletion of hemin or both Trypticase and yeast extract significantly lowered counts. Addition of fecal extract, rumen fluid, 1% dehydrated Brain Heart Infusion (BHI) or 2 to 6% liver infusion did not increase counts; 1% dehydrated bile or 3.7% BHI markedly depressed them. Decreasing the gas-phase CO2 concentration from 100 to 5% with N2 and correspondingly lowering the HCO3 had little effect. Counts in supplemented Brewer Thioglycollate (Difco), BHI, and Trypticase soy agar were similar or lower than in M10; ease in counting was best in M10. Comparison of features of 88 predominant strains of fecal bacteria randomly isolated indicated that M10 supported growth of as many or more species of bacteria as compared to supplemented BHI. The results suggest that predominant bacteria of human feces, in general, are not as nutritionally fastidious as rumen bacteria and indicate that media for counts or isolation containing large amounts of rich organic materials are neither necessary nor desirable when adequate anaerobic techniques are used. PMID:4943269

  18. Evaluation of the ATB 32 A system for identification of anaerobic bacteria isolated from clinical specimens.

    PubMed Central

    Looney, W J; Gallusser, A J; Modde, H K

    1990-01-01

    A new miniaturized 4-h method for the identification of anaerobic bacteria, ATB 32 A (API System SA, Montalieu Vercieu, France), was evaluated against conventional methods of identification. The evaluation was done by using 260 recent clinical isolates and 21 reference strains of anaerobic bacteria. All reference strains were correctly identified and did not figure in the detailed analysis. Of the 140 gram-negative bacilli, 90.6% of Bacteroides spp. and 95.5% of Fusobacterium spp. were correctly identified to the species level, with an additional 8.4% of the Bacteroides spp. being identified to the genus level. Clostridia were correctly identified in 85.9% of cases, with an additional 9.9% being identified to the genus level. Peptostreptococci were correctly identified in 91.6% of cases. The 4 strains of Actinomyces spp. were all identified correctly, as were 10 of the 11 strains of Propionibacterium spp. A total of 3.1% of strains were not identified by ATB 32 A, while for 1.9% of strains, completely false identifications were obtained. Estimation of the individual preformed enzyme results may pose problems, although these decrease with familiarity with the system. With certain enzyme profiles, additional testing was necessary to arrive at an identification; however, there was no requirement for gas-liquid chromatography. If certain additions are made to the data base and the difficulties of determination of organisms to the species level among the non-Bacteroides fragilis (sensu stricto) members of the B. fragilis group can be reduced, this system holds promise as a reliable standardized alternative for the identification of anaerobic bacteria in clinical laboratories. PMID:2199516

  19. [Intestinal disorder of anaerobic bacteria aggravates pulmonary immune pathological injury of mice infected with influenza virus].

    PubMed

    Wu, Sha; Yan, Yuqi; Zhang, Mengyuan; Shi, Shanshan; Jiang, Zhenyou

    2016-04-01

    Objective To investigate the relationship between the intestinal disorder of anaerobic bacteria and influenza virus infection, and the effect on pulmonary inflammatory cytokines in mice. Methods Totally 36 mice were randomly divided into normal control group, virus-infected group and metronidazole treatment group (12 mice in each group). Mice in the metronidazole group were administrated orally with metronidazole sulfate for 8 days causing anaerobic bacteria flora imbalance; then all groups except the normal control group were treated transnasally with influenza virus (50 μL/d FM1) for 4 days to establish the influenza virus-infected models. Their mental state and lung index were observed, and the pathological morphological changes of lung tissues, caecum and intestinal mucosa were examined by HE staining. The levels of interleukin 4 (IL-4), interferon γ (IFN-γ), IL-10 and IL-17 in the lung homogenates were determined by ELISA. Results Compared with the virus control group, the metronidazole group showed obviously increased lung index and more serious pathological changes of the lung tissue and appendix inflammation performance. After infected by the FM1 influenza virus, IFN-γ and IL-17 of the metronidazole group decreased significantly and IL-4 and IL-10 levels were raised, but there was no statistically difference between the metronidazole and virus control groups. Conclusion Intestinal anaerobic bacteria may inhibit the adaptive immune response in the lungs of mice infected with FM1 influenza virus through adjusting the lung inflammatory factors, affect the replication and clean-up time of the FM1 influenza virus, thus further aggravating pulmonary immune pathological injury caused by the influenza virus infection. PMID:27053604

  20. Zero-valent and charged metals combined with anaerobic bacteria in methanogenesis

    SciTech Connect

    Sysak, J.C.

    1995-12-31

    Zero-valent iron has been observed to effect the decomposition of alkyl and aromatic halides with the reduction to the corresponding hydrocarbon. The reaction is of interest in conjunction with bioredmediation of soil contaminated with CHCl{sub 3} and other environmentally sensitive halides. This work examines the effects of anaerobic bacteria in conjunction with various metals on the methanogenesis of pollutants as well as biomass of various types. The results of the addition of Ni{sup 2+} to the methyl coenzyme M reductase system was investigated and the results presented involving a number of bacterial species in addition to a mixed sewage culture immaculate.

  1. Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile

    NASA Astrophysics Data System (ADS)

    Galán, Alexander; Molina, Verónica; Thamdrup, Bo; Woebken, Dagmar; Lavik, Gaute; Kuypers, Marcel M. M.; Ulloa, Osvaldo

    2009-07-01

    Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N 2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus "Scalindua spp." dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml -1) and activity (up to 5.75 nmol N 2 L -1 d -1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.

  2. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  3. Degradation of phenolic contaminants in ground water by anaerobic bacteria: St. Louis Park, Minnesota

    USGS Publications Warehouse

    Ehrlich, G.G.; Goerlitz, D.F.; Godsy, E.M.; Hult, M.F.

    1982-01-01

    Coal-tar derivatives from a coal-tar distillation and wood-treating plant that operated from 1918 to 1972 at St. Louis Park, Minnesota contaminated the near-surface ground water. Solutions of phenolic compounds and a water-immiscible mixture of polynuclear aromatic compounds accumulated in wetlands near the plant site and entered the aquifer. The concentration of phenolic compounds in the aqueous phase under the wetlands is about 30 mg/1 but decreases to less than 0.2 mg/1 at a distance of 430 m immediately downgradient from the source. Concentrations of naphthalene (the predominant polynuclear compound in the ground water) and sodium (selected as a conservative tracer) range from about 20 mg/1 and 430 mg/1 in the aqueous phase at the source to about 2 mg/1 and 120 mg/1 at 430 m downgradient, respectively. Phenolic compounds and naphthalene are disappearing faster than expected if only dilution were occurring. Sorption of phenolic compounds on aquifer sediments is negligible but naphthalene is slightly sorbed. Anaerobic biodegradation of phenolic compounds is primarily responsible for the observed attenuation. Methane was found only in water samples from the contaminated zone (2-20 mg/1). Methane-producing bacteria were found only in water from the contaminated zone. Methane was produced in laboratory cultures of contaminated water inoculated with bacteria from the contaminated zone. Evidence for anaerobic biodegradation of naphthalene under either field or laboratory conditions was not obtained.

  4. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    PubMed

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  5. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    PubMed

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)). PMID:24880628

  6. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    PubMed

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy. PMID:25167882

  7. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  8. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    PubMed

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  9. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. PMID:25308076

  10. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria

    PubMed Central

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  11. Anaerobic Bacteria Grow within Candida albicans Biofilms and Induce Biofilm Formation in Suspension Cultures

    PubMed Central

    Fox, Emily P.; Cowley, Elise S.; Nobile, Clarissa J.; Hartooni, Nairi; Newman, Dianne K.; Johnson, Alexander D.

    2014-01-01

    Summary The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches [1, 2]. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal and fungal cells must cooperate and/or compete for resources in order to survive [3–6]. We examined mixed biofilms composed of the major fungal species of the gut microbiome, C. albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae and Enterococcus faecalis [7–10]. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that co-culture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the “white” cell type to the “opaque” cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into “mini-biofilms,” which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. PMID:25308076

  12. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  13. Isolation, Characterization, and U(VI)-Reducing Potential of a Facultatively Anaerobic, Acid-Resistant Bacterium from Low-pH, Nitrate- and U(VI)-Contaminated Subsurface Sediment and Description of Salmonella subterranea sp. nov.

    PubMed Central

    Shelobolina, Evgenya S.; Sullivan, Sara A.; O'Neill, Kathleen R.; Nevin, Kelly P.; Lovley, Derek R.

    2004-01-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 μm long and 0.7 to 0.9 μm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H2S production, and for gelatin hydrolysis. Strain FRCl was capable of using O2, NO3−, S2O32−, fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  14. Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov.

    PubMed

    Spring, Stefan; Jäckel, Udo; Wagner, Michael; Kämpfer, Peter

    2004-01-01

    Strain K11T was isolated from activated sludge of a municipal wastewater-treatment plant. Phylogenetic analysis of the 16S rRNA gene sequence revealed that it represents a distinct line of descent within the Comamonadaceae. The novel strain was a Gram-negative, catalase- and oxidase-positive, non-motile, straight to slightly curved rod. Polyhydroxyalkanoate granules were stored intracellularly as reserve material. Colonies on agar plates were small, regular and characterized by a water-insoluble yellow pigment. Unbranched fatty acids 16:1omega7c, 16:0 and 18:1omega7c dominated the cellular fatty acid pattern and ubiquinone-8 (Q-8) was the major component of the respiratory lipoquinones, both traits typical of members of the Comamonadaceae. A distinguishing characteristic was the presence of the two hydroxy fatty acids 10:0 3-OH and 12:0 2-OH, each in significant amounts. The G+C content of the DNA was 59 mol%. Strain K11T was capable of aerobic chemolithoheterotrophic growth using thiosulfate as an additional substrate, but could not grow autotrophically with thiosulfate or hydrogen. Facultative anaerobic growth was possible with nitrate and nitrite as electron acceptors, but not with ferric iron, sulfate or by fermentation. The sole end product of denitrification was N2O; nitrite accumulated only transiently in small amounts. Based upon phylogenetic and phenotypic evidence, it is proposed to establish the novel taxon Ottowia thiooxydans gen. nov., sp. nov., represented by the type strain K11T (=DSM 14619T=JCM 11629T). Aquaspirillum gracile was among the phylogenetically most closely related species to strain K11T. This species has been wrongly classified, and it is proposed to reclassify it as Hylemonella gracilis gen. nov., comb. nov. The type strain is ATCC 19624T (=DSM 9158T). PMID:14742465

  15. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov.

    PubMed

    Shelobolina, Evgenya S; Sullivan, Sara A; O'Neill, Kathleen R; Nevin, Kelly P; Lovley, Derek R

    2004-05-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 micro m long and 0.7 to 0.9 microm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H(2)S production, and for gelatin hydrolysis. Strain FRCl was capable of using O(2), NO(3)(-), S(2)O(3)(2-), fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  16. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB. PMID:26151852

  17. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae.

    PubMed

    Hallberg, Kevin B; Hedrich, Sabrina; Johnson, D Barrie

    2011-03-01

    A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38°C and up to a maximum of 47°C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358). PMID:21311931

  18. Anaerobic infections in children: a prospective survey.

    PubMed Central

    Thirumoorthi, M C; Keen, B M; Dajani, A S

    1976-01-01

    Over an 18-month period, cultures from 95 infants and children yielded 146 anaerobic organisms in 110 clinical specimens. Bacteroides was the most frequently isolated anaerobe, followed by Propionibacterium and Clostridium species. Intra-abdominal sources, soft tissues, and blood were the three major sources (82%) of isolation of anaerobes. Whereas most patients (58%) were over 5 years of age and only 11% were newborns, anaerobic infections constituted a rather uniform proportion of all infections, regardless of sources, in all age groups. Anaerobes accounted for only 2.9% of all positive cultures encountered from the various sources. Rates of recovery of anaerobes from intra-abdominal sources were significantly the highest, and from soft-tissue infections they were significantly the lowest. The anaerobic bacteremias observed were of no clinical significance when Propionibacterium species were isolated; however, recovery of other anaerobes from the blood, and primarily Bacteroides species, was usually associated with clinical disease. Except in blood cultures, anaerobes almost invariably coexisted with facultative bacteria. PMID:1270594

  19. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  20. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs

    PubMed Central

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong

    2010-01-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l−1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 103 to 2.0 ± 0.18 × 106 cells ml−1 and 6.6 ± 0.51 × 102 to 4.9 ± 0.36 × 104 cell ml−1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

  1. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  2. In vitro activities of faropenem against 579 strains of anaerobic bacteria.

    PubMed

    Wexler, Hannah M; Molitoris, Denise; St John, Shahera; Vu, Ann; Read, Erik K; Finegold, Sydney M

    2002-11-01

    The activity of faropenem, a new oral penem, was tested against 579 strains of anaerobic bacteria by using the NCCLS-approved reference method. Drugs tested included amoxicillin-clavulanate, cefoxitin, clindamycin, faropenem, imipenem, and metronidazole. Of the 176 strains of Bacteroides fragilis group isolates tested, two isolates had faropenem MICs of 64 micro g/ml and imipenem MICs of >32 micro g/ml. Faropenem had an MIC of 16 micro g/ml for an additional isolate of B. fragilis; this strain was sensitive to imipenem (MIC of 1 micro g/ml). Both faropenem and imipenem had MICs of < or=4 micro g/ml for all isolates of Bacteroides capillosus (10 isolates), Bacteroides splanchnicus (13 isolates), Bacteroides ureolyticus (11 isolates), Bilophila wadsworthia (11 isolates), Porphyromonas species (42 isolates), Prevotella species (78 isolates), Campylobacter species (25 isolates), Sutterella wadsworthensis (11 isolates), Fusobacterium nucleatum (19 isolates), Fusobacterium mortiferum/varium (20 isolates), and other Fusobacterium species (9 isolates). Faropenem and imipenem had MICs of 16 to 32 micro g/ml for two strains of Clostridium difficile; the MICs for all other strains of Clostridium tested (69 isolates) were < or =4 micro g/ml. Faropenem had MICs of 8 and 16 micro g/ml, respectively, for two strains of Peptostreptococcus anaerobius (MICs of imipenem were 2 micro g/ml). MICs were < or =4 micro g/ml for all other strains of gram-positive anaerobic cocci (53 isolates) and non-spore-forming gram-positive rods (28 isolates). Other results were as expected and reported in previous studies. No metronidazole resistance was seen in gram-negative anaerobes other than S. wadsworthensis (18% resistant); 63% of gram-positive non-spore-forming rods were resistant. Some degree of clindamycin resistance was seen in most of the groups tested. PMID:12384389

  3. In Vitro Activities of Faropenem against 579 Strains of Anaerobic Bacteria

    PubMed Central

    Wexler, Hannah M.; Molitoris, Denise; St. John, Shahera; Vu, Ann; Read, Erik K.; Finegold, Sydney M.

    2002-01-01

    The activity of faropenem, a new oral penem, was tested against 579 strains of anaerobic bacteria by using the NCCLS-approved reference method. Drugs tested included amoxicillin-clavulanate, cefoxitin, clindamycin, faropenem, imipenem, and metronidazole. Of the 176 strains of Bacteroides fragilis group isolates tested, two isolates had faropenem MICs of 64 μg/ml and imipenem MICs of >32 μg/ml. Faropenem had an MIC of 16 μg/ml for an additional isolate of B. fragilis; this strain was sensitive to imipenem (MIC of 1 μg/ml). Both faropenem and imipenem had MICs of ≤4 μg/ml for all isolates of Bacteroides capillosus (10 isolates), Bacteroides splanchnicus (13 isolates), Bacteroides ureolyticus (11 isolates), Bilophila wadsworthia (11 isolates), Porphyromonas species (42 isolates), Prevotella species (78 isolates), Campylobacter species (25 isolates), Sutterella wadsworthensis (11 isolates), Fusobacterium nucleatum (19 isolates), Fusobacterium mortiferum/varium (20 isolates), and other Fusobacterium species (9 isolates). Faropenem and imipenem had MICs of 16 to 32 μg/ml for two strains of Clostridium difficile; the MICs for all other strains of Clostridium tested (69 isolates) were ≤4 μg/ml. Faropenem had MICs of 8 and 16 μg/ml, respectively, for two strains of Peptostreptococcus anaerobius (MICs of imipenem were 2 μg/ml). MICs were ≤4 μg/ml for all other strains of gram-positive anaerobic cocci (53 isolates) and non-spore-forming gram-positive rods (28 isolates). Other results were as expected and reported in previous studies. No metronidazole resistance was seen in gram-negative anaerobes other than S. wadsworthensis (18% resistant); 63% of gram-positive non-spore-forming rods were resistant. Some degree of clindamycin resistance was seen in most of the groups tested. PMID:12384389

  4. The role of anaerobic bacteria in the neutralization of acid mine drainage. [Desulfovibrio

    SciTech Connect

    Bell, P.E.

    1988-01-01

    In contrast to the acidic water column, the sediments underlying Lake Anna, which receives acid mine drainage, are circumneutral and contain 1-4 meq alkalinity/L. Indirect fluorescent antibody counts of a methanogen (strain CA) and a sulfate reducer (Desulfovibrio strain SM) demonstrated that these organisms were present in the sediments at numbers of approximately 10{sup 6} bacteria/mL sediment. Anaerobic heterotrophs in the sediments underlying the acidified arm of the lake outnumbered anaerobic heterotrophs in a non-acidified arm of the lake. A major storm event resulted in the deposition of 11 cm of oxidized, acidic new sediment material over the older circumneutral sediments. The Eh in the new sediments decreased by 200 mV within one week after the storm event. The pH and alkalinity increased even in the 1-cm layer by two weeks after the storm and products of sulfate reduction (acid volatile sulfide) increased at three weeks after the storm. This suggests that biological processes other than sulfate reduction were responsible for the initial buffering of these sediments. Laboratory experiments using the sulfate reducer and two anaerobes (also isolated from the sediments) suggested that alkalinity production during sulfate reduction decreases with decreasing carbon concentration. Generation of alkalinity was found not to be a simple function of sulfate reduction or of iron reduction. The generation of alkalinity was found to be a function of the carbon source, and concentration, organisms present, and mineral phase formed. Iron reduction rates in the sediments of Contrary Creek ranged from 4.9-27.8 mM/m{sup 2}-sediment-day. Alkalinity was produced in the floc layer in the absence of sulfate reduction. Iron reduction could be responsible for the mineralization of 15-90% of the carbon input to this system.

  5. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures.

    PubMed

    Winkler, Mari K H; Kleerebezem, Robbert; Kuenen, J Gijs; Yang, Jingjing; van Loosdrecht, Mark C M

    2011-09-01

    A cyclic anaerobic/aerobic bubble column reactor was run for 420 days to study the competition for nitrite between nitrite oxidizing bacteria (NOB) and anaerobic ammonium oxidizing bacteria (Anammox) at low temperatures. An anaerobic feeding period with nitrite and ammonium in the influent followed by an aerated period was applied resulting in a biomass specific conversion rate of 0.18 ± 0.02 [gN(2) - N · gVSS(-1)· day(-1)] when the dissolved oxygen concentration was maintained at 1.0 mgO(2) · L(-1). An increase in white granules was observed in the reactor which were mainly located at the top of the settled sludge bed, whereas red granules were located at the bottom. FISH, activity tests, and qPCR techniques revealed that red biomass was dominated by Anammox bacteria and white granules by NOB. Granules from the top of the sludge bed were smaller and therefore had a higher aerobic volume fraction, a lower density, and consequently a slower settling rate. Sludge was manually removed from the top of the settled sludge bed to selectively remove NOB which resulted in an increased overall biomass specific N-conversion rate of 0.32 ± 0.02 [gN(2) - N · gVSS(-1) · day(-1)]. Biomass segregation in granular sludge reactors gives an extra opportunity to select for specific microbial groups by applying a different SRT for different microbial groups. PMID:21744798

  6. Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria

    PubMed Central

    Loffler, F. E.; Champine, J. E.; Ritalahti, K. M.; Sprague, S. J.; Tiedje, J. M.

    1997-01-01

    The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria. PMID:16535654

  7. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    SciTech Connect

    Schasfer, Jeffra; Rocks, Sara; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, Francois M

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments.

  8. Evaluating Primers for Profiling Anaerobic Ammonia Oxidizing Bacteria within Freshwater Environments

    PubMed Central

    Sonthiphand, Puntipar; Neufeld, Josh D.

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r

  9. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    PubMed

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  10. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  11. Rapid presumptive identification of anaerobes in blood cultures by gas-liquid chromatography.

    PubMed Central

    Sondag, J E; Ali, M; Murray, P R

    1980-01-01

    Production of volatile and nonvolatile metabolic acids in blood culture broths by aerobic, facultative anaerobic, and obligate anaerobic bacteria was analyzed by gas-liquid chromatography. Anaerobic blood culture isolates were presumptively identified by the qualitative analysis of volatile fatty acids. Isolates, with a characteristic Gram stain reaction and cellular morphology, were identified by the following acid patterns: Bacteriodes fragilis group with acetic and propionic acids; Fusobacterium with acetic, butyric, and usually propionic acids; Veillonella with acetic and propionic acids; gram-positive cocci with acetic and butyric acids; and Clostridium with acetic and butyric acids. PMID:7381002

  12. Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor

    PubMed Central

    Oshiki, Mamoru; Awata, Takanori; Kindaichi, Tomonori; Satoh, Hisashi; Okabe, Satoshi

    2013-01-01

    Enrichment cultures of anaerobic ammonium oxidation (anammox) bacteria as planktonic cell suspensions are essential for studying their ecophysiology and biochemistry, while their cultivation is still laborious. The present study aimed to cultivate two phylogenetically distinct anammox bacteria, “Candidatus Brocadia sinica” and “Ca. Scalindua sp.” in the form of planktonic cells using membrane bioreactors (MBRs). The MBRs were continuously operated for more than 250 d with nitrogen loading rates of 0.48–1.02 and 0.004–0.09 kgN m−3 d−1 for “Ca. Brocadia sinica” and “Ca. Scalindua sp.”, respectively. Planktonic anammox bacterial cells were successfully enriched (>90%) in the MBRs, which was confirmed by fluorescence in-situ hybridization and 16S rRNA gene sequencing analysis. The decay rate and half-saturation constant for NO2− of “Ca. Brocadia sinica” were determined to be 0.0029–0.0081 d−1 and 0.47 mgN L−1, respectively, using enriched planktonic cells. The present study demonstrated that MBR enables the culture of planktonic anammox bacterial cells, which are suitable for studying their ecophysiology and biochemistry. PMID:24200833

  13. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    SciTech Connect

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. In comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.

  14. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE PAGESBeta

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  15. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments

    NASA Astrophysics Data System (ADS)

    Rush, Darci; Sinninghe Damsté, Jaap S.; Poulton, Simon W.; Thamdrup, Bo; Garside, A. Leigh; Acuña González, Jenaro; Schouten, Stefan; Jetten, Mike S. M.; Talbot, Helen M.

    2014-09-01

    Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously produced BHP while its less common stereoisomer (BHT isomer) has previously been associated with anoxic environments; however, its biological source remained unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four sediment cores and a surface sediment transect closely followed the distribution of ladderane fatty acids, unique biomarkers for bacteria performing anaerobic ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids likely shared the same biological source in Golfo Dulce. This was supported by examining the BHP lipid compositions of two enrichment cultures of a marine anammox species (‘Candidatus Scalindua profunda’), which were found to contain both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher relative abundance than BHT. However, a non-marine anammox enrichment contained only BHT, which explains the infrequence of BHT isomer observations in terrestrial settings, and indicates that marine anammox bacteria are likely responsible for at least part of the environmentally-observed marine BHT isomer occurrences. Given the substantially greater residence time of BHPs in sediments, compared to ladderanes, BHT isomer is a potential biomarker for past anammox activity.

  16. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    PubMed

    Arnosti, C; Repeta, D J

    1994-03-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapidly and specifically hydrolyzed at alpha(1,6) linkages by pullulanase enzymes, most likely type II pullulanase. Although isolated pullulanase enzymes have been shown to hydrolyze pullulan completely to maltotriose (S. H. Brown, H. R. Costantino, and R. M. Kelly, Appl. Environ. Microbiol. 56:1985-1991, 1990; M. Klingeberg, H. Hippe, and G. Antranikian, FEMS Microbiol. Lett. 69:145-152, 1990; R. Koch, P. Zablowski, A. Spreinat, and G. Antranikian, FEMS Microbiol. Lett. 71:21-26, 1990), the smallest carbohydrate detected in the bacterial cultures consisted of two maltotriose units linked through one alpha(1,6) linkage. Either the final hydrolysis step was closely linked to substrate uptake, or specialized porins similar to maltoporin might permit direct transport of large oligosaccharides into the bacterial cell. This is the first report of pullulanase activity among mesophilic marine bacteria. The combination of GPC and NMR could easily be used to assess other types of extracellular enzyme activity in bacterial cultures. PMID:8161177

  17. Detection of bacteria from a cecal anaerobic competitive exclusion culture with an immunoassay electrochemiluminescence sensor

    NASA Astrophysics Data System (ADS)

    Beier, Ross C.; Young, Colin R.; Stanker, Larry H.

    1999-01-01

    A competitive exclusion (CE) culture of chicken cecal anaerobes has been developed and used in this laboratory for control of Salmonella typhimurium in chickens. The CE culture consists of 29 different species of micro-organisms, and is known as CF3. Detection of one of the CF3 bacteria, Eubacteria, and S. typhimurium were demonstrated using a commercial immunomagnetic (IM) electrochemiluminescence (ECL) sensor, the ORIGENR Analyzer. Analysis was achieved using a sandwich immunoassay. Bacteria were captured on antibody- conjugated 280 micron sized magnetic beads followed by binding of reporter antibodies labelled with ruthenium (II) tris(dipyridyl) chelate [Ru(bpy)32+]. The magnetic beads were then trapped on an electrode in the reaction cell of the ORIGENR Analyzer by a magnet, and the ECL was evoked from Ru(bpy)32+ on the tagged reporter antibodies by an electrical potential at the electrode. Preliminary IM-ECL assays with Eubacteria yielded a detection limit of 105 cfu/mL. Preliminary IM-ECL assays with S. typhimurium yielded a similar detection limit of 105 cfu/mL.

  18. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  19. Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a recently discovered process that is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). This process constitutes a unique association between the two major global elements essential to life, carbon and nitrogen, and may act as an important and overlooked sink of the greenhouse gas methane. In recent years, more and more studies have reported the distribution of M. oxyfera-like bacteria and the occurrence of N-DAMO process in different natural ecosystems, including freshwater lakes, rivers, wetlands and marine ecosystems. Previous studies have estimated that a total of 2%-6% of current worldwide methane flux in wetlands could be consumed via the N-DAMO process. These findings indicate that N-DAMO is indeed a previously overlooked methane sink in natural ecosystems. Given the worldwide increase in anthropogenic nitrogen pollution, the N-DAMO process as a methane sink in reducing global warming could become more important in the future. The present mini-review summarises the current knowledge of the ecological distribution of M. oxyfera-like bacteria and the potential importance of the N-DAMO process in reducing methane emissions in various natural ecosystems. The potential influence of environmental factors on the N-DAMO process is also discussed. PMID:25398284

  20. Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites †

    PubMed Central

    Potrikus, C. J.; Breznak, John A.

    1980-01-01

    A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e− needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate → 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA → 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes. PMID:16345588

  1. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  2. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  3. Growth of clinical isolates of anaerobic bacteria on agar media: effects of media composition, storage conditions, and reduction under anaerobic conditions.

    PubMed Central

    Murray, P R

    1978-01-01

    The quantitative growth, the colony size, and the rate of growth of 47 clinical anaerobic isolates were compared on five different media, namely Brucella agar, brain heart infusion agar, Columbia agar, Schaedler agar, and tryptic soy agar. There was no significant difference in the quantitative growth of the anaerobes inoculated onto the five media. Although no single medium was superior for the growth of all isolates, 12 of 22 isolates, inoculated onto media stored for 4 weeks or less, grew best on Schaedler agar. The effects of supplementation of the media with reducing agents and reduction of the media before use were also analyzed and were found to be affected by the composition and length of storage of the media, as well as the bacteria tested. PMID:744801

  4. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    NASA Astrophysics Data System (ADS)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  5. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    SciTech Connect

    Payne, Rayford B.; Ringbauer, Joseph A., Jr.; Wall, Judy D.

    2006-04-05

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  6. [Correlation of the DNA nucleotide makeup with the physiological and cytological characteristics of spore-forming anaerobic bacteria].

    PubMed

    Duda, V I; Dobritsa, S V

    1975-01-01

    The nucleotide composition of DNA from 12 studied species of anaerobic bacteria belongs to AT type, with G+C varying from 28.4 to 36.8 mole%. In the anaerobic group of Clostridium bifermentans, a correlation has been established between the nucleotide composition of DNA, the type of appendages on spores, and some physiologo-biochemical characteristics. The nucleotide composition of DNA in the spores of four anaerobic species is shifted toward GC type as compared to DNA in the vegetative cells. Data on the content of GC pairs in DNA of the spores may sometimes be of a higher taxonomic value than the corresponding evidence on DNA of the vegetative cells. PMID:1207507

  7. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS

    PubMed Central

    Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Måns; Özenci, Volkan

    2015-01-01

    Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS. PMID:26554930

  8. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    PubMed Central

    Tal, Yossi; Watts, Joy E. M.; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  9. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    PubMed

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  10. National Committee for Clinical Laboratory Standards agar dilution susceptibility testing of anaerobic gram-negative bacteria.

    PubMed Central

    Brown, W J

    1988-01-01

    One hundred nine recent clinical isolates of anaerobic gram-negative bacteria were tested in triplicate by the National Committee for Clinical Laboratory Standards agar dilution procedure for their susceptibility to 32 antimicrobial agents. All isolates were inhibited by imipenem, but there were significant numbers of strains resistant to other beta-lactam drugs, and therefore the in vitro response to these antimicrobial agents cannot be predicted. This was particularly true for the bile-resistant or Bacteroides fragilis group. beta-Lactamase production was detected in 82% of the bacteroides with the nitrocefin test. Clavulanic acid combined with amoxicillin and ticarcillin and sulbactam combined with ampicillin resulted in synergistic activity against all beta-lactamase-positive organisms. Ceftizoxime was the most active of the cephalosporins. Two percent of the isolates were resistant to chloramphenicol and metronidazole. Clindamycin resistance was detected in 38% of the B. fragilis group, which is a marked increase from the 4% detected 10 years ago at this institution. PMID:3364956

  11. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring.

    PubMed Central

    el Fantroussi, S; Mahillon, J; Naveau, H; Agathos, S N

    1997-01-01

    Desulfomonile tiedjei and Desulfitobacterium dehalogenans were chosen as model bacteria to demonstrate the introduction of an anaerobic microbia reductive dechlorination activity into nonsterile soil slurry microcosms by inoculation. De novo 3-chlorobenzoate dechlorination activity was established with the bacterium D. tiedjei in microcosms normally devoid of this dechlorination capacity. The addition of D. tiedjei to microcosms supplemented with 20 mM pyruvate as the cosubstrate resulted in total biotransformation of 1.5 mM 3-chlorobenzoate within 7 days. The introduction of the bacterium Desulfitobacterium dehalogenans into nonsterile microcosms resulted in a shortening of the period required for dechlorination activity to be established. In microcosms inoculated with Desulfitobacterium dehalogenans, total degradation of 6 mM 3-chloro-4-hydroxy phenoxyacetic acid (3-Cl-4-OHPA) was observed after 4 days in contrast to the result in noninoculated microcosms, where the total degradation of 3-Cl-4-OHPA by indigenous microorganisms was observed after 11 days. Both externally introduced bacterial strains were detected in soil slurry microcosms by a nested-PCR methodology. PMID:9023963

  12. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    PubMed

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

  13. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria.

    PubMed

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E; Reading, Nicola C; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H; Kasper, Dennis L

    2015-09-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but understanding of host-commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis after acute peritonitis and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. We were able to assess the distribution and colonization of labeled B. fragilis along the intestine, as well as niche competition after coadministration of multiple species of the microbiota. We also fluorescently labeled nine additional commensals (eight anaerobic and one microaerophilic) from three phyla common in the gut--Bacteroidetes, Firmicutes and Proteobacteria--as well as one aerobic pathogen (Staphylococcus aureus). This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and can be used to study microbial colonization and host-microbe interactions in real time. PMID:26280120

  14. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    PubMed Central

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  15. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  16. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  17. Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

    PubMed Central

    Fernández, Helga; Prandoni, Nicolás; Fernández-Pascual, Mercedes; Fajardo, Susana; Morcillo, César; Díaz, Eduardo; Carmona, Manuel

    2014-01-01

    Background Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. Methodology/Principal Findings Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. Conclusions/Significance This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology. PMID:25340341

  18. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    PubMed

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. PMID:25725204

  1. [Antimicrobial susceptibility of clinical isolates of aerobic Gram-positive cocci and anaerobic bacteria in 2006].

    PubMed

    Yamaguchi, Takahiro; Yoshida, Isamu; Itoh, Yoshihisa; Tachibana, Mineji; Takahashi, Choichiro; Kaku, Mitsuo; Kanemitsu, Keiji; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Baba, Hisashi; Matsuo, Shuji; Asari, Seishi; Toyokawa, Masahiro; Matsuoka, Kimiko; Kusano, Nobuchika; Nose, Motoko; Murase, Mitsuharu; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2010-12-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (26 species, 1022 strains) and anaerobic bacteria (23 species, 184 strains) isolated from clinical specimens in 2006 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 53.0% and 65.8%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 micrcog/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 87.6%. Ceftriaxone, cefpirome, cefepime, carbapenem antibiotics, VCM, teicoplanin, linezolid(LZD) and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 10.9% of E. faecalis strains or 3.5% of E. faecium strains showed intermediate or resistant to LZD. 24.4% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM were under 1 microg/mL, suggesting that VCM had excellent activity against C. difficile. Carbapenems showed good activity against Peptococcaceae, Bacteroides spp., and Prevotella spp. However since several strains of Bacteroides fragilis showed resistant to carbapenems and the susceptibility of this species should be well-focused in the future. PMID:21425596

  2. [Antimicrobial susceptibility of clinical isolates of aerobic gram-positive cocci and anaerobic bacteria in 2008].

    PubMed

    Yoshida, Isamu; Yamaguchi, Takahiro; Kudo, Reiko; Fuji, Rieko; Takahashi, Choichiro; Oota, Reiko; Kaku, Mitsuo; Kunishima, Hiroyuki; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Fujita, Shinichi; Matsuo, Shuji; Kono, Hisashi; Asari, Seishi; Toyokawa, Masahiro; Kusano, Nobuchika; Nose, Motoko; Horii, Toshinobu; Tanimoto, Ayako; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2012-02-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (25 genus or species, 1029 strains) and anaerobic bacteria (21 genus or species, 187 strains) isolated from clinical specimens in 2008 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 59.6% and 81.2%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM), linezolid (LZD) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 microg/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 92.0% that was highest among our previous reports. Cefpirome, carbapenems, VCM, teicoplanin (TEIC), LZD and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 15.9% of E. faecalis strains and 1.2% of E. faecium strains showed intermediate to LZD. 17.1% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM was under 1 microg/mL, suggesting that VCM had excellent activity. Carbapenems showed good activity against Clostridiales, Bacteroides spp., and Prevotella spp., but one strain of Bacteroides fragilis showed resistant to carbapenems. And so, the susceptibility of this species should be well-focused in the future at detecting continuously. PMID:22808693

  3. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    PubMed

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (<50 mgCOD L(-1), 5 mgN L(-1), 1.0 mgP L(-1)). Approximately 6.4 ± 1.3 gNH4-N and 1.1 ± 0.2 gPO4-P for every 100 gSCOD were removed at a hydraulic retention time of 8-24 h and volumetric loading rates of 0.8-2.5 COD kg m(3) d(-1). Thus, a minimum of 200 mg L(-1) of ethanol (to provide soluble COD) was required to achieve these discharge limits. Microbial community through sequencing indicated dominance of >60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  4. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    PubMed

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown. PMID:21491069

  5. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  6. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    PubMed Central

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  7. Aerobic and anaerobic microbiology of infections after trauma in children.

    PubMed Central

    Brook, I

    1998-01-01

    OBJECTIVE: To review the recovery of aerobic and anaerobic bacteria from infections after trauma in children over a 20 year period. METHODS: Only specimens that were studied for both aerobic and anaerobic bacteria were included in the analysis. They were collected from seven separate centres in which the microbiology laboratories only accepted specimens that were properly collected without contamination and were submitted in appropriate transport media. Anaerobes and aerobic bacteria were cultured and identified using standard techniques. Clinical records were reviewed to identify post-trauma patients. RESULTS: From 1974 to 1994, 175 specimens obtained from 166 children with trauma showed bacterial growth. The trauma included blunt trauma (71), lacerations (48), bites (42), and open fractures (5). Anaerobic bacteria only were isolated in 38 specimens (22%), aerobic bacteria only in 51 (29%), and mixed aerobic-anaerobic flora in 86 (49%); 363 anaerobic (2.1/specimen) and 158 aerobic or facultative isolates (0.9/specimen) were recovered. The predominant anaerobic bacteria included Peptostreptococcus spp (115 isolates), Prevotella spp (68), Fusobacterium spp (52), B fragilis group (42), and Clostridium spp (21). The predominant aerobic bacteria included Staph aureus (51), E coli (13), Ps aeruginosa (12), Str pyogenes (11) and Klebsiella pneumoniae (9). Principal infections were: abscesses (52), bacteraemia (3), pulmonary infections (30, including aspiration pneumonia, tracheostomy associated pneumonia, empyema, and ventilator associated pneumonia), wounds (36, including cellulitis, post-traumatic wounds, decubitus ulcers, myositis, gastrostomy and tracheostomy site wounds, and fasciitis), bites (42, including 23 animal and 19 human), peritonitis (4), osteomyelitis (5), and sinusitis (3). Staph aureus and Str pyogenes were isolated at all sites. However, organisms of the oropharyngeal flora predominated in infections that originated from head and neck wounds and

  8. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    PubMed

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected

  9. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  10. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  11. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites.

    PubMed

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  12. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria

    SciTech Connect

    Pancost, R.D.; Damste, J.S.S.; Lint, S. De; Maarel, M.J.E.C. van der; Gottschal, J.C.

    2000-03-01

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under aerobic conditions, and compound-specific carbon isotope analyses indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in {sup 13}C ({delta}{sup 13}C values are as low as {minus}95%). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of {sup 13}C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, their results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings in the predominant microbiological process.

  13. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    PubMed

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far. PMID:14666981

  14. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  15. Anaerobic biodegradation of ether compounds by ether bond-cleaving bacteria and methanogenic consortia

    SciTech Connect

    Dwyer, D.F.

    1989-01-01

    Ether compounds are manufactured for use in nonionic detergents, plastics, pesticides and other products and occur as toxic organic compounds, the most famous being tetrachlorodibenzo-p-dioxin. Ether compounds were considered recalcitrant to anaerobic biodegradation due to the lack of an appropriate oxidant for ether bond-cleavage in reducing environments. Many of these compounds reside in anaerobic environments or are exposed to anaerobic waste treatment processes. Thus, it is of interest to identify: (i) whether ether compounds are anaerobically biodegradable, (ii) the anaerobic microorganisms able to degrade these compounds, and (iii) the mechanism(s) of anaerobic ether bond-cleavage. The ether bonds of polyethylene glycol (PEG; HO-(CH{sub 2}CH{sub 2}-O-){sub n}H), phenyl ether ((C{sub 6}H{sub 5}){sub 2}O), and dibenzo-p-dioxin ((C{sub 6}H{sub 4}){sub 2}O{sub 2}) were shown to be degraded in methanogenic consortia enriched with these compounds and polyethoxylate (nonionic) surfactants as substrates. Two anaerobic microorganisms which used PEGs as sole substrates were isolated and characterized. Desulfovibrio desulfuricans strain DG2 degraded the monomer ethylene glycol and oligomers up to tetraethylene glycol (HO-(CH{sub 2}CH{sub 2}-O-){sub 4}H) in length. Bacteroides sp. strain PG1 degraded diethylene glycol and all other polymer lengths of PEG. PEGs were degraded by Bacteroides sp. strain PG1 via an external depolymerization which was either a hydrolytic or a reductive cleavage of the ether bond. The ether bond of diaryl ethers was apparently cleaved by a reductive mechanism which produced benzene and phenol as products from phenyl ether degradation and benzene and, by indirect analysis, catechol from dibenzo-dioxin.

  16. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    SciTech Connect

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  17. Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments

    PubMed Central

    Straub, Kristina L.; Buchholz-Cleven, Berit E. E.

    1998-01-01

    Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 × 105 to 5 × 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population. PMID:9835573

  18. Role of Anaerobic Ciliates in Planktonic Food Webs: Abundance, Feeding, and Impact on Bacteria in the Field

    PubMed Central

    Massana, Ramon; Pedrós-Alió, Carlos

    1994-01-01

    We studied the dynamics of two populations of anaerobic ciliates, Plagiopyla sp. and Metopus sp., and of their potential prey, heterotrophic and phototrophic purple bacteria, in Lake Cisó throughout a 1-year cycle. The abundance of both ciliates was very low (less than 2 individuals per ml). During mixing, Plagiopyla ciliates exhibited high clearance rates (about 100 nl ciliate-1 h-1), its integrated abundance increased with a net doubling time of 47 days, and its potential doubling times, as calculated from the number of bacteria consumed, ranged between 5 and 8 days. During stratification, the activity of Plagiopyla ciliates was reduced and the population decreased; this was related to the higher amounts of sulfide present. The impact of predation by the Plagiopyla population on bacterioplankton was found to be insignificant, less than 0.1% of bacterial biomass consumed per day. Thus, anaerobic ciliates cannot control the bacterioplankton in Lake Cisó because of both the low abundance over the period studied and the low feeding rates during certain periods. A review of available field studies suggests that this conclusion can be extrapolated to most other anoxic systems. PMID:16349239

  19. Growth of Facultatively Heterofermentative Lactobacilli on Starter Cell Suspensions

    PubMed Central

    Rapposch, S.; Eliskases-Lechner, F.; Ginzinger, W.

    1999-01-01

    The growth of facultatively heterofermentative lactobacilli (FHL) on cell suspensions of the homofermentative Lactobacillus helveticus was investigated. Osmotic lysis of L. helveticus led to a significant increase of ribose. It decreased steadily in parallel with the growth of FHL, strongly suggesting that the bacteria used ribose as a growth substrate. PMID:10584024

  20. Antimicrobial susceptibility patterns of competitive exclusion bacteria applied to newly hatched chickens.

    PubMed

    Wagner, R Doug; Cerniglia, Carl E

    2005-07-25

    Competitive exclusion (CE) products are mixtures of obligate and facultative anaerobic bacteria applied to poultry hatchlings for prevention of Salmonella colonization. These mixtures have the potential to introduce bacteria with undesirable antimicrobial drug resistance traits into the human food supply. Antimicrobial drug susceptibilities of 27 obligate and facultative anaerobes isolated from a commercial CE product were evaluated with a microdilution minimal inhibitory concentration (MIC) assay. Bacteroides distasonis and Bacteroides fragilis isolates were resistant to tetracycline and other antimicrobial drugs. An Escherichia coli isolate was resistant to four antimicrobial drugs: erythromycin, penicillin, vancomycin, and tylosin. Erythromycin-resistant enterococci and vancomycin-resistant Lactococcus lactis isolates in the CE product were detected. These findings suggest that more work needs to be done to assess the potential effects of CE product use in poultry on the food supply. PMID:16014302

  1. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene.

    PubMed

    Beller, Harry R; Kane, Staci R; Legler, Tina C; Alvarez, Pedro J J

    2002-09-15

    We have developed a real-time polymerase chain reaction (PCR) method that can quantify hydrocarbon-degrading bacteria in sediment samples based on a catabolic gene associated with the first step of anaerobic toluene and xylene degradation. The target gene, bssA, codes for the alpha-subunit of benzylsuccinate synthase. The primer-probe set for real-time PCR was based on consensus regions of bssA from four denitrifying bacterial strains; bssA sequences for two of these strains were determined during this study. The method proved to be sensitive (detection limit ca. 5 gene copies) and had a linear range of >7 orders of magnitude. We used the method to investigate how gasohol releases from leaking underground storage tanks could affect indigenous toluene-degrading bacteria. Microcosms inoculated with aquifer sediments from four different sites were incubated anaerobically with BTEX (benzene, toluene, ethylbenzene, and xylenes) and nitrate in the presence and absence of ethanol. Overall, population trends were consistent with observed toluene degradation activity: the microcosms with the most rapid toluene degradation also had the largest numbers of bssA copies. In the microcosms with the most rapid toluene degradation, numbers of bssA copies increased 100-to 1000-fold over the first 4 days of incubation, during which time most of the toluene had been consumed. These results were supported by slot blot analyses with unamplified DNA and by cloning and sequencing of putative bssA amplicons, which confirmed the real-time PCR method's specificity for bssA. Use of a companion real-time PCR method for estimating total eubacterial populations (based on 16S rDNA) indicated that, in some cases, ethanol disproportionately supported the growth of bacteria that did not contain bssA. The real-time PCR method for bssA could be a powerful tool for monitored natural attenuation of BTEX in fuel-contaminated groundwater. To our knowledge, this is the first reported molecular method that

  2. Inhibition of Salmonella Typhimurium by Anaerobic Cecal Bacteria in Media Supplemented with Lactate and Succinate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of anaerobic cecal microflora of broilers to inhibit growth of Salmonella Typhimurium in media supplemented with lactate and succinate was examined. Cecal cultures were prepared by collecting ceca of processed broilers from a commercial processing facility, inoculating broth media with 1...

  3. Classification and distribution of large intestinal bacteria in nonhibernating and hibernating leopard frogs (Rana pipiens).

    PubMed Central

    Banas, J A; Loesche, W J; Nace, G W

    1988-01-01

    The large intestinal flora of the leopard frog, Rana pipiens, was examined to determine whether differences existed between the nonhibernating and hibernating states of the animal and to determine the relative concentrations and proportions of potential frog pathogens. Hibernators had a logarithmic decrease of bacteria per milligram of intestine averaging one, and significantly greater proportions of facultative bacteria and psychrophiles relative to nonhibernators. The predominant anaerobic bacteria were gram-positive Clostridium species and gram-negative Bacteroides and Fusobacterium species. The predominant facultative bacteria were enterobacteria in nonhibernators but Pseudomonas species in hibernators. Many species of Pseudomonas are pathogenic for frogs, and thus the intestinal flora in hibernators may be a potential source of infectious disease. PMID:3263838

  4. The antimicrobial activity of essential oils and essential oil components towards oral bacteria.

    PubMed

    Shapiro, S; Meier, A; Guggenheim, B

    1994-08-01

    A method for reproducibly determining minimal inhibitory concentrations and minimal bactericidal concentrations of plant extracts towards fastidiously and facultatively anaerobic oral bacteria, predicated upon measurements of optical densities in microtitre plate wells, was devised. The antimicrobial properties of some botanical oils were surveyed; of these, Australian tea tree oil, peppermint oil, and sage oil proved to be the most potent essential oils, whereas thymol and eugenol were potent essential oil components. PMID:7478759

  5. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria

    PubMed Central

    Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

    2013-01-01

    Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

  6. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes. PMID:16180412

  7. Proteins and protein complexes involved in the biochemical reactions of anaerobic ammonium-oxidizing bacteria.

    PubMed

    de Almeida, Naomi M; Maalcke, Wouter J; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran

    2011-01-01

    It has been less than two decades since anammox (anaerobic ammonium oxidation) coupled to nitrite reduction has been discovered. Already, this process has been recognized as an important sink for fixed nitrogen in the natural environment and has been implemented as a cost-effective ammonium removal technology. Still, little is known about the molecular mechanism of this remarkable reaction. In this mini review, we present an insight into how ammonium and nitrite are combined to form dinitrogen gas. PMID:21265793

  8. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  9. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    PubMed

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  10. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for