Science.gov

Sample records for facultative anaerobic bacteria

  1. Prevalence of nim genes in anaerobic/facultative anaerobic bacteria isolated in South Africa.

    PubMed

    Lubbe, M M; Stanley, K; Chalkley, L J

    1999-03-01

    This study investigated the prevalence of nim genes (proposed to encode a 5-nitroimidazole resistance product) in 64 anaerobic/facultative anaerobic bacteria. Employing universal nim gene primers, 458-bp amplified fragments were recorded as presumptive positives in 22/64 strains at an annealing temperature of 52 degrees C and 15/64 strains at 62 degrees C, of which seven were propionibacteria. DNA sequencing confirmed the presence of nimA genes in Propionibacterium spp. (five strains), Actinomyces odontolyticus (one strain), Prevotella bivia (one strain) and Clostridium bifermentans (one strain) and nimB genes from five strains of Bacteroides fragilis. nimA genes were predominant in propionibacteria indicating a potential nimA gene source in anaerobic environments. PMID:10079531

  2. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    PubMed Central

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected for organisms cultured on pectin medium. Most of the cultures on yam tissue, however, showed activities for the three enzymes. The viscometric assay for hydrolase and lyase enzymes indicated a significant level of hydrolase activity (a 40.90% decrease in viscosity for Vibrio sp. and Corynebacterium spp.), but no lyase activity for most of the isolates. Two isolates of Corynebacterium and B. lentus caused changes in fresh yams suggestive of soft rot. PMID:16345726

  3. Dissimilatory Reduction of Inorganic Sulfur by Facultatively Anaerobic Marine Bacteria1

    PubMed Central

    Tuttle, Jon H.; Jannasch, Holger W.

    1973-01-01

    Three strains, selected from a large number of newly isolated, facultatively anaerobic marine bacteria, reduced inorganic sulfur compounds other than sulfate anaerobically in defined culture media in the following different patterns: (i) sulfite and thiosulfate were reduced to sulfide, and tetrathionate was reduced to thiosulfate; (ii) tetrathionate was reduced to thiosulfate only; or (iii) thiosulfate was reduced to sulfide only when pyruvate was the substrate. Comparison of anaerobic growth in the presence or absence of inorganic sulfur compounds indicated true dissimilatory reductions. PMID:4728269

  4. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  5. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria.

    PubMed

    Fu, Huihui; Yuan, Jie; Gao, Haichun

    2015-10-15

    Facultative bacteria can grow under either oxic or anoxic conditions. While oxygen provides substantial advantages in energy yield by respiration, it can become life-threatening because of reactive oxygen species that derive from the molecule naturally. Thus, to survive and thrive in a given niche, these bacteria have to constantly regulate physiological processes to make maximum benefits from oxygen respiration while restraining oxidative stress. Molecular mechanisms and physiological consequences of oxidative stress have been under extensive investigation for decades, mostly on research model Escherichia coli, from which our understanding of bacterial oxidative stress response is largely derived. Nevertheless, given that bacteria live in enormously diverse environments, to cope with oxidative stress different strategies are conceivably developed. PMID:26319291

  6. Rapid methods for differentiating gram-positive from gram-negative aerobic and facultative anaerobic bacteria.

    PubMed

    Manafi, M; Kneifel, W

    1990-12-01

    Different tests based on lysis by KOH and on reaction with fluorogenic and chromogenic substrates, L-alanine-4-nitroanilide (LANA); L-alanine-4-methoxy- beta-naphthylamide (MNA); 4-alanine-2-amidoacridone (AAA); L-alanine-7-amido- 4-methylcoumarin (AAMC); 8-anilino-1-naphthalene-sulphonic acid (ANS) were compared for their suitability to distinguish Gram-positive from Gram-negative bacteria. A concentration of 100 micrograms/ml was chosen for incorporating LANA, AAA, AAMC and ANS into the growth medium, based on sensitivity tests. MNA did not show any detectable reaction over a concentration range from 50 to 200 micrograms/ml, and led to inhibition of all bacteria at 200 micrograms/ml. In the examination of a total of 146 bacterial strains, including Yersinia enterocolitica, Bacillus cereus, and B. subtilis the KOH test was not comparable with the Gram staining. A good correlation with Gram staining was found between LANA, AAA and AAMC added to plate count agar on one hand, and LANA and AAMC impregnated paper strips on the other hand, thereby utilizing the aminopeptidase activity. Agar containing ANS showed detectable fluorescence with all Gram-negative strains, but with Staphylococcus aureus and Staph. epidermidis a weak reaction was also observed. AAMC was selected for a rapid paper strip test. With this substrate a pronounced blue fluorescence was obtained with Gram-negative colonies. PMID:2286581

  7. Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation.

    PubMed

    Jean, Wen Dar; Huang, Ssu-Po; Liu, Tung Yen; Chen, Jwo-Sheng; Shieh, Wung Yang

    2009-08-01

    Two agarolytic strains of Gram-negative, heterotrophic, facultatively anaerobic, marine bacteria, designated AAM1T and AAT1T, were isolated from seawater samples collected in the shallow coastal region of An-Ping Harbour, Tainan, Taiwan. Cells grown in broth cultures were straight rods that were motile by means of a single polar flagellum. The two isolates required NaCl for growth and grew optimally at about 25-30 degrees C, in 2-4% NaCl and at pH 8. They grew aerobically and could achieve anaerobic growth by fermenting D-glucose or other sugars. The major isoprenoid quinone was Q-8 (79.8-92.0%) and the major cellular fatty acids were summed feature 3 (C16:1omega7c and/or iso-C15:0 2-OH; 26.4-35.6%), C18:1omega7c (27.1-31.4%) and C16:0 (14.8-16.3%) in the two strains. Strains AAM1T and AAT1T had DNA G+C contents of 52.9 and 52.4 mol%, respectively. The two strains had a 16S rRNA gene sequence similarity of 98.6% and shared 84.9-92.4% sequence similarity with the type strains of Agarivorans albus (91.2-92.4%), eight Alteromonas species (84.9-87.1%), two Aestuariibacter species (86.0-87.0%), Bowmanella denitrificans (86.1-86.7%), eight Glaciecola species (85.0-87.9%) and Salinimonas chungwhensis (85.9-86.1%). Despite their high sequence similarity, strains AAM1T and AAT1T had a DNA-DNA relatedness value of only 4.5%. The data obtained from these polyphasic taxonomic studies revealed that the two agarolytic isolates could be classified as representatives of two novel species in a new genus, Aliagarivorans gen. nov., with Aliagarivorans marinus sp. nov. [type strain is AAM1T (=BCRC 17888T=JCM 15522T)] as the type species and Aliagarivorans taiwanensis sp. nov. [type strain is AAT1T (=BCRC 17889T=JCM 15537T)] as a second species. PMID:19567569

  8. Anaerobic bacteria in chronic otitis media.

    PubMed

    Jokipii, A M; Karma, P; Ojala, K; Jokipii, L

    1977-05-01

    The bacteriology of 70 consecutive cases of active chronic otitis media was studied. Using appropriate technology, anaerobic bacteria were recovered in 33%, Bacteroides species accounting for one half of them. They were always found in mixed infections involving the average of 3.8 bacteria, 1.9 anaerobic, and 1.9 facultative species. The bacteriology was relatively stable from one ear to the other in the ten bilateral cases studied. The results were alike in the groups differing with respect to local antimicrobial therapy or appearance of the middle ear discharge. The cases with chronic otitis in spite of previous radical surgery presented more often with anaerobic infection than the unoperated ones, and none of them yielded sterile cultures. The recognition of anerobic middle ear infections may be clinically significant because the susceptibilities of the organisms to antimicrobial agents and to air are characteristically different from those of aerobic or facultative bacteria. PMID:857789

  9. Facultative to strict anaerobes ratio in the preterm infant microbiota

    PubMed Central

    Arboleya, Silvia; Solís, Gonzalo; Fernández, Nuria; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel

    2012-01-01

    During recent years there has been an increasing interest on the development of strategies for modulating the process of microbiota establishment in preterm infants. For successfully developing of such strategies, a detailed knowledge of the microbiota establishment process in these infants is needed. In a previous study we evidenced clear alterations in the process of microbiota establishment in preterm newborns when compared with a control group of full-term breast-fed infants. Here we have analyzed these data more in depth, corroborating a reduced proportion of strict anaerobes with respect to facultatives in the fecal microbiota of preterm infants. The potential benefits, as well as the side effects, of strategies aimed at counterbalancing this alteration in the facultative to strict anaerobes ratio are discussed in this addendum. PMID:22922559

  10. Reduction of Uranium(VI) to Uranium (IV) by Three Facultative Anaerobes at High Concentrations

    NASA Astrophysics Data System (ADS)

    Chabalala, Simphiwe; Chirwa, Evans M. N.

    2010-01-01

    Six bacteria species were isolated from a uranium mine in Limpopo, South Africa, and three facultative anaerobes reduced U(VI) to U(IV) and aided the removal of U(VI) from solution. The pure cultures showed a high reduction rate at pH 5 to 6 for concentrations 100-800 mg/L during the first 4 to 6 hours of incubation. A biological remediation process for removing U(VI) is desirable in the nuclear industry where more expensive environmentally non-friendly physical chemical processes have been used conventionally for decades.

  11. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers. PMID:17092295

  12. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  13. Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes.

    PubMed Central

    Watson, K; Arthur, H; Morton, H

    1978-01-01

    The obligate psychrophilic yeasts Torulopsis psychrophila, T. austromarina, Leucosporidium frigidum, L. gelidum, and L. nivalis were obligate aerobes and were unable to grow anaerobically. In contrast, the obligate thermophilic yeasts T. bovina, T. pintolopesii, Candida slooffii, and Saccharomyces telluris were facultative anaerobes. PMID:568620

  14. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  15. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.

    PubMed

    Hernndez, Noemi; Escudero, Jos A; San Milln, lvaro; Gonzlez-Zorn, Bruno; Lobo, Jorge M; Verd, Jos R; Surez, Mnica

    2015-04-01

    Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens. PMID:24339348

  16. Determination of mercury and organomercurial resistance in obligate anaerobic bacteria.

    PubMed

    Rudrik, J T; Bawdon, R E; Guss, S P

    1985-03-01

    A methodology for determining the minimum inhibitory concentration of inorganic and organomercurial compounds for obligate anaerobic bacteria is described. A wide variation in the susceptibility of anaerobic clinical and sewage isolates was observed. Isolates of Bacteroides ruminicola and Clostridium perfringens resistant to mercury were examined for their plasmid content and ability to demonstrate inducible resistance. None of the resistant anaerobes contained any plasmids, while resistant facultative isolates from the same source contained several plasmids. In 24 h, resistant strains of clostridia and Bacteroides volatilized 20 and 43% of the 203Hg2+ added to cultures, while Escherichia coli R100 and a sewage isolate of Enterobacter cloacae volatilized 63 and 27%, respectively, of the added 203Hg2+. Attempts to induce mercury resistance in the aerobic isolates were successful, but no induction was seen in the anaerobes. Thus, mercury resistance in these anaerobic isolates was neither inducible nor plasmid mediated. PMID:4005712

  17. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction

    NASA Technical Reports Server (NTRS)

    Moser, D. P.; Nealson, K. H.

    1996-01-01

    The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.

  18. [Diversity of facultatively anaerobic microscopic mycelial fungi in soils].

    PubMed

    Kurakov, A V; Lavrent'ev, R B; Nechita?lo, T Iu; Golyshin, P N; Zviagintsev, D G

    2008-01-01

    The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is composed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea. Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride. T. koningii, Lecanicillum lecanii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor circinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10-30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions. PMID:18365728

  19. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains.

    PubMed

    Kumar, Gopalakrishnan; Bakonyi, Pter; Sivagurunathan, Periyasamy; Kim, Sang-Hyoun; Nemestthy, Nndor; Blafi-Bak, Katalin; Lin, Chiu-Yue

    2015-08-01

    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L. PMID:25661265

  20. Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile

    SciTech Connect

    Youhong Li; Engle, M.; Wiegel, J.

    1994-01-01

    An anaerobic and thermophilic alkaliphile, strain JW/YL23-2{sub T} (T = type strain), was isolated from sewage sludge obtained from a sewage plant in Atlanta, Ga. at pH 10.1 and 50{degrees}C, the doubling time of this strain was 19 min. Strain JW/YL23-2{sub T}, a motile rod-shaped bacterium with 2 to 12 peritrichous flagella, exhibited a negative Gram stain reaction but was gram-type positive as judged by the polymyxin B test. No heat-stable (85{degrees}C, 15 min) endospores were detected. At 50{degrees}C, growth occurred at pH values ranging from 7.0 to 11.0; the optimum pH was 9.6 to 10.1. The temperature range for growth ranged from 27 to 57.5{degrees}C; the optimum temperature was 48 to 51{degrees}C (pH 10.1). Dissimilatory sulfate reduction was not detected. The organism utilized glucose, fructose, sucrose, maltose, cellobiose, and Casamino Acids. The DNA G+C content was 32 mol% (as determined by chemical analysis). A 16S rRNA sequence analysis revealed a 2% inferred evolutionary distance to Clostridium paradoxum. However, the cell wall type of strain JW/YL23-2{sup T} was A4{beta} (L-Orn-D-Asp), while that of C. paradoxum was Al{sub {tau}} (m-diaminopimelic acid direct). On the basis of the alkaline pH values and high temperatures for optimal growth, the inability to form spores, and other characteristics different from C. paradoxum characteristics, strain JW/YL-23-2 was placed in a new species, Clostridium thermoalcaliphilum; JW/YL23-2 (= DSM 7309) is the type strain of this new species.

  1. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  2. Oxygen Effect on the Low Temperature Tolerance of Facultative Anaerobes from Antarctica, Alaska, and Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychrotolerance as an adaptation to survival in extreme environments is widespread among many of the mesophilic microorganisms. Red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low-temperature in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of species as well as genetics could be remarkably changed due to -on and surviving m extreme environments. The cold shock genes for some of the studied strains of psychrotolerant facultative anaerobes already were published In this paper we present experimental data for psychrotolerant facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on the changing of anaerobic conditions to aerobic with cultivation at subzero temperatures.

  3. Growth of the Facultative Anaerobes from Antarctica, Alaska, and Patagonia at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.

  4. Attack on lignified grass cell walls by a facultatively anaerobic bacterium.

    PubMed

    Akin, D E

    1980-10-01

    A filamentous, facultatively anaerobic microorganism that attacked lignified tissue in forage grasses was isolated from rumen fluid with a Bermuda grass-containing anaerobic medium in roll tubes. The microbe, designated 7-1, demonstrated various colony and cellular morphologies under different growth conditions. Scanning electron microscopy revealed that 7-1 attacked lignified cell walls in aerobic and anaerobic culture. 7-1 predominately degraded tissues reacting positively for lignin with the chlorine-sulfite stain (i.e., sclerenchyma in leaf blades and parenchyma in stems) rather than the more resistant acid phloroglucinol-positive tissues (i.e., lignified vascular tissue and sclerenchyma ring in stems), although the latter tissues were occasionally attacked. Turbidimetric tests showed that 7-1 in anaerobic culture grew optimally at 39 degrees C at a pH of 7.4 to 8.0. Tests for growth on plant cell wall carbohydrates showed that 7-1 grew on xylan and pectin slowly in aerobic cultures but not with pectin and only slightly with xylan in anaerobic culture. 7-1 was noncellulolytic as shown by filter paper tests. The microbe used the phenolic acids sinapic, ferulic, and p-coumaric acids as substrates for growth; the more highly methoxylated acids were used more effectively. PMID:16345651

  5. Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium

    PubMed Central

    Pascual, Javier; Udaondo, Zulema; Molina, Lazaro; Segura, Ana; Esteve-Núñez, Abraham; Caballero, Antonio; Duque, Estrella; Ramos, Juan Luis

    2015-01-01

    We report the draft genome sequence of Pseudomonas putida JLR11, a facultative anaerobic bacterium that has been studied in detail for its capacity to use the explosive 2,4,6-trinitrotoluene (TNT) as a nitrogen source. The sequence confirms the mechanisms used by this versatile strain to reduce and assimilate nitrogen from TNT. PMID:26337875

  6. Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium.

    PubMed

    Pascual, Javier; Udaondo, Zulema; Molina, Lazaro; Segura, Ana; Esteve-Nez, Abraham; Caballero, Antonio; Duque, Estrella; Ramos, Juan Luis; van Dillewijn, Pieter

    2015-01-01

    We report the draft genome sequence of Pseudomonas putida JLR11, a facultative anaerobic bacterium that has been studied in detail for its capacity to use the explosive 2,4,6-trinitrotoluene (TNT) as a nitrogen source. The sequence confirms the mechanisms used by this versatile strain to reduce and assimilate nitrogen from TNT. PMID:26337875

  7. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  8. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    PubMed Central

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    SUMMARY Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM, and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologs, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

  9. Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria.

    PubMed

    Ghojavand, H; Vahabzadeh, F; Mehranian, M; Radmehr, M; Shahraki, Kh A; Zolfagharian, F; Emadi, M A; Roayaei, E

    2008-10-01

    Several facultative bacterial strains tolerant to high temperature and salinity were isolated from the oil reservoir brines of an Iranian oil field (Masjed-I Soleyman). Some of these isolates were able to grow up to 60 degrees C and at high concentration of NaCl (15% w/v). One of the isolates grew at 40 degrees C, while it was able to grow at 15% w/v NaCl. Tolerances to NaCl levels decreased as the growth temperatures were increased. Surfactant production ability was detected in some of these isolates. The use of biosurfactant is considered as an effective mechanism in microbial-enhanced oil recovery processes detected in some of these isolates. The surfactant producers were able to grow at high temperatures and salinities to about 55 degrees C and 10% w/v, respectively. These isolates exhibited morphological and physiological characteristics of the Bacillus genus. The partial sequencing of the 16S ribosomal deoxyribonucleic acid gene of the selected isolates was assigned them to Bacillus subtilis group. The biosurfactant produced by these isolates caused a substantial decrease in the surface tension of the culture media to 26.7 mN/m. By the use of thin-layer chromatography technique, the presence of the three compounds was detected in the tested biosurfactant. Infrared spectroscopy and (1)H nuclear magnetic resonance analysis were used, and the partial structural characterization of the biosurfactant mixture of the three compounds was found to be lipopeptidic in nature. The possibility of use of the selected bacterial strains reported, in the present study, in different sectors of the petroleum industry has been addressed. PMID:18682926

  10. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans?Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen?dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene?degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the key players of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  11. Biosynthesis of polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions.

    PubMed

    Numata, Keiji; Doi, Yoshiharu

    2012-06-01

    Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic-anaerobic marine conditions. The PHA contents of all the samples under the aerobic-anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic-anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 10³ g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic-anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration. PMID:22068389

  12. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds.

    PubMed

    Venkateswaran, K; Dollhopf, M E; Aller, R; Stackebrandt, E; Nealson, K H

    1998-07-01

    A new bacterial species belonging to the genus Shewanella is described on the basis of phenotypic characterization and sequence analysis of its 16S rRNA-encoding and gyrase B (gyrB) genes. This organism, isolated from shallow-water marine sediments derived from the Amazon River delta, is a Gram-negative, motile, polarly flagellated, facultatively anaerobic, rod-shaped eubacterium and has a G&C content of 51.7 mol%. Strain SB2BT is exceptionally active in the anaerobic reduction of iron, manganese and sulfur compounds. SB2BT grows optimally at 35 degrees C, with 1-3% NaCl and over a pH range of 7-8. Analysis of the 16S rDNA sequence revealed a clear affiliation between strain SB2BT and members of the gamma subclass of the class Proteobacteria. High similarity values were found with certain members of the genus Shewanella, especially with Shewanella putrefaciens, and this was supported by cellular fatty acid profiles and phenotypic characterization. DNA-DNA hybridization between strain SB2BT and its phylogenetically closest relatives revealed low similarity values (24.6-42.7%) which indicated species status for strain SB2BT. That SB2BT represents a distinct bacterial species within the genus Shewanella is also supported by gyrB sequence analysis. Considering the source of the isolate, the name Shewanella amazonensis sp. nov. is proposed and strain SB2BT (= ATCC 700329T) is designated as the type strain. PMID:9734053

  13. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds

    NASA Technical Reports Server (NTRS)

    Venkateswaran, K.; Dollhopf, M. E.; Aller, R.; Stackebrandt, E.; Nealson, K. H.

    1998-01-01

    A new bacterial species belonging to the genus Shewanella is described on the basis of phenotypic characterization and sequence analysis of its 16S rRNA-encoding and gyrase B (gyrB) genes. This organism, isolated from shallow-water marine sediments derived from the Amazon River delta, is a Gram-negative, motile, polarly flagellated, facultatively anaerobic, rod-shaped eubacterium and has a G&C content of 51.7 mol%. Strain SB2BT is exceptionally active in the anaerobic reduction of iron, manganese and sulfur compounds. SB2BT grows optimally at 35 degrees C, with 1-3% NaCl and over a pH range of 7-8. Analysis of the 16S rDNA sequence revealed a clear affiliation between strain SB2BT and members of the gamma subclass of the class Proteobacteria. High similarity values were found with certain members of the genus Shewanella, especially with Shewanella putrefaciens, and this was supported by cellular fatty acid profiles and phenotypic characterization. DNA-DNA hybridization between strain SB2BT and its phylogenetically closest relatives revealed low similarity values (24.6-42.7%) which indicated species status for strain SB2BT. That SB2BT represents a distinct bacterial species within the genus Shewanella is also supported by gyrB sequence analysis. Considering the source of the isolate, the name Shewanella amazonensis sp. nov. is proposed and strain SB2BT (= ATCC 700329T) is designated as the type strain.

  14. In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins.

    PubMed

    Miyasaki, K T; Bodeau, A L; Ganz, T; Selsted, M E; Lehrer, R I

    1990-12-01

    Neutrophils play a major role in defending the periodontium against infection by oral, gram-negative, facultative bacteria, such as Actinobacillus actinomycetemcomitans, Eikenella corrodens, and Capnocytophaga spp. We examined the sensitivity of these bacteria to a mixture of low-molecular-weight peptides and highly purified individual defensin peptides (HNP-1, HNP-2, and HNP-3) isolated from human neutrophils. Whereas the Capnocytophaga spp. strains were killed significantly by the mixed human neutrophil peptides, the A. actinomycetemcomitans and E. corrodens strains were resistant. Killing was attributable to the defensins. The bactericidal activities of purified defensins HNP-1 and HNP-2 were equal, and both of these activities were greater than HNP-3 activity against strains of Capnocytophaga sputigena and Capnocytophaga gingivalis. The strain of Capnocytophaga ochracea was more sensitive to defensin-mediated bactericidal activity than either C. sputigena or C. gingivalis was. The three human defensins were equipotent in killing C. ochracea. C. ochracea was killed under aerobic and anaerobic conditions and over a broad pH range. Killing was most effective under hypotonic conditions but also occurred at physiologic salt concentrations. We concluded that Capnocytophaga spp. are sensitive to oxygen-independent killing by human defensins. Additional studies will be required to identify other components that may equip human neutrophils to kill A. actinomycetemcomitans, E. corrodens, and other oral gram-negative bacteria. PMID:2254020

  15. Bacillus haikouensis sp. nov., a facultatively anaerobic halotolerant bacterium isolated from a paddy soil.

    PubMed

    Li, Jibing; Yang, Guiqin; Lu, Qin; Zhao, Yong; Zhou, Shungui

    2014-10-01

    A Gram-stain positive, rod-shaped, endospore-forming and facultatively anaerobic halotolerant bacterium, designated as C-89(T), was isolated from a paddy field soil in Haikou, Hainan Province, People's Republic of China. Optimal growth was observed at 37 C and pH 7.0 in the presence of 4% NaCl (w/v). The predominant menaquinone was identified as MK-7, the major cellular fatty acids were identified as anteiso-C(15:0) and iso-C(15:0), and the major cellular polar lipids were identified as phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unknown phospholipids. The peptidoglycan type was determined to be based on meso-DAP. Based on 16S rRNA gene sequence similarity, the closest phylogenetic relatives were identified as Bacillus vietnamensis JCM 11124(T) (98.8% sequence similarity), Bacillus aquimaris JCM 11545(T) (98.6%) and Bacillus marisflavi JCM 11544(T) (98.5%). The DNA G+C content of strain C-89(T) was determined to be 45.4 mol%. The DNA-DNA relatedness values of strain C-89(T) with its closest relatives were below 18%. Therefore, on the basis of phylogenetic, chemotaxonomic, and phenotypic results, strain C-89(T) can be considered to represent a novel species within the genus Bacillus, for which the name Bacillus haikouensis sp. nov., is proposed. The type strain is C-89(T) (=KCTC 33545(T) = CCTCC AB 2014076(T)). PMID:25100188

  16. Antimicrobial resistance of aerobes and facultative anaerobes isolated from the oral cavity

    PubMed Central

    GAETTI-JARDIM, Ellen Cristina; MARQUETI, Antnio Carlos; FAVERANI, Leonardo Perez; GAETTI-JARDIM JNIOR, Elerson

    2010-01-01

    Objectives This study evaluated the resistance to antimicrobials of aerobes and facultative anaerobes isolated from patients wearing complete dentures, patients with gingivitis and periodontitis, and periodontally health subjects. Material and methods Three hundred and four isolates were tested. The minimal inhibitory concentrations of the drugs were evaluated through the agar dilution method using Mueller-Hinton agar. Results The most active antimicrobial drugs were the carbapenems (meropenem and imipenem), and resistance to these drugs was restrict to 1.6-2.3% of the isolates, as well as ciprofloxacin and rifampin. Microbial resistance to ampicillin, amoxicillin/clavulanic acid, cefoxitin, cephalothin, amikacin, chloramphenicol and nalidixic acid was particularly high. In most cases, the resistance to ?-lactams was mediated by the production of hydrolytic enzymes, especially in gram-negative enteric rods, while enterococci did not evidence production of these enzymes. The association amoxicillin/clavulanic acid was not effective in 28.3% of the tested isolates. Conclusions The results of this investigation confirmed that the oral cavity of patients with periodontitis and gingivitis, and particularly edentulous patients wearing complete dentures, could harbor microorganisms with several antimicrobial resistance markers, and these microorganisms are frequently implicated in multiresistant, systemic, oral or nosocomial infections. PMID:21308284

  17. Differential Susceptibility of Bacteria to Mouse Paneth Cell ?-Defensins under Anaerobic Conditions.

    PubMed

    Mastroianni, Jennifer R; Lu, Wuyuan; Selsted, Michael E; Ouellette, Andr J

    2014-01-01

    Small intestinal Paneth cells secrete ?-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse ?-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. Typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that ?-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension. PMID:25383215

  18. SODIUM AZIDE SELECTIVE MEDIUM FOR THE PRIMARY ISOLATION OF ANAEROBIC BACTERIA

    PubMed Central

    Forget, A.; Fredette, V.

    1962-01-01

    Forget, A. (University of Montreal, Montreal, Canada) and V. Fredette. Sodium azide selective medium for the primary isolation of anaerobic bacteria. J. Bacteriol. 83:12171223. 1962.A selective medium has been devised for the primary isolation of anaerobic bacteria from a mixture of both aerobes and anaerobes. The solid medium contains 0.05% NaN3, and the liquid medium has 0.2% NaN3 in an identical base, namely, Trypticase soy broth. Addition of either 5% blood or 10% normal serum does not alter the selective action of sodium azide. The only defect which the medium exhibits is that it is unable to limit the growth of the facultative streptococci. PMID:13894062

  19. Tolerance of Anaerobic Bacteria to Chlorinated Solvents

    PubMed Central

    Koenig, Joanna C.; Groissmeier, Kathrin D.; Manefield, Mike J.

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation. PMID:24441515

  20. Tolerance of anaerobic bacteria to chlorinated solvents.

    PubMed

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation. PMID:24441515

  1. Isolation of Halotolerant, Thermotolerant, Facultative Polymer-Producing Bacteria and Characterization of the Exopolymer

    PubMed Central

    Pfiffner, S. M.; McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.

    1986-01-01

    Over 200 bacterial strains were selected for anaerobic growth at 50C and extracellular polysaccharide production in a sucrose-mineral salts medium with NaNO3 and up to 10% NaCl. The predominant cell type was an encapsulated gram-positive, motile, facultative sporeforming rod similar to Bacillus species. Strain SP018 grew and produced the polysaccharide on a variety of substrates at salinities up to 12% NaCl. Good polymer production only occurred anaerobically and was optimal between 4 and 10% NaCl. The ethanol-precipitated SP018 polymer was a charged heteropolysaccharide that contained glucose, mannose, arabinose, ribose, and low levels of allose and glucosamine. The SP018 polymer showed pseudoplastic behavior, was resistant to shearing, and had a higher viscosity at dilute concentrations and at elevated temperatures than xanthan gum. High-ionic-strength solutions reversibly decreased the viscosity of SP018 polymer solutions. The bacterium and the associated polymer have many properties that make them potentially useful for in situ microbially enhanced oil recovery processes. PMID:16347080

  2. Toxicity of organic extraction reagents to anaerobic bacteria

    SciTech Connect

    Playne, M.J.; Smith, B.R.

    1983-05-01

    Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), ''Methanobac'' inoculum (10 mL), and test chemicals at levels between 10 and 100 ..mu..L/mL. Thirteen chemicals were nontoxic, and included the paraffins (C/sub 6/-C/sub 12/), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C/sub 5/-C/sub 12/), ketones (C/sub 5/-C/sub 8/), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase. Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation. ''Methanobac'' inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.

  3. Anaerobic utilization of aromatic carboxylates by bacteria

    SciTech Connect

    Gibson, J.; Harwood, C.S.

    1996-03-25

    Very large quantities of compounds containing aromatic nuclei are produced annually from natural and industrial sources. A substantial portion of these materials accumulates in anaerobic environments, and since some of these are known or potential carcinogens, there has been growing interest in understanding how aromatics are degraded in the absence of molecular oxygen, an essential substrate in the aerobic catabolism of benzene rings. The microbiology and biochemistry involved in the degradation of natural products, mostly those derived from lignin, is considered in this chapter, with special emphasis on the role and contribution of studies with phototrophic bacteria to current understanding of these processes.

  4. ANAEROBIC RESISTANCE TO HIGH LEVELS OF CADMIUM AND OTHER TOXIC METALS IN A FACULTATIVE ANAEROBE ISOLATED FROM PRISTINE SALT MARSH SEDIMENTS

    SciTech Connect

    SHARMA,P.K.; VAIRAVAMURTHY,A.; KIELECZAWA,J.

    1999-06-20

    The authors have isolated many Cd (II) resistant bacterial strains from relatively pristine sediments collected from salt marshes in Shelter Island, New York. Detailed studies are being performed on one isolate, strain Cd-1. Strain Cd-1 is metabolically diverse, halotolerant, Gram-negative, facultative anaerobe. It can resist high amounts of Cd (II), Cr (VI), As (V), Se (IV), Co (II), Pb (II), or Zn (II) under defined anaerobic conditions. With pyruvate as the energy source, Cd-1 can grow well at examined Cd (II) concentrations ranging up to 15 mM. It can resist Cd (II) with or without marine level NaCl concentration, under acidic or neutral conditions. It can resist Cd (II) under aerobic conditions as well. These features are novel for a heavy metal resistant bacterium.

  5. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  6. Complete Genome of Ignavibacterium album, a Metabolically Versatile, Flagellated, Facultative Anaerobe from the Phylum Chlorobi

    PubMed Central

    Liu, Zhenfeng; Frigaard, Niels-Ulrik; Vogl, Kajetan; Iino, Takao; Ohkuma, Moriya; Overmann, Jrg; Bryant, Donald A.

    2012-01-01

    Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoautotrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB. PMID:22661972

  7. Joint and bone infections due to anaerobic bacteria in children.

    PubMed

    Brook, Itzhak

    2002-01-01

    The current review describes the microbiology, diagnosis and management of septic arthritis and osteomyelitis due to anaerobic bacteria in children. Staphylococcus aureus, Haemophilus influenzae type-b, and Group A streptococcus, Streptococcus pneumoniae, Kingela kingae, Neisseria meningiditis and Salmonella spp are the predominant aerobic bacteria that cause arthritis in children. Gonococcal arthritis can occur in sexually active adolescents. The predominant aerobes causing osteomyelitis in children are S. aureus, H. influenzae type-b, Gram-negative enteric bacteria, beta-hemolytic streptococci, S. pneumoniae, K. kingae, Bartonella henselae and Borrelia burgdorferi. Anaerobes have rarely been reported as a cause of these infections in children. The main anaerobes in arthritis include anaerobic Gram negative bacilli including Bacteroides fragilis group, Fusobacterium spp., Clostridium spp. and Peptostreptococcus spp. Most of the cases of anaerobic arthritis, in contrast to anaerobic osteomyelitis, involved a single isolate. Most of the cases of anaerobic arthritis are secondary to hematogenous spread. Many patients with osteomyelitis due to anaerobic bacteria have evidence of anaerobic infection elsewhere in the body, which is the source of the organisms involved in osteomyelitis. Treatment of arthritis and osteomyelitis involving anaerobic bacteria includes symptomatic therapy, immobilization in some cases, adequate drainage of purulent material and antibiotic therapy effective to these organisms. PMID:12396847

  8. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Pace, Laura A; Hemp, James; Ward, Lewis M; Fischer, Woodward W

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  9. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae

    PubMed Central

    Pace, Laura A.; Ward, Lewis M.; Fischer, Woodward W.

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  10. [Antimicrobial susceptibility testing of anaerobic bacteria].

    PubMed

    Garca-Snchez, Jos E; Garca-Snchez, Enrique; Garca-Garca, Mara Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  11. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  12. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37C, with a mean inhibition diameter of 37.76mm and an MIC of 1?g/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. PMID:25813393

  13. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  14. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  15. Differential Susceptibility of Bacteria to Mouse Paneth Cell α-Defensins under Anaerobic Conditions

    PubMed Central

    Mastroianni, Jennifer R.; Lu, Wuyuan; Selsted, Michael E.; Ouellette, André J.

    2014-01-01

    Small intestinal Paneth cells secrete α-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse α-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. Typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2–4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that α-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension. PMID:25383215

  16. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1

    USGS Publications Warehouse

    Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

    2002-01-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

  17. Suigetsumonas clinomigrationis gen. et sp. nov., a Novel Facultative Anaerobic Nanoflagellate Isolated from the Meromictic Lake Suigetsu, Japan.

    PubMed

    Okamura, Takahiko; Kondo, Ryuji

    2015-09-01

    A novel facultative anaerobic bacterivorous nanoflagellate was isolated from the water just below the permanent oxic-anoxic interface of the meromictic Lake Suigetsu, Japan. We characterized the isolate using light and transmission electron microscopy and molecular phylogenetic analyses inferred from 18S rDNA sequences. The phylogenetic analyses showed that the isolate belonged to class Placididea (stramenopiles). The isolate showed key ultrastructural features of the Placididea, such as flagellar hairs with two unequal terminal filaments, microtubular root 2 changing in shape from an arced to an acute-angled shape, and a lack of an x-fiber in root 2. However, the isolate had a single helix in the flagellar transition region, which is a double helix in the two known placidid nanoflagellates Placidia cafeteriopsis and Wobblia lunata. Moreover, the isolate had different intracellular features compared with these two genera, such as the arrangement of basal bodies, the components of the flagellar apparatus, the number of mitochondria, and the absence (or presence) of paranuclear bodies. The 18S rDNA sequence was also phylogenetically distant from the clades of the known Placididae W. lunata and P. cafeteriopsis. Consequently, the newly isolated nanoflagellate was described as Suigetsumonas clinomigrationis gen. et sp. nov. PMID:26202992

  18. Carnobacterium Pleistocaenium sp. nov.: A Novel Psychrotolerant, Facultative Anaerobe Isolated from Permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2004-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRIT1(sup T), was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells with sizes 0.6-0.7 x 0.9-1.5 micrometers were observed. Growth occurred within the pH range 6.5-9.5 and optimum at pH 7.3-7.5. The temperature range of the new isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate requires NaCl (growth absent at 0 %) and growth was observed between 0 and 5% NaCl with optimum at 0.5% (w/v). The new isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were: acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The 16S rDNA sequence analysis showed 99.8% similarity of strain FTR1 with Carnobacterium alterfunditum, but the DNA-DNA hybridization between them demonstrated 39 plus or minus 5% homology. On the basis of genotypic and phenotypic characteristics, it is proposed that the strain FTR1(sup T) (= ATCC BAA-754(sup T) = JSM 12174(sup T) is assigned to the new species of the genus Carnobacterium with proposed name Carnobacterium pleistocaenium sp. nov.

  19. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  20. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska.

    PubMed

    Pikuta, Elena V; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov. PMID:15653921

  1. Use of enzyme tests in characterization and identification of aerobic and facultatively anaerobic gram-positive cocci.

    PubMed

    Bascomb, S; Manafi, M

    1998-04-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  2. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  3. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pilkuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  4. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1T)

    PubMed Central

    Huntemann, Marcel; Teshima, Hazuki; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22768362

  5. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1T)

    SciTech Connect

    Huntemann, Marcel; Teshima, Hazuki; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Anaerobic Growth of Purple Nonsulfur Bacteria Under Dark Conditions

    PubMed Central

    Uffen, Robert L.; Wolfe, R. S.

    1970-01-01

    Purple nonsulfur photosynthetic bacteria were cultured anaerobically in the absence of light by a modification of the Hungate technique. Growth was slow and resembled that of fastidious anaerobes; on yeast extract-peptone-agar medium, each cell produced about 16 descendants in 15 to 20 days. Growth was stimulated by addition of ethyl alcohol, acetate and H2, or pyruvate and H2. Cells grown in the presence of pyruvate and H2 produced acetate and CO2; each cell produced approximately 10 descendants in 24 hr under anaerobic, dark conditions. Spectrophotometric evidence obtained from cells which were the product of five generations suggests no difference between the bacteriochlorophyll and carotenoids synthesized by cells grown anaerobically under dark or light conditions. Likewise, the ultrastructure of the photosynthetic apparatus in cells grown anaerobically in the dark and in the light appears similar. Images PMID:5473903

  7. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  8. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5 degrees C, isolated from penguin guano in Chilean Patagonia.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Whitman, William B; Krader, Paul E; Tang, Jane

    2006-09-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagG1(T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 mum were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 degrees C, with optimum growth at 28-30 degrees C. Strain PmagG1(T) did not require NaCl, as growth was observed in the presence of 0-6.5 % NaCl with optimum growth at 0.5 % (w/v). Strain PmagG1(T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and CO(2). Strain PmagG1(T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(T) with Trichococcus collinsii ATCC BAA-296(T), but DNA-DNA hybridization between them demonstrated relatedness values of <45+/-1 %. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16S rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47+/-1.5 %. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(T) (=ATCC BAA-756(T)=JCM 12176(T)=CIP 108035(T)) as the type strain. PMID:16957099

  9. Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria.

    PubMed

    Kulichevskaya, Irina S; Suzina, Natalia E; Rijpstra, W Irene C; Sinninghe Damst, Jaap S; Dedysh, Svetlana N

    2014-08-01

    A facultatively anaerobic, non-pigmented, non-spore-forming bacterium was isolated from a littoral wetland of a boreal lake located on Valaam Island, northern Russia, and designated strain P105(T). Cells of this isolate were Gram-negative, non-motile rods coated by S-layers with p2 lattice symmetry. Sugars were the preferred growth substrates. Under anoxic conditions, strain P105(T) was capable of fermentation and dissimilatory Fe(III) reduction. End products of fermentation were acetate, propionate and H2. Strain P105(T) was a mildly acidophilic, mesophilic organism, capable of growth at pH 4.0-7.2 (optimum pH 5.5-6.0) and at 4-35 C (optimum at 20-28 C). The major fatty acids were iso-C(15?:?0) and C(16?:?1)?7c; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid (isodiabolic acid). The major polar lipids were phosphocholine and phosphoethanolamine; the quinone was MK-8. The G+C content of the DNA was 60.5 mol%. 16S rRNA gene sequence analysis showed that strain P105(T) belongs to subdivision 3 of the Acidobacteria and is only distantly related (90% sequence similarity) to the only currently characterized member of this subdivision, Bryobacter aggregatus. The novel isolate differs from Bryobacter aggregatus in its cell morphology and ability to grow under anoxic conditions and in the presence of iron- and nitrate-reducing capabilities as well as quinone and polar lipid compositions. These differences suggest that strain P105(T) represents a novel genus and species, for which the name Paludibaculum fermentans gen. nov., sp. nov., is proposed. The type strain of Paludibaculum fermentans is P105(T) (?=?DSM 26340(T)?=?VKM B-2878(T)). PMID:24867171

  10. Trichococcus Patagoniensis sp. nov., a Facultative Anaerobe that grows at -5 C, Isolated from Penguin Guano in Chilean Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Krader, Paul E.; Tang, Jane

    2006-01-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagGl(sup T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 micrometers were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 C, with optimum growth at 28-30 C. Strain PmagG1(sup T) did not require NaCl, as growth was observed in the presence of 0-6.5% NaCl with optimum growth at 0.5% (w/v). Strain PmagGl(sup T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and Con. Strain PmagG1(sup T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(sup T) with Trichococcus collinsii ATCC BAA-296(sup T), but DNA-DNA hybridization between them demonstrated relatedness values of less than 45 plus or minus 1%. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16s rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47 plus or minus 1.5%. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(sup T) (=ATCC BAA-756(sup T)=JCM 12176(sup T)=CIP 108035(sup T)) as the type strain.

  11. Susceptibility of anaerobic bacteria to PD 131628.

    PubMed

    Nord, C E; Hagelbck, A

    1992-01-01

    The in vitro activity of PD 131628 against anaerobic cocci, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile, Bacteroides fragilis, Bacteroides spp. and fusobacteria was determined by the agar dilution method. This activity was compared with that of ciprofloxacin, piperacillin, cefoxitin, imipenem, clindamycin, metronidazole and chloramphenicol. PD 131628, imipenem, clindamycin, metronidazole and chloramphenicol were the most active agents tested. PMID:1314176

  12. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  13. Susceptibility of anaerobic bacteria to tosufloxacin.

    PubMed

    Nord, C E; Lindmark, A; Persson, I; Runow, C

    1992-03-01

    The in vitro activity of tosufloxacin against anaerobic cocci, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile, Bacteroides fragilis, Bacteroides spp. and fusobacteria was determined by the agar dilution method. This activity was compared with that of ciprofloxacin, piperacillin, cefoxitin, imipenem, clindamycin, metronidazole and chloramphenicol. Tosufloxacin, imipenem, clindamycin, metronidazole and chloramphenicol were the most active agents tested. Tosufloxacin has an antibacterial activity that warrants investigation in clinical trials. PMID:1597207

  14. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I. (128 Indian La., Oak Ridge, TN 37830)

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  15. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  16. Susceptibility testing of anaerobic bacteria: myth, magic, or method?

    PubMed Central

    Wexler, H M

    1991-01-01

    The demand for susceptibility testing of anaerobes has increased, yet consensus as to procedure and interpretation in this area has not been achieved. While routine testing of anaerobic isolates is not needed, certain isolates in specific clinical settings should be tested. Also, laboratories may monitor their local antibiograms by doing periodic surveillance batch testing. The National Committee for Clinical Laboratory Standards has published a protocol of methods approved for susceptibility testing of anaerobic bacteria. Both agar and broth microdilution are included; however, the broth disk elution method is no longer approved by the National Committee for Clinical Laboratory Standards because of method-related interpretive errors. A number of newer methods are undergoing evaluation and seem promising. Clinicians and microbiologists reviewing susceptibility reports should be aware of sources of variability in the test results. Variables in susceptibility testing of anaerobes include the media and methods used, organisms chosen for testing, breakpoints chosen for interpretation, antibiotic, and determination of endpoint. Clustering of MICs around the breakpoint may lead to significant variability in test results. Adherence of testing laboratories to approved methods and careful descriptions of the method and the breakpoints used for interpretation would facilitate interlaboratory comparisons and allow problems of emerging resistance to be noted. A variety of resistance mechanisms occurs in anaerobic bacteria, including the production of beta-lactamase and other drug-inactivating enzymes, alteration of target proteins, and inability of the drug to penetrate the bacterial wall. Antimicrobial resistance patterns in the United States and abroad are described. PMID:1747863

  17. Identification of clinically important anaerobic bacteria by an oligonucleotide array.

    PubMed

    Lin, Yu Tzu; Vaneechoutte, Mario; Huang, Ay Huey; Teng, Lee Jene; Chen, Hung-Mo; Su, Shu-Li; Chang, Tsung Chain

    2010-04-01

    Anaerobic bacteria can cause a wide variety of infections, and some of these infections can be serious. Conventional identification methods based on biochemical tests are often lengthy and can produce inconclusive results. An oligonucleotide array based on the 16S-23S rRNA intergenic spacer (ITS) sequences was developed to identify 28 species of anaerobic bacteria and Veillonella. The method consisted of PCR amplification of the ITS regions with universal primers, followed by hybridization of the digoxigenin-labeled PCR products to a panel of 35 oligonucleotide probes (17- to 30-mers) immobilized on a nylon membrane. The performance of the array was determined by testing 310 target strains (strains which we aimed to identify), including 122 reference strains and 188 clinical isolates. In addition, 98 nontarget strains were used for specificity testing. The sensitivity and the specificity of the array for the identification of pure cultures were 99.7 and 97.1%, respectively. The array was further assessed for its ability to detect anaerobic bacteria in 49 clinical specimens. Two species (Finegoldia magna and Bacteroides vulgatus) were detected in two specimens by the array, and the results were in accordance with those obtained by culture. The whole procedure of array hybridization took about 8 h, starting with the isolated colonies. The array can be used as an accurate alternative to conventional methods for the identification of clinically important anaerobes. PMID:20129959

  18. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    SciTech Connect

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  19. Adhesion of biodegradative anaerobic bacteria to solid surfaces.

    PubMed

    van Schie, P M; Fletcher, M

    1999-11-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe(3+) on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826

  20. Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces

    PubMed Central

    van Schie, Paula M.; Fletcher, Madilyn

    1999-01-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826

  1. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    PubMed

    Garca-Snchez, Jos Elas; Garca-Snchez, Enrique; Martn-Del-Rey, ngel; Garca-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. PMID:23648369

  2. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    SciTech Connect

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J; Johs, Alexander; Feng, Xinbin; Elias, Dwayne A; Liang, Liyuan; Liang, Liyuan; Gu, Baohua

    2013-01-01

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  3. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  4. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core.

    PubMed

    Shen, Liang; Liu, Yongqin; Gu, Zhengquan; Xu, Baiqing; Wang, Ninglian; Jiao, Nianzhi; Liu, Hongcan; Zhou, Yuguang

    2015-07-01

    Strain B528-3(T), a Gram-stain-negative, rod-shaped, aerobic, facultatively psychrophilic bacterium with polar flagella, was isolated from an ice core drilled from Muztagh Glacier, Xinjiang, China. The novel isolate was classified into the genus Massilia. The 16S rRNA gene sequence of the novel isolate shares a pairwise similarity of less than 97% with those of all the type strains of the genus Massilia. The major fatty acids of strain B528-3(T) were summed feature 3 (C16:1?7c and/or iso-C15:0 2-OH) (57.31%), C16:0 (11.46%) and C18:1?7c (14.72%). The predominant isoprenoid quinone was Q-8. The DNA G + C content was 62.2 mol% (Tm). The major polar lipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. From the genotypic and phenotypic data, it is evident that strain B528-3(T) represents a novel species of the genus Massilia, for which the name Massilia eurypsychrophila sp. nov. is proposed. The type strain is B528-3(T) (?= JCM 30074(T) = CGMCC 1.12828(T)). PMID:25851590

  5. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ?100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ?6 and ?9 positions in various C18 and C20 PUFAs into a trans double bond at the ?7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  6. Superoxide dismutase in anaerobic bacteria of clinical significance.

    PubMed

    Tally, F P; Goldin, B R; Jacobus, N V; Gorbach, S L

    1977-04-01

    Twenty-two anaerobic bacteria isolated from infected sites and normal fecal flora were assayed for superoxide dismutase (SOD). The organisms were also classified according to their oxygen tolerance into aerotolerant, intermediate, and extremely oxygen-sensitive groups. There was a correlation between the enzyme level and the oxygen tolerance, in that the aerotolerant and intermediate organisms had SOD, whereas the extremely oxygen-sensitive isolates had low or undetectable enzyme. Among the oxygen-tolerant organisms, gram-negative bacteria had higher levels of SOD than gram-positive organisms. Oxygen was shown to induce SOD production in a strain of Bacteriodes fragilis grown in minimal medium under continuous-culture conditions. Enzyme levels in this isolate grown under static conditions were lower in minimal medium than in complex medium, indicating that other components in the complex medium were stimulating the production of SOD. Our data suggest that the variation in oxygen tolerance of anaerobes is usually related to their level of SOD. It is postulated that SOD may be a virulence factor that allows pathogenic anaerobes to survive in oxygenated tissues until the proper reduced conditions are established for their growth. PMID:326669

  7. Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India

    PubMed Central

    Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

    2013-01-01

    Background In this study a large random collection (n?=?2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (20072009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (?2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6?-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. Conclusions Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. PMID:23951238

  8. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake. PMID:942211

  9. Isoleucine Biosynthesis from 2-Methylbutyric Acid by Anaerobic Bacteria from the Rumen

    PubMed Central

    Robinson, Isadore M.; Allison, Milton J.

    1969-01-01

    Microorganisms in ruminal ingesta and pure cultures of anaerobic ruminal bacteria of different physiological and morphological groups incorporated 14C from labeled 2-methylbutyrate during growth. The radioactivity was incorporated mainly into lipid and protein. Isoleucine was the only labeled amino acid found in acid hydrolysates of protein from either pure or mixed cultures. Radioactivity in isoleucine synthesized from 2-methylbutyrate-1-14C was entirely in carbon-2. Thus, the carboxylation of 2-methylbutyrate is a pathway for synthesis of isoleucine different from that operative in many aerobic and facultative microorganisms. The specific activity of isoleucine from 2-methylbutyrate by Bacteroides rumminicola 23 increased with higher concentrations of 2-methylbutyrate (2.6 to 44 × 10−5m) in the growth medium. At the highest concentration, the specific activity of isoleucine synthesized was 40% of the specific activity of the 2-methylbutyrate in the growth medium. The use of enzymatic casein hydrolysate, oxytocin, or vasopressin rather than ammonia as nitrogen source for growth of strain 23 depressed the incorporation of 2-methylbutyrate into isoleucine. Synthesis of isoleucine from 2-methylbutyrate appears to be an important reaction in the rumen. PMID:5813342

  10. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections.

  11. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria

    PubMed Central

    Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

  12. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    PubMed Central

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called prokaryotic organelle analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  13. Meningitis and shunt infection caused by anaerobic bacteria in children.

    PubMed

    Brook, Itzhak

    2002-02-01

    This review describes the microbiology and management of meningitis and shunt infections caused by anaerobic bacteria in children. The predominant anaerobes recovered in meningitis are Bacteriodes spp., Bacteriodes fragilis, Fusobacterium spp., and Clostridium spp. Peptostreptococcus, Veillonella, Actinomyces, Propionibacterium acnes, and Eubacterium are less commonly isolated. The predisposing conditions for meningitis are acute or chronic middle-ear infection, sinusitis, pharyngitis, and pulmonary infections. In newborn and preterm infants the predisposing conditions are rupture of membranes, amnionitis, fetal distress, necrotizing enterocolitis, gastric perforation and subsequent ileus followed by bacteremia, aspiration pneumonitis and septicemia, infected ventriculoperitoneal or ventriculoatrial shunt, and complicating dermal sinus tract infections. Shunt infection with Propionibacterium spp. has been reported in children, especially in association with ventriculoauricular and ventriculoperitoneal shunts. Clostridium perfringens has been recovered from infants with a ventriculoperitoneal shunt. Multiple-organism meningitis was reported as a complication of ventriculoperitoneal and lumboperitoneal shunts that perforated the gastrointestinal tract. Early recognition and effective therapy are essential to recovery. Management of meningitis includes the use of antimicrobials effective against anaerobes that penetrate the blood-brain barrier. These include metronidazole, chloramphenicol, the combination of a penicillin and a beta-lactamase inhibitor, and carbapenems. The treatment of shunt infection includes antimicrobial therapy and removal of the shunt. PMID:11897473

  14. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Frard, Cline; Skouri-Panet, Friel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, Franois

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and offer potential signatures of those metabolisms that can be looked for in the geological record.

  15. Co-occurrence of anaerobic bacteria in colorectal carcinomas

    PubMed Central

    2013-01-01

    Background Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. Results We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. Conclusions A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue. PMID:24450771

  16. Genome sequence of Phaeobacter daeponensis type strain (DSM 23529T), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis

    PubMed Central

    Dogs, Marco; Teshima, Hazuki; Petersen, Jrn; Fiebig, Anne; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Ivanova, Natalia; Lapidus, Alla; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Gker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

    2013-01-01

    TF-218T is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218T contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218T possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system. PMID:24501652

  17. Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity.

    PubMed

    Kodama, Yumiko; Watanabe, Kazuya

    2004-11-01

    A facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium, strain YK-1(T), was isolated from an underground crude-oil storage cavity at Kuji in Iwate, Japan. The cells were motile, curved rods and had a single polar flagellum. Optimum growth occurred in a low-strength salt medium at pH 7.0 and 25 degrees C. It utilized sulfide, elemental sulfur, thiosulfate and hydrogen as the electron donors and nitrate as the electron acceptor under anaerobic conditions, but it did not use nitrite. Oxygen also served as the electron acceptor under the microaerobic condition (O(2) in the head space 1 %). It did not grow on sugars, organic acids or hydrocarbons as carbon and energy sources. The DNA G+C content of strain YK-1(T) was 45 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that its closest relative was Thiomicrospira denitrificans in the 'Epsilonproteobacteria', albeit with low homology (90 %). On the basis of physiological and phylogenetic data, strain YK-1(T) should be classified into a novel genus and species, for which the name Sulfuricurvum kujiense gen. nov., sp. nov. is proposed. The type strain is YK-1(T) (=JCM 11577(T)=MBIC 06352(T)=ATCC BAA-921(T)). PMID:15545474

  18. Genome sequence of Phaeobacter daeponensis type strain (DSM 23529(T)), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis.

    PubMed

    Dogs, Marco; Teshima, Hazuki; Petersen, Jrn; Fiebig, Anne; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Goodwin, Lynne A; Chain, Patrick; Detter, John C; Ivanova, Natalia; Lapidus, Alla; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C; Woyke, Tanja; Simon, Meinhard; Gker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

    2013-10-16

    TF-218(T) is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218(T) contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218(T) possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system. PMID:24501652

  19. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  20. Paper Chromatography as an Adjunct in the Identification of Anaerobic Bacteria

    PubMed Central

    Slifkin, M.; Hercher, H. J.

    1974-01-01

    Modified paper chromatography procedures for the analysis of fatty acids produced by anaerobic bacteria are described. Both ethylamine and hydroxylamine derivatives of fatty acids were prepared from inoculated anaerobic culture broth. The derivatives were spotted on chromatography paper and developed with appropriate solvents. Paper chromatography is a valuable alternative to gas liquid chromatography as an ancillary procedure in the identification of anaerobic bacteria in the clinical bacteriology laboratory. PMID:4596386

  1. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria[S

    PubMed Central

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-01-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  2. Characterization and Description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium

    PubMed Central

    Sanford, Robert A.; Cole, James R.; Tiedje, James M.

    2002-01-01

    Five strains were isolated which form a physiologically and phylogenetically coherent group of chlororespiring microorganisms and represent the first taxon in the Myxobacteria capable of anaerobic growth. The strains were enriched and isolated from various soils and sediments based on their ability to grow using acetate as an electron donor and 2-chlorophenol (2-CPh) as an electron acceptor. They are slender gram-negative rods with a bright red pigmentation that exhibit gliding motility and form spore-like structures. These unique chlororespiring myxobacteria also grow with 2,6-dichlorophenol, 2,5-dichlorophenol, 2-bromophenol, nitrate, fumarate, and oxygen as terminal electron acceptors, with optimal growth occurring at low concentrations (<1 mM) of electron acceptor. 2-CPh is reduced by all strains as an electron acceptor in preference to nitrate, which is reduced to ammonium. Acetate, H2, succinate, pyruvate, formate, and lactate were used as electron donors. None of the strains grew by fermentation. The 16S ribosomal DNA (rDNA) sequences of the five strains form a coherent cluster deeply branching within the family Myxococcaceae within the class Myxobacteria and are mostly closely associated with the Myxococcus subgroup. With the exception of anaerobic growth and lack of a characteristic fruiting body, these strains closely resemble previously characterized myxobacteria and therefore should be considered part of the Myxococcus subgroup. The anaerobic growth and 9.0% difference in 16S rDNA sequence from those of other myxobacterial genera are sufficient to place these strains in a new genus and species designated Anaeromyxobacter dehalogenans. The type strain is 2CP-1 (ATCC BAA-258). PMID:11823233

  3. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria

    SciTech Connect

    McInerney, M.J.; Amos, D.A.; Kealy, K.S.; Palmer, J.A.

    1992-12-31

    Anaerobic syntrophic bacteria degrade fatty acids and some aromatic compounds which are important intermediates in the degradation of organic matter to CO{sub 2} and CH{sub 4} in methanogenic environments. Several of the described syntrophic species produce poly-{beta}-hydroxyalkanoate (PHA) suggesting that the synthesis and use of PHA is important in their physiology. In the fatty acid-degrading, syntrophic bacterium, Syntrophomonas wolfei, PHA is made during exponential phase of growth and used after growth has stopped and substrate levels are low. Altering the carbon to nitrogen ratio of the medium does not affect the amount of PHA made or its monomeric composition. It is hypothesized that PHA serves as an endogenous energy source for syntrophic bacteria when the concentrations of hydrogen or acetate are too high for the degradation of the growth substrate to be thermodynamically favorable. In S. wolfei, PHA is synthesized by two routes, the direct incorporation of 3-ketoacyl-coenzyme A (CoA) generated in {beta}-oxidation without cleavage of a C-C bond, and by the condensation and subsequent reduction of two acetyl-CoA molecules. Genes that encode for the synthesis of PHA in S. wolfei have been cloned into Escherichia coli in order to understand the molecular mechanisms that regulate PHA synthesis. 61 refs., 1 fig., 4 tabs.

  4. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    PubMed

    Wunsch, Christopher M; Lewis, Janina P

    2015-01-01

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type. PMID:26709454

  5. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

  6. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    PubMed

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127). PMID:12682713

  7. DESTRUCTION BY ANAEROBIC MESOPHILIC AND THERMOPHILIC DIGESTION OF VIRUSES AND INDICATOR BACTERIA INDIGENOUS TO DOMESTIC SLUDGES

    EPA Science Inventory

    In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...

  8. Start-up and maturation phases of a full-scale, high-rate anaerobic pond bioreactor() plus improved facultative ponds to treat municipal wastewater.

    PubMed

    Pea, M R; Aponte, A; Toro, A F

    2015-01-01

    Results of the start-up and maturation phases of a full-scale, high-rate anaerobic pond bioreactor (HRAPB)() plus improved facultative ponds (IFPs) to treat municipal wastewater are presented (CODt: 759 mg L?, CODf: 219 mg L?, S-SO(4)(2-): 102 mg L?, and Cr?: 1,500 ?gL?). The start-up of the HRAPB() comprised, first, the application of a selective pressure increasing up-flow velocity rates. Second, batch stages between successive rates were allowed until 70% of the initial CODf was removed. The IFPs were left in batch and ended when in-pond Chlorophyll-a concentration reached 800 ?gL?. Subsequently, the system underwent gradual maturation and reached effluent concentrations of CODt: 223 mg L?, CODf: 50 mg L?, and Cr?: 60 ?gL?. The actual efficiency of the system compared with the expected design efficiency was lower given the characteristics of the influent wastewater biochemical oxygen demand/chemical oxygen demand ratios < 0.4, presence of Cr? >1,000 ?gL?, and variations in both conductivity (500-4,500 ?Scm?) and pH (6.5-10.5 units). Nonetheless, the system exhibited an adaptation state in less than 1.5 months and yielded an ST/SV ratio of 0.46, and specific methanogenic activity of 0.43 g-CH4-CODg?SV?d? for HRAPB(); the in-pond Chlorophyll-a was on average 1,200 ?gL? in the IFPs, which demonstrated the robustness of these eco-technologies in tropical conditions. PMID:25746640

  9. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    PubMed

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-01

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. PMID:26542569

  10. Antibacterial susceptibility of plaque bacteria.

    PubMed

    Newman, M G; Hulem, C; Colgate, J; Anselmo, C

    1979-07-01

    Selected anaerobic, capnophilic and facultative bacteria isolated from patients with various forms of periodontal health and disease were tested for their susceptibility to antibiotics and antimicrobial agents. Specific bactericidal and minimum inhibitory concentrations were compared to disc zone diameters, thereby generating new standards for the potential selection of antimicrobial agents. PMID:286720

  11. [Comparison of the detection of anaerobic bacteria in haemoculture systems BACTEC Lytic/10 Anaerobic/F, BacT/Alert FAN Anaerobic and BacT/Alert FN Anaerobic].

    PubMed

    Cermk, Pavel; Frstl, Miroslav

    2005-06-01

    The purpose of this study is to deal with the problem of anaerobic cultivation of clinical specimens and consider the possibility of using semi-automated blood culture instruments. The Bactec Lytic, BacT/Alert FAN Anaerobic and BacT/Alert FN Anaerobic bottles were inoculated with Bacteriodes fragilis, Clostridium perfringens, Peptostreptococcus anaerobius and Feingoldia magna strains. The times to detection (TTD) for positive bottles were evaluated with reference to the number of inoculated bacteria. Inoculation with the same suspension of equal bacterial strain resulted in shorter TTD values for all the Bactec Lytic bottles as compared with the BacT/Alert FAN Anaerobic or BacT/Alert FN Anaerobic bottles, respectively. Statistically significant differences were recorded (p=0,05) by Bacteroides fragilis and Clostridium perfringens species. Feingoldia magna was submitted to culture in the Bactec Lytic alone. The anaerobic blood culture bottles are deemed acceptable for application in the culture of anaerobc isolates drawn from other samples except for blood (namely when prompt delivery of the sample to the laboratory is impossible and the sample can suffer damage), however, only a limited range of microorganisms can be taken into account for the detection purposes. The Bactec Lytic bottles are more appropriately designed for the detection of anaerobic bacterial species compared to the BacT/Alert FAN Anaerobic and BacT/Alert FN Anaerobic bottles. They achieve faster growth parametres and provide more successful readings of anaerobic bacteria culture and detection. PMID:16025428

  12. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    SciTech Connect

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Asano, H.; Arai, K.; Yoshikawa, H.; Ito, M.

    1997-12-31

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both {sup 236}Pu and {sup 239}Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of {sup 239}Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories.

  13. Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations

    USGS Publications Warehouse

    Oremland, R.S.

    1989-01-01

    If the primordial atmosphere was reducing, then the first microbial ecosystem was probably composed of anaerobic bacteria. However, despite the presence of an oxygen-rich atmosphere, anaerobic habitats are important, commonplace components of the Earth's present biosphere. The geochemical activities displayed by these anaerobes impact the global cycling of certain elements (e.g., C, N, S, Fe, Mn, etc.). Methane provides an obvious example of how human-enhanced activities on a global scale can influence the content of a "radiative" (i.e., infrared absorbing) trace gas in the atmosphere. Methane can be oxidized by anaerobic bacteria, but this does not appear to support their growth. Acetylene, however, does support such growth. This may form the basis for future exobiological investigations of the atmospheres of anoxic, hydrocarbon-rich planets like Jupiter and Saturn, as well as the latter's satellite Titan. ?? 1989.

  14. In vitro activity of the new quinolone BAY y 3118 against anaerobic bacteria.

    PubMed

    Nord, C E; Lindmark, A; Persson, I

    1993-08-01

    The in vitro activity of BAY y 3118 against anaerobic cocci, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile, Bacteroides fragilis, other Bacteroides spp. and fusobacteria was determined by an agar dilution method. This activity was compared with that of ciprofloxacin, ofloxacin, piperacillin, cefoxitin, imipenem, clindamycin and metronidazole. BAY y 3118, imipenem, clindamycin and metronidazole were the most active agents tested. The in vitro activity of BAY y 3118 against anaerobic bacteria was superior to that of ciprofloxacin and ofloxacin. PMID:8223667

  15. Degradation of Dehydrodivanillin by Anaerobic Bacteria from Cow Rumen Fluid

    PubMed Central

    Chen, Wei; Ohmiya, Kunio; Shimizu, Shoichi; Kawakami, Hidekuni

    1985-01-01

    Dehydrodivanillin (DDV; 0.15 g/liter) was biodegradable at 37C under strictly anaerobic conditions by microflora from cow rumen fluid to the extent of 25% within 2 days in a yeast extract medium. The anaerobes were acclimated on DDV for 2 weeks, leading to DDV-degrading microflora with rates of degradation eight times higher than those initially. Dehydrodivanillic acid and vanillic acid were detected in an ethylacetate extract of a DDV-enriched culture broth by thin-layer, gas, and high-performance liquid chromatographies and by mass spectrometry. PMID:16346698

  16. New techniques for growing anaerobic bacteria: Experiments with Clostridium butyricum and Clostridium acetobutylicum

    SciTech Connect

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation and oxygen sensitivity of anaerobic bacteria have been made using these new techniques.

  17. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    SciTech Connect

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques.

  18. Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria.

    PubMed Central

    Schennen, U; Braun, K; Knackmuss, H J

    1985-01-01

    Three strains of anaerobically benzoate-degrading, denitrifying bacteria of the genus Pseudomonas were able to grow on 2-fluorobenzoate as the sole carbon and energy source. Fluoride ion release was stoichiometric, and the reduction of dissolved organic carbon indicated total degradation. Cells grown anaerobically with benzoate were adapted for immediate growth with 2-fluorobenzoate, and both compounds were substrates for an inducible benzoyl-coenzyme A synthetase, the initial enzyme of anaerobic degradation. It is proposed that fluoride is eliminated gratuitously by a regioselective reaction in a sequence common to both carbon sources. Benzoate, but not 2-fluorobenzoate, was oxidized by aerobically grown cells. PMID:2857161

  19. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  20. Recovery of anaerobic bacteria from wounds after lawn-mower injuries.

    PubMed

    Brook, Itzhak

    2005-02-01

    Accidental injury while using lawn mowers can cause serious infectious complications in the injured extremity. Anaerobic bacteria were rarely recovered from this infection. Two children who sustained injury in their foot by a lawn mower developed severe wound infection. Culture of the wound from 1 patient had heavy growth of Clostridium bifermentans and Peptostreptococcus magnus, and the culture from the other child grew Clostridium perfringens. Antimicrobial therapy directed at the pathogens and vigorous surgical irrigation and debridement led to complete recovery from the infection. This report illustrates the recovery of anaerobic bacteria from children that had wound infection after lawn-mower injury. PMID:15699821

  1. Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow.

    PubMed

    Scheurer, Marco; He, Stefanie; Lddeke, Frauke; Sacher, Frank; Gde, Hans; Lffler, Herbert; Gallert, Claudia

    2015-01-01

    Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of a retention soil filter (RSF) for the removal of micropollutants as well as facultative pathogenic and antibiotic resistant bacteria from CSO. The removal of organic group parameters like total organic carbon was excellent and the removal efficiency for micropollutants of the RSF and the wastewater treatment plant (WWTP), which treats wastewater of the same origin during dry and normal weather conditions, was comparable. Compounds of high environmental concern like estrogens or certain pharmaceuticals, e.g. diclofenac, were completely eliminated or removed to a high degree during RSF passage. RSF treatment also reduced the number of E. coli, enterococci and staphylococci by 2.7, 2.2 and 2.4 log-units (median values), respectively. Obviously, some Staphylococcus species can better adapt to the conditions of the RSF than others as a shift of the abundance of the different species was observed when comparing the diversity of staphylococci obtained from the RSF influent and effluent. RSF treatment also decreased the absolute number of antibiotic resistant bacteria. The percentage of antibiotic resistant E. coli and staphylococci isolates also decreased during passage of the RSF, whereas the percentage of resistant enterococci did not change. For E. coli ampicillin and for enterococci and staphylococci erythromycin determined the antibiotic resistance level. The results demonstrate that RSFs can be considered as an adequate treatment option for CSO. The performance for the removal of micropollutants is comparable with a medium sized WWTP with conventional activated sludge treatment. The number of facultative pathogenic and antibiotic resistant bacteria was considerably decreased during RSF passage. However, as RSF effluents still contained antibiotic resistance genes and traces of micropollutants; receiving waters may still be at risk from negative environmental impacts. PMID:25479187

  2. Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin.

    PubMed

    Mayorga, Melissa; Rodríguez-Cavallini, Evelyn; López-Ureña, Diana; Barquero-Calvo, Elías; Quesada-Gómez, Carlos

    2015-12-01

    The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment. PMID:26385434

  3. Mastoiditis and Gradenigo’s Syndrome with anaerobic bacteria

    PubMed Central

    2012-01-01

    Background Gradenigo’s syndrome is a rare disease, which is characterized by the triad of the following conditions: suppurative otitis media, pain in the distribution of the first and the second division of trigeminal nerve, and abducens nerve palsy. The full triad may often not be present, but can develop if the condition is not treated correctly. Case presentation We report a case of a 3-year-old girl, who presented with fever and left-sided acute otitis media. She developed acute mastoiditis, which was initially treated by intravenous antibiotics, ventilation tube insertion and cortical mastoidectomy. After 6 days the clinical picture was complicated by development of left-sided abducens palsy. MRI-scanning showed osteomyelitis within the petro-mastoid complex, and a hyper intense signal of the adjacent meninges. Microbiological investigations showed Staphylococcus aureus and Fusobacterium necrophorum. She was treated successfully with intravenous broad-spectrum antibiotic therapy with anaerobic coverage. After 8 weeks of follow-up there was no sign of recurrent infection or abducens palsy. Conclusion Gradenigo’s syndrome is a rare, but life-threatening complication to middle ear infection. It is most commonly caused by aerobic microorganisms, but anaerobic microorganisms may also be found why anaerobic coverage should be considered when determining the antibiotic treatment. PMID:22978305

  4. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    PubMed Central

    Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  5. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.

    PubMed

    Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  6. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    PubMed

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2015-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  7. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  8. Application of chemotaxonomic techniques to the taxonomy of anaerobic bacteria.

    PubMed

    Hardie, J M

    1989-01-01

    The use of chemical characters in bacterial classification and identification has proved to be an essential component of modern systematics. Several clinically important anaerobic genera, such as Bacteroides, Clostridium, Eubacterium, Fusobacterium and Peptostreptococcus, are known to be heterogeneous of the basis of chemotaxonomic and genetic data and are in need of further examination. Recent work on bacteriodes has led to the genus being redefined and restricted to species within the former Bacteroides fragilis group, and a number of new genera have been proposed. It is important that suitable phenotypic characters are identified so that newly-defined genospecies can be differentiated in diagnostic laboratories. PMID:2479974

  9. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.

    PubMed Central

    Kuhn, M; Steinbüchel, A; Schlegel, H G

    1984-01-01

    When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2. PMID:6378884

  10. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.

    PubMed

    Ettwig, Katharina F; Butler, Margaret K; Le Paslier, Denis; Pelletier, Eric; Mangenot, Sophie; Kuypers, Marcel M M; Schreiber, Frank; Dutilh, Bas E; Zedelius, Johannes; de Beer, Dirk; Gloerich, Jolein; Wessels, Hans J C T; van Alen, Theo; Luesken, Francisca; Wu, Ming L; van de Pas-Schoonen, Katinka T; Op den Camp, Huub J M; Janssen-Megens, Eva M; Francoijs, Kees-Jan; Stunnenberg, Henk; Weissenbach, Jean; Jetten, Mike S M; Strous, Marc

    2010-03-25

    Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis. PMID:20336137

  11. Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines.

    PubMed

    Sato, Yoshinori; Nishihara, Hirofumi; Yoshida, Masao; Watanabe, Makiko; Rondal, Jose D; Concepcion, Rogelio N; Ohta, Hiroyuki

    2006-05-01

    Taxonomic studies were performed on ten hydrogen-oxidizing, facultatively chemolithotrophic bacteria that were isolated from volcanic mudflow deposits derived from the eruption of Mt. Pinatubo in the Philippines in 1991. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the genus Cupriavidus of the Betaproteobacteria; sequence similarity values with their nearest phylogenetic neighbour, Cupriavidus basilensis, were 97.1-98.3 %. In addition to phylogenetic analysis, results of whole-cell protein profiles and biochemical tests revealed that these strains were members of two distinct species. DNA-DNA hybridizations and whole-cell protein profiles enabled these isolates to be differentiated from related Cupriavidus species with validly published names. The isolates were aerobic, Gram-negative, non-sporulating, peritrichously flagellated rods. Their G+C contents ranged from 65.2 to 65.9 mol% and their major isoprenoid quinone was ubiquinone Q-8. On the basis of these results, two novel species are proposed, Cupriavidus pinatubonensis sp. nov. [nine strains, with 1245T (=CIP 108725T=PNCM 10346T) as the type strain] and Cupriavidus laharis sp. nov. [one strain, the type strain 1263aT (=CIP 108726T=PNCM 10347T)]. It is also suggested that Ralstonia sp. LMG 1197 (=JMP 134) should be included in the species C. pinatubonensis. PMID:16627640

  12. Inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium gram-negative facultatively anaerobic bacteria.

    PubMed Central

    Barrow, P. A.; Tucker, J. F.; Simpson, J. M.

    1987-01-01

    Oral administration of strains of food poisoning salmonellas to day-old chickens produced a profound inhibition in the subsequent colonization of the caeca by a strain of Salmonella typhimurium given one day later. Closely related genera were unable to produce a similar inhibition. The inhibition was not the result of bacteriophages produced by the first strain. Neither was it the result of an immunological response by the host induced by the first strain. In additional experiments in day-old chickens, inhibition of an Escherichia coli Nalr strain and of a Citrobacter sp. Nalr strain was produced by the antibiotic-sensitive forms of the homologous strains while strains from other genera did not produce any inhibition. When an avirulent mutant of S. typhimurium was used for pre-treatment a statistically significant reduction in the excretion of the super-infecting S. typhimurium Nalr strain over several weeks was produced. A genus specific inhibition was reproduced in vitro by mixed culture experiments. Live cultures were necessary for in vitro inhibition. Killed cells or a culture supernatant produced no inhibition. PMID:2954839

  13. Frequency of Resistance in Obligate Anaerobic Bacteria Isolated from Dogs, Cats, and Horses to Antimicrobial Agents

    PubMed Central

    Taylor, A.; Fajt, V. R.

    2013-01-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ? 16/8 ?g/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ? 2 ?g/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ? 32 ?g/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ? 8 ?g/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ? 32 ?g/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ? 2 ?g/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro. PMID:24025899

  14. Removal Of Heavy Metals From Electroplating Wastewater By Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Ma, Wanggang; Sun, Peide; Song, Yingqi; Zhang, Yi; Yin, Jun

    2010-11-01

    Biosorption of heavy metals from simulated wastewater and the raw electroplating wastewater with "BM (Biosorption of Metals) bacteria" were investigated in this study. The influence of initial pH, biosorbents dose, concentration of ions, contact time and temperature on biosorption capacity of Cr(VI) and Ni(II) were studied. The optimum pH for biosorption of Cr(VI) was found to be low, and the removal efficiency of Cr(VI) was 98.60% with "BM bacteria" at pH 2. The removal efficiency of Ni(II) was increased with increasing the pH, and was enhanced up to 115% compared with the wastewater without BM bacteria. In this experiment, the "BM bacteria" efficiently removed Cu(II), Ni(II), Cr(VI), Zn(II) and COD from the raw electroplating wastewater, and the removal efficiencies were 98.92%, 99.92%, 99.86%, 99.93% and 45.20% respectively.

  15. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria.

    PubMed

    van der Woude, B J; de Boer, M; van der Put, N M; van der Geld, F M; Prins, R A; Gottschal, J C

    1994-06-01

    From light-exposed enrichment cultures containing benzoate and a mixture of chlorobenzoates, a pure culture was obtained able to grow with 3-chlorobenzoate (3-CBA) or 3-bromobenzoate (3-BrBA) as the sole growth substrate anaerobically in the light. The thus isolated organism is a photoheterotroph, designated isolate DCP3. It is preliminarily identified as a Rhodopseudomonas palustris strain. It differs from Rhodopseudomonas palustris WS17, the only other known photoheterotroph capable of using 3-CBA for growth, in its independence of benzoate for growth with 3-CBA and in its wider substrate range: if grown on 3-CBA, it can also use 2-CBA, 4-CBA or 3,5-CBA. PMID:8039661

  16. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  17. Diversity and antibiotic susceptibility pattern of cultivable anaerobic bacteria from soil and sewage samples of India.

    PubMed

    Sengupta, Nabonita; Alam, Syed Imteyaz; Kumar, Ravi Bhushan; Singh, Lokendra

    2011-01-01

    Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health. PMID:20965279

  18. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry.

    PubMed

    Coltella, L; Mancinelli, L; Onori, M; Lucignano, B; Menichella, D; Sorge, R; Raponi, M; Mancini, R; Russo, C

    2013-09-01

    We evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) Biotyper as a tool for the identification of anaerobic bacteria compared with 500 base-pair (bp) 16S ribosomal ribonucleic acid (rRNA) gene sequencing analysis, which is considered to be the "gold standard" method. A total of 484 anaerobic bacteria were retrieved from the clinical specimens of 318 pediatric patients. Molecular identification resulted in 18 genera and 51 species. The most prevalent genus was Clostridium (76.85 %), with 70 % C. difficile isolates. The concordance and sensitivity determined by MALDI-TOF MS for C. difficile, the most prevalent species isolated, was 94.08 %, whereas the specificity was 100 %. For the other anaerobes, the sensitivity and specificity were 94.07 % and 81.82 %, respectively, with a concordance of 93.15 %. Low performance was observed for Propionibacterium acnes and Fusobacterium nucleatum, for which a dedicated pretreatment procedure should likely be set up. MALDI-TOF MS was shown to be a valid alternative for the fast and reliable identification of the most clinically relevant anaerobic bacteria; moreover, it is less time-consuming, the cost for reagents is minimized, and it does not require dedicated personnel. PMID:23584672

  19. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociacin Argentina de Microbiologa].

    PubMed

    Legaria, Mara C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernndez Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociacin Argentina de Microbiologa developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown. PMID:21491069

  20. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    PubMed

    ?ater, Maa; Fanedl, Lijana; Malovrh, pela; Logar, Romana Marinek

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. PMID:25836034

  1. Effective reduction of enteric bacteria and viruses during the anaerobic digestion of biomass and wastes

    SciTech Connect

    Fannin, K.F.; Hsu, P.H.; Mensinger, J.; Cahill, C.

    1984-01-01

    Natural resource depletion increases the amount of waste requiring efficient and affordable disposal alternatives. Through effective management, many of these so-called wastes can be utilized as important energy and agricultural resources. One such management approach involves the utilization of emergent aquatic plant species, such as water hyacinth, to remove nutrients from the wastewater during growth. This process produces an energy-containing biomass that can then be anaerobically digested either separately or with other waste components to produce energy-containing methane and an effluent residue containing significant quantities of protein and nutrients. This residue can be utilized as an effective fertilizer, soil conditioner, or animal feed supplement provided it is rendered reasonably safe from such contaminants as enteric microorganisms. This study was conducted to identify the digester operating parameters that affect the survival of enteric bacteria and viruses during the anaerobic digestion of blends of water hyacinth and primary sewage sludge. Solids retetion time and temperature were demonstrated to be important parameters affecting the survival of poliovirus, f-2 coliphage, Streptoccus fecalis, and Escherichia coli during anaerobic digestion. The die-off rates of the coliphages were similar to those of the poliovirus at 35/sup 0/C. S. fecalis appeared to be the most stable of any of the bacteria and viruses studied. All organisms were more stable at 25 than at 35/sup 0/C. The data demonstrate that the concentration of enteric bacteria and viruses can be effectively reduced during anaerobic digestion using techniques, such as increased solids retention times and mesophilic temperatures, that are consistent with achieving high methane yields. The survival of enteric viruses during anaerobic digestion may be affected by the characteristics of the feedstock as well as by the process operating conditions.

  2. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site.

    PubMed

    Sun, Weimin; Li, Yun; McGuinness, Lora R; Luo, Shuai; Huang, Weilin; Kerkhof, Lee J; Mack, E Erin; Hggblom, Max M; Fennell, Donna E

    2015-09-15

    Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions. PMID:26280684

  3. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  4. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. PMID:25301712

  5. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden.

    PubMed

    Szewzyk, U; Szewzyk, R; Stenstrm, T A

    1994-03-01

    A borehole drilled to a total depth of 6779 m in granitic rock in Gravberg, Sweden, was sampled and examined for the presence of anaerobic, thermophilic, fermenting bacteria and sulfate-reducing bacteria. Growth in enrichment cultures was obtained only from water samples collected from a specific sampling depth in the borehole (3500 m). The hole was cased down to a depth of 5278 m and open to the formation below that level. All the water below 2000 m in depth standing in the borehole at the time of sampling must have entered at the 5278-m level or below, during a prior pumping operation. A strong salinity stratification certifies that no major amount of vertical mixing had taken place. The depth from which bacteria could be enriched was that of a pronounced local minimum of salinity. Pure cultures of thermophilic, anaerobic, fermenting bacteria were obtained with the following substrates: glucose, starch, xylan, ethanol, and lactate. The morphology and physiology of the glucose- and starch-degrading strains indicate a relationship to Thermoanaerobacter and Thermoanaerobium species. All but one of the newly isolated strains differ however from those by lacking acetate as a fermentation product. The glucose-degrading strain Gluc1 is phylogenetically related to Clostridium thermohydrosulfuricum, with an evolutionary distance based upon rRNA sequence comparisons of 3%. No sulfate-reducing or methanogenic bacteria were found. PMID:11607462

  6. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    PubMed

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  7. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    SciTech Connect

    Brook, I.; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

  8. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zrate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  9. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems.

    PubMed

    Zhu, Guibing; Zhou, Leiliu; Wang, Yu; Wang, Shanyun; Guo, Jianhua; Long, Xi-En; Sun, Xingbin; Jiang, Bo; Hou, Qiaoyun; Jetten, Mike S M; Yin, Chengqing

    2015-02-01

    The discovery of denitrifying anaerobic methane oxidation with nitrite as electron acceptor mediated by 'Candidatus?Methylomirabilis oxyfera' connected the biogeochemical carbon and nitrogen cycle in a new way. However, it is important to have a comprehensive understanding about the distribution of M.?oxyfera-like bacteria in the terrestrial realm, especially the wetland ecosystems that are known as the largest natural source of atmospheric methane. Here, our molecular evidence demonstrated that a wide geographical distribution of M.?oxyfera-like bacteria at oxic/anoxic interfaces of various wetlands (n?=?91) over the Chinese territory. Intriguingly, the M.?oxyfera-like bacteria were detected in some extreme environments, indicating that M.?oxyfera-like bacteria occupied a wide range of habitats. Quantitative polymerase chain reaction estimated that the abundance of M.?oxyfera-like bacteria ranged from 2.2??10(3) to 2.3??10(7) copies?g(-1) dry soil, and up to around 0.62% of the total number of bacteria. Moreover, the M.?oxyfera-like bacteria showed high biodiversity in wetland ecosystems based on the analysis of 462 pmoA and 287 16S rRNA gene sequences. The current study revealed the widespread distribution and biogeography of M.?oxyfera-like bacteria in the terrestrial system. PMID:25223900

  10. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure.

    PubMed

    Arank, A; Syed, S A; Kenney, E B; Freter, R

    1969-04-01

    An anaerobic glove box constructed of clear flexible vinyl plastic is described. It is sufficiently inexpensive and simple in operation to be used not only in research but also in a clinical laboratory by technicians without special training. Conventional bacteriological techniques may be used inside the glove box for culturing and transferring anaerobic bacteria. The box may be heated to 37 C and thus serve as an anaerobic incubator as well, permitting inspection of cultures at any time. Media may be prepared and agar plates may be poured on the laboratory bench in the conventional manner. An overlay of trace amounts of palladium black catalyst over plated agar media reduces the medium to an oxidation-reduction (O-R) potential of - 300 mv within 2 days after introduction into the glove box. In spite of its greater simplicity, the system matched or excelled the roll tube method with respect to all parameters tested, including O-R potential obtainable in the media, O(2) concentration in the gas phase, and efficiency in isolating anaerobic bacteria from the mouse cecum. Comparative studies indicate that the conventional anaerobic jar method was inadequate for the isolation of strict anaerobes from human gingival specimens and from the mouse cecum. This was due to the exposure of specimens and media to air during plating on the open laboratory bench. Anaerobic jars were adequate for maintaining the proper conditions for growth of anaerobic bacteria once these had been established in the glove box. PMID:4890748

  11. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrsio, Srgio Ricardo; Sola Veneziani, Rodrigo Cssio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 ?g/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 ?g/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 ?g/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 ?g/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. PMID:25270831

  12. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment.

    PubMed

    Kampman, Christel; Hendrickx, Tim L G; Luesken, Francisca A; van Alen, Theo A; Op den Camp, Huub J M; Jetten, Mike S M; Zeeman, Grietje; Buisman, Cees J N; Temmink, Hardy

    2012-08-15

    Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO(2)(-)-N/Ld (using synthetic medium) and 37.8 mg NO(2)(-)-N/Ld (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention. PMID:22657102

  13. Ecophysiological adaptations of anaerobic bacteria to low pH. [Sarcina ventriculi; Lactobacillus helveticus

    SciTech Connect

    Goodwin, S.D.

    1986-01-01

    The ecological and physiological adaptations of anaerobic bacteria to low pH were investigated in field and laboratory studies. Determinations of hydrogen kinetic parameters demonstrated that overall hydrogen metabolism was inhibited in acid ecosystems. In particular, hydrogen metabolism became progressively uncoupled at low pH. This uncoupling resulted in a slowing of carbon flow during anaerobic digestion and the accumulation of intermediary metabolites. The addition of carbon electron donors to acid bog sediments resulted in the accumulation of hydrogen and a slowing of the overall rates of anaerobic digestion. As an adaptation to low pH, anaerobic bacterial populations shifted from production of acid intermediary metabolites (e.g. acetate and lactate) to the production of neutral intermediary metabolites (e.g. ethanol). This shift was observed both in situ and in pure cultures of hydrolytic strains isolated from bog sediments. Detailed physiological studies of Sarcina ventriculi showed an adaptation to growth at low pH by mechanisms which allowed the continued production of ethanol from glucose and the maintenance of a proton motive force at low cytoplasmic pH values. Further physiological studies Lactobacillus helveticus showed that the accumulation of acidic end-product (lactic acid) strongly influenced cellular electrochemical parameters. Based on the results of computer simulations and laboratory studies of the physiology of the organism in the presence of organic acids, a new model for the passive coupling of energy conservation to the efflux of lactic acid in an electroneutral process is proposed.

  14. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  15. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  16. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    PubMed

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 C) and mesophilic (35 C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. PMID:23643091

  17. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.

    PubMed

    Dou, Junfeng; Liu, Xiang; Ding, Aizhong

    2009-06-15

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis. PMID:19013017

  18. Anaerobic biodegradation of polychlorinated biphenyls by bacteria from Hudson River sediments.

    PubMed

    Chen, M; Hong, C S; Bush, B; Rhee, G Y

    1988-10-01

    Anaerobic biodegradation of monochlorobiphenyls; a tetrachlorobiphenyl; Aroclor 1221, a polychlorinated biphenyl (PCB) mixture; and sediment PCBs was investigated by using mixed bacterial populations from Hudson River sediments obtained by PCB enrichment. When the bacteria were incubated with Aroclor 1221, the disappearance of congeners was in general inversely related to GC retention time and thus indirectly to the octanol/water partition coefficient. When incubated with 14C-labeled monochlorobiphenyls, 14CO2 was detected, but methane was not. Radioactivity was also found in the cell material and the aqueous fraction. 2,4,2',4'-Tetrachlorobiphenyl produced little evidence of biodegradation or reductive dechlorination. Inoculation of anaerobic sediments from the Hudson River with the mixed population produced a marked decrease in sediment PCBs, whereas uninoculated sediments were observed to have little change. This decrease was also related to the partition coefficient. PMID:3148459

  19. Broad Distribution of Diverse Anaerobic Ammonium-Oxidizing Bacteria in Chinese Agricultural Soils

    PubMed Central

    Shen, Li-dong; Liu, Shuai; Lou, Li-ping; Liu, Wei-ping; Xu, Xiang-yang; Zheng, Ping

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus, and Candidatus Jettenia in the collected soils, with Candidatus Brocadia being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 104 0.42 104 to 3.69 106 0.25 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils. PMID:23747706

  20. Anaerobic Roll Tube Media for Nonselective Enumeration and Isolation of Bacteria in Human Feces

    PubMed Central

    Eller, Charles; Crabill, Melvin R.; Bryant, Marvin P.

    1971-01-01

    Medium 10 (M10), developed for rumen bacteria and containing small amounts of sugars, starch, volatile fatty acids, hemin, Trypticase, yeast extract, cysteine, and sulfide, plus agar, minerals and CO2-HCO3-buffer, was used with the Hungate anaerobic method as a basal medium to evaluate the efficacy of various ingredients. Three-day-old colony counts from adults on normal diets (17 samples) were 0.55 1011 to 1.7 1011 per g (mean, 1.15 1011) for M10. Single deletion of volatile fatty acids, Trypticase, yeast extract, or sulfide did not reduce counts. Deletion of hemin or both Trypticase and yeast extract significantly lowered counts. Addition of fecal extract, rumen fluid, 1% dehydrated Brain Heart Infusion (BHI) or 2 to 6% liver infusion did not increase counts; 1% dehydrated bile or 3.7% BHI markedly depressed them. Decreasing the gas-phase CO2 concentration from 100 to 5% with N2 and correspondingly lowering the HCO3 had little effect. Counts in supplemented Brewer Thioglycollate (Difco), BHI, and Trypticase soy agar were similar or lower than in M10; ease in counting was best in M10. Comparison of features of 88 predominant strains of fecal bacteria randomly isolated indicated that M10 supported growth of as many or more species of bacteria as compared to supplemented BHI. The results suggest that predominant bacteria of human feces, in general, are not as nutritionally fastidious as rumen bacteria and indicate that media for counts or isolation containing large amounts of rich organic materials are neither necessary nor desirable when adequate anaerobic techniques are used. PMID:4943269

  1. Intestinal microflora in rats: isolation and characterization of strictly anaerobic bacteria requiring long-chain fatty acids.

    PubMed Central

    Morotomi, M; Kawai, Y; Mutai, M

    1976-01-01

    Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats. PMID:1267446

  2. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Huang, Qian; He, Zhan-fei; Lian, Xu; Liu, Shuai; He, Yun-feng; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; Hu, Bao-lan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1??10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2?g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils. PMID:25242345

  3. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted. PMID:23530761

  4. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    PubMed

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. PMID:23899025

  5. Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile

    NASA Astrophysics Data System (ADS)

    Galn, Alexander; Molina, Vernica; Thamdrup, Bo; Woebken, Dagmar; Lavik, Gaute; Kuypers, Marcel M. M.; Ulloa, Osvaldo

    2009-07-01

    Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N 2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus "Scalindua spp." dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml -1) and activity (up to 5.75 nmol N 2 L -1 d -1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.

  6. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    PubMed

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  7. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria.

    PubMed

    He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 0.1, 1.4 0.1, and 1.0 0.1 ?mol CH4?h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 0.4 10(8), 6.1 0.1 10(9), and 1.0 0.2 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process. PMID:25186148

  8. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    PubMed

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9mgNL(-1)day(-1), which was higher than previously reported values (5.1-37.8mgNL(-1) d(-1)). PMID:24880628

  9. Comparative in vitro activity of Ro 40-6890, Ro 41-3399, and other antimicrobial agents against anaerobic bacteria.

    PubMed

    Wst, J; Hardegger, U

    1992-10-01

    The in vitro activity of the ester Ro 41-3399 and its free active acid Ro 40-6890 was tested against 189 strains of anaerobic bacteria in comparison to other oral cephalosporins and to antimicrobial agents established in the treatment of anaerobic infections. Prevotella, Porphyromonas, Peptostreptococcus, Fusobacterium and Clostridium spp. were susceptible to Ro 40-6890, with few exceptions. Due to its lack of activity against the major pathogens of the Bacteriodes fragilis group, Ro 40-6890 does not promise to be of major use in the treatment of infections caused by anaerobes. PMID:1486894

  10. Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system.

    PubMed

    Russ, Lina; Speth, Daan R; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran

    2014-11-01

    Fixed nitrogen is released by anaerobic ammonium oxidation (anammox) and/or denitrification from (marine) ecosystems. Nitrite, the terminal electron acceptor of the anammox process, occurs in nature at very low concentrations and is produced via (micro)aerobic oxidation of ammonium or nitrate reduction. The coupling of sulfide-dependent denitrification to anammox is particularly interesting because besides hydrogen, sulfide is the most important reductant at the chemocline of anoxic marine basins and is abundant within sediments. Although at ?M concentrations, sulfide may be toxic and inhibiting anammox activity, a denitrifying microorganism could convert sulfide and nitrate at sufficiently high rates to allow anammox bacteria to stay active despite an influx of sulfide. To test this hypothesis, a laboratory scale model system containing a co-culture of anammox bacteria and the autotrophic denitrifier Sulfurimonas denitrificans?DSM1251 was started. Complementary techniques revealed that the gammaproteobacterial Sedimenticola sp. took over the intended role of Su.?denitrificans. A stable coculture of anammox bacteria and Sedimenticola sp. consumed sulfide, nitrate, ammonium and CO2 . Anammox bacteria contributed 65-75% to the nitrogen loss from the reactor. The cooperation between anammox and sulfide-dependent denitrification may play a significant role in environments where sulfur cycling is active and where actual sulfide concentrations stay below ?M range. PMID:24750895

  11. Anaerobic Ammonia-Oxidizing Bacteria and Related Activity in Baltimore Inner Harbor Sediment†

    PubMed Central

    Tal, Yossi; Watts, Joy E. M.; Schreier, Harold J.

    2005-01-01

    The discovery of bacteria capable of anaerobic ammonia oxidation (anammox) has generated interest in understanding the activity, diversity, and distribution of these bacteria in the environment. In this study anammox activity in sediment samples obtained from the Inner Harbor of Baltimore, Md., was detected by 15N tracer assays. Anammox-specific oligonucleotide primer sets were used to screen a Planctomycetales-specific 16S rRNA gene library generated from sediment DNA preparations, and four new anammox bacterial sequences were identified. Three of these sequences form a cohesive new branch of the anammox group, and the fourth sequence branches separately from this group. Denaturing gradient gel electrophoresis analysis of sediment incubated with anammox-specific media confirmed the presence of the four anammox-related 16S rRNA gene sequences. Evidence for the presence of anammox bacteria in Inner Harbor sediment was also obtained by using an anammox-specific probe in fluorescence in situ hybridization studies. To our knowledge, this is the first report of anammox activity and related bacterial 16S rRNA gene sequences from the Chesapeake Bay basin area, and the results suggest that this pathway plays an important role in the nitrogen cycle of this estuarine environment. Furthermore, the presence of these bacteria and their activity in sediment strengthen the contention that anammox-related Plactomycetales are globally distributed. PMID:15812006

  12. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract

    SciTech Connect

    Rafii, F.; Franklin, W.; Heflich, R.H.; Cerniglia, C.E. )

    1991-04-01

    Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities.

  13. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria

    PubMed Central

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  14. Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen.

    PubMed

    Yan, Jia; Op den Camp, Huub J M; Jetten, Mike S M; Hu, Yong Y; Haaijer, Suzanne C M

    2010-11-01

    In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions. PMID:20956064

  15. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB. PMID:26151852

  16. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    PubMed

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  17. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  18. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs.

    PubMed

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong; Gu, Ji-Dong

    2010-11-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31-39.2 mg l(-1)) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 10(3) to 2.0 ± 0.18 × 10(6) cells ml(-1) and 6.6 ± 0.51 × 10(2) to 4.9 ± 0.36 × 10(4) cell ml(-1), respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus "Scalindua sinooilfield" was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

  19. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs

    PubMed Central

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong

    2010-01-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.3139.2mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55C and 75C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4??0.5??103 to 2.0??0.18??106 cells ml?1 and 6.6??0.51??102 to 4.9??0.36??104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus Scalindua sinooilfield was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

  20. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzn, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Mua Reservoir in Bogot. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  1. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  2. Monitoring the dynamics of syntrophic ?-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Mart, Magal; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic ?-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic ?-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic ?-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic ?-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid ?-oxidization potential of anaerobic digester communities. PMID:25873606

  3. MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques.

    PubMed

    Hsu, Yen-Michael S; Burnham, Carey-Ann D

    2014-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a tool for identifying clinically relevant anaerobes. We evaluated the analytical performance characteristics of the Bruker Microflex with Biotyper 3.0 software system for identification of anaerobes and examined the impact of direct formic acid (FA) treatment and other pre-analytical factors on MALDI-TOF MS performance. A collection of 101 anaerobic bacteria were evaluated, including Clostridium spp., Propionibacterium spp., Fusobacterium spp., Bacteroides spp., and other anaerobic bacterial of clinical relevance. The results of our study indicate that an on-target extraction with 100% FA improves the rate of accurate identification without introducing misidentification (P<0.05). In addition, we modify the reporting cutoffs for the Biotyper "score" yielding acceptable identification. We found that a score of ?1.700 can maximize the rate of identification. Of interest, MALDI-TOF MS can correctly identify anaerobes grown in suboptimal conditions, such as on selective culture media and following oxygen exposure. In conclusion, we report on a number of simple and cost-effective pre- and post-analytical modifications could enhance MALDI-TOF MS identification for anaerobic bacteria. PMID:24666700

  4. The role of anaerobic bacteria in the neutralization of acid mine drainage. [Desulfovibrio

    SciTech Connect

    Bell, P.E.

    1988-01-01

    In contrast to the acidic water column, the sediments underlying Lake Anna, which receives acid mine drainage, are circumneutral and contain 1-4 meq alkalinity/L. Indirect fluorescent antibody counts of a methanogen (strain CA) and a sulfate reducer (Desulfovibrio strain SM) demonstrated that these organisms were present in the sediments at numbers of approximately 10{sup 6} bacteria/mL sediment. Anaerobic heterotrophs in the sediments underlying the acidified arm of the lake outnumbered anaerobic heterotrophs in a non-acidified arm of the lake. A major storm event resulted in the deposition of 11 cm of oxidized, acidic new sediment material over the older circumneutral sediments. The Eh in the new sediments decreased by 200 mV within one week after the storm event. The pH and alkalinity increased even in the 1-cm layer by two weeks after the storm and products of sulfate reduction (acid volatile sulfide) increased at three weeks after the storm. This suggests that biological processes other than sulfate reduction were responsible for the initial buffering of these sediments. Laboratory experiments using the sulfate reducer and two anaerobes (also isolated from the sediments) suggested that alkalinity production during sulfate reduction decreases with decreasing carbon concentration. Generation of alkalinity was found not to be a simple function of sulfate reduction or of iron reduction. The generation of alkalinity was found to be a function of the carbon source, and concentration, organisms present, and mineral phase formed. Iron reduction rates in the sediments of Contrary Creek ranged from 4.9-27.8 mM/m{sup 2}-sediment-day. Alkalinity was produced in the floc layer in the absence of sulfate reduction. Iron reduction could be responsible for the mineralization of 15-90% of the carbon input to this system.

  5. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    PubMed Central

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, Franois M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  6. Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria

    PubMed Central

    Loffler, F. E.; Champine, J. E.; Ritalahti, K. M.; Sprague, S. J.; Tiedje, J. M.

    1997-01-01

    The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria. PMID:16535654

  7. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    SciTech Connect

    Schasfer, Jeffra; Rocks, Sara; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, Francois M

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments.

  8. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae.

    PubMed

    Hallberg, Kevin B; Hedrich, Sabrina; Johnson, D Barrie

    2011-03-01

    A comprehensive physiological and phylogenetic characterisation was carried out of "Thiobacillus ferrooxidans" m-1, an acidophilic iron-oxidizing bacterium first described over 25 years ago. Phylogenetically, strain m-1 is a gammaproteobacterium, most closely related to alkaliphilic Ectothiorhodospira spp. and only distantly to iron-oxidizing acidithiobacilli. Physiological examination confirmed that strain m-1 can grow autotrophically not only by ferrous iron oxidation but also, in contrast to previous reports, by oxidation of elemental sulfur, sulfide and tetrathionate, using either oxygen or ferric iron as terminal electron acceptor. The bacterium was also found to be thermo-tolerant, growing optimally at 38C and up to a maximum of 47C. Growth in liquid media required an external osmotic potential of >2 bar, and was optimal at ~5 bar, though no growth occurred where the medium osmotic potential was close to that of sea water (~26 bar). From this, it was concluded that strain m-1 is a moderate osmophile. Strain m-1 was also shown to be diazotrophic and tolerant of elevated concentrations of many metals typically found in mine-impacted environments. On the basis of these data, m-1 is proposed as the type strain of a new genus and species of bacteria, Acidiferrobacter thiooxydans (DSM 2392, JCM 17358). PMID:21311931

  9. In silico analysis of 16S ribosomal RNA gene sequencing?based methods for identification of medically important anaerobic bacteria

    PubMed Central

    Woo, Patrick C Y; Chung, Liliane M W; Teng, Jade L L; Tse, Herman; Pang, Sherby S Y; Lau, Veronica Y T; Wong, Vanessa W K; Kam, Kwok?ling; Lau, Susanna K P; Yuen, Kwok?Yung

    2007-01-01

    This study is the first study that provides useful guidelines to clinical microbiologists and technicians on the usefulness of full 16S rRNA sequencing, 5??end 527?bp 16S rRNA sequencing and the existing MicroSeq full and 500 16S rDNA bacterial identification system (MicroSeq, Perkin?Elmer Applied Biosystems Division, Foster City, California, USA) databases for the identification of all existing medically important anaerobic bacteria. Full and 527?bp 16S rRNA sequencing are able to identify 5263% of 130 Gram?positive anaerobic rods, 7273% of 86 Gram?negative anaerobic rods and 78% of 23 anaerobic cocci. The existing MicroSeq databases are able to identify only 1925% of 130 Gram?positive anaerobic rods, 38% of 86 Gram?negative anaerobic rods and 39% of 23 anaerobic cocci. These represent only 4546% of those that should be confidently identified by full and 527?bp 16S rRNA sequencing. To improve the usefulness of MicroSeq, bacterial species that should be confidently identified by full and/or 527?bp 16S rRNA sequencing but not included in the existing MicroSeq databases should be included. PMID:17046845

  10. 16S rRNA Gene Sequencing in Routine Identification of Anaerobic Bacteria Isolated from Blood Cultures?

    PubMed Central

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa; Holt, Hanne Marie; Sgaard, Per; Justesen, Tage

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times for identification were 1.5 days and 2.8 days, respectively. PMID:20071555

  11. Evaluating Primers for Profiling Anaerobic Ammonia Oxidizing Bacteria within Freshwater Environments

    PubMed Central

    Sonthiphand, Puntipar; Neufeld, Josh D.

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r was the most suitable primer set for multiple molecular assessments of anammox bacteria in freshwater environments. PMID:23505422

  12. Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Xu, Xiang-hua; Chen, Tie-xi; Liu, Shuai; Cheng, Hai-xiang

    2015-07-01

    The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2?g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8??10(5) to 3.0??10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields. PMID:25690313

  13. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-Dong; Wu, Hong-Sheng; Gao, Zhi-Qiu; Cheng, Hai-Xiang; Li, Ji; Liu, Xu; Ren, Qian-Qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20 % soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  14. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE PAGESBeta

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  15. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    SciTech Connect

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. In comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.

  16. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  17. Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor

    PubMed Central

    Oshiki, Mamoru; Awata, Takanori; Kindaichi, Tomonori; Satoh, Hisashi; Okabe, Satoshi

    2013-01-01

    Enrichment cultures of anaerobic ammonium oxidation (anammox) bacteria as planktonic cell suspensions are essential for studying their ecophysiology and biochemistry, while their cultivation is still laborious. The present study aimed to cultivate two phylogenetically distinct anammox bacteria, “Candidatus Brocadia sinica” and “Ca. Scalindua sp.” in the form of planktonic cells using membrane bioreactors (MBRs). The MBRs were continuously operated for more than 250 d with nitrogen loading rates of 0.48–1.02 and 0.004–0.09 kgN m−3 d−1 for “Ca. Brocadia sinica” and “Ca. Scalindua sp.”, respectively. Planktonic anammox bacterial cells were successfully enriched (>90%) in the MBRs, which was confirmed by fluorescence in-situ hybridization and 16S rRNA gene sequencing analysis. The decay rate and half-saturation constant for NO2− of “Ca. Brocadia sinica” were determined to be 0.0029–0.0081 d−1 and 0.47 mgN L−1, respectively, using enriched planktonic cells. The present study demonstrated that MBR enables the culture of planktonic anammox bacterial cells, which are suitable for studying their ecophysiology and biochemistry. PMID:24200833

  18. Detection of bacteria from a cecal anaerobic competitive exclusion culture with an immunoassay electrochemiluminescence sensor

    NASA Astrophysics Data System (ADS)

    Beier, Ross C.; Young, Colin R.; Stanker, Larry H.

    1999-01-01

    A competitive exclusion (CE) culture of chicken cecal anaerobes has been developed and used in this laboratory for control of Salmonella typhimurium in chickens. The CE culture consists of 29 different species of micro-organisms, and is known as CF3. Detection of one of the CF3 bacteria, Eubacteria, and S. typhimurium were demonstrated using a commercial immunomagnetic (IM) electrochemiluminescence (ECL) sensor, the ORIGENR Analyzer. Analysis was achieved using a sandwich immunoassay. Bacteria were captured on antibody- conjugated 280 micron sized magnetic beads followed by binding of reporter antibodies labelled with ruthenium (II) tris(dipyridyl) chelate [Ru(bpy)32+]. The magnetic beads were then trapped on an electrode in the reaction cell of the ORIGENR Analyzer by a magnet, and the ECL was evoked from Ru(bpy)32+ on the tagged reporter antibodies by an electrical potential at the electrode. Preliminary IM-ECL assays with Eubacteria yielded a detection limit of 105 cfu/mL. Preliminary IM-ECL assays with S. typhimurium yielded a similar detection limit of 105 cfu/mL.

  19. Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a recently discovered process that is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). This process constitutes a unique association between the two major global elements essential to life, carbon and nitrogen, and may act as an important and overlooked sink of the greenhouse gas methane. In recent years, more and more studies have reported the distribution of M. oxyfera-like bacteria and the occurrence of N-DAMO process in different natural ecosystems, including freshwater lakes, rivers, wetlands and marine ecosystems. Previous studies have estimated that a total of 2%-6% of current worldwide methane flux in wetlands could be consumed via the N-DAMO process. These findings indicate that N-DAMO is indeed a previously overlooked methane sink in natural ecosystems. Given the worldwide increase in anthropogenic nitrogen pollution, the N-DAMO process as a methane sink in reducing global warming could become more important in the future. The present mini-review summarises the current knowledge of the ecological distribution of M. oxyfera-like bacteria and the potential importance of the N-DAMO process in reducing methane emissions in various natural ecosystems. The potential influence of environmental factors on the N-DAMO process is also discussed. PMID:25398284

  20. Rapid presumptive identification of anaerobes in blood cultures by gas-liquid chromatography.

    PubMed

    Sondag, J E; Ali, M; Murray, P R

    1980-03-01

    Production of volatile and nonvolatile metabolic acids in blood culture broths by aerobic, facultative anaerobic, and obligate anaerobic bacteria was analyzed by gas-liquid chromatography. Anaerobic blood culture isolates were presumptively identified by the qualitative analysis of volatile fatty acids. Isolates, with a characteristic Gram stain reaction and cellular morphology, were identified by the following acid patterns: Bacteriodes fragilis group with acetic and propionic acids; Fusobacterium with acetic, butyric, and usually propionic acids; Veillonella with acetic and propionic acids; gram-positive cocci with acetic and butyric acids; and Clostridium with acetic and butyric acids. PMID:7381002

  1. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  2. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  3. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of Candidatus Brocadia sinica anaerobically oxidized Fe2+ and reduced NO3? to nitrogen gas at rates of 3.7 0.2 and 1.3 0.1 (mean standard deviation [SD]) nmol mg protein?1 min?1, respectively (37C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of Ca. Brocadia sinica (10 to 75 nmol NH4+ mg protein?1 min?1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3? by Ca. Brocadia sinica. The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3? SD of Ca. Brocadia sinica was determined to be 51 21 ?M. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, Candidatus Scalindua sp., whose rates of Fe2+ oxidation and NO3? reduction were 4.7 0.59 and 1.45 0.05 nmol mg protein?1 min?1, respectively (20C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2? to consumed NH4+ (?NO2?/?NH4+) and produced NO3? to consumed NH4+ (?NO3?/?NH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  4. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    NASA Astrophysics Data System (ADS)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    Carbonate biomineralization is considered as one of the main natural processes controlling CO2 levels in the atmosphere both in the past and at present time. Haloalcaliphilic Rhodovulum sp. A-20s isolated from soda lake in southern Siberia and halophilic neutrophilic Rhodovulum sp. S-1765 isolated from hypersaline water body in Crimea steppe represent a large group of phototrophic bacteria likely to be involved in CaCO3 formation in soda and saline lakes. These bacteria use organic substrates for non-oxygenic photosynthesis and thus may mediate CaCO3 precipitation without CO2 consumption in highly-saline, highly-alkaline, NaHCO3-rich solutions. In order to provide the link between surface properties of bacteria and their ability to precipitate Ca carbonate, we used a combination of electrophoretic mobility measurements, surface titration and Ca ion adsorption using dead (autoclaved), inactivated (NaN3 - treated) and live cells at 25 °C as a unction of pH (3-11) and NaCl concentrations (0.01, 0.1, 0.5 M). Zeta potential of both bacteria is identical for active, NaN3-inactivated and dead cells at high ionic strength (0.5 M NaCl). The pH of isoelectric point is below 3 and zeta-potential decreases or remain negative up to pH 11. However, at lower ionic strength (0.1 M and 0.01 M NaCl) for live cells the potential increases towards positive values in the alkaline solutions (pH of 9 to 10). Similar to previous results on cyanobacteria (Martinez et al., 2009) there is a net increase in zeta-potential towards more positive values at pH = 10.4 for active cells. In order to better understand this phenomenon, experiments with different concentration of Ca2+ and HCO3- ions as well as experiments with live cultures in the darkness have been carried out. The presence in solution of Ca2+ (0.01 and 0.001 M) and the absence of light in experiment do not change significantly the potential of the cells. However, the presence in solution of HCO3- strongly reduces the zeta-potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  5. Aerobic and anaerobic bacteriology of intracranial abscesses.

    PubMed

    Brook, I

    1992-01-01

    The bacteriologic and clinical findings of 39 pediatric patients with intracranial abscess are presented. Twenty-three children presented with brain abscess and 16 with subdural empyema. Predisposing conditions were present in all instances. Sinusitis was present in 25 children and 4 patients each had chronic otitis media, dental abscess, and congenital heart disease. The abscess was located in the frontal area in 14 patients, parietal in 13, and temporal in 12. Anaerobic organisms alone were recovered in 22 patients (56%), aerobic bacteria alone in 7 (18%), and mixed aerobic and anaerobic bacteria in 10 (26%) patients. There were 79 anaerobic isolates (2 per specimen). The predominant anaerobes were anaerobic Gram-positive cocci (29 isolates); Bacteroides sp. (12, including 5 Bacteroides fragilis group), Fusobacterium sp. (14 isolates); and Prevotella sp. and Actinomyces sp. (6 isolates each). A total of 17 aerobic or facultative isolates (0.4 per specimen), including 11 Gram-positive cocci and 6 Haemophilus sp., were recovered. Antimicrobial therapy was administered to all patients. Nine patients (i.e., 6 with sinusitis and subdural empyema, 3 with sinusitis and brain abscess) did not respond to antimicrobial therapy and aspiration of the abscess, and required surgical drainage of inflamed sinuses. These findings indicate the major role of anaerobic organisms in the polymicrobial etiology of intracranial abscess in children. PMID:1622518

  6. Comparative in vitro activity of the new oral cephalosporin Bay v 3522 against aerobic and anaerobic bacteria.

    PubMed

    Rylander, M; Nord, C E; Norrby, S R

    1990-10-01

    The in vitro activity of the new oral cephalosporin Bay v 3522 against 229 aerobic and 330 anaerobic clinical isolates was determined using the agar dilution technique. For comparison, amoxicillin, amoxicillin/clavulanate, cefaclor, cefadroxil, cefuroxime, cephalexin, ciprofloxacin, clindamycin, co-trimoxazole, doxycycline, erythromycin and metronidazole (only anaerobic bacteria) were tested. Bay v 3522 was found to have high activity against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Branhamella catarrhalis, Haemophilus influenzae, anaerobic cocci, Propionibacterium acnes, Clostridium perfringens and fusobacteria. When tested against a higher inoculum or using the broth dilution technique, the activity of Bay v 3522 showed little dependence on inoculum size and the bactericidal activity was similar to inhibitory activity in most bacterial groups. Bay v 3522 may be useful in the treatment of skin, soft tissue and respiratory tract infections. Clinical studies are thus warranted. PMID:2261923

  7. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    SciTech Connect

    Payne, Rayford B.; Ringbauer, Joseph A., Jr.; Wall, Judy D.

    2006-04-05

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  8. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS

    PubMed Central

    Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Mns; zenci, Volkan

    2015-01-01

    Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMrieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS. PMID:26554930

  9. Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp

    SciTech Connect

    Dwyer, D.F.; Tiedje, J.M.

    1986-10-01

    Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol (PEG 20000; HO-(CH/sub 2/-CH/sub 2/-O-)/sub n/H). Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol (HO-(CH/sub 2/-CH/sub 2/-CH/sub 2/-O-)/sub n/H) was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PGI could not dehydrogenate long polymers of PEG (less than or equal to1000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymerase substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.

  10. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System

    PubMed Central

    Tal, Yossi; Watts, Joy E. M.; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  11. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    PubMed

    Resende, Juliana Alves; Silva, Vnia Lcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cludio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. PMID:24374028

  12. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring.

    PubMed

    el Fantroussi, S; Mahillon, J; Naveau, H; Agathos, S N

    1997-02-01

    Desulfomonile tiedjei and Desulfitobacterium dehalogenans were chosen as model bacteria to demonstrate the introduction of an anaerobic microbia reductive dechlorination activity into nonsterile soil slurry microcosms by inoculation. De novo 3-chlorobenzoate dechlorination activity was established with the bacterium D. tiedjei in microcosms normally devoid of this dechlorination capacity. The addition of D. tiedjei to microcosms supplemented with 20 mM pyruvate as the cosubstrate resulted in total biotransformation of 1.5 mM 3-chlorobenzoate within 7 days. The introduction of the bacterium Desulfitobacterium dehalogenans into nonsterile microcosms resulted in a shortening of the period required for dechlorination activity to be established. In microcosms inoculated with Desulfitobacterium dehalogenans, total degradation of 6 mM 3-chloro-4-hydroxy phenoxyacetic acid (3-Cl-4-OHPA) was observed after 4 days in contrast to the result in noninoculated microcosms, where the total degradation of 3-Cl-4-OHPA by indigenous microorganisms was observed after 11 days. Both externally introduced bacterial strains were detected in soil slurry microcosms by a nested-PCR methodology. PMID:9023963

  13. Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties.

    PubMed

    Shen, Li-Dong; He, Zhan-Fei; Wu, Hong-Sheng; Gao, Zhi-Qiu

    2015-04-01

    Microbial mediated nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples the oxidation of methane to nitrite reduction, is a recently discovered process. The discovery of N-DAMO process makes great contributions to complete the biogeochemical cycles of carbon and nitrogen, and to develop novel economic biotechnology for simultaneous carbon and nitrogen removal. This process is catalysed by the unique bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, a phylum having no members in pure culture. In recent years, some microbiological properties of M. oxyfera have been unravelled. The most prominent examples are the discoveries of the special ultrastructure (star-like) of the cell shape and the unique chemical composition (10MeC16:1?7) of M. oxyfera that have not been found in other bacteria yet. More importantly, a new intra-aerobic pathway was discovered in M. oxyfera. It seems that M. oxyfera produces oxygen intracellularly by the conversion of two nitric oxide molecules to dinitrogen gas and oxygen, and the produced oxygen is then used for methane oxidation and normal respiration. The current paper is a systematic review in the microbiological properties of M. oxyfera, especially for its special properties. PMID:25519694

  14. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring.

    PubMed Central

    el Fantroussi, S; Mahillon, J; Naveau, H; Agathos, S N

    1997-01-01

    Desulfomonile tiedjei and Desulfitobacterium dehalogenans were chosen as model bacteria to demonstrate the introduction of an anaerobic microbia reductive dechlorination activity into nonsterile soil slurry microcosms by inoculation. De novo 3-chlorobenzoate dechlorination activity was established with the bacterium D. tiedjei in microcosms normally devoid of this dechlorination capacity. The addition of D. tiedjei to microcosms supplemented with 20 mM pyruvate as the cosubstrate resulted in total biotransformation of 1.5 mM 3-chlorobenzoate within 7 days. The introduction of the bacterium Desulfitobacterium dehalogenans into nonsterile microcosms resulted in a shortening of the period required for dechlorination activity to be established. In microcosms inoculated with Desulfitobacterium dehalogenans, total degradation of 6 mM 3-chloro-4-hydroxy phenoxyacetic acid (3-Cl-4-OHPA) was observed after 4 days in contrast to the result in noninoculated microcosms, where the total degradation of 3-Cl-4-OHPA by indigenous microorganisms was observed after 11 days. Both externally introduced bacterial strains were detected in soil slurry microcosms by a nested-PCR methodology. PMID:9023963

  15. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria.

    PubMed

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E; Reading, Nicola C; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H; Kasper, Dennis L

    2015-09-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but understanding of host-commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis after acute peritonitis and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. We were able to assess the distribution and colonization of labeled B. fragilis along the intestine, as well as niche competition after coadministration of multiple species of the microbiota. We also fluorescently labeled nine additional commensals (eight anaerobic and one microaerophilic) from three phyla common in the gut--Bacteroidetes, Firmicutes and Proteobacteria--as well as one aerobic pathogen (Staphylococcus aureus). This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and can be used to study microbial colonization and host-microbe interactions in real time. PMID:26280120

  16. High prevalence and resistance rates to antibiotics in anaerobic bacteria in specimens from patients with chronic balanitis.

    PubMed

    Boyanova, Lyudmila; Mitev, Angel; Gergova, Galina; Mateev, Grisha; Mitov, Ivan

    2012-08-01

    Aim of the study was to assess both prevalence and antibiotic resistance in anaerobic bacteria from glans penis skin of 70 adults. Strain susceptibility was determined by breakpoint susceptibility test or E test. In 9 asymptomatic, 48 untreated and 13 treated symptomatic patients, anaerobes were found in 22.2%, 70.8% and 53.3%, respectively. Gram-positive strains (GPAs) were 2.2-fold more common than Gram-negative ones. Prevalent Gram-negative (GNAs) and GPAs were Prevotella spp. and anaerobic cocci, respectively. Clostridium difficile strain was found in an untreated patient. In GNAs, resistance rates to amoxicillin, metronidazole, clindamycin, tetracycline, levofloxacin, and amoxicillin/clavulanate were 42.1, 0, 52.6, 53.3, 86.7 and 5.2%, respectively. In GPAs, the resistance rates to metronidazole, clindamycin, tetracycline, levofloxacin and amoxicillin/clavulanate were 18.2, 34.1, 52.6, 36.8 and 0%, respectively. In conclusion, anaerobes were 1.6-fold more frequent in untreated symptomatic patients compared with other patients, suggesting their participation in development of chronic balanitis. GPAs were more common than GNAs. The resistance rates to amoxicillin, clindamycin, tetracycline, and levofloxacin were high. Most active agents were metronidazole and amoxicillin/clavulanate. Resistance in anaerobes varies according to sites of specimens and years of study. PMID:22710106

  17. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  18. Modeling ammonia removal in aerated facultative lagoons.

    PubMed

    Houweling, C D; Kharoune, L; Escalas, A; Comeau, Y

    2005-01-01

    A mechanistic model has been developed to model ammonia removal in aerated facultative lagoons. Flow is modeled through the water column by a continuously stirred tank reactor and exchanges between the sludge layer and the water column are simulated by a solids separator. The biological model is based on an activated sludge model with reactions added for anaerobic bacterial growth and degradation of inert organic material. Results show that the model is able to predict seasonal variation in ammonia removal as well as sludge accumulation in the lagoons. PMID:16114676

  19. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments.

    PubMed Central

    Goodwin, S; Zeikus, J G

    1987-01-01

    The dynamics of anaerobic digestion were examined in the low-pH sediments of Crystal Bog in Wisconsin. The sediments (pH 4.9) contained 71% organic matter and the following concentrations of dissolved gases (micromoles per liter): CO2, 1,140; CH4, 490; and H2, 0.01. The rate of methane production was 6.2 mumol/liter of sediment per h, which is slower than eutrophic, neutral sediments. Microbial metabolic processes displayed the following pH optima: hydrolysis reactions, between 4.2 and 5.6; aceticlastic methanogenesis, 5.2; and hydrogen-consuming reactions, 5.6. The turnover rate constants for key intermediary metabolites were (h-1): glucose, 1.10; lactate, 0.277; acetate, 0.118; and ethanol, 0.089. The populations of anaerobes were low, with hydrolytic groups (10(6)/ml) several orders of magnitude higher than methanogens (10(2)/ml). The addition of carbon electron donors to the sediment resulted in the accumulation of hydrogen, whereas the addition of hydrogen resulted in the accumulation of fatty acids and the inhibition of hydrogen-producing acetogenic reactions. Strains of Lactobacillus, Clostridium, and Sarcina ventriculi were isolated from the bog, and their physiological attributes were characterized in relation to hydrolytic process functions in the sediments. The present studies provide evidence that the pH present in the bog sediments alter anaerobic digestion processes so that total biocatalytic activity is lower but the general carbon and electron flow pathways are similar to those of neutral anoxic sediments. PMID:3103534

  20. Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

    PubMed Central

    Fernández, Helga; Prandoni, Nicolás; Fernández-Pascual, Mercedes; Fajardo, Susana; Morcillo, César; Díaz, Eduardo; Carmona, Manuel

    2014-01-01

    Background Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. Methodology/Principal Findings Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. Conclusions/Significance This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology. PMID:25340341

  1. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the PROTEOBACTERIA: Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the PROTEOBACTERIA: The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse. PMID:11976120

  2. High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile.

    PubMed

    Zhou, Leiliu; Wang, Yu; Long, Xi-En; Guo, Jianhua; Zhu, Guibing

    2014-11-01

    The discovery of nitrite-dependent anaerobic methane oxidation (n-damo) mediated by 'Candidatus Methylomirabilis oxyfera' with nitrite and methane as substrates has connected biogeochemical carbon and nitrogen cycles in a new way. The paddy fields often carry substantial methane and nitrate, thus may be a favorable habitat for n-damo bacteria. In this paper, the vertical-temporal molecular fingerprints of M. oxyfera-like bacteria, including abundance and community composition, were investigated in a paddy soil core in Jiangyin, near the Yangtze River. Through qPCR investigation, high abundance of M. oxyfera-like bacteria up to 1.0 10(8) copies (g d.w.s.)(-1) in summer and 8.5 10(7) copies (g d.w.s.)(-1) in winter was observed in the ecotone of soil and groundwater in the paddy soil core, which was the highest in natural environments to our knowledge. In the ecotone, the ratio of M. oxyfera-like bacteria to total bacteria reached peak values of 2.80% in summer and 4.41% in winter. Phylogenetic analysis showed n-damo bacteria in the paddy soil were closely related to M. oxyfera and had high diversity in the soil/groundwater ecotone. All of the results indicated the soil/groundwater ecotone of the Jiangyin paddy field was a favorable environment for the growth of n-damo bacteria. PMID:25109910

  3. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite ( [Formula: see text] ). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic [Formula: see text] . Intracellular consumption or electrochemically driven (transmembrane proton motive force) [Formula: see text] export are considered the main mechanisms of [Formula: see text] detoxification. In this work, we evaluated the potential of exogenous nitrate ( [Formula: see text] ) on relieving [Formula: see text] toxicity, putatively facilitated by NarK, a [Formula: see text] / [Formula: see text] transporter encoded in the anammox genome. The relative contribution of [Formula: see text] to [Formula: see text] detoxification was found to be pH dependent. Exposure of anammox cells to [Formula: see text] in absence of their electron donating substrate, ammonium ( [Formula: see text] ), causes [Formula: see text] stress. At pH 6.7 and 7.0, the activity of [Formula: see text] stressed cells was respectively 0 and 27% of the non-stressed control activity ( [Formula: see text] and [Formula: see text] fed simultaneously). Exogenous [Formula: see text] addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of [Formula: see text] stressed cells improved with increasing [Formula: see text] concentration, the maximum recovery being achieved at 0.85 mM. The [Formula: see text] pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe [Formula: see text] toxicity at lower pH. Additionally, [Formula: see text] caused almost complete attenuation of [Formula: see text] toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the [Formula: see text] attenuation is independent of the proton motive force. The absence of a measurable [Formula: see text] consumption (or [Formula: see text] dependent N2 production) during the batch tests leaves [Formula: see text] dependent active transport of [Formula: see text] as the only plausible explanation for the relief of [Formula: see text] inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous [Formula: see text] to alleviate [Formula: see text] toxicity. PMID:26610295

  4. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  5. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    PubMed Central

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  6. Invitro efficacy of cefovecin against anaerobic bacteria isolated from subgingival plaque of dogs and cats with periodontal disease.

    PubMed

    Khazandi, Manouchehr; Bird, Philip S; Owens, Jane; Wilson, Gary; Meyer, James N; Trott, Darren J

    2014-08-01

    Periodontal disease is a common disease of dogs and cats often requiring antimicrobial treatment as an adjunct to mechanical debridement. However, correct compliance with oral antimicrobial therapy in companion animals is often difficult. Cefovecin is a recently introduced veterinary cephalosporin that has demonstrated prolonged concentrations in extracellular fluid, allowing for dosing intervals of up to 14 days. Subgingival samples were collected from the oral cavity of 29 dogs and eight cats exhibiting grade 2 or grade 3 periodontal disease. Samples were cultivated on Wilkin Chalgrens agar and incubated in an anaerobic chamber for seven days. Selected anaerobic bacteria were isolated and identified to species level using 16S rRNA gene sequence analysis. Minimum inhibitory concentrations were determined for cefovecin and six additional antimicrobials using the agar dilution methodology recommended by the Clinical and Laboratory Standards Institute. The 65 clinical isolates were identified as Porphyromonas gulae (n=45), Porphyromonas crevioricanis (n=12), Porphyromonas macacae (n=1), Porphyromonas cangingivalis (n=1) Fusobacterium nucleatum (n=2), Fusobacterium russii (n=1) and Solobacterium moorei (n=3). This is the first report of S.moorei being isolated from companion animals with periodontal disease. All isolates were highly susceptible to cefovecin, with a MIC90 of ?0.125?g/ml. Conversely, different resistance rates to ampicillin, amoxicillin and erythromycin between isolates were detected. Cefovecin is thus shown to be effective invitro against anaerobic bacteria isolated from dogs and cats with periodontal disease. PMID:24930431

  7. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments.

    PubMed

    Penton, C Ryan; Devol, Allan H; Tiedje, James M

    2006-10-01

    Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of approximately 700-bp 16S rRNA gene sequences with >96% homology to the "Candidatus Scalindua" group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to "Ca. Scalindua," "Candidatus Brocadia," and "Candidatus Kuenenia." This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments. PMID:17021238

  8. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  9. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  10. Establishment of facultative sexuals

    NASA Astrophysics Data System (ADS)

    Paley, Chris J.; Taraskin, Sergei N.; Elliott, Stephen R.

    2007-06-01

    The existence of sex is one of the major unsolved problems in biology. We use computer simulations to model conditions in which sex may first become established. We develop an individual-based population model and show that a hypothetical facultative sex gene can fix, provided that the initial cost is low. It is demonstrated that the equilibrium fitness in the population increases with increasing population size and decreasing mutation rate. The probability of the establishment of the sex gene is found not to be directly related to the fitness difference between the asexual and sexual populations. This change in fitness on changing the parameters of the model is investigated.

  11. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria

    SciTech Connect

    Pancost, R.D.; Damste, J.S.S.; Lint, S. De; Maarel, M.J.E.C. van der; Gottschal, J.C.

    2000-03-01

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under aerobic conditions, and compound-specific carbon isotope analyses indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in {sup 13}C ({delta}{sup 13}C values are as low as {minus}95%). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of {sup 13}C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, their results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings in the predominant microbiological process.

  12. Isolation and Characterization of Anaerobic Bacteria for Symbiotic Recycling of Uric Acid Nitrogen in the Gut of Various Termites

    PubMed Central

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  13. [Identification and susceptibility to antimicrobial agents of strictly anaerobic bacteria isolated from hospitalized patients].

    PubMed

    Kot, Katarzyna; Rokosz, Alicja; Sawicka-Grzelak, Anna; ?uczak, Miros?aw

    2002-01-01

    The aim of this study was to identify anaerobic strains isolated in 2001 from clinical specimens obtained from patients of Warsaw hospital and to evaluate a susceptibility of these strains to antimicrobial agents. In 2001 two hundred and twenty five clinical strains of obligate anaerobes were cultured, which were identified in the automatic ATB system (bioMrieux, France) using biochemical tests API 20 A. Drug-susceptibility of strains was determined also in ATB system with the use of ATB ANA strips. C. difficile strains were isolated on selective CCCA medium. Toxins A/B of C. difficile directly in stool specimens were detected by means of ELISA test (TechLab, USA). Fifty four strains of Gram-negative anaerobes (B. fragilis strains dominated) and 171 strains of Gram-positive anaerobes (the greatest number of strains belonged to genus Peptostreptococcus) were cultured from clinical specimens. In the cases of antibiotic-associated diarrhea 28 C. difficile strains were isolated and C. difficile toxins A/B were detected in 39 stool samples. The most active in vitro antimicrobials against Gram-negative anaerobes were metronidazole, imipenem, ticarcillin combined with clavulanic acid and piperacillin with tazobactam. Gram-positive, clinical strains of anaerobes were the most susceptible in vitro to beta-lactam antibiotics combined with beta-lactamase inhibitors (amoxicillin/clavulanate, piperacillin/tazobactam, ticarcillin/clavulanate) and imipenem. PMID:12632658

  14. Bacteria isolated from the duodenum, ileum, and cecum of young chicks.

    PubMed Central

    Salanitro, J P; Blake, I G; Muirehead, P A; Maglio, M; Goodman, J R

    1978-01-01

    Facultatively anaerobic and strictly anaerobic bacteria colonizing the intestinal tracts of 14-day-old chicks fed a corn-based diet were enumerated, isolated, and identified. Colony counts from anaerobic roll tubes (rumen fluid medium) or aerobic plates (brain heart infusion agar) recovered from homogenates of the duodenum, upper and lower ileum, and cecum varied appreciably among samples from individual birds. Anaerobic and aerobic counts from the duodenum and ileum were similar. Anaerobic counts were highest from the cecum (0.7 X 10(11) to 1.6 X 10(11)/g of dry tissue) and exceeded aerobic plate counts by a factor of at least 10(2). Facultatively anaerobic groups (Streptococcus, Staphylococcus, Lactobacillus, and Escherichia coli) comprised the predominant flora of the duodenum and ileum, although large numbers of anaerobes (9 to 39% of the small intestine isolates), represented by species of Eubacterium, Propionibacterium, Clostridium, Gemmiger, and Fusobacterium, were also recovered. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium, Clostridium Gemmiger, Fusobacterium, and Bacteriodes) made up nearly the entire microbial population of the cecum. Scanning electron microscopy of the intestinal epithelia of chicks revealed populations of microbes on the duodenal, ileal, and cecal mucosal surfaces. Images PMID:646359

  15. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  16. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    PubMed

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected by soil salinity and nutrient levels. Sequence analysis detected one Bacteroidetes and eight Proteobacteria species. Most 16S rRNA gene sequences had high similarities with the bacteria isolated from saline conditions, indicating that at least a portion of the RB species observed in T. ramosissima was halotolerant. PMID:26582289

  17. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    SciTech Connect

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  18. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    PubMed Central

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobeoxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air min?1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 ml?1 in the planktonic phase and >107 cm?2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ? 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments. PMID:9746571

  19. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir.

    PubMed

    Wang, Yu; Huang, Pei; Ye, Fei; Jiang, Yi; Song, Liyan; Op den Camp, Huub J M; Zhu, Guibing; Wu, Shengjun

    2016-02-01

    The nitrite-dependent anaerobic methane oxidation (n-damo) mediated by "Candidatus Methylomirabilis oxyfera" connects the biogeochemical carbon and nitrogen cycles in a novel way. Many environments have been reported to harbor such organism being slow-growing and oxygen-sensitive anaerobes. Here, we focused on the population of n-damo bacteria in a fluctuating habitat being the wetland in the water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China. A molecular approach demonstrated positive amplifications when targeting the functional pmoA gene only in the lower sites which endured longer flooding time in an elevation gradient. Only 1 operational taxonomic unit (OTU) in the lower elevation zone targeting the 16S ribosomal RNA (rRNA) gene was clustering into the NC-10 group a, which is presumed to be the true n-damo group. Moreover, a relatively low level of diversity was observed in this study. The abundances were as low as 4.7 × 10(2) to 1.5 × 10(3) copies g(-1) dry soil (ds) in the initial stage, which were almost the lowest reported. However, an increase was observed (3.2 × 10(3) to 5.3 × 10(4) copies g(-1) ds) after nearly 6 months of flooding. Intriguingly, the abundance of n-damo bacteria correlated positively with the accumulated flooding time (AFT). The current study revealed that n-damo bacteria can be detected in a fluctuating environment and the sites with longer flooding time seem to be preferred habitats. The water flooding may be the principal factor in this ecosystem by creating anoxic condition. The wide range of such habitats suggests a high potential of n-damo bacteria to play a key role in natural CH4 consumption. PMID:26515563

  20. Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments

    PubMed Central

    Straub, Kristina L.; Buchholz-Cleven, Berit E. E.

    1998-01-01

    Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 105 to 5 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population. PMID:9835573

  1. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria.

    PubMed

    Harms, G; Zengler, K; Rabus, R; Aeckersberg, F; Minz, D; Rossell-Mora, R; Widdel, F

    1999-03-01

    Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the delta subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide. PMID:10049854

  2. Anaerobic Oxidation of o-Xylene, m-Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria

    PubMed Central

    Harms, Gerda; Zengler, Karsten; Rabus, Ralf; Aeckersberg, Frank; Minz, Dror; Rossell-Mora, Ramon; Widdel, Friedrich

    1999-01-01

    Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the ? subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide. PMID:10049854

  3. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR amplification of 16S rRNA (Ettwig et al. 2009) and pmoA (Luesken et al. 2011) genes followed by construction of clone libraries. Phylogenetic analysis revealed only one n-damo bacterium distantly related to uncultured anaerobic methanotrophs found in situ. It may represent a new cluster of NC10 bacteria with an identity of less than 96 and 86% to the 16S rRNA and pmoA genes of "Ca. Methylomirabilis oxyfera," respectively. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained from this sample in a static anaerobic culture with methane and nitrite at an in situ pH of 6.3. The bacterial abundance in enrichment was estimated using quantitative PCR and FISH (DBACT-0193-a-A probe) analysis and was found to increase up to 10 times for 120 days. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and their potential contribution to nitrogen and methane cycles in northern peatland ecosystems. We think that AOM may be more active in anthropogenic disturbed peatlands with greater supply of elements that could potentially serve as electron acceptors. In spite of generally low concentration, seasonal increases in nitrate content in drained peatlands may work as an important control of CH4 fluxes. The study was partially supported by RFBR research project # 12-05-01029_a.

  4. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.

    PubMed Central

    Akin, D E

    1980-01-01

    Different morphological types of rumen bacteria which degraded cell walls of forage grasses with various in vitro digestibilities were evaluated with electron microscopy. The majority of these bacteria (i.e., about 70% or more) consisted of two distinct types: (i) encapsulated cocci and (ii) irregularly shaped bacteria, resembling major fiber digesters found in the rumen. Each type was capable of degrading structurally intact cell walls. Differences (P less than or equal to 0.02) in the percent ratio of encapsulated cocci to irregularly shaped bacteria were observed between Bermuda grass and fescue; the ratio of encapsulated cocci to irregularly shaped bacteria between Bermuda grass and orchard grass was similar and variations were high. The proportion of irregularly shaped bacteria usually increased with increased time of digestion. Differences (P greater than 0.1) were not found in the percentage ratio of encapsulated cocci to irregularly shaped bacteria attached to specific tissue types in either Bermuda grass or fescue. However, encapsulated cocci tended to be more prevalent on sclerenchyma than other tissues in Bermuda grass, but less prevalent on sclerenchyma than other tissues in fescue. Transmission electron microscopy of tissue digestion of rapidly degraded orchard grass blades revealed that mesophyll, parenchyma bundle sheath, and parts of the epidermal cell wall apparently were degraded without direct attachment of bacteria although bacteria were near the cell walls undergoing digestion. Anaerobic growth studies showed that the total culturable bacteria developing on medium 10 and media containing carbohydrates similar to those in forage cell walls (i.e., pectin, xylan, and cellobiose) were 80% higher from rumen bacterial populations adapted in vitro to cell walls of orchard grass compared to those from Bermuda grass; the number of colonies from the orchard grass-adapted population was significantly (P less than or equal to 0.05) greater on the medium containing xylan. Filter paper tests showed that the cellulolytic activity of populations adapted to fescue was greater than that of orchard grass or Bermuda grass. Images PMID:7356317

  5. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.K.

    1992-01-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  6. Inhibition of Salmonella Typhimurium by Anaerobic Cecal Bacteria in Media Supplemented with Lactate and Succinate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of anaerobic cecal microflora of broilers to inhibit growth of Salmonella Typhimurium in media supplemented with lactate and succinate was examined. Cecal cultures were prepared by collecting ceca of processed broilers from a commercial processing facility, inoculating broth media with 1...

  7. Classification and distribution of large intestinal bacteria in nonhibernating and hibernating leopard frogs (Rana pipiens).

    PubMed Central

    Banas, J A; Loesche, W J; Nace, G W

    1988-01-01

    The large intestinal flora of the leopard frog, Rana pipiens, was examined to determine whether differences existed between the nonhibernating and hibernating states of the animal and to determine the relative concentrations and proportions of potential frog pathogens. Hibernators had a logarithmic decrease of bacteria per milligram of intestine averaging one, and significantly greater proportions of facultative bacteria and psychrophiles relative to nonhibernators. The predominant anaerobic bacteria were gram-positive Clostridium species and gram-negative Bacteroides and Fusobacterium species. The predominant facultative bacteria were enterobacteria in nonhibernators but Pseudomonas species in hibernators. Many species of Pseudomonas are pathogenic for frogs, and thus the intestinal flora in hibernators may be a potential source of infectious disease. PMID:3263838

  8. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria

    PubMed Central

    Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

    2013-01-01

    Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dehalobium chlorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

  9. Molecular Evidence for the Broad Distribution of Anaerobic Ammonium-Oxidizing Bacteria in Freshwater and Marine Sediments

    PubMed Central

    Penton, C. Ryan; Devol, Allan H.; Tiedje, James M.

    2006-01-01

    Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ∼700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments. PMID:17021238

  10. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    PubMed

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  11. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martnez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiotas effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  12. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of cascade filtration method. The study of the microcosms is important for understanding natural mechanisms in soil and will be useful for the development of new soil models in laboratory. Thus, by means of cascade filtration method there've been made some results on true size, quantity and biomass of bacteria. Development of a bacteria in various soil horizons and their layers in aerobic and anaerobic conditions and calculations of biomass of bacteria in upper layer horizon A and lower layer horizon B have also become the subjects of the studies. It was identified that the quantity of bacteria in aerobic conditions increase during the microbial succession while bacteria sized 230 and 380 nm were dominating. In anaerobic conditions the process of connecting cells sized 170 nm and bacteria is observed. Biomass of bacteria is higher in anaerobic conditions in upper layer horizon A because of elevated variety of bacteria. In horizon B in anaerobic conditions it is of maximum because of anaerobic situation in situ. Thus, distribution of bacteria's size depends on aeration of soil. That helps to acknowledge the receipt of theory of a great number of researchers about that fact that the size of bacteria in the soil in anaerobic conditions decrease under stress-factors. This work touches upon such a poorly investigated subject as nanobacteria in the soil. But this knowledge plays a significant role in land reclamation oil-cut and prognostication pollution of the soil by pathogenic bacteria.

  13. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection. PMID:23805543

  14. Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses

    PubMed Central

    Santegoeds, Cecilia M.; Damgaard, Lars Riis; Hesselink, Gijs; Zopfi, Jakob; Lens, Piet; Muyzer, Gerard; de Beer, Dirk

    1999-01-01

    Using molecular techniques and microsensors for H2S and CH4, we studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria (2 to 3 mmol of S2? m?3 s?1 or 2 10?9 mmol s?1 per aggregate) was located in a surface layer of 50 to 100 ?m thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 ?m from the aggregate surface) with a higher activity (1 to 6 mmol of S2? m?3 s?1 or 7 10?9 mol s?1 per aggregate). The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates (1 to 2 mmol of CH4 m?3 s?1 or 10?9 mmol s?1 per aggregate) and the methanogenic aggregates (2 to 4 mmol of CH4 m?3 s?1 or 5 10?9 mmol s?1 per aggregate) was located more inward, starting at ca. 100 ?m from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor (acetate, propionate, ethanol, or H2), but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data. A distinct layered structure was found in the methanogenic-sulfidogenic aggregates, with sulfate-reducing bacteria in the outer 50 to 100 ?m, methanogens in the inner part, and Eubacteria spp. (partly syntrophic bacteria) filling the gap between sulfate-reducing and methanogenic bacteria. In methanogenic aggregates, few sulfate-reducing bacteria were detected, while methanogens were found in the core. In the sulfidogenic aggregates, sulfate-reducing bacteria were present in the outer 300 ?m, and methanogens were distributed over the inner part in clusters with syntrophic bacteria. PMID:10508098

  15. Effect of the growth of anaerobic bacteria on the surface pH of solid media.

    PubMed

    Watt, B; Brown, F V

    1985-05-01

    Changes in surface pH occurring after varying periods of anaerobic incubation were measured for a total of 23 test solid media. There was little change in the surface pH of uninoculated plates, but plates inoculated with Bacteriodes fragilis showed a striking fall in pH, to pH 5 in the case of some of the test media. The problems of controlling the surface pH of solid media are discussed and possible methods of control are considered. PMID:2860132

  16. Male Circumcision Significantly Reduces Prevalence and Load of Genital Anaerobic Bacteria

    PubMed Central

    Liu, Cindy M.; Hungate, Bruce A.; Tobian, Aaron A. R.; Serwadda, David; Ravel, Jacques; Lester, Richard; Kigozi, Godfrey; Aziz, Maliha; Galiwango, Ronald M.; Nalugoda, Fred; Contente-Cuomo, Tania L.; Wawer, Maria J.; Keim, Paul; Gray, Ronald H.; Price, Lance B.

    2013-01-01

    ABSTRACT Male circumcision reduces female-to-male HIV transmission. Hypothesized mechanisms for this protective effect include decreased HIV target cell recruitment and activation due to changes in the penis microbiome. We compared the coronal sulcus microbiota of men from a group of uncircumcised controls (n = 77) and from a circumcised intervention group (n = 79) at enrollment and year 1 follow-up in a randomized circumcision trial in Rakai, Uganda. We characterized microbiota using16S rRNA gene-based quantitative PCR (qPCR) and pyrosequencing, log response ratio (LRR), Bayesian classification, nonmetric multidimensional scaling (nMDS), and permutational multivariate analysis of variance (PerMANOVA). At baseline, men in both study arms had comparable coronal sulcus microbiota; however, by year 1, circumcision decreased the total bacterial load and reduced microbiota biodiversity. Specifically, the prevalence and absolute abundance of 12 anaerobic bacterial taxa decreased significantly in the circumcised men. While aerobic bacterial taxa also increased postcircumcision, these gains were minor. The reduction in anaerobes may partly account for the effects of circumcision on reduced HIV acquisition. PMID:23592260

  17. Effect of pH and temperature on the sorption of Np and Pa to mixed anaerobic bacteria.

    PubMed

    Sasaki, T; Kauri, T; Kudo, A

    2001-10-01

    While considering the geological disposal of radioactive wastes, the behaviour of the radionuclide Np and its daughter element Pa was investigated in the presence of a mixture of anaerobic bacteria (MAB). Originally, MAB were used for the treatment of pulp and paper wastewater. The interaction between radionuclides and bacteria was evaluated by determining distribution coefficients (Kd) over 10 days and at 5 degrees C and 35 degrees C. Kd for Np at 35 degrees C after 5 days had a low value around 10(-2) After 10 days, however, Kd was > 100-fold higher. On the other hand, Kd at 5 degrees C was low (10(-2)) throughout, without any significant increase over time. The interaction between Pa and MAB was found to be stronger than that for Np, with Kd for Pa about 100 times higher. The Kd was controlled by some basic factors, the activity of MAB, the complexing capacity of MAB, and the chemical conditions in the solution such as pH and Eh. PMID:11545492

  18. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. PMID:27014196

  19. Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria.

    PubMed

    Jacinto, R C; Gomes, B P F A; Ferraz, C C R; Zaia, A A; Filho, F J Souza

    2003-10-01

    The purpose of the present study was to investigate the correlation between the composition of the bacterial flora isolated from infected root canals of teeth with apical periodontitis with the presence of clinical signs and symptoms, and to test the antibiotic susceptibility of five anaerobic bacteria mostly commonly found in the root canals of symptomatic teeth against various substances using the E-test. Microbial samples were taken from 48 root canals, 29 symptomatic and 19 asymptomatic, using adequate techniques. A total of 218 cultivable isolates were recovered from 48 different microbial species and 19 different genera. Root canals from symptomatic teeth harbored more obligate anaerobes and a bigger number of bacterial species than the asymptomatic teeth. More than 70% of the bacterial isolates were strict anaerobes. Statistical analysis used a Pearson Chi-squared test or a one-sided Fisher's Exact test as appropriate. Suggested relationships were found between specific microorganisms, especially gram-negative anaerobes, and the presence of spontaneous or previous pain, tenderness to percussion, pain on palpation and swelling amoxicillin, amoxicillin + clavulanate and cephaclor were effective against all the strains tested. The lowest susceptibility rate was presented by Prevotella intermedia/nigrescens against Penicillin G. Our results suggested that specific bacteria are associated with endodontic symptoms of infected teeth with periapical periodontitis and the majority of the anaerobic bacterial species tested were susceptible to all antibiotics studied. PMID:12930519

  20. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil

    SciTech Connect

    Rabus, R.; Widdel, F.

    1996-04-01

    Leakage from oil pipelines and underground fuel tanks may result in contamination of soils and deeper horizons. Even though the equilibrium partitioning of BTEX (benzene, toluene, ethylbenzene, and xylenes) between oil and water is largely on the side of the hydrophobic phase, BTEX exhibit a certain water solubility higher than other oil hydrocarbons. This study evaluates the growth of four strains of denitrifying bacteria on crude oil and the resulting, strain-specific depletion of alkylbenzenes.

  1. [Candidatus "Jettenia moscovienalis" sp. nov., a New Species of Bacteria Carrying out Anaerobic Ammonium Oxidation].

    PubMed

    Nikolaev, A; Kozlov, M N; Kevbrina, M V; Dorofeev, A G; Pimenov, N V; Kallistova, A Yu; Grachev, V A; Kazakova, E A; Zharkov, A V; Kuznetsov, B B; Patutina, E O; Bumazhkin, B K

    2015-01-01

    A new species of bacteria oxidizing ammonium with nitrite under anoxic conditions was isolated from the activated sludge of a semi-industrial bioreactor treating digested sludge of the Kuryanovo wastewater treatment plant (Moscow, Russia). Physiological, morphological, and molecular genetic characterization of the isolate was carried out. The cells were ovoid (-0.5 x 0.8 μm), with the intracellular membrane structures characteristic of anammox bacteria (anammoxosome and paryphoplasm); unlike other anammox bacteria, it possessed extensive intracellular membrane structures located in layers parallel to the cytoplasmic membrane, but never close to the anammoxosome. The cells formed aggregates 5-28 μm in diameter and readily attached to solid surfaces. The cells were morphologically labile, easily plasmolyzed, and lost their content. Doubling time was 28 days, μ(max) = 0.025 day(-1); optimal temperature and pH for growth were 20-45 degrees C and 8.0, respectively. Phylogenetic analysis of the 16S rRNA gene sequences suggested its classification as a new species of the candidate genus Jettenia (order Planctomycetales). The name Candidatus "Jettenia moscovienalis" sp. nov. was proposed for the new bacterium. PMID:26263630

  2. Growth of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a High-Pressure Membrane Capsule Bioreactor

    PubMed Central

    Gieteling, Jarno; Widjaja-Greefkes, H. C. Aura; Plugge, Caroline M.; Stams, Alfons J. M.; Lens, Piet N. L.; Meulepas, Roel J. W.

    2014-01-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernfrde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-?m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure. PMID:25501484

  3. In Vitro Activities of Cefminox against Anaerobic Bacteria Compared with Those of Nine Other Compounds

    PubMed Central

    Hoellman, Dianne B.; Spangler, Sheila K.; Jacobs, Michael R.; Appelbaum, Peter C.

    1998-01-01

    The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 μg/ml for cefoxitin, 2.0 and 128.0 μg/ml for cefotetan, 2.0 and 64.0 μg/ml for moxalactam, 4.0 and >128.0 μg/ml for ceftizoxime, 16.0 and >128.0 μg/ml for cefotiam, 8.0 and >128.0 μg/ml for cefamandole, and 4.0 and 128.0 μg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 μg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 μg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 μg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 μg/ml), fusobacteria (MIC90, 1.0 μg/ml), peptostreptococci (MIC90, 2.0 μg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 μg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4× the MIC and cefoperazone at 8× the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2× the MIC produced the most rapid effect, with 90% killing of all strains. PMID:9517922

  4. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits.

    PubMed

    Oliver, Kerry M; Degnan, Patrick H; Burke, Gaelen R; Moran, Nancy A

    2010-01-01

    Aphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. In addition to their obligate nutrient-provisioning symbiont, Buchnera aphidicola, aphids may also carry one or more facultative symbionts. Unlike obligate symbionts, facultative symbionts are not generally required for survival or reproduction and can invade novel hosts, based on both phylogenetic analyses and transfection experiments. Facultative symbionts are mutualistic in the context of various ecological interactions. Experiments on pea aphids (Acyrthosiphon pisum) have demonstrated that facultative symbionts protect against entomopathogenic fungi and parasitoid wasps, ameliorate the detrimental effects of heat, and influence host plant suitability. The protective symbiont, Hamiltonella defensa, has a dynamic genome, exhibiting evidence of recombination, phage-mediated gene uptake, and horizontal gene transfer and containing virulence and toxin-encoding genes. Although transmitted maternally with high fidelity, facultative symbionts occasionally move horizontally within and between species, resulting in the instantaneous acquisition of ecologically important traits, such as parasitoid defense. PMID:19728837

  5. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria

    SciTech Connect

    Wall, Judy D.

    1999-06-01

    Objective A: Electron transfer components necessary for uranium reduction. Objective B: Possible FNR-analog in the sulfate-reducing bacteria. Attempts to isolate FNR or FIKJ analogs from Desuflovibrio through the design of degenerate primers for amplification of portions of the genes has not been successful. In contrast, several amplicons have been generated for the genes encoding the regulators of two-component signal sequences. Since several global regulators fall into this class, we are attempting to obtain sufficient sequence information to indicate what metabolic pathways are affected by the regulators. Cloning and sequencing of two such amplicons has revealed that bona fide two-component regulators are present in Desulfovibrio.

  6. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference.

    PubMed

    He, Zhanfei; Geng, Sha; Pan, Yawei; Cai, Chaoyang; Wang, Jiaqi; Wang, Liqiao; Liu, Shuai; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-11-15

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a potential bioprocess for treating nitrogen-containing wastewater. This process uses methane, an inexpensive and nontoxic end-product of anaerobic digestion, as an external electron donor. However, the low turnover rate and slow growth rate of n-damo functional bacteria limit the practical application of this process. In the present study, the short- and long-term effects of variations in trace metal concentrations on n-damo bacteria were investigated, and the concentrations of trace metal elements of medium were improved. The results were subsequently verified by a group of long-term inoculations (90 days) and were applied in a sequencing batch reactor (SBR) (84 days). The results indicated that iron (Fe(II)) and copper (Cu(II)) (20 and 10?molL(-1), respectively) significantly stimulated the activity and the growth of n-damo bacteria, whereas other trace metal elements, including zinc (Zn), molybdenum (Mo), cobalt (Co), manganese (Mn), and nickel (Ni), had no significant effect on n-damo bacteria in the tested concentration ranges. Interestingly, fluorescence in situ hybridization (FISH) showed that a large number of dense, large aggregates (10-50?m) of n-damo bacteria were formed by cell adhesion in the SBR reactor after using the improved medium, and to our knowledge this is the first discovery of large aggregates of n-damo bacteria. PMID:26340061

  7. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    PubMed

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  8. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    PubMed Central

    Lyles, Christopher N.; Le, Huynh M.; Beasley, William Howard; McInerney, Michael J.; Suflita, Joseph M.

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  9. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor.

    PubMed

    Girguis, Peter R; Cozen, Aaron E; DeLong, Edward F

    2005-07-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (mu(ANME-2) = 0.167 . week(-1)), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (mu(ANME-1) = 0.218 . week(-1)). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 . week(-1), and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures. PMID:16000782

  10. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    PubMed

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. PMID:25782634

  11. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    NASA Astrophysics Data System (ADS)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  12. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    PubMed

    Hernndez, D; Riao, B; Coca, M; Garca-Gonzlez, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 242.7 C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  13. Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.

    PubMed

    Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

    2015-12-01

    The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS⋅d)(-1) to 1.45gCOD·(gVSS⋅d)(-1) and 0.90gCOD·(gVSS⋅d)(-1) to 1.15gCOD·(gVSS⋅d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS⋅d)(-1) to 0.46gCOD·(gVSS⋅d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. PMID:25228232

  14. Differential Effects of Oxygen and Oxidation Reduction Potential on the Multiplication of Three Species of Anaerobic Intestinal Bacteria

    PubMed Central

    Walden, William C.; Hentges, David J.

    1975-01-01

    The sensitivity of three strains of anaerobic intestinal bacteria, Clostridium perfringens, Bacteroides fragilis, and Peptococcus magnus, to the differential effects of oxygen and adverse oxidation-reduction potential was measured. The multiplication of the three organisms was inhibited in the presence of oxygen whether the medium was at a negative oxidation-reduction potential (Eh of -50 mV), poised by the intermittent addition of dithiothreitol, or at a positive oxidation-reduction potential (Eh of near +500 mV). However, when these organisms were cultured in the absence of oxygen, no inhibition was observed, even when the oxidation-reduction potential was maintained at an average Eh of +325 mV by the addition of potassium ferricyanide. When the cultures were aerated, the growth patterns of the three organisms demonstrated different sensitivities to oxygen. P. magnus was found to be the most sensitive. After 2 h of aerobic incubation, no viable organisms could be detected. B. fragilis was intermediately sensitive to oxygen with no viable organisms detected after 5 h of aerobic incubation. C. perfringens was the least sensitive. Under conditions of aerobic incubation, viable organisms survived for 10 h. During the experiments with Clostridium, no spores were observed by spore staining. PMID:173238

  15. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    PubMed

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  16. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria.

    PubMed

    Jang, Gyoung Gug; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer, Harry M; Kidder, Michelle; Armstrong, Beth L; Datskos, Panos G; Graham, David E; Moon, Ji-Won

    2015-08-14

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm. PMID:26207018

  17. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Gug Jang, Gyoung; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, Harry M., III; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji-Won

    2015-08-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  18. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect

    Jang, Gyoung Gug; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer III, Harry M; Kidder, Michelle; Armstrong, Beth L; Datskos, Panos G; Graham, David E; Moon, Ji Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  19. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and discuss the potential implications for alternative energy sources.

  20. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.

    PubMed Central

    Ehrenreich, A; Widdel, F

    1994-01-01

    Anoxic iron-rich sediment samples that had been stored in the light showed development of brown, rusty patches. Subcultures in defined mineral media with ferrous iron (10 mmol/liter, mostly precipitated as FeCO3) yielded enrichments of anoxygenic phototrophic bacteria which used ferrous iron as the sole electron donor for photosynthesis. Two different types of purple bacteria, represented by strains L7 and SW2, were isolated which oxidized colorless ferrous iron under anoxic conditions in the light to brown ferric iron. Strain L7 had rod-shaped, nonmotile cells (1.3 by 2 to 3 microns) which frequently formed gas vesicles. In addition to ferrous iron, strain L7 used H2 + CO2, acetate, pyruvate, and glucose as substrate for phototrophic growth. Strain SW2 had small rod-shaped, nonmotile cells (0.5 by 1 to 1.5 microns). Besides ferrous iron, strain SW2 utilized H2 + CO2, monocarboxylic acids, glucose, and fructose. Neither strain utilized free sulfide; however, both strains grew on black ferrous sulfide (FeS) which was converted to ferric iron and sulfate. Strains L7 and SW2 grown photoheterotrophically without ferrous iron were purple to brownish red and yellowish brown, respectively; absorption spectra revealed peaks characteristic of bacteriochlorophyll a. The closest phototrophic relatives of strains L7 and SW2 so far examined on the basis of 16S rRNA sequences were species of the genera Chromatium (gamma subclass of proteobacteria) and Rhodobacter (alpha subclass), respectively. In mineral medium, the new isolates formed 7.6 g of cell dry mass per mol of Fe(II) oxidized, which is in good agreement with a photoautotrophic utilization of ferrous iron as electron donor for CO2 fixation. Dependence of ferrous iron oxidation on light and CO2 was also demonstrated in dense cell suspensions. In media containing both ferrous iron and an organic substrate (e.g., acetate, glucose), strain L7 utilized ferrous iron and the organic compound simultaneously; in contrast, strain SW2 started to oxidize ferrous iron only after consumption of the organic electron donor. Ferrous iron oxidation by anoxygenic phototrophs is understandable in terms of energetics. In contrast to the Fe3+/Fe2+ pair (E0 = +0.77 V) existing in acidic solutions, the relevant redox pair at pH 7 in bicarbonate-containing environments, Fe(OH)3 + HCO3-/FeCO3, has an E0' of +0.2 V. Ferrous iron at pH 7 can therefore donate electrons to the photosystem of anoxygenic phototrophs, which in purple bacteria has a midpoint potential around +0.45 V. The existence of ferrous iron-oxidizing anoxygenic phototrophs may offer an explanation for the deposition of early banded-iron formations in an assumed anoxic biosphere in Archean times. Images PMID:7811087

  1. Reactivation and/or growth of fecal coliform bacteria during centrifugal dewatering of anaerobically digested biosolids.

    PubMed

    Qi, Y N; Gillow, S; Herson, D S; Dentel, S K

    2004-01-01

    Fecal coliform bacteria are used as indicator organisms for the presence of pathogens. In sludges, it has often been assumed that the counts of fecal coliforms after digestion (where the sludges may also be called biosolids) are representative of the counts when the sludge is disposed or recycled, such as by land application. The possibility has been raised, however, that dewatering processes can lead to increased counts of fecal coliforms and, by inference, human pathogens. This paper presents data from previous studies of this possibility; the results were inconsistent but showed observable increases in fecal coliforms at one treatment plant. Additional studies were then performed at another treatment facility, which showed statistically significant increases in fecal coliform counts after dewatering and two days of aging. The increases exceeded two orders of magnitude and included two centrifuge types and two biosolids types. Artifacts of media type and enumeration method have been excluded, and shearing of the material by commercial blender did not produce the same effects. PMID:15581002

  2. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    PubMed Central

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

  3. Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium.

    PubMed

    Pugin, Benot; Blamey, Jenny M; Baxter, Bonnie K; Wiegel, Juergen

    2012-09-01

    Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 C (optimum 39 C), in the pH(37 C) range 6.5-10.3 (optimum pH(37 C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1(T) was 58 %. On the basis of physiological, chemotaxonomic and phylogenetic data, strain JW/BP-GSL-QD(T) represents a novel species of the genus Amphibacillus, for which the name Amphibacillus cookii sp. nov. is proposed. The type strain is JW/BP-GSL-QD(T) (= ATCC BAA-2118(T) = DSM 23721(T)). PMID:22038999

  4. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    PubMed

    Landete, Jos M; Langa, Susana; Revilla, Concepcin; Margolles, Abelardo; Medina, Margarita; Arqus, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production. PMID:26129953

  5. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    PubMed

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes. PMID:18500766

  6. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio

    PubMed Central

    Dar, Shabir A.; Kleerebezem, Robbert; Stams, Alfons J. M.; Kuenen, J. Gijs

    2008-01-01

    The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis and by the use of oligonucleotide probes, was linked to the functional changes in the reactors. At the influent lactate to sulfate molar ratio of 0.35mol mol?1, i.e., electron donor limitation, lactate oxidation was mainly carried out by incompletely oxidizing sulfate-reducing bacteria, which formed 8085% of the total bacterial population. Desulfomicrobium- and Desulfovibrio-like species were the most abundant sulfate-reducing bacteria. Acetogens and methanogenic Archaea were mostly outcompeted, although less than 2% of an acetogenic population could still be observed at this limiting concentration of lactate. In the near absence of sulfate (i.e., at very high lactate/sulfate ratio), acetogens and methanogenic Archaea were the dominant microbial communities. Acetogenic bacteria represented by Dendrosporobacter quercicolus-like species formed more than 70% of the population, while methanogenic bacteria related to uncultured Archaea comprising about 1015% of the microbial community. At an influent lactate to sulfate molar ratio of 2mol mol?1, i.e., under sulfate-limiting conditions, a different metabolic route was followed by the mixed anaerobic community. Apparently, lactate was fermented to acetate and propionate, while the majority of sulfidogenesis and methanogenesis were dependent on these fermentation products. This was consistent with the presence of significant levels (4045% of total bacteria) of D. quercicolus-like heteroacetogens and a corresponding increase of propionate-oxidizing Desulfobulbus-like sulfate-reducing bacteria (20% of the total bacteria). Methanogenic Archaea accounted for 10% of the total microbial community. PMID:18305937

  7. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria.

    PubMed

    Stasik, Sebastian; Wick, Lukas Y; Wendt-Potthoff, Katrin

    2015-11-01

    The extraction of bitumen from oil sands in Alberta (Canada) produces volumes of tailings that are pumped into large anaerobic settling-basins. Beside bitumen, tailings comprise fractions of benzene, toluene, ethylbenzene and xylenes (BTEX) that derive from the application of industrial solvents. Due to their toxicity and volatility, BTEX pose a strong concern for gas- and water-phase environments in the vicinity of the ponds. The examination of two pond profiles showed that concentrations of indigenous BTEX decreased with depth, pointing at BTEX transformation in situ. With depth, the relative contribution of ethylbenzene and xylenes to total BTEX significantly decreased, while benzene increased relatively from 44% to 69%, indicating preferential hydrocarbon degradation. To predict BTEX turnover and residence time, we determined BTEX degradation rates in tailings of different depths in a 180-days microcosm study. In addition, we evaluated the impact of labile organic substrates (e.g. acetate) generally considered to stimulate hydrocarbon degradation and the contribution of sulfate-reducing bacteria (SRB) to BTEX turnover. In all depths, BTEX concentrations significantly decreased due to microbial activity, with degradation rates ranging between 4 and 9 ?g kg(-1) d(-1). BTEX biodegradation decreased linearly in correlation with initial concentrations, suggesting a concentration-dependent BTEX transformation. SRB were not significantly involved in BTEX consumption, indicating the importance of methanogenic degradation. BTEX removal decreased to 70-90% in presence of organic substrates presumptively due to an accumulation of acetate that lowered BTEX turnover due to product inhibition. In those assays SRB slightly stimulated BTEX transformation by reducing inhibitory acetate levels. PMID:26066083

  8. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis.

    PubMed

    Royter, Marina; Schmidt, M; Elend, C; Höbenreich, H; Schäfer, T; Bornscheuer, U T; Antranikian, G

    2009-09-01

    Two novel genes encoding for heat and solvent stable lipases from strictly anaerobic extreme thermophilic bacteria Thermoanaerobacter thermohydrosulfuricus (LipTth) and Caldanaerobacter subterraneus subsp. tengcongensis (LipCst) were successfully cloned and expressed in E. coli. Recombinant proteins were purified to homogeneity by heat precipitation, hydrophobic interaction, and gel filtration chromatography. Unlike the enzymes from mesophile counterparts, enzymatic activity was measured at a broad temperature and pH range, between 40 and 90 degrees C and between pH 6.5 and 10; the half-life of the enzymes at 75 degrees C and pH 8.0 was 48 h. Inhibition was observed with 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride and phenylmethylsulfonylfluorid indicating that serine and thiol groups play a role in the active site of the enzymes. Gene sequence comparisons indicated very low identity to already described lipases from mesophilic and psychrophilic microorganisms. By optimal cultivation of E. coli Tuner (DE3) cells in 2-l bioreactors, a massive production of the recombinant lipases was achieved (53-2200 U/l) Unlike known lipases, the purified robust proteins are resistant against a large number of organic solvents (up to 99%) and detergents, and show activity toward a broad range of substrates, including triacylglycerols, monoacylglycerols, esters of secondary alcohols, and p-nitrophenyl esters. Furthermore, the enzyme from T. thermohydrosulfuricus is suitable for the production of optically pure compounds since it is highly S-stereoselective toward esters of secondary alcohols. The observed E values for but-3-yn-2-ol butyrate and but-3-yn-2-ol acetate of 21 and 16, respectively, make these enzymes ideal candidates for kinetic resolution of synthetically useful compounds. PMID:19579003

  9. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    PubMed

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge. PMID:25799955

  10. Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater.

    PubMed

    Zhou, Ya-Zhen; Yang, Jie; Wang, Xiao-Li; Pan, Yue-Qing; Li, Hui; Zhou, Dong; Liu, Yong-Di; Wang, Ping; Gu, Ji-Dong; Lu, Qiang; Qiu, Yue-Feng; Lin, Kuang-Fei

    2014-10-01

    Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L(-1)) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA. PMID:24906831

  11. Anaerobic Consumers of Monosaccharides in a Moderately Acidic Fen?

    PubMed Central

    Hamberger, Alexandra; Horn, Marcus A.; Dumont, Marc G.; Murrell, J. Colin; Drake, Harold L.

    2008-01-01

    16S rRNA-based stable isotope probing identified active xylose- and glucose-fermenting Bacteria and active Archaea, including methanogens, in anoxic slurries of material obtained from a moderately acidic, CH4-emitting fen. Xylose and glucose were converted to fatty acids, CO2, H2, and CH4 under moderately acidic, anoxic conditions, indicating that the fen harbors moderately acid-tolerant xylose- and glucose-using fermenters, as well as moderately acid-tolerant methanogens. Organisms of the families Acidaminococcaceae, Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae and the order Actinomycetales, including hitherto unknown organisms, utilized xylose- or glucose-derived carbon, suggesting that highly diverse facultative aerobes and obligate anaerobes contribute to the flow of carbon in the fen under anoxic conditions. Uncultured Euryarchaeota (i.e., Methanosarcinaceae and Methanobacteriaceae) and Crenarchaeota species were identified by 16S rRNA analysis of anoxic slurries, demonstrating that the acidic fen harbors novel methanogens and Crenarchaeota organisms capable of anaerobiosis. Fermentation-derived molecules are conceived to be the primary drivers of methanogenesis when electron acceptors other than CO2 are absent, and the collective findings of this study indicate that fen soils harbor diverse, acid-tolerant, and novel xylose-utilizing as well as glucose-utilizing facultative aerobes and obligate anaerobes that form trophic links to novel moderately acid-tolerant methanogens. PMID:18378662

  12. Anaerobic consumers of monosaccharides in a moderately acidic fen.

    PubMed

    Hamberger, Alexandra; Horn, Marcus A; Dumont, Marc G; Murrell, J Colin; Drake, Harold L

    2008-05-01

    16S rRNA-based stable isotope probing identified active xylose- and glucose-fermenting Bacteria and active Archaea, including methanogens, in anoxic slurries of material obtained from a moderately acidic, CH(4)-emitting fen. Xylose and glucose were converted to fatty acids, CO(2), H(2), and CH(4) under moderately acidic, anoxic conditions, indicating that the fen harbors moderately acid-tolerant xylose- and glucose-using fermenters, as well as moderately acid-tolerant methanogens. Organisms of the families Acidaminococcaceae, Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae and the order Actinomycetales, including hitherto unknown organisms, utilized xylose- or glucose-derived carbon, suggesting that highly diverse facultative aerobes and obligate anaerobes contribute to the flow of carbon in the fen under anoxic conditions. Uncultured Euryarchaeota (i.e., Methanosarcinaceae and Methanobacteriaceae) and Crenarchaeota species were identified by 16S rRNA analysis of anoxic slurries, demonstrating that the acidic fen harbors novel methanogens and Crenarchaeota organisms capable of anaerobiosis. Fermentation-derived molecules are conceived to be the primary drivers of methanogenesis when electron acceptors other than CO(2) are absent, and the collective findings of this study indicate that fen soils harbor diverse, acid-tolerant, and novel xylose-utilizing as well as glucose-utilizing facultative aerobes and obligate anaerobes that form trophic links to novel moderately acid-tolerant methanogens. PMID:18378662

  13. Rapid detection of sulfide-producing bacteria from sulfate and thiosulfate.

    PubMed

    Stilinovi?, B; Hrenovi?, J

    2004-01-01

    An original liquid medium and a field broth bottle method for the rapid detection of the most probable number of sulfide-producing bacteria (SPB) from sulfate and thiosulfate are described. The broth bottle method enables after inoculation with a sample (water, sediment) the growth of ubiquitous aerobic bacteria, causing oxygen depletion, required for the growth of the present various anaerobic and facultative anaerobic SPB. The medium regularly gives higher numbers of the SPB than the used control medium (Postgate's E) for detection of sulfate-reducing bacteria and the final results are obtained just 36 h after the medium inoculation. The method is simple and suitable for the estimation of the physiological group of SPB in fresh waters, saline waters, sediments and industrial waters. PMID:15702538

  14. Optimization of wastewater feeding for single-cell protein production in an anaerobic wastewater treatment process utilizing purple non-sulfur bacteria in mixed culture condition.

    PubMed

    Honda, Ryo; Fukushi, Kensuke; Yamamoto, Kazuo

    2006-10-01

    Impacts of operation timing of feeding and withdrawal on anaerobic wastewater treatment utilizing purple non-sulfur bacteria have been investigated in mixed culture condition with acidogenic bacteria. Simulated wastewater containing glucose was treated in a laboratory-scale chemostat reactor, changing the timing of wastewater feeding and withdrawal. Rhodopseudomonas palustris, which does not utilize glucose as a substrate, was inoculated in the reactor. Rps. palustris was detected by a fluorescent in situ hybridization (FISH) technique using the specific Rpal686 probe. As a result, population ratios of Rps. palustris were over 20% through the operation. Rps. palustris could grow by utilizing metabolites of acidogenic bacteria that coexisted in the reactor. A morning feed was effective for a good growth of purple non-sulfur bacteria. A protein content of cultured bacteria was the highest when wastewater was fed in the morning. Dissolved organic carbon (DOC) removal was 94% independent of the timing control. Consequently, feeding in the morning is the optimum feed-timing control from the aspects of growth of purple non-sulfur bacteria and single-cell protein production. PMID:16647776

  15. Tetrachloroethene-dehalogenating bacteria.

    PubMed

    Damborsk, J

    1999-01-01

    Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison. PMID:10664879

  16. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. [Lactobacillus; Clostridium; Sarcina ventriculi

    SciTech Connect

    Goodwin, S.; Zeikus, G.J.

    1987-01-01

    The dynamics of anaerobic digestion were examined in the low-pH sediments of Crystal Bog in Wisconsin. The sediments (pH 4.9) contained 71% organic matter and the following concentrations of dissolved gases (micromoles per liter):CO/sub 2/, 1140; CH/sub 4/, 490; and H/sub 2/, 0.01. The rate of methane production was 6.2 ..mu..mol/liter of sediment per h, which is slower than eutrophic, neutral sediments. Microbial metabolic processes displayed the following pH optima: hydrolysis reactions, between 4.2 and 5.6; aceticlastic methanogenesis, 5.2; and hydrogen-consuming reactions, 5.6. The turnover rate constants for key intermediary metabolites were (h/sup -1/): glucose, 1.10; lactate, 0.277; acetate, 0.118; and ethanol, 0.089. The populations of anaerobes were low, with hydrolytic groups (10/sup 6//ml) several orders of magnitude higher than methanogens (10/sup 2//ml). The addition of carbon electron donors to the sediment resulted in the accumulation of hydrogen, whereas the addition of hydrogen resulted in the accumulation of fatty acids and the inhibition of hydrogen-producing acetogenic reactions. Strains of Lactobacillus, Clostridium, and Sarcina ventriculi were isolated from the bog, and their physiological attributes were characterized in relation to hydrolytic process functions in the sediments. The present studies provide evidence that the pH present in the bog sediments alter anaerobic digestion processes s, that total biocatalytic activity is lower bu the general carbon and electron flow pathways are similar to those of neutral anoxic sediments.

  17. Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep.

    PubMed Central

    Dinsdale, D; Cheng, K J; Wallace, R J; Goodlad, R A

    1980-01-01

    Comparisons were made, by light and electron microscopy, of the rumen epithelium of sheep fed conventionally and fed by infusion of volatile fatty acids and buffer into the rumen and casein into the abomasum. Similar bacterial colonization of the epithelium was observed in each case. The mitotic index of epithelial cells in infused sheep was high, as it was in barley-fed animals, while the mitotic index of cells from animals receiving roughage was low. The bacterial flora appeared to be actively digesting the epithelial cells. The fate of sloughed epithelial cells in the rumen fluid of sheep fed by infusion was also studied. The sloughed cells were rapidly digested, probably by their attached flora of facultatively anaerobic, highly proteolytic bacteria, leaving abundant highly keratinized remnants in rumen fluid. The importance of epithelial cell turnover and of proteolysis by partially facultative bacteria in the rumen is discussed. Images PMID:6772103

  18. Anaerobic treatment

    SciTech Connect

    Witt, E.R.; Humphrey, W.J.; Cave, J.P.

    1982-12-28

    This invention provides for the anaerobic treatment of acidic petrochemical wastes in an anaerobic filter at high loadings and high recycle rates. The effluent from the top of the filter passes into a gas-disengaging/solids-settling zone containing a quiescent body of the effluent liquid. The settled solids are withdrawn and recycled to the base of the filter together with fresh acidic waste and an inorganic alkaline material (preferably magnesium oxide or carbonate) to maintain a neutral pH. The liquid portion of the effluent is sent to an aerobic digester to remove the rest of the organic material, which is used to support the growth of bacteria and fed back to the anaerobic system.

  19. Bone and joint infections due to anaerobic bacteria: an analysis of 61 cases and review of the literature.

    PubMed

    Walter, G; Vernier, M; Pinelli, P O; Million, M; Coulange, M; Seng, P; Stein, A

    2014-08-01

    The diagnosis of anaerobic bone and joint infections (BJI) were underestimated before the advent of molecular identification and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We report 61 cases of anaerobic infections based on our 4-year experience with the management of BJI. A total of 75% of cases were post-surgical infections, associated with osteosynthesis devices (65%). Early infections occurred in 27% of cases, delayed infections in 17.5% of cases, and late infections in 55% of cases. We recorded 36 species of 93 anaerobic strains using MALDI-TOF MS (91) and molecular methods (2). We identified 20 strains of Propionibacterium acnes, 13 of Finegoldia magna, six of Peptoniphilus asaccharolyticus, and six of P. harei. Polymicrobial infections occurred in 50 cases. Surgical treatment was performed in 93.5% of cases. The antibiotic treatments included amoxicillin (30%), amoxicillin-clavulanic acid (16%), metronidazole (30%), and clindamycin (26%). Hyperbaric oxygen therapy was used in 17 cases (28%). The relapse rate (27%) was associated with lower limbs localization (p = 0.001). P. acnes BJI was associated with shoulder (p = 0.019), vertebra (p = 0.021), and head flap localization (p = 0.011), and none of these cases relapsed (p = 0.007). F. magna BJI was associated with ankle localization (p = 0.014). Anaerobic BJI is typically considered as a post-surgical polymicrobial infection, and the management of this infection combines surgical and medical treatments. MALDI-TOF MS and molecular identification have improved diagnosis. Thus, physicians should be aware of the polymicrobial nature of anaerobic BJI to establish immediate broad-spectrum antibiotic treatment during the post-surgical period until accurate microbiological results have been obtained. PMID:24577953

  20. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria.

    PubMed Central

    Garlick, S; Oren, A; Padan, E

    1977-01-01

    Eleven of 21 cyanobacteria strains examined are capable of facultative anoxygenic photosynthesis, as shown by their ability to photoassimilate CO2 in the presence of Na2S, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 703-nm light. These include different cyanobacterial types (filamentous and unicellular) of different growth histories (aerobic, anaerobic, and marine and freshwater). Oscillatoria limnetica, Aphanothece halophytica (7418), and Lyngbya (7104) have different optimal concentrations of Na2S permitting CO2 photoassimilation, above which the rate decreases: 3.5, 0.7, and 0.1 mM, respectively. In A. halophytica, for each CO2 molecule photoassimilated two sulfide molecules are oxidized to elemental sulfur, which is excreted from the cells.The ecological and evolutionary significance of anoxygenic photosynthesis in the cyanobacteria is discussed. PMID:402355

  1. Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of Anammox bacteria into the granular sludge.

    PubMed

    Schmidt, J E; Batstone, D J; Angelidaki, I

    2004-01-01

    Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m(-3) reactor day(-1), with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process. PMID:15303725

  2. Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.

    PubMed

    Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

    2013-11-01

    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified. PMID:24012093

  3. REDUCTION AND IMMOBILIZATION OF RADIONUCLIDES AND TOXIC METAL IONS USING COMBINED ZERO VALENT IRON AND ANAEROBIC BACTERIA

    EPA Science Inventory

    Large groundwater plumes contaminated with toxic metal ions, including radionuclides, exist at several DOE facilities. Previous research indicated that both zero valent iron and sulfate reducing bacteria can yield significant decreases in concentrations of redox sensitive metals ...

  4. Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria.

    PubMed Central

    Dietrichs, D; Meyer, M; Schmidt, B; Andreesen, J R

    1990-01-01

    Three electron-transferring flavoproteins were purified to homogeneity from anaerobic, amino acid-utilizing bacteria (bacterium W6, Clostridium sporogenes, and Clostridium sticklandii), characterized, and compared with the dihydrolipoamide dehydrogenase of Eubacterium acidaminophilum. All the proteins were found to be dimers consisting of two identical subunits with a subunit Mr of about 35,000 and to contain about 1 mol of flavin adenine dinucleotide per subunit. Spectra of the oxidized proteins exhibited characteristic absorption of flavoproteins, and the reduced proteins showed an A580 indicating a neutral semiquinone. Many artificial electron acceptors, including methyl viologen, could be used with NADPH as the electron donor but not with NADH. Unlike the enzyme of E. acidaminophilum, which exhibited by itself a dihydrolipoamide dehydrogenase activity (W. Freudenberg, D. Dietrichs, H. Lebertz, and J. R. Andreesen, J. Bacteriol. 171:1346-1354, 1989), the electron-transferring flavoprotein purified from bacterium W6 reacted with lipoamide only under certain assay conditions, whereas the proteins of C. sporogenes and C. sticklandii exhibited no dihydrolipoamide dehydrogenase activity. The three homogeneous electron-transferring flavoproteins were very similar in their structural and biochemical properties to the dihydrolipoamide dehydrogenase of E. acidaminophilum and exhibited cross-reaction with antibodies raised against the latter enzyme. N-terminal sequence analysis demonstrated a high degree of homology between the dihydrolipoamide dehydrogenase of E. acidaminophilum and the electron-transferring flavoprotein of C. sporogenes to the thioredoxin reductase of Escherichia coli. Unlike these proteins, the dihydrolipoamide dehydrogenases purified from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and C. sporogenes exhibited a high homology to dihydrolipoamide dehydrogenases known from other organisms. PMID:2318809

  5. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil.

    PubMed

    Rabus, R; Fukui, M; Wilkes, H; Widdle, F

    1996-10-01

    A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available. PMID:8837415

  6. The Effect of Bamboo Leaf Extract Solution and Sodium Copper Chlorophyllin Solution on Growth and Volatile Sulfur Compounds Production of Oral Malodor Associated Some Anaerobic Periodontal Bacteria

    PubMed Central

    Majbauddin, Abir; Kodani, Isamu; Ryoke, Kazuo

    2015-01-01

    Background Bamboo leaf extract solution (BLES) and sodium copper chlorophyllin solution (SCCS) are known for their anti-oxidant activities. Oral malodor is often related with periodontal pathogens. The present study was undertaken to investigate the anti-bacterial effect of both BLES and SCCS on anaerobic periodontal bacteria producing oral malodorous volatile sulfur compounds (VSC). Methods Porphyromonas gingivalis W83 (PG), Prevotella intermidai TDC19B (PI), Fusobacterium nucleatum ATCC25586 (FN) and Prevotella nigrescence ATCC33563 (PN) were investigated as oral isolated bacteria. VSC production ability of the oral strains was investigated by gas chromatography. With serial dilution of BLES or SCCS, the strains PG, PI, FN or PN were cultured anaerobically with AnaeroPack at 37 ℃ for 3 days. For the determination of anti-bacterial action of BLES or SCCS, the inoculum was cultured with original concentrations of BLES 0.16% (w/v) or SCCS 0.25% (w/v). Results Gas chromatography exhibited that all strains, PG, PI, FN and PN were responsible for producing a high range of H2S and a moderate range of CH3SH. Anti-bacterial effect of BLES or SCCS on the strains was observed. Inhibition of BLES or SCCS on the strains was revealed as concentration dependent. BLES or SCCS inhibited bacterial proliferation at higher concentrations (PG; 0.04% BLES or 0.03% SCCS, PI; 0.002% BLES or 0.03% SCCS, FN; 0.005% BLES or 0.01% SCCS, PN; 0.01% BLES or 0.015% SCCS). No viable bacterial colony observed at original concentration of BLES 0.16% or SCCS 0.25%. Strain growth was eliminated from inhibition at lower concentrations (PG; 0.02% BLES or 0.015% SCCS, PI; 0.001% BLES or 0.015% SCCS, FN; 0.002% BLES or 0.007% SCCS, PN; 0.005% BLES or 0.007% SCCS). Conclusion High concentrations of both BLES (0.16%) and SCCS (0.25%) show superior inhibiting capability on all four oral malodor associated periodontal anaerobes during testing, suggesting that these compounds might have a beneficial effect on oral health care. PMID:26538799

  7. Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant

    PubMed Central

    Nanninga, Henk J.; Gottschal, Jan C.

    1987-01-01

    Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-?-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h. Images PMID:16347324

  8. Facultative cheating supports the coexistence of diverse quorum-sensing alleles.

    PubMed

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-02-23

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating-a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity. PMID:26787913

  9. Faculative Anaerobic Bacteria in the Digestive Tract of Chum Salmon (Oncorhynchus keta) Maintained in Fresh Water Under Defined Culture Conditions

    PubMed Central

    Trust, T. J.

    1975-01-01

    The bacterial flora in the digestive tract of chum salmon growing in fresh water under defined and controlled culture conditions was examined both qualitatively and quantitatively. The predominant species present in the digestive tract were identified as Aeromonas, with Aeromonas hydrophila being the most common isolate. These aeromonads were not isolated from the diet. Other bacterial species commonly isolated included Bacillus, Enterobacter, nonpigmented pseudomonads, Micrococcus, and Acinetobacter. These species were also isolated from the diet or tank water. As many as 108 viable bacteria per g (wet weight) of digestive tract plus contents were counted. After 75 days of starvation, 106 viable bacteria were counted, whereas fish fed a sterile feed contained 105 viable bacteria per g (wet weight) of digestive tract plus contents. PMID:1147605

  10. Facultative symbiont infections affect aphid reproduction.

    PubMed

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction. PMID:21818272

  11. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    PubMed Central

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian; Nilsson, Martin; Tolker-Nielsen, Tim; Holmstrup, Palle; Nielsen, Claus Henrik

    2015-01-01

    Objectives Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. Design Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. Setting Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. Participants 60 donors (≥50 years old), self-reported medically healthy. Results Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current routine screening. Conclusions Viable bacteria are present in blood from donors self-reported as medically healthy, indicating that conventional test systems employed by blood banks insufficiently detect bacteria in plasma. Further investigation is needed to determine whether routine testing for anaerobic bacteria and testing of RBC-fractions for adherent bacteria should be recommended. PMID:25751254

  12. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China

    PubMed Central

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems. PMID:26368535

  13. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    NASA Astrophysics Data System (ADS)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr(VI) immobilization at the Hanford 100H site could be mediated by direct microbial metabolism apart from indirect chemical reduction of Cr(VI) by end products of microbial activity.

  14. Digestion of Herring by Indigenous Bacteria in the Minke Whale Forestomach

    PubMed Central

    Olsen, Monica A.; Aagnes, Tove H.; Mathiesen, Svein D.

    1994-01-01

    Northeastern Atlantic minke whales (Balaenoptera acutorostrata) have a multichambered stomach system which includes a nonglandular forestomach resembling that of ruminants. Bacteria from the forestomachs of herring-eating whales were enumerated and isolated in an anaerobic rumen-like culture medium (M8W medium). The total viable population of anaerobic bacteria ranged from 73 107 to 145 108/ml of forestomach fluid (n = 4). Lactobacillus spp. (19.7%), Streptococcus spp. (35.9%), and Ruminococcus spp. (12.8%) were the most common of the bacterial strains (n = 117) isolated by use of M8W medium from the forestomach fluid population of two minke whales. Most of the isolates stained gram positive (93.2%), 62.4% were cocci, and all strains were strictly anaerobic. The population of lipolytic bacteria in one animal, enumerated by use of a selective lipid medium, constituted 89.7% of the viable population. The total viable population of anaerobic bacteria in freshly caught and homogenized herring (Clupea harengus) ranged from 56.7 to 95.0 cells per gram of homogenized prey (n = 3) when M8W medium was used. Pediococcus spp. (30.6%) and Aerococcus spp. (25.0%) were most common of the bacterial strains (n = 72) isolated from the homogenized herring. Most of the bacterial strains were gram positive (80.6%), and 70.8% were cocci. Unlike the forestomach bacterial population, as many as 61.1% of the strains from the herring were facultatively anaerobic. All bacterial strains isolated from the prey had phenotypic patterns different from those of strains isolated from the dominant bacterial population in the forestomach, indicating that the forestomach microbiota is indigenous. Scanning electron microscopic examinations revealed large numbers of bacteria, surrounded by a glycocalyx, attached to partly digested food particles in the forestomach. These data support the hypothesis that symbiotic microbial digestion occurs in the forestomach and that the bacteria are indigenous to minke whales. Images PMID:16349460

  15. (Anaerobic metabolism of aromatic compounds by phototrophic bacteria: biochemical aspects): Annual progress report, April 1988--March 1989

    SciTech Connect

    Harwood, C.S.; Gibson, J.

    1989-01-01

    Intensive efforts to define a protocol for generating transposon mutations in R. palustris have continued. An indirect approach, in which a transposon is introduced into a pLAFR1 cosmid containing an approximately 20 kb fragment of R. palustris DNA from a lambda derivative containing Tn5, appears promising. Both plasmids can be introduced into E. coli, and the antibiotic resistances coded for by each subsequently mated into wild-type R. palustris. A mutant isolated following chemical mutagenesis which is unable to grow aerobically on 4-OH benzoate (CGA033) has been complemented biochemically by the same clone which functions in the absence of the transposon; in addition, and more importantly, this indirect tranposon mutagenesis appears to yield mutants with novel phenotypes affecting the anaerobic pathway for 4-OH benzoate utilization. 2 refs.

  16. Host-Bacteria Crosstalk at the Dentogingival Junction

    PubMed Central

    Pöllänen, M. T.; Laine, M. A.; Ihalin, R.; Uitto, V.-J.

    2012-01-01

    The dentogingival junction is of crucial importance in periodontal host defense both structurally and functionally. Oral bacteria exert a constant challenge to the host cells and tissues at the dentogingival junction. The host response is set up to eliminate the pathogens by the innate and adaptive defense mechanisms. In health, the commensal bacteria and the host defense mechanisms are in a dynamic steady state. During periodontal disease progression, the dental bacterial plaque, junctional epithelium (JE), inflammatory cells, connective tissue, and bone all go through a series of changes. The tissue homeostasis is turned into tissue destruction and progression of periodontitis. The classical study of Slots showed that in the bacterial plaque, the most remarkable change is the shift from gram-positive aerobic and facultatively anaerobic flora to a predominantly gram-negative and anaerobic flora. This has been later confirmed by several other studies. Furthermore, not only the shift of the bacterial flora to a more pathogenic one, but also bacterial growth as a biofilm on the tooth surface, allows the bacteria to communicate with each other and exert their virulence aimed at favoring their growth. This paper focuses on host-bacteria crosstalk at the dentogingival junction and the models studying it in vitro. PMID:22899931

  17. Structure and function of assemblages of Bacteria and Archaea in model anaerobic aquifer columns: can functional instability be practically beneficial?

    PubMed

    Nelson, Denice K; Lapara, Timothy M; Novak, Paige J

    2012-09-18

    Biodegradable organic carbon is often added to aquifers to stimulate microbial reduction of oxidized contaminants. This carbon also stimulates fermenters, which generate important metabolites that can fuel contaminant reduction and may enhance dissolution of hydrophobic compounds. Therefore, understanding how different methods of carbon addition affect the fermentative community will enable design of more effective remediation strategies. Our research objective was to evaluate the microbial communities that developed in model aquifer columns in response to pulsed or continuous molasses input. Results indicated that the continuously fed column produced relatively low concentrations of metabolic intermediates and had a greater proportion of Bacteria and methanogens, as measured by quantitative polymerase chain reaction, near the column inlet. In contrast, the pulsed-fed column generated periodic high concentrations of metabolic intermediates, with Bacteria and methanogens distributed throughout the length of the column. The community structures of Bacteria and Archaea, measured via automated ribosomal intergenic spacer analysis, in the pulsed-fed column were significantly different from those in the control column (not fed). The microbial community composition of the continuously fed column, however, became increasingly similar to the control column along the column length. These results demonstrate that a strategy of pulsed carbon addition leads to activity that is associated with functional instability, in terms of the production of periodic pulses of fermentation products and changing carbon concentration, and may be advantageous for remediation by producing large quantities of beneficial intermediates and resulting in more homogenously distributed biomass. PMID:22873515

  18. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1g/L ascorbic acid and 0.1g/L glutathione (R-medium). We successively optimized this media, adding 0.4g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1g/L or ?-ketoglutarate 2g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and ?-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. PMID:26577141

  19. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    PubMed

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. PMID:25465519

  20. Degradation of cinnamate via beta-oxidation to benzoate by a defined, syntrophic consortium of anaerobic bacteria.

    PubMed

    Defnoun, Sabria; Ambrosio, Maurice; Garcia, Jean-Louis; Traor, Alfred; Labat, Marc

    2003-01-01

    A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via beta-oxidation and subsequently completely degraded into acetate, CH(4), and CO(2). Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH(4), and CO(2). A new anaerobic degradation pathway of cinnamate into benzoate via beta-oxidation by a pure culture of P. cinnamivorans is proposed. PMID:12432464

  1. Bacteria from the gut of Australian termites.

    PubMed

    Eutick, M L; O'Brien, R W; Slaytor, M

    1978-05-01

    The major gut bacteria of the worker caste of nine species of Australian termites, belonging to four families, were isolated and identified to generic level. All species were either facultative anaerobes or strict aerobes. A correlation appears to exist between the major gut bacterium and the family to which the termite belongs. The major bacterium from the two lowest termites, Mastotermes darwiniensis (family Mastotermitidae) and Cryptotermes primus (family Kalotermitidae), was Streptococcus; from four species belonging to the Rhinotermitidae (Heterotermes ferox, Coptotermes acinaciformis, C. lacteus, Schedorhinotermes intermedius intermedius) it was Enterobacter; and from three species of the Termitidae (Nasutitermes exitiosus, N. graveolus, N. walkeri) it was Staphylococcus. Enterobacter was a minor symbiont of M. darwiniensis, C. primus, and N. graveolus; Streptococcus was a minor symbiont of H. ferox, C. lacteus, S. intermedius intermedius, and N. exitiosus; and Bacillus was a minor symbiont of C. acinaciformis and S. intermedius intermedius. M. darwiniensis possessed another minor symbiont tentatively identified as Flavobacterium. C. acinaciformis from three widely separated locations possessed a similar microbiota, indicating some form of control on the composition of the gut bacteria. Bacteria, capable of growth on N-free medium in the presence of nitrogen gas, were isolated from all termites, except N. exitiosus and N. walkeri, and were identified as Enterobacter. No cellulose-degrading bacteria were isolated. PMID:655700

  2. Bacteria from the Gut of Australian Termites

    PubMed Central

    Eutick, M. L.; O'Brien, R. W.; Slaytor, M.

    1978-01-01

    The major gut bacteria of the worker caste of nine species of Australian termites, belonging to four families, were isolated and identified to generic level. All species were either facultative anaerobes or strict aerobes. A correlation appears to exist between the major gut bacterium and the family to which the termite belongs. The major bacterium from the two lowest termites, Mastotermes darwiniensis (family Mastotermitidae) and Cryptotermes primus (family Kalotermitidae), was Streptococcus; from four species belonging to the Rhinotermitidae (Heterotermes ferox, Coptotermes acinaciformis, C. lacteus, Schedorhinotermes intermedius intermedius) it was Enterobacter; and from three species of the Termitidae (Nasutitermes exitiosus, N. graveolus, N. walkeri) it was Staphylococcus. Enterobacter was a minor symbiont of M. darwiniensis, C. primus, and N. graveolus; Streptococcus was a minor symbiont of H. ferox, C. lacteus, S. intermedius intermedius, and N. exitiosus; and Bacillus was a minor symbiont of C. acinaciformis and S. intermedius intermedius. M. darwiniensis possessed another minor symbiont tentatively identified as Flavobacterium. C. acinaciformis from three widely separated locations possessed a similar microbiota, indicating some form of control on the composition of the gut bacteria. Bacteria, capable of growth on N-free medium in the presence of nitrogen gas, were isolated from all termites, except N. exitiosus and N. walkeri, and were identified as Enterobacter. No cellulose-degrading bacteria were isolated. PMID:655700

  3. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    PubMed Central

    Ricard, Gunola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  4. Quantification of Enteric Viruses, Pathogen Indicators, and Salmonella Bacteria in Class B Anaerobically Digested Biosolids by Culture and Molecular Methods ?

    PubMed Central

    Wong, Kelvin; Onan, Brandon M.; Xagoraraki, Irene

    2010-01-01

    The most common class B biosolids in the United States are generated by mesophilic anaerobic digestion (MAD), and MAD biosolids have been used for land application. However, the pathogen levels in MAD biosolids are still unclear, especially with respect to enteric viruses. In this study, we determined the occurrence and the quantitative levels of enteric viruses and indicators in 12 MAD biosolid samples and of Salmonella enterica in 6 MAD biosolid samples. Three dewatered biosolid samples were also included in this study for purposes of comparison. Human adenoviruses (HAdV) had the highest gene levels and were detected more frequently than other enteric viruses. The gene levels of noroviruses (NV) reported were comparable to those of enteroviruses (EV) and human polyomaviruses (HPyV). The occurrence percentages of HAdV, HAdV species F, EV, NV GI, NV GII, and HPyV in MAD samples were 83, 83, 42, 50, 75, and 58%, respectively. No hepatitis A virus was detected. Infectious HAdV was detected more frequently than infectious EV, and all infectious HAdV were detected when samples were propagated in A549 cells. Based on most-probable-number (MPN) analysis, A549 cells were more susceptible to biosolid-associated viruses than BGM cells. All indicator levels in MAD biosolids were approximately 104 MPN or PFU per gram (dry), and the dewatered biosolids had significantly higher indicator levels than the MAD biosolids. Only two MAD samples tested positive for Salmonella enterica, where the concentration was below 1.0 MPN/4 g. This study provides a broad comparison of the prevalence of different enteric viruses in MAD biosolids and reports the first detection of noroviruses in class B biosolids. The observed high quantitative and infectivity levels of adenoviruses in MAD biosolids indicate that adenovirus is a good indicator for the evaluation of sludge treatment efficiency. PMID:20693452

  5. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    PubMed

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  6. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    USGS Publications Warehouse

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  7. Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors?

    PubMed Central

    Baesman, Shaun M.; Bullen, Thomas D.; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S.; Beveridge, Terry J.; Oremland, Ronald S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [?] = ?0.4 to ?1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (?10-nm diameter by 200-nm length), which cluster together, forming larger (?1,000-nm) rosettes composed of numerous individual shards (?100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  8. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance 308.544 Facultative binder, Form...

  9. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance 308.544 Facultative binder, Form...

  10. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance 308.544 Facultative binder, Form...

  11. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance 308.544 Facultative binder, Form...

  12. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance 308.544 Facultative binder, Form...

  13. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T

    PubMed Central

    Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-01-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  14. Purification and comparative studies of dihydrolipoamide dehydrogenases from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes.

    PubMed Central

    Dietrichs, D; Andreesen, J R

    1990-01-01

    Three different dihydrolipoamide dehydrogenases were purified to homogenity from the anaerobic glycine-utilizing bacteria Clostridium cylindrosporum, Clostridium sporogenes, and Peptostreptococcus glycinophilus, and their basic properties were determined. The enzyme isolated from P. glycinophilus showed the properties typical of dihydrolipoamide dehydrogenases: it was a dimer with a subunit molecular mass of 53,000 and contained 1 mol of flavin adenine dinucleotide and 2 redox-active sulfhydryl groups per subunit. Only NADH was active as a coenzyme for reduction of lipoamide. Spectra of the oxidized enzyme exhibited maxima at 230, 270, 353, and 453 nm, with shoulders at 370, 425, and 485 nm. The dihydrolipoamide dehydrogenases of C. cylindrosporum and C. sporogenes were very similar in their structural properties to the enzyme of P. glycinophilus except for their coenzyme specificity. The enzyme of C. cylindrosporum used NAD(H) as well as NADP(H), whereas the enzyme of C. sporogenes reacted only with NADP(H), and no reaction could be detected with NAD(H). Antibodies raised against the dihydrolipoamide dehydrogenase of C. cylindrosporum reacted with extracts of Clostridium acidiurici, Clostridium purinolyticum, and Eubacterium angustum, whereas antibodies raised against the enzymes of P. glycinophilus and C. sporogenes showed no cross-reaction with extracts from 42 organisms tested. Images FIG. 1 PMID:2294086

  15. One carbon metabolism in anaerobic bacteria. Organic acid and methane production. Progress report, June 1985-May 1986

    SciTech Connect

    Zeikus, J.G.

    1986-05-01

    Our project focussed on understanding of one and multicarbon metabolism in acetogenic and methanogenic bacteria. The studies with acetate catabolism pathway in Methanosarcina barkeri showed involvement of methyl reductase, methyl coenzyme M and carbon monoxide dehydrogenase in the proposed model of acetate catabolism. We also examined the relationship between hydrogen metabolism and methanogenesis, isotopic discrimination during methanogenesis, and sulfate dependent interspecies H/sub 2/-transfer between M. barkeri and Desulfovibrio vulgaris. Ammonia assimilation in Methanobacterium ivanovii via glutamine synthetase (GS) was confirmed by isolation of GS-deficient and GS-impared auxotrophic mutants. GS from M. ivanovii is also purified, characterized and compared with the eubacterial GS. In Butyribacterium methylotrophicum various enzymes involved in homoacetogenic catabolism of formate, formate plus CO and methanol plus CO were examined. Carbon dioxide was shown to be a required intermediate during catabolism of CO by B. methylotrophicum. Studies were also conducted for the operation of electron transport phosphorylation (ETP) in B. methylotrophicum by analyzing the proton motive force (PMF) and membrane bound electron carriers. 13 refs.

  16. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80?C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  17. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus.

    PubMed

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80?C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  18. Predatory prokaryotes: predation and primary consumption evolved in bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Pedros-Alio, C.; Esteve, I.; Mas, J.; Chase, D.; Margulis, L.

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.

  19. Predatory prokaryotes: predation and primary consumption evolved in bacteria.

    PubMed

    Guerrero, R; Pedros-Alio, C; Esteve, I; Mas, J; Chase, D; Margulis, L

    1986-04-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles. PMID:11542073

  20. Predatory prokaryotes: Predation and primary consumption evolved in bacteria

    PubMed Central

    Guerrero, Ricardo; Pedrós-Alió, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 μm wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 × 1.5 μm) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptations for the origin of intracellular organelles. Images PMID:11542073

  1. Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats.

    PubMed

    Sorokin, Dimitry Yu; Tourova, Tatjana P; Lysenko, Anatoly M; Muyzer, Gerard

    2006-10-01

    Unexpectedly high culturable diversity of moderately and extremely halophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria (SOB) was discovered in the sediments of various hypersaline habitats, including chloride-sulfate lakes in Mongolia, Russia and Ukraine, a sea saltern in Slovenia and a deep-sea salt brine from the Mediterranean. Six different groups of halophilic SOB, including four new genera, all belonging to the Gammaproteobacteria, were found. Two groups of moderately halophilic strictly aerobic SOB dominated at 2 M NaCl, including representatives of the genus Halothiobacillus (in fully aerobic conditions) and Thiomicrospira (in micro-oxic conditions). Under denitrifying conditions at 2 M NaCl, a group of moderately halophilic and facultatively anaerobic SOB was selected, capable of complete denitrification of nitrate. The group represents a new genus with closest relatives among as yet undescribed marine thiodenitrifying isolates. With thiocyanate as a substrate, an enrichment culture at 2 M NaCl yielded a pure culture of moderately halophilic SOB capable of aerobic growth with thiocyanate and thiosulfate at up to 4 M NaCl. Furthermore, this bacterium also grew anaerobically using nitrite as electron acceptor. It formed a new lineage distantly related to the genus Thiomicrospira. Enrichments at 4 M NaCl resulted in the domination of two different, previously unknown, groups of extremely halophilic SOB. Under oxic conditions, they were represented by strictly aerobic spiral-shaped bacteria, related to the Ectothiorhodospiraceae, while under denitrifying conditions a group of facultatively anaerobic nitrate-reducing bacteria with long rod-shaped cells was selected, distantly related to the genus Acidithiobacillus. PMID:17005982

  2. The influence of different preservation methods on spoilage bacteria populations inoculated in morcilla de Burgos during anaerobic cold storage.

    PubMed

    Diez, Ana M; Jaime, Isabel; Rovira, Jordi

    2009-06-30

    Blood sausage is a widely consumed traditional product that would benefit from an extended shelf life. The two main spoilage bacteria in vacuum-packaged morcilla de Burgos are Weissella viridescens and Leuconostoc mesenteroides. This study examines the way in which three preservation treatments--organic acid salts (OAS), high-pressure processing (HPP) and pasteurization--influence these bacterial populations and their spoilage behaviour. HPP and pasteurization treatments were found to inhibit growth of the inoculated species and delay sensory spoilage of the product. In both treatments, L. mesenteroides was observed to have a longer recovery time; even so, once its growth started, it grew faster than W. viridescens. This longer recovery time might be due to metabolic modification following treatment, which would affect the production of metabolites such as acetic acid and some aldehydes. W. viridescens was the first strain to recover from the two treatments. It preserved its spoilage behaviour and even increased the production of certain compounds such as acetoin or ethanol. The extended product shelf life following HPP and pasteurization treatments might be due to a combination of various factors such as the fall in both microbial populations, as well as the delay in spoilage caused by damage to L. mesenteroides cells, as this strain is the fastest-acting, most intensive spoilage microorganism. It was observed that the addition of organic salts neither diminished nor delayed the growth of the two inoculated species. Nevertheless, the results also indicate that this treatment inhibits the metabolic activity of L. mesenteroides, resulting once again in an extended product shelf life. PMID:19411125

  3. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron extraction and confirming the photosystem required for light capture. The geobiological implications of this phenomenon related to nitrogen-fixation and the evolution of O2 on Earth will be discussed.

  4. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  5. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment.

    PubMed

    He, Shuai; Fan, Xiaolei; Katukuri, Naveen Reddy; Yuan, Xianzheng; Wang, Fei; Guo, Rong-Bo

    2016-03-01

    Anaerobic digestion (AD) of microalgal biomass is one of the most energy efficient technologies to convert microalgae to biofuels. In order to improve the biogas productivity, breaking up the tough and rigid cell wall of microalgae by pretreatment is necessary. In this work, Bacillus licheniformis, a facultative anaerobic bacterial with hydrolytic and acidogenic activities, was adopted to pretreat Chlorella sp. In the established pretreatment process, pure bacterial culture (0%, 1%, 2%, 4%, 8%, v/v) were used to pretreat Chlorella sp. under anaerobic condition at 37°C for 60h. The soluble chemical oxygen demands (SCOD) content was increased by 16.4-43.4%, while volatile fatty acids (VFAs) were improved by 17.3-44.2%. Furthermore, enhancement of methane production (9.2-22.7%) was also observed in subsequent AD. The results indicated that the more dosages of bacteria were used to pretreat the microalgal biomass in the range of 1-8%, the more methane was produced. PMID:26773949

  6. Competitive exclusion of campylobacters from poultry with K-bacteria and Broilact.

    PubMed

    Aho, M; Nuotio, L; Nurmi, E; Kiiskinen, T

    1992-01-01

    The competitive exclusion (CE) product (Broilact) which is effective against Salmonellas, was found to be inactive against campylobacters. Microecological concepts were applied in the search of a new competitive flora and two novel strains ('K-bacteria') were isolated. These strains resembled campylobacters but differed from them in morphology, enzyme profiles (API), cellular fatty acid profiles and when tested with a ribosomal RNA hybridization probe (Gene-Trak). Two-week laboratory trials on broiler chickens showed that CE treatment may protect the birds against campylobacters but revealed the need for facultatively anaerobic bacteria in establishing a protective flora. A 5-week pilot scale trial was carried out. The trial involved 1800 newly hatched chicks in 30 groups. K-bacteria and Broilact, which provided the necessary facultatively anaerobic bacteria, were administered to some of the birds in the first drinking water. A seeder bird technique was used to challenge experimental and control birds with Campylobacter jejuni biotype 2 (broiler origin). Three seeder birds were placed in each group of 60 birds. Groups were sampled weekly for campylobacters and finally at the slaughterhouse. From each group, the caecal contents of two birds were examined quantitatively for campylobacters. The performance of the birds was also monitored during the trial. The results showed a 1.5 week delay in the onset of campylobacter infection in treated chicks and a consistently lower level of colonization in comparison with control birds. At slaughter, levels of carriage in caecal contents of treated birds were 1.5-2.0 log10 units lower than those of controls, despite apparent stress from harvesting and transportation. The treatment had no economically important effects on the performance of the birds during rearing. PMID:1419531

  7. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  8. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely made this area of investigation more exciting. Particularly fascinating are their structural and physiological features allowing them to withstand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA-polymerase, thermostable enzymes), the search and applications successful exceeded preliminary expectations, but certainly further exploitations are still needed. PMID:25370030

  9. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely made this area of investigation more exciting. Particularly fascinating are their structural and physiological features allowing them to withstand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA-polymerase, thermostable enzymes), the search and applications successful exceeded preliminary expectations, but certainly further exploitations are still needed. PMID:25370030

  10. Evolution of N-converting bacteria during the start-up of anaerobic digestion coupled biological nitrogen removal pilot-scale bioreactors treating high-strength animal waste slurry.

    PubMed

    Anceno, Alfredo J; Rouseau, Pierre; Bline, Fabrice; Shipin, Oleg V; Dabert, Patrick

    2009-07-01

    Animal wastes have been successfully employed in anaerobic biogas production, viewed as a pragmatic approach to rationalize energy costs in animal farms. Effluents resulting from that process however are still high in nitrogen such that attempts were made to couple biological nitrogen removal (BNR) with anaerobic digestion (AD). The demand for organic substrate in such system is partitioned between the anaerobic metabolism in AD and the heterotrophic denitrification cascade following the autotrophic nitrification in BNR. Investigation of underlying N-converting taxa with respect to process conditions is therefore critical in optimizing N-removal in such treatment system. In this study, a pilot-scale intermittently aerated BNR bioreactor was started up either independently or in series with the AD bioreactor to treat high-strength swine waste slurry. The compositions of NH(3)-oxidizing bacteria (AOB), NO(2)(-)-oxidizing bacteria (NOB) and denitrifiers (nosZ gene) were profiled by polymerase chain reaction-capillary electrophoresis/single strand conformation polymorphism (PCR-CE/SSCP) technique and clone library analysis. Performance data suggested that these two process configurations significantly differ in the modes of biological N-removal. PCR-CE/SSCP based profiling of the underlying nitrifying bacteria also revealed the selection of distinct taxa between process configurations. Under the investigated process conditions, correlation of performance data and composition of underlying nitrifiers suggest that the stand-alone BNR bioreactor tended to favor N-removal via NO(3)(-) whereas the coupled bioreactors could be optimized to achieve the same via a NO(2)(-) shortcut. PMID:19329298

  11. Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium

    PubMed Central

    Muller, Paul A.; Stancyk, David; Panikov, Nicolai S.; Mandalakis, Manolis; Hazen, Amanda; Hohmann, Tine; Doerfert, Sebastian N.; Fowle, William; Earl, Ashlee M.; Nelson, Karen E.

    2014-01-01

    Three strictly anaerobic, Gram-positive, non-spore-forming, rod-shaped, motile bacteria, designated strains ACB1T, ACB7T and ACB8, were isolated from human subgingival dental plaque. All strains required yeast extract for growth. Strains ACB1T and ACB8 were able to grow on glucose, lactose, maltose, maltodextrin and raffinose; strain ACB7T grew weakly on sucrose only. The growth temperature range was 3042 C with optimum growth at 37 C. Major metabolic fermentation end products of strain ACB1T were acetate and lactate; the only product of strains ACB7T and ACB8 was acetate. Major fatty acids of strain ACB1T were C14?:?0, C16?:?0, C16?:?1?7c dimethyl aldehyde (DMA) and C18?:?1?7c DMA. Major fatty acids of strain ACB7T were C12?:?0, C14?:?0, C16?:?0, C16?:?1?7c and C16?:?1?7c DMA. The hydrolysate of the peptidoglycan contained meso-diaminopimelic acid, indicating peptidoglycan type A1?. Genomic DNA G+C content varied from 42 to 43.3?% between strains. According to 16S rRNA gene sequence phylogeny, strains ACB1T, ACB8 and ACB7T formed two separate branches within the genus Oribacterium, with 98.198.6?% sequence similarity to the type strain of the type species, Oribacterium sinus. Predicted DNADNA hybridization values between strains ACB1T, ACB8, ACB7T and O. sinusF0268 were <70?%. Based on distinct genotypic and phenotypic characteristics, strains ACB1T and ACB8, and strain ACB7T are considered to represent two distinct species of the genus Oribacterium, for which the names Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov. are proposed. The type strains are ACB1T (?=?DSM 24637T?=?HM-481T?=?ATCC BAA-2638T) and ACB7T (?=?DSM 24638T?=?HM-482T?=?ATCC BAA-2639T), respectively. PMID:24824639

  12. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.

    PubMed

    Nikel, Pablo I; de Lorenzo, Vctor

    2013-01-01

    Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD(+)) that are required to sustain an O(2)-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses. PMID:23149123

  13. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly encountered anaerobic organisms associated with PJI. Since anaerobic PJI has also been linked to dental procedures, we also reviewed information on the use of dental procedures and prophylaxis, when available. PMID:26341272

  14. Characterization of salt tolerant bacteria isolated from the rhizosphere of Leptochloa fusca and Atriplex rhogodoidaes.

    PubMed

    Hasnain, S; Taskeen, N

    1989-07-01

    Bacteria from the rhizosphere of Leptochloa fusca (Lf) and Atriplex rhogodoidaes (Ar) were isolated at 0.5 M NaCl Plates. Apparently 20 different purified colonies from each plant species were picked and streaked on 0.8 M salt concentration. The survivors were subsequently streaked on 1 M salt concentration. Only 4 from Lf and 3 from Ar could manage to grow at 1 M concentration. Slight variation was observed in colonial morphology of these strains. Except for Lf-5b all strains were Gram-negative rods. U-5b was Gram-positive and pleiomorphic. Lf-5b and Ar-5b, were non-motile, while rest of the isolates were motile. Catalase and oxidase enzymes were present in Lf-2a, Lf-4a and Ar-5b while Lf-4b was positive for oxidase only. All but Lf-2b and Ar-5b could ferment glucose and mannitol. Slight variation in the 20 biochemical characters of these isolates was observed. According to Bergey's classification these isolates fall in four groups. Lf-2b and Ar-Sb belong to Gram-negative aerobic rods; Lf-4a, Lf-4b and Ar-Sa to Gram-negative facultative anaerobic rods; Ar-3b to Gram-negative anaerobic rods; and Lf-Sb to Gram-positive anaerobic bacteria. PMID:16414647

  15. Worldwide populations of APHIS CRACCIVORA have diverse facultative bacterial symbionts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolution in a dynamic selective environment....

  16. Widespread N-Acetyl-d-Glucosamine Uptake among Pelagic Marine Bacteria and Its Ecological Implications

    PubMed Central

    Riemann, Lasse; Azam, Farooq

    2002-01-01

    Dissolved free and combined N-acetyl-d-glucosamine (NAG) is among the largest pools of amino sugars in the ocean. NAG is a main structural component in chitin and a substantial constituent of bacterial peptidoglycan and lipopolysaccharides. We studied the distribution and kinetics of NAG uptake by the phosphoenolpyruvate:NAG phosphotransferase systems (PTS) in marine bacterial isolates and natural bacterial assemblages in near-shore waters. Of 78 bacterial isolates examined, 60 took up 3H-NAG, while 18 showed no uptake. No systematic pattern in NAG uptake capability relative to phylogenetic affiliation was found, except that all isolates within Vibrionaceae took up NAG. Among 12 isolates, some showed large differences in the relationship between polymer hydrolysis (measured as chitobiase activity) and uptake of the NAG, the hydrolysis product. Pool turnover time and estimated maximum ambient concentration of dissolved NAG in samples off Scripps Pier (La Jolla, Calif.) were 5.9 3.0 days (n = 10) and 5.2 0.9 nM (n = 3), respectively. Carbohydrate competition experiments indicated that glucose, glucosamine, mannose, and fructose were taken up by the same system as NAG. Sensitivity to the antibiotic and NAG structural analog streptozotocin (STZ) was developed into a culture-independent approach, which demonstrated that approximately one-third of bacteria in natural marine assemblages that were synthesizing DNA took up NAG. Isolates possessing a NAG PTS system were found to be predominantly facultative anaerobes. These results suggest the hypothesis that a substantial fraction of bacteria in natural pelagic assemblages are facultative anaerobes. The adaptive value of fermentative metabolism in the pelagic environment is potentially significant, e.g., to bacteria colonizing microenvironments such as marine snow that may experience periodic O2-limitation. PMID:12406749

  17. Aerobic and anaerobic bacteriology of cholesteatoma.

    PubMed

    Brook, I

    1981-02-01

    Cholesteatoma specimens were obtained from 28 patients undergoing surgery for chronic otitis media and cholesteatoma. All specimens were cultured for aerobic and anaerobic organisms. Bacterial growth was present in specimens of 24 of the 28 patients. A total of 74 bacterial isolates were present (40 aerobes and 34 anaerobes). Aerobes alone were isolated from 8 (33%) of culture positive patients, 4 patients (26.7%) yielded only anaerobes, and 12 (50%) had both aerobic and anaerobic bacteria. Fifty isolates (27 aerobes and 23 aerobes) were present in a concentration greater than 10(6) CFU/gm. The most commonly isolated aerobic organisms were P. aeruginosa (9), Proteus sp. (7), K. pneumoniae (5), S. aureus (5), and E. coli (4). The anaerobic bacteria most commonly isolated were gram-positive anaerobic cocci (12), Bacteroides sp. (12, including 5 B. fragilis group), Clostridium sp. (3), and Bifidobacterium sp. (3). The above findings indicate the polymicrobial aerobic and anaerobic bacteriology of cholesteatoma. PMID:7007762

  18. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. Year one technical progress report

    SciTech Connect

    Weathers, L.J.; Katz, L.E.

    1997-10-01

    'The objective of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. The major goals for Year 1 were to establish the sulfate reducing mixed culture, to obtain sources of iron metal, and to conduct background experiments which will establish baseline rates for abiotic chromium reduction rates. Research completed to date is described.'

  19. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography

    PubMed Central

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, Johann Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry, Alison M.; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, Maria Pilar; Goltsman, Eugene; Huang, Ying; Kopp, Olga R.; Labarre, Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez, Michele; Mastronunzio, Juliana E.; Mullin, Beth C.; Niemann, James; Pujic, Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt, Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde, Claudio; Wall, Luis G.; Wang, Ying; Medigue, Claudine; Benson, David R.

    2007-01-01

    Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the actinorhizal symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses. PMID:17151343

  20. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production. Progress report, June 1990--May 1992

    SciTech Connect

    Zeikus, J.G.; Jain, M.K.

    1992-04-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  1. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  2. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlstrm, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2?), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  3. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  4. Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania.

    PubMed

    Kumaresan, Deepak; Wischer, Daniela; Hillebrand-Voiculescu, Alexandra M; Murrell, J Colin

    2015-01-01

    Facultative methylotrophs belonging to the genera Gemmobacter and Mesorhizobium were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of Gemmobacter sp. strain LW1 and Mesorhizobium sp. strain IM1. PMID:26586870

  5. Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania

    PubMed Central

    Wischer, Daniela; Hillebrand-Voiculescu, Alexandra M.

    2015-01-01

    Facultative methylotrophs belonging to the genera Gemmobacter and Mesorhizobium were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of Gemmobacter sp. strain LW1 and Mesorhizobium sp. strain IM1. PMID:26586870

  6. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  7. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation.

    PubMed

    Nealson, K H; Saffarini, D

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals. PMID:7826009

  8. Facultative parthenogenesis discovered in wild vertebrates.

    PubMed

    Booth, Warren; Smith, Charles F; Eskridge, Pamela H; Hoss, Shannon K; Mendelson, Joseph R; Schuett, Gordon W

    2012-12-23

    Facultative parthenogenesis (FP)-asexual reproduction by bisexual species-has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes-the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted. PMID:22977071

  9. Facultative parthenogenesis discovered in wild vertebrates

    PubMed Central

    Booth, Warren; Smith, Charles F.; Eskridge, Pamela H.; Hoss, Shannon K.; Mendelson, Joseph R.; Schuett, Gordon W.

    2012-01-01

    Facultative parthenogenesis (FP)—asexual reproduction by bisexual species—has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes—the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted. PMID:22977071

  10. Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect.

    PubMed

    Fang, Jun; Long, Liao; Maeda, Hiroshi

    2016-01-01

    The use of bacteria, about 1 ?m in size, is now becoming an attractive strategy for cancer treatment. Solid tumors exhibit the enhanced permeability and retention (EPR) effect for biocompatible macromolecules such as polymer-conjugated anticancer agents, liposomes, and micelles. This phenomenon permits tumor-selective delivery of such macromolecules. We report here that bacteria injected intravenously evidenced a property similar to that can of these macromolecules. Bacteria that can accumulate selectively in tumors may therefore be used in cancer treatment.Facultative or anaerobic bacteria will grow even under the hypoxic conditions present in solid tumors. We found earlier that nitric oxide (NO) was among the most important factors that facilitated the EPR effect via vasodilatation, opening of endothelial cell junction gaps, and increasing the blood flow of hypovascular tumors. Here, we describe the augmentation of the EPR effect by means of nitroglycerin (NG), a commonly used NO donor, using various macromolecular agents in different tumor models. More importantly, we report that NG significantly enhanced the delivery of Lactobacillus casei to tumors after intravenous injection of the bacteria, more than a tenfold increase in bacterial accumulation in tumors after NG treatment. This finding suggests that NG has a potential advantage to enhance bacterial therapy of cancer, and further investigations of this possibility are warranted. PMID:26846798

  11. Physiological importance and control of non-shivering facultative thermogenesis.

    PubMed

    Silva, J Enrique

    2011-01-01

    This review examines general and evolutionary aspects of temperature homeostasis, focusing on mammalian facultative or adaptive thermogenesis and its control by the sympathetic nervous system and hormones. Thyroid hormone acquired a new role with the advent of homeothermy enhancing facultative thermogenesis by interacting synergistically with the sympathetic nervous system, and directly increasing basal metabolic rate (obligatory thermogenesis). Facultative thermogenesis is triggered by cold. The major site of facultative thermogenesis in mammals is brown adipose tissue, endowed with abundant mitochondria rich in a protein called uncoupling protein-1. This protein can uncouple phosphorylation in a controlled manner, releasing the energy of the proton-motive force as heat. Its synthesis and function are regulated synergistically by the sympathetic nervous system and thyroid hormone and modulated by other hormones directly, or indirectly, modulating sympathetic activity as well as thyroid hormone secretion and activation in brown adipose tissue. Alternate, evolutionary older forms of facultative thermogenesis activated in transgenic mice with disabled brown adipose tissue thermogenesis reveal this latter as the culmination of energy-efficient facultative thermogenesis. PMID:21196381

  12. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    SciTech Connect

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-04-15

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.

  13. Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect

    PubMed Central

    Polin, Sarah; Le Gallic, Jean-François; Simon, Jean-Christophe; Tsuchida, Tsutomu; Outreman, Yannick

    2015-01-01

    Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked), the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed. PMID:26618776

  14. Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect.

    PubMed

    Polin, Sarah; Le Gallic, Jean-Franois; Simon, Jean-Christophe; Tsuchida, Tsutomu; Outreman, Yannick

    2015-01-01

    Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked), the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed. PMID:26618776

  15. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  16. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of

  17. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect to the variety of substrates used, the types of dissimilatory metabolism, and the diversity of potential electron acceptors has important implications for the potential for life in hostile environments lacking oxygen and high in salt, implications that may also be relevant to astrobiology.

  18. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-01

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. PMID:25755080

  19. Activity of WY-49605 compared with those of amoxicillin, amoxicillin-clavulanate, imipenem, ciprofloxacin, cefaclor, cefpodoxime, cefuroxime, clindamycin, and metronidazole against 384 anaerobic bacteria.

    PubMed Central

    Spangler, S K; Jacobs, M R; Appelbaum, P C

    1994-01-01

    The National Committee for Clinical Laboratory Standards agar dilution method was used to compare the in vitro activity of WY-49605 (also called SUN/SY 5555 and ALP-201), a new broad-spectrum oral penem, to those of amoxicillin, amoxicillin-clavulanate, imipenem, ciprofloxacin, cefaclor, cefpodoxime, cefuroxime, clindamycin, and metronidazole against 384 clinically isolated anaerobes. These anaerobic organisms included 90 strains from the Bacteroides fragilis group, 87 Prevotella and Porphyromonas strains, non-B. fragilis group Bacteroides strains, 56 fusobacteria, 55 peptostreptococci, 49 gram-positive non-spore-forming rods, and 47 clostridia. Overall, WY-49605 had an MIC range of 0.015 to 8.0 micrograms/ml, an MIC at which 50% of the isolates are inhibited (MIC50) of 0.25 microgram/ml, and an MIC at which 90% of the isolates are inhibited (MIC90) of 2.0 micrograms/ml. Good activity against all anaerobe groups was observed, except for Clostridium difficile and lactobacilli (MIC50s of 4.0 and 2.0 micrograms/ml, respectively, and MIC90s of 8.0 and 2.0 micrograms/ml, respectively). Imipenem had an MIC50 of 0.03 microgram/ml and an MIC90 of 0.25 microgram/ml. Ciprofloxacin was much less active (MIC50 of 2.0 micrograms/ml and MIC90 of 16.0 micrograms/ml). By comparison, all oral beta-lactams were less active than WY-49605, with susceptibilities as follows: amoxicillin MIC50 of 8.0 micrograms/ml and MIC90 of > 256.0 micrograms/ml), amoxicillin-clavulanate MIC50 of 1.0 microgram/ml and MIC90 of 8.0 micrograms/ml, cefaclor MIC50 of 8.0 micrograms/ml and MIC90 of > 32.0 micrograms/ml, cefpodoxime MIC50 of 4.0 micrograms/ml and MIC90 of > 32.0 micrograms/ml, and cefuroxime MIC50 of 4.0 micrograms/ml and MIC90 of > 32.0 micrograms/ml. Clindamycin was active against all groups except some members of the B. fragilis group, Fusobacterium varium, and some clostridia ( overall MIC50 of 0.5 micrograms/ml and overall MIC90 of 8.0 micrograms/ml). Metronidazole was active (MIC of less than or equal to 4.0 micrograms/ml) against all gram-negative anaerobic rods, but most gram-positive non-spore-forming rods, some peptostreptococci, and some clostridia were less susceptible. To date, WY-49605 is the most active oral beta-lactam against anaerobes: these results suggest clinical evaluation for clinical indications suitable for oral therapy. PMID:7872754

  20. N2 fixation in marine heterotrophic bacteria: dynamics of environmental and molecular regulation.

    PubMed Central

    Coyer, J A; Cabello-Pasini, A; Swift, H; Alberte, R S

    1996-01-01

    Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:11607653

  1. Facultative thermogenesis during brooding is not the norm among pythons.

    PubMed

    Brashears, Jake; DeNardo, Dale F

    2015-08-01

    Facultative thermogenesis is often attributed to pythons in general despite limited comparative data available for the family. While all species within Pythonidae brood their eggs, only two species are known to produce heat to enhance embryonic thermal regulation. By contrast, a few python species have been reported to have insignificant thermogenic capabilities. To provide insight into potential phylogenetic, morphological, and ecological factors influencing thermogenic capability among pythons, we measured metabolic rates and clutch-environment temperature differentials at two environmental temperatures-python preferred brooding temperature (31.5C) and a sub-optimal temperature (25.5C)-in six species of pythons, including members of two major phylogenetic branches currently devoid of data on the subject. We found no evidence of facultative thermogenesis in five species: Aspidites melanocephalus, A. ramsayi, Morelia viridis, M. spilota cheynei, and Python regius. However, we found that Bothrochilus boa had a thermal metabolic sensitivity indicative of facultative thermogenesis (i.e., a higher metabolic rate at the lower temperature). However, its metabolic rate was quite low and technical challenges prevented us from measuring temperature differential to make conclusions about facultative endothermy in this species. Regardless, our data combined with existing literature demonstrate that facultative thermogenesis is not as widespread among pythons as previously thought. PMID:26113382

  2. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover. PMID:25733617

  3. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts.

    PubMed

    Rollat-Farnier, Pierre-Antoine; Santos-Garcia, Diego; Rao, Qiong; Sagot, Marie-France; Silva, Francisco J; Henri, Hlne; Zchori-Fein, Einat; Latorre, Amparo; Moya, Andrs; Barbe, Valrie; Liu, Shu-Sheng; Wang, Xiao-Wei; Vavre, Fabrice; Mouton, Laurence

    2015-03-01

    Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relationships in two clades of insects. In aphids, H. defensa is found in several species with an intermediate prevalence and confers protection against parasitoids. In whiteflies, H. defensa is almost fixed in some species of Bemisia tabaci, which suggests an important role of and a transition toward obligate symbiosis. In this study, comparisons of the genome of H. defensa present in two B. tabaci species (Middle East Asia Minor 1 and Mediterranean) and in the aphid Acyrthosiphon pisum revealed that they belong to two distinct clades and underwent specific gene losses. In aphids, it contains highly virulent factors that could allow protection and horizontal transfers. In whiteflies, the genome lost these factors and seems to have a limited ability to acquire genes. However it contains genes that could be involved in the production of essential nutrients, which is consistent with a primordial role for this symbiont. In conclusion, although both lineages of H. defensa have mutualistic interactions with their hosts, their genomes follow distinct evolutionary trajectories that reflect their phenotype and could have important consequences on their evolvability. PMID:25714744

  4. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    PubMed

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research. PMID:19474483

  5. Siderophore Production by Pseudomonas stutzeri under Aerobic and Anaerobic Conditions?

    PubMed Central

    Essn, Sofia A.; Johnsson, Anna; Bylund, Dan; Pedersen, Karsten; Lundstrm, Ulla S.

    2007-01-01

    The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the sp Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the sp Hard Rock Laboratory. PMID:17675442

  6. Investigation of aerobic and anaerobic ammonium-oxidising bacteria presence in a small full-scale wastewater treatment system comprised by UASB reactor and three polishing ponds.

    PubMed

    Araujo, J C; Correa, M M S; Silva, E C; Campos, A P; Godinho, V M; Von Sperling, M; Chernicharo, C A L

    2010-01-01

    This work applied PCR amplification method and Fluorescence in situ hybridisation (FISH) with primers and probes specific for the anammox organisms and aerobic ammonia-oxidising beta-Proteobacteria in order to detect these groups in different samples from a wastewater treatment system comprised by UASB reactor and three polishing (maturation) ponds in series. Seven primer pairs were used in order to detect Anammox bacteria. Positive results were obtained with three of them, suggesting that Anammox could be present in polishing pond sediments. However, Anammox bacteria were not detected by FISH, indicating that they were not present in sediment samples, or they could be present but below FISH detection limit. Aerobic ammonia- and nitrite-oxidising bacteria were verified in water column samples through Most Probable Number (MPN) analysis, but they were not detected in sediment samples by FISH. Ammonia removal efficiencies occurred systematically along the ponds (24, 32, and 34% for polishing pond 1, 2, and 3, respectively) but the major reaction responsible for this removal is still unclear. Some nitrification might have occurred in water samples because some nitrifying bacteria were present. Also Anammox reaction might have occurred because Anammox genes were detected in the sediments, but probably this reaction was too low to be noticed. It is important also to consider that some of the ammonia removal observed might be related to NH(3) stripping, associated with the pH increase resulting from the intensive photosynthetic activity in the ponds (mechanism under investigation). Therefore, it can be concluded that more than one mechanism (or reaction) might be involved in the ammonia removal in the polishing ponds investigated in this study. PMID:20150711

  7. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  8. Conversion of Cn-Unsaturated into Cn-2-Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors.

    PubMed

    Cavaleiro, Ana J; Pereira, Maria Alcina; Guedes, Ana P; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-03-15

    Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA. PMID:26810160

  9. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains

    PubMed Central

    Hunter, Martha S.; Baltrus, David A.

    2014-01-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. PMID:25217020

  10. In vitro activity of Biapenem plus RPX7009, a carbapenem combined with a serine β-lactamase inhibitor, against anaerobic bacteria.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Tyrrell, Kerin L; Merriam, C Vreni

    2013-06-01

    Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine β-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC(90) for biapenem-RPX7009 was 1 μg/ml, with a MIC(90) of 4 μg/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 μg/ml for both agents. The MIC(90)s for biapenem-RPX7009 were 0.25 μg/ml for Prevotella spp., 0.125 μg/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 μg/ml for Fusobacterium mortiferum, 0.5 μg/ml for Fusobacterium varium, ≤ 0.5 μg/ml for Gram-positive cocci and rods, and 0.03 to 8 μg/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (≥ 32 μg/ml). Against Bacteroides strains with an imipenem MIC of 2 μg/ml, biapenem-RPX7009 had MICs of 0.5 to 2 μg/ml, with MICs of 0.5 to 32 μg/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 μg/ml, the MICs for biapenem-RPX7009 were 4 to 16 μg/ml, with MICs of 8 to >32 μg/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp. PMID:23529731

  11. In Vitro Activity of Biapenem plus RPX7009, a Carbapenem Combined with a Serine β-Lactamase Inhibitor, against Anaerobic Bacteria

    PubMed Central

    Citron, Diane M.; Tyrrell, Kerin L.; Merriam, C. Vreni

    2013-01-01

    Biapenem is a carbapenem being developed in combination with RPX7009, a new inhibitor of serine β-lactamases. Biapenem was tested alone and in combination with fixed concentrations of RPX7009 by agar dilution against 377 recent isolates of anaerobes. A separate panel of 27 isolates of Bacteroides spp. with decreased susceptibility or resistance to imipenem was also tested. Comparator drugs included meropenem, piperacillin-tazobactam, ampicillin-sulbactam, cefoxitin, ceftazidime, metronidazole, clindamycin, and tigecycline plus imipenem, doripenem, and ertapenem for the 27 selected strains. For recent consecutive strains of Bacteroides species, the MIC90 for biapenem-RPX7009 was 1 μg/ml, with a MIC90 of 4 μg/ml for meropenem. Other Bacteroides fragilis group species showed a MIC90 of 0.5 μg/ml for both agents. The MIC90s for biapenem-RPX7009 were 0.25 μg/ml for Prevotella spp., 0.125 μg/ml for Fusobacterium nucleatum and Fusobacterium necrophorum, 2 μg/ml for Fusobacterium mortiferum, 0.5 μg/ml for Fusobacterium varium, ≤0.5 μg/ml for Gram-positive cocci and rods, and 0.03 to 8 μg/ml for clostridia. Against 5 B. fragilis strains harboring a known metallo-beta-lactamase, biapenem-RPX7009 MICs were comparable to those of other carbapenems (≥32 μg/ml). Against Bacteroides strains with an imipenem MIC of 2 μg/ml, biapenem-RPX7009 had MICs of 0.5 to 2 μg/ml, with MICs of 0.5 to 32 μg/ml for meropenem, doripenem, and ertapenem. For strains with an imipenem MIC of 4 μg/ml, the MICs for biapenem-RPX7009 were 4 to 16 μg/ml, with MICs of 8 to >32 μg/ml for meropenem, doripenem, and ertapenem. The inhibitor RPX7009 had no antimicrobial activity when tested alone, and it showed little or no potentiation of biapenem versus anaerobes. Biapenem-RPX7009 showed activity comparable to that of imipenem and was superior to meropenem, doripenem, and ertapenem against imipenem-nonsusceptible Bacteroides spp. PMID:23529731

  12. Susceptibilities of 428 gram-positive and -negative anaerobic bacteria to Bay y3118 compared with their susceptibilities to ciprofloxacin, clindamycin, metronidazole, piperacillin, piperacillin-tazobactam, and cefoxitin.

    PubMed

    Pankuch, G A; Jacobs, M R; Appelbaum, P C

    1993-08-01

    The susceptibilities of 428 gram-negative and gram-positive anaerobes (including selected cefoxitin-resistant strains) to Bay y3118 (a new fluoroquinolone), ciprofloxacin, clindamycin, metronidazole, cefoxitin, piperacillin, and piperacillin-tazobactam were tested. Organisms comprised 115 Bacteroides fragilis group, 116 non-B. fragilis Bacteroides, Prevotella, and Porphyromonas spp., 40 fusobacteria, 58 peptostreptococci, 48 gram-positive non-spore-forming rods, and 51 clostridia. beta-Lactamase production was demonstrated in 87% of the gram-negative rods but in none of the gram-positive organisms. Overall, Bay y3118 was the most active agent, with all organisms inhibited at an MIC of < or = 2.0 micrograms/ml (MICs for 50% [MIC50] and 90% [MIC90] of strains tested, 0.125 and 0.5 microgram/ml, respectively). By contrast, ciprofloxacin was much less active, with only 42% of strains susceptible at a breakpoint of 2.0 micrograms/ml (MIC50, 4.0 micrograms/ml; MIC90, 16.0 micrograms/ml). Metronidazole was active against all gram-negative rods, but 7% of peptostreptococci, 83% of gram-positive non-spore-forming rods, and 4% of non-Clostridium perfringens, non-Clostridium difficile clostridia were resistant to this agent (MICs, > 16.0 micrograms/ml). Clindamycin was active against 94% of Bacteroides, Prevotella, and Porphyromonas spp., 91% of peptostreptococci, and 100% of gram-positive non-spore-forming rods, but was active against only 70% of fusobacteria and 53% of clostridia. Cefoxitin was active against > or = 90% of all groups except the B. fragilis group and non-Propionibacterium acnes gram-positive non-spore-forming rods (both 85%) and C. difficile (20%). Significant enhancement of piperacillin by tazobactam was seen in all beta-lactamase-positive strains (99% susceptible; MIC90, 8.0 micrograms/ml), and all beta-lactamase-negative strains were susceptible to piperacillin (MIC90, 8.0 micrograms/ml). Clinical studies are required to delineate the role of Bay y3118 in the treatment of anaerobic infections. PMID:8215278

  13. Selenate Reduction to Elemental Selenium by Anaerobic Bacteria in Sediments and Culture: Biogeochemical Significance of a Novel, Sulfate-Independent Respiration

    PubMed Central

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42?, SeO32?, SO42?, and Cl? in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42? occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3?, MnO2, or autoclaving but not by SO42? or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters. PMID:16348014

  14. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro

    PubMed Central

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized > 90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production. PMID:23170956

  15. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro.

    PubMed

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized >90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production. PMID:23170956

  16. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus

    SciTech Connect

    Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C; Ivanova, N; Detter, J. Chris; Walston Davenport, Karen; Han, Cliff; Adams, Michael W. W.; Kelly, Robert M

    2011-01-01

    The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

  17. Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus?

    PubMed Central

    Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Land, Miriam L.; Hauser, Loren J.; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C.; Ivanova, Natalia; Detter, John C.; Walston-Davenport, Karen; Han, Shunsheng; Adams, Michael W. W.; Kelly, Robert M.

    2011-01-01

    The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity. PMID:21216991

  18. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  19. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences.

    PubMed

    Menge, Duncan N L; Levin, Simon A; Hedin, Lars O

    2009-10-01

    Symbiotic nitrogen (N) fixers are critical components of many terrestrial ecosystems. There is evidence that some N fixers fix N at the same rate regardless of environmental conditions (a strategy we call obligate), while others adjust N fixation to meet their needs (a strategy we call facultative). Although these strategies are likely to have qualitatively different impacts on their environment, the relative effectiveness and ecosystem-level impacts of each strategy have not been explored. Using a simple mathematical model, we determine the best facultative strategy and show that it excludes any obligate strategy (fixer or nonfixer) in our basic model. To provide an explanation for the existence of nonfixers and obligate fixers, we show that both costs of being facultative and time lags inherent in the process of N fixation can select against facultative N fixers and also produce the seemingly paradoxical patterns of sustained N limitation and N richness. Finally, we speculate on why the costs and lags may differ between temperate and tropical regions and thus whether they can explain patterns in both biomes simultaneously. PMID:19694561

  20. Facultative Lagoons. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    This instructor's guide contains materials needed to teach a two-lesson unit on the structure and components of facultative lagoons, the biological theory of their operation, and factors affecting their operation. Control testing recommendations, maintenance guidelines, and troubleshooting hints are also provided. These materials include: (1) an

  1. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.

    PubMed

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2015-09-01

    The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs. PMID:25973858

  2. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions.

    PubMed

    Kashket, E R

    1981-04-01

    Measurements of the electrochemical gradient of hydrogen ions, which gives rise to the proton motive force (PMF), were carried out with growing Streptococcus lactis and Staphylococcus aureus cells. The facultative anaerobe was chosen in order to compare the PMF of cells growing aerobically and anaerobically. It was expected that during aerobic growth the cells would have a higher PMF than during anaerobic growth, because the H+-translocating ATPase (BF0F1) operates in the direction of H+ influx and ATP synthesis during respiration, whereas under anaerobic conditions the BF0F1 hydrolyzes glycolytically generated ATP and establishes the proton gradient by extruding H+. The electrical component of the PMF, delta psi, and the chemical gradient of H+, delta pH, were measured with radiolabeled tetraphenylphosphonium and benzoate ions. In both S. lactis and S. aureus cells, the PMF was constant during the exponential phase of batch growth and decreased in the stationary phase. In both species of bacteria, the exponential-phase PMF was not affected by varying the growth rate by adding different sugars to the medium. The relative contributions of delta psi and delta pH to the PMF, however, depended on the pH of the medium. The internal pH of S. aureus was constant at pH 7.4 to 7.6 under all conditions of growth tested. Under aerobic conditions, the delta psi of exponential phase S. aureus remained fairly constant at 160 to 170 mV. Thus, the PMF was 250 to 270 mV in cells growing aerobically in media at pH 6 and progressively lower in media of higher pH, reaching 195 to 205 mV at pH 7. Under anaerobic conditions, the delta psi ranged from 100 to 120 mV in cells at pH 6.3 to 7, resulting in a PMF of 150 to 140 mV. Thus, the mode of energy metabolism (i.e., respiration versus fermentation) and the pH of the medium are the two important factors influencing the PMF of these gram-positive cells during growth. PMID:6260743

  3. An investigation into the removal of Salmonella and enteric indicator bacteria from the separated liquid fraction of raw or anaerobically digested pig manure using novel on-farm woodchip biofilters.

    PubMed

    McCarthy, G; Lawlor, P G; Carney, K N; Zhan, X; Gutierrez, M; Gardiner, G E

    2015-05-01

    The objective was to investigate the removal of Salmonella and enteric indicator bacteria from the liquid fraction of raw and anaerobically digested (AD) pig manure in woodchip biofilters over a 14 week (98 day) period. Antibiotic susceptible Salmonella Infantis was detected in one influent material (liquid fraction of raw manure) on two occasions but was not found in the effluent at any time point. Furthermore, mean coliform reductions of 56% were observed in the biofilters treating the liquid fraction of raw manure. However, a mean increase of 228% was found in those treating the liquid from AD manure, despite the fact that the microbial challenge to these biofilters was lower. In addition, relatively high coliform counts were still present in the effluent from both biofilter treatments, especially in the systems treating the liquid fraction of AD manure. However, findings for Escherichia coli and Enterococcus were more promising, with reductions observed for both treatments (10 and 18.5% for E. coli and 71 and 87% for Enterococcus). Moreover, E. coli and Enterococcus were at, or just above, the limit of detection in the final effluents. Overall, although, there are no microbial limits for discharge or washwaters, the woodchip filter effluent would appear safe for discharge to waterways or use on-farm as regards Salmonella, E. coli and Enterococcus but not coliform. In conclusion, woodchip biofilters offer potential as a low-cost sustainable novel treatment option for the removal of pathogens from the liquid fraction of pig manure. PMID:25659312

  4. Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae)

    PubMed Central

    Huang, Shengwei; Sheng, Ping; Zhang, Hongyu

    2012-01-01

    In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation. PMID:22489111

  5. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae).

    PubMed

    Huang, Shengwei; Sheng, Ping; Zhang, Hongyu

    2012-01-01

    In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation. PMID:22489111

  6. Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus.

    PubMed

    Bruce, B D; Fuller, R C; Blankenship, R E

    1982-11-01

    Photochemical activity was examined in membrane fragments and a purified membrane preparation from Chloroflexus. Flash-induced absorption difference spectroscopy strongly suggests a primary donor (P(865)) that is more similar to the P(870) bacteriochlorophyll a dimer found in the purple photosynthetic bacteria than it is to P(840) found in the anaerobic green bacteria. Redox measurements on P(865) and an early acceptor also indicate a photochemical system characteristic of the purple bacteria. The membrane preparation contains a tightly bound type c cytochrome, c(554), that is closely coupled to the reaction center as indicated by its ability to rereduce photooxidized P(865). Chloroflexus thus appears to be distinct photochemically from other families of photosynthetic bacteria and may occupy an important role in photosynthetic evolution. PMID:16593246

  7. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  8. Draft Genome Sequence of a Heterotrophic Facultative Anaerobic Thermophilic Bacterium, Ardenticatena maritima Strain 110ST

    PubMed Central

    Yoshida, Takashi; Nakamura, Ryuhei

    2015-01-01

    Ardenticatena maritima strain 110ST is a filamentous bacterium isolated from an iron-rich coastal hydrothermal field, and it is a unique isolate capable of dissimilatory iron or nitrate reduction among the members of the bacterial phylum Chloroflexi. Here, we report the draft genome sequence comprising 3,569,367bp, containing 3,355 predicted coding sequences (CDSs). PMID:26430053

  9. Physiology, biochemistry, and genetics of a pure culture of an obligatory anaerobic bacterium that utilizes 2,4,-6-trinitrotoluene (TNT) and biodegradation of RDX by pure cultures of obligatory anaerobic bacteria of the genus clostridium. Final report, 1 September 1993-31 August 1996

    SciTech Connect

    Crawford, R.L.; Crawford, D.L.

    1996-09-01

    In work supported by the US AFOSR (grant F49620-94-1-0306) we are conducting detailed biochemical and genetic studies of three strains of Clostridium bifernientans, obligatory anaerobic bacteria that appear to completely degrade a variety of nitroaromatic compounds, including 2,4,6-trinitrotoluene (TNT). We are determining the optimal physiological conditions for the degradative activities of C. bifermentans strains; and identifying and characterizing enzymes and genes involved in the biotransformation of nitroaromatic compounds by C. bifermentans. In our AASERT supplemental grant(AFOSR-93-1-O464) we expanded these goals to the explosive RDX (1,3,5-triaza-1, 3,5-trinitrocyclohexane). The AASERT grant funded two graduate students, who characterized the ability of C. bifermentans to degrade RDX (Regan, K. N., and R.L. Crawford, 1994. Biotechnol. Kett. 16: 1081- 1086), and prepared both genomic and plasmid DNA libraries from C. bifermentans. This genetic work will accelerate our progress toward our goal of characterizing the genetics of TNT/RDx degradation by our clostridia (K. Diedrich, M.S. thesis, University of Idaho; in preparation).

  10. Anaerobic Infections

    MedlinePLUS

    ... doctor may treat it with intravenous antibiotics (eg, penicillin, ampicillin) for 4 to 6 weeks, followed by ... In most cases, the bacteria are resistant to penicillin drugs. If an abscess has formed, it may ...

  11. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  12. Parasitoids as vectors of facultative bacterial endosymbionts in aphids.

    PubMed

    Gehrer, Lukas; Vorburger, Christoph

    2012-08-23

    Heritable bacterial endosymbionts play an important role in aphid ecology. Sequence-based evidence suggests that facultative symbionts such as Hamiltonella defensa or Regiella insecticola also undergo horizontal transmission. Other than through male-to-female transfer during the sexual generation in autumn, the routes by which this occurs remain largely unknown. Here, we tested if parasitoids or ectoparasitic mites can act as vectors for horizontal transfer of facultative symbionts. Using symbiont-specific primers for diagnostic PCR, we demonstrate for the first time, to our knowledge, that parasitoids can indeed transfer H. defensa and R. insecticola by sequentially stabbing infected and uninfected individuals of their host, Aphis fabae, establishing new, heritable infections. Thus, a natural route of horizontal symbiont transmission is also available during the many clonal generations of the aphid life cycle. No transmissions by ectoparasitic mites were observed, nor did parasitoids that emerged from symbiont-infected aphids transfer any symbionts in our experiments. PMID:22417790

  13. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater.

    PubMed

    Khanal, Samir Kumar; Huang, Ju-Chang

    2006-04-01

    A new technique for sulfide control was investigated in an upflow-anaerobic filter (UAF) treating high-strength, sulfate-rich wastewater. The technique used periodic oxygen injection using oxidation-reduction potential (ORP) as a controlling parameter to regulate oxygen injection. The UAF was operated at a constant influent total-organic carbon of 6740 mg/L but with different influent sulfates of 1000, 3000, and 6000 mg/L. At 1000 and 3000 mg/L influent sulfates, the produced sulfide did not impose any inhibition to methane-producing bacteria (MPB). However, at 6000 mg/L influent sulfate, the produced dissolved sulfide of 804 mg S/L (free sulfide = 280 mg S/L) severely inhibited the methanogenesis, but not the sulfidogenesis. Upon oxygen injection at elevated ORP of -265 mV, sulfides were almost completely eliminated with a concomitant improvement in methane yield by 46%. If oxygenation was excessive because of an oversetting of ORP, the excess oxygen could be used rapidly by facultative heterotrophs, thereby protecting the MPB from oxygen stress. Regarding online sulfide oxidation, it was found that the biogas and injected oxygen needed to pass through an aqueous layer containing trace metals, which were found to have a significant catalytic effect on abiotic sulfide oxidation. PMID:16749308

  14. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation. PMID:19524279

  15. A facultative endosymbiont in aphids can provide diverse ecological benefits.

    PubMed

    Heyworth, E R; Ferrari, J

    2015-10-01

    Ecologically important traits of insects are often affected by facultative bacterial endosymbionts. This is best studied in the pea aphid Acyrthosiphon pisum, which is frequently infected by one or more of eight facultative symbiont species. Many of these symbiont species have been shown to provide one ecological benefit, but we have little understanding of the range of effects that a single strain can have. Here, we describe the phenotypes conferred by three strains of the recently discovered bacterium known as X-type (Enterobacteriaceae), each in their original aphid genotype which also carries a Spiroplasma symbiont. All comparisons are made between aphids that are coinfected with Spiroplasma and X-type and aphids of the same genotype that harbour only Spiroplasma. We show that in all cases, infection with X-type protects aphids from the lethal fungal pathogen Pandora neoaphidis, and in two cases, resistance to the parasitoid Aphidius ervi also increases. X-type can additionally affect aphid stress responses--the presence of X-type increased reproduction after the aphids were heat-stressed. Two of the three strains of X-type are able to provide all of these benefits. Under benign conditions, the aphids tended to suffer from reduced fecundity when harbouring X-type, a mechanism that might maintain intermediate frequencies in field populations. These findings highlight that a single strain of a facultative endosymbiont has the potential to provide diverse benefits to its aphid host. PMID:26206380

  16. Evolutionary genetic consequences of facultative sex and outcrossing.

    PubMed

    Hartfield, M

    2016-01-01

    Explaining the selective forces that underlie different reproductive modes forms a major part of evolution research. Many organisms are facultative sexuals, with the ability to reproduce both sexually and asexually. Reduced sequencing costs means it is now possible to start investigating genome sequences of a wider number of these organisms in depth, but teasing apart the genetic forces underlying the maintenance of facultative sexual reproduction remains a challenge. An analogous problem exists when determining the genetic consequences of a degree of outcrossing (and recombination) in otherwise self-fertilizing organisms. Here, I provide an overview of existing research on the evolutionary basis behind different reproductive modes, with a focus on explaining the population genetic effects favouring low outcrossing rates in either partially selfing or asexual species. I review the outcomes that both self-fertilization and asexuality have on either purging deleterious mutations or fixing beneficial alleles, and what empirical data exist to support these theories. In particular, a greater application of mathematical models to genomic data has provided insight into the numerous effects that transitions to self-fertilization from outcrossing have on genetic architecture. Similar modelling approaches could be used to determine the forces shaping genetic diversity of facultative sexual species. Hence, a further unification of mathematical models with next-generation sequence data will prove important in exploring the genetic influences on reproductive system evolution. PMID:26431643

  17. Role of Bacteria, Archaea and fungi involved in methane release

    NASA Astrophysics Data System (ADS)

    Beckmann, Sabrina; Krger, Martin; Engelen, Bert; Cypionka, Heribert

    2010-05-01

    Abandoned coal mines release substantial amounts of methane which is largely biogenic. The aim of this study was to understand the microbial processes involved in mine-gas formation in two abandoned coal mines in Germany. Therefore, untreated coal- and mine timber samples and anaerobic enrichment cultures derived from them were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). Original samples and enrichment cultures harboured a broad spectrum of facultative aerobes, fermenters, nitrate- and sulfate reducers belonging to all five groups (? - ?) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi. Only two groups of Archaea (representing 0.01% of the bacterial abundance) were detected. Based on specific 16 S-rRNA primer sets Methanosarcinales comprised 34% of these, corresponding to 45% detected with primers specific for the mcrA gene. The second group (55%) were uncultivated Crenarchaeota with an unknown metabolism. The detected Fungi (Ascomycetes and Basidiomycetes) were typical wood degraders. To get a perception ofdevelop a metabolic model for the ongoing processes, we linked the detected phylogenetic groups to possible activities promoting methane release.

  18. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria.

    PubMed

    Iauk, L; Lo Bue, A M; Milazzo, I; Rapisarda, A; Blandino, G

    2003-06-01

    This study was performed to evaluate the antibacterial activity of Althaea officinalis L. roots, Arnica montana L. flowers, Calendula officinalis L. flowers, Hamamelis virginiana L. leaves, Illicium verum Hook. fruits and Melissa officinalis L. leaves, against anaerobic and facultative aerobic periodontal bacteria: Porphyromonas gingivalis, Prevotella spp., Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peptostreptococcus micros and Actinomyces odontolyticus. The methanol extracts of H. virginiana and A. montana and, to a lesser extent, A. officinalis were shown to possess an inhibiting activity (MIC < or = 2048 mg/L) against many of the species tested. In comparison, M. officinalis and C. officinalis extracts had a lower inhibiting activity (MIC > or = 2048 mg/L) against all the tested species with the exception of Prevotella sp. Illicium verum methanol extract was not very active though it had a particular good activity against E. corrodens. The results suggest the use of the alcohol extracts of H. virginiana, A. montana and A. officinalis for topical medications in periodontal prophylactics. PMID:12820224

  19. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  20. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.

    PubMed

    Hartmann, Tobias; Schwanhold, Nadine; Leimkhler, Silke

    2015-09-01

    The global carbon cycle depends on the biological transformations of C1 compounds, which include the reductive incorporation of CO?into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO?from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO?and H?. However, selected enzymes were identified to act as CO?reductases, which are able to reduce CO?to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H?for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. PMID:25514355

  1. [Advenella kashmirensis subsp. methylica PK1, a facultative methylotroph from carex rhizosphere].

    PubMed

    Poroshina, M N; Doronina, N V; Kaparullina, E N; Trotsenko, Iu A

    2015-01-01

    A strain (PK1) of facultative methylobacteria growing on methanol as a carbon and energy source was isolated from carex rhizosphere (Pamukkale National Park, Turkey). The cells were nonmotile gram-negative rods propagating by binary fission. The organism was a strict anaerobe, oxidase- and catalase-positive. Optimal growth occurred at 29C, pH 8.0-8.5, and 0.5% NaCl; no growth occurred at 2% NaCl. The organism used the ribulose bisphosphate pathway of C1 assimilation. Predominant fatty acids were 11-octodecenoic (18:1?7) and cis-hexadecenoic (16:1?7c). Phosphatidylethanolamine and diphosphatidylglycerol were the dominant phospholipids. Q8 was the main ubiquinone. DNA G+C content was 55.4 mol % (mp). Sequencing of the 16S rRNA gene revealed that strain PK1 belonged to the genus Advenella with 98.8 and 99.2% similarity to the type strains A. incenata CCUG 45225T and A. kashmirensis WT001T, respectively. DNA-DNA homology of strain PK1 and A. kashmirensis WT001T was 70%. While MALDI analysis confirmed their close clusterization, RAPD analysis revealed the differences between strain PKI and other Advenella strains. Based on its geno- and phenotypic properties, the isolate PK1 was classified as A. kashmirensis subsp. methylica PK1 (VKM-B 2850 = DSM 27514), the first known methylotroph of the genus Advenella. PMID:25916151

  2. Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography

    SciTech Connect

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, J.Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry,Alison; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, M. Pilar; Ggoltsman, Eugene; Huang, Ying; Kopp, Olga; Labarre,Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez,Michele; Mastronunzio, Juliana E.; Mullin, Beth; Niemann, James; Pujic,Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt,Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde,Claudio; Wall, Luis; Wang, Ying; Medigue, Claudine; Benson, David R.

    2006-02-01

    Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation of the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.

  3. Invited review: anaerobic fermentation of dairy food wastewater.

    PubMed

    Hassan, A N; Nelson, B K

    2012-11-01

    Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy food waste. PMID:22981583

  4. One of Two hemN Genes in Bradyrhizobium japonicum Is Functional during Anaerobic Growth and in Symbiosis

    PubMed Central

    Fischer, Hans-Martin; Velasco, Leonardo; Delgado, Maria J.; Bedmar, Eulogio J.; Schären, Simon; Zingg, Daniel; Göttfert, Michael; Hennecke, Hauke

    2001-01-01

    Previously, we screened the symbiotic gene region of the Bradyrhizobium japonicum chromosome for new NifA-dependent genes by competitive DNA-RNA hybridization (A. Nienaber, A. Huber, M. Göttfert, H. Hennecke, and H. M. Fischer, J. Bacteriol. 182:1472–1480, 2000). Here we report more details on one of the genes identified, a hemN-like gene (now called hemN1) whose product exhibits significant similarity to oxygen-independent coproporphyrinogen III dehydrogenases involved in heme biosynthesis in facultatively anaerobic bacteria. In the course of these studies, we discovered that B. japonicum possesses a second hemN-like gene (hemN2), which was then cloned by using hemN1 as a probe. The hemN2 gene maps outside of the symbiotic gene region; it is located 1.5 kb upstream of nirK, the gene for a Cu-containing nitrite reductase. The two deduced HemN proteins are similar in size (445 and 450 amino acids for HemN1 and HemN2, respectively) and share 53% identical (68% similar) amino acids. Expression of both hemN genes was monitored with the help of chromosomally integrated translational lacZ fusions. No significant expression of either gene was detected in aerobically grown cells, whereas both genes were strongly induced (≥20-fold) under microaerobic or anaerobic conditions. Induction was in both cases dependent on the transcriptional activator protein FixK2. In addition, maximal anaerobic hemN1 expression was partially dependent on NifA, which explains why this gene had been identified by the competitive DNA-RNA hybridization approach. Strains were constructed carrying null mutations either in individual hemN genes or simultaneously in both genes. All mutants showed normal growth in rich medium under aerobic conditions. Unlike the hemN1 mutant, strains lacking a functional hemN2 gene were unable to grow anaerobically under nitrate-respiring conditions and largely failed to fix nitrogen in symbiosis with the soybean host plant. Moreover, these mutants lacked several c-type cytochromes which are normally detectable by heme staining of proteins from anaerobically grown wild-type cells. Taken together, our results revealed that B. japonicum hemN2, but not hemN1, encodes a protein that is functional under the conditions tested, and this conclusion was further corroborated by the successful complementation of a Salmonella enterica serovar Typhimurium hemF hemN mutant with hemN2 only. PMID:11157943

  5. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  6. Photoenhanced anaerobic digestion of organic acids

    SciTech Connect

    Weaver, P.F.

    1989-08-25

    A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

  7. Photoenhanced anaerobic digestion of organic acids

    SciTech Connect

    Weaver, P.F.

    1990-04-24

    This patent describes a process for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  8. A novel application of an anaerobic membrane process in wastewater treatment.

    PubMed

    You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

    2005-01-01

    The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

  9. Anaerobes: a new aetiology in cavitary pneumoconiosis.

    PubMed Central

    del Campo, J M; Hitado, J; Gea, G; Colmeiro, A; Lanza, A M; Muñoz, J A; Mosquera, J A

    1982-01-01

    The role of mycobacteria in the cavitation of large pneumoconiotic masses is well established. In other cases softness is attributed to an ischaemic or aseptic necrosis. Five cases are described in which cavitation of the pulmonary masses was caused by anaerobic bacteria, confirmed by the growth of such bacterial in cultures after transtracheal or transpleural puncture. Repeated cultures for mycobacteria gave negative results. Two cases were acute, having serious complications such as bronchopleural fistula, empyema, and serious respiratory insufficiency. The role of anaerobes in cavitary pneumoconiosis has not been recognised previously, probably because of the special conditions required to culture these bacteria and the infrequent use of transtracheal puncture in the diagnosis of this entity. The prevalence of anaerobes as agents capable of cavitating pneumoconiotic masses remains to be established. Images PMID:6128024

  10. Facultative parthenogenesis in a critically endangered wild vertebrate.

    PubMed

    Fields, Andrew T; Feldheim, Kevin A; Poulakis, Gregg R; Chapman, Demian D

    2015-06-01

    Facultative parthenogenesis - the ability of sexually reproducing species to sometimes produce offspring asexually - is known from a wide range of ordinarily sexually reproducing vertebrates in captivity, including some birds, reptiles and sharks [1-3]. Despite this, free-living parthenogens have never been observed in any of these taxa in the wild, although two free-living snakes were recently discovered each gestating a single parthenogen - one copperhead (Agkistrodon contortrix) and one cottonmouth (Agkistrodon piscivorus) [1]. Vertebrate parthenogens are characterized as being of the homogametic sex (e.g., females in sharks, males in birds) and by having elevated homozygosity compared to their mother [1-3], which may reduce their viability [4]. Although it is unknown if either of the parthenogenetic snakes would have been carried to term or survived in the wild, facultative parthenogenesis might have adaptive significance [1]. If this is true, it is reasonable to hypothesize that parthenogenesis would be found most often at low population density, when females risk reproductive failure because finding mates is difficult [5]. Here, we document the first examples of viable parthenogens living in a normally sexually reproducing wild vertebrate, the smalltooth sawfish (Pristis pectinata). We also provide a simple approach to screen any microsatellite DNA database for parthenogens, which will enable hypothesis-driven research on the significance of vertebrate parthenogenesis in the wild. PMID:26035783

  11. Horizontal transfer of facultative endosymbionts is limited by host relatedness.

    PubMed

    ?ukasik, Piotr; Guo, Huifang; van Asch, Margriet; Henry, Lee M; Godfray, H Charles J; Ferrari, Julia

    2015-10-01

    Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts. PMID:26332792

  12. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  13. Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts.

    PubMed

    Bressan, Alberto; Sémétey, Olivier; Arneodo, Joel; Lherminier, Jeannine; Boudon-Padieu, Elisabeth

    2009-11-01

    The planthopper Pentastiridius leporinus (Hemiptera: Cixiidae) is the major vector of a nonculturable plant-pathogenic gamma-3 proteobacterium associated with a disease of sugar beet called syndrome "basses richesses" (SBR). The bacterium, here called SBR bacterium, belongs to the Arsenophonous clade, which includes mostly insect-associated facultative symbionts. Assays using field-collected planthopper nymphs and adults were carried out to investigate the interaction of SBR bacterium with the insect vector and its transmission to sugar beet. Field-collected planthoppers showed a percentage of infection that averaged from 57% for early instar nymphs to near 100% for late instar nymphs and emerging adults. SBR bacterium was persistently transmitted by emerging adults. Root-feeding nymphs were able to inoculate SBR bacterium to sugar beet. The bacterium was transmitted vertically from infected parental females to their respective offspring with an average frequency of 30%. Real-time polymerase chain reaction assays on dissected planthopper internal organs revealed a high concentration of the bacterium within male and female reproductive organs and within female salivary glands. SBR-like bacteria were observed through transmission electron microscopy in the cytoplasm of different insect organs including ovaries, salivary glands, and guts with no evidence for cytological disorders. SBR bacterium seems to share common ecological traits of insect-transmitted plant pathogens and facultative insect endosymbionts suggesting it may have evolved primarily as an insect-associated bacterium. PMID:19821733

  14. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste.

    PubMed

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-04-01

    Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O2/L(R)-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively. PMID:23290270

  15. Rapid fluorescence-based measurement of toxicity in anaerobic digestion.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Xiao, Yeyuan; Steele, Terry W J; Stuckey, David C

    2015-05-15

    A rapid fluorescence measurement based on resazurin reduction was developed and applied for the detection of toxicants/inhibitors to anaerobic digestion metabolism. By initially using a pure facultative anaerobic strain, Enterococcus faecalis as a model organism, this technique proved to be fast and sensitive when detecting the model toxicant, pentachlorophenol (PCP). The technique revealed significant metabolic changes in Enterococcus faecalis with a PCP spike ranging from 0.05 to 100 mg/L, and could detect PCP's toxicity to E. faecalis at a concentration of only 0.05 mg/L in 8 min. Furthermore, by extending this technique to a mixed anaerobic sludge, not only could the effect of 0.05-100 mg/L PCP be determined on anaerobic digestion metabolism within 10 min, but also its rate of biogas production. These results suggest that a resazurin-based fluorescence measurement can potentially be incorporated into a microfluidic system to develop a biosensor for the real-time monitoring, control and early warning of toxicant/inhibitor loads in the influent to an anaerobic digestion system. PMID:25768985

  16. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be...

  17. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be...

  18. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be...

  19. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be...

  20. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK..., Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  1. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production. PMID:26476162

  2. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    PubMed

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  3. Transcriptome and Physiological Responses to Hydrogen Peroxide of the Facultatively Phototrophic Bacterium Rhodobacter sphaeroides

    PubMed Central

    Zeller, Tanja; Moskvin, Oleg V.; Li, Kuanyu; Klug, Gabriele; Gomelsky, Mark

    2005-01-01

    The transcriptome responses to hydrogen peroxide, H2O2, of the facultatively phototrophic bacterium Rhodobacter sphaeroides grown under semiaerobic conditions were investigated. At 7 min after the addition of 1 mM H2O2, the expression of approximately 9% of all genes (total, 394) was changed reliably by at least twofold. At 30 min, the number of genes (total, 88) and the magnitude of expression changes were much lower, indicating rapid recovery from stress. Two types of responses were observed: (i) an H2O2 stress response per se and (ii) a shift to high-oxygen metabolism. The former response involved the upregulation of genes for H2O2 detoxification, protein folding and proteolysis, DNA damage repair, iron transport and storage, iron-sulfur cluster repair, and the downregulation of genes for protein translation, motility, and cell wall and lipopolysaccharide synthesis. The shift to high-oxygen metabolism was evident from the differential regulation of genes for aerobic electron transport chain components and the downregulation of tetrapyrrole biosynthesis and photosystem genes. The abundance of photosynthetic complexes was decreased upon prolonged exposure of R. sphaeroides to H2O2, thus confirming the physiological significance of the transcriptome data. The regulatory pathways mediating the shift to high-oxygen metabolism were investigated. They involved the anaerobic activator FnrL and the antirepressor-repressor AppA-PpsR system. The transcription of FnrL-dependent genes was down at 7 min, apparently due to the transient inactivation by H2O2 of the iron-sulfur cluster of FnrL. The transcription of the AppA-PpsR-dependent genes was down at 30 min, apparently due to the significant decrease in appA mRNA. PMID:16237007

  4. Isolation and culture of anammox bacteria adapted to livestock wastewater environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to develop process applications for anaerobic ammonium oxidation (anammox) bacteria acclimated to animal wastewater conditions using microbial immobilization techniques. In the anammox reaction, under anaerobic and autotrophic conditions, ammonium (NH4+) serves as the electron...

  5. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium.

    PubMed

    Huber, H; Stetter, K O

    1990-02-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate H5 is designated as the type strain (DSM 5495). PMID:16348110

  6. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium

    PubMed Central

    Huber, Harald; Stetter, Karl O.

    1990-01-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate H5 is designated as the type strain (DSM 5495). Images PMID:16348110

  7. Fermentation of polysaccharides by Klebsiella and other facultative bacilli

    SciTech Connect

    Ochuba, G.U.; Von Riesen, V.L.

    1980-05-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebseilla oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carraggeenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and pectobacterium (38%). pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides. These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant.

  8. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37°C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  9. Culturable heterotrophic bacteria associated with healthy and bleached scleractinian Madracis decactis and the fireworm Hermodice carunculata from the remote St. Peter and St. Paul Archipelago, Brazil.

    PubMed

    Moreira, Ana Paula B; Tonon, Luciane A Chimetto; Pereira, Cecilia do Valle P; Alves, Nelson; Amado-Filho, Gilberto M; Francini-Filho, Ronaldo Bastos; Paranhos, Rodolfo; Thompson, Fabiano L

    2014-01-01

    We report on the first characterization of the culturable heterotrophic bacteria of the scleractinian Madracis decactis. In addition, we characterized the culturable bacteria associated with the fireworm Hermodice carunculata, observed predating partially bleached coral colonies. Our study was carried out in the remote St. Peter and St. Paul Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. We constituted a 403 isolates collection and subsequently characterized it by means of pyrH and 16S rRNA partial sequences. We identified Photobacterium, Bacillus, and Vibrio species as members of the culturable microbiota of healthy M. decactis. V. campbellii, V. harveyi, V. communis, and V. maritimus were the most commonly found Vibrio species in healthy corals, representing more than 60% of all vibrio isolates. Most of the vibrios isolated from the fireworm's tissues (n=143;>90%) were identified as V. shiloi. However, we did not recover V. shiloi from bleached M. decactis. Instead, we isolated V. communis, a novel Photobacterium species, Bacillus, Kocuria, and Pseudovibrio, suggesting a possible role of other facultative anaerobic bacteria and/or environmental features (such as water quality) in the onset of bleaching in SPSPA's M. decactis. PMID:23979060

  10. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  11. Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH06.

    PubMed

    Wang, Genyu; Wu, Pengfei; Liu, Ya; Mi, Shuo; Mai, Shuai; Gu, Chunkai; Wang, Gehua; Liu, Hongjuan; Zhang, Jianan; Brresen, Brre Tore; Mellemsther, Evy; Kotlar, Hans Kristian

    2015-10-01

    Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation. PMID:26272091

  12. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  13. Anaerobic saccharolytic bacterial adhesion to raw starch granules

    SciTech Connect

    Wang, H.W.; Chiou, T.W.; Hsu, J.P.

    1987-06-01

    The experiment of bacteria adhesion onto starch granules is conducted. It is found that anaerobic saccharolytic bacteria have the highest adhesion ability in their growth and initial stage of stationary phase. Starch granules with a low crystallinity, low bulk density, and high water-holding capacity have a high adhesion capacity. The optimum temperature for both bacterial growth and their adhesion is 30 degrees C. The optimum pH for the bacterial adhesion range from 5.0 to 6.5. Anaerobic conditions cause an appreciable decrease in percentage of adhesion. The percentage of adhesion is not sensitive to the type of soluble saccharide on which bacteria were grown. (Refs. 19).

  14. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  15. Radical enzymes in anaerobes.

    PubMed

    Buckel, Wolfgang; Golding, Bernard T

    2006-01-01

    This review describes enzymes that contain radicals and/or catalyze reactions with radical intermediates. Because radicals irreversibly react with dioxygen, most of these enzymes occur in anaerobic bacteria and archaea. Exceptions are the families of coenzyme B(12)- and S-adenosylmethionine (SAM)-dependent radical enzymes, of which some members also occur in aerobes. Especially oxygen-sensitive radical enzymes are the glycyl radical enzymes and 2-hydroxyacyl-CoA dehydratases. The latter are activated by an ATP-dependent one-electron transfer and act via a ketyl radical anion mechanism. Related enzymes are the ATP-dependent benzoyl-CoA reductase and the ATP-independent 4-hydroxybenzoyl-CoA reductase. Ketyl radical anions may also be generated by one-electron oxidation as shown by the flavin-adenine-dinucleotide (FAD)- and [4Fe-4S]-containing 4-hydroxybutyryl-CoA dehydratase. Finally, two radical enzymes are discussed, pyruvate:ferredoxin oxidoreductase and methane-forming methyl-CoM reductase, which catalyze their main reaction in two-electron steps, but subsequent electron transfers proceed via radicals. PMID:16704345

  16. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  17. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.

    PubMed

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater. PMID:21216490

  18. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-10-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  19. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  20. The Persistence of Facultative Parthenogenesis in Drosophila albomicans

    PubMed Central

    Chang, Ching-Ho; Fang, Shu; Chang, Hwei-yu

    2014-01-01

    Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species' range, consistent with models of geographical parthenogenesis. PMID:25415200

  1. Fluctuations in oxygen influence facultative endothermy in bumblebees.

    PubMed

    Dzialowski, Edward M; Tattersall, Glenn J; Nicol, Stewart C; Frappell, Peter B

    2014-11-01

    Bumblebees are facultative endotherms, having the ability to elevate thorax temperature above ambient temperature by elevating metabolism. Here, we investigated the influence of hypoxia on metabolic demands and thermoregulatory capabilities of the bumblebee Bombus terrestris. We measured thorax temperature, rates of oxygen consumption and carbon dioxide production, and abdominal pumping rates of bees randomly exposed to oxygen levels of 20, 15, 10 and 5 kPa at 26C. Under normoxia, bumblebees maintained an elevated mean thorax temperature of 35.5C. There was no significant change in thorax temperature at 15 kPa O2 (33.4C). Mean thorax temperature decreased significantly at 10 kPa O2 (31.6C) and 5 kPa O2 (27.3C). Bees were able to maintain an elevated metabolic rate at 15 and 10 kPa O2. In normoxia, endothermic bees exhibited periods of rapid abdominal pumping (327 min(-1)) interspaced by periods of no abdominal pumping. At 10 kPa O2, abdominal pumping rate decreased (255 min(-1)) but became more continuous. Upon exposure to 5 kPa, metabolic rate and abdominal pumping rate (152 min(-1)) decreased, although the animals continued abdominal pumping at the reduced rate throughout the exposure period. Bumblebees are able to meet the energetic demands of endothermy at 15 kPa O2, but become compromised at levels of 10 kPa O2 and below. PMID:25355849

  2. The genome sequence of the facultative intracellular pathogen Brucella melitensis

    PubMed Central

    DelVecchio, Vito G.; Kapatral, Vinayak; Redkar, Rajendra J.; Patra, Guy; Mujer, Cesar; Los, Tamara; Ivanova, Natalia; Anderson, Iain; Bhattacharyya, Anamitra; Lykidis, Athanasios; Reznik, Gary; Jablonski, Lynn; Larsen, Niels; D'Souza, Mark; Bernal, Axel; Mazur, Mikhail; Goltsman, Eugene; Selkov, Eugene; Elzer, Philip H.; Hagius, Sue; O'Callaghan, David; Letesson, Jean-Jacques; Haselkorn, Robert; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes abortion in goats and sheep and Malta fever in humans. The genome of B. melitensis strain 16M was sequenced and found to contain 3,294,935 bp distributed over two circular chromosomes of 2,117,144 bp and 1,177,787 bp encoding 3,197 ORFs. By using the bioinformatics suite ERGO, 2,487 (78%) ORFs were assigned functions. The origins of replication of the two chromosomes are similar to those of other α-proteobacteria. Housekeeping genes, including those involved in DNA replication, transcription, translation, core metabolism, and cell wall biosynthesis, are distributed on both chromosomes. Type I, II, and III secretion systems are absent, but genes encoding sec-dependent, sec-independent, and flagella-specific type III, type IV, and type V secretion systems as well as adhesins, invasins, and hemolysins were identified. Several features of the B. melitensis genome are similar to those of the symbiotic Sinorhizobium meliloti. PMID:11756688

  3. Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators.

    PubMed

    Cotton, Clark J; Harlow, Henry J

    2010-01-01

    Smooth and skeletal muscle changes were compared from overwintering white-tailed prairie dogs, spontaneous hibernators that undergo regular, low-temperature torpor bouts, and black-tailed prairie dogs, facultative hibernators that use sporadic, moderate-temperature torpor bouts. The objectives were to assess the abilities of these two species with dramatically different torpor patterns (1) to conserve skeletal muscle morphology, protein, and strength and (2) to use labile protein in the small intestine and liver during the winter season of reduced activity and food intake. Mass and protein concentration of the extensor digitorum longus (EDL), soleus, liver, and small intestine, as well as skeletal muscle strength and fiber morphology for the EDL and soleus, were compared before and after hibernation in both species. Both species appeared to be similar to overwintering black bears and underwent very little strength and protein loss, as compared with euthermic models of immobility and long-term fasting. Although the two species used vastly different hibernation strategies, none of the changes in parameters related to muscle atrophy and labile-protein use during the hibernation season differed significantly between them. Therefore, it appears that regardless of the phenotypic expressions of hibernation, the outcome is the conservation of skeletal muscle. PMID:20337528

  4. Molecular tools to track bacteria responsible for fuel deterioration and microbiologically influenced corrosion.

    PubMed

    Suflita, Joseph M; Aktas, Deniz F; Oldham, Athenia L; Perez-Ibarra, Beatriz Monica; Duncan, Kathleen

    2012-01-01

    Investigating the susceptibility of various fuels to anaerobic biodegradation has become complicated with the recognition that the fuels themselves are not sterile. Bacterial DNA could be obtained when various fuels were filtered through a hydrophobic teflon (0.22 ?m) membrane filter. Bacterial 16S rRNA genes from these preparations were PCR amplified, cloned, and the resulting libraries sequenced to identify the fuel-borne bacterial communities. The most common sequence, found in algal- and camelina-based biofuels as well as in ultra-low sulfur diesel (ULSD) and F76 diesel, was similar to that of a Tumebacillus. The next most common sequence was similar to Methylobacterium and was found in the biofuels and ULSD. Higher level phylogenetic groups included representatives of the Firmicutes (Bacillus, Lactobacillus and Streptococcus), several Actinobacteria, Deinococcus-Thermus, Chloroflexi, Cyanobacteria, Bacteroidetes, Alphaproteobacteria (Methylobacterium and Sphingomonadales), Betaproteobacteria (Oxalobacteraceae and Burkholderiales) and Deltaproteobacteria. All of the fuel-associated bacterial sequences, except those obtained from a few facultative microorganisms, were from aerobes and only remotely affiliated with sequences that resulted from anaerobic successional events evident when ULSD was incubated with a coastal seawater and sediment inoculum. Thus, both traditional and alternate fuel formulations harbor a characteristic microflora, but these microorganisms contributed little to the successional patterns that ultimately resulted in fuel decomposition, sulfide formation and metal biocorrosion. The findings illustrate the value of molecular approaches to track the fate of bacteria that might come in contact with fuels and potentially contribute to corrosion problems throughout the energy value chain. PMID:22978494

  5. Anaerobes in genitourinary infections in men.

    PubMed Central

    Masfari, A N; Kinghorn, G R; Duerden, B I

    1983-01-01

    Urethral and sub-preputial swabs from 150 men were examined. There was a strong association between the isolation of anaerobic bacteria, particularly Bacteroides spp, and a clinical diagnosis of balanoposthitis, non-specific urethritis (NSU), or both. Aerobic bacteria formed the predominant flora in 28 healthy controls whereas anaerobes were predominant in specimens from 79 patients with balanoposthitis, from 24 with NSU, and from 19 with both. Bacteroides spp were the commonest isolates in all patient groups; B asaccharolyticus, B melaninogenicus ss intermedius, B ureolyticus, and B bivius were the most common species. The results obtained with the two swabs were identical except that Gardnerella vaginalis was isolated from the urethral swab only in five patients. PMID:6871653

  6. Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions.

    PubMed

    Remde, A; Debus, R

    1996-04-01

    The "ready biodegradability" of three fluorinated surfactants was determined under aerobic and anaerobic conditions. Surfactant 1, a solution of a fluorinated surfactant in water, was easily degradable under both aerobic and anaerobic conditions during the incubation periods of 28 and 60 days, respectively. Surfactant 2, a nonionic fluorinated surfactant, was degraded under aerobic conditions in a range of 35-77% during 28 days depending on the source of activated sludge. Aerobic degradation was inhibited by the nitrification-inhibitor dicyandiamide indicating that ammonium oxidizing bacteria may play a role in degradation of surfactant 2. Under anaerobic conditions surfactant 2 was not degraded. Surfactant 3, an anionic fluorinated surfactant, was degraded neither under aerobic nor under anaerobic conditions. Under anaerobic conditions, surfactant 3 inhibited the methane production rate of sludge from a digester. The EC50, i.e. the concentration of surfactant 3 that inhibited 50% of methanogenesis, was determined at 160 mg/l. PMID:8653387

  7. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

    PubMed

    Winter, Klaus; Holtum, Joseph A M

    2014-07-01

    Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM. PMID:24642847

  8. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum

    SciTech Connect

    David E. Cummings; Scott Fendorf; Rajesh K. Sani; Brent M. Peyton; Timothy S. Magnuson

    2007-01-01

    The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 M Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and was inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.

  9. Application of enzymes in anaerobic digestion.

    PubMed

    Bochmann, G; Herfellner, T; Susanto, F; Kreuter, F; Pesta, G

    2007-01-01

    Owing to the very low economic value of brewer's spent grains, its utilisation for biogas production is very promising. The hydrolysis of ligno-cellulose is the rate limiting step in anaerobic digestion. Enzymatic pre-treatment promotes the hydrolysis of ligno-cellulose, breaking it down to lower molecular weight substances which are ready to be utilised by the bacteria. A cheap raw multi-enzyme produced by a solid state fermentation (SSF) process is a good substitute for expensive conventional enzyme. The SSF enzyme application to spent grain has been investigated by carrying out enzymatic solubility tests, hydrolytic experiments and two-step anaerobic fermentation of spent grain. Gas chromatograph analysis was conducted to quantify fatty acids concentrations, while CH(4), CO(2), O(2), H(2) and H(2)S were measured to determine biogas quality by means of a gas analyser. DS, oDS, pH were also measured to analyse the anaerobic digestion. The result shows that enzyme application promotes the hydrolysis of ligno-cellulose, indicated by higher enzymatic solubility and fatty acid concentration in a hydrolytic bioreactor. Moreover, biogas production is also increased. The quality of the gases produced is also enhanced. Since the anaerobic digestion can be operated in a stable performance, it can also be concluded that SSF enzyme is compatible with anaerobic digestion. PMID:18048974

  10. Application of the two coupled models for water quality management: facultative pond cum constructed wetland models

    NASA Astrophysics Data System (ADS)

    Mashauri, D. A.; Kayombo, S.

    Recent work has emphasized the potential importance of the constructed wetland systems for purification of effluents from secondary biological treatment plants for prevention of pollution to the receiving water bodies. A model for transformation of organic carbon in facultative pond (FP) was formulated and was coupled with a model of organic carbon transformation in the constructed wetland (CW) for downstream water resources management. The main essence of coupling the model was to have simultaneous simulation of PFP and CW processes. Simultaneous run of the two models imply that the disturbance on parameters in PFP will have a direct effect on CW processes. The model was formulated on the basis fundamental principle that the growth of active biomass in the system defines the transformation of organic carbon. The growth rate of microorganisms was model based on the Monod kinetic equation. The forcing functions to the model were formulated based on multiplicative function. The removal of organic carbon in the FP based on the unfiltered sample was 66% with an average concentration of 206 mg COD/l in the effluent. The removal of organic carbon in the CW was 87.5% with an average concentration of 40 mg COD/l in the effluent. The overall performance of the coupled model was 93%. The main processes of organic carbon removal in the FP and CW were due to uptake by heterotrophic bacteria followed by oxidation. It was found that 80% of the total organic carbon in the CW was due to the biological growth. Oxidation of organic carbon in the PFP was a source of high growth of algae. The constants and coefficients obtained after validation of the model reflect the simultaneous performance of the coupled model of PFP and CW.

  11. Photoproduction of H2 from Cellulose by an Anaerobic Bacterial Coculture

    PubMed Central

    Odom, James M.; Wall, Judy D.

    1983-01-01

    Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves molecular hydrogen by the nitrogenase system of R. capsulata with cellulose as the sole carbon source. In coculture, the hydrogenase-negative mutant produced 4.6 to 6.2 mol of H2 per mol of glucose equivalent, compared with 1.2 to 4.3 mol for the wild type. PMID:16346269

  12. Photoproduction of H/sub 2/ from cellulose by an anaerobic bacterial coculture

    SciTech Connect

    Odom, J.M.; Wall, J.D.

    1983-04-01

    Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves molecular hydrogen by the nitrogenase system of R. capsulata with cellulose as the sole carbon source.In coculture, the hydrogenase-negative mutant produced 4.6 to 6.2 mol of H/sub 2/ per mol of glucose equivalent, compared with 1.2 to 4.3 mol for the wild type.

  13. Clostridium difficile: the anaerobe that made the grade.

    PubMed

    Brazier, Jon S

    2012-04-01

    Unlike other anaerobic bacteria of clinical importance, Clostridium difficile has managed to enter into the realm of public awareness. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C.difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous "superbug" responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This report picks out key moments, particularly in the UK, which tracked the rise in both the public and political awareness of this organism. PMID:22293217

  14. Microbiology and physiology of anaerobic fermentations of cellulose

    SciTech Connect

    Wiegel, J.

    1991-05-01

    The biochemistry and physiology of four major groups of anaerobic bacteria involved in the conversion of cellulose to methane or chemical feedstocks are examined. Aspects of metabolism which are relevant to the interactions and bioenergetics of consortia are being studied. Properties of the cellulolytic enzyme cluster of Clostridium thermocellum are investigated. Five different hydrogenases have been characterized in detail from anaerobic bacteria. Genes for different hydrogenases are being cloned and sequenced to determine their structural relationships. The role of metal clusters in activation of H{sub 2} is being investigated, as is the structure and role of metal clusters in formate metabolism. The function of formate in the total synthesis of acetate from CO{sub 2} and the role of this primary in anaerobes will be examined as well. Finally, these enzyme studies will be performed on thermophilic bacteria and new, pertinent species will be isolated. 50 refs., 3 figs., 1 tab.

  15. Polymorphonuclear neutrophil chemotaxis under aerobic and anaerobic conditions.

    PubMed Central

    Casciato, D A; Goldberg, L S; Bluestone, R

    1978-01-01

    The motility of human polymorphonuclear neutrophils was studied in vitro under aerobic and anaerobic conditions. Chemotactic factors were generated from plasma with immune complexes or with whole bacteria (Staphylococcus aureus, Escherichia coli, and Bacteroides fragilis). Chemotaxis induced by chemotactic factors generated from immune complexes was identical under both conditions. However, chemotaxis utilizing chemotactic factors generated from bacteria was markedly depressed under anaerobic conditions. Mean random tubemoltility was not significantly different under aerobic and anaerobic conditions. These data indicate that different metabolic pathways may be involved in polymorphonuclear neutrophil movement. Some of these pathways require oxygen (chemotaxis in response to factors generated by bacteria in plasma), whereas others do not (random tube migration and chemotaxis in response to factors generated by immune complexes in plasma). These observations may be important in the induction of inflammatory responses within hypoxic tissues. PMID:357284

  16. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage.

    PubMed

    Aida, Azrina A; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles