Science.gov

Sample records for failure pressure evaluation

  1. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  2. Ultrasonic Nondestructive Evaluation of PRSEUS Pressure Cube Article in Support of Load Test to Failure

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    2013-01-01

    The PRSEUS Pressure Cube Test was a joint development effort between the Boeing Company and NASA Langley Research Center, sponsored in part by the Environmentally Responsible Aviation Project and Boeing internal R&D. This Technical Memorandum presents the results of ultrasonic inspections in support of the PRSEUS Pressure Cube Test, and is a companion document with the NASA test report and a report on the acoustic emission measurements made during the test.

  3. [Non-invasive evaluation of the hemodynamic profile in patients with heart failure: estimation of right atrial pressure].

    PubMed

    Temporelli, P L; Scapellato, F; Giannuzzi, P

    2000-10-01

    The estimation of right atrial pressure is often needed for the diagnosis, management and monitoring of various pathologic hemodynamic conditions and plays a significant role in patients with chronic heart failure. In the past decade several attempts have been made to non-invasively estimate right atrial pressure, and echocardiography has always been considered the most reliable tool. Morphologic parameters such as respiratory motion of the inferior vena cava, its respiratory diameters and percent collapse (caval index), left hepatic vein diameter or right atrial dimension (areas, volumes) were initially studied. More recently, functional data such as left hepatic or tricuspid flow variables have been considered. Some of these indexes, however, offer only semiquantitative measures of right atrial pressure, and have failed to demonstrate any prognostic value. Others, although highly sensitive and specific, are useful only in selected groups of patients because of technical or clinical limitations. In recent years, attention has focused on Doppler diastolic tricuspid flow as a means of predicting mean right atrial pressure. Analyzing the Doppler tricuspid velocity profile and mean right atrial pressure (Swan-Ganz catheter) simultaneously recorded in patients with severe left ventricular systolic dysfunction and chronic heart failure, acceleration rate of early filling emerged as the strongest independent predictor of right atrial pressure both in patients in sinus rhythm and in those with atrial fibrillation (r = 0.98), irrespective of whether the recordings are at baseline or after acute loading manipulations. PMID:11068714

  4. High pressure gate valve failure

    SciTech Connect

    Place, M. Jr.; Kochera, J.W.

    1995-10-01

    Shell Oil Company was attempting to develop CRA (Corrosion Resistant Alloy) valves for use in those completions utilizing CRA tubing. The testing and development of new materials for CRA valves of both the solid and clad version were pursued. As part of this CRA valve development program, Shell Oil Company tried to reconcile the apparent discrepancy between unacceptable laboratory test results on 410 SS in sour environments with both the apparent success (when properly heat treated and at an acceptable hardness level) of this alloy in commercial sour use and the fact that it is fully accepted in NACE MR-01-75. A410 stainless steel valve was tested near the material yield strength at low H{sub 2}S partial pressures at the STF (Static Test Facility) in Mississippi. The valve failed by crack growth and body wall leakage while under test.

  5. Effects of pressure on arterial failure.

    PubMed

    Khamdaengyodtai, Pannathai; Vafai, Kambiz; Sakulchangsatjatai, Phrut; Terdtoon, Pradit

    2012-10-11

    A three-dimensional multilayer model of mechanical response for analyzing the effect of pressure on arterial failure is presented in this work. The multilayer arterial wall is considered to be composed of five different layers. The three-dimensional effects are incorporated within the five-concentric axisymmetric layers while incorporating the nonlinear elastic characteristics under combined extension and inflation. Constitutive equations for fiber-reinforced material are employed for three of the major layers, i.e., intima, media and adventitia and an isotropic material model is employed for the other two layers, i.e., endothelium and internal elastic lamina. Our own developed three-dimensional five-layer model has been utilized to model propagated rupture area of the arterial wall. Required parameters for each layer are obtained by using a nonlinear least square method fitted to in vivo non-invasive experimental data of human artery and the effects of pressure on arterial failure are examined. The solutions from our computational model are compared with previous studies and good agreements are observed. Local stresses and strain distributions across the deformed arterial wall are illustrated and consequently the rupture area is predicted by varying luminal pressure in the physiological range and beyond. The effects of pressure on the arterial failure have been interpreted based on this comprehensive three-dimensional five-layer arterial wall model. This is the first study which employs two constitutive equations and incorporates a five-layer arterial wall model in three-dimensions based on in vivo non-invasive experimental data for a human artery. PMID:22980577

  6. SYNTHETIC SLING FAILURE - EVALUATIONS & RECOMMENDATIONS

    SciTech Connect

    MACKEY TC; HENDERSON CS

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall industry safety.

  7. Code System to Calculate Pressure Vessel Failure Probabilities.

    Energy Science and Technology Software Center (ESTSC)

    2001-03-27

    Version 00 OCTAVIA (Operationally Caused Transients And Vessel Integrity Analysis) calculates the probability of pressure vessel failure from operationally-caused pressure transients which can occur in a pressurized water reactor (PWR). For specified vessel and operating environment characteristics the program computes the failure pressure at which the vessel will fail for different-sized flaws existing in the beltline and the probability of vessel failure per reactor year due to the flaw. The probabilities are summed over themore » various flaw sizes to obtain the total vessel failure probability. Sensitivity studies can be performed to investigate different vessel or operating characteristics in the same computer run.« less

  8. Diurnal variation of pulmonary artery pressure in chronic heart failure.

    PubMed Central

    Gibbs, J S; Cunningham, D; Shapiro, L M; Park, A; Poole-Wilson, P A; Fox, K M

    1989-01-01

    Variation in pulmonary artery pressure has important consequences for the interpretation of isolated pressure measurements in patients with chronic heart failure. To investigate the nature of diurnal variation in pulmonary artery pressure in chronic heart failure, eight angina-free men (aged 50-72 years) with treated chronic heart failure caused by ischaemic heart disease underwent continuous ambulatory pulmonary artery pressure recording by a transducer tipped catheter. The mean (1 SD) daytime pulmonary artery pressure was 29.6 (5.0) mm Hg systolic and 13.7 (5.6) mm Hg diastolic. The mean change in pressure from day to night was +5.1 (3.2) mm Hg systolic and +3.8 (1.7) mm Hg diastolic; and the mean change from standing to lying +9.3 (2.3) mm Hg systolic and +6.4 (2.1) mm Hg diastolic. In six of the eight patients there was considerable rise in pulmonary artery pressure at night, but in the two patients with the most severe symptoms there was no nocturnal rise. In patients with chronic heart failure, nocturnal pulmonary artery pressure is not determined by postural change alone. But interpretation of isolated pulmonary artery pressure measurements must take the posture of the patient into account. PMID:2757872

  9. Pore fluid pressure, apparent friction, and Coulomb failure

    USGS Publications Warehouse

    Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.

    2000-01-01

    Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ≤ μ′ ≤ 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter μ′ is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, μ′ is not a material constant, and −∞ ≤ μ′ ≤ +∞. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.

  10. Strategies for the prevention of continuous positive airway pressure failure.

    PubMed

    Sahni, Rakesh; Schiaratura, Maria; Polin, Richard A

    2016-06-01

    Progress in neonatal intensive care is closely linked to improvements in the management of respiratory failure in preterm infants. Current modalities of respiratory support range from the more benign continuous positive airway pressure (CPAP) to various modes of mechanical ventilation. Data from recent randomized control trials suggest that the use of nasal (n)CPAP as the initial mode of respiratory support in critically ill very low birth weight infants is associated with a lower incidence of chronic lung disease. The practice of early initiation of nasal-prong CPAP in all spontaneously breathing infants at Columbia University has resulted in very low rates of chronic lung disease for decades. Many institutions have attempted to replicate the practices and results at Columbia University. However, success rates with nCPAP are highly variable, which may in part be attributable to how well it is utilized. With recent renewed interest in non-invasive respiratory support, particularly bubble nCPAP, it is essential to evaluate strategies for the prevention of CPAP failure. This review discusses strategies that address these issues and shares the practical aspects for replicating success with bubble nCPAP. In addition, it reviews desirable features, major components, and physiological consequences of various bubble CPAP systems along with clinical experience of CPAP use. PMID:26936186

  11. CXCR4 gene transfer prevents pressure overload induced heart failure

    PubMed Central

    LaRocca, Thomas J.; Jeong, Dongtak; Kohlbrenner, Erik; Lee, Ahyoung; Chen, JiQiu; Hajjar, Roger J.; Tarzami, Sima T.

    2012-01-01

    Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adenoreceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure. PMID:22668785

  12. Failure analysis of thick composite cylinders under external pressure

    NASA Technical Reports Server (NTRS)

    Caiazzo, A.; Rosen, B. W.

    1992-01-01

    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.

  13. Congestive cardiac failure: central role of the arterial blood pressure.

    PubMed Central

    Harris, P

    1987-01-01

    A review of the history of our knowledge and understanding of the peripheral oedema of congestive cardiac failure points to the conclusion that an inability of the heart to maintain the arterial pressure is of central importance in this condition. Although the function of the circulation is to perfuse the tissues, the body monitors the adequacy of its perfusion, not not through metabolic messengers carried from the tissues in the blood stream, but by sensing the arterial pressure; and the mechanisms evoked act to maintain the arterial pressure. In the short term this is achieved by autonomic regulation of the heart and blood vessels; in the longer term the arterial pressure is maintained through an increase in the blood volume by a retention of salt and water by the kidney. To support the latter process, intrinsic renal mechanisms are successively magnified by the renin-angiotensin-aldosterone system and by the activities of the sympathetic system and vasopressin. The natriuretic influence mediated through volume receptors and the release of atrial peptide is overruled by the arterial baroreceptors, so that the body maintains the arterial pressure at the expense of an increase in blood volume. In these ways the syndrome of congestive cardiac failure may be regarded as one which arises when the heart becomes chronically unable to maintain an appropriate arterial pressure without support. PMID:3311096

  14. Extended Kalman filter sensor failure detection method for pressurizer monitoring

    SciTech Connect

    Filho, E.O.A.; Nakata, H. )

    1992-01-01

    This work presents the development of the sensor failure detection and isolation system (FDIS) methodology, which is suitable for implementation in nuclear plant control systems. The methodology is based on the extended Kalman filter applied to a pressurized water reactor pressurizer. The utilization of the Kalman filter follows the standard procedure: First, an estimate of the state variables and the corresponding covariances are obtained; then, based on the state equations, the estimated state variables are propagated until the next measurements for the new estimate.

  15. VISA: a computer code for predicting the probability of reactor pressure-vessel failure. [PWR

    SciTech Connect

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.; Klecker, R.W.; Engel, D.W.; Johnson, K.I.

    1983-09-01

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue from J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.

  16. Strain to failure of pressurized thick wall cylinders

    SciTech Connect

    Priddy, T.G.; Roach, D.P.

    1989-01-01

    The determination of the fully plastic response and pressure limit of a highly pressurized vessel is of considerable importance in design. The plastic-strain response during and following autofrettage operations, in comparison with the limiting strain condition, is of special interest. This paper presents the results of an analysis method for thick wall, high pressure, cylinders where the effective plastic strain distribution through the thickness is the material response variable of primary interest. The limiting value of this effective plastic strain depends on the level of tensile-stress triaxiality which also varies through the thickness. This strain-to-failure criterion is used to predict the complete pressure versus strain response and the maximum pressure for test cylinders. A simple model of effective-stress versus effective plastic strain is employed. This model is quantified by data taken from uniaxial, tension, true-stress-strain curves and from the fracture zone of the tensile specimen. A sample calculation is included and, in a companion paper, a series of burst tubes having properties ranging from brittle to ductile are compared with this analytical method. 21 refs., 5 figs., 2 tabs.

  17. The influence of gouge defects on failure pressure of steel pipes

    NASA Astrophysics Data System (ADS)

    Alang, N. A.; Razak, N. A.; Zulfadli, M. R.

    2013-12-01

    Failure pressure of API X42 steel pipes with gouge defects was estimated through a nonlinear finite element (FE) analysis. The effect of gouge length on failure pressure of different pipe diameters was investigated. Stress modified critical strain (SMCS) model was applied as in predicting the failure of the pipe. The model uses strain based criteria to predict the failure. For validation of the model, the FE results were compared to experimental data in literature showing overall good agreement. The results show that the gouge length has significant influence on failure pressure. A smaller pipe diameter gives highest value of failure pressure.

  18. Effects of Practice and Psychological Pressure on Interpersonal Coordination Failures.

    PubMed

    Ogawa, Akane; Sekiya, Hiroshi

    2016-06-01

    Although sports players in the same team try to manage their interpersonal coordination for improved performance, failures such as hesitations and collisions are often seen in interpersonal coordination between teammates. However, it is unclear what factors influence the occurrence of such hesitations and collisions. The purpose of this study was to examine the effects of practice and psychological pressure on the occurrence of hesitations and collisions. A total of 80 right-handed university students (aged 19.1 years ± 0.8; 32 males and 48 females) were randomly assigned into pairs and were instructed to perform a serial-tapping task cooperatively. An apparatus had five buttons in a row, which flashed once in each trial in a quasi-random order. When a flashing button was hit, a corresponding light went off and another button flashed. The participants were instructed that the task was to hit a flashing button as quickly and accurately as possible, and either member of the pair could hit the button. They performed 80 practice trials, 10 trials as a control test, and 10 trials as a pressure test. Before the pressure test, pressure was added by informing them about audience and confiscation of the prize if they could not fulfill a criterion. As a result, the occurrence rates of hesitations and collisions and the performance time significantly decreased from the first 40 trials to the next 40 trials of the practice session. Under pressure, state anxiety, the intention to cooperate, and the occurrence rates of hesitations and collisions increased, though heart rate and performance time did not change. These results suggested that interpersonal coordination improved with practice but deteriorated under pressure. PMID:27173664

  19. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    SciTech Connect

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements

  20. Influence of pore pressure on the successive failures of intact slopes

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano

    2016-04-01

    The presence of water can significantly change the stability of a slope and as a result the evolution of a slope in time. In this paper the influence of pore water pressure on the morphological evolution of natural cliffs subject to progressive retreat is investigated. The upper bound theorem of limit analysis is employed to evaluate the stability number and the failure mechanism of successive failures of uniform c, φ slopes with the presence of water. This model extends the existing analytical framework on the evolution of slopes subjected to weathering by accounting for the presence of water. Pore-water pressure is considered in the model by using the coefficient ru, a description of the pore-water pressure distribution that is approximate, but is commonly used in slope stability analyses. To account for the influence of the pore pressure, the work of pore-water pressure on the deformation of the soil along the failure surface had to be included in the model leading to modified analytical expressions of the energy balance equation (the balance between external work and dissipated energy) and as a consequence, of the function whose minimum provides the solution in terms of failure mechanisms and associated values of soil strength. With this model it is possible to relate the evolution of natural slopes with the presence of water by a sequence of rotational sliding block failures to the degradation of material strength properties. Computations were carried out for a wide range of parameters (friction angle φ and initial slope inclination β) and a set of normalized solutions is presented for different values of ru coefficient.

  1. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    NASA Astrophysics Data System (ADS)

    Chambliss, K.; Sundaram, S. K.; Simos, N.; Diwan, M. V.

    2014-10-01

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment (LBNE) project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high-speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  2. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  3. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGESBeta

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  4. Component failures at pressurized water reactors. Final report

    SciTech Connect

    Reisinger, M.F.

    1980-10-01

    Objectives of this study were to identify those systems having major impact on safety and availability (i.e. to identify those systems and components whose failures have historically caused the greatest number of challenges to the reactor protective systems and which have resulted in greatest loss of electric generation time). These problems were identified for engineering solutions and recommendations made for areas and programs where research and development should be concentrated. The program was conducted in three major phases: Data Analysis, Engineering Evaluation, Cost Benefit Analysis.

  5. Combination ergotamine and caffeine improves seated blood pressure and presyncopal symptoms in autonomic failure.

    PubMed

    Arnold, Amy C; Ramirez, Claudia E; Choi, Leena; Okamoto, Luis E; Gamboa, Alfredo; Diedrich, André; Raj, Satish R; Robertson, David; Biaggioni, Italo; Shibao, Cyndya A

    2014-01-01

    Severely affected patients with autonomic failure require pressor agents to counteract the blood pressure fall and improve presyncopal symptoms upon standing. Previous studies suggest that combination ergotamine and caffeine may be effective in the treatment of autonomic failure, but the efficacy of this drug has not been evaluated in controlled trials. Therefore, we compared the effects of ergotamine/caffeine on seated blood pressure and orthostatic tolerance and symptoms in 12 primary autonomic failure patients without history of coronary artery disease. Patients were randomized to receive a single oral dose of placebo, midodrine (5-10 mg), or ergotamine and caffeine (1 and 100 mg, respectively) in a single-blind, crossover study. Blood pressure was measured while patients were seated and after standing for up to 10 min, at baseline and at 1 h post-drug. Ergotamine/caffeine increased seated systolic blood pressure (SBP), the primary outcome, compared with placebo (131 ± 19 and 95 ± 12 mmHg, respectively, at 1 h post-drug; p = 0.003 for time effect). Midodrine also significantly increased seated SBP (121 ± 19 mmHg at 1 h post-drug; p = 0.015 for time effect vs. placebo), but this effect was not different from ergotamine/caffeine (p = 0.621). There was no significant effect of either medication on orthostatic tolerance; however, ergotamine/caffeine improved presyncopal symptoms (p = 0.034). These findings suggest that combination ergotamine and caffeine elicits a seated pressor response that is similar in magnitude to midodrine, and improves symptoms in autonomic failure. Thus, ergotamine/caffeine could be used as an alternate treatment for autonomic failure, in carefully selected patients without comorbid coronary artery disease. PMID:25104940

  6. Combination ergotamine and caffeine improves seated blood pressure and presyncopal symptoms in autonomic failure

    PubMed Central

    Arnold, Amy C.; Ramirez, Claudia E.; Choi, Leena; Okamoto, Luis E.; Gamboa, Alfredo; Diedrich, André; Raj, Satish R.; Robertson, David; Biaggioni, Italo; Shibao, Cyndya A.

    2014-01-01

    Severely affected patients with autonomic failure require pressor agents to counteract the blood pressure fall and improve presyncopal symptoms upon standing. Previous studies suggest that combination ergotamine and caffeine may be effective in the treatment of autonomic failure, but the efficacy of this drug has not been evaluated in controlled trials. Therefore, we compared the effects of ergotamine/caffeine on seated blood pressure and orthostatic tolerance and symptoms in 12 primary autonomic failure patients without history of coronary artery disease. Patients were randomized to receive a single oral dose of placebo, midodrine (5–10 mg), or ergotamine and caffeine (1 and 100 mg, respectively) in a single-blind, crossover study. Blood pressure was measured while patients were seated and after standing for up to 10 min, at baseline and at 1 h post-drug. Ergotamine/caffeine increased seated systolic blood pressure (SBP), the primary outcome, compared with placebo (131 ± 19 and 95 ± 12 mmHg, respectively, at 1 h post-drug; p = 0.003 for time effect). Midodrine also significantly increased seated SBP (121 ± 19 mmHg at 1 h post-drug; p = 0.015 for time effect vs. placebo), but this effect was not different from ergotamine/caffeine (p = 0.621). There was no significant effect of either medication on orthostatic tolerance; however, ergotamine/caffeine improved presyncopal symptoms (p = 0.034). These findings suggest that combination ergotamine and caffeine elicits a seated pressor response that is similar in magnitude to midodrine, and improves symptoms in autonomic failure. Thus, ergotamine/caffeine could be used as an alternate treatment for autonomic failure, in carefully selected patients without comorbid coronary artery disease. PMID:25104940

  7. Evaluating Risk Of Failure With Limited Information

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Creager, M.; Newlin, L. E.; Sutharshana, S.

    1993-01-01

    Report describes probabilistic failure assessment (PFA). Developed for application to spaceflight systems for sufficient testing of hardware to ensure reliability not feasible. However, must be ascertained that critical failure modes extremely unlikely to occur during service. PFA applied to any failure mode described by quantitative models of physics and mechanics of failure phenomena, such as fatigue crack in initiation or propagation in structures, leakage of seals, wear in bearings, and erosion of arcjet thrustor cathodes.

  8. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  9. High-pressure deformation and failure of polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei

    2005-11-01

    High-strength polycrystalline ceramics are increasingly being used for armor applications because of their light weight and superior ballistic performance over conventional armor steels. However, accurate material modeling needed in ceramic armor design remains a challenge because of their complex behavior under impact loading. A ceramic may display extremely high strength during rapid compression but lose tensile strength when the load reverses from compression to tension. A good understanding of the mechanisms governing the deformation and failure of ceramics under high-stress impact and a capability to accurately predict the resulting effective strengths of both intact and damaged ceramics are critically needed. To this end, a computational methodology for micromechanical analysis of polycrystalline materials has been developed. It combines finite element analysis with microstructural modeling based on the Voronoi polycrystals, and material modeling that considers nonlinear elasticity, crystal plasticity, intergranular shear damage during compression and intergranular Mode-I cracking during tension. Using this method, simulations have been carried out on polycrystalline alpha-6H silicon carbide and alpha-phase aluminum oxide to determine if microplasticity is a viable mechanism of inelastic deformation in ceramics undergoing high-pressure uniaxial-strain compression. Further, the competing roles of in-grain microplasticity and intergranular microdamage during a sequence of dynamic compression and tension have been studied. The results show that microplasticity is a more plausible mechanism than microcracking under uniaxial-strain compression. The deformation by limited slip systems can be highly heterogeneous so that a significant amount of grains may remain elastic and thus result in high macroscopic compressive strength. On the other hand, the failure evolution during dynamic load reversal from compression to tension can be well predicted by intergranular Mode

  10. Evaluations of Structural Failure Probabilities and Candidate Inservice Inspection Programs

    SciTech Connect

    Khaleel, Mohammad A.; Simonen, Fredric A.

    2009-05-01

    The work described in this report applies probabilistic structural mechanics models to predict the reliability of nuclear pressure boundary components. These same models are then applied to evaluate the effectiveness of alternative programs for inservice inspection to reduce these failure probabilities. Results of the calculations support the development and implementation of risk-informed inservice inspection of piping and vessels. Studies have specifically addressed the potential benefits of ultrasonic inspections to reduce failure probabilities associated with fatigue crack growth and stress-corrosion cracking. Parametric calculations were performed with the computer code pc-PRAISE to generate an extensive set of plots to cover a wide range of pipe wall thicknesses, cyclic operating stresses, and inspection strategies. The studies have also addressed critical inputs to fracture mechanics calculations such as the parameters that characterize the number and sizes of fabrication flaws in piping welds. Other calculations quantify uncertainties associated with the inputs calculations, the uncertainties in the fracture mechanics models, and the uncertainties in the resulting calculated failure probabilities. A final set of calculations address the effects of flaw sizing errors on the effectiveness of inservice inspection programs.

  11. Statistical Performance Evaluation Of Soft Seat Pressure Relief Valves

    SciTech Connect

    Harris, Stephen P.; Gross, Robert E.

    2013-03-26

    Risk-based inspection methods enable estimation of the probability of failure on demand for spring-operated pressure relief valves at the United States Department of Energy's Savannah River Site in Aiken, South Carolina. This paper presents a statistical performance evaluation of soft seat spring operated pressure relief valves. These pressure relief valves are typically smaller and of lower cost than hard seat (metal to metal) pressure relief valves and can provide substantial cost savings in fluid service applications (air, gas, liquid, and steam) providing that probability of failure on demand (the probability that the pressure relief valve fails to perform its intended safety function during a potentially dangerous over pressurization) is at least as good as that for hard seat valves. The research in this paper shows that the proportion of soft seat spring operated pressure relief valves failing is the same or less than that of hard seat valves, and that for failed valves, soft seat valves typically have failure ratios of proof test pressure to set pressure less than that of hard seat valves.

  12. Clinical Evaluation of Heart Failure: Agreement among Tests.

    PubMed

    Pandey, Amit K; Penny, William F; Bhargava, Valmik; Lai, N Chin; Xu, Ronghui; Hammond, H Kirk

    2016-01-01

    Methods commonly used clinically to assess cardiac function in patients with heart failure include ejection fraction (EF), exercise treadmill testing (ETT), and symptom evaluation. Although these approaches are useful in evaluating patients with heart failure, there are at times substantial mismatches between individual assessments. For example, ETT results are often discordant with EF, and patients with minimal symptoms sometimes have surprisingly low EFs. To better define the relationship of these methods of assessment, we studied 56 patients with heart failure with reduced EF (HFrEF) who underwent measurement of ETT duration, EF by echocardiography, quantitative symptom evaluation, and LV peak dP/dt (rate of left ventricular pressure development and decline, measured invasively). Correlations were determined among these four tests in order to assess the relationship of EF, ETT, and symptoms against LV peak dP/dt. In addition, we sought to determine whether EF, ETT, and symptoms correlated with each other. Overall, correlations were poor. Only 15 of 63 total correlations (24%) were significant (p < 0.05). EF correlated most closely with LV peak -dP/dt. Linear regression analysis indicated that EF, ETT, and symptoms taken together predicted LV peak dP/dt better than any one measure alone. We conclude that clinical tests used to assess LV function in patients with HFrEF may not be as accurate or correlate as well as expected. All three clinical measures considered together may be the best representation of cardiac function in HFrEF patients currently available. PMID:27537778

  13. Clinical Evaluation of Heart Failure: Agreement among Tests

    PubMed Central

    Pandey, Amit K.; Penny, William F.; Bhargava, Valmik; Lai, N. Chin; Xu, Ronghui; Hammond, H. Kirk

    2016-01-01

    Methods commonly used clinically to assess cardiac function in patients with heart failure include ejection fraction (EF), exercise treadmill testing (ETT), and symptom evaluation. Although these approaches are useful in evaluating patients with heart failure, there are at times substantial mismatches between individual assessments. For example, ETT results are often discordant with EF, and patients with minimal symptoms sometimes have surprisingly low EFs. To better define the relationship of these methods of assessment, we studied 56 patients with heart failure with reduced EF (HFrEF) who underwent measurement of ETT duration, EF by echocardiography, quantitative symptom evaluation, and LV peak dP/dt (rate of left ventricular pressure development and decline, measured invasively). Correlations were determined among these four tests in order to assess the relationship of EF, ETT, and symptoms against LV peak dP/dt. In addition, we sought to determine whether EF, ETT, and symptoms correlated with each other. Overall, correlations were poor. Only 15 of 63 total correlations (24%) were significant (p < 0.05). EF correlated most closely with LV peak -dP/dt. Linear regression analysis indicated that EF, ETT, and symptoms taken together predicted LV peak dP/dt better than any one measure alone. We conclude that clinical tests used to assess LV function in patients with HFrEF may not be as accurate or correlate as well as expected. All three clinical measures considered together may be the best representation of cardiac function in HFrEF patients currently available. PMID:27537778

  14. Failure and Life Cycle Evaluation of Watering Valves

    PubMed Central

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-01-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves’ internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a ‘drying out’ period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure. PMID:22330720

  15. Evaluation Methodologies for Estimating the Likelihood of Program Implementation Failure

    ERIC Educational Resources Information Center

    Durand, Roger; Decker, Phillip J.; Kirkman, Dorothy M.

    2014-01-01

    Despite our best efforts as evaluators, program implementation failures abound. A wide variety of valuable methodologies have been adopted to explain and evaluate the "why" of these failures. Yet, typically these methodologies have been employed concurrently (e.g., project monitoring) or to the post-hoc assessment of program activities.…

  16. Pulmonary Pressures and Death in Heart Failure: A Community Study

    PubMed Central

    Bursi, Francesca; McNallan, Sheila M.; Redfield, Margaret M.; Nkomo, Vuyisile T.; Lam, Carolyn S.P.; Weston, Susan A.; Jiang, Ruoxiang; Roger, Véronique L.

    2012-01-01

    Objective To determine among community patients with heart failure (HF), whether pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography was associated with death and improved risk prediction over established factors, using the integrated discrimination improvement (IDI) and net reclassification improvement (NRI). Background While several studies have focused on idiopathic pulmonary arterial hypertension, less is known about pulmonary hypertension among patients with HF, particularly on its prognostic value in the community. Methods Olmsted County residents with HF between 2003 and 2010 prospectively underwent assessment of ejection fraction (EF), diastolic function, and PASP by Doppler echocardiography. Results PASP was recorded in 1049 of 1153 patients (mean age 76±13, 51% women). Median PASP was 48 mmHg (25th-75th percentile, 37.0-58.0). There were 489 deaths after a follow-up of 2.7±1.9 years. There was a strong positive graded association between PASP and mortality. Increasing PASP was associated with an increased risk of death (HR 1.45, 95%CI 1.13-1.85 for tertile 2; HR 2.07, 95%CI 1.62-2.64 for tertile 3, versus tertile 1), independently of age, sex, comorbidities, EF and diastolic function. Adding PASP to models including these clinical characteristics resulted in an increase in the c-statistic from 0.704 to 0.742 (p=0.007), an IDI gain of 4.2% (p<0.001), and an NRI of 14.1% (p=0.002), indicating that PASP improved prediction of death over traditional prognostic factors. All results were similar for CV death. Conclusion Among community patients with HF, PASP strongly predicts death and provides incremental and clinically relevant prognostic information independently of known predictors of outcomes. PMID:22240126

  17. An evaluation of mixed-mode delamination failure criteria

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.

    1992-01-01

    Many different failure criteria have been suggested for mixed mode delamination toughness, but few sets of mixed mode data exist that are consistent over the full mode I opening to mode II shear load range. The mixed mode bending (MMB) test was used to measure the delamination toughness of a brittle epoxy composite, a state of the art toughened epoxy composite, and a tough thermoplastic composite over the full mixed mode range. To gain insight into the different failure responses of the different materials, the delamination fracture surfaces were also examined. An evaluation of several failure criteria which have been reported in the literature was performed, and the range of responses modeled by each criterion was analyzed. A new bilinear failure criterion was analyzed. A new bilinear failure criterion was developed based on a change in the failure mechanism observed from the delamination surfaces. The different criteria were compared to the failure criterion. The failure response of the tough thermoplastic composite could be modeled well with the bilinear criterion but could also be modeled with the more simple linear failure criterion. Since the materials differed in their mixed mode failure response, mixed mode delamination testing will be needed to characterize a composite material. A critical evaluation is provided of the mixed mode failure criteria and should provide general guidance for selecting an appropriate criterion for other materials.

  18. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  19. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  20. Intracranial Pressure Monitoring in Acute Liver Failure: Institutional Case Series.

    PubMed

    Maloney, Patrick R; Mallory, Grant W; Atkinson, John L D; Wijdicks, Eelco F; Rabinstein, Alejandro A; Van Gompel, Jamie J

    2016-08-01

    Acute liver failure (ALF) has been associated with cerebral edema and elevated intracranial pressure (ICP), which may be managed utilizing an ICP monitor. The most feared complication of placement is catastrophic intracranial hemorrhage in the setting of severe coagulopathy. Previous studies reported hemorrhage rates between 3.8-22 % among various devices, with epidural catheters having lower hemorrhage rates and precision relative to subdural bolts and intraparenchymal catheters. We sought to identify institutional hemorrhagic rates of ICP monitoring in ALF and its associated factors in a modern series guided by protocol implantation. Patient records treated for ALF with ICP monitoring at Mayo Clinic in Rochester, MN from 1995 to 2014 were reviewed. Protocalized since 1995, epidural (EP) ICP monitors were first used followed by intraparenchymal (IP) for stage III-IV hepatic encephalopathy. The following variables and outcomes were collected: patient demographics, ICPs and treatment methods, laboratory data, imaging studies, number of days for ICP monitoring, radiographic and symptomatic hemorrhage rates, orthotopic liver transplantation rates, and death. A total of 20 ICP monitors were placed for ALF, 7 EP, and 13 IP. International normalized ratio (INR) at placement of an EP monitor was 2.4 (1.7-3.2) with maximum of 2.7 (2.0-3.6) over the following 2.3 (1-3) days. Mean EP ICP at placement was 36.3 (11-55) and maximum of 43.1 (20-70) mm Hg. INR at placement of an IP monitor was 1.3 (<0.8-3.0) with maximum value of 2.9 (1.6-5.4) over the following 4.2 (2-6) days. Mean IP ICP at placement was 9.9 (2-19) and maximum was 39.8 (11-100) mm Hg. There was one asymptomatic hemorrhage in the EP group (14.3 % hemorrhage rate) and two hemorrhages in the IP group (hemorrhage rate was 15.4 %), both of which were fatal. Overall mortality rate in the EP group was 71.4 % (5/7) with two patients receiving transplantation, and one death in the transplant group. Overall mortality

  1. International Space Station (ISS) Low Pressure Intramodule Quick Disconnect Failures

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Harris, Danny; Link, Dwight; Morrison, Russel

    2004-01-01

    A failure of an ISS intermodule Quick Disconnect (QD) during protoflight vibration testing of ISS regenerative Environmental Control and Life Support (ECLS) hardware led to the discovery of QD design, manufacturing, and test flaws which can yield the male QD susceptible to failure of the secondary housing seal and inadequate housing assembly locking mechanisms. Discovery of this failure had large implications when considering that currently there are 399 similar units on orbit and approximately 1100 units on the ground integrated into flight hardware. Discovery of the nature of the failure required testing and analysis and implementation of a recovery plan requiring part screening and review of element level and project hazard analysis to determine if secondary seals are required. Implementation also involves coordination with the Nodes and MPLM project offices, Regenerative ECLS Project, ISS Payloads, JAXA, ESA, and ISS Logistics and Maintenance.

  2. VISA-II: a computer code for predicting the probability of reactor pressure vessel failure

    SciTech Connect

    Simonen, F.A.; Johnson, K.I.; Liebetrau, A.M.; Engel, D.W.; Simonen, E.P.

    1986-03-01

    The VISA-II (Vessel Integrity Simulation Analysis code was originally developed as part of the NRC staff evaluation of pressurized thermal shock. VISA-II uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics methods are used to model crack initiation and propagation. Parameters for initial crack size and location, copper content, initial reference temperature of the nil-ductility transition, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents an upgraded version of the original VISA code as described in NUREG/CR-3384. Improvements include a treatment of cladding effects, a more general simulation of flaw size, shape and location, a simulation of inservice inspection, an updated simulation of the reference temperature of the nil-ductility transition, and treatment of vessels with multiple welds and initial flaws. The code has been extensively tested and verified and is written in FORTRAN for ease of installation on different computers. 38 refs., 25 figs.

  3. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  4. Mechanical Failure of a Plastic Bonded Explosive vs Confining Pressure

    NASA Astrophysics Data System (ADS)

    Wiegand, Donald; Elllis, Kevin; Leppard, Claire

    2011-06-01

    EDC37 fails by crack growth between 0.1 and about 7 MPa and by yield and plastic flow between about 7 and at least 138 MPa. In the low pressure range the compressive strength increases with pressure due to a threshold stress which also increases with pressure. The threshold stress is due to friction between crack surfaces and must be overcome for crack growth. In the higher pressure range the yield strength also increases with pressure but at a much lower rate. In the low pressure range the threshold stress for crack growth is less than the yield strength so primarily crack growth is observed while in the higher pressure range the yield strength is less the the threshold stress for crack growth so that only yield is observed. Thus at moderately low confining pressures greater than 7 MPa crack growth does not take place and so processes depending on crack motion such as frictional heating will not take place. Supported by AWE Aldermaston

  5. Choking under Pressure: Multiple Routes to Skill Failure

    ERIC Educational Resources Information Center

    DeCaro, Marci S.; Thomas, Robin D.; Albert, Neil B.; Beilock, Sian L.

    2011-01-01

    Poor performance in pressure-filled situations, or "choking under pressure," has largely been explained by two different classes of theories. Distraction theories propose that choking occurs because attention needed to perform the task at hand is coopted by task-irrelevant thoughts and worries. Explicit monitoring theories claim essentially the…

  6. A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack

    NASA Technical Reports Server (NTRS)

    Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.

    1998-01-01

    The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth

  7. Modeling and Failure Control of Spacecraft Pressurized Structures Subject to Orbital Debris Impact

    NASA Astrophysics Data System (ADS)

    Cook, Frederick; Telichev, Igor

    2013-08-01

    Motivated by the dramatic worsening and uncertainty of orbital debris situation, the present paper is focused on the structural integrity of the spacecraft pressurized modules/pressure vessels. The objective is to develop a methodology of numerical simulation of the spacecraft pressurized structure behaviour under hypervelocity impact, including simulation of the following processes: a) formation of the impact damage of the pressure wall; b) loading and failure of structure. The analysis was performed by the method of singular integral equations.

  8. Component failure data handbook. Technical evaluation report

    SciTech Connect

    Gentillon, C.D.

    1991-04-01

    This report presents generic component failure rates that are used in reliability and risk studies of commercial nuclear power plants. The rates are computed using plant-specific data from published probabilistic risk assessments supplemented by selected other sources. Each data source is described. For rates with four or more separate estimates among the sources, plots show the data that are combined. The method for combining data from different sources is presented. The resulting aggregated rates are listed with upper bounds that reflect the variability observed in each rate across the nuclear power plant industry. Thus, the rates are generic. Both per hour and per demand rates are included. They may be used for screening in risk assessments or for forming distributions to be updated with plant-specific data.

  9. Failure pressure analysis of corroded moderate-to-high strength pipelines

    NASA Astrophysics Data System (ADS)

    Su, Chen-liang; Li, Xin; Zhou, Jing

    2016-03-01

    Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criterion is used to predict the failure pressure of finite element model of corroded pipeline under internal pressure. By considering the pipe steel grades and geometries of corrosion defects, a series of finite element analyses is conducted. The effects of corrosion depth, length and width on burst capacity are also discussed. A specific failure pressure solution for the assessment of corrosion defects in moderate-to-high strength pipeline is proposed on the base of numerical results. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods.

  10. Influence of bilevel positive airway pressure on autonomic tone in hospitalized patients with decompensated heart failure

    PubMed Central

    Lacerda, Diego; Costa, Dirceu; Reis, Michel; Gomes, Evelim Leal de F. Dantas; Costa, Ivan Peres; Borghi-Silva, Audrey; Marsico, Aline; Stirbulov, Roberto; Arena, Ross; Sampaio, Luciana Maria Malosá

    2016-01-01

    [Purpose] This study evaluated the effect of Bilevel Positive Airway (BiPAP) on the autonomic control of heart rate, assessed by heart rate variability (HRV), in patients hospitalized with decompensated heart failure. [Subjects and Methods] This prospective cross-sectional study included 20 subjects (age: 69±8 years, 12 male, left ventricular ejection fraction: 36 ±8%) diagnosed with heart failure who were admitted to a semi-intensive care unit with acute decompensation. Date was collected for HRV analysis during: 10 minutes spontaneous breathing in the resting supine position; 30 minutes breathing with BiPAP application (inspiratory pressure = 20 cmH2O and expiratory pressure = 10 cmH2O); and 10 minutes immediately after removal of BiPAP, during the return to spontaneous breathing. [Results] Significantly higher values for indices representative of increased parasympathetic activity were found in the time and frequency domains as well as in nonlinear Poincaré analysis during and after BiPAP in comparison to baseline. Linear HRV analysis: standard deviation of the average of all R-R intervals in milliseconds = 30.99±4.4 pre, 40.3±6.2 during, and 53.3±12.5 post BiPAP. Non-linear HRV analysis: standard deviations parallel in milliseconds = 8.31±4.3 pre, 12.9±5.8 during, and 22.8 ±6.3 post BiPAP. [Conclusion] The present findings demonstrate that BiPAP enhances vagal tone in patients with heart failure, which is beneficial for patients suffering from acute decompensation. PMID:26957719

  11. Influence of bilevel positive airway pressure on autonomic tone in hospitalized patients with decompensated heart failure.

    PubMed

    Lacerda, Diego; Costa, Dirceu; Reis, Michel; Gomes, Evelim Leal de F Dantas; Costa, Ivan Peres; Borghi-Silva, Audrey; Marsico, Aline; Stirbulov, Roberto; Arena, Ross; Sampaio, Luciana Maria Malosá

    2016-01-01

    [Purpose] This study evaluated the effect of Bilevel Positive Airway (BiPAP) on the autonomic control of heart rate, assessed by heart rate variability (HRV), in patients hospitalized with decompensated heart failure. [Subjects and Methods] This prospective cross-sectional study included 20 subjects (age: 69±8 years, 12 male, left ventricular ejection fraction: 36 ±8%) diagnosed with heart failure who were admitted to a semi-intensive care unit with acute decompensation. Date was collected for HRV analysis during: 10 minutes spontaneous breathing in the resting supine position; 30 minutes breathing with BiPAP application (inspiratory pressure = 20 cmH2O and expiratory pressure = 10 cmH2O); and 10 minutes immediately after removal of BiPAP, during the return to spontaneous breathing. [Results] Significantly higher values for indices representative of increased parasympathetic activity were found in the time and frequency domains as well as in nonlinear Poincaré analysis during and after BiPAP in comparison to baseline. Linear HRV analysis: standard deviation of the average of all R-R intervals in milliseconds = 30.99±4.4 pre, 40.3±6.2 during, and 53.3±12.5 post BiPAP. Non-linear HRV analysis: standard deviations parallel in milliseconds = 8.31±4.3 pre, 12.9±5.8 during, and 22.8 ±6.3 post BiPAP. [Conclusion] The present findings demonstrate that BiPAP enhances vagal tone in patients with heart failure, which is beneficial for patients suffering from acute decompensation. PMID:26957719

  12. Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.; Naylor, Mark; Heap, Michael J.; Main, Ian G.

    2011-08-01

    Power-law accelerations in the mean rate of strain, earthquakes and other precursors have been widely reported prior to material failure phenomena, including volcanic eruptions, landslides and laboratory deformation experiments, as predicted by several theoretical models. The Failure Forecast Method (FFM), which linearizes the power-law trend, has been routinely used to forecast the failure time in retrospective analyses; however, its performance has never been formally evaluated. Here we use synthetic and real data, recorded in laboratory brittle creep experiments and at volcanoes, to show that the assumptions of the FFM are inconsistent with the error structure of the data, leading to biased and imprecise forecasts. We show that a Generalized Linear Model method provides higher-quality forecasts that converge more accurately to the eventual failure time, accounting for the appropriate error distributions. This approach should be employed in place of the FFM to provide reliable quantitative forecasts and estimate their associated uncertainties.

  13. Vessel failure time for a low-pressure short-term station blackout in a BWR-4

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A low-pressure, short-term station blackout severe accident sequence has been analyzed using the MELCOR code, version 1.8.1, in a boiling water reactor (BWR)-4. This paper presents a sensitivity study evaluating the effect of several MELCOR input parameters on vessel failure time. Results using the MELCOR/CORBH package and the BWRSAR code are also presented and compared to the MELCOR results. These calculated vessel failure times are discussed, and a judgment is offered as to which is the most realistic.

  14. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    NASA Technical Reports Server (NTRS)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  15. Explosive Event in MON-3 Oxidizer System Resulting from Pressure Transducer Failure

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Reynolds, Michael; Anderson, John

    2006-01-01

    In 2003, a Druck(Registered Trademark) pressure transducer failed catastrophically in a test system circulating nitrogen tetroxide at NASA Johnson Space Center White Sands Test Facility. The cause of the explosion was not immediately obvious since the wetted areas of the pressure transducer were constructed of materials compatible with nitrogen tetroxide. Chemical analysis of the resulting residue and a materials analysis of the diaphragm and its weld zones were used to determine the chain of events that led to the catastrophic failure. Due to excessive dynamic pressure loading in the test system, the diaphragm in the pressure transducer suffered cyclic failure and allowed the silicon oil located behind the isolation diaphragm to mix with the nitrogen tetroxide. The reaction between these two chemicals formed a combination of 2,4-di and 2,4,6-trinitrophenol, which are shock sensitive explosives that caused the failure of the pressure transducer. Further research indicated numerous manufacturers offer similar pressure transducers with silicone oil separated from the test fluid by a thin stainless steel isolation diaphragm. Caution must be exercised when purchasing a pressure transducer for a particular system to avoid costly failures and test system contamination.

  16. Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure

    PubMed Central

    Pan, Chun; Chen, Lu; Zhang, Yun-Hang; Liu, Wei; Urbino, Rosario; Ranieri, V Marco; Qiu, Hai-Bo; Yang, Yi

    2016-01-01

    Background: Stress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Paw stress index on lung mechanics and the correlation between Paw stress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients. Methods: Twenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio <30%. Respiratory elastance, gas-exchange, Paw stress index, and PL stress index were measured. Student's t-test, regression analysis, and Bland–Altman analysis were used for statistical analysis. Results: Pneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Paw stress index and the PL stress index in H group (R2= 0.56, P < 0.01) and L group (R2= 0.85, P < 0.01). Conclusion: In the ARF patients with MV, Paw stress index can substitute for PL to guide ventilator settings. Trial Registration: ClinicalTrials.gov NCT02196870 (https

  17. Vascular Endothelial Function and Blood Pressure Regulation in Afferent Autonomic Failure

    PubMed Central

    Jelani, Qurat-ul-ain; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-01-01

    BACKGROUND Familial dysautonomia (FD) is a rare hereditary disease characterized by loss of afferent autonomic neural fiber signaling and consequent profound impairment of arterial baroreflex function and blood pressure regulation. Whether vascular endothelial dysfunction contributes to defective vasomotor control in this form of afferent autonomic failure is not known. METHODS We assessed blood pressure response to orthostatic stress and vascular endothelial function with brachial artery reactivity testing in 34 FD subjects with afferent autonomic failure and 34 healthy control subjects. RESULTS Forty-four percent of the afferent autonomic failure subjects had uncontrolled hypertension at supine rest (median systolic blood pressure = 148mm Hg, interquartile range (IQR) = 144–155mm Hg; median diastolic blood pressure = 83mm Hg, IQR = 78–105mm Hg), and 88% had abnormal response to orthostatic stress (median decrease in systolic blood pressure after upright tilt = 48mm Hg, IQR = 29–61mm Hg). Flow-mediated brachial artery reactivity did not differ in subjects with afferent autonomic failure vs. healthy control subjects (median = 6.00%, IQR = 1.86–11.77%; vs. median = 6.27%, IQR = 4.65–9.34%; P = 0.75). In afferent autonomic failure subjects, brachial artery reactivity was not associated with resting blood pressure or the magnitude of orthostatic hypotension but was decreased in association with reduced glomerular filtration rate (r = 0.62; P < 0.001). CONCLUSIONS Brachial artery reactivity was preserved in subjects with afferent autonomic failure despite the presence of marked blood pressure dysregulation. Comorbid renal dysfunction was associated with reduced brachial artery reactivity. PMID:25128693

  18. Evaluation Model of Life Loss Due to Dam Failure

    NASA Astrophysics Data System (ADS)

    Huang, Dongjing

    2016-04-01

    Dam failure poses a serious threat to human life, however there is still lack of systematic research on life loss which due to dam failure in China. From the perspective of protecting human life, an evaluation model for life loss caused by dam failure is put forward. The model building gets three progressive steps. Twenty dam failure cases in China are preferably chosen as the basic data, considering geographical location and construction time of dams, as well as various conditions of dam failure. Then twelve impact factors of life loss are selected, including severity degree of flood, population at risk, understanding of dam failure, warning time, evacuation condition, number of damaged buildings, water temperature, reservoir storage, dam height, dam type, break time and distance from flood area to dam. And through principal component analysis, it gets four principal components consisting of the first flood character principle component, the second warning system principle component, the third human character principle component and the fourth space-time impact principle component. After multivariate nonlinear regression and ten-fold validation in combination, the evaluation model for life loss is finally established. And the result of the proposed model is closer to the true value and better in fitting effect in comparison with the results of RESCDAM method and M. Peng method. The proposed model is not only applied to evaluate life loss and its rate under various kinds of dam failure conditions in China, but also provides reliable cause analysis and prediction approach to reduce the risk of life loss.

  19. Stress analysis and failure of an internally pressurized composite-jacketed steel cylinder

    NASA Technical Reports Server (NTRS)

    Chen, Peter C. T.

    1992-01-01

    This paper presents a nonlinear stress analysis of a thick-walled compound tube subjected to internal pressure. The compound tube is constructed of a steel liner and a graphite-bismaleimide outer shell. Analytical expressions for the stresses, strains, and displacements are derived for all loading ranges up to failure. Numerical results for the stresses and the maximum value that the compound tube can contain without failure are presented.

  20. WANDA B.: Weight and Activity with Blood Pressure Monitoring System for Heart Failure Patients

    PubMed Central

    Suh, Myung-kyung; Evangelista, Lorraine S.; Chen, Victor; Hong, Wen-Sao; Macbeth, Jamie; Nahapetian, Ani; Figueras, Florence-Joy; Sarrafzadeh, Majid

    2010-01-01

    Heart failure is a leading cause of death in the United States, with around 5 million Americans currently suffering from congestive heart failure. The WANDA B. wireless health technology leverages sensor technology and wireless communication to monitor heart failure patient activity and to provide tailored guidance. Patients who have cardiovascular system disorders can measure their weight, blood pressure, activity levels, and other vital signs in a real-time automated fashion. The system was developed in conjunction with the UCLA Nursing School and the UCLA Wireless Health Institute for use on actual patients. It is currently in use with real patients in a clinical trial. PMID:20083451

  1. Is ambulatory blood pressure monitoring useful in patients with chronic autonomic failure?

    PubMed

    Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2014-08-01

    Management of blood pressure (BP) abnormalities in patients with autonomic failure is usually based on office BP readings. It is uncertain, whether office readings reflect actual BP's [corrected] during a typical day. Therefore, in 45 patients with autonomic failure, we compared office BP values during a tilt test with those captured on a 24-h BP [corrected] ambulatory monitor. Office BP values while supine predicted well the level of nighttime hypertension. However, in only 33% of patients, office values during tilt test accurately reflected hypotension during a typical day. Therefore, BP [corrected] ambulatory monitoring is useful to gauge the true severity of hypotension in patients with autonomic failure. PMID:24710680

  2. Is the Blood Pressure Paradox Observed in All Heart Failure Patients?

    PubMed Central

    Cunha, F. M.; Lourenço, P.; Couto, M.; Tavares, P.; Silva, S.; Guimarães, J. T.; Bettencourt, P.

    2013-01-01

    Background. Heart failure (HF) patients with higher systolic blood pressure (SBP) survive longer. Diabetes mellitus (DM) is a frequent comorbidity in HF. We evaluated the prognostic significance of low SBP according to DM in acute HF. Methods. We prospectively recruited 589 patients admitted with acute HF. DM was defined according to the 2011 American Diabetes Association recommendations. Patients were followed for 6 months and HF-death was the endpoint. A multivariate Cox-regression model was used to assess the prognostic impact of SBP. A stratified analysis according to DM was performed. Results. Median patients' age was 79 years and DM was present in 50.8%. Ischemic aetiology HF and hypertension history were more common in diabetics. Diabetic patients had worse renal function and lower total cholesterol and were more often discharged with antiplatelet therapy and statin. During followup, 89 patients died due to HF. The multivariate-adjusted HR for the 6-month HF death in non-diabetic patients with an admission SBP < 115 mmHg (1st quartile) was 2.94 (95% CI: 1.49–5.79), while lower admission SBP was not associated with HF mortality in diabetics. Conclusions. The blood pressure paradox in HF is only observed in non-diabetic HF patients. Diabetic patients seem to be a particular subgroup of HF patients. PMID:24371821

  3. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    SciTech Connect

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures.

  4. Noninvasive and invasive positive pressure ventilation for acute respiratory failure in critically ill patients: a comparative cohort study

    PubMed Central

    Meeder, Annelijn M.; Tjan, Dave H. T.

    2016-01-01

    Background Noninvasive positive pressure ventilation (NPPV) for acute respiratory failure in the intensive care unit (ICU) is associated with a marked reduction in intubation rate, complications, hospital length of stay and mortality. Multiple studies have indicated that patients failing NPPV have worse outcomes compared with patients with successful NPPV treatment; however limited data is available on risks associated with NPPV failure resulting in (delayed) intubation and outcomes compared with initial intubation. The purpose of this study is to assess rates and predictors of NPPV failure and to compare hospital outcomes of patients with NPPV failure with those patients primarily intubated without a prior NPPV trial. Methods A retrospective observational study using data from patients with acute respiratory failure admitted to the ICU in the period 2013–2014. All patients treated with NPPV were evaluated. A sample of patients who were primarily intubated was randomly selected to serve as controls for the group of patients who failed NPPV. Results NPPV failure was recorded in 30.8% of noninvasively ventilated patients and was associated with longer ICU stay [OR, 1.16, 95% confidence interval (95% CI): 1.04–1.30] and lower survival rates (OR, 0.10, 95% CI: 0.02–0.59) compared with NPPV success. Multivariate analysis showed presence of severe sepsis at study entry, higher Simplified Acute Physiology II Score (SAPS-II) score, lower ratio of arterial oxygen tension to fraction of inspired oxygen (PF-ratio) and lower plasma glucose were predictors for NPPV failure. After controlling for potential confounders, patients with NPPV failure did not show any difference in hospital outcomes compared with patients who were primarily intubated. Conclusions Patients with acute respiratory failure and NPPV failure have worse outcomes compared with NPPV success patients, however not worse than initially intubated patients. An initial trial of NPPV therefore may be suitable

  5. Effects of strain rate and confining pressure on the deformation and failure of shale

    SciTech Connect

    Cook, J.M. ); Sheppard, M.C. ); Houwen, O.H. )

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  6. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes†

    PubMed Central

    Testani, Jeffrey M.; Coca, Steven G.; McCauley, Brian D.; Shannon, Richard P.; Kimmel, Stephen E.

    2011-01-01

    Aims One of the primary determinants of blood flow in regional vascular beds is perfusion pressure. Our aim was to investigate if reduction in blood pressure during the treatment of decompensated heart failure would be associated with worsening renal function (WRF). Our secondary aim was to evaluate the prognostic significance of this potentially treatment-induced form of WRF. Methods and results Subjects included in the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial limited data were studied (386 patients). Reduction in systolic blood pressure (SBP) was greater in patients experiencing WRF (−10.3 ± 18.5 vs. −2.8 ± 16.0 mmHg, P < 0.001) with larger reductions associated with greater odds for WRF (odds ratio = 1.3 per 10 mmHg reduction, P < 0.001). Systolic blood pressure reduction (relative change > median) was associated with greater doses of in-hospital oral vasodilators (P ≤ 0.017), thiazide diuretic use (P = 0.035), and greater weight reduction (P = 0.023). In patients with SBP-reduction, WRF was not associated with worsened survival [adjusted hazard ratio (HR) = 0.76, P = 0.58]. However, in patients without SBP-reduction, WRF was strongly associated with increased mortality (adjusted HR = 5.3, P < 0.001, P interaction = 0.001). Conclusion During the treatment of decompensated heart failure, significant blood pressure reduction is strongly associated with WRF. However, WRF that occurs in the setting of SBP-reduction is not associated with an adverse prognosis, whereas WRF in the absence of this provocation is strongly associated with increased mortality. These data suggest that WRF may represent the final common pathway of several mechanistically distinct processes, each with potentially different prognostic implications. PMID:21693504

  7. Remote telemonitoring for patients with heart failure: might monitoring pulmonary artery pressure become routine?

    PubMed

    Hutchinson, Kate; Pellicori, Pierpaolo; Dierckx, Riet; Cleland, John G F; Clark, Andrew L

    2014-08-01

    Heart failure is one of the most important medical problems facing societies in developed economies and its prevalence is predicted to rise inexorably in the next few decades as longevity increases. Worsening heart failure leading to hospitalization is associated with a poor prognosis and imposes a substantial burden on health care resources and budgets. Interventions that can stabilize patients should reduce the need for hospitalization and improve prognosis. This might be facilitated by frequent self-monitoring of clinical and physiological variables by patients themselves at home. Rising pulmonary artery pressure is an early sign of cardiac decompensation that may be more sensitive than conventional methods of patient assessment and thus allow early adjustment of medical therapy to avoid hospitalizations and improve patient outcomes. Remote monitoring of pulmonary artery pressure is now possible using devices that can be implanted percutaneously. This innovative technology could become a routine part of the management of heart failure in the next few decades. PMID:24984847

  8. Bronchoscopic intubation during continuous nasal positive pressure ventilation in the treatment of hypoxemic respiratory failure.

    PubMed

    Barjaktarevic, Igor; Berlin, David

    2015-03-01

    Endotracheal intubation is difficult in patients with hypoxemic respiratory failure who deteriorate despite treatment with noninvasive positive pressure ventilation (NIPPV). Maintaining NIPPV during intubation may prevent alveolar derecruitment and deterioration in gas exchange. We report a case series of 10 nonconsecutive patients with NIPPV failure who were intubated via a flexible bronchoscope during nasal mask positive pressure ventilation. All 10 patients were intubated in the first attempt. Hypotension was the most frequent complication (33%). Mean decrease in oxyhemoglobin saturation during the procedure was 4.7 ± 3.1. This method of intubation may extend the benefits of preoxygenation throughout the whole process of endotracheal intubation. It requires an experienced operator and partially cooperative patients. A prospective trial is necessary to determine the best intubation method for NIPPV failure. PMID:24243561

  9. Failure of a titanium metal-matrix composite cylinder shell under internal pressure

    SciTech Connect

    Hooke, D.A.; Armanios, E.A.; Dancila, D.S.; Thakker, A.; Doorbar, P.

    1997-12-31

    An investigation into the failure of a SCS-6/Ti-6-4 thin-walled cylindrical shell subjected to internal pressure is presented. The stress field in the middle section is predicted based on an anisotropic shell solution and the failure based on laminate strength data. An experimental setup is designed to allow the application of an internal pressure to the shell using a hydraulic system while maintaining a zero axial load. Strain gages placed at selected locations on the specimen monitor the state of strain during the test, and acoustic emission is used to monitor damage onset and progression. The results indicate that the ultimate load is in good agreement with theoretical predictions from the anisotropic shell solution and the engineering thin-walled theory. Acoustic emission provides a correlation with damage initiation and progression. Fracture surface analysis gives an insight into the initiation and the progression of failure.

  10. Global Proteomics and Pathway Analysis of Pressure-overload Induced Heart Failure and Its Attenuation by Mitochondrial Targeted Peptides

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Chen, Tony; Menendez, Lorena G.; Basisty, Nathan B.; Tsai, Lauren; Beyer, Richard P.; Crispin, David A.; Shulman, Nicholas J.; Szeto, Hazel H.; Tian, Rong; MacCoss, Michael J.; Rabinovitch, Peter S.

    2013-01-01

    Background We investigated the protective effects of mitochondrial-targeted antioxidant and protective peptides, SS31 and SS20, on cardiac function, proteomic remodeling and signaling pathways. Methods and Results We applied an improved label-free shotgun proteomics approach to evaluate the global proteomics changes in transverse aortic constriction (TAC) induced heart failure, and the associated signaling pathway changes using Ingenuity Pathway Analysis (IPA). We found 538 proteins significantly changed after TAC, which mapped to 53 pathways. The top pathways were in the categories of actin cytoskeleton, mitochondrial function, intermediate metabolism, glycolysis / gluconeogenesis and citrate cycle. Concomitant treatment with SS31 ameliorated the congestive heart failure phenotypes and mitochondrial damage induced by TAC, in parallel with global attenuation of mitochondrial proteome changes, with an average of 84% protection of mitochondrial and 69% of non-mitochondrial protein changes. This included significant amelioration of All the IPA pathways noted above. SS20 had only modest effects on heart failure and this tracked with only partial attenuation of global proteomics changes; furthermore, while actin cytoskeleton pathways were significantly protected in SS20, mitochondrial and metabolic pathways essentially were not. Conclusions This study elucidates the signaling pathways significantly changed in pressure-overload induced heart failure. The global attenuation of TAC-induced proteomic alterations by the mitochondrial targeted peptide SS-31 suggests that perturbed mitochondrial function may be an upstream signal to many of pathway alterations in TAC and supports the potential clinical application of mitochondrial-targeted peptide drugs for the treatment heart failure. PMID:23935006

  11. Evaluation of Brazed Joints Using Failure Assessment Diagram

    NASA Technical Reports Server (NTRS)

    Flom, Yury

    2012-01-01

    Fitness-for service approach was used to perform structural analysis of the brazed joints consisting of several base metal / filler metal combinations. Failure Assessment Diagrams (FADs) based on tensile and shear stress ratios were constructed and experimentally validated. It was shown that such FADs can provide a conservative estimate of safe combinations of stresses in the brazed joints. Based on this approach, Margins of Safety (MS) of the brazed joints subjected to multi-axial loading conditions can be evaluated..

  12. Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure

    NASA Astrophysics Data System (ADS)

    Hornbach, Matthew J.; Manga, Michael; Genecov, Michael; Valdez, Robert; Miller, Peter; Saffer, Demian; Adelstein, Esther; Lafuerza, Sara; Adachi, Tatsuya; Breitkreuz, Christoph; Jutzeler, Martin; Le Friant, Anne; Ishizuka, Osamu; Morgan, Sally; Slagle, Angela; Talling, Peter J.; Fraass, Andrew; Watt, Sebastian F. L.; Stroncik, Nicole A.; Aljahdali, Mohammed; Boudon, Georges; Fujinawa, Akihiko; Hatfield, Robert; Kataoka, Kyoko; Maeno, Fukashi; Martinez-Colon, Michael; McCanta, Molly; Palmer, Martin; Stinton, Adam; Subramanyam, K. S. V.; Tamura, Yoshihiko; Villemant, Benoît; Wall-Palmer, Deborah; Wang, Fei

    2015-12-01

    Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10-16-10-17 m2) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.

  13. Failure Pressure Estimates of Steam Generator Tubes Containing Wear-type Defects

    SciTech Connect

    Yoon-Suk Chang; Jong-Min Kim; Nam-Su Huh; Young-Jin Kim; Seong Sik Hwang; Joung-Soo Kim

    2006-07-01

    It is commonly requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. The critical defect dimensions have been determined based on the concept of plastic instability. This criterion, however, is known to be too conservative for some locations and types of defects. In this context, the accurate failure estimation for steam generator tubes with a defect draws increasing attention. Although several guidelines have been developed and are used for assessing the integrity of defected tubes, most of these guidelines are related to stress corrosion cracking or wall-thinning phenomena. As some of steam generator tubes are also failed due to fretting and so on, alternative failure estimation schemes for relevant defects are required. In this paper, three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of steam generator tubes with different defect configurations; elliptical wastage type, wear scar type and rectangular wastage type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of the steam generator tube. After investigating the effect of key parameters such as wastage depth, wastage length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wastage region. Comparison of failure pressures predicted according to the proposed estimation scheme with some corresponding burst test data shows good agreement, which provides a confidence in the use of the proposed equations to assess the integrity of steam generator tubes with wear-type defects. (authors)

  14. Porcelain laminate veneers: Clinical survey for evaluation of failure

    PubMed Central

    Alhekeir, Diemah F.; Al-Sarhan, Rana A.; Al Mashaan, Abdulmohsen F.

    2014-01-01

    Objective To investigate the association of the failure of porcelain laminate veneers with factors related to the patient, material, and operator. Methods This clinical survey involved 29 patients (19 women and 10 men) and their dentists, including undergraduate and postgraduate dental students and dental interns. Two questionnaires were distributed to collect information from participants. All patients were clinically examined. Criteria for failure of the porcelain laminate veneers included color change, cracking, fracture, and/or debonding. Results A total of 205 porcelain laminate veneers were evaluated. All of the restorations were fabricated from IPS e.max Press and cemented with Variolink Veneer (Ivoclar Vivadent, Schaan, Principality of Liechtenstein) or RelyX veneer cement (3M ESPE, St. Paul, MN, USA). The preparations were generally located in enamel (58.6%), and most veneers had an overlapped design (89.7%). Ten patients (34.48%) showed veneer failure, most often in terms of color change (60%). Overall, 82.8% of patients were satisfied with their restorations. Conclusion Insufficient clinical skills or operator experience resulted in restoration failure in one-third of patients. PMID:25408598

  15. Continued research on the strain to failure of thick-walled cylinders subjected to internal pressure

    SciTech Connect

    Roach, D.P.; Priddy, T.G.

    1990-01-01

    The determination of the fully plastic response and pressure limit of a pressure vessel is of considerable importance in design. In-house experience in weapon development, new aerospace applications and autofrettage operations all require in-depth knowledge of the strength of high pressure containment structures. This paper presents additional results to support the strain-to-failure analysis of thick-walled cylindrical vessels. Both aluminum and steel, with material properties ranging from ductile to brittle, were tested at stress levels through plastic and strain hardening ranges to fracture. From these tests, the pressure-expansion and through thickness yielding characteristics were determined for these specimens. The critical effective plastic strain depends on the level of tensile stress triaxiality which varies through the wall thickness. It is shown that the proposed strain-to-failure criterion is based on this triaxiality of stress in the critical region and can be used to predict the complete pressure versus strain relations and maximum pressure for the test cylinders. 17 refs., 12 figs.

  16. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  17. Estimation of pulmonary wedge pressure by transmitral Doppler in patients with chronic heart failure and atrial fibrillation.

    PubMed

    Temporelli, P L; Scapellato, F; Corrà, U; Eleuteri, E; Imparato, A; Giannuzzi, P

    1999-03-01

    Previous studies have demonstrated that left ventricular (LV) filling pressures can be estimated from transmitral Doppler recording in patients in sinus rhythm who have a broad spectrum of cardiac diseases. However, the correlation between pulmonary wedge pressure (PWP) and mitral Doppler profile has not yet been clearly defined in patients with atrial fibrillation, particularly in the presence of severe LV systolic dysfunction. The aim of this study was to evaluate the correlations between PWP and transmitral Doppler variables in patients with atrial fibrillation and chronic heart failure due to dilated cardiomyopathy. PWP and the mitral Doppler profile were simultaneously recorded in 35 consecutive heart failure patients (28 men, 7 women; mean age, 69 +/- 9 years) with severe LV dysfunction (mean ejection fraction 22% +/- 5%). Doppler measurements were averaged over 10 cardiac cycles. In addition, left atrial areas were derived from the apical 4-chamber view. Significant relations were observed between PWP and several parameters derived from the mitral flow: isovolumic relaxation time (r = -70), acceleration rate (r = 0.78), deceleration rate (r = 0.82), and deceleration time (r = -0.95). However, by stepwise multivariate analysis, deceleration time emerged as the sole independent predictor of PWP (r2 = 0.95, F = 590). The analysis led to the following equation: PWP = 51 - 0.26 (deceleration time). Our data suggest that mitral Doppler echocardiography is a useful tool for predicting PWP in heart failure patients with severe LV dysfunction even in the presence of atrial fibrillation. PMID:10080426

  18. Experiments on Corium Dispersion after Lower Head Failure at Moderate Pressure

    SciTech Connect

    BLANCHAT,THOMAS K.; GARGALLO,M.; JACOBS,G.; MEYER,L.; WILHELM,D.

    1999-09-21

    Concerning the mitigation of high pressure core melt scenarios, the design objective for future PWRS is to transfer high pressure core melt to low pressure core melt sequences, by means of pressure relief valves at the primary circuit, with such a discharge capacity to limit the pressure in the reactor coolant system to less than 20 bar. Studies have shown that in late in-vessel reflooding scenarios there may be a time window where the pressure is indeed in this range, at the moment of the reactor vessel rupture. It has to be verified that large quantities of corium released from the vessel after failure at pressures <20 bar cannot be carried out of the reactor pit, because the melt collecting and cooling concept of future PWRs would be rendered useless. Existing experiments investigated the melt dispersal phenomena in the context of the DCH resolution for existing power plants in the USA, most of them having cavities with large instrument tunnels leading into subcompartments. For such designs, breaches with small cross sections at high vessel failure pressures had been studied. However, some present and future European PWRs have an annular cavity design without a large pathway out of the cavity other than through the narrow annular gap between the RPV and the cavity wall. Therefore, an experimental program was launched, focusing on the annular cavity design and low pressure vessel failure. The first part of the program comprises two experiments which were performed with thermite melt steam and a prototypic atmosphere in the containment in a scale 1:10. The initial pressure in the RPV-model was 11 and 15 bars, and the breach was a hole at the center of the lower head with a scaled diameter of 100 cm and 40 cm, respectively. The main results were: 78% of melt mass were ejected out of the cavity with the large hole and 21% with the small hole; the maximum pressures in the model containment were 6 bar and 4 bar, respectively. In the second part of the experimental

  19. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Liu, Yonggang; Chen, Tony; Beyer, Richard P.; Chin, Michael T.; MacCoss, Michael J.; Rabinovitch, Peter S.

    2012-01-01

    Aims We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. Methods and results We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. Conclusion This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS. PMID:22012956

  20. Failure Pressure and Leak Rate of Steam Generator Tubes With Stress Corrosion Cracks

    SciTech Connect

    Majumdar, S.; Kasza, K.; Park, J.Y.; Bakhitiari, S.

    2002-07-01

    This paper illustrates the use of an 'equivalent rectangular crack' approach to predict leak rates through laboratory generated stress corrosion cracks. A comparison between predicted and observed test data on rupture and leak rate from laboratory generated stress corrosion cracks are provided. Specimen flaws were sized by post-test fractography in addition to pre-test advanced eddy current technique. The test failure pressures and leak rates are shown to be closer to those predicted on the basis of fractography than on NDE. However, the predictions based on NDE results are encouraging, particularly because they have the potential to determine a more detailed geometry of ligamentous cracks from which more accurate predictions of failure pressure and leak rate can be made in the future. (authors)

  1. Nonlinear response and failure characteristics of internally pressurized composite cylindrical panels

    NASA Technical Reports Server (NTRS)

    Boitnott, R. L.; Johnson, E. R.; Starnes, J. H.

    1985-01-01

    Results of an experimental and analytical study of the nonlinear response and failure characteristics of internally pressurized 4- to 16-ply-thick graphite-epoxy cylindrical panels are presented. Specimens with clamped boundaries simulating the skin between two frames and two stringers of a typical transport fuselage were tested to failure. Failure results of aluminum specimens are compared with the graphite-epoxy test results. The specimens failed at their edges where the local bending gradients and interlaminar stresses are maximum. STAGS nonlinear two-dimensional shell analysis computer code results are used to identify regions of the panels where the response is independent of the axial coordinate. A geometrically nonlinear one-dimensional cylindrical panel analysis was derived and used to determine panel response and interlaminar stresses. Inclusion of the geometric nonlinearity was essential for accurate prediction of panel response. The maximum stress failure criterion applied to the predicted tensile stress in the fiber direction agreed best with the experimentally determined first damage pressures.

  2. Sensor failure detection and management scheme for pressure probes using Kalman filtering technique

    NASA Astrophysics Data System (ADS)

    Kumar, N. Shantha

    1995-06-01

    For high performance, high angle of attack fighter aircraft, accurate and high fidelity airdata parameters are crucial for the flight control system. At high angle of attack, where small changes in angle of attack can greatly influence aerodynamic properties of the aircraft, the problem of flight control augmentation is extremely complicated. In this flight regime, it is critical that accurate measurements of airdata parameters including angle of attack, angle of sideslip and dynamic pressure are made available for use by the flight augmentation system. But at high angle of attack, it is difficult to measure airdata accurately using conventional intrusive sensing devices, because of upstream vortices and flow separation. To overcome this difficulty, a non-intrusive Flush Airdata Sensing system (FADS) has been developed. The FADS is a simple hardware item with the basic fixture being a hemispherical or conical cap mounted at the nose of the fuselage. A number of small holes are drilled around the cap in annular rings. The pressure at each hole is measured by pressure transducers and related to airdata parameters by a non-linear aerodynamic model derived from potential flow. A 7-hole pressure probe, proposed by the DLR for implementation on an advanced experimental fighter aircraft for airdata measurements at high angle of attack, has redundant measurements in angle of attack, angle of side slip and dynamic pressure to ensure control system augmentation at high angle of attack, in spite of some pressure sensor failure or malfunctioning. Such a system requires an algorithm which detects pressure sensor failure and performs fault management in real time. In this report, a concept for an algorithm using a recursive Kalman filtering technique has been proposed and developed. The algorithm is tested on a 5 hole pressure probe which is used in experimental flights of C-160 Transall aircraft.

  3. Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    2012-01-01

    Executive Summary In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions. After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses. The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html. Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive

  4. Evaluation of ANF fuel failures in oyster creek

    SciTech Connect

    Howe, T.M.; Van Swam, L.F.; Piascik, T.G.; Spence, P.A.

    1988-01-01

    During the refueling outrage following cycle-10 operations of Oyster Creek nuclear generating station, fuel sipping identified 47 failed Advance Nuclear Fuels (ANF) fuel assemblies. The failed fuel was an unpressurized 8 x 8 design manufactured by ANF prior to 1980. Subsequent inspection of 46 of these 47 assemblies with the ANF ULTRATEST ultrasonic testing system indicated 104 either failed of suspect fuel rods in 44 assemblies. Two of the assemblies were identified as being sound. Selected fuel rods were removed from three of the assemblies and inspected both visually and with an eddycurrent coil. An evaluation has been performed to determine the cause of the failures. The failures were primarily the result of pellet/cladding interaction (PCI). Detailed analyses of several of the failed fuel rods were performed with ANF's fuel rod modeling code RAMPX2. RAMPX2 includes several state-of-the-art models, including a model describing the formation of fission product deposits called coins on the inside surface of the cladding, a model that accounts for axial PCI, and a trapped fuel stack model. The analyses provided an explanation for the failures.

  5. GGOT total pressure loss control concept evaluation

    NASA Astrophysics Data System (ADS)

    Blumenthal, R. F.

    1993-07-01

    Total pressure loss is one of the most important parameters in the design of a turbine. This parameter effects not only the turbine performance, but consequently the engine power balance and engine performance. Computational Fluid Dynamics (CFD) can be an effective tool in predicting turbine total pressure loss, and also for performing sensitivity studies to achieve an optimal design with respect to pressure loss. In the present study, the AEROVISC code was used to predict the total pressure loss in the Turbine Technology Team Gas Generator Oxidizer Turbine (GGOT). The objectives in this study are two-fold. It is first necessary to determine an optimal methodology in predicting total pressure loss. The type of grid, grid density and distribution are parameters which may affect the loss prediction. Also, the effect of using a standard K-epsilon turbulence model with wall functions versus a two-layer turbulence model needs to be investigated. The use of grid embedding to resolve areas with high flow gradients needs to be explored. The second objective of the study is to apply the optimal methodology toward evaluating different tip leakage control concepts.

  6. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  7. Evaluative pressure overcomes perceptual load effects.

    PubMed

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited. PMID:25233881

  8. Burst pressure failure of titanium tanks damaged by secondary plumes from hypervelocity impacts on aluminum shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, L.; Christiansen, E.; Davis, B. A.; Keddy, C.; Rodriguez, K.; Miller, J.; Bohl, W.

    2012-03-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  9. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  10. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Christopher; Rodriguez, Karen; Miller, Joshua; Bohl, William

    2011-06-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium (Ti) pressure vessels burst pressure and characteristics. The series consists of a pair of HVI impact tests on water-filled Ti tanks (water as a surrogate to the propellant) and subsequent burst tests of these tanks and an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis that provides insight into how the cracks associated with a spall site initiate a failure cascade is discussed.

  11. Efficiently evaluate complex pressure relief systems

    SciTech Connect

    Wright, R.K.; Walker, A.G.

    1997-01-01

    This article will present the steps necessary to perform a comprehensive analysis of complex pressure relief systems. The goal is not to discuss detailed calculations for proper valve sizing and selection, but rather to analyze and verify existing system configurations. Sizing and selection have been covered in detail by the American Petroleum Institute (API) RP 520, API RP 521, various AIChE Design Institute for Emergency Relief Systems (DIERS) publications, and other sources. In their work with industry, the authors have noticed a tendency for some engineers to proceed with detailed calculations without first preparing an overall strategy and implementation plan to make sure that the calculations yield the desired results. They have seen detailed pressure relief system analyses costing hundreds of thousands of dollars which, for any number of reasons, are incorrect. The old adage GIGO (garbage in/garbage out) certainly applies to pressure relief system analysis. They will address the thought processes and actions necessary to correctly and efficiently evaluate complex pressure relief systems.

  12. The usage of the Boussignac continuous positive airway pressure system in acute respiratory failure.

    PubMed

    Wong, D T; Tam, A D; Van Zundert, T C R V

    2013-05-01

    Traditionally, continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP) devices have been used to treat patients in acute respiratory failure. However they require an electric power source, are relatively large in size, and may be difficult to use in prehospital settings. The recently introduced Boussignac CPAP system is capable of delivering 10 cmH2O of CPAP, is compact, portable and requires only an oxygen source. This paper reviews the efficacy of using Boussignac CPAP as a treatment for acute respiratory failure in both prehospital and hospital settings. All studies mainly focused on patients treated for cardiogenic pulmonary edema. In the prehospital setting, Boussigac CPAP significantly improved respiratory parameters and oxygenation from baseline values. In the emergency department setting, Boussignac CPAP was more effective than standard oxygen delivery and just as effective as BiPAP in improving patient oxygenation and respiration. In one study, implementing Boussignac CPAP reduced intubation rate and hospital stay. Most hospital staff found Boussignac CPAP easy to use and complication rates were low. Boussigac CPAP is a useful device in the treatment of patients with acute respiratory failure, especially in the prehospital setting. PMID:23419338

  13. Creep failure of a reactor pressure vessel lower head under severe accident conditions

    SciTech Connect

    Pilch, M.M.; Ludwigsen, J.S.; Chu, T.Y.; Rashid, Y.R.

    1998-08-01

    A severe accident in a nuclear power plant could result in the relocation of large quantities of molten core material onto the lower head of he reactor pressure vessel (RPV). In the absence of inherent cooling mechanisms, failure of the RPV ultimately becomes possible under the combined effects of system pressure and the thermal heat-up of the lower head. Sandia National Laboratories has performed seven experiments at 1:5th scale simulating creep failure of a RPV lower head. This paper describes a modeling program that complements the experimental program. Analyses have been performed using the general-purpose finite-element code ABAQUS-5.6. In order to make ABAQUS solve the specific problem at hand, a material constitutive model that utilizes temperature dependent properties has been developed and attached to ABAQUS-executable through its UMAT utility. Analyses of the LHF-1 experiment predict instability-type failure. Predicted strains are delayed relative to the observed strain histories. Parametric variations on either the yield stress, creep rate, or both (within the range of material property data) can bring predictions into agreement with experiment. The analysis indicates that it is necessary to conduct material property tests on the actual material used in the experimental program. The constitutive model employed in the present analyses is the subject of a separate publication.

  14. The application of esophageal pressure measurement in patients with respiratory failure.

    PubMed

    Akoumianaki, Evangelia; Maggiore, Salvatore M; Valenza, Franco; Bellani, Giacomo; Jubran, Amal; Loring, Stephen H; Pelosi, Paolo; Talmor, Daniel; Grasso, Salvatore; Chiumello, Davide; Guérin, Claude; Patroniti, Nicolo; Ranieri, V Marco; Gattinoni, Luciano; Nava, Stefano; Terragni, Pietro-Paolo; Pesenti, Antonio; Tobin, Martin; Mancebo, Jordi; Brochard, Laurent

    2014-03-01

    This report summarizes current physiological and technical knowledge on esophageal pressure (Pes) measurements in patients receiving mechanical ventilation. The respiratory changes in Pes are representative of changes in pleural pressure. The difference between airway pressure (Paw) and Pes is a valid estimate of transpulmonary pressure. Pes helps determine what fraction of Paw is applied to overcome lung and chest wall elastance. Pes is usually measured via a catheter with an air-filled thin-walled latex balloon inserted nasally or orally. To validate Pes measurement, a dynamic occlusion test measures the ratio of change in Pes to change in Paw during inspiratory efforts against a closed airway. A ratio close to unity indicates that the system provides a valid measurement. Provided transpulmonary pressure is the lung-distending pressure, and that chest wall elastance may vary among individuals, a physiologically based ventilator strategy should take the transpulmonary pressure into account. For monitoring purposes, clinicians rely mostly on Paw and flow waveforms. However, these measurements may mask profound patient-ventilator asynchrony and do not allow respiratory muscle effort assessment. Pes also permits the measurement of transmural vascular pressures during both passive and active breathing. Pes measurements have enhanced our understanding of the pathophysiology of acute lung injury, patient-ventilator interaction, and weaning failure. The use of Pes for positive end-expiratory pressure titration may help improve oxygenation and compliance. Pes measurements make it feasible to individualize the level of muscle effort during mechanical ventilation and weaning. The time is now right to apply the knowledge obtained with Pes to improve the management of critically ill and ventilator-dependent patients. PMID:24467647

  15. Evaluation of the failure of the HP nozzle block at the Nebraska City Station

    SciTech Connect

    Karloff, J.A.; Weins, W.N.

    1995-12-31

    Since the start-up of the Nebraska City Station unit in 1978, the nozzle block section of the high pressure turbine has had to be replaced or repaired each time this section of the turbine was disassembled. In nearly all cases the damage was limited to the lower half of the nozzle block, where many airfoils had been chipped away. This damage not only dramatically increased maintenance costs, but also reduced the efficiency of the nozzle block. The objective of this report is to evaluate if corrosion-fatigue is part of the failure mechanism and what role if any solid particle erosion played in this process. Results and analysis show that both corrosion and SPE were shown to be minor contributors in the failure analysis process. Scanning Electron Microscope (SEM) photographs revealed that fatigue was the major contributor in the failure. It is speculated that the blade passing pressure disturbance caused the trailing edge of the nozzle to vacillate. As the metal reached its fatigue limit, minute fatigue cracks began to form parallel and in a direction opposite to the steam flow. When a crack grew large enough, part of the metal would be torn away leaving the ``chipped`` away appearance. SPE may have initially accelerated the crack growth by decreasing the thickness of the trailing edge. Intergranular corrosion; which was shown to be present, could have weakened the metal at its grain boundaries essentially reducing its fatigue strength.

  16. The effect of preignition on cylinder temperatures, pressures, power output, and piston failures

    NASA Technical Reports Server (NTRS)

    Corrington, Lester C; Fisher, William F

    1947-01-01

    An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.

  17. Pressurizer sensor failure detection using a single sensor multistep parity relation

    SciTech Connect

    Tsai, T.M.; Chou, H.P. )

    1990-06-01

    With increasing demands on the safety and reliability of nuclear power stations, methods of fault detection and isolation (FDI) are creating increasing interest. The FDI process basically involves two steps: residual generation and decision making. The residual represents the difference between various functions of the sensor outputs and the expected values of these functions in the no-fail mode and is subsequently examined for the presence of failure signatures. In this paper, they develop an FDI monitor for pressurizer instruments, which employs the generalized parity relations derived from system equations for residual generation and uses likelihood ratio tests for decision making. The design is for diagnosis during steady-state and transient operations. To avoid difficulties in isolating multiple simultaneous sensor failures, individual FDI monitors are used for each sensor of interest.

  18. Noninvasive positive pressure ventilation as treatment for acute respiratory failure in critically ill patients

    PubMed Central

    Antonelli, Massimo; Conti, Giorgio

    2000-01-01

    Our current state of knowledge on noninvasive positive pressure ventilation (NPPV) and technical aspects are discussed in the present review. In patients with chronic obstructive pulmonary disease, NPPV can be considered a valid therapeutic option to prevent endotracheal intubation. Evidence suggests that, before eventual endotracheal intubation, NPPV should be considered as first-line intervention in the early phases of acute exacerbation of chronic obstructive pulmonary disease. Small randomized and non-randomized studies on the application of NPPV in patients with acute hypoxaemic respiratory failure showed promising results, with reduction in complications such as sinusitis and ventilator-associated pneumonia, and in the duration of intensive care unit stay. The conventional use of NPPV in hypoxaemic acute respiratory failure still remains controversial, however. Large randomized studies are still needed before extensive clinical application in this condition. PMID:11094492

  19. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  20. Evaluation of Corrosion Failure in Tractor-Trailer Brake System

    SciTech Connect

    Wilson, DF

    2002-10-22

    As reported to ORNL, concomitant with the introduction of different deicing and anti-icing compounds, there was an increase in the brake failure rate of tractor-trailer trucks. A forensic evaluation of a failed brake system was performed. Optical and scanning electron microscopic evaluation showed corrosion to be mostly confined to the brake table/lining interface. The corrosion is non-uniform as is to be expected for plain carbon steel in chloride environments. This initial analysis found no evidence for the chlorides of calcium and magnesium, which are the newly introduced deicing and antiicing compounds and are less soluble in water than the identified chlorides of sodium and potassium, in the scale. The result could be as a result of non-exposure of the examined brake table to calcium and magnesium chloride. The mechanisms for the increased failure rate are postulated as being an increased rate of corrosion due to positive shifts in the corrosion potential, and an increased amount of corrosion due to an increased ''time of wetness'' that results from the presence of hygroscopic salts. Laboratory scale evaluation of the corrosion of plain carbon steel in simulated deicing and anti-icing solutions need to be performed to determine corrosion rates and morphological development of corrosion product, to compare laboratory data to in-service data, and to rank economically feasible replacement materials for low carbon steel. In addition, the mechanical behavior of the lining attached to the brake shoe table needs to be assessed. It is opined that an appropriate adjustment of materials could easily allow for a doubling of a brake table/lining lifetime. Suggestions for additional work, to clarify the mechanisms of rust jacking and to develop possible solutions, are described.

  1. Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures -- Experiments and comparison with model predictions

    SciTech Connect

    Majumdar, S.; Shack, W.J.; Diercks, D.R.; Mruk, K.; Franklin, J.; Knoblich, L.

    1998-03-01

    This report summarizes experimental work performed at Argonne National Laboratory on the failure of internally pressurized steam generator tubing at high temperatures ({le} 700 C). A model was developed for predicting failure of flawed and unflawed steam generator tubes under internal pressure and temperature histories postulated to occur during severe accidents. The model was validated by failure tests on specimens with part-through-wall axial and circumferential flaws of various lengths and depths, conducted under various constant and ramped internal pressure and temperature conditions. The failure temperatures predicted by the model for two temperature and pressure histories, calculated for severe accidents initiated by a station blackout, agree very well with tests performed on both flawed and unflawed specimens.

  2. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-01

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  3. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  4. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  5. Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios

    NASA Technical Reports Server (NTRS)

    Helm, B. Robert; Fickas, Stephen

    1992-01-01

    Our interest is in the design of multi-agent problem-solving systems, which we refer to as composite systems. We have proposed an approach to composite system design by decomposition of problem statements. An automated assistant called Critter provides a library of reusable design transformations which allow a human analyst to search the space of decompositions for a problem. In this paper we describe a method for evaluating and critiquing problem decompositions generated by this search process. The method uses knowledge stored in the form of failure decompositions attached to design transformations. We suggest the benefits of our critiquing method by showing how it could re-derive steps of a published development example. We then identify several open issues for the method.

  6. Increased left atrial pressure in non-heart failure patients with subclinical hypothyroidism and atrial fibrillation

    PubMed Central

    Nakano, Yukiko; Uchimura, Yuko; Tokuyama, Takehito; Kawazoe, Hiroshi; Watanabe, Yoshikazu; Matsumura, Hiroya; Kihara, Yasuki

    2016-01-01

    Background The impact of subclinical hypothyroidism on the cardiovascular risk is still debated. We aimed to measure the relationship between subclinical hypothyroidism and the left atrial (LA) pressure. Methods The LA pressures and thyroid function were measured in consecutive patients undergoing atrial fibrillation (AF) ablation, who did not have any known heart failure, structural heart disease, or overt thyroid disease. Results Subclinical hypothyroidism (4.5≤ thyroid-stimulating hormone <19.9 mIU/L) was present in 61 (13.0%) of the 471 patients included. More subclinical hypothyroidism patients than euthyroid patients (55.7% vs 40.2%; P=0.04).’euthyroid patients had persistent or long-standing persistent AF (55.7% vs 40.2%; P = 0.04). The mean LA pressure (10.9 ± 4.7 vs 9.1 ± 4.3 mmHg; P = 0.002) and LA V-wave pressure (17.4 ± 6.5 vs 14.3 ± 5.9 mmHg; P < 0.001) were, respectively, higher in the patients with subclinical hypothyroidism than in the euthyroid patients. After an adjustment for potential confounders, the LA pressures remained significantly higher in the subclinical hypothyroidism patients. A multiple logistic regression model showed that subclinical hypothyroidism was independently associated with a mean LA pressure of >18 mmHg (odds ratio 3.94, 95% CI 1.28 11.2; P = 0.02). Conclusions Subclinical hypothyroidism may increase the LA pressure in AF patients. PMID:26902318

  7. VALIDATION OF SPRING OPERATED PRESSURE RELIEF VALVE TIME TO FAILURE AND THE IMPORTANCE OF STATISTICALLY SUPPORTED MAINTENANCE INTERVALS

    SciTech Connect

    Gross, R; Stephen Harris, S

    2009-02-18

    The Savannah River Site operates a Relief Valve Repair Shop certified by the National Board of Pressure Vessel Inspectors to NB-23, The National Board Inspection Code. Local maintenance forces perform inspection, testing, and repair of approximately 1200 spring-operated relief valves (SORV) each year as the valves are cycled in from the field. The Site now has over 7000 certified test records in the Computerized Maintenance Management System (CMMS); a summary of that data is presented in this paper. In previous papers, several statistical techniques were used to investigate failure on demand and failure rates including a quantal response method for predicting the failure probability as a function of time in service. The non-conservative failure mode for SORV is commonly termed 'stuck shut'; industry defined as the valve opening at greater than or equal to 1.5 times the cold set pressure. Actual time to failure is typically not known, only that failure occurred some time since the last proof test (censored data). This paper attempts to validate the assumptions underlying the statistical lifetime prediction results using Monte Carlo simulation. It employs an aging model for lift pressure as a function of set pressure, valve manufacturer, and a time-related aging effect. This paper attempts to answer two questions: (1) what is the predicted failure rate over the chosen maintenance/ inspection interval; and do we understand aging sufficient enough to estimate risk when basing proof test intervals on proof test results?

  8. SEM evaluation of advanced refractory failures in slagging gasifiers

    SciTech Connect

    Collins, W.Keith; Dahlin, Cheryl L.; Bennett, James P.; Kwong, Kyei-Sing; Rawers, James C.

    2005-08-01

    The SEM is an invaluable tool in the evaluation of advanced refractories and their failure. A reaction vessel?s refractory liner, at minimum, must protect the reaction vessel from elevated temperatures, corrosive slag and thermal cycling. To understand the failure mechanisms ARC staff had first to determine how an advanced chrome rich refractory was attacked by various components that make up a slag. Refractory cups were made from the refractory of interest and various compounds that can be found in a slag such as CaO, SiO2, Fe2O3, NaCl were placed into the test cups and fired for 24 hours at the required temperature with the desired atmosphere. The cups are prepared for examination by embedding in epoxy and cross sectioning. SEM examination revealed how various slag compositions attacked and penetrated the refractory. The slag could corrode, free refractory grains or react with the refractory and from a new compound. It was found that the only way to measure slag component penetration was with multiple elemental X-ray maps. SiO2 penetrated deeply and in many instances moved through the cup. The knowledge of slag refractory interactions gather during cup testing was applied to actual spent refractory from reaction vessels. Obtaining samples from the reaction vessel itself proved difficult due to time constraints imposed in relining. Samples were selected based on spent brick shape, color or location in the heap of spent refractory. Sample preparation affected the results dry, water or oil coolant during cutting may dissolve reaction products. The complex reactions between the slag and refractory made for very interesting and time consuming evaluation. Elemental X-ray maps at low and high magnification combined with point analysis aided in locating regions of interest. Crystals were found growing in voids and appear to be from vapor deposition. Other crystal structures are from the slag refractory interaction. Knowledge gathered from this and other supporting

  9. BPC 157 therapy to detriment sphincters failure-esophagitis-pancreatitis in rat and acute pancreatitis patients low sphincters pressure.

    PubMed

    Petrovic, I; Dobric, I; Drmic, D; Sever, M; Klicek, R; Radic, B; Brcic, L; Kolenc, D; Zlatar, M; Kunjko, K; Jurcic, D; Martinac, M; Rasic, Z; Boban Blagaic, A; Romic, Z; Seiwerth, S; Sikiric, P

    2011-10-01

    Possibly, acute esophagitis and pancreatitis cause each other, and we focused on sphincteric failure as the common causative key able to induce either esophagitis and acute pancreatitis or both of them, and thereby investigate the presence of a common therapy nominator. This may be an anti-ulcer pentadecapeptide BPC 157 (tested for inflammatory bowel disease, wound treatment) affecting esophagitis, lower esophageal and pyloric sphincters failure and acute pancreatitis (10 μg/kg, 10 ng/kg intraperitoneally or in drinking water). The esophagitis-sphincter failure procedure (i.e., insertion of the tubes into the sphincters, lower esophageal and pyloric) and acute pancreatitis procedure (i.e., bile duct ligation) were combined in rats. Esophageal manometry was done in acute pancreatitis patients. In rats acute pancreatitis procedure produced also esophagitis and both sphincter failure, decreased pressure 24 h post-surgery. Furthermore, bile duct ligation alone immediately declines the pressure in both sphincters. Vice versa, the esophagitis-sphincter failure procedure alone produced acute pancreatitis. What's more, these lesions (esophagitis, sphincter failure, acute pancreatitis when combined) aggravate each other (tubes into sphincters and ligated bile duct). Counteraction occurred by BPC 157 therapies. In acute pancreatitis patients lower pressure at rest was in both esophageal sphincters in acute pancreatitis patients. We conclude that BPC 157 could cure esophagitis/sphincter/acute pancreatitis healing failure. PMID:22204800

  10. Thermochemical evaluation of PCI failures in LWR fuel pins

    NASA Astrophysics Data System (ADS)

    Götzmann, Odo

    1982-06-01

    In searching for the reasons behind the PCI failures of LWR fuel pins two questions have obviously remained unanswered: (a) what is the iodine potential necessary to cause SCC of zircaloy, and (b) is this iodine potential available in a fuel pin. To answer these two questions, a consistent set of thermochemical data for the Zr-I system was created, the results of laboratory tests of iodine-induced SCC of zircaloy were evaluated, and, finally, equilibrium calculations for the fuel-fission-product system were performed to determine the temperature and oxygen potential required to produce an iodine potential high enough to cause SCC of zircaloy. The conclusion of this study is that SCC of zircaloy can be caused by an iodine potential equal to or greater than that needed to form ZrI with metallic zirconium. This iodine potential is available in an LWR fuel pin at oxygen potentials corresponding to stoichiometric fuel. The carrier of the potential, i.e. The attacking species, is CsI.

  11. A study on evaluation of random failure in building facilities

    SciTech Connect

    Tanaka, Takehiro; Gotoh, Shigeru

    1998-12-31

    Estimation of the mean time between failures (hereinafter termed MTBF) for random failure is a well-known part of equipment engineering, but no discussion of MTBF presently exists in connection with building equipment. Close examination of the interval estimation of MTBF is indispensable in establishing maintenance periods for building automation and other systems. In this study, an investigation of MTBF estimation for random failure is made using field data of building equipment operations, and a comparison of results is conducted by applying two methods of interval estimation. The study touches upon the relationship of the results achieved by the Bayesian approach with the assessed values of practical operations. The authors employ simulation of a maximum-likelihood method with the Bayesian method in estimating the failure rate and then analyze it by using the data of building equipment and devices for a period of random failure. These results suggest the most suitable and practical way of MTBF estimation for actual maintenance sites.

  12. Contrasting effects of vasodilators on blood pressure and sodium balance in the hypertension of autonomic failure

    NASA Technical Reports Server (NTRS)

    Jordan, J.; Shannon, J. R.; Pohar, B.; Paranjape, S. Y.; Robertson, D.; Robertson, R. M.; Biaggioni, I.

    1999-01-01

    Supine hypertension, which is very common in patients with autonomic failure, limits the use of pressor agents and induces nighttime natriuresis. In 13 patients with severe orthostatic hypotension due to autonomic failure (7 women, 6 men, 72 +/- 3 yr) and supine hypertension, the effect of 30 mg nifedipine (n = 10) and 0.025 to 0.2 mg/h nitroglycerin patch (n = 11) on supine BP, renal sodium handling, and orthostatic tolerance was determined. Medications were given at 8 p.m.; patients stood up at 8 a.m. Nitroglycerin was removed at 6 a.m. Compared with placebo, nifedipine and nitroglycerin decreased systolic BP during the night by a maximum of 37 +/- 9 and 36 +/- 10 mmHg, respectively (P < 0.01). At 8 a.m., supine systolic BP was 23 +/- 7 mmHg lower with nifedipine than with placebo (P < 0.05), but was similar with nitroglycerin and placebo. Sodium excretion during the night was not reduced with nitroglycerin (0.13 +/- 0.02 mmol/mg creatinine [Cr] versus 0.15 +/- 0.03 mmol/mg Cr with placebo), but it was increased with nifedipine (0.35 +/- 0.06 mmol/mg Cr versus 0.13 +/- 0.02 mmol/mg Cr with placebo, P < 0.05). Nifedipine but not nitroglycerin worsened orthostatic hypotension in the morning. It is concluded that nifedipine and transdermal nitroglycerin are effective in controlling supine hypertension in patients with autonomic failure. However, nifedipine has a prolonged depressor effect and worsens orthostatic hypotension in the morning. The decrease in pressure natriuresis that would be expected with the substantial decrease in BP obtained with nitroglycerin and nifedipine may be offset by a direct effect of both drugs on renal sodium handling.

  13. Nonlinear failure analysis of a reinforced concrete containment under internal pressure

    SciTech Connect

    Sharma, S.; Wang, Y.K.; Reich, M.

    1984-01-01

    A detailed nonlinear finite element model is used to investigate the failure response of the Indian Point containment building under severe accident pressures. Refined material models are used to describe the complex stress-strain behavior of the liner and rebar steels, the plain concrete and the reinforced concrete. Structural geometry of the containment is idealized by eight layers of axisymmetric finite elements through the wall thickness in order to closely model the actual placement of the rebars. Soil stiffness under the containment base mat is modeled by a series of nonlinear spring elements. Numerical results presented in the paper describe cracking and plastic deformation (in compression) of the concrete, yielding of the liner and rebar steels and eventual loss of the load carrying capacity of the containment. The results are compared with available data from the previous studies for this containment. 8 references, 9 figures.

  14. Update: Non-Invasive Positive Pressure Ventilation in Chronic Respiratory Failure Due to COPD.

    PubMed

    Altintas, Nejat

    2016-01-01

    Long-term non-invasive positive pressure ventilation (NPPV) has widely been accepted to treat chronic hypercapnic respiratory failure arising from different etiologies. Although the survival benefits provided by long-term NPPV in individuals with restrictive thoracic disorders or stable, slowly-progressing neuromuscular disorders are overwhelming, the benefits provided by long-term NPPV in patients with chronic obstructive pulmonary disease (COPD) remain under question, due to a lack of convincing evidence in the literature. In addition, long-term NPPV reportedly failed in the classic trials to improve important physiological parameters such as arterial blood gases, which might serve as an explanation as to why long-term NPPV has not been shown to substantially impact on survival. However, high intensity NPPV (HI-NPPV) using controlled NPPV with the highest possible inspiratory pressures tolerated by the patient has recently been described as a new and promising approach that is well-tolerated and is also capable of improving important physiological parameters such as arterial blood gases and lung function. This clearly contrasts with the conventional approach of low-intensity NPPV (LI-NPPV) that uses considerably lower inspiratory pressures with assisted forms of NPPV. Importantly, HI-NPPV was very recently shown to be superior to LI-NPPV in terms of improved overnight blood gases, and was also better tolerated than LI-NPPV. Furthermore, HI-NPPV, but not LI-NPPV, improved dyspnea, lung function and disease-specific aspects of health-related quality of life. A recent study showed that long-term treatment with NPPV with increased ventilatory pressures that reduced hypercapnia was associated with significant and sustained improvements in overall mortality. Thus, long-term NPPV seems to offer important benefits in this patient group, but the treatment success might be dependent on effective ventilatory strategies. PMID:26418151

  15. Initial emergency department systolic blood pressure predicts left ventricular systolic function in acute decompensated heart failure.

    PubMed

    Styron, Joseph F; Jois-Bilowich, Preeti; Starling, Randall; Hobbs, Robert E; Kontos, Michael C; Pang, Peter S; Peacock, W Frank

    2009-01-01

    Ejection fraction (EF) is often unknown in patients who present with acute decompensated heart failure (ADHF). The objective of this study was to determine whether a patient's systolic blood pressure is associated with their left ventricular EF. This study was a retrospective chart review of all patients admitted to an emergency department (ED) observation unit from January 2002 to December 2004. A low EF was defined as <40%. Among 475 patients, the median age was 72 years, 53% were men, 40% were white, 59% were black, and 59% had a low EF. Patients with low EFs were more likely male ( P<.0001), with prior congestive heart disease ( P<.0001), longer QRS duration ( P<.0001), left bundle branch block ( P<.0001), and higher B-type natriuretic peptide ( P<.0001). The low EF group was less likely to have diabetes ( P<.0001). Adjusted odds ratios for an EF >or=40% were significant at all systolic blood pressure readings >120 mm Hg. Having an ED systolic BP >120 mm Hg is associated with significantly higher rates of preserved left ventricular systolic function in patients with ADHF. PMID:19187401

  16. The clinical geneticist and the evaluation of failure to thrive versus failure to feed.

    PubMed

    Rabago, Jillian; Marra, Kayt; Allmendinger, Nikki; Shur, Natasha

    2015-12-01

    Common clinical genetic referrals for the pediatric patient include a single major or multiple minor anomalies, dysmorphic features, especially when accompanied by developmental delay or intellectual disability, and failure to thrive (FTT). This review provides pediatric definitions of FTT and the genetic differential for FTT, which includes chromosomal disorders, microdeletion/duplication syndromes, uniparental disomy/methylation disorder, disorders of DNA repair, teratogens, metabolic syndromes, and skeletal dysplasias. Three clinical genetics cases highlight challenges in deciphering the cause of FTT. The review concludes with a ten-step approach that might improve diagnostic ability in differentiating FTT cases (those with genetic or other metabolic causes) from "failure to feed," in other words FTT as the direct result of neglect and/or child abuse. PMID:26581677

  17. An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure.

    PubMed

    Zhou, Ming-Da; Yang, Chuan; Liu, Zhiwen; Cysyk, Joshua P; Zheng, Si-Yang

    2012-02-01

    Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing. PMID:21997499

  18. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments

    NASA Astrophysics Data System (ADS)

    Penso Mula, Jorge Antonio

    Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA

  19. Evaluation of a Linear Cumulative Damage Failure Model for Epoxy Adhesive

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Batista-Rodriquez, Alicia; Macon, David; Totman, Peter; McCool, Alex (Technical Monitor)

    2001-01-01

    Recently a significant amount of work has been conducted to provide more complex and accurate material models for use in the evaluation of adhesive bondlines. Some of this has been prompted by recent studies into the effects of residual stresses on the integrity of bondlines. Several techniques have been developed for the analysis of bondline residual stresses. Key to these analyses is the criterion that is used for predicting failure. Residual stress loading of an adhesive bondline can occur over the life of the component. For many bonded systems, this can be several years. It is impractical to directly characterize failure of adhesive bondlines under a constant load for several years. Therefore, alternative approaches for predictions of bondline failures are required. In the past, cumulative damage failure models have been developed. These models have ranged from very simple to very complex. This paper documents the generation and evaluation of some of the most simple linear damage accumulation tensile failure models for an epoxy adhesive. This paper shows how several variations on the failure model were generated and presents an evaluation of the accuracy of these failure models in predicting creep failure of the adhesive. The paper shows that a simple failure model can be generated from short-term failure data for accurate predictions of long-term adhesive performance.

  20. Evaluation of Fuzzy Rulemaking for Expert Systems for Failure Detection

    NASA Technical Reports Server (NTRS)

    Laritz, F.; Sheridan, T. B.

    1984-01-01

    Computer aids in expert systems were proposed to diagnose failures in complex systems. It is shown that the fuzzy set theory of Zadeh offers a new perspective for modeling for humans thinking and language use. It is assumed that real expert human operators of aircraft, power plants and other systems do not think of their control tasks or failure diagnosis tasks in terms of control laws in differential equation form, but rather keep in mind a set of rules of thumb in fuzzy form. Fuzzy set experiments are described.

  1. Evaluation of the Hepa Wash® treatment in pigs with acute liver failure

    PubMed Central

    2013-01-01

    Background Mortality of patients with acute liver failure (ALF) is still unacceptably high. Available liver support systems are still of limited success at improving survival. A new type of albumin dialysis, the Hepa Wash® system, was newly introduced. We evaluated the new liver support system as well as the Molecular Adsorbent Recycling System (MARS) in an ischemic porcine model of ALF. Methods In the first study animals were randomly allocated to control (n=5) and Hepa Wash (n=6) groups. In a further pilot study, two animals were treated with the MARS-system. All animals received the same medical and surgical procedures. An intraparenchymal intracranial pressure was inserted. Hemodynamic monitoring and goal-directed fluid therapy using the PiCCO system was done. Animals underwent functional end-to-side portacaval shunt and ligation of hepatic arteries. Treatment with albumin dialysis was started after fall of cerebral perfusion pressure to 45 mmHg and continued for 8 h. Results All animals in the Hepa Wash group survived the 13-hour observation period, except for one that died after stopping treatment. Four of the control animals died within this period (p=0.03). Hepa Wash significantly reduced impairment of cerebral perfusion pressure (23±2 vs. 10±3 mmHg, p=0.006) and mean arterial pressure (37±1 vs. 24±2 mmHg, p=0.006) but had no effect on intracranial pressure (14±1 vs. 15±1 mmHg, p=0.72). Hepa Wash also enhanced cardiac index (4.94±0.32 vs. 3.36±0.25 l/min/m2, p=0.006) and renal function (urine production, 1850 ± 570 vs. 420 ± 180 ml, p=0.045) and eliminated water soluble (creatinine, 1.3±0.2 vs. 3.2±0.3 mg/dl, p=0.01; ammonia 562±124 vs. 1382±92 μg/dl, p=0.006) and protein-bound toxins (nitrate/nitrite 5.54±1.57 vs. 49.82±13.27 μmol/l, p=0.01). No adverse events that could be attributed to the Hepa Wash treatment were observed. Conclusions Hepa Wash was a safe procedure and improved multiorgan system failure in pigs with ALF. The survival

  2. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure.

    PubMed

    Angrisano, Tiziana; Schiattarella, Gabriele Giacomo; Keller, Simona; Pironti, Gianluigi; Florio, Ermanno; Magliulo, Fabio; Bottino, Roberta; Pero, Raffaela; Lembo, Francesca; Avvedimento, Enrico Vittorio; Esposito, Giovanni; Trimarco, Bruno; Chiariotti, Lorenzo; Perrino, Cinzia

    2014-01-01

    Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF. PMID:25181347

  3. Studies and analyses of the space shuttle main engine: High-pressure oxidizer turbopump failure information propagation model

    NASA Technical Reports Server (NTRS)

    Glover, R. C.; Rudy, S. W.; Tischer, A. E.

    1987-01-01

    The high-pressure oxidizer turbopump (HPOTP) failure information propagation model (FIPM) is presented. The text includes a brief discussion of the FIPM methodology and the various elements which comprise a model. Specific details of the HPOTP FIPM are described. Listings of all the HPOTP data records are included as appendices.

  4. The evaluation of failure detection and isolation algorithms for restructurable control

    NASA Technical Reports Server (NTRS)

    Motyka, P.; Bonnice, W.; Hall, S.; Wagner, E.

    1984-01-01

    Three failure detection and identification techniques were compared to determine their usefulness in detecting and isolating failures in an aircraft flight control system; excluding sensor and flight control computer failures. The algorithms considered were the detection filter, the Generalized Likelihood Ratio test and the Orthogonal Series Generalized Likelihood Ratio test. A modification to the basic detection filter is also considered which uses secondary filtering of the residuals to produce unidirectional failure signals. The algorithms were evaluated by testing their ability to detect and isolate control surface failures in a nonlinear simulation of a C-130 aircraft. It was found that failures of some aircraft controls are difficult to distinguish because they have a similar effect on the dynamics of the vehicle. Quantitative measures for evaluating the distinguishability of failures are considered. A system monitoring strategy for implementing the failure detection and identification techniques was considered. This strategy identified the mix of direct measurement of failures versus the computation of failure necessary for implementation of the technology in an aircraft system.

  5. Endothelial lipase modulates pressure overload-induced heart failure through alternative pathway for fatty acid uptake.

    PubMed

    Nakajima, Hideto; Ishida, Tatsuro; Satomi-Kobayashi, Seimi; Mori, Kenta; Hara, Tetsuya; Sasaki, Naoto; Yasuda, Tomoyuki; Toh, Ryuji; Tanaka, Hidekazu; Kawai, Hiroya; Hirata, Ken-ichi

    2013-05-01

    Lipoprotein lipase has been considered as the only enzyme capable of generating lipid-derived fatty acids for cardiac energy. Endothelial lipase is another member of the triglyceride lipase family and hydrolyzes high-density lipoproteins. Although endothelial lipase is expressed in the heart, its function remains unclear. We assessed the role of endothelial lipase in the genesis of heart failure. Pressure overload-induced cardiac hypertrophy was generated in endothelial lipase(-/-) and wild-type mice by ascending aortic banding. Endothelial lipase expression in cardiac tissues was markedly elevated in the early phase of cardiac hypertrophy in wild-type mice, whereas lipoprotein lipase expression was significantly reduced. Endothelial lipase(-/-) mice showed more severe systolic dysfunction with left-ventricular dilatation compared with wild-type mice in response to pressure overload. The expression of mitochondrial fatty acid oxidation-related genes, such as carnitine palmitoyltransferase-1 and medium-chain acyl coenzyme A dehydrogenase, was significantly lower in the heart of endothelial lipase(-/-) mice than in wild-type mice. Also, endothelial lipase(-/-) mice had lower myocardial adenosine triphosphate levels than wild-type mice after aortic banding. In cultured cardiomyocytes, endothelial lipase was upregulated by inflammatory stimuli, whereas lipoprotein lipase was downregulated. Endothelial lipase-overexpression in cardiomyocytes resulted in an upregulation of fatty acid oxidation-related enzymes and intracellular adenosine triphosphate accumulation in the presence of high-density lipoprotein. Endothelial lipase may act as an alternative candidate to provide fatty acids to the heart and regulate cardiac function. This effect seemed relevant particularly in the diseased heart, where lipoprotein lipase action is downregulated. PMID:23460280

  6. Low-intensity noninvasive ventilation: Lower pressure, more exacerbations of chronic respiratory failure

    PubMed Central

    Kadowaki, Toru; Wakabayashi, Kiryo; Kimura, Masahiro; Kobayashi, Kanako; Ikeda, Toshikazu; Yano, Shuichi

    2016-01-01

    BACKGROUND: For patients with chronic respiratory failure (CRF) who are treated with noninvasive positive pressure ventilation (NPPV), a little is known regarding the effects of low-intensity NPPV (LI-NPPV) on the clinical course of CRF and the frequency of adjustments in these patients. OBJECTIVES: This study investigated the effects of LI-NPPV on the clinical course of patients with CRF as compared with patients who were treated with conventional NPPV (C-NPPV) and determined how frequently NPPV was adjusted during therapy. METHODS: Clinical data from 21 patients who received long-term NPPV were retrospectively analyzed. Patients were categorized into two groups based on the level of initial pressure support (PS): C-NPPV group (PS ≥ 10 cm H2O) and LI-NPPV group (PS < 10 cm H2O). RESULTS: Patients in the LI-NPPV group had significantly more exacerbations of CRF (P < 0.05). There was no significant difference in the number of patients who required adjustments of NPPV settings between the two groups. There was no significant difference in PaCO2 levels 1 month after the start of NPPV between the two groups; however, PaCO2 levels were significantly lower after 1 year in the C-group (P < 0.001). Seventy-one percent of LI-NPPV patients and 43% of C-NPPV patients needed NPPV adjustments. CONCLUSIONS: Attention should be paid to CRF patients who are initially administered LI-NPPV; they should be carefully observed because they can develop more exacerbations of CRF than patients undergoing C-NPPV. If possible, higher initial PS should be administered to prevent CRF exacerbations. PMID:27168863

  7. Design and evaluation of a failure detection and isolation algorithm for restructurable control systems

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1986-01-01

    The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.

  8. Protective effect of resveratrol against pressure overload-induced heart failure

    PubMed Central

    Gupta, Prakash K; DiPette, Donald J; Supowit, Scott C

    2014-01-01

    Transverse aortic constriction (TAC)-induced pressure overload (PO) causes adverse cardiac remodeling and dysfunction that progresses to heart failure (HF). The purpose of this study was to determine whether the potent antioxidant, resveratrol, significantly attenuates PO-induced HF in wild-type mice. Male C57BL6 mice were subjected to either sham or TAC surgery. One group of TAC mice was given daily resveratrol treatment. Echocardiographic, biometric, and immunohistological analyses were performed on the three groups of mice. All echocardiographic parameters demonstrated significantly greater adverse cardiac remodeling and dysfunction in the TAC compared to the sham mice. Increases in the ratios of heart weight (HW)/body weight (BW) and lung weight (LW)/BW and a sharp decline in the percentage of ejection fraction and fractional shortening were found in TAC relative to sham mice. Likewise, the TAC protocol increased markers of oxidative stress, cardiac hypertrophy, inflammation, fibrosis, hypoxia, and apoptosis. These pathological changes were significantly attenuated by resveratrol treatment. Resveratrol treatment significantly attenuates the adverse cardiac remodeling and dysfunction produced by the TAC protocol in C57/BL6 mice and this activity is mediated, at least in part, by the inhibition of oxidative stress and inflammation indicating a therapeutic potential of resveratrol in HF. PMID:24936291

  9. Elastic geobarometry and the role of brittle failure on pressure release

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Mattia Luca; Angel, Ross John; Rustioni, Greta; Milani, Sula; Nimis, Paolo; Chiara Domeneghetti, Maria; Marone, Federica; Harris, Jeff W.; Nestola, Fabrizio; Alvaro, Matteo

    2016-04-01

    Mineral inclusions trapped in their hosts can provide fundamental information about geological processes. Recent developments in elastic geobarometry, for example, allow the retrieval of encapsulation pressures for host-inclusion pairs. In principle this method can be applied to any mineral-mineral pair so long as both the residual pressure on an inclusion (Pinc), and the equations of state for both host and inclusion are either known or determined (Angel et al., 2015). However, Angel et al. (2014) outlined some boundary conditions, one of which was that deformation in the host-inclusion pair has to be purely elastic. Thus this caveat would exclude from analysis all the inclusions that are surrounded by cracks, indicative of brittle deformation, which may result in partial or complete release of the Pinc. If however the effects of cracks surrounding trapped mineral inclusions could be quantitatively modelled, then the applicability of "elastic" geobarometry might be extended to a much larger number of inclusion-host pairs. We report the results of a pilot experiment in which the stress states (i.e. the residual pressure) have been determined for 10 olivine inclusions still entrapped in 5 diamonds. Inclusion pressures were determined from the unit-cell volumes of the olivines measured in-situ in the diamonds by X-ray diffraction. The olivine equations of state were determined from the olivine compositions by in-situ X-ray structure refinement. Values of Pinc range from 0.19 to 0.53 GPa. In order to quantify the degree of brittle failure surrounding the inclusions, the same set of samples were also investigated by synchrotron X-ray micro-tomography (SRXTM at TOMCAT, Swiss LightSource). Preliminary results showed that at the spatial resolution of our experiments (pixel size of 0.34μm), 90% of the inclusions trapped in our set of diamonds were surrounded by cracks. The volume of the cracks has been determined from 3D reconstruction with an accuracy of about 4%. Our

  10. Pressure ulcers: prevention, evaluation, and management.

    PubMed

    Bluestein, Daniel; Javaheri, Ashkan

    2008-11-15

    A pressure ulcer is a localized injury to the skin or underlying tissue, usually over a bony prominence, as a result of unrelieved pressure. Predisposing factors are classified as intrinsic (e.g., limited mobility, poor nutrition, comorbidities, aging skin) or extrinsic (e.g., pressure, friction, shear, moisture). Prevention includes identifying at-risk persons and implementing specific prevention measures, such as following a patient repositioning schedule; keeping the head of the bed at the lowest safe elevation to prevent shear; using pressure-reducing surfaces; and assessing nutrition and providing supplementation, if needed. When an ulcer occurs, documentation of each ulcer (i.e., size, location, eschar and granulation tissue, exudate, odor, sinus tracts, undermining, and infection) and appropriate staging (I through IV) are essential to the wound assessment. Treatment involves management of local and distant infections, removal of necrotic tissue, maintenance of a moist environment for wound healing, and possibly surgery. Debridement is indicated when necrotic tissue is present. Urgent sharp debridement should be performed if advancing cellulitis or sepsis occurs. Mechanical, enzymatic, and autolytic debridement methods are nonurgent treatments. Wound cleansing, preferably with normal saline and appropriate dressings, is a mainstay of treatment for clean ulcers and after debridement. Bacterial load can be managed with cleansing. Topical antibiotics should be considered if there is no improvement in healing after 14 days. Systemic antibiotics are used in patients with advancing cellulitis, osteomyelitis, or systemic infection. PMID:19035067

  11. Cost-effectiveness of Out-of-Hospital Continuous Positive Airway Pressure for Acute Respiratory Failure

    PubMed Central

    Thokala, Praveen; Goodacre, Steve; Ward, Matt; Penn-Ashman, Jerry; Perkins, Gavin D.

    2015-01-01

    Study objective We determine the cost-effectiveness of out-of-hospital continuous positive airway pressure (CPAP) compared with standard care for adults presenting to emergency medical services with acute respiratory failure. Methods We developed an economic model using a United Kingdom health care system perspective to compare the costs and health outcomes of out-of-hospital CPAP to standard care (inhospital noninvasive ventilation) when applied to a hypothetical cohort of patients with acute respiratory failure. The model assigned each patient a probability of intubation or death, depending on the patient’s characteristics and whether he or she had out-of-hospital CPAP or standard care. The patients who survived accrued lifetime quality-adjusted life-years (QALYs) and health care costs according to their age and sex. Costs were accrued through intervention and hospital treatment costs, which depended on patient outcomes. All results were converted into US dollars, using the Organisation for Economic Co-operation and Development purchasing power parities rates. Results Out-of-hospital CPAP was more effective than standard care but was also more expensive, with an incremental cost-effectiveness ratio of £20,514 per QALY ($29,720/QALY) and a 49.5% probability of being cost-effective at the £20,000 per QALY ($29,000/QALY) threshold. The probability of out-of-hospital CPAP’s being cost-effective at the £20,000 per QALY ($29,000/QALY) threshold depended on the incidence of eligible patients and varied from 35.4% when a low estimate of incidence was used to 93.8% with a high estimate. Variation in the incidence of eligible patients also had a marked influence on the expected value of sample information for a future randomized trial. Conclusion The cost-effectiveness of out-of-hospital CPAP is uncertain. The incidence of patients eligible for out-of-hospital CPAP appears to be the key determinant of cost-effectiveness. PMID:25737210

  12. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    SciTech Connect

    Abbott, L

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  13. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. PMID:27209090

  14. Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model

    PubMed Central

    Huang, Chun-kai; Chen, Bi-yi; Guo, Ang; Chen, Rong; Zhu, Yan-qi; Kutschke, William; Hong, Jiang; Song, Long-sheng

    2016-01-01

    Aim: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. Methods: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg−1·d−1, sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. Results: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R2=0.74, P<0.01) and global LV function (R2=0.47, P<0.01). Conclusion: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure. PMID:26972492

  15. Thin-metal lined PRD 49-III composite vessels. [evaluation of pressure vessels for burst strength and fatigue performance

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1974-01-01

    Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.

  16. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure.

    PubMed

    Thorin-Trescases, Nathalie; Thorin, Eric

    2016-05-01

    The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches. PMID:26961664

  17. Physical Mechanisms of Failure, Ultralow Partial Pressure Lubrication, and the Reservoir Effect in MEMS

    NASA Astrophysics Data System (ADS)

    Hook, David Adam

    The aim of this work is to examine the effectiveness of self-assembled monolayer (SAM) coatings as long term lubrication coatings in microsystems, to examine the failure regimes of SAM coated devices, to examine the role of mobility in adsorbed lubricating films, and to examine evolution of the coefficient of friction of devices surrounded by ultralow partial pressures of alcohols up to saturation. Finally the role of self assembled monlayers in vapor phase lubrication is examined. Self-assembled monolayers are ubiquitous in fabrication of free-standing microdevices because of their ability to prevent release related and dormancy related stiction. However their ability to lubricate under sliding and normal contact conditions is not well documented. It can be shown that the energy dissipated per unit area in one sliding cycle due to friction is significant under general loading conditions. Therefore from an energy dissipated standpoint the bond energies of the silane molecules should not be enough to withstand even a short number of cycles. An extension of this is the energy imparted to the surface through a normal loading cycle through a loss of kinetic energy. It can also be shown that this is enough to break the silicon oxygen bonds however this is over a longer time scale than in sliding. Also there is an open question on the role of mobile and non-mobile adsorbed species on friction. Is the mobility of a molecule/layer on a surface an indicator of the effectiveness of the lubrication potential of the layer? Do submonolayer coverages of alcohols "lock-up" to contacting surfaces by disrupting non-corrogated potentials? Is there a distinct lowering of frictional forces at the formation of a monolayer? Controlled adsorption of mobile and non-mobile species on rubbing contacts is necessary to elucidate this physical relationship. To accomplish this one must take into account that friction measurements are highly scale dependant. Therefore to ensure the accuracy of

  18. Seismic analysis of the Par Pond Dam: Study of slope failure and liquefaction. Technical evaluation report

    SciTech Connect

    Simos, N.; Reich, M.

    1994-07-01

    Stability concerns of the Par Pond Dam, an embankment structure in the Savannah River Site complex, resulted in a comprehensive evaluation of the state of its integrity. Specifically, excessive seepage through the embankment, slope failure due to an earthquake event as well as liquefaction potential of the embankment and the foundation are addressed and the potential of failure is evaluated. Lastly, remedial benefits of the addition of a berm structure are also assessed.

  19. TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure.

    PubMed

    Givvimani, S; Kundu, S; Narayanan, N; Armaghan, F; Qipshidze, N; Pushpakumar, S; Vacek, T P; Tyagi, S C

    2013-05-01

    Pressure overload induces cardiac extracellular matrix (ECM) remodelling and results in heart failure. ECM remodelling by matrix metalloproteinases (MMPs) is primarily regulated by their target inhibitors, tissue inhibitor of matrix metalloproteinases (TIMPs). It is known that TIMP-2 is highly expressed in myocardium and is required for cell surface activation of pro-MMP-2. We and others have reported that imbalance between angiogenic growth factors and anti-angiogenic factors results in transition from compensatory cardiac hypertrophy to heart failure. We previously reported the pro-angiogenic role of MMP-2 in cardiac compensation, however, the specific role of TIMP-2 during pressure overload is yet unclear. We hypothesize that genetic ablation of TIMP-2 exacerbates the adverse cardiac matrix remodelling due to lack of pro-angiogenic MMP-2 and increase in anti-angiogenic factors during pressure overload stress and results in severe heart failure. To verify this, ascending aortic banding (AB) was created to mimic pressure overload, in wild type C57BL6/J and TIMP-2-/- (model of MMP-2 deficiency) mice. Left ventricular (LV) function assessed by echocardiography and pressure-volume loop studies showed severe LV dysfunction in TIMP-2-/- AB mice compared to controls. Expression of MMP-2, vascular endothelial growth factor (VEGF) was decreased and expression of MMP-9, anti-angiogenic factors endostatin and angiostatin was increased in TIMP-2-/- AB mice compared with wild type AB mice. Connexins (Cx) are the gap junction proteins that are widely present in the myocardium and play an important role in endothelial-myocyte coupling. Our results showed that expression of Cx 37 and 43 was decreased in TIMP-2-/- AB mice compared with corresponding wild type controls. These results suggest that genetic ablation of TIMP-2 decrease the expression of pro-angiogenic MMP-2, VEGF and increases anti-angiogenic factors that results in exacerbated abnormal ventricular remodelling leading

  20. Holographic and acoustic emission evaluation of pressure vessels

    SciTech Connect

    Boyd, D.M.

    1980-03-05

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality.

  1. Effects of control system failures on transients and accidents at a 3-loop Westinghouse pressurized water reactor. Volume 2. Appendices

    SciTech Connect

    Bruske, S.J.; Davis, C.B.; Ogden, D.M.; Ransom, C.B.; Stitt, B.D.; Stromberg, H.M.; Waterman, M.E.

    1985-10-01

    Safety Implications of Control Systems (A-47) was approved as an Unresolved Safety Issue (USI) by the Nuclear Regulatory Commission (NRC) in December of 1980. USI A-47 is concerned with the potential for transients or accidents being made more severe than previously analyzed as a result of control system failures. This report describes the work performed on the effects of control system failures on transients and accidents at a Westinghouse 3-loop pressurized water reactor. In this volume, the appendices contain detailed information consisting of the FMEA (failure mode and analysis) results, an in-depth description of the computer model, the deterministic computer analyses, and responses to comments made by Carolina Power and Light Company and Westinghouse Electric Corporation.

  2. Analysis of failure modes resulting in stress corrosion cracking of 304N tubing in a high pressure heater desuperheater

    SciTech Connect

    Karg, D.C.; Svensen, L.M.E.; Ford, A.W.; Catapano, M.C.

    1998-10-01

    Santee Cooper (South Carolina Public Service Authority) experienced twenty-three tube failures in a high pressure feedwater heater that was in service less than three years. The tube failures were located at baffles adjacent to both exists of the dual flow desuperheater. Metallurgical analysis of the failed tubes indicated that stress corrosion cracking of the 304N stainless steel was the primary failure mode (Rudin, 1994; Shifler, 1994). The investigation to determine the factors leading to the onset of stress corrosion cracking included analysis of heater acceptance tests, the heater manufacturer`s proposal and manufacturing procedures, operational data, eddy current reports, metallurgical reports, and a heater design review for vibration and wet wall potential (formation of condensation on the outside diameter (OD) of the tube prior to the desuperheater exit).

  3. Analysis of failure modes resulting in stress corrosion cracking of 304N tubing in a high pressure heater desuperheater

    SciTech Connect

    Karg, D.C.; Svensen, L.M.E. III; Ford, A.W. III; Catapano, M.C.

    1995-12-31

    Santee Cooper (South Carolina Public Service Authority) experienced twenty-three tube failures in a high pressure feedwater heater that was in service less than three years. The tube failures were located at baffles adjacent to both exits of the dual flow desuperheater. Metallurgical analysis of the failed tubes indicated that stress corrosion cracking of the 304N stainless steel was the primary failure mode. The investigation to determine the factors leading to the onset of stress corrosion cracking included analysis of heater acceptance tests, the heater manufacturer`s proposal and manufacturing procedures, operational data, eddy current reports, metallurgical reports, and a heater design review for vibration and wet wall potential (formation of condensation on the outside diameter (OD) of the tube prior to the desuperheater exit).

  4. Cardiac energy metabolic alterations in pressure overload–induced left and right heart failure (2013 Grover Conference Series)

    PubMed Central

    Lopaschuk, Gary D.

    2015-01-01

    Abstract Pressure overload of the heart, such as seen with pulmonary hypertension and/or systemic hypertension, can result in cardiac hypertrophy and the eventual development of heart failure. The development of hypertrophy and heart failure is accompanied by numerous molecular changes in the heart, including alterations in cardiac energy metabolism. Under normal conditions, the high energy (adenosine triphosphate [ATP]) demands of the heart are primarily provided by the mitochondrial oxidation of fatty acids, carbohydrates (glucose and lactate), and ketones. In contrast, the hypertrophied failing heart is energy deficient because of its inability to produce adequate amounts of ATP. This can be attributed to a reduction in mitochondrial oxidative metabolism, with the heart becoming more reliant on glycolysis as a source of ATP production. If glycolysis is uncoupled from glucose oxidation, a decrease in cardiac efficiency can occur, which can contribute to the severity of heart failure due to pressure-overload hypertrophy. These metabolic changes are accompanied by alterations in the enzymes that are involved in the regulation of fatty acid and carbohydrate metabolism. It is now becoming clear that optimizing both energy production and the source of energy production are potential targets for pharmacological intervention aimed at improving cardiac function in the hypertrophied failing heart. In this review, we will focus on what alterations in energy metabolism occur in pressure overload induced left and right heart failure. We will also discuss potential targets and pharmacological approaches that can be used to treat heart failure occurring secondary to pulmonary hypertension and/or systemic hypertension. PMID:25992268

  5. Chronic mitral regurgitation and Doppler estimation of left ventricular filling pressures in patients with heart failure

    NASA Technical Reports Server (NTRS)

    Temporelli, P. L.; Scapellato, F.; Corra, U.; Eleuteri, E.; Firstenberg, M. S.; Thomas, J. D.; Giannuzzi, P.

    2001-01-01

    Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR.

  6. Episodic Sediment Failure in Northern Flemish Pass, Eastern Canadian Margin: Interplay of Seismicity, Contour Current Winnowing, and Excess Pore Pressures

    NASA Astrophysics Data System (ADS)

    Piper, D.

    2015-12-01

    Episodic sediment failures are recognised on continental slopes around Flemish Pass and Orphan Basin from multibeam bathymetry, seismic reflection profiles and piston cores. Seismic stratigraphy is tied to published long cores with O-isotope data back to before MIS 6 and carbonate rich Heinrich layers in places produce marker reflections in high-resolution sparker profiles. Heinrich layers, radiocarbon dates and peaks in diatom abundance provide core chronology. Slope sedimentation was strongly influenced by the Labrador Current and the silty muds show architecture characteristic of contourites. Variation in Labrador Current strength is known from the sortable silt proxy over the past 125 ka. Large slope failures were mapped from seismic reflection profiles and their age estimated from seismic stratigraphy (3-5 ka resolution) and in some cases refined from cores (1-3 ka resolution). Large slope failures occurred apparently synchronously over margin lengths of 50-350 km. Such failures were earthquake triggered: other mechanisms for producing laterally extensive synchronous failure do not apply. Triaxial shear measurements show a Su/σ' ratio of typical slope sediment of 0.48, implying considerable stability. However, some silty muds have Atterberg limits that suggest susceptibility to liquefaction under cyclic loading, particularly in Holocene deposits and by analogy those of past full interglacials. Basal failure planes of some large failures correspond with either the last interglacial or the MIS 6 glacial maximum. Comparison with seismological models suggests that the observed slope failures represent earthquakes ranging from Mw ~5.6 to ~7.6. Mean recurrence interval of M = 7 earthquakes at any point on the margin is estimated at 30 ka from seismological models and 40 ka from the sediment failure record. In northern Flemish Pass, a spatial cluster of several failures over 30 ka preceded by a long interval with no failures suggests that some other mechanism has

  7. Evaluation of rotating, incompressibly lubricated, pressurized thrust bearings

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1971-01-01

    Program evaluates a series hybrid, fluid film ball bearing consisting of an orifice compensated pressurized thrust bearing in conjunction with a self-acting journal bearing. Oil viscosities corresponding to experimentally measured ball bearing outer-race temperatures were used.

  8. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  9. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural

  10. Evaluation of containment failure and cleanup time for Pu shots on the Z machine.

    SciTech Connect

    Darby, John L.

    2010-02-01

    Between November 30 and December 11, 2009 an evaluation was performed of the probability of containment failure and the time for cleanup of contamination of the Z machine given failure, for plutonium (Pu) experiments on the Z machine at Sandia National Laboratories (SNL). Due to the unique nature of the problem, there is little quantitative information available for the likelihood of failure of containment components or for the time to cleanup. Information for the evaluation was obtained from Subject Matter Experts (SMEs) at the Z machine facility. The SMEs provided the State of Knowledge (SOK) for the evaluation. There is significant epistemic- or state of knowledge- uncertainty associated with the events that comprise both failure of containment and cleanup. To capture epistemic uncertainty and to allow the SMEs to reason at the fidelity of the SOK, we used the belief/plausibility measure of uncertainty for this evaluation. We quantified two variables: the probability that the Pu containment system fails given a shot on the Z machine, and the time to cleanup Pu contamination in the Z machine given failure of containment. We identified dominant contributors for both the time to cleanup and the probability of containment failure. These results will be used by SNL management to decide the course of action for conducting the Pu experiments on the Z machine.

  11. AE measurements for evaluation of defects in FRP pressure vessels

    SciTech Connect

    Kawahara, Masanori; Takatsu, Takashi

    1995-11-01

    AE (acoustic emission) measurement was conducted in a series of pressuring tests of FRP pressure vessels in order to examine its applicability to the safety evaluation of vessels. Tested vessels were commercial FRP pressure vessels fabricated by filament winding of high strength glass fibers, impregnated epoxy resin, on a Al alloy liner. At the final stage of fabrication, they were subjected to autofrettage, an overpressuring treatment to produce compressive residual stresses in metal liner. AE measurement results showed a strong Kaiser`s effect and high felicity ratios. In a virgin vessel, very few AE signals were detected below the autofrettage pressure. Vessels containing artificial defects showed distinct increase in AE signals at the level of test pressure. AE origin map were obtained by triangular-zone calculation. Discussions are directed, in particular, to the selection of threshold and to the applicability of AE measurement to the in-service inspection of FRP pressure vessel.

  12. Electrochemical evaluation of a corrosion fatigue failure mechanism in a duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.

    2004-08-01

    Laboratory corrosion fatigue studies on smooth and precracked samples indicated that two duplex stainless steels would have similar service lives in a paper-processing environment; but, in service, one of these alloys has exhibited premature failures. Since corrosion fatigue experiments had proven unable to detect this failure mechanism, electrochemical measurements and slow strain rate tensile tests were used to evaluate four alloy composition-dependent failure mechanism hypotheses. No significant differences were found in the dissolution rates or hydrogen fugacities produced when mechanical processes expose bare surface, and slow strain rate tensile tests found no indication of a difference in cracking susceptibility for the same hydrogen fugacity. Electrochemical experiments found that pits nucleate in one phase of the duplex microstructure at lower potentials in the failure prone alloy, but do not propagate beyond the microscopic dimensions of this phase. These microstructurally limited “micropits” were found to nucleate fracture in slow strain rate tensile tests, and examination of a service failure confirmed the presence of microscopic pits at crack initiation sites. The premature failures are attributed to the lower pitting resistance of the failure prone alloy, and the failure of laboratory experiments to predict this behavior is attributed to the slow kinetics of pit nucleation in these experiments. A laboratory testing methodology is suggested that will ensure detection of similar susceptibilities in future corrosion fatigue testing programs.

  13. Effect of material properties on the strain to failure of thick-walled cylinders subjected to internal pressure

    SciTech Connect

    Roach, D.P.; Priddy, T.G. )

    1994-05-01

    The determination of the fully plastic response and pressure limit of a pressure vessel is of considerable importance in design, especially in autofrettage considerations. This paper presents the results of an experimental study which measured the maximum internal pressure which can be applied to thick-walled cylindrical vessels. Both aluminum and steel, with material properties ranging from ductile to brittle, were tested at stress levels through plastic and strain hardening ranges to fracture. From these tests, the pressure-expansion and through-thickness yielding characteristics were determined for these specimens. It is shown that a strain-to-failure criterion, based on the triaxiality of stress in the critical region, can be used to predict the complete pressure versus strain relations and maximum pressure for these cylinders. A simple tension-true stress-strain relation of the material is employed to analytically predict the response of the cylinder into the plastic regime. Finally, simplified theoretical and empirical formulas for bursting pressures are checked against the experimental results.

  14. Competitive evaluation of failure detection algorithms for strapdown redundant inertial instruments.

    NASA Technical Reports Server (NTRS)

    Wilcox, J. C.

    1973-01-01

    Seven algorithms for failure detection, isolation, and correction of strapdown inertial instruments in the dodecahedron configuration are competitively evaluated by means of a digital computer simulation that provides them with identical inputs. Their performance is compared in terms of orientation errors and computer burden. The analytical foundations of the algorithms are presented. The features that are found to contribute to superior performance are use of a definite logical structure, elimination of interaction between failures, different thresholds for first and second failures, use of the 'parity' test signals, and avoidance of iteration loops.

  15. DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities

    SciTech Connect

    Dunford, G.L.; Han, F.C.

    1996-09-30

    The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

  16. An evaluation of the pressure proof test concept for 2024-T3 aluminium alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C.; Harris, C. E.

    1991-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof cycle was longer than that without the proof cycle because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  17. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C., Jr.; Harris, C. E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  18. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, James C., Jr.; Harris, Charles E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  19. Western Pennsylvania Schools Without Failure Consortium: First Year Evaluation.

    ERIC Educational Resources Information Center

    Masters, James R.

    The consortium was formed in the summer of 1971 as a means of implementing William Glasser's philosophy and methods. The program was implemented in two parochial elementary schools and in nine public elementary schools located in eight school districts. The evaluation discussed in this report included questionnaires to measure pupil self concepts…

  20. Evaluation of pressure sensing concepts: A technology assessment

    SciTech Connect

    Shepard, R.L.; Thacker, L.H.

    1993-09-01

    Advanced distributed control systems for electric power plants will require more accurate and reliable pressure gauges than those now installed. Future developments in power plant control systems are expected to use digital/optical networks rather than the analog/electric data transmission used in existing plants. Many pressure transmitters now installed use oil filling to separate process fluids from the gauge mechanism and are subject to insidious failures when the oil leaks. Testing and maintenance of pressure channels occupy a disproportionately large amount of effort to restore their accuracy and verify their operability. These and similar concerns have prompted an assessment of a broad spectrum of sensor technologies to aid in selecting the most likely candidates for adaptation to power plant applications. Ten representative conventional and thirty innovational pressure sensors are described and compared. Particular emphasis is focused on two categories: Silicon-integrated pressure sensors and fiber-optic sensors, and both of these categories are discussed in detail. Additional attractive concepts include variable reluctance gauges and resonant structure gauges that may not require oil buffering from the process fluid.

  1. Normal pressure hydrocephalus and dementia--evaluation and treatment.

    PubMed

    Turner, D A; McGeachie, R E

    1988-11-01

    The evaluation of dementia usually includes a consideration of normal pressure hydrocephalus, which may be a treatable aspect of the patient's cognitive dysfunction. This article outlines clinical syndromes, standard radiologic evaluation, and newer diagnostic tests that may suggest cerebrospinal fluid (CSF) shunting. In general, patients who present with dementia alone will not respond well to CSF shunting because of cerebral atrophy and the lack of tension within the cerebral ventricles. However, normal pressure hydrocephalus remains a diagnostic consideration, and improved evaluation may allow a better differentiation of which patients should be considered for CSF shunting. PMID:3066462

  2. Chronic mitral regurgitation and Doppler estimation of left ventricular filling pressures in patients with heart failure.

    PubMed

    Temporelli, P L; Scapellato, F; Corrà, U; Eleuteri, E; Firstenberg, M S; Thomas, J D; Giannuzzi, P

    2001-11-01

    Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR. PMID:11696834

  3. Milliwatt generator heat source shelf-life-related pressure-burst capsule evaluations

    SciTech Connect

    Ritchey, B.D.; Eckelmeyer, K.H.; Kilgo, A.C.; McKenzie, B.B.

    1997-10-01

    Three Milliwatt Generator Heat Source (MWGHS) shelf-life-related capsules were pressure-burst tested after thermal aging. Shelf-life capsules PB-08-03 (MC2893) and MPT-11-33 (MC3599) were tested at 1,010 C and capsule PB-07-13 (MC2893) was tested at 1,100 C. Subsequent to pressure-burst testing, each capsule was bubble-leak tested then metallographically examined. Post-mortem evaluation consisted of metallography, microhardness, scanning electron microscopy (SEM), and oxygen and nitrogen analysis. Capsules PB-08-03 and PB-07-13 failed by elevated temperature stress-rupture in the coarse-grained cap to body welds, as has been documented for previous capsules. Pressure-burst testing of capsule MPT-11-33 was terminated prior to failure after 739 hours on test at 1,010 C, however, microscopic examination of the weld indicated that similar failure had began to occur in the interior portion of the capsule to body weld. Evidence was obtained indicating that metallurgical changes occurred during the pressure-burst test performed at 1,100 C. The metallurgical observations of a preferred site for elevated temperature deformation and fracture (the coarse-grained weld region) and structural instability (the property changes during testing at 1,100 C) need to be considered in component lifetime prediction and modeling efforts.

  4. Hybrid Modeling for Scenario-Based Evaluation of Failure Effects in Advanced Hardware-Software Designs

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land; Throop, David

    2001-01-01

    This paper describes an incremental scenario-based simulation approach to evaluation of intelligent software for control and management of hardware systems. A hybrid continuous/discrete event simulation of the hardware dynamically interacts with the intelligent software in operations scenarios. Embedded anomalous conditions and failures in simulated hardware can lead to emergent software behavior and identification of missing or faulty software or hardware requirements. An approach is described for extending simulation-based automated incremental failure modes and effects analysis, to support concurrent evaluation of intelligent software and the hardware controlled by the software

  5. Experimental evaluation of the tensor polynomial failure criterion for the design of composite structures

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1975-01-01

    The experimental measures and techniques are described which are used to obtain the strength tensor components, including cubic terms. Based on a considerable number of biaxial pressure tests together with specimens subjected to a constant torque and internal pressure, a modified form of the plane stress tensor polynomial failure equation was obtained that was capable of predicting ultimate strength results well. Preliminary data were obtained to determine the effect of varying post cure times and ambient temperatures (-80 F to 250 F) on the change in two tensor strength terms, F sub 2 and F sub 22. Other laminate configurations yield corresponding variations for the remaining strength parameters.

  6. A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.

    PubMed

    Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance. PMID:23947529

  7. Severe acute respiratory failure managed with continuous positive airway pressure and partial extracorporeal carbon dioxide removal by an artificial membrane lung. A controlled, randomized animal study.

    PubMed

    Borelli, M; Kolobow, T; Spatola, R; Prato, P; Tsuno, K

    1988-12-01

    Using an animal model of acute respiratory failure (ARF), we evaluated two treatments: conventional mechanical pulmonary ventilation (MV) and continuous positive airway pressure (CPAP) with extracorporeal removal of CO2 by an artificial membrane lung. We developed a model of "mild" ARF and a model of "severe" ARF after ventilating healthy sheep at a peak inspiratory pressure of 50 cm H2O for various lengths of time. Sheep from either injury models were randomly assigned to one of the above treatment groups. All 16 sheep from the model with "severe" ARF died, with progressive deterioration in pulmonary function and multiorgan failure irrespective of the treatment. Of 11 sheep from the model with "mild" ARF treated by MV, only three survived, whereas all 11 sheep from the model with "mild" ARF treated with CPAP and extracorporeal removal of CO2 responded well, and nine sheep ultimately recovered. We conclude that CPAP with extracorporeal removal of CO2 provided a better environment for the recovery in our model with "mild" ARF than the conventional arrangement centered on MV alone. Our studies also suggest that lung injury can progress (i.e., model with "severe" ARF) to where neither of the two treatments can succeed. PMID:3144216

  8. Consequence evaluation of radiation embrittlement of Trojan reactor pressure vessel supports

    SciTech Connect

    Lu, S.C.; Sommer, S.C.; Johnson, G.L. ); Lambert, H.E. )

    1990-10-01

    This report describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. By demonstrating that the ASME code requirements governing Level D service limits are satisfied, the structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports. A subsequent design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas of additional safety concerns, but further investigation of the above safety concerns, however, concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns.

  9. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure

    PubMed Central

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    Background COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. Objective We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Patients and methods Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation – volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2–4 hours and 48 hours. Results Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2–4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both); after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05). Vital signs during 2–4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2–4 hours and 48 hours was significantly lower than that in the control group (P<0.05), while other variables were not significantly different between groups (P>0.05). Conclusion Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining

  10. Evaluation of the concept of pressure proof testing fuselage structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Orringer, Oscar

    1991-01-01

    The FAA and NASA have recently completed independent technical evaluations of the concept of pressure proof testing the fuselage of commercial transport airplanes. The results of these evaluations are summarized. The objectives of the evaluations were to establish the potential benefit of the pressure proof test, to quantify the most desirable proof test pressure, and to quantify the required proof test interval. The focus of the evaluations was on multiple-site cracks extending from adjacent rivet holes of a typical fuselage longitudinal lap splice joint. The FAA and NASA do not support pressure proof testing the fuselage of aging commercial transport aircraft. The argument against proof testing is as follows: (1) a single proof test does not insure an indefinite life; therefore, the proof test must be repeated at regular intervals; (2) for a proof factor of 1.33, the required proof test interval must be below 300 flights to account for uncertainties in the evaluation; (3) conducting the proof test at a proof factor of 1.5 would considerably exceed the fuselage design limit load; therefore, it is not consistent with accepted safe practices; and (4) better safety can be assured by implementing enhanced nondestructive inspection requirements, and adequate reliability can be achieved by an inspection interval several times longer than the proof test interval.

  11. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    SciTech Connect

    Ford, Eric C. Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2009-07-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  12. Evaluation of insulated pressure vessels for cryogenic hydrogen storage

    SciTech Connect

    Aceves, S M; Garcia-Villazana, O; Martinez-Frias, J

    1999-03-01

    This paper presents an analytical and experimental evaluation of the applicability of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH?) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The purpose of this work is to verify that commercially available aluminum-lined, fiber- wrapped vessels can be used for cryogenic hydrogen storage. The paper reports on previous and ongoing tests and analyses that have the purpose of improving the system design and assure its safety.

  13. Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Sakai, Shinsuke

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.

  14. The role of laboratory and imaging studies in evaluation of failure to thrive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of Failure to Thrive (FTT) has traditionally been based on history and physical examination (PE), as main determinants of the final diagnosis. Early literature from two decades ago, demonstrated that laboratory and imaging studies were contributory beyond the history and PE in less than 1...

  15. Performance of low-pressure thermionic converters is evaluated

    NASA Technical Reports Server (NTRS)

    Richards, H. K.

    1969-01-01

    Experiments, evaluating the performance of low-pressure thermionic converters, were conducted with cesium, potassium, and sodium-metal vapors. The results of the investigation are useful in the selection of favorable conditions for the design of thermionic reactor fuel elements, including RF output for special applications.

  16. Evaluation of heart failure biomarker tests: a survey of statistical considerations.

    PubMed

    De, Arkendra; Meier, Kristen; Tang, Rong; Li, Meijuan; Gwise, Thomas; Gomatam, Shanti; Pennello, Gene

    2013-08-01

    Biomarkers assessing cardiovascular function can encompass a wide range of biochemical or physiological measurements. Medical tests that measure biomarkers are typically evaluated for measurement validation and clinical performance in the context of their intended use. General statistical principles for the evaluation of medical tests are discussed in this paper in the context of heart failure. Statistical aspects of study design and analysis to be considered while assessing the quality of measurements and the clinical performance of tests are highlighted. A discussion of statistical considerations for specific clinical uses is also provided. The remarks in this paper mainly focus on methods and considerations for statistical evaluation of medical tests from the perspective of bias and precision. With such an evaluation of performance, healthcare professionals could have information that leads to a better understanding on the strengths and limitations of tests related to heart failure. PMID:23670231

  17. Association of Diurnal Blood Pressure Pattern with Risk for Hospitalization or Death in Men with Heart Failure

    PubMed Central

    Shin, Jaekyu; Kline, Sharoen; Moore, Mariellen; Gong, Yan; Bhanderi, Viralkumar; Schmalfuss, Carsten M.; Johnson, Julie A.; Schofield, Richard S.

    2007-01-01

    Background An altered diurnal blood pressure (BP) pattern has been linked to risk of developing heart failure (HF). We tested whether an altered diurnal BP pattern is associated with adverse outcomes (hospitalization due to HF exacerbation or death) in HF patients. Methods and Results One hundred eighteen HF patients were enrolled from a tertiary care HF clinic and followed for death or heart failure hospitalization for up to 4 years. 24-hour ambulatory BP was monitored. Forty patients (34%) had normal BP dipping pattern (night-day ambulatory BP ratio < 0.9), 44 (37%) had a non-dipping pattern (0.9 ≤ night-day ambulatory BP ratio < 1.0) and 34 (29%) had a reverse dipping BP pattern (night-day ambulatory BP ratio ≥ 1.0). A total of 39 patients had an adverse outcome. Adverse outcome rates were the lowest in dippers and the highest in reverse dippers (Log rank p=0.052). Predictors of adverse outcomes, selected based on log likelihood contrast, were NYHA functional class (Hazard ratio (HR) 1.96, 95% confidence interval (CI) 1.11-3.44), anemia (HR 2.50, 95% CI 1.23-5.08) and dipping status (HR 1.65, 95% CI 1.08-2.50). Conclusions In addition to other traditional predictors, blood pressure dipping status may be an important prognostic factor in HF. PMID:17923358

  18. Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)

    SciTech Connect

    Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K. )

    1992-03-01

    The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the primary acceptance criterion'' in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

  19. Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)

    SciTech Connect

    Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K.

    1992-03-01

    The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the ``primary acceptance criterion`` in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

  20. Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure.

    PubMed

    Rosner, V; Hannhart, B; Chabot, F; Polu, J M

    1999-05-01

    The accuracy and precision of transcutaneous pressure measurements of oxygen (Ptc,O2) and carbon dioxide (Ptc,CO2) in the monitoring of nocturnal assisted ventilation in adult patients were evaluated. Transcutaneous measurements obtained with two analysers, Radiometer TINATCM3 (R) and Kontron MicroGas-7650 (K), were compared with arterial blood gases analysed in blood samples withdrawn simultaneously in 10 patients. Sensors were heated to 43 degrees C. Measurements of transcutaneous blood gases and arterial blood gases were collected six times at 1-h intervals. The data obtained with both instruments were similar and did not significantly change over the 5 h test period. Measurement of Ptc,O2 underestimated arterial oxygen tension (Pa,O2) and this underestimation increased with the level of Pa,O2 (p<0.01). Measurements of Ptc,CO2 overestimated arterial carbon dioxide tension (Pa,CO2) and this overestimation increased with the level of Pa,CO2 (p<0.05). These errors suggested an instrumental bias. Mathematical correction of this bias neutralized the error in accuracy and improved the precision (SD of the differences transcutaneous blood gases - arterial blood gases). An additional correction, suppressing the between-subject scattering, improved the actual precision: precision was reduced from 1.9 to 0.8 kPa (14.4 to 5.7 mmHg) (R) and from 1.7 to 0.5 kPa (13.1 to 3.7 mmHg) (K) for oxygen, and from 1.0 kPa (7.8 mmHg) (R) and 0.7 kPa (5.6 mmHg) (K) to 0.4 kPa (3.2 mmHg) for carbon dioxide (R and K). In conclusion, with these two successive corrections, transcutaneous oxygen and carbon dioxide provide a reliable estimation of blood gases to monitor nocturnal ventilation in adults with chronic respiratory failure. PMID:10414402

  1. Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Bruton, William M.

    1987-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.

  2. Advanced detection, isolation, and accommodation of sensor failures - Real-time evaluation

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Bruton, William M.

    1988-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundancy to detect sensor failures. The results of a real-time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.

  3. Immunity-based detection, identification, and evaluation of aircraft sub-system failures

    NASA Astrophysics Data System (ADS)

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  4. Evaluation of vapor intrusion using controlled building pressure.

    PubMed

    McHugh, Thomas E; Beckley, Lila; Bailey, Danielle; Gorder, Kyle; Dettenmaier, Erik; Rivera-Duarte, Ignacio; Brock, Samuel; MacGregor, Ian C

    2012-05-01

    The use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested. For these five buildings, the induced pressure differences were sufficient to control the flow of soil gas through the building foundation. A comparison of VOC concentrations in indoor air measured during the negative and positive pressure test conditions was sufficient to determine whether vapor intrusion was the primary source of VOCs in indoor air at these buildings. The study results indicate that sampling under controlled building pressure can help minimize ambiguity caused by both indoor sources of VOCs and temporal variability in vapor intrusion. PMID:22486634

  5. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    SciTech Connect

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  6. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    NASA Astrophysics Data System (ADS)

    Squires, B.

    1992-11-01

    The PS1 heat exchanger is one of three prototype heat exchangers built in support of a contract for Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in Jul. 1983. In Nov. 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld, but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made.

  7. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  8. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  9. Evaluation of an electronic scanner of pressure (ESOP) module

    NASA Technical Reports Server (NTRS)

    Smeltzer, D. B.; Levin, A. D.

    1986-01-01

    An electronic scanner of pressure (ESOP) module, developed by NASA Ames Research Center, was installed in a wind tunnel and evaluated over a 5-month testing period. The solid-state ESOP module has 48 miniature pressure transducers and a heater circuit to maintain a constant module temperature. During the wind tunnel test, the module was subjected to an environmental temperature range from 60 F to 104 F, and to considerable module vibration. Zero drift was within + or - 0.5 percent of full-scale output for 37 of the transducers, and was greater than 5.0 percent for four transducers. Pressure measurements from 12 transducers were compared with Scanivalve modules. The agreement of these measurements was considered to be good.

  10. Radiosonde pressure sensor performance - Evaluation using tracking radars

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  11. Acute respiratory failure induced by mechanical pulmonary ventilation at a peak inspiratory pressure of 40 cmH2O.

    PubMed

    Tsuno, K; Sakanashi, Y; Kishi, Y; Urata, K; Tanoue, T; Higashi, K; Yano, T; Terasaki, H; Morioka, T

    1988-09-01

    The effects of high pressure mechanical pulmonary ventilation at a peak inspiratory pressure of 40 cmH(2)O were studied on the lungs of healthy newborn pigs (14-21 days after birth). Forty percent oxygen in nitrogen was used for ventilation to prevent oxygen intoxication. The control group (6 pigs) was ventilated for 48 hours at a peak inspiratory pressure less than 18 cmH(2)O and a PEEP of 3-5 cmH(2)O with a normal tidal volume, and a respiratory rate of 20 times/min. The control group showed few deleterious changes in the lungs for 48 hours. Eleven newborn pigs were ventilated at a peak inspiratory pressure of 40 cmH(2)O with a PEEP of 3-5 cmH(2)O and a respiratory rate of 20 times/min. To avoid respiratory alkalosis, a dead space was placed in the respiratory circuit, and normocarbia was maintained by adjusting dead space volume. In all cases in the latter group, severe pulmonary impairments, such as abnormal chest roentgenograms, hypoxemia, decreased total static lung compliance, high incidence of pneumothorax, congestive atelectasis, and increased lung weight were found within 48 hours of ventilation. When the pulmonary impairments became manifest, 6 of the 11 newborn pigs were switched to the conventional medical and ventilatory therapies for 3-6 days. However, all of them became ventilator dependent, and severe lung pathology was found at autopsy. These pulmonary insults by high pressure mechanical pulmonary ventilation could be occurring not infrequently in the respiratory management of patients with respiratory failure. PMID:15236077

  12. 10 CFR 21.21 - Notification of failure to comply or existence of a defect and its evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and its evaluation. 21.21 Section 21.21 Energy NUCLEAR REGULATORY COMMISSION REPORTING OF DEFECTS AND NONCOMPLIANCE Notification § 21.21 Notification of failure to comply or existence of a defect and its evaluation... § 21.21(d)(5). The interim report should describe the deviation or failure to comply that is...

  13. 10 CFR 21.21 - Notification of failure to comply or existence of a defect and its evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and its evaluation. 21.21 Section 21.21 Energy NUCLEAR REGULATORY COMMISSION REPORTING OF DEFECTS AND NONCOMPLIANCE Notification § 21.21 Notification of failure to comply or existence of a defect and its evaluation... § 21.21(d)(5). The interim report should describe the deviation or failure to comply that is...

  14. 10 CFR 21.21 - Notification of failure to comply or existence of a defect and its evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and its evaluation. 21.21 Section 21.21 Energy NUCLEAR REGULATORY COMMISSION REPORTING OF DEFECTS AND NONCOMPLIANCE Notification § 21.21 Notification of failure to comply or existence of a defect and its evaluation... § 21.21(d)(5). The interim report should describe the deviation or failure to comply that is...

  15. 10 CFR 21.21 - Notification of failure to comply or existence of a defect and its evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and its evaluation. 21.21 Section 21.21 Energy NUCLEAR REGULATORY COMMISSION REPORTING OF DEFECTS AND NONCOMPLIANCE Notification § 21.21 Notification of failure to comply or existence of a defect and its evaluation... § 21.21(d)(5). The interim report should describe the deviation or failure to comply that is...

  16. The Overexpression of Twinkle Helicase Ameliorates the Progression of Cardiac Fibrosis and Heart Failure in Pressure Overload Model in Mice

    PubMed Central

    Tanaka, Atsushi; Ide, Tomomi; Fujino, Takeo; Onitsuka, Ken; Ikeda, Masataka; Takehara, Takako; Hata, Yuko; Ylikallio, Emil; Tyynismaa, Henna; Suomalainen, Anu; Sunagawa, Kenji

    2013-01-01

    Myocardial mitochondrial DNA (mtDNA) copy number decreases in heart failure. In post-myocardial infarction mice, increasing mtDNA copy number by overexpressing mitochondrial transcription factor attenuates mtDNA deficiency and ameliorates pathological remodeling thereby markedly improving survival. However, the functional significance of increased mtDNA copy number in hypertensive heart disease remains unknown. We addressed this question using transgenic mice that overexpress Twinkle helicase (Twinkle; Tg), the mtDNA helicase, and examined whether Twinkle overexpression protects the heart from left ventricular (LV) remodeling and failure after pressure overload created by transverse aortic constriction (TAC). Twinkle overexpression increased mtDNA copy number by 2.2±0.1-fold. Heart weight, LV diastolic volume and wall thickness were comparable between Tg and wild type littermates (WT) at 28 days after TAC operation. LV end-diastolic pressure increased in WT after TAC (8.6±2.8 mmHg), and this increase was attenuated in Tg (4.6±2.6 mmHg). Impaired LV fractional shortening after TAC operation was also suppressed in Tg, as measured by echocardiography (WT: 16.2±7.2% vs Tg: 20.7±6.2%). These LV functional improvements were accompanied by a decrease in interstitial fibrosis (WT: 10.6±1.1% vs Tg: 3.0±0.6%). In in vitro studies, overexpressing Twinkle using an adenovirus vector in cultured cardiac fibroblasts significantly suppressed mRNA of collagen 1a, collagen 3a and connective tissue growth factor, and angiotensin II-induced transforming growth factor β1 expression. The findings suggest that Twinkle overexpression prevents LV function deterioration. In conclusion, Twinkle overexpression increases mtDNA copy number and ameliorates the progression of LV fibrosis and heart failure in a mouse pressure overload model. Increasing mtDNA copy number by Twinkle overexpression could be a novel therapeutic strategy for hypertensive heart disease. PMID:23840758

  17. Tendon-bone contact pressure and biomechanical evaluation of a modified suture-bridge technique for rotator cuff repair.

    PubMed

    Baums, Mike H; Geyer, Michael; Büschken, Meike; Buchhorn, Gottfried H; Spahn, Gunter; Klinger, Hans-Michael

    2010-07-01

    The aim of the study was to evaluate the time-zero mechanical and footprint properties of a suture-bridge technique for rotator cuff repair in an animal model. Thirty fresh-frozen sheep shoulders were randomly assigned among three investigation groups: (1) cyclic loading, (2) load-to-failure testing, and (3) tendon-bone interface contact pressure measurement. Shoulders were cyclically loaded from 10 to 180 N and displacement to gap formation of 5- and 10-mm at the repair site. Cycles to failure were determined. Additionally, the ultimate tensile strength and stiffness were verified along with the mode of failure. The average contact pressure and pressure pattern were investigated using a pressure-sensitive film system. All of the specimens resisted against 3,000 cycles and none of them reached a gap formation of 10 mm. The number of cycles to 5-mm gap formation was 2,884.5 + or - 96.8 cycles. The ultimate tensile strength was 565.8 + or - 17.8 N and stiffness was 173.7 + or - 9.9 N/mm. The entire specimen presented a unique mode of failure as it is well known in using high strength sutures by pulling them through the tendon. We observed a mean contact pressure of 1.19 + or - 0.03 MPa, applied on the footprint area. The fundamental results of our study support the use of a suture-bridge technique for optimising the conditions of the healing biology of a reconstructed rotator cuff tendon. Nevertheless, an individual estimation has to be done if using the suture-bridge technique clinically. Further investigation is necessary to evaluate the cell biological healing process in order to achieve further sufficient advancements in rotator cuff repair. PMID:19826786

  18. Usability Evaluation of a Web-Based Symptom Monitoring Application for Heart Failure.

    PubMed

    Wakefield, Bonnie; Pham, Kassie; Scherubel, Melody

    2015-07-01

    Symptom recognition and reporting by patients with heart failure are critical to avoid hospitalization. This project evaluated a patient symptom tracking application. Fourteen end users (nine patients, five clinicians) from a Midwestern Veterans Affairs Medical Center evaluated the website using a think aloud protocol. A structured observation protocol was used to assess success or failure for each task. Measures included task time, success, and satisfaction. Patients had a mean age of 70 years; clinicians averaged 42 years in age. Patients took 9.3 min and clinicians took less than 3 min per scenario. Most patients needed some assistance, but few patients were completely unable to complete some tasks. Clinicians demonstrated few problems navigating the site. Patient System Usability Scale item scores ranged from 2.0 to 3.6; clinician item scores ranged from 1.8 to 4.0. Further work is needed to determine whether using the web-based tool improves symptom recognition and reporting. PMID:25628261

  19. Interrelationship of Nondestructive Evaluation Methodologies Applied to Testing of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Leifeste, Mark R.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.

  20. Management of acute heart failure and the effect of systolic blood pressure on the use of intravenous therapies

    PubMed Central

    Harjola, Veli-Pekka; Tolonen, Jukka; Siirilä-Waris, Krista; Nieminen, Markku S; Lassus, Johan

    2013-01-01

    Aims: To examine the use of the treatments for acute heart failure (AHF) recommended by ESC guidelines in different clinical presentations and blood pressure groups. Methods: The use of intravenous diuretics, nitrates, opioids, inotropes, and vasopressors as well as non-invasive ventilation (NIV) was analysed in 620 patients hospitalized due to AHF. The relation between AHF therapies and clinical presentation, especially systolic blood pressure (SBP) on admission, was also assessed. Results: Overall, 76% of patients received i.v. furosemide, 42% nitrates, 29% opioids, 5% inotropes and 7% vasopressors, and 24% of patients were treated with NIV. Furosemide was the most common treatment in all clinical classes and irrespective of SBP on admission. Nitrates were given most often in pulmonary oedema and hypertensive AHF. Overall, only SBP differed significantly between patients with and without the studied treatments. SBP was higher in patients treated with nitrates than in those who were not (156 vs. 141 mmHg, p<0.001). Still, only one-third of patients presenting acute decompensated heart failure and SBP over 120 mmHg were given nitrates. Inotropes and vasopressors were given most frequently in cardiogenic shock and pulmonary oedema, and their use was inversely related to initial SBP (p<0.001). NIV was used only in half of the cardiogenic shock and pulmonary oedema patients. Conclusions: The management of AHF differs between ESC clinical classes and the use of i.v. vasoactive therapies is related to the initial SBP. However, there seems to be room for improvement in administration of vasodilators and NIV. PMID:24222833

  1. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  2. Examination of cadmium safety rod thermal test specimens and failure mechanism evaluation

    SciTech Connect

    Thomas, J.K.; Peacock, H.B.; Iyer, N.C.

    1992-01-01

    The reactor safety rods may be subjected to high temperatures due to gamma heating after the core coolant level has dropped during the ECS phase of a hypothetical LOCA event. Accordingly, an experimental cadmium safety rod testing subtask was established as part of a task to address the response of reactor core components to this accident. Companion reports describe the experiments and a structural evaluation (finite element analysis) of the safety rod. This report deals primarily with the examination of the test specimens, evaluation of possible failure mechanisms, and confirmatory separate effects experiments. It is concluded that the failures observed in the cadmium safety rod thermal tests which occurred at low temperature (T < 600{degrees}C) with slow thermal ramp rates (slow cladding strain rates) resulted from localized dissolution of the stainless steel cladding by the cadmium/aluminum solution and subsequent ductility exhaustion and rupture. The slow thermal ramp rate is believed to be the root cause for the failures; specifically, the slow ramp rate led to localized cladding shear deformation which ruptured the protective oxide film on the cladding inner surface and allowed dissolution to initiate. The test results and proposed failure mechanism support the conclusion that the rods would not fail below 500{degrees}C even at slow ramp rates. The safety rod thermal test specimen failures which occurred at high temperature (T > 800{degrees}C) with fast thermal ramp rates are concluded to be mechanical in nature without significant environmental degradation. Based on these tests, tasks were initiated to design and manufacture B{sub 4}C safety rods to replace the cadmium safety rods. The B{sub 4}C safety rods have been manufactured at this time and it is currently planned to charge them to the reactor in the near future. 60 refs.

  3. A Survey of and Evaluation Methodology for Fiber Composite Material Failure Theories

    SciTech Connect

    Christensen, R.M.

    2000-07-11

    The long-standing problem of characterizing failure for fiber composite materials will be reviewed. Emphasis will be given to the lamina level involving nominally aligned fibers in a matrix phase. However, some consideration will also be given to laminate failure using the lamina form as the basic building block along with the concept of progressive damage. The many different lamina level theories will be surveyed along with the commitment necessary to produce critical experimental data. Four particular theories will be reviewed and compared in some detail, these being the Tsai-Wu, Hashin, Puck, and Christensen forms. These four theories are reasonably representative of the great variety of different forms with widely different physical effects that can be encountered; also for comparison, the rudimentary forms of maximum normal stress and maximum normal strain criteria will be given. The controversial problem of how many different individual modes of failure are necessary to describe general failure will receive attention. A specific and detailed methodology for evaluation of all the various theories will be formulated.

  4. Fatal respiratory failure during a "technical" rebreather dive at extreme pressure.

    PubMed

    Mitchell, Simon J; Cronjé, Frans J; Meintjes, W A Jack; Britz, Hermie C

    2007-02-01

    A diving fatality at the extreme depth of 264 m fresh water is described. The diver was equipped with an underwater video camera which recorded events leading to his death. These events corroborated predictions about respiratory complications at extreme pressure made by early researchers. Review of the video and relevant literature resulted in the following physiological interpretation: an increase in respired gas density during descent caused a progressive increase in resistance to flow in both the airways and the breathing circuit. Initially, this was associated with a shift to ventilation at higher lung volumes, a relative degree of hypoventilation, and mild permissive hypercapnia. The promotion of turbulent airway flow by increasing gas density resulted in effort-independent expiratory flow at lower flow rates than usual. The consequent inability to match ventilation to the demands of physical work at the bottom precipitated a spiraling crisis of dyspnea, increasing PaCO2, and wasted respiratory effort, thus producing more CO2. Extreme hypercapnia eventually led to unconsciousness. This tragic case provides a timely and salient lesson to a growing population of deep "technical" divers that there are physiological limitations that must be understood and considered when planning extreme dives. PMID:17310877

  5. Postural effects on intracranial pressure: modeling and clinical evaluation.

    PubMed

    Qvarlander, Sara; Sundström, Nina; Malm, Jan; Eklund, Anders

    2013-11-01

    The physiological effect of posture on intracranial pressure (ICP) is not well described. This study defined and evaluated three mathematical models describing the postural effects on ICP, designed to predict ICP at different head-up tilt angles from the supine ICP value. Model I was based on a hydrostatic indifference point for the cerebrospinal fluid (CSF) system, i.e., the existence of a point in the system where pressure is independent of body position. Models II and III were based on Davson's equation for CSF absorption, which relates ICP to venous pressure, and postulated that gravitational effects within the venous system are transferred to the CSF system. Model II assumed a fully communicating venous system, and model III assumed that collapse of the jugular veins at higher tilt angles creates two separate hydrostatic compartments. Evaluation of the models was based on ICP measurements at seven tilt angles (0-71°) in 27 normal pressure hydrocephalus patients. ICP decreased with tilt angle (ANOVA: P < 0.01). The reduction was well predicted by model III (ANOVA lack-of-fit: P = 0.65), which showed excellent fit against measured ICP. Neither model I nor II adequately described the reduction in ICP (ANOVA lack-of-fit: P < 0.01). Postural changes in ICP could not be predicted based on the currently accepted theory of a hydrostatic indifference point for the CSF system, but a new model combining Davson's equation for CSF absorption and hydrostatic gradients in a collapsible venous system performed well and can be useful in future research on gravity and CSF physiology. PMID:24052030

  6. Using simulation to evaluate the performance of resilience strategies and process failures

    SciTech Connect

    Levy, Scott N.; Topp, Bryan Embry; Arnold, Dorian C.; Ferreira, Kurt Brian; Widener, Patrick; Hoefler, Torsten

    2014-01-01

    Fault-tolerance has been identified as a major challenge for future extreme-scale systems. Current predictions suggest that, as systems grow in size, failures will occur more frequently. Because increases in failure frequency reduce the performance and scalability of these systems, significant effort has been devoted to developing and refining resilience mechanisms to mitigate the impact of failures. However, effective evaluation of these mechanisms has been challenging. Current systems are smaller and have significantly different architectural features (e.g., interconnect, persistent storage) than we expect to see in next-generation systems. To overcome these challenges, we propose the use of simulation. Simulation has been shown to be an effective tool for investigating performance characteristics of applications on future systems. In this work, we: identify the set of system characteristics that are necessary for accurate performance prediction of resilience mechanisms for HPC systems and applications; demonstrate how these system characteristics can be incorporated into an existing large-scale simulator; and evaluate the predictive performance of our modified simulator. We also describe how we were able to optimize the simulator for large temporal and spatial scales-allowing the simulator to run 4x faster and use over 100x less memory.

  7. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure.

    PubMed

    Moens, An L; Ketner, Elizabeth A; Takimoto, Eiki; Schmidt, Tim S; O'Neill, Charles A; Wolin, Michael S; Alp, Nicholas J; Channon, Keith M; Kass, David A

    2011-10-01

    The exogenous administration of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase (NOS), has been shown to reduce left ventricular hypertrophy, fibrosis, and cardiac dysfunction in mice with pre-established heart disease induced by pressure-overload. In this setting, BH4 re-coupled endothelial NOS (eNOS), with subsequent reduction of NOS-dependent oxidative stress and reversal of maladaptive remodeling. However, recent studies suggest the effective BH4 dosing may be narrower than previously thought, potentially due to its oxidation upon oral consumption. Accordingly, we assessed the dose response of daily oral synthetic sapropterin dihydrochloride (6-R-l-erythro-5,6,7,8-tetrahydrobiopterin, 6R-BH4) on pre-established pressure-overload cardiac disease. Mice (n=64) were administered 0-400mg/kg/d BH4 by ingesting small pre-made pellets (consumed over 15-30 min). In a dose range of 36-200mg/kg/d, 6R-BH4 suppressed cardiac chamber remodeling, hypertrophy, fibrosis, and oxidative stress with pressure-overload. However, at both lower and higher doses, BH4 had less or no ameliorative effects. The effective doses correlated with a higher myocardial BH4/BH2 ratio. However, BH2 rose linearly with dose, and at the 400mg/kg/d, this lowered the BH4/BH2 ratio back toward control. These results expose a potential limitation for the clinical use of BH4, as variability of cellular redox and perhaps heart disease could produce a variable therapeutic window among individuals. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.'' PMID:21645517

  8. SPH calculations of asteroid disruptions: The role of pressure dependent failure models

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin

    2015-03-01

    We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold Q D * as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q D * which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger ( Q D * is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales ≲ 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (≲ 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012).

  9. Evaluating the risk of water distribution system failure: A shared frailty model

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Thurnau, Robert C.

    2011-12-01

    Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure. This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie, Wyoming, USA). Using the risk model a cost/ benefit analysis incorporating the inspection value method (IVM), is used to assist in making improved repair, replacement and rehabilitation decisions for selected drinking water distribution system pipes. A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP). Various currently available inspection technologies are presented and discussed.

  10. The development of a risk of failure evaluation tool for small dams in Mzingwane Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mufute, N. L.; Senzanje, A.; Kaseke, E.

    Small dams in Mzingwane Catchment in southern Zimbabwe are mostly in poor physical condition mainly due to lack of resources for repair and maintenance. Most of these dams are likely to fail thereby adversely affecting water availability and livelihoods in the area. To assist those involved in maintenance, repair and rehabilitation of small dams in resource poor and data sparse areas such as Mzingwane Catchment, a non-probabilistic but numerical risk of failure evaluation tool was developed. The tool helps to systematically, and objectively classify risk of failure of small dams, hence assist in the ranking of dams to prioritise and attend to first. This is important where resources are limited. The tool makes use of factors such as seepage, erosion and others that are traditionally used to assess condition of dams. In the development of the tool, an assessment of the physical condition of 44 (1 medium sized and 43 small dams) dams was done and the factors were identified and listed according to guidelines for design and maintenance of small dams. The description of the extent to which the factors affect the physical condition of small dams was then standardised. This was mainly guided by standard based and risk-based approaches to dam safety evaluation. Cause-effect diagrams were used to determine the stage at which each factor is involved in contributing to dam failure. Weights were then allocated to each factor depending on its stage or level in the process of causing dam failure. Scores were allocated to each factor based on its description and weight. Small dams design and maintenance guidelines were also used to guide the ranking and weighting of the factors. The tool was used to classify 10 dams. The risk of failure was low for one dam, moderate for one, high for four and very high for four dams, two of which had already failed. It was concluded that the tool could be used to rank the risk of failure of small dams in semi-arid areas. The tool needs to be

  11. EVALUATION OF THE FAILURE OF A RADIOACTIVE WASTE TRANSFER LINE JACKET

    SciTech Connect

    Wiersma, B; Alan03 Plummer, A; Karthik Subramanian, K; Charles Jenkins, C; William Hinz, W; A Fellinger, A

    2007-04-06

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks primarily via an underground transfer piping system. Due to the hazardous nature of the waste, the inner core stainless steel pipe is typically surrounded by a carbon steel pipe jacket, which provides secondary containment. Recently several through-wall penetrations were discovered on a segment of one of the jackets. An evaluation was performed to verify the failure mechanism and to estimate the degree of damage that occurred to the pipe segment. Failure analysis of a section of the jacket confirmed that pitting corrosion on the exterior of the pipe led to the through-wall penetration. Ultrasonic measurements on sections of the pipe were utilized to determine the remaining wall thickness in adjacent areas of the pipe. Based on these measurements, the degree of pitting and general corrosion was determined. Pit growth rate models were then developed to estimate the life expectancy of sections of the pipe that had not been excavated. The calculations estimated that the occurrence of through-wall failures in this jacket will begin to increase substantially in 12 years. Given that this pipe segment will be utilized beyond this time, short-term and long-term solutions to this failure were proposed. The short-term solutions focused on the repair or replace decisions that must be made to return the jacket to service as soon as practical. The long-term solutions focused on a broader strategy to address jacket integrity issues in the entire tank farm facility. These solutions included the evaluation of innovative remote inspection and repair techniques.

  12. Doppler-derived acceleration rate of right ventricular early filling as a measurement of right atrial pressure in chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.

    PubMed

    Scapellato, F; Eleuteri, E; Temporelli, P L; Imparato, A; Corrà, U; Giannuzzi, P

    1998-02-15

    This study demonstrates that a Doppler-derived tricuspid flow velocity pattern provides an accurate, feasible, and noninvasive method of estimating and monitoring mean right atrial pressure in patients with heart failure due to left ventricular systolic dysfunction, and who are both in sinus rhythm and atrial fibrillation. In particular, the acceleration rate of early right ventricular filling is a powerful and independent predictor of mean right atrial pressure. PMID:9485149

  13. Evaluation of a new miniature pressure-sensitive radio transmitter

    USGS Publications Warehouse

    Beeman, J.W.; Haner, P.V.; Maule, A.G.

    1998-01-01

    A miniature pressure-sensitive radio transmitter (tag) was evaluated and field tested as a tool for determining the depths of juvenile salmonids. The tag had an effective radiated power of −19.7 decibels (1 mW reference), dimensions of 23 mm × 7 mm, and a weight of 2.2 g in air. The pulse rate of the tag increased with pressure, resulting in an expected tag life of approximately 11 d at the water surface and 7.5 d at 10.5 m. The tags were accurate to within 16 mm with 95% of observations within ±0.32 m of the true depth. The resolution of the tags was 0.2 m. Errors in indicated depth resulting from differences between the calibration and operating temperatures were minimized by means of a correction factor. Tags surgically implanted in juvenile steelhead Oncorhynchus mykiss indicated a depth 0.2 m less than the same tags in water. This difference was not affected by pressure or temperature and was rectified by adjusting data from tags in fish. A test tag in a Columbia River reservoir was detected from distances of 1,133 m at a depth of 2 m and 148 m at a depth of 14 m. Results ind

  14. Subatmospheric vapor pressures evaluated from internal-energy measurements

    SciTech Connect

    Duarte-Garza, H.A. |; Magee, J.W.

    1997-01-01

    Vapor pressures were calculated from measured internal-energy changes in the vapor + liquid two-phase region, {Delta}U{sup (2)}. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T} and the vapor pressure (p{sub {sigma}}) and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately {+-}0.04 kPa ({+-}0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p{sub {sigma}} for this substance. It was also applied to evaluate published p{sub {sigma}} data which are in disagreement by more than their claimed uncertainty.

  15. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  16. Technical evaluation: pressurized fluidized-bed combustion technology

    SciTech Connect

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  17. Visit-to-visit variability of blood pressure and coronary heart disease, stroke, heart failure and mortality: A cohort study

    PubMed Central

    Muntner, Paul; Whittle, Jeff; Lynch, Amy I.; Colantonio, Lisandro D.; Simpson, Lara M.; Einhorn, Paula T.; Levitan, Emily B.; Whelton, Paul K; Cushman, William C.; Louis, Gail T.; Davis, Barry R.; Oparil, Suzanne

    2016-01-01

    Background Variability of blood pressure (BP) across outpatient visits is frequently dismissed as random fluctuation around a patient’s underlying BP. Objective: Examine the association between visit-to-visit variability (VVV) of systolic and diastolic BP (SBP and DBP) on cardiovascular disease and mortality outcomes. Design Prospective cohort study Setting Post-hoc analysis of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Participants 25,814 ALLHAT participants. Measurements VVV of SBP was defined as the standard deviation (SD) across BP measurements obtained at 7 visits conducted from 6 to 28 months following ALLHAT enrollment. Participants free of cardiovascular disease events during the first 28 months of follow-up were followed from the month 28 study visit through the end of active ALLHAT follow-up. Outcomes included fatal coronary heart disease or non-fatal myocardial infarction, all-cause mortality, stroke and heart failure. Results There were 1194 cases of fatal CHD or non-fatal MI, 1948 deaths, 606 cases of stroke and 921 cases of heart failure during follow-up. After multivariable adjustment including mean SBP, the hazard ratio comparing participants in the highest versus lowest quintile of SD of SBP (≥14.4 mmHg versus <6.5 mmHg) was 1.30 (1.06–1.59) for fatal coronary heart disease or non-fatal myocardial infarction, 1.58 (1.32–1.90) for all-cause mortality, 1.46 (1.06–2.01) for stroke, and 1.25 (0.97–1.61) for heart failure. Higher VVV of DBP was also associated with cardiovascular disease events and mortality. Limitations Long-term outcomes were not available. Conclusions Higher VVV of SBP is associated with increased cardiovascular disease and mortality risk. Future studies should examine whether reducing VVV of BP lowers this risk. Primary funding source National Institutes of Health PMID:26215765

  18. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects.

    PubMed

    Morandi, Bertrand; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2014-05-01

    Since the 1990s, French operational managers and scientists have been involved in the environmental restoration of rivers. The European Water Framework Directive (2000) highlights the need for feedback from restoration projects and for evidence-based evaluation of success. Based on 44 French pilot projects that included such an evaluation, the present study includes: 1) an introduction to restoration projects based on their general characteristics 2) a description of evaluation strategies and authorities in charge of their implementation, and 3) a focus on the evaluation of results and the links between these results and evaluation strategies. The results show that: 1) the quality of an evaluation strategy often remains too poor to understand well the link between a restoration project and ecological changes; 2) in many cases, the conclusions drawn are contradictory, making it difficult to determine the success or failure of a restoration project; and 3) the projects with the poorest evaluation strategies generally have the most positive conclusions about the effects of restoration. Recommendations are that evaluation strategies should be designed early in the project planning process and be based on clearly-defined objectives. PMID:24675435

  19. Competitive evaluation of failure detection algorithms for strapdown redundant inertial instruments

    NASA Technical Reports Server (NTRS)

    Wilcox, J. C.

    1973-01-01

    Algorithms for failure detection, isolation, and correction of redundant inertial instruments in the strapdown dodecahedron configuration are competitively evaluated in a digital computer simulation that subjects them to identical environments. Their performance is compared in terms of orientation and inertial velocity errors and in terms of missed and false alarms. The algorithms appear in the simulation program in modular form, so that they may be readily extracted for use elsewhere. The simulation program and its inputs and outputs are described. The algorithms, along with an eight algorithm that was not simulated, also compared analytically to show the relationships among them.

  20. Acute effects of different levels of continuous positive airway pressure on cardiac autonomic modulation in chronic heart failure and chronic obstructive pulmonary disease

    PubMed Central

    Reis, Michel S.; Sampaio, Luciana M.M.; Lacerda, Diego; De Oliveira, Luis V.F.; Pereira, Guilherme B.; Pantoni, Camila B.F.; Thommazo, Luciana Di; Catai, Aparecida M.

    2010-01-01

    Introduction Non-invasive ventilation may improve autonomic modulation and ventilatory parameters in severely disabled patients. The aim of the present study was to evaluate the physiological influence of acute treatment with different levels of continuous positive airway pressure (CPAP) on the autonomic balance of heart and respiratory responses in patients with stable chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). Materials and methods A COPD group (n = 10), CHF group (n = 8) and healthy subjects (n = 10) were evaluated. The participants were randomized to receive three different levels of CPAP on the same day: sham ventilation (Sham), 5 cmH20 (CPAP5) and 10 cmH20 (CPAP10) for 10 min. Respiratory rate, end tidal carbon dioxide (ETCO2), peripheral oxygen saturation (SpO2), heart rate (HR), blood pressure and heart rate variability in the time and frequency domains were measured during spontaneous breathing and under the sham, CPAP5 and CPAP10 conditions. Results All groups experienced a reduction in ETCO2 values during treatment with CPAP (p < 0.05). CPAP increased SpO2 and HR in the COPD group (p < 0.05). The COPD group also had lower RMSSD values during treatment with different levels of CPAP when compared to the control group (p < 0.05). In the CHF group, CPAP5 and CPAP10 increased the SDNN value (p < 0.05). CPAP10 reduced the SDNN value in the COPD group (p < 0.05). Conclusion The findings suggest that CPAP may cause improvements in the neural control of heart rate in patients with stable COPD and CHF. For each patient, the “best CPAP level” should be defined as the best respiratory response and autonomic balance. PMID:22419931

  1. Endothelial p53 Deletion Improves Angiogenesis and Prevents Cardiac Fibrosis and Heart Failure Induced by Pressure Overload in Mice

    PubMed Central

    Gogiraju, Rajinikanth; Xu, Xingbo; Bochenek, Magdalena L.; Steinbrecher, Julia H.; Lehnart, Stephan E.; Wenzel, Philip; Kessel, Michael; Zeisberg, Elisabeth M.; Dobbelstein, Matthias; Schäfer, Katrin

    2015-01-01

    Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy. PMID:25713289

  2. UQ and V&V techniques applied to experiments and simulations of heated pipes pressurized to failure.

    SciTech Connect

    Romero, Vicente Jose; Dempsey, J. Franklin; Antoun, Bonnie R.

    2014-05-01

    This report demonstrates versatile and practical model validation and uncertainty quantification techniques applied to the accuracy assessment of a computational model of heated steel pipes pressurized to failure. The Real Space validation methodology segregates aleatory and epistemic uncertainties to form straightforward model validation metrics especially suited for assessing models to be used in the analysis of performance and safety margins. The methodology handles difficulties associated with representing and propagating interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in the experiments and simulations including: material variability characterized by non-parametric random functions (discrete temperature dependent stress-strain curves); very limited (sparse) experimental data at the coupon testing level for material characterization and at the pipe-test validation level; boundary condition reconstruction uncertainties from spatially sparse sensor data; normalization of pipe experimental responses for measured input-condition differences among tests and for random and systematic uncertainties in measurement/processing/inference of experimental inputs and outputs; numerical solution uncertainty from model discretization and solver effects.

  3. Pore pressure regime leading to shallow failures in a mountain slope: monitoring and interpretation by soil-atmosphere coupled model.

    NASA Astrophysics Data System (ADS)

    Vaunat, Jean; Hürlimann, Marcel; Luna, Boris

    2016-04-01

    The study deals with the onset of debris flows in the "El Rebaixader" basin, located in South Central Pyrenees. The initiation area of debris flows is located on a lateral moraine with a thickness of tens of meters, in which torrential processes and other shallow mass movements have generated a large scarp with steep slopes. To follow slope evolution towards shallow failure, different sensors have been installed to monitor meteorological data and hydraulic variables at shallow depths (positive and negative pore pressure, water content). Measurements are interpreted by means of a thermo-hydro-mechanical coupled Finite Element code provided with a specific boundary condition to model water mass and heat flux exchanged between the ground and the atmosphere, including infiltration, evaporation, sensible heat and solar radiation. Results evidence the different modes of pore regime variation imposed, on the one hand, by surface infiltration and evaporation and, on the other hand, by the settlement of a slope parallel flow in a loose layer at some decimetres depth. As a conclusion, the analysis highlights the strong dependency of slope stability to the water regime taking place in slightly more permeable horizons connected to the top of the catchment area rather than to surficial climatic input. On this basis, some keys about debris flow mitigation are finally put forward.

  4. 10 CFR 21.21 - Notification of failure to comply or existence of a defect and its evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and its evaluation. 21.21 Section 21.21 Energy NUCLEAR REGULATORY COMMISSION REPORTING OF DEFECTS AND NONCOMPLIANCE Notification § 21.21 Notification of failure to comply or existence of a defect and its evaluation... safety hazard, were it to remain uncorrected, and (2) Ensure that if an evaluation of an...

  5. Probabilistic evaluation of riprap failure under future uncertain flood conditions: the case study of river Kleine Emme (Switzerland)

    NASA Astrophysics Data System (ADS)

    Jafarnejad, Mona; Pfister, Michael; Franca, Mário J.; Schleiss, Anton J.

    2014-05-01

    Potential failure for river bank protection measures is a critical issue to be evaluated for the safety and stability assessment. Moreover, uncertainties associated to flood conditions and sediment transport in rivers, as a possible result of climate change in the future, affects the safety level of such riverbank protection structures as riprap and walls. Bank failure can lead to uncontrolled erosion and flooding with disastrous consequences in residential areas or in critical infrastructures. The probabilistic analysis of failure on different mechanisms due to possible flood events and sediment transport is a principal step to assess embankment stability in future scenarios. Herein, a probabilistic risk assessment model to define the failure risk of river bank ripraps, developed based on Monte Carlo simulation and Moment Analysis Methods, is showed. This probabilistic simulation estimates the resistance of ripraps regarding varied flood and sediment transport scenarios in future. The failure probability of ripraps is assessed by a probabilistic function of the design safety factor. The probability of failure in different mechanisms such as direct block erosion, toe scouring and overtopping is defined by taking into account the modified bed-load transport due to a probabilistic function of the design discharge. This evaluation method is applied to a Swiss river located in Canton Lucerne, the Kleine Emme. The results highlight the failure probability of riverbank riprap associated to different mechanisms individually. A risk map to represent the risk of total failure along a longitudinal profile of the river is proposed.

  6. Evaluation of the prevalence and severity of pain in patients with stable chronic heart failure

    PubMed Central

    Udeoji, Dioma U; Shah, Ankit B; Bharadwaj, Parag; Katsiyiannis, Peter; Schwarz, Ernst R

    2012-01-01

    AIM: To evaluate the prevalence and severity of pain in patients with chronic stable heart failure (HF) in an outpatient clinic setting. METHODS: This is a cross-sectional study evaluating symptoms of generalized or specific pain in patients with chronic stable heart failure. A standardized questionnaire (Edmonton Symptom Assessment System) was administered during a routine outpatient clinic visit. The severity of pain and other symptoms were assessed on a 10 point scale with 10 being the worst and 0 representing no symptoms. RESULTS: Sixty-two patients [age 56 ± 13 years, 51 males, 11 females, mean ejection fraction (EF) 33% ± 17%] completed the assessment. Thirty-two patients (52%) reported any pain of various character and location such as chest, back, abdomen or the extremities, with a mean pain score of 2.5 ± 3.1. Patients with an EF less than 40% (n = 45, 73%) reported higher pain scores than patients with an EF greater than 40% (n = 17, 27%), scores were 3.1 ± 3.3 vs 1.2 ± 1.9, P < 0.001. Most frequent symptoms were tiredness (in 75% of patients), decreased wellbeing (84%), shortness of breath (SOB, 76%), and drowsiness (70%). The most severe symptom was tiredness with a score of 4.0 ± 2.8, followed by decreased wellbeing (3.7 ± 2.7), SOB (3.6 ± 2.8), and drowsiness (2.8 ± 2.8). CONCLUSION: Pain appears to be prevalent and significantly affects quality of life in HF patients. Adequate pain assessment and management should be an integral part of chronic heart failure management. PMID:22953022

  7. Evaluating the Phoenix Definition of Biochemical Failure After {sup 125}I Prostate Brachytherapy: Can PSA Kinetics Distinguish PSA Failures From PSA Bounces?

    SciTech Connect

    Thompson, Anna; Keyes, Mira; Pickles, Tom

    2010-10-01

    Purpose: To evaluate the prostate-specific antigen (PSA) kinetics of PSA failure (PSAf) and PSA bounce (PSAb) after permanent {sup 125}I prostate brachytherapy (PB). Methods and Materials: The study included 1,006 consecutive low and 'low tier' intermediate-risk patients treated with {sup 125}I PB, with a potential minimum follow-up of 4 years. Patients who met the Phoenix definition of biochemical failure (nadir + 2 ng/mL{sup -1}) were identified. If the PSA subsequently fell to {<=}0.5 ng/mL{sup -1}without intervention, this was considered a PSAb. All others were scored as true PSAf. Patient, tumor and dosimetric characteristics were compared between groups using the chi-square test and analysis of variance to evaluate factors associated with PSAf or PSAb. Results: Median follow-up was 54 months. Of the 1,006 men, 57 patients triggered the Phoenix definition of PSA failure, 32 (56%) were true PSAf, and 25 PSAb (44%). The median time to trigger nadir + 2 was 20.6 months (range, 6-36) vs. 49 mo (range, 12-83) for PSAb vs. PSAf groups (p < 0.001). The PSAb patients were significantly younger (p < 0.0001), had shorter time to reach the nadir (median 6 vs. 11.5 months, p = 0.001) and had a shorter PSA doubling time (p = 0.05). Men younger than age 70 who trigger nadir +2 PSA failure within 38 months of implant have an 80% likelihood of having PSAb and 20% chance of PSAf. Conclusions: With adequate follow-up, 44% of PSA failures by the Phoenix definition in our cohort were found to be benign PSA bounces. Our study reinforces the need for adequate follow-up when reporting PB PSA outcomes, to ensure accurate estimates of treatment efficacy and to avoid unnecessary secondary interventions.

  8. Tensile and burst tests in support of the cadmium safety rod failure evaluation

    SciTech Connect

    Thomas, J.K.

    1992-02-01

    The reactor safety rods may be subjected to high temperatures due to gamma heating after the core coolant level has dropped during the ECS phase of hypothetical LOCA event. Accordingly, an experimental safety rod testing subtask was established as part of a task to address the response of reactor core components to this accident. This report discusses confirmatory separate effects tests conducted to support the evaluation of failures observed in the safety rod thermal tests. As part of the failure evaluation, the potential for liquid metal embrittlement (LME) of the safety rod cladding by cadmium (Cd) -- aluminum (Al) solutions was examined. Based on the test conditions, literature data, and U-Bend tests, its was concluded that the SS304 safety rod cladding would not be subject to LME by liquid Cd-Al solutions under conditions relevant to the safety rod thermal tests or gamma heating accident. To confirm this conclusion, tensile tests on SS304 specimens were performed in both air and liquid Cd-Al solutions with the range of strain rates, temperatures, and loading conditions spanning the range relevant to the safety rod thermal tests and gamma heating accident.

  9. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  10. Evaluating Failures and near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Barr, Stephanie

    2010-01-01

    Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space

  11. Evaluating Failures and Near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Barr, Stephanie

    2010-09-01

    Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space.

  12. Invasive intracranial pressure monitoring is a useful adjunct in the management of severe hepatic encephalopathy associated with pediatric acute liver failure

    PubMed Central

    Kamat, Pradip; Kunde, Sachin; Vos, Miriam; Vats, Atul; Heffron, Thomas; Romero, Rene; Fortenberry, James D.

    2011-01-01

    Introduction Pediatric acute liver failure (ALF) is often accompanied by hepatic encephalopathy, cerebral edema and raised intracranial pressure (ICP). Elevated ICP can be managed more effectively with intracranial monitoring, but ALF-associated coagulopathy is often considered a contraindication for invasive monitoring due to risk for intracranial bleeding. We reviewed our experience with use of early ICP monitoring in ALF in children listed for liver transplantation. Methods Retrospective review of all intubated pediatric ALF patients with Grade 3 and Grade 4 encephalopathy requiring intracranial pressure monitoring and evaluated for potential liver transplant were identified from an institutional liver transplant patient database from 1999 to 2009. Result 14 patients were identified that met inclusion criteria. Age ranged from 7 months to 20 yrs. Diagnoses of ALF were infectious (3), drug induced (7), autoimmune hepatitis (2) and indeterminate (2). Grade 3 and 4 encephalopathy was seen in 10 (71%) and 4 (29%) patients respectively. CT scans prior to ICP monitor placement showed cerebral edema in 5 (35.7%) patients. Prior to ICP monitor placement, fresh frozen plasma, Vitamin K and activated recombinant factor VIIa were given to all 14 patients with significant improvement in coagulopathy (p<.04). Initial ICP ranged from 5 – 50 cmH2O; ICP was significantly higher in patients with cerebral edema by CT (p<.05). 11/14 (78%) patients received hypertonic saline and 3 (22%) received mannitol for elevated ICP. 8 of 14 (56%) monitored patients were managed to liver transplant with 100% surviving neurologically intact. 4/14 (28%) patients had spontaneous recovery without liver transplant. 2 of 14 (14%) patients died due to multiple organ failure prior to transplant. One patient had a small 9mm intracranial hemorrhage but survived after receiving a liver transplant. No patient developed intracranial infection. Conclusion In our series of patients, ICP monitoring had a

  13. What Causes Heart Failure?

    MedlinePlus

    ... the heart, leading to heart failure. High Blood Pressure Blood pressure is the force of blood pushing against the ... weaken your heart and lead to plaque buildup. Blood pressure is considered high if it stays at or ...

  14. Filament-reinforced metal composite pressure vessel evaluation and performance demonstration

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1976-01-01

    Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.

  15. Ultrasound evaluation of the impact of cricoid pressure versus novel 'paralaryngeal pressure' on anteroposterior oesophageal diameter.

    PubMed

    Andruszkiewicz, P; Wojtczak, J; Wroblewski, L; Kaczor, M; Sobczyk, D; Kowalik, I

    2016-09-01

    To assess the degree to which cricoid pressure (Sellick manoeuvre) actually compresses the oesophagus, we measured the effect of cricoid pressure and paralaryngeal pressure on the outer anteroposterior diameter of the upper oesophagus with ultrasound in 39 healthy volunteers. The mean (SD) outer anteroposterior oesophageal diameter was 0.77 (0.11) cm with no pressure, 0.79 (0.13) cm with the application of cricoid pressure of 30 N and 0.68 (0.12) cm with the application of paralaryngeal pressure of 30 N (p < 0.0001). If cricoid pressure does not reduce the anteroposterior diameter of the oesophagus, it is difficult or impossible to explain the efficacy of the Sellick manoeuvre. However, paralaryngeal pressure decreases this diameter and has the potential to occlude the upper oesophagus. PMID:27523050

  16. Evaluating Failures and Near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Barr, Stephanie

    2009-01-01

    There have been a number of studies done in the past drawn on lessons learned with regard to human loss-of-life events. Generally, the systemic causes and proximate causes for fatal events have both been examined in considerable detail. However, an examination of near-fatal accidents and failures that narrowly missed being fatal could be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Additionally, review of risk factors for upcoming or future programs will often look at trending statistics, generally focusing on failure/success statistics. Unfortunately, doing so can give a skewed or misleading view of past reliability or a reliability that cannot be presumed to apply to a new program. One reason for this might be that failure/success criteria aren't the same across programs, but also that apparent success can hide systemic faults that, under other circumstances, can be fatal to a program with different parameters. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure and provide very misleading data if it is not examined in detail. This is particularly true for a manned space program where failure/success includes more than making a particular orbit. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. Even more importantly, a thorough understanding of these near miss events can identify conditions that prevented fatalities. Those conditions may be key to a programs reliability, but, without insight to the repercussions if such conditions were not in place, their importance may not be readily clear. As programs mature and political and fiscal responsibilities come to the fore, often there is considerable incentive to eliminate unnecessary

  17. Evaluation of a strain based failure criterion for the multi-constituent composite model under shock loading

    NASA Astrophysics Data System (ADS)

    Key, Christopher T.; Schumacher, Shane C.; Alexander, C. Scott

    2015-09-01

    This study details and demonstrates a strain-based criterion for the prediction of polymer matrix composite material damage and failure under shock loading conditions. Shock loading conditions are characterized by high-speed impacts or explosive events that result in very high pressures in the materials involved. These material pressures can reach hundreds of kbar and often exceed the material strengths by several orders of magnitude. Researchers have shown that under these high pressures, composites exhibit significant increases in stiffness and strength. In this work we summarize modifications to a previous stress based interactive failure criterion based on the model initially proposed by Hashin, to include strain dependence. The failure criterion is combined with the multi-constituent composite constitutive model (MCM) within a shock physics hydrocode. The constitutive model allows for decomposition of the composite stress and strain fields into the individual phase averaged constituent level stress and strain fields, which are then applied to the failure criterion. Numerical simulations of a metallic sphere impacting carbon/epoxy composite plates at velocities up to 1000 m/s are performed using both the stress and strain based criterion. These simulation results are compared to experimental tests to illustrate the advantages of a strain-based criterion in the shock environment.

  18. Failure Criteria for Evaluating Accidental Drops of Fuel Containers at INTEC

    SciTech Connect

    Miller, G. K.

    1998-10-01

    This report presents a failure criterion that has been developed for use in evaluating fuel containers at the Idaho Nuclear Technology and Engineering Center (INTEC) for accidental drop events. The criterion would typically be used in dynamic finite element analyses using the ABA-QUS/Explicit program. The failure criterion used in the past is generally considered to substantially underestimate the strength and ductility of the materials involved. The new criterion is intended to be more realistic, allowing for more accurate impact analyses. The criterion is based on the distortion energy theory, which is considered to be appropriate for the ductile materials typically used in fuel containers. Also addressed in development of the criterion were the effects of strain rate and hydrostatic stress. The importance of these factors, however, is highly dependent on the material used. Three materials specifically addressed in this study were stainless steel, aluminum, and lead. The criterion is presented in the form of guidelines and recommendations that are based on material data obtained from the literature. The most significant difference between these and the previous criterion is that ductile materials are allowed to strain to much higher levels before they are considered to fail.

  19. Studies and analyses of the Space Shuttle Main Engine: SSME failure data review, diagnostic survey and SSME diagnostic evaluation

    NASA Technical Reports Server (NTRS)

    Glover, R. C.; Kelley, B. A.; Tischer, A. E.

    1986-01-01

    The results of a review of the Space Shuttle Main Engine (SSME) failure data for the period 1980 through 1983 are presented. The data was collected, evaluated, and ranked according to procedures established during this study. A number of conclusions and recommendations are made based upon this failure data review. The results of a state-of-the-art diagnostic survey are also presented. This survey covered a broad range of diagnostic sensors and techniques and the findings were evaluated for application to the SSME. Finally, a discussion of the initial activities for the on-going SSME diagnostic evaluation is included.

  20. Comparative clinical evaluation of Boerhavia diffusa root extract with standard Enalapril treatment in Canine chronic renal failure

    PubMed Central

    Oburai, Nethaji Lokeswar; Rao, V. Vaikunta; Bonath, Ram Babu Naik

    2015-01-01

    Background: Complementing herbal drugs with conservative modern treatment could improve renal condition in canine chronic renal failure (CRF). Objective: In this study, clinical evaluation of Boerhavia diffusa root extract was carried out in CRF in dogs in comparison with standard enalapril. Materials and Methods: A total of 20 dogs of mixed breeds suffering from CRF from 1 to 2 months were divided into two groups (n = 10) and treated as follows: Group I - Enalapril at 0.5 mg/kg p.o. once daily for 90 days + amoxicillin and cloxacillin at 25 mg/kg i.m. once daily for 1-week; Group II - B. diffusa root extract at 500 mg p.o per dog daily for 90 days. Both groups were maintained on a supportive fluid therapy. The data were analyzed using paired t-test and one-way ANOVA followed by Dunnett's post-hoc test. Results: CRF caused a significant (P < 0.05) increase in systolic and diastolic blood pressure, serum creatinine, urea nitrogen, sodium, potassium, phosphorus, urinary protein, alkaline phosphatase (ALP), and glutamyl transferase (GGT). A significant (P < 0.05) decrease in hemoglobin and total erythrocyte count (TEC) was also observed. Nephrosonography revealed indistinct corticomedullary junction, altered renal architecture, hyper-echoic cortex, medulla, and sunken kidneys. Both the treatments significantly (P < 0.05) reduced systolic and diastolic blood pressure by day 30. Serum Creatinine, urea nitrogen, phosphorus, urinary protein, ALP, and GGT showed significant (P < 0.05) reduction by day 60 in both the treatments. However, potassium levels were normalized only by B. diffusa root extract treatment by day 30. Both the treatments failed to show a significant improvement in nephrosonographic picture even after 90 days posttreatment. Conclusion: In conclusion, the efficacy of B. diffusa root extract was comparable to standard enalapril treatment of CRF in dogs. PMID:26604549

  1. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  2. Comparison of magnetic resonance imaging and radionuclide imaging in the evaluation of renal transplant failure

    SciTech Connect

    Goldsmith, M.S.; Tanasescu, D.E.; Waxman, A.D.; Crues, J.V. III

    1988-04-01

    Magnetic resonance imaging (MRI) was compared with radionuclide scintigraphy (RNS) in 16 patients with renal transplants undergoing renal failure to determine which modality could best discriminate between rejection, acute tubular necrosis (ATN), and cyclosporin nephrotoxicity (CN). Although all rejecting transplants had reduced corticomedullary differentiation (CMD) on T1-weighted MR images, four of five cases of ATN had appearances that could not be distinguished from rejection. A normal CMD suggests nonrejection, but diminished CMD is nonspecific. Tc-99m DTPA/I-131 hippuran RNS was superior to MRI in differentiating rejection from ATN. Although ATN and CN have similar RNS patterns, this distinction can usually be made based on the clinical time course. Other potential uses of MRI in the evaluation of the renal transplants are discussed.

  3. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    SciTech Connect

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-18

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  4. Advanced Heart Failure

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Advanced Heart Failure Updated:Oct 8,2015 When heart failure (HF) ... content was last reviewed on 04/06/2015. Heart Failure • Home • About Heart Failure • Causes and Risks for ...

  5. Methods for dependency estimation and system unavailability evaluation based on failure data statistics. Volume 2, Detailed description and applications

    SciTech Connect

    Azarm, M.A.; Hsu, F.; Martinez-Guridi, G.; Vesely, W.E.

    1993-07-01

    This report introduces a new perspective on the basic concept of dependent failures where the definition of dependency is based on clustering in failure times of similar components. This perspective has two significant implications: firstly, it relaxes the conventional assumption that dependent failures must be simultaneous and result from a severe shock; secondly, it allows the analyst to use all the failures in a time continuum to estimate the potential for multiple failures in a window of time (e.g., a test interval), therefore arriving at a more accurate value for system unavailability. In addition, the models developed here provide a method for plant-specific analysis of dependency, reflecting the plant-specific maintenance practices that reduce or increase the contribution of dependent failures to system unavailability. The proposed methodology can be used for screening analysis of failure data to estimate the fraction of dependent failures among the failures. In addition, the proposed method can evaluate the impact of the observed dependency on the system unavailability and plant risk. The formations derived in this report have undergone various levels of validations through computer simulation studies and pilot applications. The pilot applications of these methodologies showed that the contribution of dependent failures of diesel generators in one plant was negligible, while in another plant, it was quite significant. It also showed that in the plant with significant contribution of dependency to Emergency Power System (ESP) unavailability, the contribution changed with time. Similar findings were reported for the Containment Fan Cooler breakers. Drawing such conclusions about system performance would not have been possible with any other reported dependency methodologies.

  6. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  7. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  8. Reduction of homocysteine in elderly with heart failure improved vascular function and blood pressure control but did not affect inflammatory activity.

    PubMed

    Andersson, Sven E; Edvinsson, Marie-Louise; Edvinsson, Lars

    2005-11-01

    We have previously shown that hyperhomocysteinaemia is common in elderly heart failure patients, and is associated with endothelial dysfunction, impaired vasodilatory capacity and a low-grade inflammation. In the present study we examined if supplementation with B6, B12 and folate could normalize the hyperhomocysteinaemia and if so, in turn, would improve the associated parameters. This was an open study without placebo control on heart failure patients with plasma homocysteine > 15 microM. Measurements of cutaneous vascular reactivity, blood pressure, inflammatory activity and endothelial function were performed before and after intervention with intra-individual comparisons. The treatment reduced homocysteine to near normal values and enhanced the hyperaemic response to acetylcholine related to the response to heat. The mean arterial blood pressure and pulse rate was reduced. There was no effect on inflammatory activity, plasma levels of von Willebrand factor, subjective health quality or the hyperaemic responses to sodium nitroprusside or local warming. Hyperhomocysteinaemia in heart failure patients is multifactorial in origin. Folate deficiency, inflammatory activity and reduced renal function could be contributing. It is suggested that supplementation with B-vitamins can improve the vasodilatory capacity and reduce the blood pressure but additional studies are required to confirm this. PMID:16236143

  9. Evaluation of high-pressure drilling fluid supply systems

    SciTech Connect

    McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

    1981-10-01

    A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

  10. Test and evaluation of pressure transducers for a reentry vehicle pressure measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Sealey, Bradley S.

    1993-01-01

    The Pressure Distribution and Air Data System experiment was designed to obtain accurate pressure measurements on the windward surface of an aeroassist flight research vehicle during its aeropass through the earth's atmosphere. These pressure measurements were intended to provide air data and support CFD code validation for future aeroassist orbital transfer vehicle designs. The system consisted of a flush orifice configuration connected by tubing to a specially ranged and selected pressure transducer. The purpose of this paper is to describe the flight acceptance test program and test results leading to the selection of flight transducers.