Science.gov

Sample records for failures blast swarms

  1. Management of Post-mining Large-scale Ground Failures: Blast Swarms Field Experiment for Calibration of Permanent Microseismic Early-warning Systems

    NASA Astrophysics Data System (ADS)

    Contrucci, I.; Klein, E.; Bigarré, P.; Lizeur, A.; Lomax, A.; Bennani, M.

    2010-02-01

    In France, decades of coal and iron-ore mining have left extensive underground cavities beneath or in the vicinity of urban areas. This poses an environmental challenge for society. To ensure post-mining risk management and public safety, wherever remediation is not possible, numerous real-time microseismic monitoring systems are being installed. The objective is to detect remote rock mass fracturing processes, precursory events and acceleration phases for appropriate and timely action. Although no consistent collapse has occurred in any of the monitored areas yet, single 3-D probes record many microseismic events of very low amplitude which create difficulties in the quantitative data analysis. The development of specific quantitative processing has therefore become a major issue in our research work. For that purpose, a field experiment was carried out on six of the instrumented sites. It consisted of sequences of small blasts in mine pillars which were accurately controlled in terms of the location, orientation and energy of the explosive source. The data analysis was used to calibrate parameters (velocity model, 3-D sensor orientation, etc.) for reliable 3-D localization and to develop an empirical law to estimate the source energy from the sensor energy. This work now enables us to analyze real microseismic events with a considerably better level of accuracy and to obtain enough information and confidence to discuss these data in terms of site stability.

  2. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  3. Blasting of the Twin Creek`s highwall failure

    SciTech Connect

    Gray, C.J.; Bachmann, J.A.

    1996-12-01

    On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

  4. Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Shelly, D.R.; Hill, D.P.

    2011-01-01

    Brittle-failure earthquakes in the lower crust, where high pressures and temperatures would typically promote ductile deformation, are relatively rare but occasionally observed beneath active volcanic centers. Where they occur, these earthquakes provide a rare opportunity to observe volcanic processes in the lower crust, such as fluid injection and migration, which may induce brittle faulting under these conditions. Here, we examine recent short-duration earthquake swarms deep beneath the southwestern margin of Long Valley Caldera, near Mammoth Mountain. We focus in particular on a swarm that occurred September 29-30, 2009. To maximally illuminate the spatial-temporal progression, we supplement catalog events by detecting additional small events with similar waveforms in the continuous data, achieving up to a 10-fold increase in the number of locatable events. We then relocate all events, using cross-correlation and a double-difference algorithm. We find that the 2009 swarm exhibits systematically decelerating upward migration, with hypocenters shallowing from 21 to 19 km depth over approximately 12 hours. This relatively high migration rate, combined with a modest maximum magnitude of 1.4 in this swarm, suggests the trigger might be ascending CO2 released from underlying magma.

  5. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  6. Failure Distances for the Buildings and Setting of the Blast Resistant Wall Under Vehicle Bombs

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Liu, Jingbo; Du, Yixin

    The terrorist explosion is dreadful for current world. In various explosive events, vehicle bomb explosion has been commonly used by terrorists to approach the targets. This paper evaluated and analyzed the minatory grades of various vehicle bombs, and calculated the failure distances of the buildings under the main impulse effect of air shock wave. Thereafter, a few kinds of setting methods of the blast resistant walls under various vehicle bombs are established. The research will provide effect protective measures for the survival ability of the important buildings under various vehicle bombs.

  7. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  8. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.

    PubMed

    Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T

    2016-08-01

    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. PMID:27178784

  9. Long Swarms and Short Swarms

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.

    2011-12-01

    Many earthquake swarms at volcanoes last several months, then have a sharp uptick in rate in the hours before eruption. Examples include 2006 Augustine, 8.5 months then 10 hours; 1992 Spurr, 10 months then 4 hours; 1994 Rabaul, ~1 year then 27 hours; 2008 Kasatochi, 6 weeks then 2 days; and 2011 Puyuehue Cordon Caulle, 5 weeks then 2 days. For the well studied Augustine case, broadband data showed that very long period (VLP) energy accompanied 221 of 722 located earthquakes in the 10 hours before the first explosive eruption on 11 January 2006. This was revealed by low-pass filtering and the period of the VLP signal was 50 sec. The Augustine broadband stations were campaign instruments at distances of 2-3 km from the vent. No similar VLP energy has been found in events during the 8.5 month long swarm. Okmok volcano had a short swarm only lasting 5 hours prior to its 12 July 2008 eruption. Low-pass filtering of data from broadband station OKSO, 10 km from the vent, showed that 23 of 42 located events had VLP energy with a period of 30-40 sec. Events from Kasatochi volcano were scanned on station ATKA. Here the broadband station is much farther away at 88 km but the earthquakes in the short swarm 7 August 2008 were much larger with many M>3 events. The station suffered data gaps so only a few hours of data were scanned but numerous events were observed with VLP energy starting just after the P phase. Low-pass filtering showed VLP energy with a period of 10-12 sec. No VLP energy has been found in events of the preceding 6 week long swarm. These observations at three different volcanoes suggest that the short swarms represent a different process than the long swarms. The long swarms likely reflect pressure increases in the surrounding country rock caused by increasing magma pressure. The short swarms in contrast, appear to represent discrete pulses of magma injection at shallow depths. For all three volcanoes the earthquakes looked like typical volcano-tectonic (VT

  10. Electron Swarms

    NASA Astrophysics Data System (ADS)

    Crompton, Robert W.

    1998-10-01

    Swarm experiments provide an invaluable link between gaseous electronics and atomic physics, that is, between the collective behavior of electrons in gases in electric and magnetic fields and the collision processes that determine that behavior. Early swarm experiments were made to gain an understanding of the basic physics of electrical conduction in gases and electrical breakdown. Subsequent peaks of activity have been associated with attempts to explain quantitatively electromagnetic wave propagation in the ionosphere and in high temperature air, and with applied research in such diverse areas as gas lasers, health physics, gas insulation for high voltage transmission lines, plasma processing, and particle detectors . Through improved experimental techniques and the application of numerical techniques to unravel the complex connection between the individual electron-neutral collisions and the transport coefficients that characterize the properties of the swarm, swarm experiments now contribute accurate, and sometimes unique, cross section data for low-energy electron-atom/molecule collisions. Alternatively they can provide self-consistent sets of cross sections that enable reliable forecasts of the collective behaviour to be made. In the talk I shall aim to provide an understanding of the basic principles underlying swarm experiments, and the interpratation of the results from them, through a description of their development and application up to the present day.

  11. Heart failure therapeutics on the basis of a biased ligand of the angiotensin-2 type 1 receptor. Rationale and design of the BLAST-AHF study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure).

    PubMed

    Felker, G Michael; Butler, Javed; Collins, Sean P; Cotter, Gad; Davison, Beth A; Ezekowitz, Justin A; Filippatos, Gerasimos; Levy, Phillip D; Metra, Marco; Ponikowski, Piotr; Soergel, David G; Teerlink, John R; Violin, Jonathan D; Voors, Adriaan A; Pang, Peter S

    2015-03-01

    The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and no currently-available therapies have been shown to favorably affect outcomes. TRV027 is a novel biased ligand of the angiotensin-2 type 1 receptor that antagonizes angiotensin-stimulated G-protein activation while stimulating β-arrestin. In animal models, these effects reduce afterload while increasing cardiac performance and maintaining stroke volume. In initial human studies, TRV027 appears to be hemodynamically active primarily in patients with activation of the renin-angiotensin-aldosterone system, a potentially attractive profile for an AHF therapeutic. BLAST-AHF is an international prospective, randomized, phase IIb, dose-ranging study that will randomize up to 500 AHF patients with systolic blood pressure ≥120 mm Hg and ≤200 mm Hg within 24 h of initial presentation to 1 of 3 doses of intravenous TRV027 (1, 5, or 25 mg/h) or matching placebo (1:1:1:1) for at least 48 h and up to 96 h. The primary endpoint is a composite of 5 clinical endpoints (dyspnea, worsening heart failure, length of hospital stay, 30-day rehospitalization, and 30-day mortality) combined using an average z-score. Secondary endpoints will include the assessment of dyspnea and change in amino-terminal pro-B-type natriuretic peptide. The BLAST-AHF study will assess the efficacy and safety of a novel biased ligand of the angiotensin-2 type 1 receptor in AHF. PMID:25650371

  12. Swarm Economics

    NASA Astrophysics Data System (ADS)

    Kazadi, Sanza; Lee, John

    The Hamiltonian Method of Swarm Design is applied to the design of an agent based economic system. The method allows the design of a system from the global behaviors to the agent behaviors, with a guarantee that once certain derived agent-level conditions are satisfied, the system behavior becomes the desired behavior. Conditions which must be satisfied by consumer agents in order to bring forth the `invisible hand of the market' are derived and demonstrated in simulation. A discussion of how this method might be extended to other economic systems and non-economic systems is presented.

  13. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  14. Swarm Verification

    NASA Technical Reports Server (NTRS)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  15. Components of Swarm Intelligence

    SciTech Connect

    David Bruemmer; Donald Dudenhoeffer; Matthew Anderson; Mark McKay

    2004-03-01

    This paper discusses the successes and failures over the past three years as efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed and evaluated robot behaviors that promote the emergence of swarm intelligence. Using a team of 12 small robots with the ability to respond to light and sound, the INEEL has investigated the fundamental advantages of swarm behavior as well as the limitations of this approach. The paper discusses the ways in which biology has inspired this work and the ways in which adherence to the biological model has proven to be both a benefit and hindrance to developing a fieldable system. The paper outlines how a hierarchical command and control structure can be imposed in order to permit human control at a level of group abstraction and discusses experimental results that show how group performance scales as different numbers of robots are utilized. Lastly, the paper outlines the applications for which the resulting capabilities have been applied and demonstrated.

  16. Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  17. Earthquake swarms in Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Voss, Peter H.; Dahl-Jensen, Trine

    2014-05-01

    Earthquake swarms occur primarily near active volcanoes and in areas with frequent tectonic activity. However, intraplate earthquake swarms are not an unknown phenomenon. They are located near zones of weakness, e.g. in regions with geological contrasts, where dynamic processes are active. An earthquake swarm is defined as a period of increased seismicity, in the form of a cluster of earthquakes of similar magnitude, occurring in the same general area, during a limited time period. There is no obvious main shock among the earthquakes in a swarm. Earthquake swarms occur in Greenland, which is a tectonically stable, intraplate environment. The first earthquake swarms in Greenland were detected more than 30 years ago in Northern and North-Eastern Greenland. However, detection of these low-magnitude events is challenging due to the enormous distances and the relatively sparse network of seismographs. The seismograph coverage of Greenland has vastly improved since the international GLISN-project was initiated in 2008. Greenland is currently coved by an open network of 19 BB seismographs, most of them transmitting data in real-time. Additionally, earthquake activity in Greenland is monitored by seismographs in Canada, Iceland, on Jan Mayen, and on Svalbard. The time-series of data from the GLISN network is still short, with the latest station been added in NW Greenland in 2013. However, the network has already proven useful in detecting several earthquake swarms. In this study we will focus on two swarms: one occurring near/on the East Greenland coast in 2008, and another swarm occurring in the Disko-area near the west coast of Greenland in 2010. Both swarms consist of earthquakes with local magnitudes between 1.9 and 3.2. The areas, where the swarms are located, are regularly active with small earthquakes. The earthquake swarms are analyzed in the context of the general seismicity and the possible relationship to the local geological conditions.

  18. Blast Injuries

    MedlinePlus

    ... Service Members & Veterans Family & Caregivers Medical Providers Blast Injuries U.S. Army photo by Sgt. Gustavo Olgiati How ... tertiary injury Does a blast cause different brain injuries than blunt trauma? There currently is no evidence ...

  19. From hybrid swarms to swarms of hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  20. Shelter in a Swarm.

    PubMed

    Harshey, Rasika M; Partridge, Jonathan D

    2015-11-20

    Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs. PMID:26277623

  1. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  2. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  3. Dynamics of Bacterial Swarming

    PubMed Central

    Darnton, Nicholas C.; Turner, Linda; Rojevsky, Svetlana; Berg, Howard C.

    2010-01-01

    Abstract When vegetative bacteria that can swim are grown in a rich medium on an agar surface, they become multinucleate, elongate, synthesize large numbers of flagella, produce wetting agents, and move across the surface in coordinated packs: they swarm. We examined the motion of swarming Escherichia coli, comparing the motion of individual cells to their motion during swimming. Swarming cells' speeds are comparable to bulk swimming speeds, but very broadly distributed. Their speeds and orientations are correlated over a short distance (several cell lengths), but this correlation is not isotropic. We observe the swirling that is conspicuous in many swarming systems, probably due to increasingly long-lived correlations among cells that associate into groups. The normal run-tumble behavior seen in swimming chemotaxis is largely suppressed, instead, cells are continually reoriented by random jostling by their neighbors, randomizing their directions in a few tenths of a second. At the edge of the swarm, cells often pause, then swim back toward the center of the swarm or along its edge. Local alignment among cells, a necessary condition of many flocking theories, is accomplished by cell body collisions and/or short-range hydrodynamic interactions. PMID:20483315

  4. Turbulence of swarming sperm.

    PubMed

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k^{-3} power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation. PMID:26465513

  5. Turbulence of swarming sperm

    NASA Astrophysics Data System (ADS)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L.; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.

  6. Swarming: Flexible Roaming Plans

    PubMed Central

    Partridge, Jonathan D.

    2013-01-01

    Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on “hard” agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a “softer” agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior. PMID:23264580

  7. Swarming: flexible roaming plans.

    PubMed

    Partridge, Jonathan D; Harshey, Rasika M

    2013-03-01

    Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior. PMID:23264580

  8. Particle Swarm Optimization Toolbox

    NASA Technical Reports Server (NTRS)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  9. The Kangding earthquake swarm of November, 2014

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Cheng, Jia; Liu, Jie; Zhang, Xuemei

    2015-06-01

    There was an earthquake swarm of two major events of M S6.3 and M S5.8 on the Xianshuihe fault in November, 2014. The two major earthquakes are both strike-slip events with aftershock zone along NW direction. We have analyzed the characteristics of this earthquake sequence. The b value and the h value show the significant variations in different periods before and after the M S5.8 earthquake. Based on the data of historical earthquakes, we also illustrated the moderate-strong seismic activity on the Xianshuihe fault. The Kangding earthquake swarm manifests the seismic activity on Xianshuihe fault may be in the late seismic active period. The occurrence of the Kangding earthquake may be an adjustment of the strong earthquakes on the Xianshuihe fault. The Coulomb failure stress changes caused by the historical earthquakes were also given in this article. The results indicate that the earthquake swarm was encouraged by the historical earthquakes since 1893, especially by the M S7.5 Kangding earthquake in 1955. The Coulomb failure stress changes also shows the subsequent M S5.8 earthquake was triggered by the M S6.3 earthquake.

  10. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  11. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  12. Markerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization

    PubMed Central

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches—Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims. PMID:25978493

  13. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    PubMed

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims. PMID:25978493

  14. Ethiopian Tertiary dike swarms

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1971-01-01

    Mapping of the Ethiopian rift and Afar margins revealed the existence of Tertiary dike swarms. The structural relations of these swarms and the fed lava pile to monoclinal warping of the margins partly reflect a style of continental margin tectonics found in other parts of the world. In Ethiopia, however, conjugate dike trends appear to be unusually strongly developed. Relation of dikes to subsequent margin faulting is ambiguous, and there are instances where the two phenomena are spatially separate and of differing trends. There is no evidence for lateral migration with time of dike injection toward the rift zone. No separate impingement of Red Sea, Gulf of Aden, and African rift system stress fields on the Ethiopian region can be demonstrated from the Tertiary dike swarms. Rather, a single, regional paleostress field existed, suggestive of a focus beneath the central Ethiopian plateau. This stress field was dominated by tension: there is no cogent evidence for shearing along the rift margins. A gentle compression along the rift floor is indicated. A peculiar sympathy of dike hade directions at given localities is evident.

  15. Swarm robotics and minimalism

    NASA Astrophysics Data System (ADS)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  16. An improved cockroach swarm optimization.

    PubMed

    Obagbuwa, I C; Adewumi, A O

    2014-01-01

    Hunger component is introduced to the existing cockroach swarm optimization (CSO) algorithm to improve its searching ability and population diversity. The original CSO was modelled with three components: chase-swarming, dispersion, and ruthless; additional hunger component which is modelled using partial differential equation (PDE) method is included in this paper. An improved cockroach swarm optimization (ICSO) is proposed in this paper. The performance of the proposed algorithm is tested on well known benchmarks and compared with the existing CSO, modified cockroach swarm optimization (MCSO), roach infestation optimization RIO, and hungry roach infestation optimization (HRIO). The comparison results show clearly that the proposed algorithm outperforms the existing algorithms. PMID:24959611

  17. Features of Bacillus cereus swarm cells.

    PubMed

    Senesi, Sonia; Salvetti, Sara; Celandroni, Francesco; Ghelardi, Emilia

    2010-11-01

    When propagated on solid surfaces, Bacillus cereus can produce differentiated swarm cells under a wide range of growth conditions. This behavioural versatility is ecologically relevant, since it allows this bacterium to adapt swarming to environmental changes. Swarming by B. cereus is medically important: swarm cells are more virulent and particularly prone to invade host tissues. Characterisation of swarming-deficient mutants highlights that flagellar genes as well as genes governing different metabolic pathways are involved in swarm-cell differentiation. In this review, the environmental and genetic requirements for swarming and the role played by swarm cells in the virulence this pathogen exerts will be outlined. PMID:21035546

  18. Aspects of blast resistant masonry design

    SciTech Connect

    Volkman, D.E.

    1989-01-01

    Blast resistant design should be examined for building code incorporation, due to the potential of explosions occurring in an industrial society. Specifically, public and commercial structures of concrete masonry construction need additional building code criteria, since these buildings have high density populations to protect. Presently, blast resistant design is accomplished by using government published manuals, but these do not address industry standard construction. A design air blast load of 4.54 kg (10 lbs) of TNT, located 0.91 m (3 ft) above ground surface and 30.48 m (100 ft) from a structure should be considered standard criteria. This loading would be sufficient to protect against blast, resist progressive failure, and yet not be an economic impediment. Design details and adequate inspection must be observed to ensure blast resistant integrity. 10 refs., 3 figs., 1 tab.

  19. From hybrid swarms to swarms of hybrids

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  20. A continuum model for the orbit evolution of self-propelled `smart dust' swarms

    NASA Astrophysics Data System (ADS)

    McInnes, Colin R.

    2016-06-01

    A continuity equation is developed to model the evolution of a swarm of self-propelled `smart dust' devices in heliocentric orbit driven by solar radiation pressure. These devices are assumed to be MEMs-scale (micro-electromechanical systems) with a large area-to-mass ratio. For large numbers of devices it will be assumed that a continuum approximation can be used to model their orbit evolution. The families of closed-form solutions to the resulting swarm continuity equation then represent the evolution of the number density of devices as a function of both position and time from a set of initial data. Forcing terms are also considered which model swarm sources and sinks (device deposition and device failure). The closed-form solutions presented for the swarm number density provide insights into the behaviour of swarms of self-propelled `smart dust' devices an can form the basis of more complex mission design methodologies.

  1. A computational model of blast loading on the human eye.

    PubMed

    Bhardwaj, Rajneesh; Ziegler, Kimberly; Seo, Jung Hee; Ramesh, K T; Nguyen, Thao D

    2014-01-01

    Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid-structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit. PMID:23591604

  2. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction. PMID:21639724

  3. Genetics of Swarming Motility in Salmonella enterica Serovar Typhimurium: Critical Role for Lipopolysaccharide

    PubMed Central

    Toguchi, Adam; Siano, Michael; Burkart, Mark; Harshey, Rasika M.

    2000-01-01

    Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface “wettability” required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon. PMID:11053374

  4. Swarming rings of bacteria.

    NASA Astrophysics Data System (ADS)

    Brenner, M. P.; Levitov, L. S.

    1996-03-01

    The behavior of bacterii controlled by chemotaxis can lead to a complicated spatial organization, producing swarming rings, and steady or moving aggregates( E. O. Budrene, and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630-633 (1991). ). We present a simple theory that explains the experimentally observed structures, by solving analytically two coupled differential equations, for the densities of bacterii and of chemoattractant. The equations have an interesting relation to the exactly solvable Burgers equation, and admit soliton-like solutions, that can be steady or moving. In addition, we find that there are singular solutions to the equations in which the bacterial density diverges. The theory agrees very well with the experiment: the solitons correspond to the observed travelling rings, the singularities describe formation of aggregates. In particular, the theory explains why the velocity of swarming rings decreases with the increase of the food concentration, the fact apparently not accounted by other existing approaches( L. Tsimring et. al., Phys. Rev. Lett., 75, 1859 (1995); Woodward, et al, Biophysical Journal, 68, 2181-2189 (1995). ).

  5. Multiscale Model of Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark

    2011-03-01

    Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. In the beginning of the talk, swarms of the M. xanthus will be described in detail. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. As a cell glides, the slime capsule of a cell interacts with the bare agar surface, non-oriented slime which arises from the surface contact with the slime capsule, or oriented slime trails. Remarkably, cells regularly reverse their gliding directions. In this talk a detailed cell- and behavior-based computational model of M. xanthus swarming will be used to demonstrate that reversals of gliding direction and cell bending are essential for swarming and that specific reversal frequencies result in optimal swarming rate of the whole population. This suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming.

  6. Modelling Rock Blasting Considering Explosion Gas Penetration Using Discontinuous Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Ning, Youjun; Yang, Jun; Ma, Guowei; Chen, Pengwan

    2011-07-01

    Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.

  7. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  8. Blast Injury

    PubMed Central

    de Candole, C. A.

    1967-01-01

    The shock wave generated by an explosion (“blast wave”) may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  9. Blast injury.

    PubMed

    de Candole, C A

    1967-01-28

    The shock wave generated by an explosion ("blast wave") may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  10. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  11. Automated Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Pickett, Isaiah R.; Yulfo, Alyce R.

    1992-01-01

    Automatic grit-blasting machine removes melted-layer residue from electrical-discharge-machined surfaces of turbine blades. Automatic control system of machine provides steady flow of grit and maintains blast nozzles at proper distance and in correct orientation perpendicular to surface being blasted, regardless of contour. Eliminates localized excessive blasting and consequent excessive removal of underlying material, blasting of adjacent surfaces, and missed areas.

  12. Particle Swarm Optimization with Double Learning Patterns.

    PubMed

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  13. Particle Swarm Optimization with Double Learning Patterns

    PubMed Central

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  14. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  15. Blasting and blast effects in cold regions. Part 1. Air blast. Special report

    SciTech Connect

    Not Available

    1985-12-01

    Contents include: ideal blast waves in free air; the shock equations for air blast; scaling procedures for comparison of explosions; reflection and refraction of airblast; effect of charge height, or height of burst; attenuation of air blast and variation of shock-front properties; air blast from nuclear explosions; air blast from underground explosions; air blast from underwater explosions; air blast damage criteria; effects of ambient pressure and temperature; explosions in vacuum or in space; air blast attenuation over snow surfaces; shock reflection from snow surfaces; shock velocity over snow; variation of shock pressure with charge height over snow; release of avalanches by air blast.

  16. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  17. On the tensile strength of insect swarms.

    PubMed

    Ni, Rui; Ouellette, Nicholas T

    2016-01-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young's modulus and yield strength, and that they do not flow like viscous fluids. PMID:27559838

  18. Male motion coordination in anopheline mating swarms

    NASA Astrophysics Data System (ADS)

    Shishika, Daigo; Manoukis, Nicholas C.; Butail, Sachit; Paley, Derek A.

    2014-09-01

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa. Most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, organized patterns in such swarms have been observed, but a detailed description of male-male interactions has not previously been available. We identify frequent, time-varying interactions characterized by periods of parallel flight in data from 8 swarms of Anopheles gambiae and 3 swarms of Anopheles coluzzii filmed in 2010 and 2011 in the village of Donéguébogou, Mali. We use the cross correlation of flight direction to quantify these interactions and to induce interaction graphs, which show that males form synchronized subgroups whose size and membership change rapidly. A swarming model with damped springs between each male and the swarm centroid shows good agreement with the correlation data, provided that local interactions represented by damping of relative velocity between males are included.

  19. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations. PMID:22400623

  20. Time-delayed autosynchronous swarm control

    NASA Astrophysics Data System (ADS)

    Biggs, James D.; Bennet, Derek J.; Dadzie, S. Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  1. Capture of planetesimals into a circumterrestrial swarm

    SciTech Connect

    Weidenschilling, S.J.

    1984-01-01

    The lunar origin model considered involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. Examined is the first stage of formation of a geocentric swarm by capture of planetesimals from initialy heliocentric orbits. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space. Results agree that the systematic contribution of angular momentum is insufficient to maintain an orbiting swarm under heavy bombardment. Thus, a circumterrestrial swarm can be formed rather easily, but is hard to sustain because the mean net angular momentum of a many body swarm is small.

  2. Development of Micro UAV Swarms

    NASA Astrophysics Data System (ADS)

    Bürkle, Axel; Leuchter, Sandro

    Some complex application scenarios for micro UAVs (Unmanned Aerial Vehicles) call for the formation of swarms of multiple drones. In this paper a platform for the creation of such swarms is presented. It consists of modified commercial quadrocopters and a self-made ground control station software architecture. Autonomy of individual drones is generated through a micro controller equipped video camera. Currently it is possible to fly basic maneuvers autonomously, such as take-off, fly to position, and landing. In the future the camera's image processing capabilities will be used to generate additional control information. Different co-operation strategies for teams of UAVs are currently evaluated with an agent based simulation tool. Finally complex application scenarios for multiple micro UAVs are presented.

  3. Organic Computing and Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Merkle, Daniel; Middendorf, Martin; Scheidler, Alexander

    The relations between swarm intelligence and organic computing are discussed in this chapter. The aim of organic computing is to design and study computing systems that consist of many autonomous components and show forms of collective behavior. Such organic computing systems (OC systems) should possess self-x properties (e.g., self-healing, self-managing, self-optimizing), have a decentralized control, and be adaptive to changing requirements of their user. Examples of OC systems are described in this chapter and two case studies are presented that show in detail that OC systems share important properties with social insect colonies and how methods of swarm intelligence can be used to solve problems in organic computing.

  4. Blast assessment and optimization for high quarry face-blasting

    SciTech Connect

    Sames, F.; O`Meara, R.

    1996-12-01

    Where applicable, high production benches can improve efficiency in quarrying. Quality control, geological, cost or other considerations might result in the development of quarry benches higher than 30 m and sometimes up to 60 m. Production blasts on high quarry faces require a confident blast design with respect to safety, cost efficiency and minimized environmental effects. Careful pre-blast assessment of the design parameters, blast monitoring of the product performance and the environmental effects and post-blast assessment of the overall blast performance are essential for the successful implementation of the blast design. The blast geometry for high quarry faces and a blast design that often includes multiple explosive charges in a blasthole, make a reliable assessment of the blast parameters difficult. Assessment techniques, their applications and limitations are described and discussed. This will include such methods as blast surveying using laser profiling and borehole deviation measurements, blast monitoring using continuous velocity of detonation measurement systems, high speed photography and seismographs for blast performance and environmental effects. Observations of low frequency airblast and high standard deviations in ground vibration measurements are described and discussed against a background of timing assessment and frequency spectra analysis. Approaches where an optimized design was implemented based on the blast parameter assessment and modeling are presented. An improvement in blast efficiency lies in the combination of blast assessment and blast modeling, whilst adequate documentation supports the process of designing and implementing successful blasts.

  5. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

    2010-12-01

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

  6. Multispacecraft current estimates at swarm

    NASA Astrophysics Data System (ADS)

    Dunlop, M. W.; Yang, Y.-Y.; Yang, J.-Y.; Lühr, H.; Shen, C.; Olsen, N.; Ritter, P.; Zhang, Q.-H.; Cao, J.-B.; Fu, H.-S.; Haagmans, R.

    2015-10-01

    During the first several months of the three-spacecraft Swarm mission all three spacecraft came repeatedly into close alignment, providing an ideal opportunity for validating the proposed dual-spacecraft method for estimating current density from the Swarm magnetic field data. Two of the Swarm spacecraft regularly fly side-by-side in closely similar orbits, while the third at times approaches the other two. This provides a data set which under certain assumptions of stationarity of the magnetic field can produce 2, 3, 4, 5 (or more) point measurements, which can be cross compared. We find that at low Earth orbit the use of time-shifted positions allow stable estimates of current density to be made and can verify temporal effects as well as validating the interpretation of the current components as arising predominantly from field-aligned currents. In the case of four-spacecraft configurations we can resolve the full vector current and therefore can check the perpendicular as well as parallel current density components directly, together with the quality factor for the estimates directly (for the first time in situ at low Earth orbit).

  7. Heart Failure

    MedlinePlus

    ... version of this page please turn Javascript on. Heart Failure What is Heart Failure? In heart failure, the heart cannot pump enough ... failure often experience tiredness and shortness of breath. Heart Failure is Serious Heart failure is a serious and ...

  8. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  9. Blast furnace stove control

    SciTech Connect

    Muske, K.R.; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  10. Blast injury research models

    PubMed Central

    Kirkman, E.; Watts, S.; Cooper, G.

    2011-01-01

    Blast injuries are an increasing problem in both military and civilian practice. Primary blast injury to the lungs (blast lung) is found in a clinically significant proportion of casualties from explosions even in an open environment, and in a high proportion of severely injured casualties following explosions in confined spaces. Blast casualties also commonly suffer secondary and tertiary blast injuries resulting in significant blood loss. The presence of hypoxaemia owing to blast lung complicates the process of fluid resuscitation. Consequently, prolonged hypotensive resuscitation was found to be incompatible with survival after combined blast lung and haemorrhage. This article describes studies addressing new forward resuscitation strategies involving a hybrid blood pressure profile (initially hypotensive followed later by normotensive resuscitation) and the use of supplemental oxygen to increase survival and reduce physiological deterioration during prolonged resuscitation. Surprisingly, hypertonic saline dextran was found to be inferior to normal saline after combined blast injury and haemorrhage. New strategies have therefore been developed to address the needs of blast-injured casualties and are likely to be particularly useful under circumstances of enforced delayed evacuation to surgical care. PMID:21149352

  11. Laboratory Blast Testing Methodologies

    NASA Astrophysics Data System (ADS)

    Needham, C.; Rule, G.

    Blast-induced injuries remain a critical problem facing US Forces during combat operations. As the nature of modern warfare has evolved, it is likely that the Improvised Explosive Device (IED) will remain a common battlefield threat for the foreseeable future. Thus, research devoted to improving protection, and characterizing the physiological response of people and equipment to blast exposure is and will remain a major thrust area for the DOD. Unfortunately, exact reproduction or simulation of the blast environment is technically challenging, while measuring and characterizing blast exposures is even more complex.

  12. Particle swarm-based structural optimization of laminated composite hydrokinetic turbine blades

    NASA Astrophysics Data System (ADS)

    Li, H.; Chandrashekhara, K.

    2015-09-01

    Composite blade manufacturing for hydrokinetic turbine application is quite complex and requires extensive optimization studies in terms of material selection, number of layers, stacking sequence, ply thickness and orientation. To avoid a repetitive trial-and-error method process, hydrokinetic turbine blade structural optimization using particle swarm optimization was proposed to perform detailed composite lay-up optimization. Layer numbers, ply thickness and ply orientations were optimized using standard particle swarm optimization to minimize the weight of the composite blade while satisfying failure evaluation. To address the discrete combinatorial optimization problem of blade stacking sequence, a novel permutation discrete particle swarm optimization model was also developed to maximize the out-of-plane load-carrying capability of the composite blade. A composite blade design with significant material saving and satisfactory performance was presented. The proposed methodology offers an alternative and efficient design solution to composite structural optimization which involves complex loading and multiple discrete and combinatorial design parameters.

  13. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    USGS Publications Warehouse

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  14. Osmotic pressure in a bacterial swarm.

    PubMed

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. PMID:25140422

  15. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  16. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  17. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  18. Lightweight blast shield

    DOEpatents

    Mixon, Larry C.; Snyder, George W.; Hill, Scott D.; Johnson, Gregory L.; Wlodarski, J. Frank; von Spakovsky, Alexis P.; Emerson, John D.; Cole, James M.; Tipton, John P.

    1991-01-01

    A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

  19. Swarms, swarming and entanglements of fungal hyphae and of plant roots

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim

    2013-01-01

    There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an “active” swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a “passive” swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system. PMID:24255743

  20. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    SciTech Connect

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  1. Response of Annealed Glass Windows to Blast Loads

    NASA Astrophysics Data System (ADS)

    Spiller, Kevin

    This thesis presents the comparison of experimentally collected data on the response of monolithic annealed glass windows to blast loads with the output of several predictive software packages. Experimental data was gathered from two full-scale field arena blast testing series, during which 34 glass panes were subjected to explosive blast waves of varying intensity. The setups tested in the field were modelled using three blast analysis programs. A series of small- and large-scale laboratory tests was carried out to investigate the material properties of the glass and the load-displacement behaviour of the field-tested window systems, to refine the model predictions. By comparing software-predicted window behaviour with the observed response, the accuracy and applicability of the various modelling techniques and glass failure criteria employed by the software packages were evaluated.

  2. Transport of Particle Swarms Through Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  3. Scouts behave as streakers in honeybee swarms.

    PubMed

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction. PMID:23812604

  4. Scouts behave as streakers in honeybee swarms

    NASA Astrophysics Data System (ADS)

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.

  5. Swarm Intelligence Optimization and Its Applications

    NASA Astrophysics Data System (ADS)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  6. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  7. Scalar transport by planktonic swarms

    NASA Astrophysics Data System (ADS)

    Martinez-Ortiz, Monica; Dabiri, John O.

    2012-11-01

    Nutrient and energy transport in the ocean is primarily governed by the action of physical phenomena. In previous studies it has been suggested that aquatic fauna may significantly contribute to this process through the action of the induced drift mechanism. In this investigation, the role of planktonic swarms as ecosystem engineers is assessed through the analysis of scalar transport within a stratified water column. The vertical migration of Artemia salina is controlled via luminescent signals on the top and bottom of the column. The scalar transport of fluorescent dye is visualized and quantified through planar laser induced fluorescence (PLIF). Preliminary results show that the vertical movement of these organisms enhances scalar transport relative to control cases in which only buoyancy forces and diffusion are present. Funded by the BSF program (2011553).

  8. A Swarm of Ancient Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This stellar swarm is M80 (NGC 6093), one of the densest of the 147 known globular star clusters in the Milky Way galaxy. Located about 28,000 light-years from Earth, M80 contains hundreds of thousands of stars, all held together by their mutual gravitational attraction. Globular clusters are particularly useful for studying stellar evolution, since all of the stars in the cluster have the same age (about 15 billion years), but cover a range of stellar masses. Every star visible in this image is either more highly evolved than, or in a few rare cases more massive than, our own Sun. Especially obvious are the bright red giants, which are stars similar to the Sun in mass that are nearing the ends of their lives.

  9. Swarm Intelligence in Text Document Clustering

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E

    2008-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role in helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.

  10. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  11. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  12. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  13. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  14. Verification of Emergent Behaviors in Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    The emergent properties of swarms make swarm-based missions powerful, but at the same time more difficult to design and to assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of swarm-based missions. The Autonomous Nano-Technology Swarm (ANTS) mission is being used as an example and case study for swarm-based missions to experiment and test current formal methods with intelligent swarms. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior. This paper introduces how intelligent swarm technology is being proposed for NASA missions, and gives the results of a comparison of several formal methods and approaches for specifying intelligent swarm-based systems and their effectiveness for predicting emergent behavior.

  15. Investigating the Origin of Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Passarelli, Luigi; Braun, Thomas; Maccaferri, Francesco; Moretti, Milena; Lucente, Francesco Pio; Rivalta, Eleonora; Cesca, Simone; Hainzl, Sebastian; Woith, Heiko; De Gori, Pasquale; Dahm, Torsten; Chiarabba, Claudio; Margheriti, Lucia

    2013-10-01

    According to the U.S. Geological Survey's Earthquake Hazards Program, a seismic swarm is "a localized surge of earthquakes, with no one shock being conspicuously larger than all other shocks of the swarm. They might occur in a variety of geologic environments and are not known to be indicative of any change in the long-term seismic risk of the region in which they occur" (http://vulcan.wr.usgs.gov/Glossary/Seismicity/description_earthquakes.html).

  16. Collective navigation of cargo-carrying swarms

    PubMed Central

    Shklarsh, Adi; Finkelshtein, Alin; Ariel, Gil; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel

    2012-01-01

    Much effort has been devoted to the study of swarming and collective navigation of micro-organisms, insects, fish, birds and other organisms, as well as multi-agent simulations and to the study of real robots. It is well known that insect swarms can carry cargo. The studies here are motivated by a less well-known phenomenon: cargo transport by bacteria swarms. We begin with a concise review of how bacteria swarms carry natural, micrometre-scale objects larger than the bacteria (e.g. fungal spores) as well as man-made beads and capsules (for drug delivery). A comparison of the trajectories of virtual beads in simulations (using different putative coupling between the virtual beads and the bacteria) with the observed trajectories of transported fungal spores implies the existence of adaptable coupling. Motivated by these observations, we devised new, multi-agent-based studies of cargo transport by agent swarms. As a first step, we extended previous modelling of collective navigation of simple bacteria-inspired agents in complex terrain, using three putative models of agent–cargo coupling. We found that cargo-carrying swarms can navigate efficiently in a complex landscape. We further investigated how the stability, elasticity and other features of agent–cargo bonds influence the collective motion and the transport of the cargo, and found sharp phase shifts and dual successful strategies for cargo delivery. Further understanding of such mechanisms may provide valuable clues to understand cargo-transport by smart swarms of other organisms as well as by man-made swarming robots. PMID:24312731

  17. [Blast lung injuries].

    PubMed

    Clapson, P; Pasquier, P; Perez, J-P; Debien, B

    2010-09-01

    In armed conflicts and during terrorist attacks, explosive devices are a major cause of mortality. The lung is one of the organs most sensitive to blasts. Thus, today it is important that every GP at least knows the basics and practices regarding treatment of blast victims. We suggest, following a review of the explosions and an assessment of the current threats, detailing the lung injuries brought about by the explosions and the main treatments currently recommended. PMID:20933166

  18. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-07-01

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  19. Guidance and control of swarms of spacecraft

    NASA Astrophysics Data System (ADS)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  20. Male motion coordination in anopheline mating swarms.

    PubMed

    Shishika, Daigo; Manoukis, Nicholas C; Butail, Sachit; Paley, Derek A

    2014-01-01

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa. Most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, organized patterns in such swarms have been observed, but a detailed description of male-male interactions has not previously been available. We identify frequent, time-varying interactions characterized by periods of parallel flight in data from 8 swarms of Anopheles gambiae and 3 swarms of Anopheles coluzzii filmed in 2010 and 2011 in the village of Donéguébogou, Mali. We use the cross correlation of flight direction to quantify these interactions and to induce interaction graphs, which show that males form synchronized subgroups whose size and membership change rapidly. A swarming model with damped springs between each male and the swarm centroid shows good agreement with the correlation data, provided that local interactions represented by damping of relative velocity between males are included. PMID:25212874

  1. ESA Swarm Mission - Level 1b Products

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  2. Male motion coordination in anopheline mating swarms

    PubMed Central

    Shishika, Daigo; Manoukis, Nicholas C.; Butail, Sachit; Paley, Derek A.

    2014-01-01

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa. Most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, organized patterns in such swarms have been observed, but a detailed description of male-male interactions has not previously been available. We identify frequent, time-varying interactions characterized by periods of parallel flight in data from 8 swarms of Anopheles gambiae and 3 swarms of Anopheles coluzzii filmed in 2010 and 2011 in the village of Donéguébogou, Mali. We use the cross correlation of flight direction to quantify these interactions and to induce interaction graphs, which show that males form synchronized subgroups whose size and membership change rapidly. A swarming model with damped springs between each male and the swarm centroid shows good agreement with the correlation data, provided that local interactions represented by damping of relative velocity between males are included. PMID:25212874

  3. Spatial distribution and male mating success of Anopheles gambiae swarms

    PubMed Central

    2011-01-01

    Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble

  4. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  5. The Fate of Colloidal Swarms in Fractures

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  6. Hybridization Hotspots at Bat Swarming Sites

    PubMed Central

    Bogdanowicz, Wiesław; Piksa, Krzysztof; Tereba, Anna

    2012-01-01

    During late summer and early autumn in temperate zones of the Northern Hemisphere, thousands of bats gather at caves, mainly for the purpose of mating. We demonstrated that this swarming behavior most probably leads not only to breeding among bats of the same species but also interbreeding between different species. Using 14 nuclear microsatellites and three different methods (the Bayesian assignment approaches of STRUCTURE and NEWHYBRIDS and a principal coordinate analysis of pairwise genetic distances), we analyzed 375 individuals belonging to three species of whiskered bats (genus Myotis) at swarming sites across their sympatric range in southern Poland. The overall hybridization rate varied from 3.2 to 7.2%. At the species level, depending on the method used, these values ranged from 2.1–4.6% in M. mystacinus and 3.0–3.7% in M. brandtii to 6.5–30.4% in M. alcathoe. Hybrids occurred in about half of the caves we studied. In all three species, the sex ratio of hybrids was biased towards males but the observed differences did not differ statistically from those noted at the population level. In our opinion, factors leading to the formation of these admixed individuals and their relatively high frequency are: i) swarming behaviour at swarming sites, where high numbers of bats belonging to several species meet; ii) male-biased sex ratio during the swarming period; iii) the fact that all these bats are generally polygynous. The highly different population sizes of different species at swarming sites may also play some role. Swarming sites may represent unique hybrid hotspots, which, as there are at least 2,000 caves in the Polish Carpathians alone, may occur on a massive scale not previously observed for any group of mammal species in the wild. Evidently, these sites should be treated as focal points for the conservation of biodiversity and evolutionary processes. PMID:23300912

  7. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-12-31

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the advance in computer technology has increased the computing power of small work stations as well as PC (personal computers) to permit a much shorter turn-around time for complex computations. The DMC can perform a blast simulation in 0.5 hours on the SUN SPARC station 10-41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  8. Self-organized sorting limits behavioral variability in swarms

    PubMed Central

    Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay

    2016-01-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters. PMID:27550316

  9. Self-organized sorting limits behavioral variability in swarms.

    PubMed

    Copenhagen, Katherine; Quint, David A; Gopinathan, Ajay

    2016-01-01

    Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters. PMID:27550316

  10. Structural Preconditions of West Bohemia Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Novotný, M.; Špičák, A.; Weinlich, F. H.

    2013-07-01

    The West Bohemia and adjacent Vogtland are well known for quasi-periodical earthquake swarms persisting for centuries. The seismogenic area near Nový Kostel involved about 90 % of overall earthquake activity clustered here in space and time. The latest major earthquake swarm took place in August-September 2011. In 1994 and 1997, two minor earthquake swarms appeared in another location, near Lazy. Recently, the depth-recursive tomography yielded a velocity image with an improved resolution along the CEL09 refraction profile passing between these swarm areas. The resolution, achieved in the velocity image and its agreement with the inverse gravity modeling along the collateral 9HR reflection profile, enabled us to reveal the key structural background of these West Bohemia earthquake swarms. The CEL09 velocity image detected two deeply rooted high-velocity bodies adjacent to the Nový Kostel and Lazy focal zones. They correspond to two Variscan mafic intrusions influenced by the SE inclined slab of Saxothuringian crust that subducted beneath the Teplá-Barrandian terrane in the Devonian era. In their uppermost SE inclined parts, they roof both focal zones. The high P-wave velocities of 6,100-6,200 m/s, detected in both roofing caps, indicate their relative compactness and impermeability. The focal domains themselves are located in the almost gradient-free zones with the swarm foci spread near the axial planes of profound velocity depressions. The lower velocities of 5,950-6,050 m/s, observed in the upper parts of focal zones, are indicative of less compact rock complexes corrugated and tectonically disturbed by the SE bordering magma ascents. The high-velocity/high-density caps obviously seal the swarm focal domains because almost no magmatic fluids of mantle origin occur in the Nový Kostel and Lazy seismogenic areas of the West Bohemia/Vogtland territory, otherwise rich in the mantle-derived fluids. This supports the hypothesis of the fluid triggering of earthquake

  11. Periodic Reversals in Paenibacillus dendritiformis Swarming

    PubMed Central

    Strain, Shinji K.; Hernández, Roberto A.; Ben-Jacob, Eshel; Florin, E.-L.

    2013-01-01

    Bacterial swarming is a type of motility characterized by a rapid and collective migration of bacteria on surfaces. Most swarming species form densely packed dynamic clusters in the form of whirls and jets, in which hundreds of rod-shaped rigid cells move in circular and straight patterns, respectively. Recent studies have suggested that short-range steric interactions may dominate hydrodynamic interactions and that geometrical factors, such as a cell's aspect ratio, play an important role in bacterial swarming. Typically, the aspect ratio for most swarming species is only up to 5, and a detailed understanding of the role of much larger aspect ratios remains an open challenge. Here we study the dynamics of Paenibacillus dendritiformis C morphotype, a very long, hyperflagellated, straight (rigid), rod-shaped bacterium with an aspect ratio of ∼20. We find that instead of swarming in whirls and jets as observed in most species, including the shorter T morphotype of P. dendritiformis, the C morphotype moves in densely packed straight but thin long lines. Within these lines, all bacteria show periodic reversals, with a typical reversal time of 20 s, which is independent of their neighbors, the initial nutrient level, agar rigidity, surfactant addition, humidity level, temperature, nutrient chemotaxis, oxygen level, illumination intensity or gradient, and cell length. The evolutionary advantage of this unique back-and-forth surface translocation remains unclear. PMID:23603739

  12. Earthquake swarms on Mount Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kaminuma, Katsutada; Baba, Megumi; Ueki, Sadato

    1986-12-01

    Mount Erebus (3794 m), located on Ross Island in McMurdo Sound, is one of the few active volcanoes in Antartica. A high-sensitivity seismic network has been operated by Japanese and US parties on and around the Volcano since December, 1980. The results of these observations show two kinds of seismic activity on Ross Island: activity concentrated near the summit of Mount Erebus associated with Strombolian eruptions, and micro-earthquake activity spread through Mount Erebus and the surrounding area. Seismicity on Mount Erebus has been quite high, usually exceeding 20 volcanic earthquakes per day. They frequently occur in swarms with daily counts exceeding 100 events. Sixteen earthquake swarms with more than 250 events per day were recorded by the seismic network during the three year period 1982-1984, and three notable earthquake swarms out of the sixteen were recognized, in October, 1982 (named 82-C), March-April, 1984 (84-B) and July, 1984 (84-F). Swarms 84-B and 84-F have a large total number of earthquakes and large Ishimoto-Iida's "m"; hence these two swarms are presumed to constitute on one of the precursor phenomena to the new eruption, which took place on 13 September, 1984, and lasted a few months.

  13. Presence of Russian honey bee genotypes in swarms in Louisiana.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swarm traps were placed in an area around USDA, ARS apiaries near Baton Rouge, Louisiana, which had contained ARS Russian and other honey bees for several years. Eighty swarms were sampled and analyzed for their genotype (Russian, hybrid or non-Russian) and mite infestation percentages. Ten swarms...

  14. Blasting: Another environmental woe

    NASA Astrophysics Data System (ADS)

    Simpson, Thomas A.

    1989-03-01

    The much increased use of explosives to move and extract rock masses in construction and mining over the past two decades has resulted in a plethora of complaints from the general public in areas of close proximity to public facilities, communication, and transportation systems. Air blasts and ground vibrations caused by explosive detonation can have desultory and damaging effects to public and private property, impose adverse effects on underground mining operations, and change the course of flow or effect the availability of surface and groundwater. Attempts to prevent damage and alleviate problems from blasting have been initiated by the federal and state governments by the promulgation of rules and regulations to prevent against vagrant and negligent blasting procedures. The Office of Surface Mining, Reclamation and Enforcement (OSMRE) provided regulations in the Federal Register on March 8, 1983, with particular reference to surface mining practices. Most of the states have adopted the OSMRE guidelines to enforce these rules and regulations.

  15. Kidney Failure

    MedlinePlus

    ... if You Have Kidney Disease Kidney Failure Expand Dialysis Kidney Transplant Preparing for Kidney Failure Treatment Choosing Not to Treat with Dialysis or Transplant Paying for Kidney Failure Treatment Contact ...

  16. Failure mechanisms of concrete slab-soil double-layer structure subjected to underground explosion

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhang, W.; Cho, C.; Han, X.

    2014-09-01

    The failure mechanism of a concrete slab-soil double-layer structure subjected to an underground explosion was investigated by experimental and numerical methods in this paper. Two underground explosion depths of 150 and 350 mm were tested. The typical failure modes such as the conoid spall of concrete, the bulge of the concrete slab and the cavity in the soil were obtained experimentally. Numerical simulations of the experiments were performed using a hydrodynamic code to analyze the effects of both the stress wave and the expansion of the blast products. Based on the experimental and numerical results, the effects of explosive depth, blast wave front and expansion of the blast products on the failure modes and failure mechanisms were discussed. The underground explosion process at different explosion depths was also analyzed. The results show that attenuation of the stress wave in the soil is significant. The blast wave front and the expansion of the blast products play different roles at different explosion depths. At the explosion depth of 150 mm, the failure mode is mainly caused by a point load induced by the blast wave front, whereas at the depth of 350 mm a sphere-shaped load resulting from the expansion of the blast products is a key factor for failure.

  17. Emergent dynamics of laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2013-01-01

    Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been difficult to obtain. Here, we report three-dimensional, time-resolved measurements of the positions, velocities, and accelerations of individual insects in laboratory swarms of the midge Chironomus riparius. Even though the swarms do not show an overall polarisation, we find statistical evidence for local clusters of correlated motion. We also show that the swarms display an effective large-scale potential that keeps individuals bound together, and we characterize the shape of this potential. Our results provide quantitative data against which the emergent characteristics of animal aggregation models can be benchmarked.

  18. Bacterial Swarming: social behaviour or hydrodynamics?

    NASA Astrophysics Data System (ADS)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  19. Modeling and Simulating Blast Effects on Electric Substations

    SciTech Connect

    Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

    2009-05-01

    A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

  20. Swarm field dynamics and functional morphogenesis

    SciTech Connect

    Millonas, M.M. |

    1993-02-01

    A class of models with application to swarm behavior as well as many other types of complex systems is studied with an emphasis on analytic techniques and results. Special attention is given to the role played by fluctuations in determining the behavior of such systems. In particular it is suggested that such fluctuations may play an active role, and not just the usual passive one, in the organization of structure in the vicinity of a non-equilibrium phase transition. One model, that of an ant swarm, is analyzed in more detail as an illustration of these ideas.

  1. Swarm field dynamics and functional morphogenesis

    SciTech Connect

    Millonas, M.M. Santa Fe Inst., NM )

    1993-01-01

    A class of models with application to swarm behavior as well as many other types of complex systems is studied with an emphasis on analytic techniques and results. Special attention is given to the role played by fluctuations in determining the behavior of such systems. In particular it is suggested that such fluctuations may play an active role, and not just the usual passive one, in the organization of structure in the vicinity of a non-equilibrium phase transition. One model, that of an ant swarm, is analyzed in more detail as an illustration of these ideas.

  2. Software Engineering and Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  3. Swarms of UAVs and fighter aircraft

    SciTech Connect

    Trahan, M.W.; Wagner, J.S.; Stantz, K.M.; Gray, P.C.; Robinett, R.

    1998-11-01

    This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.

  4. Reliability Optimization of Radial Distribution Systems Employing Differential Evolution and Bare Bones Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Kela, K. B.; Arya, L. D.

    2014-09-01

    This paper describes a methodology for determination of optimum failure rate and repair time for each section of a radial distribution system. An objective function in terms of reliability indices and their target values is selected. These indices depend mainly on failure rate and repair time of a section present in a distribution network. A cost is associated with the modification of failure rate and repair time. Hence the objective function is optimized subject to failure rate and repair time of each section of the distribution network considering the total budget allocated to achieve the task. The problem has been solved using differential evolution and bare bones particle swarm optimization. The algorithm has been implemented on a sample radial distribution system.

  5. Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

    SciTech Connect

    Preece, D.S.; Tidman, J.P.; Chung, S.H.

    1996-12-31

    A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

  6. Challenges in management of blast injuries in Intensive Care Unit: Case series and review

    PubMed Central

    Samra, Tanvir; Pawar, Mridula; Kaur, Jasvinder

    2014-01-01

    Blast injuries are rare, but life-threatening medical emergencies. We report the clinical presentation and management of four bomb blast victims admitted in Intensive Care Unit of Trauma center of our hospital in 2011. Three of them had lung injury; hemothorax (2) and pneumothorax (1). Traumatic brain injury was present in only one. Long bone fractures were present in all the victims. Presence of multiple shrapnels was a universal finding. Two blast victims died (day 7 and day 9); cause of death was multi-organ failure and septic shock. Issues relating to complexity of injuries, complications, management, and outcome are discussed. PMID:25538416

  7. Swarm formation control utilizing elliptical surfaces and limiting functions.

    PubMed

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs). PMID:19447722

  8. Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions

    PubMed Central

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718

  9. Do volcanic earthquake swarms relate to their volcanic setting?

    NASA Astrophysics Data System (ADS)

    Buurman, H.; West, M. E.; De Angelis, S.

    2013-12-01

    Determining whether a volcanic earthquake swarm will culminate in an eruption is arguably one of the most important unanswered questions in volcano seismology. Although swarms are generally thought to result when magma ascends through the crust, they do not always result in volcanic eruptions and are not always accompanied by significant crustal deformation, suggesting that magma ascent may not always be the source of the activity. We examine whether the volcanic setting influences the behavior of volcanic seismic swarms by comparing the characteristics of seismic swarms recorded in a wide variety of provenances. Our dataset comprises swarms recorded at volcanoes in continental and oceanic arcs, including the Cascade and Aleutian arcs, and hot spot settings such as Iceland and Yellowstone. We begin by defining a number of metrics such as hypocentral distribution, magnitude distribution, earthquake rates and swarm duration to place the different swarms in a context across which comparisons can be made. We then search for correlations between these swarm parameters that can be related to their volcanic setting. Grouping swarms according to their volcanic setting allows us to relate the earthquake sources more directly to the movement of magma in the crust, since magma properties such as viscosity are known to vary substantially between different volcanic regions. Understanding how the behavior of swarms changes according to the volcanic provenance is a crucial step towards understanding how magma is transported through the crust, and consequently with our ability to assess the eruptive potential of volcanic seismic swarms.

  10. Space and time distribution of foci and source mechanisms of West-Bohemia/Vogtland earthquake swarms - a tool for understanding of their origin

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2014-05-01

    two different source mechanisms occurred: the oblique-normal on the one segment and the oblique-thrust type on the other one. Furthermore, we disclose that all the ML ≥ 2.7 swarm events, which occurred in the given time span, are located in a few dense clusters. It implies that the most of seismic energy in the individual swarms has been released in step by step rupturing of one or a few asperities. The existing results do not allow us to explain properly an origin of earthquake swarms. Nevertheless, some results point to a connection between pressurized fluids in the crust and the earthquake swarm occurrence. Taking this into account, we may infer that earthquake swarms occur on short fault segments with heterogeneous stress and strength, which are affected by crustal fluids. Pressurized fluids reduced normal component of the tectonic stress and lower friction. Thus, critically loaded and favourably oriented faults are brought to failure and the swarm activity is driven by the differential local stress.

  11. Selectively-informed particle swarm optimization.

    PubMed

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-01-01

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors. PMID:25787315

  12. Collective behaviors of two-component swarms.

    PubMed

    You, Sang Koo; Kwon, Dae Hyuk; Park, Yong-ik; Kim, Sun Myong; Chung, Myung-Hoon; Kim, Chul Koo

    2009-12-01

    We present a particle-based simulation study on two-component swarms where there exist two different types of groups in a swarm. Effects of different parameters between the two groups are studied systematically based on Langevin's equation. It is shown that the mass difference can introduce a protective behavior for the lighter members of the swarm in a vortex state. When the self-propelling strength is allowed to differ between two groups, it is observed that the swarm becomes spatially segregated and finally separated into two components at a certain critical value. We also investigate effects of different preferences for shelters on their collective decision making. In particular, it is found that the probability of selecting a shelter from the other varies sigmoidally as a function of the number ratio. The model is shown to describe the dynamics of the shelter choosing process of the cockroach-robot mixed group satisfactorily. It raises the possibility that the present model can be applied to the problems of pest control and fishing using robots and decoys. PMID:19716374

  13. Selectively-informed particle swarm optimization

    PubMed Central

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-01-01

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors. PMID:25787315

  14. Swarm magnetic gradients for lithospheric modelling (SLIM)

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros; Brönner, Marco; Haagmans, Roger; Fuchs, Martin; Holzrichter, Nils; Olsen, Nils; Baykiev, Eldar

    2016-04-01

    We present first results of a feasibility study to use magnetic gradient information derived from Swarm data for crustal field modelling. The study is part of ESA's Support To Science Element (STSE) Swarm+ Innovations. In a first step, magnetic gradients have been derived from the observations taken by the three Swarm satellites, with emphasis on the two side-by-side flying spacecraft. Next, these gradients are used to compute magnetic gradient grids at 450 km altitude (the present mean altitude of the lower Swarm satellites) for one example region, North-West Europe. The suggested area comprise both exposed basement geology in southern Sweden and Norway with crustal scale magnetic anomalies and the Sorgenfrei-Tornquist Zone, a well-studied large scale tectonic fault system. With sensitivity analysis we studied the added benefit of the information from the gradient grids for lithospheric magnetic field modelling. A wealth of aeromagnetic data and additional constraining information for the example area allows us to validate our modelling results in great detail.

  15. A satellite swarm for radio astronomy

    NASA Astrophysics Data System (ADS)

    Dekens, E.; Engelen, S.; Noomen, R.

    2014-09-01

    At present the celestial sky has been mapped in considerable detail for every major wavelength band, except for the ultra-long radiowave band. A space-based interferometer consisting of a swarm of satellites would make it possible to map the celestial sources of 0.1-10 MHz radiation. Such a mission concept called the Orbiting Low Frequency Array (OLFAR) is currently undergoing a feasibility study. This paper presents an analysis of possible operational orbits for the OLFAR satellites. The strategy for OLFAR is to let the satellites drift freely after release into initial orbits. The design of the swarm's reference orbit is primarily motivated by the need for a low radio-noise environment. This results in lunar orbits being main candidates. The design of the initial swarm configuration is primarily motivated by the need for uvw-space coverage. This quantity expresses the variation of lengths and orientations of the satellite relative position vectors over time. Numerical simulations give strong indications that the required uvw-coverage can be met within 1 year of operations with a number of satellites ranging between 25 and 100. A key conclusion is that the orbital behavior of a swarm (characterized by the absence of continuous formation control) is well suited for ultra-long wavelength radio astronomy.

  16. Selectively-informed particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-03-01

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

  17. Mechanical assessment of grit blasting surface treatments of dental implants.

    PubMed

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process. PMID:25173238

  18. Characteristics of tectonomagmatic earthquake swarms at the Southwest Indian Ridge between 16°E and 25°E

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Korger, E. I. M.; Schlindwein, V.; Müller, C.; Eckstaller, A.

    2012-07-01

    The ultraslow spreading Southwest Indian Ridge (SWIR) is a prominent end-member of the global mid-ocean ridge system. It spreads with a full-rate of 14-16 mm y-1 and shows several segments of various obliquities. The western SWIR consists of the Oblique and Orthogonal Supersegments lying at an epicentral distance of ˜21° to the VNA2 seismic array operated by the German Neumayer station in East Antarctica. The array monitors backazimuth, apparent velocity and signal-to-noise ratio of arriving waves and provides a data set of seismicity from the western SWIR over several years. Compared to the global seismological network, its detection threshold for earthquakes occurring at the western SWIR is more than 0.5 mb lower enabling a more comprehensive study of mid-ocean ridge processes than the teleseismic earthquake catalogues. We identified a total number of 743 earthquakes occurring at the western part of the SWIR and calculated the body-wave magnitudes (mb) from P-wave amplitude picks on the VNA2 broad-band sensor obtaining a magnitude range from mb 3.18 to mb 5.34. In the years of 2001, 2004, 2005 and 2008, significantly increased event rates indicated four earthquake swarms with up to 164 events lasting for several days. All swarms had strong events registered in the International Seismological Centre catalogue. The relocalization of these events confirmed that all swarms occurred in the same region on the Orthogonal Supersegment. We analysed event and moment release rate histories, b-values and aftershock decay rates (Modified Omori Law) finding that the swarms of 2001, 2004 and 2005 have similarities in the temporal distribution of seismic moment and event numbers. The swarm of 2008 is smaller with high magnitude events at the swarm's onset which represent shear failure on normal faults. The application of the Modified Omori Law and the b-value show that the earthquakes of the swarms do not follow the classical main shock-aftershock pattern of purely tectonic

  19. Programmable Grit-Blasting System

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1988-01-01

    In programmable grit-blasting system undergoing design, controller moves blasting head to precise positions to shape or remove welding defects from parts. Controller holds head in position for preset dwell time and moves head to new position along predetermined path. Position of articulated head established by pair of servomotors according to programmed signals from controller. Head similar to video borescope. Used to remove welding defects in blind holes. Suited for repetitive production operations in grit-blast box.

  20. Electromagnetic emissions during rock blasting

    NASA Astrophysics Data System (ADS)

    O'Keefe, S. G.; Thiel, D. V.

    1991-05-01

    Radio emissions during quarry blasting have been recorded in the audio frequency band. Three distinct mechanisms are suggested to explain the observed results; rock fracture at the time of the explosion, charged rocks discharging on impact with the pit floor and micro-fracture of the remaining rock wall due to pressure adjustment of the bench behind the blast. The last mechanism was evident by a train of discrete impulses recorded for up to one minute after the blast. It is assumed that during this time the rock behind the blast was subjected to a significant change in pressure. This may be related to ELF observations during earthquakes.

  1. 'Do-it-yourself' fallout/blast shelter evaluation. Final report

    SciTech Connect

    Nash, P.T.; Baker, W.E.; Esparza, E.D.; Westine, P.S.; Blaylock, N.W.

    1984-03-01

    Expedient fallout shelters recommended to the general public were evaluated for their potential to provide safety to occupants during nuclear blast. The blast threat was in the 2 to 50 psi overpressure range from a 1 megaton (MT) yield weapon. Research included a literature search for expedient shelter designs and evaluations of the designs to certify their ability to protect occupants. Shelters were evaluated systematically by first analyzing each design for expected failure loads. Next, scale model tests were planned and conducted in the Fort Cronkhite shock tunnel. Structural responses and blast pressures were recorded in a series of twelve experiments involving 96 structural response models. Two rigid models were included in each test to measure internal blast pressure leakage. Probabilities of survival were determined for each of the shelters tested. Expected failure mechanisms were identified for each of the eight U.S. shelters. One shelter, tilt-up doors and earth, was eliminated from consideration because of uncertainties for the associated permanent structure. Failure loads of the remaining seven shelters were determined through analysis. Analyses included failure by overturning/translation, trench collapse, or roof collapse. A car-over-trench shelter was evaluated solely through analysis. The threshold for human tolerance to blast pressures (lung damage) was calculated as 8 psi with a 99 percent survival rate at 28 psi. Thresholds for trench wall stability were calculated based on material strengths and shelter geometries.

  2. Identification and Characterization of Earthquake Swarms in Southern California

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.; Zhang, Q.

    2015-12-01

    Earthquake swarms are space-time clusters of seismicity that cannot easily be explained by typical aftershock behavior, and are likely triggered by external processes such as fluid migration and/or slow slip. However, swarm properties are not fully understood and how much swarm occurrence is related to the tectonic environment (e.g., heat flow, stressing rate) or source characteristics (e.g., focal mechanism, stress drop) is unclear. Systematic study of large numbers of swarms and their source properties should help to resolve these issues, but is hampered by the challenge of identifying swarms at a range of spatiotemporal scales from a large earthquake catalog. We have developed a new method to search for clusters by comparing the number of neighboring events to the background events in scalable space/time windows, similar to the idea of STA/LTA algorithms, and then discriminating swarms from aftershock clustering. We first apply this method to the San Jacinto Fault Zone (SJFZ) and find ten times more swarms than a previous study using fixed spatiotemporal windows. The most striking spatial pattern of our identified swarm events is a higher fraction of swarms at the northern and southern ends of the SJFZ than its central segment, which correlates with an increased proportion of normal faulting earthquakes. We then apply our method to search the entire southern California catalog of 433,737 events with M ≥ 1 from 1981 to 2014. Preliminary results indicate that swarms are heterogeneously distributed in space and time, but that higher swarm rates are generally found in regions of normal faulting. We will explore other swarm properties, such as event stress drops, spatial migration behavior, distribution of moment release, and relation to foreshock sequences in order to better understand the driving physical mechanisms of swarms and improve earthquake forecasts.

  3. Frog Swarms: Earthquake Precursors or False Alarms?

    PubMed Central

    Grant, Rachel A.; Conlan, Hilary

    2013-01-01

    Simple Summary Media reports linking unusual animal behaviour with earthquakes can potentially create false alarms and unnecessary anxiety among people that live in earthquake risk zones. Recently large frog swarms in China and elsewhere have been reported as earthquake precursors in the media. By examining international media reports of frog swarms since 1850 in comparison to earthquake data, it was concluded that frog swarms are naturally occurring dispersal behaviour of juveniles and are not associated with earthquakes. However, the media in seismic risk areas may be more likely to report frog swarms, and more likely to disseminate reports on frog swarms after earthquakes have occurred, leading to an apparent link between frog swarms and earthquakes. Abstract In short-term earthquake risk forecasting, the avoidance of false alarms is of utmost importance to preclude the possibility of unnecessary panic among populations in seismic hazard areas. Unusual animal behaviour prior to earthquakes has been reported for millennia but has rarely been scientifically documented. Recently large migrations or unusual behaviour of amphibians have been linked to large earthquakes, and media reports of large frog and toad migrations in areas of high seismic risk such as Greece and China have led to fears of a subsequent large earthquake. However, at certain times of year large migrations are part of the normal behavioural repertoire of amphibians. News reports of “frog swarms” from 1850 to the present day were examined for evidence that this behaviour is a precursor to large earthquakes. It was found that only two of 28 reported frog swarms preceded large earthquakes (Sichuan province, China in 2008 and 2010). All of the reported mass migrations of amphibians occurred in late spring, summer and autumn and appeared to relate to small juvenile anurans (frogs and toads). It was concluded that most reported “frog swarms” are actually normal behaviour, probably caused by

  4. Kidney Failure

    MedlinePlus

    ... enough red blood cells. This is called kidney failure. If your kidneys fail, you need treatment to ... providers, family, and friends, most people with kidney failure can lead full and active lives. NIH: National ...

  5. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, such ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can't ...

  6. Performance of blasting caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Schimmel, Morry L. (Inventor); Perry, Ronnie B. (Inventor)

    1993-01-01

    Common blasting caps are made from an aluminum shell in the form of a tube which is closed at both ends. One end, which is called the output end, terminates in a principal side or face, and contains a detonating agent which communicates with a means for igniting the detonating agent. The improvement of the present invention is a flat, steel foil bonded to the face in a position which is aligned perpendicularly to the longitudinal axis of the tube.

  7. Bifurcating Particle Swarms in Smooth-Walled Fractures

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Sun, H.

    2010-12-01

    Particle swarms can occur naturally or from industrial processes where small liquid drops containing thousands to millions of micron-size to colloidal-size particles are released over time from seepage or leaks into fractured rock. The behavior of these particle swarms as they fall under gravity are affected by particle interactions as well as interactions with the walls of the fractures. In this paper, we present experimental results on the effect of fractures on the cohesiveness of the swarm and the formation of bifurcation structures as they fall under gravity and interact with the fracture walls. A transparent cubic sample (100 mm x 100 mm x 100 mm) containing a synthetic fracture with uniform aperture distributions was optically imaged to quantify the effect of confinement within fractures on particle swarm formation, swarm velocity, and swarm geometry. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass). The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. Experiments were performed using swarms that ranged in size from 5 µl to 60 µl. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. As a swarm falls in an open-tank of water, it forms a torroidal shape that is stable as long as no ambient or background currents exist in the water tank. When a swarm is released into a fracture with an aperture less than 5 mm, the swarm forms the torroidal shape but it is distorted because of the presence of the walls. The

  8. The 2011 West Bohemia (Central Europe) earthquake swarm compared with the previous swarms of 2000 and 2008

    NASA Astrophysics Data System (ADS)

    Čermáková, Hana; Horálek, Josef

    2015-10-01

    This paper presents the basic characteristics of the 2011 West Bohemia/Vogtland earthquake swarm and compares it with the swarms in 2000 and 2008. All these swarms occurred in the Nový Kostel focal zone. Up to 25,000 M L ≤3.7 events with depths between 6 and 10 km were detected in the 2011 swarm. Utilizing WEBNET data, we analysed the cumulative seismic moment, magnitude-frequency and interevent time distributions, space-time distribution of foci and typical focal mechanisms. For this purpose, we improved the formula for estimating the local magnitude M L used by WEBNET. The 2011 swarm exhibited much higher rapidity than the swarms of 2000 and 2008. The magnitude-frequency distributions of all the three swarms are similar, having the b-value close to 1.0. However, the events of higher magnitudes, roughly M L ˜3.0+, depart markedly from the general trend of the weaker events. The probability density functions of the interevent times of all the swarms comply with power law ∝ T -1.4, which points to Omori law-like mainshock-aftershock activity. All swarms exhibit a pronounced focal migration; however, no regularity was found. The spatial distribution of the 2011 foci indicates two active fault segments which differ from the segment triggered in the swarms of 2000 and 2008. Furthermore, we analysed the spatial distribution of the mini-swarm of 2013 and found that it complements the swarm of 2011. The prevailing focal mechanisms in the 2011 swarm are of both oblique-normal and oblique-thrust types and correspond closely to the geometry of the activated fault segments. Our analyses indicate that the Nový Kostel area is more complex than was believed to be.

  9. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited

  10. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited

  11. Behavioural Rule Discovery from Swarm Systems

    NASA Astrophysics Data System (ADS)

    Stoops, David; Wang, Hui; Moore, George; Bi, Yaxin

    Rules determine the functionality of a given system, in either natural or man-made systems. Man-made systems, such as computer applications, use a set of known rules to control the behaviours applied in a strict manner. Biological or natural systems employ unknown rules, these being undiscovered rules which are more complex. These rules are unknown due to the inability to determine how they are applied, unless observed by a third party. The swarm is one of the largest naturally observed systems, with bird flocks and ant colonies being the most notable. It is a collection or group of individuals who use behaviours to complete a given goal or objective. It is the aim of this paper to present rule discovery methods for the mining of these unknown rules within a swarm system, employing a bird flock simulation environment to gather data.

  12. A comprehensive review of swarm optimization algorithms.

    PubMed

    Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  13. A Comprehensive Review of Swarm Optimization Algorithms

    PubMed Central

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  14. Macroscopic definition of distributed swarm morphogenesis

    NASA Astrophysics Data System (ADS)

    Aznar, Fidel; Pujol, Mar; Rizo, Ramón

    2012-12-01

    In this paper, we present a system that will be able to obtain microscopic assembly behaviours for a robotic swarm to achieve an assembly target (macroscopic model). It will be designed taking into consideration the essential features of a self-assembling system needed to be implemented in a real robotic swarm. This system is composed of a typology of generative languages PD0L, and an algorithm for generating individual rules to be processed by the robots. The assembly process will be performed in a distributed manner, and will be also designed to require minimal communication capabilities between robots. Both the expressive capacities of language and the rule generation algorithm will be demonstrated by evaluating their performance with a core set of test morphologies widely used in self-assembly tasks. Furthermore, we compare the assembly time and the number of messages required between a classic controller (centralised) and our distributed approach.

  15. Thermoregulation and adaptation in honeybee swarms

    NASA Astrophysics Data System (ADS)

    Ocko, Samuel; Mahadevan, L.

    2012-11-01

    Swarming is an essential part of honeybee behavior, wherein thousands of bees cling onto each other to form a dense cluster that is exposed to the environment for up to several days. This cluster has the ability to maintain its core temperature actively without a central controller raising the question of mechanism. Inspired by experimental observations, we treat the swarm cluster as an active porous structure with a variable metabolism that needs to adjust to outside conditions to control heat loss and regulate its core temperature. Using a continuum model that takes the form of a set of advection-diffusion equations for heat transfer in a mobile porous medium, we show that effective thermoregulation can result from the collective behavior of individual bees in the cluster.

  16. Swarm-based algorithm for phase unwrapping.

    PubMed

    da Silva Maciel, Lucas; Albertazzi, Armando G

    2014-08-20

    A novel algorithm for phase unwrapping based on swarm intelligence is proposed. The algorithm was designed based on three main goals: maximum coverage of reliable information, focused effort for better efficiency, and reliable unwrapping. Experiments were performed, and a new agent was designed to follow a simple set of five rules in order to collectively achieve these goals. These rules consist of random walking for unwrapping and searching, ambiguity evaluation by comparing unwrapped regions, and a replication behavior responsible for the good distribution of agents throughout the image. The results were comparable with the results from established methods. The swarm-based algorithm was able to suppress ambiguities better than the flood-fill algorithm without relying on lengthy processing times. In addition, future developments such as parallel processing and better-quality evaluation present great potential for the proposed method. PMID:25321125

  17. Volcanic earthquake swarms at Mt. Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kaminuma, Katsutada; Ueki, Sadato; Juergen, Kienle

    1985-04-01

    Mount Erebus is an active volcano in Antarctica located on Ross Island. A convecting lava lake occupies the summit crater of Mt. Erebus. Since December 1980 the seismic activity of Mt. Erebus has been continuously monitored using a radio-telemetered network of six seismic stations. The seismic activity observed by the Ross Island network during the 1982-1983 field season shows that: (1)Strombolian eruptions occur frequently at the Erebus summit lava lake at rates of 2-5 per day; (2)centrally located earthquakes map out a nearly vertical, narrow conduit system beneath the lava lake; (3)there are other source regions of seismicity on Ross Island, well removed from Mt. Erebus proper. An intense earthquake swarm recorded in October 1982 near Abbott Peak, 10 km northwest of the summit of Mt. Erebus, and volcanic tremor accompanying the swarm, may have been associated with new dike emplacement at depth.

  18. Swarm equatorial electric field chain: First results

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Chulliat, A.; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-02-01

    The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.

  19. Blasting and excavating on precarious rock slopes

    SciTech Connect

    Oriard, L.L.

    1996-12-01

    There is an intuitive tendency to equate rock strength with rock stability, yet the two must be evaluated separately. A slope in strong hard rock is not necessarily stable, nor is a slope in weathered weak rock necessarily unstable. In some cases the reverse is true, depending on the geometry of joints and weak planes. The time element is a matter of special concern, that is how suddenly the failure begins and how rapidly it progresses. An important element in avoiding catastrophes is to study the site geology for dangerous conditions, implement the types of blasting procedures that minimize failures, and evaluate the potential use of reinforcement or other mechanical stabilizing procedures. It may be possible to reinforce the perimeters of structural excavations, but that is not usually possible for quarry or surface mine operations. However, it is often possible to change a dangerous operation into a safe one merely by changing the orientation, sequence or dimensions of the work without changing other details of the blasting designs. Several important principles are illustrated in this paper, using case histories. One case is that of a catastrophic slope failure in Mexico, and the remedial procedures used to get the work back into operation. That case is compared to large-scale work which was done safely on a similar site in Spain, even with an 850 ft high slope and up to 200 ft between safety benches. Also illustrated are some of the procedures used for delicate work on sensitive slopes at a site in Colombia, South America, and those used to preserve a delicate narrow rib of rock in a deep river canyon on the Snake River in Idaho. Brief reference is made also to slope damage on a Canadian project.

  20. Location of microseismic swarms induced by salt solution mining

    NASA Astrophysics Data System (ADS)

    Kinscher, J.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J. P.; Bigarre, P.

    2015-01-01

    Ground failures, caving processes and collapses of large natural or man-made underground cavities can produce significant socio-economic damages and represent a serious risk envisaged by the mine managements and municipalities. In order to improve our understanding of the mechanisms governing such a geohazard and to test the potential of geophysical methods to prevent them, the development and collapse of a salt solution mining cavity was monitored in the Lorraine basin in northeastern France. During the experiment, a huge microseismic data set (˜50 000 event files) was recorded by a local microseismic network. 80 per cent of the data comprised unusual swarming sequences with complex clusters of superimposed microseismic events which could not be processed through standard automatic detection and location routines. Here, we present two probabilistic methods which provide a powerful tool to assess the spatio-temporal characteristics of these swarming sequences in an automatic manner. Both methods take advantage of strong attenuation effects and significantly polarized P-wave energies at higher frequencies (>100 Hz). The first location approach uses simple signal amplitude estimates for different frequency bands, and an attenuation model to constrain the hypocentre locations. The second approach was designed to identify significantly polarized P-wave energies and the associated polarization angles which provide very valuable information on the hypocentre location. Both methods are applied to a microseismic data set recorded during an important step of the development of the cavity, that is, before its collapse. From our results, systematic spatio-temporal epicentre migration trends are observed in the order of seconds to minutes and several tens of meters which are partially associated with cyclic behaviours. In addition, from spatio-temporal distribution of epicentre clusters we observed similar epicentre migration in the order of hours and days. All together, we

  1. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by different manufacturers shall not be combined in the same blasting circuit. (c) Detonator leg wires shall be shunted until connected into the blasting circuit. (d) Blasting cables shall be— (1) Well...

  2. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by different manufacturers shall not be combined in the same blasting circuit. (c) Detonator leg wires shall be shunted until connected into the blasting circuit. (d) Blasting cables shall be— (1) Well...

  3. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Blasting circuits. 75.1323 Section 75.1323 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected...

  4. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Blasting circuits. 75.1323 Section 75.1323 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected...

  5. 30 CFR 56.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 56.6312 Section 56.6312... Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting...

  6. 30 CFR 56.6803 - Blasting lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 56.6803 Section 56.6803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be...

  7. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  8. 30 CFR 57.6803 - Blasting lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 57.6803 Section 57.6803 Mineral... and Underground § 57.6803 Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be insulated and kept in good repair. General Requirements—Surface and Underground...

  9. Monte Carlo simulation of electron swarm parameters in O2

    NASA Astrophysics Data System (ADS)

    Settaouti, A.; Settaouti, L.

    2007-03-01

    Oxygen plasmas have found numerous applications in plasma processing, such as reactive sputtering, dry etching of polymers, oxidation, and resist removal of semiconductors. Swarm and transport coefficients are essential for better understanding and modelling of these gas discharge processes. The electron swarms in a gas under the influence of an electric field can be simulated with the help of a Monte Carlo method. The swarm parameters evaluated are compared with experimental results.

  10. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  11. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations. PMID:20875976

  12. Inverse turbulent cascade in swarming sperm

    NASA Astrophysics Data System (ADS)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa; Plouraboue, Franck; Inra, Cnrs, Umr, F-37380 Nouzilly, France Team; Université de Toulouse, Inpt, Ups, Imft, Umr 5502, France Team

    2014-11-01

    Collective motion of self-sustained swarming flows has recently provided examples of small scale turbulence arising where viscosity effects are dominant. We report the first observation of an universal inverse enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of velocity field power-spectrum and relative dispersion of small beads consistent with theoretical predictions in two-dimensional turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures the size of which provides turbulence's integral scale. We propose a consistent explanation for this quasi-two-dimensional turbulence based on self-structured laminated flow forced by steric interaction and alignment, a state of active matter that we call ``swarming liquid crystal.'' We develop scaling arguments consistent with this interpretation. The implication of multi-scale collective dynamics of sperm's collective motility for fertility assessment is discussed. This work has been supported by the French Agence Nationale pour la Recherche (ANR) in the frame of the Contract MOTIMO (ANR-11-MONU-009-01). We thank Pierre Degond, Eric Climent, Laurent Lacaze and Frédéric Moulin for interesting discussions.

  13. Collective motion with anticipation: flocking, spinning, and swarming.

    PubMed

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots. PMID:25679597

  14. Collective motion with anticipation: Flocking, spinning, and swarming

    NASA Astrophysics Data System (ADS)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  15. Periodic reversal of direction allows Myxobacteria to swarm

    PubMed Central

    Wu, Yilin; Kaiser, A. Dale; Jiang, Yi; Alber, Mark S.

    2009-01-01

    Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. We seek to understand how members of any dense swarm spread efficiently while being able to perceive and interfere minimally with the motion of others. To this end, we investigate swarms of the myxobacterium, Myxococcus xanthus. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. Remarkably, they regularly reverse their gliding directions. We have constructed a detailed cell- and behavior-based computational model of M. xanthus swarming that allows the organization of cells to be computed. By using the model, we are able to show that reversals of gliding direction are essential for swarming and that reversals increase the outflow of cells across the edge of the swarm. Cells at the swarm edge gain maximum exposure to nutrient and oxygen. We also find that the reversal period predicted to maximize the outflow of cells is the same (within the errors of measurement) as the period observed in experiments with normal M. xanthus cells. This coincidence suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming. Finally, we observe that, with time, reversals increase the cell alignment, and generate clusters of parallel cells. PMID:19164578

  16. Characterization of swarming motility in Rhizobium leguminosarum bv. viciae.

    PubMed

    Tambalo, Dinah D; Yost, Christopher K; Hynes, Michael F

    2010-06-01

    We have characterized swarming motility in Rhizobium leguminosarum strains 3841 and VF39SM. Swarming was dependent on growth on energy-rich media, and both agar concentration and incubation temperature were critical parameters for surface migration. A cell density-dependent lag period was observed before swarming motility was initiated. Surface migration began 3-5 days after inoculation and a full swarming phenotype was observed 3 weeks after inoculation. The swarming front was preceded by a clear extracellular matrix, from which we failed to detect surfactants. The edge of the swarming front formed by VF39SM was characterized by hyperflagellated cells arranged in rafts, whereas the cells at the point of inoculation were indistinguishable from vegetative cells. Swarmer cells formed by 3841, in contrast, showed a minor increase in flagellation, with each swarmer cell exhibiting an average of three flagellar filaments, compared with an average of two flagella per vegetative cell. Reflective of their hyperflagellation, the VF39SM swarmer cells demonstrated an increased expression of flagellar genes. VF39SM swarmed better than 3841 under all the conditions tested, and the additional flagellation in VF39SM swarm cells may contribute to this difference. Metabolism of the supplemented carbon source appeared to be necessary for surface migration as strains incapable of utilizing the carbon source failed to swarm. We also observed that swarmer cells have increased resistance to several antibiotics. PMID:20455952

  17. Computer assisted blast design and assessment tools

    SciTech Connect

    Cameron, A.R.; Kleine, T.H.; Forsyth, W.W.

    1995-12-31

    In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing; evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.

  18. NCBI BLAST: a better web interface

    PubMed Central

    Johnson, Mark; Zaretskaya, Irena; Raytselis, Yan; Merezhuk, Yuri; McGinnis, Scott; Madden, Thomas L.

    2008-01-01

    Basic Local Alignment Search Tool (BLAST) is a sequence similarity search program. The public interface of BLAST, http://www.ncbi.nlm.nih.gov/blast, at the NCBI website has recently been reengineered to improve usability and performance. Key new features include simplified search forms, improved navigation, a list of recent BLAST results, saved search strategies and a documentation directory. Here, we describe the BLAST web application's new features, explain design decisions and outline plans for future improvement. PMID:18440982

  19. Hydrothermal alteration as a trigger mechanism for earthquake swarms: the Vogtland/NW Bohemia region as a case study

    NASA Astrophysics Data System (ADS)

    Heinicke, J.; Fischer, T.; Gaupp, R.; Götze, J.; Koch, U.; Konietzky, H.; Stanek, K.-P.

    2009-07-01

    Earthquake swarms occur mostly in regions with CO2-enriched pore fluids. It is generally accepted that both geodynamic stress accumulation and critical pore fluid pressures act as a triggering mechanism for most seismic events. The new thesis presented here is that hydrothermal alteration processes in fault zones help facilitate the shear failure propagation due to mechanical weakening and dissolution of the wall rock, in addition to the normal shear stress and fluid overpressure. The basic idea that stress corrosion cracking results from chemical weakening and comminution has been discussed for many years. However, it has not yet been applied to explain the earthquake swarm phenomenon. Studies of extensive alteration as well as the latest investigations of CO2 sequestration give evidence that these high dissolution rates of wall rock in contact with an acid fluid phase exist in seismogenic fault zones. Several indications support the assumption that in the Vogtland/NW Bohemia region, the weakening of stressed fault zones by hydrothermal alteration could take place at seismogenic depths and could generate earthquake swarms. Investigations of quartz samples from the fracture zones by means of cathodoluminescence as well as spatiotemporal analysis of seismicity and numerical modelling of alteration-induced earthquake swarms support this hypothesis.

  20. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus), Greece

    NASA Astrophysics Data System (ADS)

    Chouliaras, G.; Drakatos, G.; Pavlou, K.; Makropoulos, K.

    2013-01-01

    In this investigation we examine the local stress field and the seismicity patterns associated with the 2011-2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA). During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN) and also by the additional local installation of four portable broadband seismographic stations by NOA. The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest-southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value) of the frequency-magnitude relation.

  1. Frog Swarms: Earthquake Precursors or False Alarms?

    PubMed

    Grant, Rachel A; Conlan, Hilary

    2013-01-01

    In short-term earthquake risk forecasting, the avoidance of false alarms is of utmost importance to preclude the possibility of unnecessary panic among populations in seismic hazard areas. Unusual animal behaviour prior to earthquakes has been reported for millennia but has rarely been scientifically documented. Recently large migrations or unusual behaviour of amphibians have been linked to large earthquakes, and media reports of large frog and toad migrations in areas of high seismic risk such as Greece and China have led to fears of a subsequent large earthquake. However, at certain times of year large migrations are part of the normal behavioural repertoire of amphibians. News reports of "frog swarms" from 1850 to the present day were examined for evidence that this behaviour is a precursor to large earthquakes. It was found that only two of 28 reported frog swarms preceded large earthquakes (Sichuan province, China in 2008 and 2010). All of the reported mass migrations of amphibians occurred in late spring, summer and autumn and appeared to relate to small juvenile anurans (frogs and toads). It was concluded that most reported "frog swarms" are actually normal behaviour, probably caused by juvenile animals migrating away from their breeding pond, after a fruitful reproductive season. As amphibian populations undergo large fluctuations in numbers from year to year, this phenomenon will not occur on a yearly basis but will depend on successful reproduction, which is related to numerous climatic and geophysical factors. Hence, most large swarms of amphibians, particularly those involving very small frogs and occurring in late spring or summer, are not unusual and should not be considered earthquake precursors. In addition, it is likely that reports of several mass migration of small toads prior to the Great Sichuan Earthquake in 2008 were not linked to the subsequent M = 7.9 event (some occurred at a great distance from the epicentre), and were probably co

  2. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  3. Nuclear techniques for the inspection of blast furnaces

    SciTech Connect

    Schweitzer, J. S.; Lanza, R. C.

    1999-06-10

    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section.

  4. From organized internal traffic to collective navigation of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel

    2013-12-01

    Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller-Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics.

  5. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  6. Astrophysical blast wave data

    SciTech Connect

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  7. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa

    PubMed Central

    Caiazza, Nicky C.; Shanks, Robert M. Q.; O'Toole, G. A.

    2005-01-01

    Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed. PMID:16237018

  8. Proteus mirabilis interkingdom swarming signals attract blow flies

    PubMed Central

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-01-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies. PMID:22237540

  9. ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.

    2002-01-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.

  10. Taurid swarm exists only in southern branch (STA)

    NASA Astrophysics Data System (ADS)

    Shiba, Yasuo

    2016-06-01

    I present some features of the Taurid meteor shower in data obtained by the Japanese automatic TV meteor observation `SonotaCo Network' from 2007 to 2015. (i) The Taurid shower is enhanced when the Earth encounters the Taurid swarm center at less than 30 in mean anomaly as described by Asher and Izumi (1998). A little enhancement was detected in 2011 when it was 71 from the center in mean anomaly. (ii) The Taurid meteor swarm exists only in the southern branch (STA) but not in the northern branch (NTA). (iii) The Taurid meteor swarm includes bright meteors more than the annual year components as also described in Asher & Izumi (1998). (iv) The STA swarm orbital period is equal to the 2:7 resonance with Jupiter. This orbital period agrees with the suggestion in Asher & Izumi (1998). However, the NTA orbital period also matches the 2:7 resonance with Jupiter, though no swarm exists. (v) The Taurid swarm longitude of perihelion is constant at 158 over its whole period. (vi) NTA orbit features vary smoothly over the season. No complex structure could be recognized in NTA in this study of observations by small video camera. (vii) The Taurid swarm orbit differs from the annual STA orbit at its peak, but is close to the annual component at the end of swarm activity. (viii) The annual STA component consists of some similar orbital streams.

  11. Microbubbles reveal chiral fluid flows in bacterial swarms

    PubMed Central

    Wu, Yilin; Hosu, Basarab G.; Berg, Howard C.

    2011-01-01

    Flagellated bacteria can swim within a thin film of fluid that coats a solid surface, such as agar; this is a means for colony expansion known as swarming. We found that micrometer-sized bubbles make excellent tracers for the motion of this fluid. The microbubbles form explosively when small aliquots of an aqueous suspension of droplets of a water-insoluble surfactant (Span 83) are placed on the agar ahead of a swarm, as the water is absorbed by the agar and the droplets are exposed to air. Using these bubbles, we discovered an extensive stream (or river) of swarm fluid flowing clockwise along the leading edge of an Escherichia coli swarm, at speeds of order 10 μm/s, about three times faster than the swarm expansion. The flow is generated by the action of counterclockwise rotating flagella of cells stuck to the substratum, which drives fluid clockwise around isolated cells (when viewed from above), counterclockwise between cells in dilute arrays, and clockwise in front of cells at the swarm edge. The river provides an avenue for long-range communication in the swarming colony, ideally suited for secretory vesicles that diffuse poorly. These findings broaden our understanding of swarming dynamics and have implications for the engineering of bacterial-driven microfluidic devices. PMID:21300887

  12. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  13. Quarter-scale close-in blast-loading experiments in support of the planned contained firing facility

    SciTech Connect

    Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

    1994-07-27

    In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory is proposing to construct a 60-kg firing chamber to provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though the Laboratory`s operations are within current environmental limits, containment of the blast effects and hazardous debris will drastically reduce emissions to the environment and minimize the generated hazardous waste. One of the main design considerations is the extremely close-in (Z = 0.66 ft/lb{sup l/3}) blast loading on the reinforced concrete ff the chamber. Historically, floor damage due to close-in loading has been a common problem for other blast chambers within the US Department of Energy and Department of Defense (DOE/DoD). Blast-effects testing and computer analysis were conducted on a replica quarter-scale model of the preliminary floor design. Nineteen blast tests ranging from scaled distances of 1.14 ft/lb{sup l/3} (25%) to 0.57ft/lb{sup 1/3} (200%) were performed on the strain-gaged floor model. In response to predicted and measured failures at the 25% level, various state-of-the-art blast attenuation systems were quickly developed and tested. The most effective blast-attenuation system provided a significant improvement by reducing the measured floor stresses to acceptable levels while minimizing, by its reusability, the impact on the environment.

  14. Centrifugal shot blast system

    SciTech Connect

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  15. Productive Failure

    ERIC Educational Resources Information Center

    Kapur, Manu

    2008-01-01

    This study demonstrates an existence proof for "productive failure": engaging students in solving complex, ill-structured problems without the provision of support structures can be a productive exercise in failure. In a computer-supported collaborative learning setting, eleventh-grade science students were randomly assigned to one of two…

  16. Hybrid dynamics in delay-coupled swarms with ``mothership'' networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira

    Swarming behavior continues to be a subject of immense interest because of its centrality in many naturally occurring systems in biology and physics. Moreover, the development of autonomous mobile agents that can mimic the behavior of swarms and can be engineered to perform complex tasks without constant intervention is a very active field of practical research. Here we examine the effects on delay-coupled swarm pattern formation from the inclusion of a small fraction of highly connected nodes, ``motherships'', in the swarm interaction network. We find a variety of new behaviors and bifurcations, including new hybrid motions of previously analyzed patterns. Both numerical and analytic techniques are used to classify the dynamics and construct the phase diagram. The implications for swarm control and robustness from topological heterogeneity are also discussed. This research was funded by the office of Naval Research (ONR), and was performed while JH held a National Research Council Research Associateship Award.

  17. Formal Methods for Autonomic and Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    Swarms of intelligent rovers and spacecraft are being considered for a number of future NASA missions. These missions will provide MSA scientist and explorers greater flexibility and the chance to gather more science than traditional single spacecraft missions. These swarms of spacecraft are intended to operate for large periods of time without contact with the Earth. To do this, they must be highly autonomous, have autonomic properties and utilize sophisticated artificial intelligence. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm type of missions NASA is considering. This mission will explore the asteroid belt using an insect colony analogy cataloging the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. Verifying such a system would be a huge task. This paper discusses ongoing work to develop a formal method for verifying swarm and autonomic systems.

  18. Adaptive Flocking of Robot Swarms: Algorithms and Properties

    NASA Astrophysics Data System (ADS)

    Lee, Geunho; Chong, Nak Young

    This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.

  19. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  20. Transport of Particle Swarms Through Variable Aperture Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  1. Monitoring the Pollino Earthquake Swarm (Italy)

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Passarelli, L.; Govoni, A.; Rivalta, E.

    2014-12-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (southern Apennines, Italy) representone of the most prominent seismic gaps in the Italian seismic catalog, with no M>6 earthquakes during the lastcenturies. In recent times, the MB has been repeatedly interested by seismic swarms.The most energetic swarm started in 2010 and still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on October 25. In contrast, the CF appears aseismic. Only the northern part of the CF has experienced microseismicity.The range host a number of additional sub-parallel faults.Their rheology is unclear. Current debates include the potential of the MB and the CF to host largeearthquakes and the level and the style of deformation.Understanding the seismicity and the behaviour of the faultsis therefore necessary to assess the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have been jointly monitoring the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Using the array, we automatically detect about ten times more earthquakes than currently included inlocal catalogues corresponding to completeness above M~0.5.In the course of the swarm, seismicity has mainly migrated within the Mercure Basin.However, the eastward spread towards the northern tio of the CF in 2013 marksa phase with seismicity located outside of the Mercure Basin.The event locations indicate spatially distinct clusters with different mechanisms across the E-W trending Pollino Fault.The clusters differ in strike and dip.Calibration of the local magnitude scale confirms earlier studies further north in the Apennines. The station corrections show N-S variation indicating that the Pollino Fault forms an important structural boundary.

  2. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera

    PubMed Central

    Schaerf, T. M.; Makinson, J. C.; Myerscough, M. R.; Beekman, M.

    2013-01-01

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204–211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms. PMID:23904590

  3. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera.

    PubMed

    Schaerf, T M; Makinson, J C; Myerscough, M R; Beekman, M

    2013-10-01

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204-211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms. PMID:23904590

  4. Swarming by Nature and by Design

    NASA Astrophysics Data System (ADS)

    Bertozzi, Andrea

    2007-03-01

    The cohesive movement of a biological population is a commonly observed natural phenomenon. With the advent of platforms of unmanned vehicles, this occurrence is attracting renewed interest from the engineering community. This talk will review recent research results on modeling and analysis of biological swarms with some connection to the design ideas for efficient algorithms to control groups of autonomous agents. For biological models we consider two kinds of systems: driven particle systems based on force laws and continuum models based on kinematic and dynamic rules. Both models involve long-rage social attraction and short range dispersal and yield patterns involving clumping, mill vortices, and surface-tension-like effects.

  5. Spectral method for a kinetic swarming model

    NASA Astrophysics Data System (ADS)

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-09-01

    In this paper we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. We observe that the kinetic model captures key features such as vortex formation and traveling waves.

  6. Collective motion in Proteus mirabilis swarms

    NASA Astrophysics Data System (ADS)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  7. Pattern Formation and Functionality in Swarm Models

    NASA Astrophysics Data System (ADS)

    Rauch, Erik; Millonas, Mark; Chialvo, Dante

    1996-03-01

    We explore a simplified class of models we call swarms, which are inspired by the collective behavior of social insects. We perform a mean-field type stability analysis and numerical simulations of the model. Several interesting types of functional behavior appear in the vicinity of a second order phase transition, including the formation of stable lines of traffic flow, memory consolidation, and bootstrapping. In addition to providing an understanding of certain classes of biological behavior, these models bear a generic resemblence to a number of pattern formation processes in the physical sciences.

  8. Spectral method for a kinetic swarming model

    SciTech Connect

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-04-28

    Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.

  9. Swarming of self-propelled camphor boats

    NASA Astrophysics Data System (ADS)

    Heisler, Eric; Suematsu, Nobuhiko J.; Awazu, Akinori; Nishimori, Hiraku

    2012-05-01

    When an ensemble of self-propelled camphor boats move in a one-dimensional channel, they exhibit a variety of collective behaviors. Under certain conditions, the boats tend to cluster together and move in a relatively tight formation. This type of behavior, referred to as clustering or swarming here, is one of three types recently observed in experiment. Similar clustering behavior is also reproduced in simulations based on a simple theoretical model. Here we examine this model to determine the clustering mechanism and the conditions under which clustering occurs. We also propose a method of quantifying the behavior that may be used in future experimental work.

  10. Swarm Intelligence for Urban Dynamics Modelling

    SciTech Connect

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-04-16

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  11. Swarm Intelligence for Urban Dynamics Modelling

    NASA Astrophysics Data System (ADS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  12. A Case Study on the Failure on Apollo 13

    NASA Technical Reports Server (NTRS)

    Anderson, Brenda Lindley

    2011-01-01

    Summary of Findings: (1) The post-failure investigation determined that extended operation of the heater damaged the wiring inside O2 #2. (2) Apparently during other stir operations prior to the explosion, the damaged wires didn't come in contact enough to spark. The right conditions had to be in position to cause the arcing which led to the blast.

  13. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  14. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A.

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  15. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  16. Short-term forecasting of aftershock sequences, microseismicity and swarms inside the Corinth Gulf continental rift

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2014-05-01

    Corinth Gulf (Central Greece) is the fastest continental rift in the world with extension rates 11-15 mm/yr with diverse seismic deformation including earthquakes with M greater than 6.0, several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion, and swarm episodes lasting few days. In this study I perform a retrospective forecast experiment between 1995-2012, focusing on the comparison between physics-based and statistical models for short term time classes. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. The CRS implementation accounts for stress changes following all major ruptures with M greater than 4.5 within the testing phase. I also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Aσ=0.2, stressing rate app. 0.02 bar/yr). The generic ETAS parameters are taken as the maximum likelihood estimates derived from the stochastic declustering of the modern seismicity catalog (1995-2012) with minimum triggering magnitude M2.5. I test whether the generic ETAS can efficiently describe the aftershock spatio-temporal clustering but also the evolution of swarm episodes and microseismicity. For the reason above, I implement likelihood tests to evaluate the forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time windows during three distinct evaluation phases; the first evaluation phase focuses on the Aigio 1995 aftershock sequence (15

  17. Thermal Spray Coatings for Blast Furnace Tuyere Application

    NASA Astrophysics Data System (ADS)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  18. Principal earthquakes: Theory and observations from the 2008 West Bohemia swarm

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2011-05-01

    Earthquakes that occur on optimally oriented fault planes with respect to the tectonic stress regime display two distinct focal mechanisms and are fundamental characteristics of each seismically active region. These earthquakes, which we term ‘principal’, need not coincide with the strongest earthquakes or need not occur along the major active faults in the region. Stability analysis of diversely oriented fault planes under a given stress reveals that the focal mechanisms connected with unstable fault planes should not be very distinct from those of the principal earthquakes. The P/T axes form clusters with a typical two-wing or ‘butterfly’ pattern. This pattern is particularly visible when constructing the failure curves defined as a projection of the Mohr-Coulomb failure criterion in the Mohr's diagram onto the focal sphere. The position, shape and size of the failure curves depend on the stress orientation, shape ratio, friction and on the size of the instability area in the Mohr's diagram. The theoretical analysis is tested using accurately determined focal mechanisms of 99 micro-earthquakes that occurred during the 2008 earthquake swarm in the West Bohemia/Vogtland region. The distribution of P/T axes reveals the butterfly wing pattern predicted in numerical modelling. The activated fault planes concentrate in the area of validity of the Mohr-Coulomb failure criterion. The average friction of faults is 0.5 and corresponds to a deviation of 32° of the principal faults from the σ1 axis. The left-lateral strike-slip principal fault was the most active fault during the swarm. It shows little geological expression at the surface but it is clearly defined by a linear cluster of hypocentres at depth. The right-lateral strike-slip principal fault was less active but it is geologically well manifested on the Earth's surface.

  19. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a

  20. Slow-Slip Scaling Laws Inferred from Cascadia Tremor Swarms

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Wech, A.; Vidale, J. E.

    2010-12-01

    Episodic tremor and slip (ETS) events, each with geodetically determined moment magnitudes in the mid-6 range, repeat about every 15 months under the Olympic Peninsula/southern Vancouver Island region. We have applied an automatic waveform envelope cross-correlation and clustering (WECC) algorithm to seven Cascadia-wide subarrays to search for non-volcanic tremor in 5-minute, 50% overlapping, time windows, revealing 70,000 tremor epicenters. The tremor epicenters cluster in time and space into nearly 200 tremor swarms. The number of hours of tremor per swarm ranges from about 1 to 470 hours. The smaller (inter-ETS) tremor swarms generally locate along the downdip side of the larger ETS swarms and occur much more frequently. In northern Washington, which is currently best monitored, the ETS events, as well as the larger inter-ETS tremor swarms initiate downdip and propagate updip. For the large ETS events, tremor swarm duration is proportional to geodetically determined seismic moment. We consider tremor swarms to be a proxy for slow slip for the smaller events as well, even though slip would be below current geodetic detection thresholds. An interpretation of the observed transition from longer duration, less frequent tremor swarms up dip to smaller more frequent tremor swarms down-dip, in terms of fault strength is the subject of a presentation by Wech. The combined inter-ETS and ETS swarms follow a power law relationship such that the number of swarms, N, exceeding duration τ is given by τ -0.66. If we assume that seismic moment is proportional to τ, as proposed by Ide et al. [Nature, 2007], we find that the tremor swarms follow a standard Gutenberg-Richter logarithmic frequency-magnitude relation, log10 N ≈ -bMw, with b = 1.0, which lies in the range for normal earthquake catalogs. Finally, crude estimates of the spatial dimensions of tremor swarms L suggest that L ≈ τ 1/n where n is between 2 and 3. A value of 2 is consistent with slip propagation rates

  1. Local fluid transport by planktonic swarms

    NASA Astrophysics Data System (ADS)

    Martinez-Ortiz, Monica; Dabiri, John

    2013-11-01

    Energy transport in the ocean occurs through an intricate set of pathways mainly powered by physical phenomena. The hypothesis that vertical migrations of aquatic fauna may contribute to this process through the action of the induced drift mechanism has been investigated in recent years. Microscale measurements by Kunze et al. (1), in Saanich Inlet have shown the presence of high kinetic energy dissipation rates in the vicinity of vertically migrating krill swarms. However, it remains uncertain if energy is being introduced at scales large enough to induce the transport of fluid across surfaces of equal density. Within this context, the present study aims to provide experimental insight of fluid transport by planktonic swarms. The vertical migration of Artemia salina is triggered and controlled by means of a system of stationary and translating luminescent signals. High speed flow visualizations elucidate the competing effects of upward drift by the passive sections of the organisms and downward flow induced by the appendages. The resulting fluid transport is assessed by using PIV at different stages of the migration. The kinetic energy spectrum is computed using velocity correlation functions to determine the length scales at which the animals introduce energy to the flow.

  2. Singularities and symmetry breaking in swarms.

    PubMed

    Li, Wei; Zhang, Hai-Tao; Chen, Michael Zhi Qiang; Zhou, Tao

    2008-02-01

    A large-scale system consisting of self-propelled particles, moving under the directional alignment rule (DAR), can often self-organize to an ordered state that emerges from an initially rotationally symmetric configuration. It is commonly accepted that the DAR, which leads to effective long-range interactions, is the underlying mechanism contributing to the collective motion. However, in this paper, we demonstrate that a swarm under the DAR has unperceived and inherent singularities. Furthermore, we show that the compelled symmetry-breaking effects at or near the singularities, as well as the topological connectivity of the swarm in the evolution process, contribute fundamentally to the emergence of the collective behavior; and the elimination or weakening of singularities in the DAR will induce an unexpected sharp transition from coherent movement to isotropic dispersion. These results provide some insights into the fundamental issue of collective dynamics: What is the underlying mechanism causing the spontaneous symmetry breaking and leading to eventual coherent motion? PMID:18352064

  3. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  4. Testicular failure

    MedlinePlus

    ... Blood tests may show a low level of testosterone and high levels of prolactin, FSH , and LH . ... testes will be ordered. Testicular failure and low testosterone level may be hard to diagnose in older ...

  5. Heart Failure

    MedlinePlus

    ... together. About Rise Above HF Rise Above Heart Failure seeks to increase the dialogue about HF and improve the lives of people affected by the condition through awareness, education and support. Through the initiative, AHA strives to ...

  6. Blast dynamics at Mount St Helens on 18 May 1980

    USGS Publications Warehouse

    Kieffer, S.W.

    1981-01-01

    At 8.32 a.m. on 18 May 1980, failure of the upper part of the north slope of Mount St Helens triggered a lateral eruption ('the blast') that devastated the conifer forests in a sector covering ???500 km2 north of the volcano. I present here a steady flow model for the blast dynamics and propose that through much of the devastated area the blast was a supersonic flow of a complex multiphase (solid, liquid, vapour) mixture. The shape of the blast zone; pressure, temperature, velocity (Mach number) and density distributions within the flow; positions of weak and strong internal shocks; and mass flux, energy flux, and total energy are calculated. The shape of blast zone was determined by the initial areal expansion from the reservoir, by internal expansion and compression waves (including shocks), and by the density of the expanding mixture. The pressure within the flow dropped rapidly away from the source of the blast until, at a distance of ???11 km, the flow became underpressured relative to the surrounding atmosphere. Weak shocks within the flow subparallel to the east and west margins coalesced at about this distance into a strong Mach disk shock, across which the flow velocities would have dropped from supersonic to subsonic as the pressure rose back towards ambient. The positions of the shocks may be reflected in differences in the patterns of felled trees. At the limits of the devastated area, the temperature had dropped only 20% from the reservoir temperature because the entrained solids thermally buffered the flow (the dynamic and thermodynamic effects of the admixture of the surrounding atmosphere and the uprooted forest and soils into the flow are not considered). The density of the flow decreased with distance until, at the limits of the blast zone, 20-25 km from the volcano, the density became comparable with that of the surrounding (dirty) atmosphere and the flow became buoyant and ramped up into the atmosphere. According to the model, the mass flux per

  7. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  8. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    PubMed Central

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  9. A minimal model of predator–swarm interactions

    PubMed Central

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-01-01

    We propose a minimal model of predator–swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a ‘weak’ predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by ‘confusing’ the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator–prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd. PMID:24598204

  10. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  11. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    PubMed

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  12. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  13. Precise science orbits for the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Encarnação, João; Doornbos, Eelco; Visser, Pieter

    2015-09-01

    The European Space Agency (ESA) Swarm mission was launched on 22 November 2013 to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. The mission consists of three identical satellites, flying in carefully selected near polar orbits. Two satellites fly almost side-by-side at an initial altitude of about 480 km, and will descend due to drag to around 300 km during the mission lifetime. The third satellite was placed in a higher orbit of about 530 km altitude, and therefore descends much more slowly. To geolocate the Swarm observations, each satellite is equipped with an 8-channel, dual-frequency GPS receiver for Precise Orbit Determination (POD). Onboard laser retroreflectors provide the opportunity to validate the orbits computed from the GPS observations using Satellite Laser Ranging (SLR) data. Precise Science Orbits (PSOs) for the Swarm satellites are computed by the Faculty of Aerospace Engineering at Delft University of Technology in the framework of the Swarm Satellite Constellation Application and Research Facility (SCARF). The PSO product consists of both a reduced-dynamic and a kinematic orbit solution. After a short description of the Swarm GPS data characteristics, the adopted POD strategy for both orbit types is explained and first PSO results from more than one year of Swarm GPS data are presented. Independent SLR validation shows that the reduced-dynamic Swarm PSOs have an accuracy of better than 2 cm, while the kinematic orbits have a slightly reduced accuracy of about 4-5 cm. Orbit comparisons indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4-5 cm level. Close to the geomagnetic poles and along the geomagnetic equator, however, the kinematic orbits show larger errors, which are probably due to ionospheric scintillations that affect the Swarm GPS receivers over these areas.

  14. Environmental effects of blast induced immissions

    SciTech Connect

    Schillinger, R.R.

    1996-12-01

    The subject of the paper is blasting vibrations as sources of environmental molestations including acceptance level, complaint level and damage level, as well. In addition, the paper shows a comparison of international regulations and their problematical aspects. In consideration of blast induced immissions the subject shows that human annoyance has become an important place in blasting works. It provides a solution proposal how to minimize environmental effects of blasting works.

  15. Giant radiating dyke swarms on Earth and Venus

    NASA Technical Reports Server (NTRS)

    Ernst, Richard E.; Head, James W.; Parfitt, Elisabeth; Wilson, Lionel; Grosfils, Eric

    1993-01-01

    On Earth, giant radiating dyke swarms are usually preserved as fan-shaped fragments which have been dismembered from their original configuration by subsequent plate tectonic rifting events. Analysis of the largest fragments and consideration of their original configuration has led to the idea that many swarms are plume related, and that dyke swarms radiate away from plume centers. Magellan radar data reveal abundant intact giant radiating swarms on Venus which are similar in scale and pattern to those on Earth. The absence of intense weathering and plate tectonic processes on Venus accounts for the preservation of the primary radiating patterns. It is characteristic of both Earth and Venus that giant radiating dikes are emplaced laterally for distances of at least 2000 km away from plume centers. At distances beyond the influence of the plume on both Earth and Venus, the radiating dyke pattern is often swept into a linear pattern aligned with the regional stress field. There is tremendous potential synergism between the characterization and analysis of terrestrial dyke swarms (where significant erosion has revealed their structure and emplacement directions at depth) and the giant swarms of Venus (where the complete circumferential structure is preserved, and the surface fracture systems above near surface dikes and the nature of the central source regions are revealed). In this study, we report on the characteristics of radial dyke swarms on Earth and Venus and draw some preliminary comparisons from the two perspectives. In summary, on both planets there is evidence for plume-related magmatic centers associated with vertical and lateral injection of magma over considerable distances (up to at least 2000 km). The abundance of very broadly radiating swarms on Venus supports the notion that the swarms on Earth were radiating over broad sectors at the time of intrusion but were dissected by later events. The Venus data show that a swarm can change from radiating

  16. Quantum-Behaved Particle Swarm Optimization with Chaotic Search

    NASA Astrophysics Data System (ADS)

    Yang, Kaiqiao; Nomura, Hirosato

    The chaotic search is introduced into Quantum-behaved Particle Swarm Optimization (QPSO) to increase the diversity of the swarm in the latter period of the search, so as to help the system escape from local optima. Taking full advantages of the characteristics of ergodicity and randomicity of chaotic variables, the chaotic search is carried out in the neighborhoods of the particles which are trapped into local optima. The experimental results on test functions show that QPSO with chaotic search outperforms the Particle Swarm Optimization (PSO) and QPSO.

  17. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  18. Membrane characteristics for biological blast overpressure testing using blast simulators.

    PubMed

    Alphonse, Vanessa D; Siva Sai Sujith Sajja, Venkata; Kemper, Andrew R; Rizel, Dave V; Duma, Stefan M; VandeVord, Pamela J

    2014-01-01

    Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators. PMID:25405432

  19. Temporal Changes in the Strength of Tidal Triggering Linked to Volcanic Swarms on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.

    2010-12-01

    percentile compared with the rate for the highest tenth percentile. We find very little evidence for tidal triggering during and between the swarms. After the swarms, the magnitude of the triggering signal decreases markedly with the rates near the vent fields only 20% higher during times of favorable phase and 50% higher when the tide heights are in the lowest tenth percentile. These observations support the hypothesis that tidal triggering is promoted by stresses that are maintained close to a critical state of failure. The decrease in b-values following the swarm leads us to postulate that decreased pore pressures in the earthquake nucleation zones may contribute to the reduced triggering signal following the swarms.

  20. Simulation of Blast Waves with Headwind

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Lawrence, Scott W.; Klopfer, Goetz H.; Mathias, Dovan; Onufer, Jeff T.

    2005-01-01

    The blast wave resulting from an explosion was simulated to provide guidance for models estimating risks for human spacecraft flight. Simulations included effects of headwind on blast propagation, Blasts were modelled as an initial value problem with a uniform high energy sphere expanding into an ambient field. Both still air and cases with headwind were calculated.

  1. 30 CFR 57.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 57.6312 Section 57.6312... Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting—Surface and Underground...

  2. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster...

  3. Giant radiating dyke swarms on Earth and Venus

    NASA Astrophysics Data System (ADS)

    Ernst, R. E.; Head, J. W.; Parfitt, E.; Grosfils, E.; Wilson, L.

    1995-09-01

    Concentrations of dykes of basic composition emplaced in the same igneous episode or along similar trends are known as mafic dyke swarms and they occur in a wide variety of environments and over a wide range of scales on Earth. Recent radar mapping of Venus has revealed families of linear features interpreted to be the surface expression of near-surface dyke swarms. The lack of significant erosion on Venus provides a view of the surface manifestation of dyke swarm emplacement, one which complements the terrestrial perspective of erosion to deeper levels. The goal of this review is to synthesize the information available on both planets in order to use the complementary and synergistic record of mafic dyke swarm emplacement to build toward a better understanding of this important phenomenon in planetary history. We focus on the formation and evolution of giant dyke swarms which cover tens to hundreds of thousands of square kilometres on both Earth and Venus. Mafic dyke swarms on Earth occur in a wide range of modes and are observed in environments ranging from volcanic edifices (e.g., Hawaii), to central complexes (e.g., Spanish Peaks Complex, USA; Ramon Swarm, Israel), spreading centres and ophiolite complexes, compressional plate boundaries in back-arc settings (Columbia River Basalts, USA) and in continent-continent collisions. One of the most impressive modes of occurrence is that linked to the formation and evolution of mantle plumes. Terrestrial examples include a giant radiating swarm covering 100° of azimuth (the Mackenzie swarm, Canada), a 360° giant radiating swarm (the Central Atlantic reconstructed swarm), deformed giant radiating swarms (the Matachewan swarm, Canada), rift-arm associated swarms (e.g., Grenville swarm, Canada; Yakutsk swarm, Siberia), and one consisting of widely separated dykes (e.g., the Abitibi swarm, Canada). We summarize the geometric, chemical and isotopic characteristics of terrestrial dyke swarms, including their size and

  4. Honey Bee Swarms Aboard the USNS Comfort: Recommendations for Sting Prevention, Swarm Removal, and Medical Readiness on Military Ships.

    PubMed

    Dunford, James C; Kronmann, Karl C; Peet, Luke R; Stancil, Jeffrey D

    2016-01-01

    The article provides observations of multiple honey bee (Apis mellifera) swarms aboard the USNS Comfort (TAH-20) during the Continuing Promise 2015 mission. A brief overview of swarming biology is given along with control/removal recommendations to reduce sting exposures. The observations suggest that preventive medicine personnel should provide adequate risk communications about the potential occurrence of bee swarms aboard military ships, and medical department personnel should be prepared for the possibility of treating of multiple sting exposures, especially in the Southern Command Area of Operations where the Africanized genotype of A mellifera is common. PMID:27613207

  5. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  6. Lagrange Interpolation Learning Particle Swarm Optimization

    PubMed Central

    2016-01-01

    In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles’ diversity and thus preventing premature convergence. However, CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel algorithm called LILPSO. First, this algorithm introduced a Lagrange interpolation method to perform a local search for the global best point (gbest). Second, to gain a better exemplar, one gbest, another two particle’s historical best points (pbest) are chosen to perform Lagrange interpolation, then to gain a new exemplar, which replaces the CLPSO’s comparison method. The numerical experiments conducted on various functions demonstrate the superiority of this algorithm, and the two methods are proven to be efficient for accelerating the convergence without leading the particle to premature convergence. PMID:27123982

  7. Searching for Data: Swarming Agent Method

    NASA Astrophysics Data System (ADS)

    Caputo, D. P.; Dolan, R.

    2012-07-01

    As our ability to produce data grows our ability to examine and find the useful portions of large data sets must grow as well. We present an efficient, agent based search algorithm, based on the behavior of schooling fish in the presence of predators, designed to search and/or map very large data sets. Our algorithm, which belongs to the artificial life family of algorithms, attempts to leverage swarm intelligence against the difficulty of finding valuable data within a sea of data. The agents search the data space based on a small set of simple rules which produces emergent behavior and results in an efficient and flexible algorithm, while at the same time resisting many of the short comings of other artificial life algorithms.

  8. Lagrange Interpolation Learning Particle Swarm Optimization.

    PubMed

    Kai, Zhang; Jinchun, Song; Ke, Ni; Song, Li

    2016-01-01

    In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles' diversity and thus preventing premature convergence. However, CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel algorithm called LILPSO. First, this algorithm introduced a Lagrange interpolation method to perform a local search for the global best point (gbest). Second, to gain a better exemplar, one gbest, another two particle's historical best points (pbest) are chosen to perform Lagrange interpolation, then to gain a new exemplar, which replaces the CLPSO's comparison method. The numerical experiments conducted on various functions demonstrate the superiority of this algorithm, and the two methods are proven to be efficient for accelerating the convergence without leading the particle to premature convergence. PMID:27123982

  9. Electron swarm parameters in water vapour

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Date, H.; Shimozuma, M.

    2007-04-01

    Electron swarm parameters, such as the drift velocity and the ionization coefficient, in water vapour have been measured for relatively wide ranges in reduced electric fields (E/N) at room temperature. The drift velocity (Wm) was obtained based upon the arrival-time spectra of electrons by using a double-shutter drift tube for the E/N from 60 to 1000 Td, while the first and second ionization coefficients (α and γ) were determined by the steady-state Townsend method from 50 to 3000 Td. A comparison between the results and other data in the literature shows that our results for both the drift velocity and the effective ionization coefficient are lower than those of the other data in the above ranges.

  10. Swarm intelligence in animals and humans.

    PubMed

    Krause, Jens; Ruxton, Graeme D; Krause, Stefan

    2010-01-01

    Electronic media have unlocked a hitherto largely untapped potential for swarm intelligence (SI; generally, the realisation that group living can facilitate solving cognitive problems that go beyond the capacity of single animals) in humans with relevance for areas such as company management, prediction of elections, product development and the entertainment industry. SI is a rapidly developing topic that has become a hotbed for both innovative research and wild speculation. Here, we tie together approaches from seemingly disparate areas by means of a general definition of SI to unite SI work on both animal and human groups. Furthermore, we identify criteria that are important for SI to operate and propose areas in which further progress with SI research can be made. PMID:19735961