Science.gov

Sample records for failure corona incremental

  1. Incrementalism, Majoritarianism, and the Failures of School Desegregation.

    ERIC Educational Resources Information Center

    Hochschild, Jennifer L.

    This paper argues that cautious and participatory desegregation efforts yield less desirable outcomes than either sweeping, authoritative desegregation policies or no imposed effort at all. The author proceeds to support these claims by identifying 10 goals of school desegregation and examining the rules and consequences of incremental and…

  2. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review.

    PubMed

    Santaguida, Pasqualina L; Don-Wauchope, Andrew C; Ali, Usman; Oremus, Mark; Brown, Judy A; Bustamam, Amy; Hill, Stephen A; Booth, Ronald A; Sohel, Nazmul; McKelvie, Robert; Balion, Cynthia; Raina, Parminder

    2014-08-01

    The aim of this systematic review was to determine whether B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) independently add incremental value for predicting mortality and morbidity in patients with acute decompensated heart failure (ADHF). Medline(®), Embase™, AMED, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and CINAHL were searched from 1989 to June 2012. We also searched reference lists of included articles, systematic reviews, and the gray literature. Studies were screened for eligibility criteria and assessed for risk of bias. Data were extracted on study design, population demographics, assay cutpoints, prognostic risk prediction model covariates, statistical methods, outcomes, and results. From 183 citations, only seven studies (5 BNP and 2 NT-proBNP) considered incremental value in ADHF subjects admitted to acute care centers. Admission assay levels and length of follow-up varied for BNP studies (31 days to 12 months) and for NT-proBNP studies (25-82 months). All studies presented at least one estimate of incremental value of BNP/NT-proBNP relative to the base prognostic model. Using discrimination or likelihood statistics, these studies consistently showed that BNP or NT-proBNP increased model performance. Three studies used reclassification and model validation computations to establish incremental value; these studies showed less consistency with respect to added value. In conclusion, the literature assessing incremental value of BNP/NT-proBNP in ADHF populations is limited to seven studies evaluating only mortality outcomes and at moderate risk of bias. Although there were differences in the base risk prediction models, assay cutpoints, and lengths of follow-up, there was consistency in BNP/NT-proBNP adding incremental value in prediction models in ADHF patients. PMID:25052418

  3. Incremental predictive value of natriuretic peptides for prognosis in the chronic stable heart failure population: a systematic review.

    PubMed

    Don-Wauchope, Andrew C; Santaguida, Pasqualina L; Oremus, Mark; McKelvie, Robert; Ali, Usman; Brown, Judy A; Bustamam, Amy; Sohel, Nazmul; Hill, Stephen A; Booth, Ronald A; Balion, Cynthia; Raina, Parminder

    2014-08-01

    The aim of this study was to determine whether measurement of natriuretic peptides independently adds incremental predictive value for mortality and morbidity in patients with chronic stable heart failure (CSHF). We electronically searched Medline®, Embase™, AMED, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and CINAHL from 1989 to June 2012. We also searched reference lists of included articles, systematic reviews, and the gray literature. Studies were screened for eligibility criteria and assessed for methodological quality. Data were extracted on study design, population demographics, assay cutpoints, prognostic risk prediction model covariates, statistical methods, outcomes, and results. One hundred and eighty-three studies were identified as prognostic in the systematic review. From these, 15 studies (all NT-proBNP) considered incremental predictive value in CSHF subjects. Follow-up varied from 12 to 37 months. All studies presented at least one estimate of incremental predictive value of NT-proBNP relative to the base prognostic model. Using discrimination or likelihood statistics, these studies consistently showed that NT-proBNP increased model performance. Three studies used re-classification and model validation computations to establish incremental predictive value; these studies showed less consistency with respect to added value. Although there were differences in the base risk prediction models, assay cutpoints, and lengths of follow-up, there was consistency in NT-proBNP adding incremental predictive value for prognostic models in chronic stable CSHF patients. The limitations in the literature suggest that studies designed to evaluate prognostic models should be undertaken to evaluate the incremental value of natriuretic peptide as a predictor of mortality and morbidity in CSHF. PMID:25120174

  4. Incremental Reduction in Risk of Death Associated With Use of Guideline-Recommended Therapies in Patients With Heart Failure: A Nested Case-Control Analysis of IMPROVE HF

    PubMed Central

    Fonarow, Gregg C.; Albert, Nancy M.; Curtis, Anne B.; Gheorghiade, Mihai; Liu, Yang; Mehra, Mandeep R.; O'Connor, Christopher M.; Reynolds, Dwight; Walsh, Mary N.; Yancy, Clyde W.

    2012-01-01

    Background Several therapies are guideline-recommended to reduce mortality in patients with heart failure (HF) and reduced left ventricular ejection fraction, but the incremental clinical effectiveness of these therapies has not been well studied. We aimed to evaluate the individual and incremental benefits of guideline-recommended HF therapies associated with 24-month survival. Methods and Results We performed a nested case-control study of HF patients enrolled in IMPROVE HF. Cases were patients who died within 24 months and controls were patients who survived to 24 months, propensity-matched 1:2 for multiple prognostic variables. Logistic regression was performed, and the attributable mortality risk from incomplete application of each evidence-based therapy among eligible patients was calculated. A total of 1376 cases and 2752 matched controls were identified. β-Blocker and cardiac resynchronization therapy were associated with the greatest 24-month survival benefit (adjusted odds ratio for death 0.42, 95% confidence interval (CI), 0.34–0.52; and 0.44, 95% CI, 0.29–0.67, respectively). Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, implantable cardioverter-defibrillators, anticoagulation for atrial fibrillation, and HF education were also associated with benefit, whereas aldosterone antagonist use was not. Incremental benefits were observed with each successive therapy, plateauing once any 4 to 5 therapies were provided (adjusted odds ratio 0.31, 95% CI, 0.23–0.42 for 5 or more versus 0/1, P<0.0001). Conclusions Individual, with a single exception, and incremental use of guideline-recommended therapies was associated with survival benefit, with a potential plateau at 4 to 5 therapies. These data provide further rationale to implement guideline-recommended HF therapies in the absence of contraindications to patients with HF and reduced left ventricular ejection fraction. (J Am Heart Assoc. 2012;1:16-26.) PMID:23130115

  5. Incremental and independent value of cardiopulmonary exercise test measures and the Seattle Heart Failure Model for prediction of risk in patients with heart failure

    PubMed Central

    Dardas, Todd; Li, Yanhong; Reed, Shelby D.; O’Connor, Christopher M.; Whellan, David J.; Ellis, Stephen J.; Schulman, Kevin A.; Kraus, William E.; Forman, Daniel E.; Levy, Wayne C.

    2016-01-01

    Background Multivariable risk scores and exercise measures are well-validated risk prediction methods. Combining information from a functional evaluation and a risk model may improve accuracy of risk predictions. We analyzed whether adding exercise measures to the Seattle Heart Failure Model (SHFM) improves risk prediction accuracy in systolic heart failure. Methods and Results We used a sample of patients from the Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) study to examine the addition of peak VO2, VE/VCO2 slope, 6-minute walk distance (6MWD) or exercise duration (CPXDUR) to the SHFM. Multivariable Cox proportional hazards models were used to test the association between the combined endpoint (death, LVAD or cardiac transplantation) and the addition of exercise variables to the SHFM. 2152 patients were included in the sample. The SHFM and all exercise measures were associated with events (all p-values<0.0001) in proportional hazards models. There was statistically significant improvement in risk estimation when exercise measures were added to the SHFM. However, the improvement in c-index for addition of peak VO2 (+0.01), VE/VCO2 (+0.02), 6MWD (−0.001) and CPXDUR (+0.001) to the SHFM was small or slightly worse than the SHFM alone. Changes in risk assignment with the addition of exercise variables were minimal for patients above or below a15% 1-year mortality. Conclusions Exercise performance measures and the SHFM are independently useful for predicting risk in systolic heart failure. Adding CPET measures and 6MWD to the SHFM offers only minimal improvement in risk reassignment at clinically meaningful cutpoints. PMID:25940075

  6. Corona Borealis

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  7. Corona processing of insulating oil

    SciTech Connect

    Rohwein, G.J.

    1996-07-01

    It is well known that sustained corona discharge in insulating oil lowers its dielectric strength and simultaneously reduces its corona resistance. Therefore, for operating stresses in the corona regime, activity typically increases with time and, if allowed to continue, eventually leads to breakdown of the oil and failure of the component or system. It is, therefore, common practice to periodically replace oil in devices such as large power transformers and switch gear before breakdown occurs. Sealed components such as capacitors are typically replaced. Recent experiments have demonstrated that the dielectric properties of corona weakened oil can not only be restored, but actually improved by a simple regeneration process. These experiments were carried out on high voltage pulse transformer windings which were operated at high rep rates until partial discharges formed. Reprocessing the oil after each operating cycle resulted in successively longer operational periods before partial discharges appeared. In a separate experiment, a process was developed to precondition transformer oil to raise its corona inception voltage before using it to insulate a high voltage component, thus giving it a longer initial service life for a given operating stress or permitting higher stress operation for limited operating times.

  8. Corona Discharge in Clouds

    NASA Astrophysics Data System (ADS)

    Sin'kevich, A. A.; Dovgalyuk, Yu. A.

    2014-04-01

    We present a review of the results of theoretical studies and laboratory modeling of corona discharge initiation in clouds. The influence of corona discharges on the evolution of the cloud microstructure and electrification is analyzed. It is shown that corona discharges are initiated when large-size hydrometeors approach each other, whereas in some cases, corona discharges from crystals, ice pellets, and hailstones can appear. The corona discharges lead to significant air ionization, charging of cloud particles, and separation of charges in clouds and initiate streamers and lightnings. The influence of corona discharges on changes in the phase composition of clouds is analyzed.

  9. Incremental Prognostic Significance of the Elevated Levels of Pentraxin 3 in Patients With Heart Failure With Normal Left Ventricular Ejection Fraction

    PubMed Central

    Matsubara, Junichi; Sugiyama, Seigo; Nozaki, Toshimitsu; Akiyama, Eiichi; Matsuzawa, Yasushi; Kurokawa, Hirofumi; Maeda, Hirofumi; Fujisue, Koichiro; Sugamura, Koichi; Yamamoto, Eiichiro; Matsui, Kunihiko; Jinnouchi, Hideaki; Ogawa, Hisao

    2014-01-01

    Background Pentraxin 3 (PTX3) is a novel inflammatory marker produced by various cell types including those of the vasculature and the heart. The relationship between inflammatory markers and prognosis of patients with heart failure with normal ejection fraction (HFNEF) remains unknown. We investigated whether plasma PTX3 levels can predict future cardiovascular events in patients with HFNEF. Methods and Results Plasma PTX3, high‐sensitivity C‐reactive protein, and B‐type natriuretic peptide levels were measured prospectively in 360 stable patients with HFNEF. The subsequent incidence of cardiovascular events, including cardiovascular death, nonfatal myocardial infarction (MI), unstable angina pectoris, nonfatal ischemic stroke, hospitalization for heart failure decompensation, and coronary revascularization, was determined. During a mean 30‐month follow‐up, 106 patients experienced cardiovascular events. These events were more frequent in patients with high plasma PTX3 levels (>3.0 ng/mL) than low levels (≤3.0 ng/mL). Multivariable Cox hazard analysis showed that PTX3 (hazard ratio: 1.16; 95% CI: 1.05 to 1.27; P<0.01) and B‐type natriuretic peptide (hazard ratio: 1.08; 95% CI: 1.03 to 1.14; P<0.001), but not high‐sensitivity C‐reactive protein levels, were significant predictors of future cardiovascular events. Multivariable Cox analysis with the forced inclusion model, including 5 previously identified prognostic factors, found that PTX3 was a significant predictor of cardiovascular events (hazard ratio: 1.16; 95% CI: 1.06 to 1.27; P<0.01). The C‐statistics for cardiovascular events substantially increased from 0.617 to 0.683 when PTX3 was added to the 5 previously identified prognostic factors. Conclusions High plasma PTX3 levels, but not other inflammatory markers, are correlated with future cardiovascular events in patients with HFNEF. PTX3 may be a useful biomarker for assessment of risk stratification in HFNEF. Clinical Trial Registration

  10. Independent and incremental value of severely enlarged left atrium in risk stratification of very elderly patients with chronic systolic heart failure.

    PubMed

    Bajraktari, Gani; Fontanive, Paolo; Qirko, Spiro; Elezi, Shpend; Simioniuc, Anca; Huqi, Alda; Berisha, Venera; Dini, Frank L

    2012-01-01

    The authors sought to assess the impact on survival of demographic, clinical, and echo-Doppler parameters in patients with chronic heart failure due to left ventricular systolic dysfunction divided according to age groups. This study included 734 patients (age 69±11 years) who were classified into tertiles of age: I (22-66 years), II (67-76 years), and III (77-94 years). Severely enlarged left atrial size was defined as ≥52 mm in men and ≥47 mm in women. Multivariable analysis identified male sex (P=.018) and severely enlarged left atrium (P=.024) as significant correlates of all-cause mortality in the very elderly cohort, while restrictive filling pattern (RFP) (P=.004) and New York Heart Association class III or IV (P=.005) among patients of the first tertile and RFP (P=.028) among patients in the second tertile were independently associated with mortality after 30±21 months of follow-up. At the interactive stepwise model in the very elderly population, a severely enlarged left atrium, added to the model after clinical parameters and ejection fraction, moved the chi-square value from 20.7 to 25.8 (P=.048). RFP emerged as the single best predictor of all-cause mortality in the younger and intermediate ranges, whereas severely enlarged left atrium was the best predictor in the very elderly. PMID:22520934

  11. Simulating coronas in color.

    PubMed

    Gedzelman, Stanley D; Lock, James A

    2003-01-20

    Coronas are simulated in color by use of the Mie scattering theory of light by small droplets through clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. The primary factors that affect color, visibility, and number of rings of coronas are droplet size, width of the size distribution, and cloud optical thickness. The color sequence of coronas and iridescence varies when the droplet radius is smaller than approximately 6-microm. As radius increases to approximately 3.5 microm, new color bands appear at the center of the corona and fade as they move outward. As the radius continues to increase to approximately 6 microm, successively more inner rings become fixed in the manner described by classical diffraction theory, while outer rings continue their outward migration. Wave clouds or rippled cloud segments produce the brightest and most vivid multiple ringed coronas and iridescence because their integrated dropsize distributions along sunbeams are much narrower than in convective or stratiform clouds. The visibility of coronas and the appearance of the background sky vary with cloud optical depth tau. First the corona becomes visible as a white aureole in a blue sky when tau approximately 0.001. Color purity then rapidly increases to an almost flat maximum in the range 0.05 < or = tau < or = 0.5 and then decreases, so coronas are almost completely washed out by a bright gray background when tau > or = 4. PMID:12570272

  12. Incremental hierarchical discriminant regression.

    PubMed

    Weng, Juyang; Hwang, Wey-Shiuan

    2007-03-01

    This paper presents incremental hierarchical discriminant regression (IHDR) which incrementally builds a decision tree or regression tree for very high-dimensional regression or decision spaces by an online, real-time learning system. Biologically motivated, it is an approximate computational model for automatic development of associative cortex, with both bottom-up sensory inputs and top-down motor projections. At each internal node of the IHDR tree, information in the output space is used to automatically derive the local subspace spanned by the most discriminating features. Embedded in the tree is a hierarchical probability distribution model used to prune very unlikely cases during the search. The number of parameters in the coarse-to-fine approximation is dynamic and data-driven, enabling the IHDR tree to automatically fit data with unknown distribution shapes (thus, it is difficult to select the number of parameters up front). The IHDR tree dynamically assigns long-term memory to avoid the loss-of-memory problem typical with a global-fitting learning algorithm for neural networks. A major challenge for an incrementally built tree is that the number of samples varies arbitrarily during the construction process. An incrementally updated probability model, called sample-size-dependent negative-log-likelihood (SDNLL) metric is used to deal with large sample-size cases, small sample-size cases, and unbalanced sample-size cases, measured among different internal nodes of the IHDR tree. We report experimental results for four types of data: synthetic data to visualize the behavior of the algorithms, large face image data, continuous video stream from robot navigation, and publicly available data sets that use human defined features. PMID:17385628

  13. The New Solar Corona

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Poland, Arthur I.; Rabin, Douglas M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We focus on new observational capabilities (Yohkoh, SoHO, TRACE) observations, modeling, approaches, and insights into physical processes of the solar corona. The most impressive new results and problems discussed in this article can be appreciated from the movies and available on the Annual Reviews web site.

  14. The structure of Io's corona

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Hunten, D. M.; Wells, W. K.; Schultz, A. B.; Fink, U.

    1991-02-01

    A spatial profile of the distribution of sodium in Io's corona has been constructed using measurements obtained during satellite mutual eclipses. The data reveal a fairly symmetric corona whose density falls steeply from the surface out to 6 r(Io) and more slowly outside. An upper limit of 700 km is placed on the exobase altitude, but the observations do not constrain the surface density. Several theoretical models adequately match some traits of the corona, but none satisfies all the observations. No strong upstream/downstream asymmetry of the corona is observed, so it is unlikely that the corona is primarily generated by the impact of corotating ions into the trailing hemisphere.

  15. The New Solar Corona

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Poland, Arthur I.; Rabin, Douglas M.

    We focus on new observational capabilities (Yohkoh, SoHO, TRACE), observations, modeling approaches, and insights into physical processes of the solar corona. The most impressive new results and problems discussed in this article can be appreciated from the movies available on the Annual Reviews website and at http://www.lmsal.com/pub/araa/araa.html. "The Sun is new each day." Heraclites (ca 530-475 BC) "Everything flows." Heraclites (ca 530-475 BC)

  16. Incremental geriatric assessment.

    PubMed

    Ensberg, Mark; Gerstenlauer, Cynthia

    2005-09-01

    Older adults value (1) independence and the ability to make their own decisions, (2) mobility (the ability to travel outside or simply inside the home), (3) family and friends and the time spent with those persons who are important to them, (4) ethnicity, religion, and spirituality, and (5) home, wherever that might be. The importance of recognizing each person's individuality cannot be overemphasized. The method of incremental assessment presented in this article and summarized in Box 9 is intended to provide the office-based clinician with sufficient information to make decisions regarding the preventive, therapeutic, rehabilitative, and supportive goals of care. IADL and nutritional triggers are used to identify early signs of dysfunction in the home environment. The strengths and weaknesses of cognitive, physical, psychosocial, and spiritual aspects of function are examined in an incremental manner. Health care providers determine whether there is a match between the person's functional capabilities, the available support network, and the home environment. The approach prompts appropriate use of services needed by older adults who are either at risk for becoming, or already are, chronically ill, disabled, and functionally dependent. Use of validated assessment tools provides structure for the assessment process, helps assure consistency, and provides a mechanism for periodic re-evaluation. The assessment approaches also foster a common language for the health care team and consist of measurable parameters that can be used to monitor outcomes. The clinician should be flexible and realize that the assessment or the tools may need to be modified depending on the circumstances. PMID:16140119

  17. PULSE ENERGIZATION IN THE TUFT CORONA REGIME OF NEGATIVE CORONA

    EPA Science Inventory

    The paper discusses pulse energization in the tuft corona regime of negative corona. Fabric filtration, with integral particle charging and collection in a combined electric and flow field, is sensitive to maldistribution of current among bags energized by one power source, espec...

  18. Solar corona top heating

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Ryabova, N. A.

    2016-05-01

    The solar magnetic field fragmentation into thin magnetic tubes above the photosphere makes it possible to transform and factorize MHD equations analytically and to obtain explicit expressions for Alfvén and magnetosonic fields. A physical model that enables an explanation of the effect of strong heating of the solar chromosphere and corona has been proposed. This model makes it possible to estimate analytically a powerful Alfvén disturbance entering the chromosphere due to convective motions of the photosphere and a thermal release due to a three-wave interaction within the chromosphere.

  19. Coronae on stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.

    1986-01-01

    Three lines of evidence are noted to point to a flare heating source for stellar coronae: a strong correlation between time-averaged flare energy release and coronal X-ray luminosity, the high temperature flare-like component of the spectral signature of coronal X-ray emission, and the observed short time scale variability that indicates continuous flare activity. It is presently suggested that flares may represent only the extreme high energy tail of a continuous distribution of coronal energy release events.

  20. Incremental Contingency Planning

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicolas; Ramakrishnan, Sailesh; Smith, David E.; Washington, Rich

    2003-01-01

    There has been considerable work in AI on planning under uncertainty. However, this work generally assumes an extremely simple model of action that does not consider continuous time and resources. These assumptions are not reasonable for a Mars rover, which must cope with uncertainty about the duration of tasks, the energy required, the data storage necessary, and its current position and orientation. In this paper, we outline an approach to generating contingency plans when the sources of uncertainty involve continuous quantities such as time and resources. The approach involves first constructing a "seed" plan, and then incrementally adding contingent branches to this plan in order to improve utility. The challenge is to figure out the best places to insert contingency branches. This requires an estimate of how much utility could be gained by building a contingent branch at any given place in the seed plan. Computing this utility exactly is intractable, but we outline an approximation method that back propagates utility distributions through a graph structure similar to that of a plan graph.

  1. Directed Incremental Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz

    2011-01-01

    The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.

  2. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  3. New insights into AGN coronae

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne; Fabian, Andrew C.; Malzac, Julien; Belmont, Renaud; Buisson, Douglas

    2016-04-01

    Active galactic nuclei (AGN) are some of the most energetic sources of radiation in the Universe. The conversion of gravitational energy into radiation is thought to take place in an accretion disk/corona system just outside the black hole. In this system thermal, UV/optical photons from the accretion disk are upscattered in a corona of hot electrons situated above the accretion disk producing X-rays. The nature of this Comptonizing corona remains a key open question in AGN physics. The NuSTAR satellite provides the opportunity to study the Comptonization spectrum produced by the corona in great detail. In our talk we will show some key results from these new studies of the Comptonization spectrum. We explore how, together with our growing knowledge of coronal sizes, we are able to draw first conclusions about the physics taking place in the corona. We find evidence for coronae to be hot and radiatively compact, putting them close to the boundary of the region in the compactness-temperature diagram which is forbidden due to runaway pair production. This suggests that pair production and annihilation are essential ingredients in the coronae of AGN and that they control the coronal temperature and shape of the observed spectra.

  4. Properties of accretion disk coronae

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Staubert, R.; Begelman, M. C.

    1997-01-01

    The properties of accretion disk corona in a parameter regime suitable for Galactic black hole candidates are considered and the results of an analysis of these properties using a self-consistent Monte Carlo code are presented. Examples of the coronal temperature structure, the shape and angular dependency of the spectrum and the maximum temperature allowed for each optical depth of the corona are presented. It is shown that the observed spectrum of the Galactic black hole candidate Cygnus X-1 cannot be explained by accreting disk corona models with a slab geometry, where the accretion disk is sandwiched by the comptonizing medium.

  5. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  6. Parallel incremental compilation. Doctoral thesis

    SciTech Connect

    Gafter, N.M.

    1990-06-01

    The time it takes to compile a large program has been a bottleneck in the software development process. When an interactive programming environment with an incremental compiler is used, compilation speed becomes even more important, but existing incremental compilers are very slow for some types of program changes. We describe a set of techniques that enable incremental compilation to exploit fine-grained concurrency in a shared-memory multi-processor and achieve asymptotic improvement over sequential algorithms. Because parallel non-incremental compilation is a special case of parallel incremental compilation, the design of a parallel compiler is a corollary of our result. Instead of running the individual phases concurrently, our design specifies compiler phases that are mutually sequential. However, each phase is designed to exploit fine-grained parallelism. By allowing each phase to present its output as a complete structure rather than as a stream of data, we can apply techniques such as parallel prefix and parallel divide-and-conquer, and we can construct applicative data structures to achieve sublinear execution time. Parallel algorithms for each phase of a compiler are presented to demonstrate that a complete incremental compiler can achieve execution time that is asymptotically less than sequential algorithms.

  7. Protein corona: Opportunities and challenges.

    PubMed

    Zanganeh, Saeid; Spitler, Ryan; Erfanzadeh, Mohsen; Alkilany, Alaaldin M; Mahmoudi, Morteza

    2016-06-01

    In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field. PMID:26783938

  8. Rainbows, Coronas and Glories

    NASA Astrophysics Data System (ADS)

    Laven, Philip

    Rainbows, coronas and glories are examples of atmospheric optical phenomena caused by the scattering of sunlight from spherical drops of water. It is surprising that the apparently simple process of scattering of light by spherical drops of water can result in this wide range of colourful effects. However, the scattering mechanisms are very complicated. Eminent scientists (such as Descartes, Newton, Young, Airy and many others) offered various explanations for the formation of rainbows—thus making major contributions to our understanding of the nature of light. The basic features of rainbows can be explained by geometrical optics but, in the early 1800s, supernumerary arcs on rainbows provided crucial supporting evidence for the wave theory of light. In 1908, Mie provided a rigorous (but very complicated) solution to the problem of scattering of light by spherical particles. More than 100 years later, Mie's solution can now be used to produce excellent full-colour simulations. Examples of such simulations show how the appearance of these phenomena vary with the size of the water drops, as well as describing the scattering mechanisms that are responsible for their formation.

  9. Spectroscopic investigation of protein corona

    NASA Astrophysics Data System (ADS)

    Choudhary, Poonam

    Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due to the vast complexity of their hosting systems, the solubility, transformation, and biocompatibility of nanomaterials are still poorly understood. Nanotechnology has been undergoing tremendous development in recent decades, driven by realized perceived applications of nanomaterials in electronics, therapeutics, imaging, sensing, environmental remediation, and consumer products. Nanoparticles on entering the blood stream undergo an identity change, they become coated with proteins. There are different kind of proteins present in blood. Proteins compete for getting coated over the surface of nanoparticle and this whole entity of proteins coated over nanoparticle surface is called Protein Corona. Proteins tightly bound to the surface of nanoparticle form hard corona and the ones loosely bound on the outer surface form soft corona. This dissertation is aimed at spectroscopic investigation of Protein Corona. Chapter I of this dissertation offers a comprehensive review of the literature based on nanomaterials with the focus on carbon based nanomaterilas and introduction to Protein Corona. Chapter II is based different methods used for Graphene Synthesis,different types of defects and doping. In Chapter III influence of defects on Graphene Protein Corona was investigated. Chapter IV is based on the study of Apoptosis induced cell death by Gold and silver nanoparticles. In vitro study of effect of Protein Corona on toxicity of cells was done.

  10. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  11. Incremental learning from stream data.

    PubMed

    He, Haibo; Chen, Sheng; Li, Kang; Xu, Xin

    2011-12-01

    Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method. PMID:22057060

  12. Neocognitron capable of incremental learning.

    PubMed

    Fukushima, Kunihiko

    2004-01-01

    This paper proposes a new neocognitron that accepts incremental learning, without giving a severe damage to old memories or reducing learning speed. The new neocognitron uses a competitive learning, and the learning of all stages of the hierarchical network progresses simultaneously. To increase the learning speed, conventional neocognitrons of recent versions sacrificed the ability of incremental learning, and used a technique of sequential construction of layers, by which the learning of a layer started after the learning of the preceding layers had completely finished. If the learning speed is simply set high for the conventional neocognitron, simultaneous construction of layers produces many garbage cells, which become always silent after having finished the learning. The proposed neocognitron with a new learning method can prevent the generation of such garbage cells even with a high learning speed, allowing incremental learning. PMID:14690705

  13. Insights into Corona Formation through Statistical Analyses

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Stofan, E. R.; Smrekar, S. E.; Baloga, S. M.

    2002-01-01

    Statistical analysis of an expanded database of coronae on Venus indicates that the populations of Type 1 (with fracture annuli) and 2 (without fracture annuli) corona diameters are statistically indistinguishable, and therefore we have no basis for assuming different formation mechanisms. Analysis of the topography and diameters of coronae shows that coronae that are depressions, rimmed depressions, and domes tend to be significantly smaller than those that are plateaus, rimmed plateaus, or domes with surrounding rims. This is consistent with the model of Smrekar and Stofan and inconsistent with predictions of the spreading drop model of Koch and Manga. The diameter range for domes, the initial stage of corona formation, provides a broad constraint on the buoyancy of corona-forming plumes. Coronae are only slightly more likely to be topographically raised than depressions, with Type 1 coronae most frequently occurring as rimmed depressions and Type 2 coronae most frequently occuring with flat interiors and raised rims. Most Type 1 coronae are located along chasmata systems or fracture belts, while Type 2 coronas are found predominantly as isolated features in the plains. Coronae at hotspot rises tend to be significantly larger than coronae in other settings, consistent with a hotter upper mantle at hotspot rises and their active state.

  14. Producers of Fast Incremental Space.

    ERIC Educational Resources Information Center

    Rensselaer Polytechnic Inst., Troy, NY. Center for Architectural Research.

    School districts sometimes need to add relatively small increments of high quality educational space to their existing physical facilities. For some of these situations, the portable or relocatable classroom is the answer; in other cases, the district needs different or more permanent space--quickly. This document comprises six charts that present…

  15. The H Corona of Mars

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael Scott

    The atmosphere of every planet is surrounded by a tenuous cloud of hydrogen gas, referred to as a hydrogen corona. At Mars, a substantial fraction of the H present in the corona is moving fast enough to escape the planet's gravity, permanently removing H from the Martian atmosphere. Because this H is ultimately derived from lower atmospheric water, loss of H from Mars is capable of drying and oxidizing the planet over geologic time. Understanding the processes that supply the H corona and control its escape is therefore essential for a complete understanding of the climate history of Mars and for assessing its habitability. In this thesis, I present the most complete analysis of the H corona ever attempted, surveying eight years of data gathered by the ultraviolet spectrograph SPICAM on Mars Express. Using a coupled radiative transfer and physical density model, I interpret brightness measurements of the corona in terms of escape rates of H from the planet, uncovering an order-of-magnitude variability in the H escape rate never before detected. These variations are interpreted using a completely new photochemical model of the atmosphere, demonstrating that newly discovered high altitude water vapor layers are sufficient to produce the observed variation. Finally, I present first results of the SPICAM successor instrument IUVS, an imaging ultraviolet spectrograph carried by NASA's MAVEN spacecraft. IUVS measurements are producing the most complete dataset ever gathered for the Martian H corona, enabling supply and loss processes to be assessed in more complete detail than ever before. This dataset will allow present-day loss rates to be extrapolated into the past, determining the absolute amount of water Mars has lost to space over the course of its history. Planets the size of Mars may be common throughout the universe; the work of this thesis is one step toward assessing the habitability of such planets in general.

  16. Some crucial corona and prominence observations

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A.

    1986-01-01

    A number of theories and hypotheses are currently being developed to explain the often complex behavior of corona and prominence plasmas. In order to test the theories and hypotheses certain crucial observations are necessary. Some of these observations are examined and a few conclusions are drawn. Corona mass balance, corona and prominence classifications, prominence formation and stability, and coronal mass ejection are dicussed.

  17. Interferometry of the e corona.

    PubMed

    Henderson, G

    1970-12-01

    Descriptions are given of Fabry-Perot spectrometer systems used in the total eclipses of 1965, 1966, and 1970 to observe the emission lines 5303 A, Fe XIV and 6374 A, Fe x at different points in the solar corona. Some results of coronal temperature measurements for the 12 November 1966 eclipse are presented. PMID:20094331

  18. LABORATORY ANALYSES OF CORONA DISCHARGES

    EPA Science Inventory

    The paper discusses an experimental research program to characterize corona generation from different electrode geometries in a range of conditions comparable to those found in electrostatic precipitators (ESPs). A wire-parallel plate device and a wire-cylinder device were used t...

  19. 12 CFR 217.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... positions at the portfolio level. If equity positions are included in the model, for modeling purposes... positions in its incremental risk measure. (b) Requirements for incremental risk modeling. For purposes...

  20. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  1. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  2. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  3. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  4. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a) Only $___ of...

  5. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  6. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  7. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  8. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  9. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  10. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  11. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  12. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  13. The R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.

    1996-03-01

    This year marks the bicentennial of the discovery of the variability of R Coronae Borealis. The R Coronae Borealis (RCB) stars are distinguished from other hydrogen-deficient objects by their spectacular dust formation episodes. They may decline by up to 8 magnitudes in a few weeks revealing a rich emission-line spectrum. Their atmospheres have unusual abundances with very little hydrogen and an overabundance of carbon and nitrogen. The RCB stars are thought to be the product of a final helium shell flash or the coalescence of a binary white-dwarf system. Dust may form in non-equilibrium conditions created behind shocks caused by pulsations in the atmospheres of these stars. The RCB stars are interesting and important, first because they represent a rare, or short-lived stage of stellar evolution, and second because these stars regularly produce large amounts of dust so they are laboratories for the study of dust formation and evolution. (SECTION: Invited Review Paper)

  14. Chromospheres, transition regions, and coronas.

    PubMed

    Böhm-Vitense, E

    1984-02-24

    The increase in temperature outward from the surface of a stellar photosphere can be understood by looking at the local energy balance. The relatively high-density stellar photosphere is cooled effectively by radiative energy loss penetrating the optically thin corona. For the low-density chromosphere and corona, if the energy input cannot be balanced by radiative energy losses, the temperature will rise steeply, possibly up to 1 million degrees or more. Coronal heating and emission appear to be strongly influenced by magnetic fields, leading to large differences in x-ray emission for otherwise similar stars. Comparatively small variations are seen in the overall chromospheric emission of stars. Chromospheres are probably mainly heated by shock-wave energy dissipation, modified by magnetic fields. PMID:17737739

  15. Tectonics of Neyterkob corona on Venus

    NASA Technical Reports Server (NTRS)

    Kauhanen, K.

    1993-01-01

    Neyterkob double corona (50 deg N 202 deg) presents an area of corona-related interfering tectonic patterns which are formed in different phases of evolution of the corona and modified by regional stresses. Analyzing the patterns can reveal something about the coronal formation. Tectonic features form distinct units on topographic depressions, slopes, and volcanic flows extending over one radius of the corona. A remarkable amount of compressional features were found near the rim and related to interaction between adjacent coronae. Radial extension was mainly observed on a peculiar NE-SW trending high crossing the corona. Concentric fractures were found to the east partly connected to the lithospheric flexure. Tectonic features indicate movements of volcanic activity and modification of the area by more regional stresses.

  16. Corona Discharge Influences Ozone Concentrations Near Rats

    SciTech Connect

    Goheen, Steven C.; Gaither, Kari A.; Anantatmula, Shantha M.; Mong, Gary M.; Sasser, Lyle B.; Lessor, Delbert L.

    2004-02-26

    Ozone is produced by corona discharge in air. Its production is enhanced near grounded water. Whether grounded animals behave like grounded water, producing more ozone was investigated. Rats were exposed to corona discharge in a plastic cage. The concentration of ozone in the gas phase was monitored. The ozone concentration exceeded ambient levels only in the presence of corona discharge and either rats or water. When water or rats were exposed to corona discharge, ozone levels were more than 10 times higher than controls. Ozone levels increased rapidly with applied voltage. There was also a correlation between the distance of the corona needle to the rats and the amount of ozone produced. As the distance increased, ozone production decreased. These results are discussed in relation to the potential exposure of mammals to ozone in the vicinity of corona discharge and electric fields.

  17. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  18. Corona solar blind ultraviolet image detecting method

    NASA Astrophysics Data System (ADS)

    Yin, Li-min; Tang, Wen-qing; Zhang, Yu

    2009-07-01

    Corona is one of important reasons of electrical energy loss in the electric power. According to incomplete statistics, corona loss electrical energy has achieved two thousands and fifty millions kW.h in our nation every year. Sometimes corona also can have some disturbance to radio and communication. Therefore to discover and examine corona promptly has the extremely vital significance for conserving energy and realizing high quality communication. Ultraviolet image detecting technology is a preferred corona detection method in electric power. It may realize all-weather reliable survey to corona. The solar blind ultraviolet signal discharged by corona is quite weak. Moreover the ultraviolet image quality has been affected seriously by the detection system noise. A corona solar blind ultraviolet image processing method is proposed in this paper. Ultraviolet image has so small target, low contrast image, district characteristic and real-time demand that it is processed by multi-scale ultraviolet morphology filter technology based on mathematics morphology in this paper. Results show that the method can stretch image contrast, enhance target and weaken noise. The algorithm is easy to deal in parallel and it can be realized easily by hardware. It will be accurately demarcated when the condition of device need to be absolutely measured. The paper proposes a kind of mathematics morphology algorithm. Solar blind ultraviolet image will be further processed according to temperature and humidity in order to remove the infection of corona discharge demarcation and solve correct demarcation question when equipment condition need to be absolutely measured.

  19. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  20. Property Differencing for Incremental Checking

    NASA Technical Reports Server (NTRS)

    Yang, Guowei; Khurshid, Sarfraz; Person, Suzette; Rungta, Neha

    2014-01-01

    This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking.

  1. Compiler-Enhanced Incremental Checkpointing for OpenMP Applications

    SciTech Connect

    Bronevetsky, G; Marques, D; Pingali, K; Rugina, R; McKee, S A

    2008-01-21

    As modern supercomputing systems reach the peta-flop performance range, they grow in both size and complexity. This makes them increasingly vulnerable to failures from a variety of causes. Checkpointing is a popular technique for tolerating such failures, enabling applications to periodically save their state and restart computation after a failure. Although a variety of automated system-level checkpointing solutions are currently available to HPC users, manual application-level checkpointing remains more popular due to its superior performance. This paper improves performance of automated checkpointing via a compiler analysis for incremental checkpointing. This analysis, which works with both sequential and OpenMP applications, reduces checkpoint sizes by as much as 80% and enables asynchronous checkpointing.

  2. Compiler-Enhanced Incremental Checkpointing for OpenMP Applications

    SciTech Connect

    Bronevetsky, G; Marques, D; Pingali, K; McKee, S; Rugina, R

    2009-02-18

    As modern supercomputing systems reach the peta-flop performance range, they grow in both size and complexity. This makes them increasingly vulnerable to failures from a variety of causes. Checkpointing is a popular technique for tolerating such failures, enabling applications to periodically save their state and restart computation after a failure. Although a variety of automated system-level checkpointing solutions are currently available to HPC users, manual application-level checkpointing remains more popular due to its superior performance. This paper improves performance of automated checkpointing via a compiler analysis for incremental checkpointing. This analysis, which works with both sequential and OpenMP applications, significantly reduces checkpoint sizes and enables asynchronous checkpointing.

  3. ST2 and patient prognosis in chronic heart failure.

    PubMed

    Bayes-Genis, Antoni; Zhang, Yuhui; Ky, Bonnie

    2015-04-01

    Biomarkers of cardiovascular diseases are indispensable tools for diagnosis and prognosis, and the use of several biomarkers is now considered the standard of care. New markers continue to be developed, but few prove to be substantially better than established markers. Suppression of tumorigenicity 2 (ST2) is a marker of cardiomyocyte stress and fibrosis that provides incremental value to natriuretic peptides for risk stratification of patients with a wide spectrum of cardiovascular diseases. On the basis of all available data, the 2013 American College of Cardiology and American Heart Association guidelines now recommend measurement of ST2 for additive risk stratification in patients with acute or chronic ambulatory heart failure (HF). This report provides an up-to-date overview of the clinical studies that led to the endorsement of ST2 as a cardiovascular prognostic marker in chronic HF. The presented data suggest that the addition of ST2 to a model that includes established mortality risk factors, including natriuretic peptides, substantially improves the risk stratification for death and HF hospitalization in patients with HF. ST2's prognostic value remains strong even in the subset of patients with renal insufficiency and is superior to other remodeling-fibrosis biomarkers currently being evaluated. In conclusion, these results have been repeatedly validated; thus, ST2 could be rapidly incorporated into clinical practice for risk prediction. Indeed, the body of evidence supporting the use of ST2 in chronic HF stratification continues to grow, with consistent data from cohorts around the world in single-center (Barcelona, Brussels, and San Diego cohorts) and multicenter (Penn Heart Failure Study [PHFS] and Muerte Subita en Insuficiencia Cardiac [MUSIC]) studies and in post hoc studies from clinical trials (Prospective Randomized Amlodipine Survival Evaluation 2 [PRAISE-2], Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training [HF

  4. Electrical-assisted double side incremental forming and processes thereof

    DOEpatents

    Roth, John; Cao, Jian

    2014-06-03

    A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.

  5. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  6. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.

  7. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  8. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Wagner, William (Technical Monitor)

    2001-01-01

    The solar corona, the hot, tenuous outer atmosphere of the Sun, exhibits many fascinating phenomena on a wide range of scales. One of the ways that the Sun can affect us here at Earth is through the large-scale structure of the corona and the dynamical phenomena associated with it, as it is the corona that extends outward as the solar wind and encounters the Earth's magnetosphere. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to develop increasingly realistic models of the large-scale solar corona, so that we can understand the underlying properties of the coronal magnetic field that lead to the observed structure and evolution of the corona. We describe the work performed under this contract.

  9. Incremental Query Rewriting with Resolution

    NASA Astrophysics Data System (ADS)

    Riazanov, Alexandre; Aragão, Marcelo A. T.

    We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.

  10. 12 CFR 324.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Incremental risk. 324.208 Section 324.208 Banks... ADEQUACY OF FDIC-SUPERVISED INSTITUTIONS Risk-Weighted Assets-Market Risk § 324.208 Incremental risk. (a) General requirement. An FDIC-supervised institution that measures the specific risk of a portfolio of...

  11. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. PMID:26607013

  12. Magnetohydrostatic modelling of stellar coronae

    NASA Astrophysics Data System (ADS)

    MacTaggart, D.; Gregory, S. G.; Neukirch, T.; Donati, J.-F.

    2016-02-01

    We introduce to the stellar physics community a method of modelling stellar coronae that can be considered to be an extension of the potential field. In this approach, the magnetic field is coupled to the background atmosphere. The model is magnetohydrostatic and is a balance between the Lorentz force, the pressure gradient and gravity. Analytical solutions are possible and we consider a particular class of equilibria in this paper. The model contains two free parameters and the effects of these on both the geometry and topology of the coronal magnetic field are investigated. A demonstration of the approach is given using a magnetogram derived from Zeeman-Doppler imaging of the 0.75 M⊙ M-dwarf star GJ 182.

  13. Corona discharge influences ozone concentrations near rats.

    PubMed

    Goheen, Steven C; Gaither, Kari; Anantatmula, Shantha M; Mong, Gary M; Sasser, Lyle B; Lessor, Delbert

    2004-02-01

    Ozone can be produced by corona discharge either in dry air or when one electrode is submerged in water. Since ozone is toxic, we examined whether ozone production by corona near laboratory animals could reach levels of concern. Male rats were exposed to a corona discharge and the concentration of ozone produced was measured. The resulting concentration of ozone ranged from ambient levels to 250 ppb when animals were located 1 cm from a 10 kV source. Similar ozone concentrations were observed when a grounded water source was present. Possible explanations for, as well as concerns regarding, ozone production under these conditions are discussed. PMID:14735560

  14. Electrode structure for uniform corona discharge

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Steinmetz, C. C.

    1976-01-01

    Single corona-discharge needle is used to apply uniform charge to thermoplastic medium in holograph-storage system. Needle is connected to flat transparent electrode that is parallel to thermoplastic.

  15. Solar Corona on 08.01.2010

    NASA Video Gallery

    The solar corona on 2010/08/01, observed by SDO’s AIA. The false colors represent images taken with different filters that are sensitive to distinct coronal temperatures: blue- 1 million degrees...

  16. Solar Corona on 10.21.2010

    NASA Video Gallery

    The solar corona on 2010/10/21, observed by SDO’s AIA. The false colors represent images taken with different filters that are sensitive to distinct coronal temperatures: blue for one million de...

  17. Olivines and olivine coronas in mesosiderites

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Zucker, S. M.; Harlow, G. E.; Prinz, M.

    1980-01-01

    The paper presents a study of olivines and their surrounding coronas in mesosiderites texturally and compositionally using optical and microprobe methods. Olivine composition ranges from Fo(58-92) and shows no consistent pattern of distribution within and between mesosiderites; olivine occurs as large single crystals or as partially recrystallized mineral clasts, except for two lithic clasts. These are Emery and Vaca Muerta, and both are shock-modified olivine orthopyroxenites. Fine-grained coronas surround olivine, except for those in impact-melt group mesosiderites and those without tridymite in their matrices. Coronas consist largely of orthopyroxene, plagioclase, clinopyroxene, chromite, merillite, and ilmenite, and are similar to the matrix, but lack metal and tridymite. Texturally the innermost parts of the corona can be divided into three stages of development: (1) radiating acicular, (2) intermediate, and (3) granular.

  18. Incremental Discriminant Analysis in Tensor Space

    PubMed Central

    Chang, Liu; Weidong, Zhao; Tao, Yan; Qiang, Pu; Xiaodan, Du

    2015-01-01

    To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. PMID:26339229

  19. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  20. Corona Associations and Their Implications for Venus

    USGS Publications Warehouse

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  1. Dynamics of the Transition Corona

    NASA Technical Reports Server (NTRS)

    Masson, Sophie; McCauley, Patrick; Golub, Leon; Reeves, Katharine K.; DeLuca, Edward E.

    2014-01-01

    Magnetic reconnection between the open and closed magnetic fields in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer (PS) structures. However, there is neither clear observational evidence of how such coupling occurs in PSs, nor evidence for how the magnetic reconnection evolves. Using a newly developed technique, we enhance the off-limb magnetic fine structures observed with the Atmospheric Imaging Assembly and identify a PS-like feature located close to the northern coronal hole. We first identify that the magnetic topology associated with the observation is a PS, null-point (NP) related topology bounded by the open field. By comparing the magnetic field configuration with the extreme ultraviolet (EUV) emission regions, we determined that most of the magnetic flux associated with plasma emission are small loops below the PS basic NP and open field bounding the PS topology. In order to interpret the evolution of the PS, we referred to a three-dimensional MHD interchange reconnection modeling the exchange of connectivity between small closed loops and the open field. The observed PS fine structures follow the dynamics of the magnetic field before and after reconnecting at the NP obtained by the interchange model. Moreover, the pattern of the EUV plasma emission is the same as the shape of the expected plasma emission location derived from the simulation. These morphological and dynamical similarities between the PS observations and the results from the simulation strongly suggest that the evolution of the PS, and in particular the opening/closing of the field, occurs via interchange/slipping reconnection at the basic NP of the PS. Besides identifying the mechanism at work in the large-scale coupling between the open and closed fields, our results highlight that interchange reconnection in PSs is a gradual physical process that differs

  2. Separate and combined effects of gabapentin and [INCREMENT]9-tetrahydrocannabinol in humans discriminating [INCREMENT]9-tetrahydrocannabinol.

    PubMed

    Lile, Joshua A; Wesley, Michael J; Kelly, Thomas H; Hays, Lon R

    2016-04-01

    The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. Self-report, task performance, and physiological measures were also collected. [INCREMENT]-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate, and impaired psychomotor performance. Both doses of gabapentin substituted for the [INCREMENT]-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of [INCREMENT]-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids. PMID:26313650

  3. Computer-Assisted Tutoring: Teaching Letter Sounds to Kindergarten Students Using Incremental Rehearsal

    ERIC Educational Resources Information Center

    Volpe, Robert J.; Burns, Matthew K.; DuBois, Matthew; Zaslofsky, Anne Follen

    2011-01-01

    The profound consequences of early reading failure necessitate the provision of early literacy interventions to struggling readers. Many schools struggle, however, to address early reading difficulties because of insufficient human resources. Accordingly, the present study investigated the effectiveness of incremental rehearsal (IR) as a Tier 3…

  4. Environmental Aspects Regarding The Incremental Forming Process

    NASA Astrophysics Data System (ADS)

    Tera, Melania

    2015-09-01

    Future technologies should aim at reducing the consumption of raw materials and energy, avoid technical losses, to save energy and mineral resources, to minimize the emissions and waste, eliminate any irrational use of all resources and also to minimize the environmental impact. The paper present from environmental point of view both a classic forming process such as deep-drawing and incremental forming process. The paper gives an overview of the main environmental aspects regarding the incremental forming process.

  5. Heating of the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The present state of development of the theory of coronal heating is summarized. Coronal heating is the general cause of stellar X-ray emission, and it is also the cause of stellar mass loss in most stars. Hence a quantitive theory of coronal heating is an essential part of X-ray astronomy, and the development of a correct theory of coronal heating should be a primary concern of X-ray astronomers. The magnetohydrodynamical effects involved in coronal heating are not without interest in their own right, representing phenomena largely unknown in the terrestrial laboratory. Until these effects can be evaluated and assembled into a comprehensive theory of coronal heating for at least one star, the interpretation of the X-ray emissions of all stars is a phenomenological study at best, based on arbitrary organization and display of X-ray luminosity against bolometric luminosity, rotation rate, etc. The sun provides the one opportunity to pursue the exotic physical effects that combine to heat a stellar corona.

  6. A Statistical Analysis of Corona Topography: New Insights into Corona Formation and Evolution

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Glaze, L. S.; Smrekar, S. E.; Baloga, S. M.

    2003-01-01

    Extensive mapping of the surface of Venus and continued analysis of Magellan data have allowed a more comprehensive survey of coronae to be conducted. Our updated corona database contains 514 features, an increase from the 326 coronae of the previous survey. We include a new set of 106 Type 2 or stealth coronae, which have a topographic rather than a fracture annulus. The large increase in the number of coronae over the 1992 survey results from several factors, including the use of the full Magellan data set and the addition of features identified as part of the systematic geologic mapping of Venus. Parameters of the population that we have analyzed to date include size and topography.

  7. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition

    NASA Astrophysics Data System (ADS)

    Winzen, S.; Schoettler, S.; Baier, G.; Rosenauer, C.; Mailaender, V.; Landfester, K.; Mohr, K.

    2015-02-01

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A

  8. International Space Station Increment Operations Services

    NASA Astrophysics Data System (ADS)

    Michaelis, Horst; Sielaff, Christian

    2002-01-01

    The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the

  9. Dynamics of the coronas of open star clusters

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.; Seleznev, A. F.

    2014-12-01

    A method for distinguishing coronas in models of open star clusters is proposed. The method uses trajectories of stars that do not leave the coronas over time intervals t comparable to the mean lifetime τ of the clusters. Corona models are constructed for six numerical cluster models, and the direction and character of the dynamical evolution of the coronas are determined. Retrograde stellar motions are dominant in the coronas. In spite of some signs of dynamical instability of the coronas (small densities compared to the critical density and accelerated expansion of the coronas), the formation of close-toequilibrium density and phase-density distributions at distances from one to three cluster tidal radii from the cluster center can be seen. Approximations are constructed for the corona and cluster phase density using distributions that depend on three parameters (the parameters of the stellar motion in the Lindblad rotating coordinate system). This temporary equilibrium of the corona is due to balance in the number of starsmoving from the central areas of the cluster to the corona, and from the corona to the corona periphery or beyond. Evidence that corona stars can be gravitationally bound at distances out to four tidal radii from the cluster center is found: the presence of nearly periodic retrograde mean motions of a large number of corona stars in the Galactic plane; 91-99% of corona stars satisfy the gravitational binding criterion of Ross, Mennim and Heggie over time intervals that are close to the mean cluster lifetime. The escape rate from the corona is estimated for t ≥ τ, and found to be from 0.03 to 0.23 of the number of corona stars per violent relaxation time.

  10. Coronas and iridescence in mountain wave clouds.

    PubMed

    Shaw, Joseph A; Neiman, Paul J

    2003-01-20

    We use Fraunhofer diffraction theory and meterological data to determine the nature of cloud-particle distributions and the mean particle sizes required for interpreting photographs of coronas and iridescence in mountain wave clouds. Traditional descriptions of coronas and iridescence usually explain these optical phenomena as diffraction by droplets of liquid water. Our analysis shows that the photographed displays have mean particle sizes from 7.6 to 24.3 microm, with over half the cases requiring diffraction by small (approximatley 20 microm) quasispherical ice particles rather than liquid water droplets. Previous documentation of coronas produced by ice particles are limited to observations in cirrus clouds that appear to be composed of small ice crystals, whereas our observations suggest that coronas and iridescence quite often can be created by tiny quasispherical ice particles that might be unique to mountain wave clouds. Furthermore, we see that the dominant colors in mountain wave-cloud coronas are red and blue, rather than the traditionally described red and green. PMID:12570269

  11. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  12. Seeing the solar corona in three dimensions

    NASA Astrophysics Data System (ADS)

    Vásquez, Alberto M.

    2016-03-01

    The large availability and rich spectral coverage of today's observational data of the solar corona, and the high spatial and temporal resolution provided by many instruments, has enabled the evolution of three-dimensional (3D) physical models to a great level of detail. However, the 3D information provided by the data is rather limited as every instrument observes from a single angle of vision, or two at the most in the case of the STEREO mission. Two powerful available observational techniques to infer detailed 3D information of the solar corona from empirical data are stereoscopy and tomography. In particular, the technique known as differential emission measure tomography (DEMT) allows determination of the 3D distribution of the coronal electron density and temperature in the inner corona. This paper summarizes the main technical aspects of DEMT, reviews all published work based on it, and comments on its future development and applications.

  13. Direct observation of laser guided corona discharges.

    PubMed

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-01-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271

  14. Direct observation of laser guided corona discharges

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-12-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere.

  15. Stellar Coronae: The First Twenty - Five Years

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2000-01-01

    Hot X-ray emitting coronae were detected on stars other than the Sun about twenty-five years ago. Within only a few years of the first detections, the Einstein Observatory had mapped out coronal activity across the HR diagram. These observations provided the foundations for a coarse theoretical understanding of the physical mechanisms responsible for hot coronae on stars that has changed relatively little in the intervening years: plasma trapped in magnetic structures generated by dynamo processes somewhere beneath the photosphere is heated by as yet unidentified mechanisms that appear to transfer kinetic energy from underlying convective regions of the stellar envelope into the outer atmosphere. This review will describe the observational advances that have lead to some further theoretical understanding of stellar coronae, including the first results from high resolution X-ray spectroscopy obtained by Chandra and XMM-Newton, and will highlight the observational directions needed to make further progress.

  16. Direct observation of laser guided corona discharges

    PubMed Central

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-01-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271

  17. Abundances of Elements in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    1998-01-01

    Interest in stellar coronal abundances was piqued several years ago by the launch of satellites that were able to study the compositions of coronae on stars other than the sun. Motivated by the possibility that other stellar coronae might share the First Ionization Potential (FIP) Effect solar abundance anomaly, we have in recent years been attempting to determine coronal element abundances in other stars. I will review these results, together with similar results reported in the literature, from a critical perspective of understanding the true uncertainties involved in the measurements. The importance of element abundances for coronal physics will be highlighted, and it will be shown that the differences in the chemical compositions of active stars allow us to draw new conclusions regarding the nature of stellar coronae and coronal heating.

  18. Ozone layer protection: Country incremental costs

    SciTech Connect

    King, K.; Munasinghe, M.

    1995-07-01

    The framework presented in Chapter 1 by King and Munasinghe was developed to estimate the country-level incremental cost. This framework has been applied in several developing countries in transition. The purpose of the Workshop on Country-Level Incremental Costs of Phasing Out Ozone-Depleting Substances was to gather key analysts engaged in this work to review the framework and its practical application. They present the results of their work in India, Turkey, Jordan, and Zimbabwe (Chapter 2: Mason); Egypt (Chapter 3: Catanach); Thailand (Chapter 4: Widge, Radka, and Dillon); and Tunisia and Czechoslovakia (Chapter 5; Bendtsen).

  19. Transient corona effects on a wire over the ground

    NASA Technical Reports Server (NTRS)

    Chen, K. C.

    1980-01-01

    The nuclear EMP effect on VLF/trailing wire antennas is investigated in relation to new features of corona effects. Previous experimental results on transmission lines with corona under E 80 kV/cm recorded in the nanosecond time frame are analyzed. A nonlinear macroscopic model which describes a transmission line with corona is discussed. The model not only accounts for overall waveform, but also describes the sharp changes in the waveform associated with the corona onset.

  20. Heating of the corona by magnetic singularities

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    1990-01-01

    Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.

  1. Probing the Solar Corona with VLBI

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Sun, Jing; Heinkelmann, Robert; Schuh, Harald; Böhm, Johannes

    2013-04-01

    Radio observations close to the Sun are sensitive to the dispersive effects of the Sun corona. This has been used to determine (among other parameters) the electron density in the corona during solar conjunctions with spacecrafts. Although geodetic Very Long Baseline Interferometry (VLBI) observations close to the Sun have already been performed before 2002 (but suspended afterwards) they have not yet been used for calculations of corona electron densities. Almost 10 years later the International VLBI Service for Geodesy and Astrometry (IVS) decided to schedule twelve 24 hours VLBI sessions in 2011 and 2012 including observations closer than 15 degrees to the heliocenter. Both the recent and the earlier sessions are analysed in order to determine electron densities of the Sun corona. Based on the ionospheric delay corrections derived from two-frequency VLBI measurements, other dispersive effects like instrumental biases and, most important of all, the Earth's ionosphere effects are estimated and then eliminated. The residual delays are used to successfully determine power-law parameters of the electron density of the Sun corona for several of these sessions. In some cases, scheduled observations close to the Sun had failed, making it impossible to derive meaningful results from them. Both, the successful and the lost observations were analysed including external information like Sunspot numbers and flare occurrences. The estimated electron densities were compared to previous models of the Sun corona derived by radio measurements to spacecrafts during solar conjunctions. Our investigations show that it is possible to use geodetic VLBI sessions with observations close to the Sun to determine electron densities of the corona. The success depends on the geometry, i.e. the source position with respect to the Sun, and on the schedule, which can be optimized for such investigations. Unpredictable disturbances at the Sun's surface, such as flares, play also a role. So far

  2. Device for generation of pulsed corona discharge

    DOEpatents

    Gutsol, Alexander F.; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  3. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  4. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  5. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  6. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  7. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  8. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations. PMID:20875976

  9. 12 CFR 3.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... internal risk management methodologies for identifying, measuring, and managing risk. (c) Calculation of... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Incremental risk. 3.208 Section 3.208 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS...

  10. Input-Based Incremental Vocabulary Instruction

    ERIC Educational Resources Information Center

    Barcroft, Joe

    2012-01-01

    This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…

  11. Kidney Failure

    MedlinePlus

    ... if You Have Kidney Disease Kidney Failure Expand Dialysis Kidney Transplant Preparing for Kidney Failure Treatment Choosing Not to Treat with Dialysis or Transplant Paying for Kidney Failure Treatment Contact ...

  12. Recycling of the Solar Corona's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Close, R. M.; Parnell, C. E.; Longcope, D. W.; Priest, E. R.

    2004-09-01

    Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ~1016 Mx up to ~3×1020 Mx. The tireless motion of these magnetic flux concentrations, along with the continual appearance and disappearance of opposite-polarity pairs of fluxes, releases a substantial amount of energy that may be associated with a whole host of physical processes in the solar corona, not least the enigma of coronal heating. We find here that the timescale for magnetic flux to be remapped in the quiet-Sun corona is, surprisingly, only 1.4 hr (around 1/10 of the photospheric flux recycling time), implying that the quiet-Sun corona is far more dynamic than previously thought. Besides leading to a fuller understanding of the origins of magnetically driven phenomena in our Sun's corona, such a process may also be crucial for the understanding of stellar atmospheres in general.

  13. Arecibo/Magellan Composite of Quetzalpetlatl Corona

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This composite image was created by inserting approximately 70 orbits of Magellan data into an image obtained at the Arecibo, Puerto Rico radiotelescope and shows a geologically complex region in the southern hemisphere of Venus. The region is centered on 65 degrees south, 359 degrees east and is about 1500 x 1500 km (900 x 900 miles) in extent. The large oval feature in the lower half of the image is Quetzalpetlatl Corona, approximately 700 km (420 miles) in diameter. Coronae are circular to oval regions defined by an annulus of ridges and are centers for tectonic and volcanic activity. Tectonic activity is largely observed in a relatively narrow rim region, which in this image is defined by a complex lineated terrain that surrounds much of the corona. Bright and dark volcanic flows are seen throughout the corona and surrounding terrain. Small shield volcanoes, 1-20 km (0.6-12 miles) in diameter, are seen near the southern limit of the Magellan data image. Narrow linear troughs (seen in the image as bright lines) trend to the north-northwest of Quetzalpetlatl.

  14. LABORATORY ANALYSIS OF BACK-CORONA DISCHARGE

    EPA Science Inventory

    The paper discusses an experimental research program to characterize back-corona generation and behavior in a range of environments and geometries common to electrostatic precipitators (ESPs). A wire-parallel plate device was used to monitor the intensity and distribution of back...

  15. Black hole accretion disks with coronae

    NASA Technical Reports Server (NTRS)

    Svensson, Roland; Zdziarski, Andrzej A.

    1994-01-01

    Observations suggest the existence of both hot and cold dark matter in the centers of active galactic nuclei. Recent spectral models require a major fraction of power to be dissipated in the hot matter. We study the case when the hot matter forms a corona around a standard cold alpha-disk. In particular, we investigate the case when a major fraction, f, of the power released when the cold matter accretes is transported to and dissipated in the corona. This has major effects on the cold disk, making it colder, more geometrically thin, denser, and having larger optical depths. One important consequence is the disappearance of the effectively optically thin zone as well as of the radiation pressure dominated zone for values of f sufficiently closed to unity. The disappearance of the radiation pressure dominated zone will result in a cold disk with only a gas pressure dominated zone that is stable against thermal and viscous instabilities. We also show that the pressure ( and the radiation) from the corona will only affect the surface layers of the cold disk. Our results disagree with those of other recent work on accretion disks with coronae. We find those works to be based on unphysical assumptions.

  16. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2001-01-01

    This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.

  17. The minimum flux corona; theory or concept

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Antiochos, S. K.

    1980-01-01

    The reply to the criticisms of the minimum flux theory is discussed. These criticisms are correct in substance, as well as in detail. Counter arguments that the minimum flux corona theory is untenable, because of errors in its formulation, are presented.

  18. PEGylated nanoparticles: protein corona and secondary structure

    NASA Astrophysics Data System (ADS)

    Runa, Sabiha; Hill, Alexandra; Cochran, Victoria L.; Payne, Christine K.

    2014-09-01

    Nanoparticles have important biological and biomedical applications ranging from drug and gene delivery to biosensing. In the presence of extracellular proteins, a "corona" of proteins adsorbs on the surface of the nanoparticles, altering their interaction with cells, including immune cells. Nanoparticles are often functionalized with polyethylene glycol (PEG) to reduce this non-specific adsorption of proteins. To understand the change in protein corona that occurs following PEGylation, we first quantified the adsorption of blood serum proteins on bare and PEGylated gold nanoparticles using gel electrophoresis. We find a threefold decrease in the amount of protein adsorbed on PEGylated gold nanoparticles compared to the bare gold nanoparticles, showing that PEG reduces, but does not prevent, corona formation. To determine if the secondary structure of corona proteins was altered upon adsorption onto the bare and PEGylated gold nanoparticles, we use CD spectroscopy to characterize the secondary structure of bovine serum albumin following incubation with the nanoparticles. Our results show no significant change in protein secondary structure following incubation with bare or PEGylated nanoparticles. Further examination of the secondary structure of bovine serum albumin, α2-macroglobulin, and transferrin in the presence of free PEG showed similar results. These findings provide important insights for the use of PEGylated gold nanoparticles under physiological conditions.

  19. Meteoroids in solar corona and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Lamy, Herve; Mann, Ingrid; Lemaire, Emeritus Joseph

    We simulate the meteoroid entry into the solar corona with a model similar to the one-dimensional ablation model developed by Campbell-Brown and Koschny (2004) for the Earth's atmosphere and by McAuliffe and Christou (2005) for the case of the atmosphere of Venus. We present the results of mass deposition profiles for a wide range of masses for objects falling into the Sun. Several representative chemical compositions of these objects are also considered in-cluding refractory and volatile materials. Our main focus is in the bigger objects (mass ¿ 1 Kg) for which most of the mass is deposited in the lower layers of the solar corona. The interaction of sungrazing comets with the solar corona is studied with a two-dimensional generalization of the model. The cumulative profile of mass deposition is calculated and we look for the actual effects on the coronal heavy ions composition. In particular we discuss possible implications for the FIP (First Ionization Potential) effect and for the formation of pick-up ions that are measured in the solar wind. We consider the similarities and differences of the entry process in the Solar corona and in planetary atmospheres and we shortly address the survival probability of molecular species.

  20. Solar Corona Explorer: A mission for the physical diagnosis of the solar corona

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission objectives and spacecraft requirements for the Solar Corona Explorer (SCE), a proposed free flying, unmanned solar research craft to be tenatively launched in 1987, were defined. The SCE's purpose is to investigate structure, dynamics and evolution of the corona, globally and in the required physical detail, to study the close coupling between the inner corona and the heliosphere. Investigative objectives are: (1) to understand the corona as the source of varying interplanetary plasma and of varying solar X-ray and extreme ultraviolet fluxes; (2) to develop the capabilities to model the corona with sufficient precision to forecast the Earth's variable environment in space, on the scales from weeks to years; (3) to develop an understanding of the physical processes that determine the dynamics and physical state of the coronal plasma, particularly acceleration processes; and (4) to develop insight and test theory on the Sun applicable to stellar coronae and winds, and in particular, to understand why cool stars put such a large fraction of their energy into X-rays. Considered related factors are: (1) duration of the mission; (2) onboard measuring instrumentation; (3) ground support equipment and procedures; and (4) programs of interpretation and modeling.

  1. Thermal maturation of incrementally assembled plutons

    NASA Astrophysics Data System (ADS)

    Davis, J.; Coleman, D. S.; Heizler, M. T.

    2009-12-01

    The Cretaceous zoned intrusive suites of the Sierra Nevada batholith (SNB) were each assembled over 8-11 million years through incremental amalgamation of sheeted intrusions. Emplacement as small sheet-like increments inhibits development of a voluminous zone of melt bearing rock; instead the active magma body represents only a small portion of the total volume intruded. Plutons formed incrementally will have a protracted thermal history (T-t) that can be elucidated using thermochronologic techniques yielding insights into the thermal evolution of the lithosphere at magma chamber-pluton scales. Thermal histories are derived for plutons from the dike-like John Muir Intrusive Suite (JMIS) and the laccolithic Mount Whitney Intrusive Suite (MWIS), both located in the eastern-central SNB, by correlating estimated zircon saturation and argon closure temperatures with U-Pb zircon and titanite, 40Ar/39Ar amphibole, biotite, and K-feldspar ages. Close agreement among zircon and hornblende ages indicate rapid cooling following intrusion. However, hornblende and biotite ages are separated by 6-9 million years indicating slow protracted cooling. We interpret these data to reflect the thermal maturation of an incrementally assembled magma system in which temperatures cycled between ~500-300°C for millions of years. Hornblende ages were not reset by younger intrusions, therefore maximum reheating temperatures did not exceed ~500°C for geologically significant durations. T-t cooling curves from the intrusive suites are used to calibrate finite difference numerical simulations of pluton assembly. Intrusion geometries are modeled (HEAT 3D, Wohletz, 2007) by stacking horizontal increments from the top-down and bottom-up and vertical increments are emplaced syntaxially and antitaxially and are designed to generate plutons of the approximate dimensions, depth of emplacement, and age range of the Sierran suites. Numerical simulations yield the following general observations: 1) an

  2. Specific mass increment and nonequilibrium crystal growth

    NASA Astrophysics Data System (ADS)

    Martyushev, Leonid M.; Terentiev, Pavel S.

    2013-09-01

    Unsteady nonequilibrium crystallization of ammonium chloride from an aqueous solution resulting in the formation of irregular, so-called seaweed, structures is experimentally investigated. It is shown that specific increment of mass for the coexisting structures (or parts thereof) is the same and changes with time (t) according to the power law a/t-b, where the factor a=1.87±0.09 and the factor b is determined by the system relaxation time. The normalization of the power law to the total time of structure growth allows obtaining a universal law that describes the specific mass increment with time for both seaweed and dendrite structures (including the non-coexisting ones).

  3. A Fast Incremental Gaussian Mixture Model

    PubMed Central

    Pinto, Rafael Coimbra; Engel, Paulo Martins

    2015-01-01

    This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets. PMID:26444880

  4. Ozone layer protection: Country incremental costs

    SciTech Connect

    King, K.; Munasinghe, M.

    1997-12-31

    The report evaluates the frameworks established in various countries to finance the incremental costs of phasing out ozone-depleting substances. The Multilateral Fund and the Global Environment Facility (GEF) were established to assist developing countries in financing the incremental costs of phasing out ozone-depleting substances. Both the Fund and the GEF require a strategic framework for the activities they finance to demonstrate that overall phaseout of these substances will be accomplished. The framework, known as the `country program,` establishes a national strategy and program of proposed activities. This paper describes the country programs in general and reviews the work and results of key analysts who carried out these programs in the former Czechoslovakia, Egypt, India, Jordan, Thailand, Tunisia, Turkey, and Zimbabwe.

  5. Some Results on Incremental Vertex Cover Problem

    NASA Astrophysics Data System (ADS)

    Dai, Wenqiang

    In the classical k-vertex cover problem, we wish to find a minimum weight set of vertices that covers at least k edges. In the incremental version of the k-vertex cover problem, we wish to find a sequence of vertices, such that if we choose the smallest prefix of vertices in the sequence that covers at least k edges, this solution is close in value to that of the optimal k-vertex cover solution. The maximum ratio is called competitive ratio. Previously the known upper bound of competitive ratio was 4α, where α is the approximation ratio of the k-vertex cover problem. And the known lower bound was 1.36 unless P = NP, or 2 - ɛ for any constant ɛ assuming the Unique Game Conjecture. In this paper we present some new results for this problem. Firstly we prove that, without any computational complexity assumption, the lower bound of competitive ratio of incremental vertex cover problem is φ, where φ=sqrt{5}+1/2≈ 1.618 is the golden ratio. We then consider the restricted versions where k is restricted to one of two given values(Named 2-IVC problem) and one of three given values(Named 3-IVC problem). For 2-IVC problem, we give an algorithm to prove that the competitive ratio is at most φα. This incremental algorithm is also optimal for 2-IVC problem if we are permitted to use non-polynomial time. For the 3-IVC problem, we give an incremental algorithm with ratio factor (1+sqrt{2})α.

  6. Molecular energies from an incremental fragmentation method

    NASA Astrophysics Data System (ADS)

    Meitei, Oinam Romesh; Heßelmann, Andreas

    2016-02-01

    The systematic molecular fragmentation method by Collins and Deev [J. Chem. Phys. 125, 104104 (2006)] has been used to calculate total energies and relative conformational energies for a number of small and extended molecular systems. In contrast to the original approach by Collins, we have tested the accuracy of the fragmentation method by utilising an incremental scheme in which the energies at the lowest level of the fragmentation are calculated on an accurate quantum chemistry level while lower-cost methods are used to correct the low-level energies through a high-level fragmentation. In this work, the fragment energies at the lowest level of fragmentation were calculated using the random-phase approximation (RPA) and two recently developed extensions to the RPA while the incremental corrections at higher levels of the fragmentation were calculated using standard density functional theory (DFT) methods. The complete incremental fragmentation method has been shown to reproduce the supermolecule results with a very good accuracy, almost independent on the molecular type, size, or type of decomposition. The fragmentation method has also been used in conjunction with the DFT-SAPT (symmetry-adapted perturbation theory) method which enables a breakdown of the total nonbonding energy contributions into individual interaction energy terms. Finally, the potential problems of the method connected with the use of capping hydrogen atoms are analysed and two possible solutions are supplied.

  7. Radio seismology of the outer solar corona

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz; Melnik, Valentin; Brazhenko, Anatoliy; Panchenko, Mykhaylo; Konovalenko, Alexander; Dorovskyy, Vladimir; Rucker, Helmut

    2014-05-01

    Observed oscillations of coronal loops in extreme ultraviolet (EUV) lines have been successfully used to estimate plasma parameters in the inner corona (< 0.2R0, where R0 is the solar radius). However, coronal seismology in EUV lines fails for higher altitudes because of rapid decrease in line intensity. We aim to use radio observations to estimate the plasma parameters of the outer solar corona (> 0.2R0). We used the large Ukrainian radio telescope URAN-2 to observe type IV radio bursts at the frequency range of 8-32 MHz during the time interval of 09:50-12:30 UT on April 14, 2011. The burst was connected to C2.3 flare, which occurred in AR 11190 during 09:38-09:49 UT. The dynamic spectrum of radio emission shows clear quasi-periodic variations in the emission intensity at almost all frequencies. Wavelet analysis at four different frequencies (29 MHz, 25 MHz, 22 MHz, and 14 MHz) shows the quasi-periodic variation of emission intensity with periods of ~ 34 min and ~ 23 min. The periodic variations can be explained by the first and second harmonics of vertical kink oscillation of transequatorial coronal loops, which were excited by the same flare. The apex of transequatorial loops may reach up to 1.2 R0 altitude. We derive and solve the dispersion relation of trapped magnetohydrodynamic (MHD) oscillations in a longitudinally inhomogeneous magnetic slab. The analysis shows that a thin (with width to length ratio of 0.1), dense (with the ratio of internal and external densities of ≥ 20) magnetic slab with weak longitudinal inhomogeneity may trap the observed oscillations. Seismologically estimated Alfvén speed inside the loop at the height of ~ 1 R0 is ~ 1000 km s-1. The magnetic field strength at this height is estimated as ~ 0.9 G. Extrapolation of magnetic field strength to the inner corona gives ~ 10 G at the height of 0.1 R0. Radio observations can be successfully used for the sounding of the outer solar corona, where EUV observations of coronal loops fail

  8. Corona and Motor Voltage Interim Report

    SciTech Connect

    Hsu, J.S.

    2005-05-06

    It has been suggested that to meet the FreedomCAR objectives for cost, size, weight, efficiency, and reliability higher buss voltages be utilized in HEV and FC automotive applications. The reasoning is that since electric power is equal to the product of voltage and current for a given power a higher voltage and lower current would result in smaller cable and inverter switching components. Consequently, the system can be lighter and smaller. On the other hand, higher voltages are known to require better and thicker electrical insulation that reduce the available slot area for motor windings. One cause of slow insulation breakdown is corona that gradually erodes the insulation and shortens the life expectancy of the motor. This study reports on the results of a study on corona initiating voltages for mush-wound and bobbin-wound stators. A unique testing method is illustrated.

  9. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  10. Globally propagating waves in the solar corona

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2011-12-01

    High-cadence space-based observations, available for over a decade now, have revealed globally propagating wave-like disturbances in the solar corona. These coronal waves have now been imaged in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached yet. While many findings are consistent with fast-mode MHD waves and/or shocks, other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of an erupting coronal mass ejection. In this paper, the observational signatures of coronal waves will be reviewed, and the different physical interpretations of coronal waves and how they are motivated by observations will be discussed. Finally, the potential of using coronal waves as a diagnostic tool for the corona will be shown.

  11. Green corona and solar sector structure

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Svalgaard, L.

    1974-01-01

    Analysis of the green-line corona for the interval 1947-1970 suggests the existence of large-scale organization of the emission. The green-line emission at high northern latitudes (approximately 40 to 60 deg) is correlated with the emission at high southern latitudes 6, 15, and 24 days later, while the low-latitude green corona seems to be correlated on both sides of the equator with no time lag. These coronal features are recurrent with a 27-day period at all latitudes between plus or minus 60 deg, and these large-scale structures are believed to be associated with the solar magnetic sector structure. The high correlation between northern and southern high-latitude emission at 15 days time lag is explained as a signature of a two-sector structure, while four sectors are associated with the 6- and 24-day peaks.

  12. Nanoflare Heating of Solar and Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2010-01-01

    A combination of observational and theoretical evidence suggests that much, and perhaps most, of the Sun's corona is heated by small unresolved bursts of energy called nanoflares. It seems likely that stellar coronae are heated in a similar fashion. Kanoflares are here taken to mean any impulsive heating that occurs within a magnetic flux strand. Many mechanisms have this property, including waves, but we prefer Parker's picture of tangled magnetic fields. The tangling is caused by turbulent convection at the stellar surface, and magnetic energy is released when the stresses reach a critical level. We suggest that the mechanism of energy release is the "secondary instability" of electric current sheets that are present at the boundaries between misaligned strands. I will discuss the collective evidence for solar and stellar nanoflares and hopefully present new results from the Solar Dynamics Observatory that was just launched.

  13. Protein-targeted corona phase molecular recognition

    NASA Astrophysics Data System (ADS)

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications.

  14. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  15. STOCHASTIC COUPLING OF SOLAR PHOTOSPHERE AND CORONA

    SciTech Connect

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.; Coyner, Aaron J.

    2013-05-20

    The observed solar activity is believed to be driven by the dissipation of nonpotential magnetic energy injected into the corona by dynamic processes in the photosphere. The enormous range of scales involved in the interaction makes it difficult to track down the photospheric origin of each coronal dissipation event, especially in the presence of complex magnetic topologies. In this paper, we propose an ensemble-based approach for testing the photosphere-corona coupling in a quiet solar region as represented by intermittent activity in Solar and Heliospheric Observatory Michelson Doppler Imager and Solar TErrestrial RElations Observatory Extreme Ultraviolet Imager image sets. For properly adjusted detection thresholds corresponding to the same degree of intermittency in the photosphere and corona, the dynamics of the two solar regions is described by the same occurrence probability distributions of energy release events but significantly different geometric properties. We derive a set of scaling relations reconciling the two groups of results and enabling statistical description of coronal dynamics based on photospheric observations. Our analysis suggests that multiscale intermittent dissipation in the corona at spatial scales >3 Mm is controlled by turbulent photospheric convection. Complex topology of the photospheric network makes this coupling essentially nonlocal and non-deterministic. Our results are in an agreement with the Parker's coupling scenario in which random photospheric shuffling generates marginally stable magnetic discontinuities at the coronal level, but they are also consistent with an impulsive wave heating involving multiscale Alfvenic wave packets and/or magnetohydrodynamic turbulent cascade. A back-reaction on the photosphere due to coronal magnetic reconfiguration can be a contributing factor.

  16. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  17. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  18. Stellar coronae from Einstein - Observations and theory

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Vaiana, G. S.

    1980-01-01

    Einstein Observatory observations of stellar X-ray emission are presented and their implications for the formation of stellar coronae and the problem of stellar angular momentum loss are discussed. Solar coronal X-ray observations and observations of stellar coronae made prior to Einstein are reviewed, and it is noted that they already suggest that the standard theory of acoustic coronal heating is inadequate. The principal results of the Einstein/CfA stellar survey are summarized, with attention given to variations of the level of X-ray flux detected along the main sequence, the decline of X-ray flux with increasing age of giants and supergiants, and indications of a large range of X-ray emission levels within a given type, which are clearly incompatible with models for acoustic flux generation. A new theory to explain stellar coronae and hence X-ray emission from them is then proposed in which stellar magnetic fields play the key role in determining the level of coronal emission, and the modulation of the surface magnetic flux level and the level of stressing of surface magnetic fields essentially determine the variation of mean coronal activity in the H-R diagram.

  19. Collecting, preparing, crossdating, and measuring tree increment cores

    USGS Publications Warehouse

    Phipps, R.L.

    1985-01-01

    Techniques for collecting and handling increment tree cores are described. Procedures include those for cleaning and caring for increment borers, extracting the sample from a tree, core surfacing, crossdating, and measuring. (USGS)

  20. 14 CFR § 1260.53 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. § 1260.53 Section § 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  1. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Incremental funding. 3452... 3452.232-71 Incremental funding. As prescribed in 3452.771, insert the following provision in solicitations: Incremental Funding (AUG 1987) (a) Sufficient funds are not presently available to cover...

  2. 14 CFR § 1274.918 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. § 1274.918 Section Â... WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding July 2002 (a) Of the award amount indicated on the cover page of this Agreement, only...

  3. Kidney Failure

    MedlinePlus

    ... enough red blood cells. This is called kidney failure. If your kidneys fail, you need treatment to ... providers, family, and friends, most people with kidney failure can lead full and active lives. NIH: National ...

  4. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, such ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can't ...

  5. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  6. Incremental learning for automated knowledge capture.

    SciTech Connect

    Benz, Zachary O.; Basilico, Justin Derrick; Davis, Warren Leon,; Dixon, Kevin R.; Jones, Brian S.; Martin, Nathaniel; Wendt, Jeremy Daniel

    2013-12-01

    People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space.

  7. Incremental Scheduling Engines: Cost Savings through Automation

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and ob.jectives are met and resources are not over-booked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper, presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  8. Numerical Modeling of the Solar Chromosphere and Corona: What Has Been Done? What Should Be Done?

    NASA Astrophysics Data System (ADS)

    Hansteen, V.; Carlsson, M.; Gudiksen, B.

    2015-10-01

    A number of increasingly sophisticated numerical simulations spanning the solar atmosphere from below the photosphere in the convection zone to far above in the corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer layers. This development is strengthened by the wealth of observational data now coming on-line from both ground and space based observatories. In this talk we will concentrate on the successes and failures of the modeling effort thus far and discuss the inclusion of various effects not traditionally considered in the MHD description such as time dependent ionization, non-LTE radiative transfer, and generalized Ohm's law.

  9. Energy spectrum of corona impulses generated from insulated wires under high a.c. voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Padiyar, K. R.; Crowell, C. S.

    1978-01-01

    This paper suggests methods for calculating spectral energy densities of corona impulses generated from insulated conductors. The calculation is based on the data obtained from the measurement of corona pulse waveforms, repetition rates and relevant statistical properties of corona impulses.

  10. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  11. Large-scale volcanism associated with coronae on Venus

    NASA Technical Reports Server (NTRS)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  12. Igneous and tectonic evolution of Venusian and terrestrial coronae

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Komatsu, G.

    1992-01-01

    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions.

  13. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  14. Reconnection Processes in the Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    2012-07-01

    Magnetic reconnection is a fundamental key physical process in magnetized plasmas. Recent space solar observations revealed that magnetic reconnection is ubiquitous in the solar chromospheres and corona. Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets (Shibata et al. 2007), penumbral microjets (Katsukawa et al. 2007), light bridge jets from sunspot umbra (Shimizu et al. 2009), etc. It was also found that the corona is full of tiny X-ray jets (Cirtain et al. 2007). Often they are seen as helical spinning jets (Shimojo et al. 2007, Patsourakos et al. 2008, Pariat et al. 2009, Filippov et al. 2009, Kamio et al. 2010) with Alfvenic waves (Nishizuka et al. 2008, Liu et al. 2009) and there are increasing evidence of magnetic reconnection in these tiny jets. We can now say that as spatial resolution of observations become better and better, smaller and smaller flares and jets have been discovered, which implies that the magnetized solar atmosphere consist of fractal structure and dynamics, i.e., fractal reconnection. Bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. Since magnetohydrodynamics (MHD) does not contain any characteristic length and time scale, it is natural that MHD structure, dynamics, and reconnection, tend to become fractal in ideal MHD plasmas with large magnetic Reynolds number such as in the solar atmosphere. We would discuss recent observations and theories related to fractal reconnection in the chromospheres and corona, and discuss possible implication to chromospheric and coronal heating.

  15. Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina

    PubMed Central

    Steinberg, Roy H.

    1971-01-01

    1. Rod-dependent incremental responses were recorded intracellularly in both pigment epithelial cells and horizontal cells of the cat retina. They were elicited by test flashes which were superimposed on background flashes after a delay. 2. In pigment epithelial cells smaller test responses were produced as background intensity was raised. The incremental sensitivity function was linear for about 1·4 log units, with a slope of 0·86, and the approach of saturation occurred at about 2·5 log td scotopic. 3. The amplitude of pigment epithelial test responses could be estimated from the dark-adapted amplitude—log intensity function obtained with single flashes. Test flashes produced the voltage increment predicted by the slope of this function just above the point on the curve equal to the background intensity. The pigment epithelial response to a test flash, therefore, is the response expected if the background were presented alone and made more intense by the amount of the test flash. 4. Rod-dependent incremental sensitivity functions of horizontal cells closely resembled the ones obtained from pigment epithelial cells. 5. It was concluded that the adaptive effects observed in pigment epithelial cells originated in individual rods. These effects arose from the compressive nature of the dark-adapted amplitude—intensity function. In horizontal cell responses these effects may be modified by the failure of the background response to maintain its initial voltage. PMID:5571955

  16. Incremental layer shear bond strength of low-shrinkage resin composites under different bonding conditions.

    PubMed

    Al Musa, A H; Al Nahedh, H N A

    2014-01-01

    The purpose of this study was to determine the incremental shear bond strength of a silorane-based composite (Filtek Silorane) repaired with silorane or a methacrylate-based composite (Filtek Z250) under various aging conditions. Also, the incremental bond strength of the silorane-based composite was compared with that of another low-shrinkage methacrylate-based composite (Aelite LS Posterior) under fresh and aged conditions, with and without the use of an adhesive resin between successive layers. The two brands of low-shrinkage composites were compared with a microhybrid, Filtek Z250, which served as the control. Substrate discs were fabricated and second layers were adhered to them immediately, after two weeks of aging, or after four weeks of aging and with and without an adhesive resin. Shear bond strengths were measured and failure modes were evaluated. The incremental bond strength of silorane to the silorane-based composite was not significantly different from that of the methacrylate-based composite. However, repairing a silorane-based composite with a methacrylate-based composite significantly reduced the bond strength. Aelite showed a lower incremental bond strength than Z250 and silorane, but the use of an adhesive significantly improved the bond strength. The absence of an oxygen-inhibited layer did not affect the bond strength of the consecutive layers of the silorane-based composite. PMID:24807812

  17. Relationship of coronae, regional plains and rift zones on Venus

    NASA Astrophysics Data System (ADS)

    Krassilnikov, A. S.; Kostama, V.-P.; Aittola, M.; Guseva, E. N.; Cherkashina, O. S.

    2012-08-01

    Coronae and rifts are the most prominent volcano-tectonic features on the surface of Venus. Coronae are large radial-concentric structures with diameters of 100 to over 1000 km. They have varied topographical shapes, radial and concentric fracturing and compressional tectonic structures are common for their annuli. Massive volcanism is also connected with some of the structures. Coronae are interpreted to be the result of updoming and fracturing on the surface due to interaction of mantle diapirs with the lithosphere and its subsequent gravitational relaxation. According to Stofan et al. (2001), two types of coronae are observed: type 1 - coronae that have annuli of concentric ridges and/or fractures (407 structures), and type 2 that have similar characteristics to type 1 but lack a complete annulus of ridges and fractures (107 structures). We analyzed 20% of this coronae population (we chose each fifth structure from the Stofan et al. (2001) catalog; 82 coronae of type 1 and 22 coronae of type 2, in total 104 coronae) for the (1) spatial distribution of rift structures and time relationship of rift zones activity with time of regional volcanic plains emplacement, and (2) tectonics, volcanism, age relative to regional plains and relationship with rifts. Two different age groups of rifts on Venus were mapped at the scale 1:50 000 000: old rifts that predate and young rifts that postdate regional plains. Most of young rifts inherit strikes of old rifts and old rifts are reworked by them. This may be evidence of rift-produced uplift zones that were probably mostly stable during both types of rifts formation. Evolution of distribution of rift systems with time (decreasing of distribution and localization of rift zones) imply thickening of the lithosphere with time. Coronae-producing mantle diapirism and uplift of mantle material in rift zones are not well correlated at least in time in most cases, because majority of coronae (77%) of both types has no genetic

  18. Incrementality and Prediction in Human Sentence Processing

    PubMed Central

    Altmann, Gerry T. M.; Mirković, Jelena

    2010-01-01

    We identify a number of principles with respect to prediction that, we argue, underpin adult language comprehension: (a) comprehension consists in realizing a mapping between the unfolding sentence and the event representation corresponding to the real-world event being described; (b) the realization of this mapping manifests as the ability to predict both how the language will unfold, and how the real-world event would unfold if it were being experienced directly; (c) concurrent linguistic and nonlinguistic inputs, and the prior internal states of the system, each drive the predictive process; (d) the representation of prior internal states across a representational substrate common to the linguistic and nonlinguistic domains enables the predictive process to operate over variable time frames and variable levels of representational abstraction. We review empirical data exemplifying the operation of these principles and discuss the relationship between prediction, event structure, thematic role assignment, and incrementality. PMID:20396405

  19. Improved VSM for Incremental Text Classification

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Lei, Jianjun; Wang, Jian; Zhang, Xing; Guo, Jim

    2008-11-01

    As a simple classification method VSM has been widely applied in text information processing field. There are some problems for traditional VSM to select a refined vector model representation, which can make a good tradeoff between complexity and performance, especially for incremental text mining. To solve these problems, in this paper, several improvements, such as VSM based on improved TF, TFIDF and BM25, are discussed. And then maximum mutual information feature selection is introduced to achieve a low dimension VSM with less complexity, and at the same time keep an acceptable precision. The experimental results of spam filtering and short messages classification shows that the algorithm can achieve higher precision than existing algorithms under same conditions.

  20. Incremental nonlinear dimensionality reduction by manifold learning.

    PubMed

    Law, Martin H C; Jain, Anil K

    2006-03-01

    Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner. PMID:16526424

  1. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks.

    PubMed

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  2. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks

    PubMed Central

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  3. Radio Observations of the Solar Corona During an Eclipse

    NASA Astrophysics Data System (ADS)

    Kathiravan, C.; Ramesh, R.; Barve, Indrajit V.; Rajalingam, M.

    2011-04-01

    We carried out radio observations of the solar corona at 170 MHz during the eclipse of 2008 August 1, from the Gauribidanur observatory located about 100 km north of Bangalore in India. The results indicate the presence of a discrete radio source of very small angular dimension (≈15'') in the corona from where the observed radiation originated.

  4. Protein corona – from molecular adsorption to physiological complexity

    PubMed Central

    Docter, Dominic; Maskos, Michael

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs. PMID:25977856

  5. Modulated corona nanosecond discharge in air under ambient pressure

    NASA Astrophysics Data System (ADS)

    Lepekhin, N. M.; Priseko, Yu. S.; Filippov, V. G.; Bulatov, M. U.; Sukharevskii, D. I.; Syssoev, V. S.

    2015-04-01

    A unique type of corona discharge-modulated corona nanosecond discharge-has been obtained, the parameters of which have been determined in a geometric system of electrodes with a sharply heterogeneous electric field in air under ambient pressure and natural humidity.

  6. Origin of Corona-Dominated Topographic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Stofan, E.

    1999-01-01

    Both large-scale mantel upwellings, comparable to terrestrial hotspots on Earth, and smaller scale mantel upwellings, known as coronae, occur on Venus. Corona-dominated rises have many of the characteristics of large scale mantle upwellings, or hotspots, such as broad topographic rises greater than 1000km in diameter and large positive gravity anomalies.

  7. RADIO OBSERVATIONS OF THE SOLAR CORONA DURING AN ECLIPSE

    SciTech Connect

    Kathiravan, C.; Ramesh, R.; Barve, Indrajit V.; Rajalingam, M. E-mail: ramesh@iiap.res.in E-mail: rajalingam@iiap.res.in

    2011-04-01

    We carried out radio observations of the solar corona at 170 MHz during the eclipse of 2008 August 1, from the Gauribidanur observatory located about 100 km north of Bangalore in India. The results indicate the presence of a discrete radio source of very small angular dimension ({approx}15'') in the corona from where the observed radiation originated.

  8. Rings Around the Sun and Moon: Coronae and Diffraction

    ERIC Educational Resources Information Center

    Cowley, Les; Laven, Philip; Vollmer, Michael

    2005-01-01

    Atmospheric optical effects can teach much about physics and especially optics. Coronae--coloured rings around the sun or moon--are large-scale consequences of diffraction, which is often thought of as only a small effect confined to the laboratory. We describe coronae, how they are formed and experiments that can be conducted on ones in the sky.…

  9. Incremental mixed lognormal-Gaussian 4D VAR

    NASA Astrophysics Data System (ADS)

    Forsythe, J.; Fletcher, S. J.; Kliewer, A.; Jones, A. S.

    2013-12-01

    One of the advances that allowed 4DVAR to be operational for synoptic numerical weather prediction was the introduction of incremental 4DVAR. This method assumes that the errors are additive and Gaussian in nature. However, as work recently has shown, there are errors which are multiplicative. A full field version of the 4DVAR equations have been derived and tested in a toy problem for the situation where there is a mix of Gaussian and lognormal background and observational errors. It is not straight-forward, however, to extend the incremental theory to multiplicative errors. One approach which has been suggested recently involves using a transform for the increment. It is shown here that the increment that is found is not the 'incremental mode', i.e. the most likely state for the increment, but rather a median state for the increment. To overcome the multiplicative nature of the errors we present a geometric tangent linear approximation which enables us to linearize the observation operator with respect to a consistent lognormal multiplicative increment. In this paper we present an equivalent incremental version of the mixed lognormal-Gaussian which is based upon finding the most-likely state for additive increments for the Gaussian variables and lognormal for the multiplicative lognormal variables. We test this new approach with the Lorenz 1963 model under different size observational errors and observation window lengths.

  10. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    NASA Astrophysics Data System (ADS)

    Tenzer, Stefan; Docter, Dominic; Kuharev, Jörg; Musyanovych, Anna; Fetz, Verena; Hecht, Rouven; Schlenk, Florian; Fischer, Dagmar; Kiouptsi, Klytaimnistra; Reinhardt, Christoph; Landfester, Katharina; Schild, Hansjörg; Maskos, Michael; Knauer, Shirley K.; Stauber, Roland H.

    2013-10-01

    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

  11. Flexural ridges, trenches, and outer rises around coronae on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Flexural signatures outboard of Venusian coronal rims are examined with the purpose of inferring the thickness of the planet's elastic lithosphere. Topographic profiles of several prominent coronae which display clear trench and outer rise signatures are presented. Via a thin elastic plate flexure model to characterize the shape of the trench and outer rise, Venusian flexures are found to be similar in both amplitude and wavelength to lithospheric flexures seaward of subduction zones on earth. It is shown that circumferential fractures are concentrated in areas where the topography is curved downward, in good agreement with the high tensile stress predicted by the flexure models. Two scenarios for the development of the ridge-trench-outer rise flexural topography and circumferential fractures of coronae are presented. The first scenario involves reheating and thermal subsidence of the lithosphere interior to the corona, while the second involves expansion of the corona interior and roll back of the subducting lithosphere exterior to the corona.

  12. Morphology and evolution of coronae and ovoids on Venus

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Bindschadler, Duane L.; Janes, Daniel M.; Schubert, Gerald; Sharpton, Virgil L.; Stofan, Ellen R.

    1991-01-01

    Coronae and ovoids on Venus were first identified in Venera 15/16 data. They are distinctive and apparently unique to the planet, and may be important indicators of processes operating in the Venusian mantle. Magellan images have provided the first high resolution views of coronae and ovoid morphology. Herein, the general geologic character is described of coronae and ovoids, and some inferences are drawn about their geologic evolution. Coronae are circular to elongate features surrounded by an annulus of deformational features, with a relatively raised or indistinct topographic signature and, commonly, a peripheral trough or moat. Ovoids are circular to elongate features other than coronae with either positive or negative topographic signatures, associated with tectonic deformation and volcanism. The relationship of these two geologic features to each other and to Venusian geology is briefly discussed.

  13. Torsional oscillations in the solar corona

    NASA Astrophysics Data System (ADS)

    Makarov, V. I.; Tlatov, A. G.

    1997-07-01

    The dependence of the differential rotation of the solar corona on latitude and time is investigated using observations in the Fe XIV 5303 Angstrom line from 1940 to 1992. Five bands of fast and slow rotation relative to the average value are distinguished. The bands of slow rotation arise after the reversal of the polar magnetic field of the Sun and migrate toward the equator over the course of 8 to 15 years along the `butterfly' patterns of polar faculae and of the sunspots of the following cycle. The bands of fast rotation arise 5-6 years later and also migrate toward the equator parallel to the bands of slow rotation. The fastest latitude drift of the bands was observed from 1945 to 1955, and preceded the maximum of the 19th solar activity cycle (1955-1965). The amplitude of the azimuthal component of the coronal rotation relative to the mean rotation varied within 30 m/s. The equatorial drift velocity varied from 3 to 5 m/s. The latitude-time distribution of the zones with slow coronal rotation is associated with the appearance of high-latitude and middle-latitude coronal holes after the reversal of the solar polar magnetic field and during the solar activity maximum of the next sunspot cycle. The origin of the zones of anomalous rotation in the corona and their dynamics in the global activity cycle are discussed.

  14. Torsional oscillations in the solar corona

    NASA Astrophysics Data System (ADS)

    Makarov, V. I.; Tlatov, A. G.

    1997-08-01

    The dependence of the differential rotation of the solar corona on latitude and time is investigated using observations in the Fe XIV 5303 A line from 1940 to 1992. Five bands of fast and slow rotation relative to the average value are distinguished. The bands of slow rotation arise after the reversal of the polar magnetic field of the sun and migrate toward the equator over the course of eight to 15 years along the 'butterfly' patterns of polar faculae and of the sunspots of the following cycle. The bands of fast rotation arise 5-6 years later, and also migrate toward the equator parallel to the bands of slow rotation. The fastest latitude drift of the bands was observed from 1945 to 1955 and preceded the maximum of the 19th solar activity cycle (1955-1965). The amplitude of the azimuthal component of the coronal rotation relative to the mean rotation varied within +/- 30 m/s. The equatorial drift velocity varied from 3 to 5 m/s. The latitude-time distribution of the zones with slow coronal rotation is associated with the appearance of high-latitude and middle-latitude coronal holes after the reversal of the solar polar magnetic field and during the solar activity maximum of the next sunspot cycle. The origin of the zones of anomalous rotation in the corona and their dynamics in the global activity cycle are discussed.

  15. RADIATIVE HEATING OF THE SOLAR CORONA

    SciTech Connect

    Moran, Thomas G.

    2011-10-20

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  16. Detection of suspicious activity using incremental outlier detection algorithms

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.; Reljin, N.; Pejcic, N.; Vance, T.; McDaniel, S.; Lazarevic, A.; Chang, H. J.; Choi, J. Y.; Miezianko, R.

    2009-08-01

    Detection of unusual trajectories of moving objects can help in identifying suspicious activity on convoy routes and thus reduce casualties caused by improvised explosive devices. In this paper, using video imagery we compare efficiency of various techniques for incremental outlier detection on detecting unusual trajectories on simulated and real-life data obtained from SENSIAC database. Incremental outlier detection algorithms that we consider in this paper include incremental Support Vector Classifier (incSVC), incremental Local Outlier Factor (incLOF) algorithm and incremental Connectivity Outlier Factor (incCOF) algorithm. Our experiments performed on ground truth trajectory data indicate that incremental LOF algorithm can provide better detection of unusual trajectories in comparison to other examined techniques.

  17. Validation of daily increments in otoliths of northern squawfish larvae

    USGS Publications Warehouse

    Wertheimer, R.H.; Barfoot, C.A.

    1998-01-01

    Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.

  18. Productive Failure

    ERIC Educational Resources Information Center

    Kapur, Manu

    2008-01-01

    This study demonstrates an existence proof for "productive failure": engaging students in solving complex, ill-structured problems without the provision of support structures can be a productive exercise in failure. In a computer-supported collaborative learning setting, eleventh-grade science students were randomly assigned to one of two…

  19. An Experimental Study of Incremental Surface Loading of an Elastic Plate: Application to Volcano Tectonics

    NASA Technical Reports Server (NTRS)

    Williams, K. K.; Zuber, M. T.

    1995-01-01

    Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.

  20. R Coronae Australis: A Cosmic Watercolour

    NASA Astrophysics Data System (ADS)

    2010-06-01

    This magnificent view of the region around the star R Coronae Australis was created from images taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile. R Coronae Australis lies at the heart of a nearby star-forming region and is surrounded by a delicate bluish reflection nebula embedded in a huge dust cloud. The image reveals surprising new details in this dramatic area of sky. The star R Coronae Australis lies in one of the nearest and most spectacular star-forming regions. This portrait was taken by the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image is a combination of twelve separate pictures taken through red, green and blue filters. This image shows a section of sky that spans roughly the width of the full Moon. This is equivalent to about four light-years at the distance of the nebula, which is located some 420 light-years away in the small constellation of Corona Australis (the Southern Crown). The complex is named after the star R Coronae Australis, which lies at the centre of the image. It is one of several stars in this region that belong to the class of very young stars that vary in brightness and are still surrounded by the clouds of gas and dust from which they formed. The intense radiation given off by these hot young stars interacts with the gas surrounding them and is either reflected or re-emitted at a different wavelength. These complex processes, determined by the physics of the interstellar medium and the properties of the stars, are responsible for the magnificent colours of nebulae. The light blue nebulosity seen in this picture is mostly due to the reflection of starlight off small dust particles. The young stars in the R Coronae Australis complex are similar in mass to the Sun and do not emit enough ultraviolet light to ionise a substantial fraction of the surrounding hydrogen. This means that the cloud does not glow with the characteristic red colour seen in

  1. Incremental fusion of partial biometric information

    NASA Astrophysics Data System (ADS)

    Abboud, Ali J.; Jassim, Sabah A.

    2012-06-01

    Existing face recognition schemes are mostly based on extracting biometric feature vectors either from whole face images, or from a fixed facial region (e.g., eyes, nose, and mouth). Extreme variation in quality conditions between biometric enrolment and verification stages badly affects the performance of face recognition systems. Such problems have partly motivated several investigations into the use of partial facial features for face recognition. Nevertheless, partial face recognition is potentially useful in several applications, for instance, it used in forensics for detectives to identify individuals after some accidents such as fire or explosion. In this paper, we propose a scheme to fuse the biometric information of partial face images incrementally based on their recognition accuracy (or discriminative power) ranks. Such fusion scheme uses the optimal ratio of full/partial face images in each different quality condition. We found that such scheme is also useful for full face images to enhance authentication accuracy significantly. Nevertheless, it reduces the required storage requirements and processing time of the biometric system. Our experiments show that the required ratio of full/partial facial images to achieve optimal performance varies from (5%) to (80%) according to the quality conditions whereas the authentication accuracy improves significantly for low quality biometric samples.

  2. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  3. Parameter incremental learning algorithm for neural networks.

    PubMed

    Wan, Sheng; Banta, Larry E

    2006-11-01

    In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658

  4. Exploring dynamic events in the solar corona

    NASA Astrophysics Data System (ADS)

    Downs, Cooper James

    With the advent of modern computational technology it is now becoming the norm to employ detailed 3D computer models as empirical tools that directly account for the inhomogeneous nature of the Sun-Heliosphere environment. The key advantage of this approach lies in the ability to compare model results directly to observational data and to use a successful comparison (or lack thereof) to glean information on the underlying physical processes. Using extreme ultraviolet waves (EUV waves) as the overarching scientific driver, we apply this observation modeling approach to study the complex dynamics of the magnetic and thermodynamic structures that are observed in the low solar corona. Representing a highly non-trivial effort, this work includes three main scientific thrusts: an initial modeling effort and two EUV wave case-studies. First we document the development of the new Low Corona (LC) model, a 3D time-dependent thermodynamic magnetohydrodynamic (MHD) model implemented within the Space Weather Modeling Framework (SWMF). Observation synthesis methods are integrated within the LC model, which provides the ability to compare model results directly to EUV imaging observations taken by spacecraft. The new model is then used to explore the dynamic interplay between magnetic structures and thermodynamic energy balance in the corona that is caused by coronal heating mechanisms. With the model development complete, we investigate the nature of EUV waves in detail through two case-studies. Starting with the 2008 March 25 event, we conduct a series of numerical simulations that independently vary fundamental parameters thought to govern the physical mechanisms behind EUV waves. Through the subsequent analysis of the 3D data and comparison to observations we find evidence for both wave and non-wave mechanisms contributing to the EUV wave signal. We conclude with a comprehensive observation and modeling analysis of the 2010 June 13 EUV wave event, which was observed by the

  5. The photosphere-corona Interface: enrichement of the corona in low FIP elements and helium shells

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Koutchmy, S.; Lamy, P.; Veselovski, I.

    2014-12-01

    Slitless consecutive spectra were obtained during the contacts of the last total solar eclipses (2008, 2009, 2010, 2012, et 2013). They allowed to show that the overabundance of low First Ionisation Potential (FIP) elements (Fe II, Ti II, Ba II) in the corona comes from the low layers of the solar atmosphere, just near and above the temperature minimum region of the high photosphere. All spectra are recorded with a fast CCD/CMOS camera, with an equivalent radial resolution of 60 milliarcseconds, or 45 km in the solar atmosphere, above a solar edge not affected by the parasitic light like it is outside of total eclipse conditions. Many emission lines of low FIP elements appear in regions situated between 200 to 600 km above the solar limb defined by the true continuum measured between the lines. This continuum appears at these altitudes where the beta of the plasma is near 1. The He I 4713 Å and He II 4686 Å (Paschen alpha line) shells appear at the height of 800 km above the solar edge and higher. The light curve I = f(h) of each ion is located at a particuliar altitude in the solar atmosphere. The scale height corresponds to a density variation, which allows to evaluate the temperature thanks to the hydrostatic equilibrium assumption. Moreover, with ionised Titanium lines taken as markers, we show a similarity between the photosphere-corona interface and the prominence-corona interface. We discuss the role of the magnetic field and the ambipolar diffusion for supplying the corona in mass, without taking into account the role of spicules. The photo-ionisation of the helium lines by the EUV coronal lines is illustrated thanks to an extract of SDO/AIA coronal stacked image simultaneously obtained.

  6. Charging of moving surfaces by corona discharges sustained in air

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Zhang, Daihua; Leoni, Napoleon; Birecki, Henryk; Gila, Omer; Kushner, Mark J.

    2014-07-01

    Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface is continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.

  7. Charging of moving surfaces by corona discharges sustained in air

    SciTech Connect

    Wang, Jun-Chieh Kushner, Mark J.; Zhang, Daihua; Leoni, Napoleon Birecki, Henryk Gila, Omer

    2014-07-28

    Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface is continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.

  8. Condition for Positive Corona Inception from Thundercloud Hydrometeors

    NASA Astrophysics Data System (ADS)

    Rassoul, H. K.; Liu, N.; Dwyer, J. R.

    2010-12-01

    Corona discharges from hydrometeors (i.e., water droplets and ice particles) are an important component in thunderstorm charging and discharging processes. In particular, they have long been recognized as playing a critical role in lightning initiation. It has been noted that the observed maximum thunderstorm electric fields are consistently about an order of magnitude smaller than the conventional breakdown threshold field [e.g., Marshall et al., JGR, 100, 7097, 1995]. One of the lightning initiation hypotheses suggests that lightning begins with corona streamers emitted from thundercloud hydrometeors that can locally enhance the thunderstorm electric field to trigger electrical breakdown of air [e.g., Petersen et al., JGR, 113, D17205, 2008]. Many studies have been conducted to understand the physics of corona discharges from hydrometeors and to determine their onset conditions and discharge characteristics. However, the current knowledge on the dependence of the corona onset on pressure and humidity is inconclusive. In this study, we report an investigation on the inception condition of positive corona discharges from thundercloud hydrometeors that are simulated as a spherical point electrode. The inception condition is examined using the physical model discussed by Naidis [J. Phys. D: Appl. Phys., 38, 2211, 2005], which suggests positive corona discharges become self-sustaining when the number of ionizing UV photons produced by all secondary avalanches is equal to that by a primary avalanche. We present the inception condition for the positive corona discharges in both dry and humid air at pressure from ground to thundercloud altitude. We discuss how pressure and humidity affect the corona onset. In general, a stronger avalanche multiplication is required for the inception of the corona discharges at the condition of higher pressure, more water vapor content, and larger hydrometeors. Finally, we discuss the implications of our results to thunderstorm

  9. Corona-discharge-initiated mine explosions

    SciTech Connect

    Sacks, H.K.; Novak, T.

    2005-10-01

    Strong circumstantial evidence suggests that lightning has initiated methane explosions in abandoned and sealed areas of underground coal mines. The Mine Safety and Health Administration (MSHA) investigated several of these occurrences within recent years. The investigated explosions occurred at significant depths, ranging from 700 to 1200 ft. Data from the National Lightning Detection Network indicated a strong correlation between the times and locations of the explosions with those of specific lightning strikes. This paper proposes that corona discharge from a steel borehole casing is the most likely mechanism responsible for these ignitions. A recently investigated mine explosion and fire at a depth greater than 1000 ft was selected for this study. Computer simulations were performed, using data collected at the mine site. CDEGS software from Safe Engineering Services & Technologies, Ltd. and MaxwellSV from Ansoft Corporation were used for the simulations.

  10. Dynamics and energetics of the solar corona

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1992-01-01

    The primary objective of this research program is to improve our understanding of the dynamics and energetics of the solar corona both in the quiescent dynamic equilibrium state when coronal structure is dominated by the equatorial streamer belt and in the eruptive state when coronal plasma is ejected into the interplanetary medium. Numerical solutions of the time-dependent magnetohydrodynamic (MHD) equations and comparisons of the computed results with observations form the core of the approach to achieving this objective. Some of the specific topics that have been studied are: (1) quiescent coronal streamers in an atmosphere dominated by a dipole magnetic field at large radii, (2) the formation of coronal mass ejections (CMEs) in quiescent streamers due to the emergence of new magnetic flux and due to photospheric shear motion, (3) MHD shock formation near the leading edge of CMEs, (4) coronal magnetic arcade eruption as a result of applied photospheric shear motion, and (5) the three-dimensional structure of CMEs.

  11. Chemical Compositions and Anomalies in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    In summary, as the papers cited here and in earlier reports demonstrate, this award has enabled us to obtain a fairly good picture of the abundance anomalies in stellar coronae. The "inverse FIP" effect in very active stars has now been fleshed out as a more complex anomaly depending on FIP, whereas before it appeared only in terms of a general metal paucity, the recent solar abundance assessment of Asplund et a1 will, if correct, challenge some of the older interpretations of coronal abundance anomalies since they imply quite different relative abundances of CNO compared with Fe, Mg and Si. Further investigations have been in into the possibility of modeling some of the recent coronal abundance anomaly results in terms of Alfven wave-driven separation of neutrals and ions in the upper chromosphere. This work still remains in the seed stage, and future funding from a different program will be requested to pursue it further.

  12. Untwisting magnetic fields in the solar corona

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  13. Coronae of Stars with Supersolar Elemental Abundances

    NASA Technical Reports Server (NTRS)

    Peretz, Uria; Behar, Ehud; Drake, Stephen A.

    2015-01-01

    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the first ionization potential (FIP). This study focuses on the coronal composition of stars with supersolar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, iota Hor, HR 7291, tau Boo, and alpha Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances we measured were obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra onboard the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and tau Boo no FIP effect is present, while iota Hor, HR 7291, and alpha Cen A and B show a clear FIP trend. These conclusions hold whether the comparison is made with solar abundances or the individual stellar abundances. Unlike the solar corona, where low-FIP elements are enriched, in these stars the FIP effect is consistently due to a depletion of high-FIP elements with respect to actual photospheric abundances. A comparison with solar (instead of stellar) abundances yields the same fractionation trend as on the Sun. In both cases, a similar FIP bias is inferred, but different fractionation mechanisms need to be invoked.

  14. Coronae of stars with supersolar elemental abundances

    NASA Astrophysics Data System (ADS)

    Peretz, Uria; Behar, Ehud; Drake, Stephen A.

    2015-05-01

    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the first ionization potential (FIP). This study focuses on the coronal composition of stars with supersolar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, ι Hor, HR 7291, τ Boo, and α Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances we measured were obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra onboard the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and τ Boo no FIP effect is present, while ι Hor, HR 7291, and α Cen A and B show a clear FIP trend. These conclusions hold whether the comparison is made with solar abundances or the individual stellar abundances. Unlike the solar corona, where low-FIP elements are enriched, in these stars the FIP effect is consistently due to a depletion of high-FIP elements with respect to actual photospheric abundances. A comparison with solar (instead of stellar) abundances yields the same fractionation trend as on the Sun. In both cases, a similar FIP bias is inferred, but different fractionation mechanisms need to be invoked.

  15. A study of the background corona near solar minimum

    NASA Technical Reports Server (NTRS)

    Saito, K.; Poland, A. I.; Munro, R. H.

    1977-01-01

    Equatorial and polar K and F coronal components during the declining phase of the solar cycle are studied through use of the white light coronagraph data obtained by Skylab. At this phase of the solar cycle, streams and holes dominate the equatorial corona (approximately 50 and 30% of the time, respectively) between 2.5 and 5.5 solar radii; however, two episodes are noted when equatorial background density of the corona could be distinguished. The derived background density is less than 15% below values predicted by the models of Newkirk (1967) and Saito (1970). The brightness of the F-corona is also discussed.

  16. Instrumentation for investigation of corona discharges from insulated wires

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1975-01-01

    A coaxial cylinder configuration is used to investigate the effect of corona impulses on the deterioration of electrical insulation. The corona currents flowing through the resistance develop a voltage which is fed to the measuring set-up. The value of this resistance is made equal to the surge impedance of the coaxial cylinder set up to prevent reflections. This instrumentation includes a phase shifter and Schmidt trigger and is designed to sample, measure, and display corona impulses occurring during any predetermined sampling period of a randomly selectable half cycle of the 60 Hz high voltage wave.

  17. The TESIS experiment on the CORONAS-PHOTON spacecraft

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  18. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  19. Comparison of Topographic Profiles Across Venus' Coronae and Craters: Implications for Corona Origin Hypothesis

    NASA Astrophysics Data System (ADS)

    Stoddard, P. R.; Jurdy, D. M.

    2006-12-01

    Venus' surface hosts nearly 1000 unambiguous impact craters, ranging in diameter from 1.5 to 280 km. Although the majority of these are pristine, slightly less than 200 have been modified by either volcanic or tectonic activity or both. In addition, numerous researchers have identified hundreds of ring-like features of varying morphology, termed "coronae." These have typically been thought of as having a diapiric or volcanic origin. Recently, however, based on the circular to quasi-circular nature of coronae, an alternative origin - impact - has been proposed. We compare the profiles across agreed-upon craters to several coronae that have been suggested as impact sites. For each feature, 36 profiles (taken every ten degrees) are aligned and then averaged together. For Mead, Cleopatra, Meitner, and Isabella craters, the profiles display the typical rim and basin structure expected for craters, but for Klenova crater the average is more domal, with only a few of the individual profiles looking crater-like. Among the "contested" coronae, the average profiles for Eurynome, Maya, and C21 appear crater-like, albeit with more variation among the individual profiles than seen in the agreed-upon craters. Anquet has a rim-and-basin structure, but unlike typical craters, the basin is elevated above the surrounding plains. Acrea appears to be a small hill in a large depression, again with a high degree of variability among the profiles. Ninhursag is clearly domal, and cannot be taken as a crater. A summary of the variability of the profiles - where 100% correlation would indicate perfect circular symmetry - indicates that, with the exception of Klenova, those features universally agreed-upon as craters have the highest correlation percentages - all at or above 80%. The disputed features are not as circular, although C21 is close. Based on this analysis, we conclude that Klenova has been mischaracterized as an impact crater, and that C21 and some other features previously

  20. Teachers' Preferences toward Alternate Systems of Salary Increment.

    ERIC Educational Resources Information Center

    Bogie, Cheryl E.; Bogie, Donald W.

    1978-01-01

    Elementary teachers from three different urban socioeconomic neighborhoods were surveyed regarding their preferences toward uniform vs competency-based systems of salary increment; the relationship between selected characteristics of teachers and principals and teachers' attitudes toward alternate forms of salary increment were also investigated.…

  1. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  2. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  3. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  4. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  5. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  6. Incremental Seismic Rehabilitation of School Buildings (K-12).

    ERIC Educational Resources Information Center

    Krimgold, Frederick; Hattis, David; Green, Melvyn

    Asserting that the strategy of incremental seismic rehabilitation makes it possible for schools to get started now on improving earthquake safety, this manual provides school administrators with the information necessary to assess the seismic vulnerability of their buildings and to implement a program of incremental seismic rehabilitation for…

  7. Testicular failure

    MedlinePlus

    ... Blood tests may show a low level of testosterone and high levels of prolactin, FSH , and LH . ... testes will be ordered. Testicular failure and low testosterone level may be hard to diagnose in older ...

  8. Heart Failure

    MedlinePlus

    ... together. About Rise Above HF Rise Above Heart Failure seeks to increase the dialogue about HF and improve the lives of people affected by the condition through awareness, education and support. Through the initiative, AHA strives to ...

  9. Power-law confusion: You say incremental, I say differential

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1993-01-01

    Power-law distributions are commonly used to describe the frequency of occurrences of crater diameters, stellar masses, ring particle sizes, planetesimal sizes, and meteoroid masses to name a few. The distributions are simple, and this simplicity has led to a number of misstatements in the literature about the kind of power-law that is being used: differential, cumulative, or incremental. Although differential and cumulative power-laws are mathematically trivial, it is a hybrid incremental distribution that is often used and the relationship between the incremental distribution and the differential or cumulative distributions is not trivial. In many cases the slope of an incremental power-law will be nearly identical to the slope of the cumulative power-law of the same distribution, not the differential slope. The discussion that follows argues for a consistent usage of these terms and against the oft-made implicit claim that incremental and differential distributions are indistinguishable.

  10. Determining the Optimum Number of Increments in Composite Sampling

    SciTech Connect

    Hathaway, John E.; Schaalje, G Bruce; Gilbert, Richard O.; Pulsipher, Brent A.; Matzke, Brett D.

    2008-09-30

    Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling terminology and theory are outlined and a method is developed which accounts for different sources of variation in compositing and data analysis. This method is used to define and understand the process of determining the optimum number of increments that should be used in forming a composite. The blending variance is shown to have a smaller range of possible values than previously reported when estimating the number of increments in a composite sample. Accounting for differing levels of the blending variance significantly affects the estimated number of increments.

  11. Observations of corona in triggered dart-stepped leaders

    NASA Astrophysics Data System (ADS)

    Gamerota, W. R.; Uman, M. A.; Hill, J. D.; Jordan, D. M.

    2015-03-01

    Corona streamers are a critical component of lightning leader step formation and are postulated to produce the very high electric fields at their tips that produce runaway electrons resulting in the observed X-ray bursts associated with leader stepping. Corona emanating from the vicinity of the leader tip between leader steps was analyzed using three sequential high-speed video sequences of dart-stepped leaders in three different triggered lightning flashes during the summers of 2013 and 2014 in northeast Florida. Images were recorded at 648 kiloframes per second (1.16 µs exposure time, 380 ns dead time) at an altitude of 65 m or less. In each image sequence, the leader propagates downward in consecutive frames, with corona streamers observed to fan outward from the bright leader tip in less than the image frame time of about 1.5 µs. In 21 exposures, corona streamers propagate, on average, 9 m below the bright leader tip.

  12. Solar corona/prominence seen through the White Light Coronograph

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solar corona and a solar prominence as seen through the White Light Coronograph, Skylab Experiment S052, on January 17, 1974. This view was reproduced from a television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The bright spot is a burn in the vidicon. The solar corona is the halo around the Sun which is normally visible only at the time of solar eclipse by the Moon. The Skylab coronography uses an externally-mounted disk system which occults the brilliant solar surface while allowing the fainter radiation of the corona to enter an annulus and be photographed. A mirror system allows either TV viewing of the corona or photographic recording of the image.

  13. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  14. Numerical simulation of three-dimensional tuft corona and electrohydrodynamics

    SciTech Connect

    Yamamoto, T.; Sparks, L.E.

    1986-01-01

    The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of individual tufts is considerably higher even at a low average current level and, therefore, could contribute to both the formation of back corona in the collected-dust layer and the generation of the secondary flow. Numerical simulation for three-dimensional tuft corona is successfully solved. The electrical characteristics of tuft corona are investigated, and the structure and role of the three-dimensional secondary flow and EHD in relation to transport of the fine particles are described.

  15. Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona

    PubMed Central

    Landry, Markita P.; Kruss, Sebastian; Nelson, Justin T.; Bisker, Gili; Iverson, Nicole M.; Reuel, Nigel F.; Strano, Michael S.

    2014-01-01

    Advancements in optical nanosensor development have enabled the design of sensors using syntheticmolecular recognition elements through a recently developed method called Corona Phase MolecularRecognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective for specific analytes, and demonstrate remarkable stability for use under a variety of conditions. An essential element of nanosensor development hinges on the ability to understand the interface between nanoparticles and the associated corona phase surrounding the nanosensor, an environment outside of the range of traditional characterization tools, such as NMR. This review discusses the need for new strategies and instrumentation to study the nanoparticle corona, operating in both in vitro and in vivo environments. Approaches to instrumentation must have the capacity to concurrently monitor nanosensor operation and the molecular changes in the corona phase. A detailed overview of new tools for the understanding of CoPhMoRe mechanisms is provided for future applications. PMID:25184487

  16. On the transition from stable positive glow corona to streamers

    NASA Astrophysics Data System (ADS)

    Liu, Lipeng; Becerra, Marley

    2016-06-01

    A 2D numerical simulation of the transition from stable positive glow corona to streamers in coaxial cylindrical configuration is presented. The hydrodynamic model with several convection-dominated continuity equations together with Poisson equation are solved with consideration of the ionization layer. The transition from a stable positive glow corona produced under a DC voltage to streamers is investigated under a sudden change of the applied voltage. The critical rate of rise of voltage required for the transition from positive glow to streamer corona is evaluated with a voltage ramp. By introducing either physical or numerical instabilities into the model, streamers with filamentary structures are observed, which produce a sudden increase of the discharge current by more than two orders of magnitude. It is also found that the surface electric field of the corona-generating conductor deviates from the onset electric field, casting doubts about the validity of Kaptzov’s approximation to evaluate the transition from stable glow to streamers.

  17. Decomposition characteristics of toluene by a corona radical shower system.

    PubMed

    Wu, Zu-liang; Gao, Xiang; Luo, Zhong-yang; Ni, Ming-jiang; Cen, Ke-fa

    2004-01-01

    Non-thermal plasma technologies offer an innovative approach to decomposing various volatile organic compounds(VOCs). The decomposition of toluene from simulated flue gas was investigated using a pipe electrode with nozzles for the generation of free radicals. Corona characteristics and decomposition of toluene were investigated experimentally. In addition, the decomposition mechanism of toluene was explored in view of reaction rate. The experimental results showed that the humidity of additional gas has an important effect on corona characteristics and modes and stable streamer corona can be generated through optimizing flow rate and humidity of additional gas. Applied voltage, concentration of toluene, humidity of toluene and resident time are some important factors affecting decomposition efficiency. Under optimizing conditions, the decomposition efficiency of toluene can reach 80%. These results can give a conclusion that the corona radical shower technology is feasible and effective on the removal of toluene in the flue gas. PMID:15495952

  18. A Data-Driven Evolution Model for the Global Corona

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Jiang, C.; Xiang, C. Q.; Wu, S.

    2011-12-01

    In this work we have developed a new time-dependent global corona model for the study of dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetogram. A surface flux transport (SFT) model is employed to produce the time-varying and self-consistent magnetogram with synoptic map as input. The global corona model is established with our newly-developed numerical code AMR-CESE-MHD on an overset grid of Yin-Yang overlapping structure. The SFT model and the three-dimensional global corona model is coupled through the boundary condition of projected-characteristic method. Numerical study of the coronal evolution from Carrington rotation 1913 to 1915 presents results comparable with multi-observed coronal images.

  19. Viscoelastic Relaxation of Topographic Highs on Venus to Produce Coronae

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1995-01-01

    Coronae on Venus are believed to result from the gravitationally driven relaxation of topography that was originally raised by mantle diapirs. We examine this relaxation using a viscoelastic finite element code, and show that an initially plateau shaped load will evolve to the characteristic corona topography of central raised bowl, annular rim, and surrounding moat. Stresses induced by the relaxation are consistent with the development of concentric extensional fracturing common on the outer margins of corona moats. However, relaxation is not expected to produce the concentric faulting often observed on the annular rim. The relaxation timescale is shorter than the diapir cooling timescale, so loss of thermal support controls the rate at which topography is reduced. The final corona shape is supported by buoyancy and flexural stresses and will persist through geologic time. Development of lower, flatter central bowls and narrower and more pronounced annular rims and moats enhanced by thicker crusts, higher thermal gradients, and crustal thinning over the diapir.

  20. Transmission line corona losses under hoar frost conditions

    SciTech Connect

    Lahti, K.; Nousiainen, K.; Lahtinen, M.

    1997-04-01

    Transmission line corona losses under hoar frost conditions were studied in the climate room of the high voltage laboratory of Tampere University of Technology. The measurements were performed using a coaxial measurement arrangement with different bundle and conductor types. The effects of conductor and bundle type, temperature, applied voltage and hoar frost thickness on corona losses were investigated. A two-conductor bundle had corona losses about 2.5--5 times higher than a three-conductor bundle. Relatively thin hoar frosts were used in the tests. Even the thinnest hoar frost resulted in remarkable corona losses and the losses were very sensitive to changes in the hoar frost thickness. The ambient temperature had a strong influence on the measured losses.

  1. Study of the solar corona using radio and space observations

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1984-01-01

    The physics of coronal transients, the characteristics of radiation and accelerated particles at the time of flares, and the density/temperature structure of the transition region and corona and the coronal magnetic field are investigated.

  2. Radicals generated from 2-chloro-5-fluorotoluene by corona discharge

    NASA Astrophysics Data System (ADS)

    Yi, Eun Hye; Yoon, Young Wook; Lee, Sang Kuk

    2014-06-01

    The generation of molecular radicals in corona discharge was investigated spectroscopically by varying the experimental conditions applied to a substituted toluene precursor. Vibronic emission spectra were observed from the corona discharge of 2-chloro-5-fluorotoluene seeded in a large amount of carrier gas helium. From an analysis of emission spectra observed, it was confirmed that bond dissociation energy plays a key role in radical formation. The possible pathway for the formation of benzyl-type radicals is proposed to explain the observation.

  3. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol

    PubMed Central

    Qi, Chaolong; Kulkarni, Pramod

    2015-01-01

    A corona-based bipolar charger has been developed for use in compact, field-portable mobility size spectrometers. The charger employs an aerosol flow cavity exposed to two corona ionizers producing ions of opposite polarity. Each corona ionizer houses two electrodes in parallel needle-mesh configuration and is operated at the same magnitude of corona current. Experimental measurement of detailed charge distribution of near-monodisperse particles of different diameter in the submicrometer size range showed that the charger is capable of producing well-defined, consistent bipolar charge distributions for flow rates up to 1.5 L/min and aerosol concentration up to 107 per cm3. For particles with preexisting charge of +1, 0, and −1, the measured charge distributions agreed well with the theoretical distributions within the range of experimental and theoretical uncertainties. The transmission efficiency of the charger was measured to be 80% for 10 nm particles (at 0.3 L/min and 5 μA corona current) and increased with increasing diameter beyond this size. Measurement of uncharged fractions at various combinations of positive and negative corona currents showed the charger performance to be insensitive to fluctuations in corona current. Ion concentrations under positive and negative unipolar operation were estimated to be 8.2 × 107 and 3.37 × 108 cm−3 for positive and negative ions; the n·t product value under positive corona operation was independently estimated to be 8.5 × 105 s/cm3. The ion concentration estimates indicate the charger to be capable of “neutralizing” typical atmospheric and industrial aerosols in most measurement applications. The miniature size, simple and robust operation makes the charger suitable for portable mobility spectrometers. PMID:26512158

  4. New Results From Chandra: Abundances in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    1999-01-01

    There is considerable evidence, both solar and stellar, that the chemical compositions of stellar coronae differ from their underlying 1)hotospheres. The differences for solar-type stars appear to be related to FIP, whereas the differences for active stars are more mysterious and perhaps suggest metal depletion. Results to-date will be reviewed and new results from the Chandra X-ray Observatory based on calibration and Emission Line Project observations of late-type stellar coronae, will be presented.

  5. Hot Gaseous Coronae around Spiral Galaxies: Probing the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Bogdán, Ákos; Vogelsberger, Mark; Kraft, Ralph P.; Hernquist, Lars; Gilfanov, Marat; Torrey, Paul; Churazov, Eugene; Genel, Shy; Forman, William R.; Murray, Stephen S.; Vikhlinin, Alexey; Jones, Christine; Böhringer, Hans

    2015-05-01

    The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae have been detected around spirals with massive stellar bodies (≳ 2× {{10}11} {{M}⊙ }). To explore the hot coronae around lower mass spiral galaxies, we utilized Chandra X-ray observations of a sample of eight normal spiral galaxies with stellar masses of (0.7-2.0)× {{10}11} {{M}⊙ }. Although statistically significant diffuse X-ray emission is not detected beyond the optical radii (˜20 kpc) of the galaxies, we derive 3σ limits on the characteristics of the coronae. These limits, complemented with previous detections of NGC 1961 and NGC 6753, are used to probe the Illustris Simulation. The observed 3σ upper limits on the X-ray luminosities and gas masses exceed or are at the upper end of the model predictions. For NGC 1961 and NGC 6753 the observed gas temperatures, metal abundances, and electron density profiles broadly agree with those predicted by Illustris. These results hint that the physics modules of Illustris are broadly consistent with the observed properties of hot coronae around spiral galaxies. However, one shortcoming of Illustris is that massive black holes, mostly residing in giant ellipticals, give rise to powerful radio-mode active galactic nucleus feedback, which results in under-luminous coronae for ellipticals.

  6. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    NASA Technical Reports Server (NTRS)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  7. VIEWCACHE: An incremental database access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nick; Sellis, Timoleon

    1991-01-01

    The objective is to illustrate the concept of incremental access to distributed databases. An experimental database management system, ADMS, which has been developed at the University of Maryland, in College Park, uses VIEWCACHE, a database access method based on incremental search. VIEWCACHE is a pointer-based access method that provides a uniform interface for accessing distributed databases and catalogues. The compactness of the pointer structures formed during database browsing and the incremental access method allow the user to search and do inter-database cross-referencing with no actual data movement between database sites. Once the search is complete, the set of collected pointers pointing to the desired data are dereferenced.

  8. Viscoelastic incremental formulation using creep and relaxation differential approaches

    NASA Astrophysics Data System (ADS)

    Chazal, Claude; Mouto Pitti, Rostand

    2010-05-01

    A new incremental formulation in the time domain for linear, non-ageing viscoelastic materials undergoing mechanical deformation is presented in this work. The formulation is derived from linear differential equations based on a discrete spectrum representation for the creep and relaxation tensors. The incremental constitutive equations are then obtained by finite difference integration. Thus the difficulty of retaining the stress and strain history in computer solutions is avoided. A complete general formulation of linear viscoelastic stress analysis is developed in terms of increments of strains and stresses in order to establish the constitutive stress-strain relationship. The presented method is validated using numerical simulations and reliable results are obtained.

  9. Direct observation of a single nanoparticle-ubiquitin corona formation

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  10. Titan's corona: The contribution of exothermic chemistry

    NASA Astrophysics Data System (ADS)

    De La Haye, V.; Waite, J. H.; Cravens, T. E.; Nagy, A. F.; Johnson, R. E.; Lebonnois, S.; Robertson, I. P.

    2007-11-01

    The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N 2, CH 4, H, H 2, 3CH 2, CH 3, C 2H 4, C 2H 5, C 2H 6, N( 4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N 2, CH 4, and H 2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N 2 and CH 4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be 8.3×10 Ns and 7.2×10 Cs.

  11. Studies on the corona of open clusters

    NASA Astrophysics Data System (ADS)

    Balaguer-Núñez, L.; Jordi, C.; Muiños, J. L.; Galadí-Enríquez, D.; Masana, E.

    2013-05-01

    High quality proper motions on an extended area of a selection of Open Clusters (OCs) will let us study their coronas with unprecedented accuracy. We are in the process of obtaining astrometry with the Meridian Circles of San Fernando CMASF at El Leoncito (Argentina) and the CTA at La Palma of an area few times the known radius (from Webda) of a selection of OCs. We will make use of Strömgren wide-field photometry to complement their characterization. We have already analysed the old open cluster M67, deriving properties for 2738 stars fainter and, in a wider area, than any previous precise survey in the cluster region. With new data from the CMASF we have covered an area of about 2°×1.4° and down to 17 magnitude in r^'. Proper motions are then used to determine the membership probabilities of stars in the region, applying parametric and non-parametric approaches to cluster/field segregation. Adding photometric criteria, we obtained a preliminary list of 665 probable member stars, up to a distance 0.96° from the cluster centre. These are preliminary results on our work that will lead us to the most complete study of its structure, dynamics and mass segregation up to date. We have already obtained proper motions for NGC 1817, NGC 2264 and NGC 2509 that are now being processed.

  12. Heating of the Solar Corona: Review

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.

    2005-06-01

    The heating of solar and stellar chromospheres and coronae are one of the key fundamental and yet unresolved questions of modern space and plasma physics. In spite of the multi-fold efforts spanning over half a century including the many superb technological advances and theoretical developments (both analytical and computational) the unveiling of the subtles of coronal heating still remained an exciting job for the 21st century! In the present paper I review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic (HD), magnetohydrodynamic (MHD) or kinetic based on the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, attention is paid to discuss shock dissipation, Landau damping, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, I briefly review the various observational consequences of the many proposed heating mechanisms and confront them with high-resolution ground-based and satellite data currently available.

  13. The theory of positive glow corona

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    1997-11-01

    A theory for the current and light pulses of positive glow corona from a point in air is presented; this phenomenon was first observed as an apparently continuous glow by Michael Faraday. Results are obtained, in concentric sphere geometry, for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions, negative ions and metastable oxygen molecules, coupled with Poisson's equation. A series of `saw-toothed' current pulses of period about 0022-3727/30/22/008/img1 is predicted with a DC current level. Accompanying the current peaks are discrete pulses of light 30 ns wide. Successive `shells' of positive ions, from successive current pulses, carry 96% of the mean current. The mean current - voltage relationship has the classic square-law form. The seed electrons required for successive pulses are detached from negative ions by metastable oxygen molecules. Photo-ionization is crucial for the discharge at the anode and for the formation of negative ions throughout the gap. The pulse frequency varies with applied voltage and is found to be approximately proportional to the positive-ion mobility. The surface electric field at the central electrode remains close to Peek's onset field. The origin of onset streamers is explained and sub-microsecond voltage pulses are found to produce streamers. The results for concentric-cylinder electrodes are described briefly.

  14. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  15. Respiratory Failure

    MedlinePlus

    ... from inhaling smoke or harmful fumes Treatment for respiratory failure depends on whether the condition is acute (short-term) or chronic (ongoing) and how severe it is. It also depends on the underlying cause. You may receive oxygen therapy and other treatment to help you breathe. NIH: ...

  16. Heart Failure

    MedlinePlus

    ... Tiredness and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and diabetes. It is more common in people who are 65 years old or older, African Americans, people who are overweight, and people who have ...

  17. An Examination of an Incremental Approach to Mathematics.

    ERIC Educational Resources Information Center

    Klingele, William E.; Reed, Beverly Woods

    1984-01-01

    A study of approximately 600 University of Arkansas remedial algebra students divided into seven control and seven experimental group sections substantially confirms John Saxon's findings that mathematics achievement can be improved by using Saxon's incremental approach to mathematics instruction. (JBM)

  18. 48 CFR 3432.771 - Provision for incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... funding. 3432.771 Section 3432.771 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 3432.771 Provision for incremental funding. The contracting officer shall insert the provision in...

  19. Towards a Comprehensive Model of Coronae Formation on Venus

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Stofan, E. R.

    1996-03-01

    Coronae are roughly circular volcano-tectonic features that are interpreted as a manifestation of small-scale upwelling and are unique to Venus. The topographic expression of coronae is highly variable, ranging from domes to plateaus, with or without moats or single or multiple outer rises. Two outstanding questions in the study of coronae are how the full range of topographic profiles are produced and the relationship between topography and the annulus of fractures that characterize coronae. Domes, plateaus, and outer rises can be formed by thermal relaxation of a topographic high due to a rising and cooling of a hot upwelling, but interior depressions, isolated rims, and inner highs with rims, troughs and outer rises, can not. Relaxation can produce fracture annuli, but observed annuli frequently do not occur on the outer rise, as predicted by relaxation models. A new model of upwelling is presented that can produce nearly the full range of observed topographic morphologies and commonly observed off-set between tectonic fracture annuli and the outer topographic rise. The cold lithosphere at the edge of the plume head is sucked downward until the thermal anomaly dissipates, explaining the limited subduction qualities of some coronae. This model differs from past approaches to corona formation in the use of temperature-dependent rheology and the prediction of pressure-release melting. Other aspects that may be key to the development of certain coronae topographic features are the presence of a low-density depleted mantle layer beneath the high viscosity thermal lithosphere and the cooling of the thermal lithosphere during upwelling. This approach could provide constraints on thermal history.

  20. 26 CFR 1.41-8 - Alternative incremental credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....41-8T(b)(5) as contained in 26 CFR part 1, revised April 1, 2006. Paragraphs (b)(3) and (b)(4)(ii) of... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Alternative incremental credit. 1.41-8 Section 1... Credits Against Tax § 1.41-8 Alternative incremental credit. (a) Determination of credit. At the...

  1. 26 CFR 1.41-8 - Alternative incremental credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....41-8T(b)(5) as contained in 26 CFR part 1, revised April 1, 2006. Paragraphs (b)(3) and (b)(4)(ii) of... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Alternative incremental credit. 1.41-8 Section 1... Credits Against Tax § 1.41-8 Alternative incremental credit. (a) Determination of credit. At the...

  2. Boundary value problems with incremental plasticity in granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.; Costes, N. C.

    1974-01-01

    Discussion of the critical state concept in terms of an incremental theory of plasticity in granular (soil) media, and formulation of the governing equations which are convenient for a computational scheme using the finite element method. It is shown that the critical state concept with its representation by the classical incremental theory of plasticity can provide a powerful means for solving a wide variety of boundary value problems in soil media.

  3. The NT-criterion for predicting crack growth increments

    NASA Technical Reports Server (NTRS)

    Yehia, Nabil A. B.; Shephard, Mark S.

    1987-01-01

    A new approach is presented to determine the crack propagation increment after the direction of crack propagation has been predicted. The maximum dilatational strain energy density (NT-criterion) is employed in the derivation for predicting both direction and increment of the propagating crack. The crack propagation path predicted by the NT-criterion is compared to the one predicted by the S-criterion and to some available experimental data.

  4. An optimized procedure for determining incremental heat rate characteristics

    SciTech Connect

    Noyola, A.H.; Grady, W.M. ); Viviani, G.L. )

    1990-05-01

    This paper describes an optimized procedure for producing generator incremental heat rate curves from continually sampled unit performance data. A generalized reduced gradient algorithm is applied to optimally locate break points in incremental heat rate curves. The advantages include the ability to automatically take into consideration slow time-varying effects such as unit aging and temperature variations in combustion air and cooling water. The procedure is tested using actual fuel rate data for four generators.

  5. Monitoring Holes in the Sun's Corona

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Coronal holes are where the fast solar wind streams out of the Suns atmosphere, sending charged particles on rapid trajectories out into the solar system. A new study examines how the distribution of coronal holes has changed over the last 40 years.Coronal holes form where magnetic field lines open into space (B) instead of looping back to the solar surface (A). [Sebman81]Source of the Fast Solar WindAs a part of the Suns natural activity cycle, extremely low-density regions sometimes form in the solar corona. These coronal holes manifest themselves as dark patches in X-ray and extreme ultraviolet imaging, since the corona is much hotter than the solar surface that peeks through from underneath it.Coronal holes form when magnetic field lines open into space instead of looping back to the solar surface. In these regions, the solar atmosphere escapes via these field lines, rapidly streaming away from the Suns surface in whats known as the fast solar wind.Coronal Holes Over Space and TimeAutomated detection of coronal holes from image-based analysis is notoriously difficult. Recently, a team of scientists led by Kenichi Fujiki (ISEE, Nagoya University, Japan) has developed an automated prediction technique for coronal holes that relies instead on magnetic-field data for the Sun, obtained at the National Solar Observatorys Kitt Peak between 1975 and 2014. The team used these data to produce a database of 3335 coronal hole predictions over nearly 40 years.Latitude distribution of 2870 coronal holes (each marked by an x; color indicates polarity), overlaid on the magnetic butterfly map of the Sun. The low-latitude coronal holes display a similar butterfly pattern, in which they move closer to the equator over the course of the solar cycle. Polar coronal holes are more frequent during solar minima. [Fujiki et al. 2016]Examining trends in the coronal holes distribution in latitude and time, Fujiki and collaborators find a strong correlation between the total area covered

  6. INTERCHANGE RECONNECTION IN A TURBULENT CORONA

    SciTech Connect

    Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D.; Servidio, S.; Velli, M.

    2012-10-10

    Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.

  7. Discovering New R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.; Tisserand, Patrick; Welch, Douglas L.; LeBleu, Amy

    2016-01-01

    The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich supergiants. Two evolutionary scenarios have been suggested, a double degenerate merger of two white dwarfs, or a final helium shell flash in a PN central star. The evidence pointing toward a white-dwarf merger or a final-flash origin for RCB stars is contradictory. The distribution on the sky and radial velocities of the RCB stars tend toward those of the bulge population but a much larger sample of stars is needed to determine the true population. We need to discover RCB stars much more efficiently. In order to do this, we have used a series of IR color-color cuts, using the recent release of the WISE All-Sky Catalog, to produce a sample of 2200 candidates that may yield over 200 new RCB star identifications. Most of these candidates do not have lightcurves, the traditional technique of identifying RCB stars from their characteristic large and irregular light variations. We have obtained optical spectra of several hundred candidates and have confirmed over 40 new RCB stars in the Galaxy. We are attempting to develop a quantitative spectral classification system for the RCB stars so that they can be identified without an accompanying light curve. The cooler RCB stars look like carbon stars with strong C2 bands, but they can be differentiated from carbon stars by their extreme hydrogen deficiency and very low 13C/12C ratio. Also, the red CN bands are much weaker in RCB stars than in carbon stars. The number of RCB stars in the Galaxy may be consistent with the predicted number of He/CO white-dwarf mergers. Solving the mystery of how the RCB stars evolve would be a watershed event in the study of stellar evolution that will lead to a better understanding of other important types of stellar merger events such as Type Ia SNe.

  8. Interchange Reconnection in a Turbulent Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D.; Servidio, S.; Velli, M.

    2012-10-01

    Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.

  9. Interchange Reconnection in a Turbulent Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Velli, M. M.

    2012-12-01

    Magnetic reconnection at the interface between coronal holes and loops, so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. In the prevailing ``standard'' view the interchange process is thought to develop in null points (with B=0) preferably at the apex of streamers or pseudo-streamers, near Y and X-points, from where slow solar wind flows would originate. This standard model does not meet recent observations of slow wind streams from the edges of active regions, that suggest that slow streams are not limited to apex-regions near neutral points (B=0). Furthermore in order to account for the slow wind diffusion (~ 30 degrees) observed in situ around the Heliospheric Current Sheet, within the standard model framework one has to posit that the slow wind would originate from a small fraction, with a complex topology, of the whole coronal hole-loop boundary, namely narrow channels (supposedly at observationally sub-resolution scales) linking coronal holes. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points. We propose that a similar alternate interchange mechanism operating near boundaries between open and closed regions induces a continual stochastic rearrangement of connectivity everywhere along the open-closed boundary. We examine a reduced magnetohydrodynamic model of a simplified unipolar interface region between open and closed corona. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along coronal loop-hole boundaries, a possibility that has major implications for coronal heating and models of the slow solar wind, and accounts

  10. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.