Sample records for falciparum malaria prevalence

  1. P. falciparum malaria prevalence among blood donors in Bamako, Mali.

    PubMed

    Kouriba, B; Diarra, A B; Douyon, I; Diabaté, D T; Kamissoko, F; Guitteye, H; Baby, M; Guindo, M A; Doumbo, O K

    2017-06-01

    Malaria parasite is usually transmitted to humans by Anopheles mosquitoes but it can also be transmitted through blood transfusion. Usually malaria transmission is low in African urban settings. In West Africa where the P. falciparum is the most predominant malaria species, there are limited measures to reduce the risk of blood transfusion malaria. The aim of this study was to evaluate the prevalence of P. falciparum malaria carriage among blood donors in the National Blood Center of Bamako, capital city of Mali. The study was conducted using a random sample of 946 blood donors in Bamako, Mali, from January to December 2011. Screening for malaria was performed by thick smear and rapid diagnostic test (RDT). Blood group was typed by Beth-Vincent and Simonin techniques. The frequency of malaria infection was 1.4% by thick smear and 0.8% by the RDT. The pick prevalence of P. falciparum malaria was in rainy season, indicating a probable high seasonal risk of malaria by blood transfusion, in Mali. The prevalence of P. falciparum infection was 2% among donors of group O the majority being in this group. There is a seasonal prevalence of malaria among blood donors in Bamako. A prevention strategy of transfusion malaria based on the combination of selection of blood donors through the medical interview, promoting a voluntary low-risk blood donation and screening all blood bags intended to be transfused to children under 5, pregnant women and immune-compromised patients during transmission season using thick smear will reduce the risk of transfusion malaria in Mali. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa.

    PubMed

    Beier, J C; Killeen, G F; Githure, J I

    1999-07-01

    Epidemiologic patterns of malaria infection are governed by environmental parameters that regulate vector populations of Anopheles mosquitoes. The intensity of malaria parasite transmission is normally expressed as the entomologic inoculation rate (EIR), the product of the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage malaria parasites. Malaria transmission intensity in Africa is highly variable with annual EIRs ranging from < 1 to > 1,000 infective bites per person per year. Malaria control programs often seek to reduce morbidity and mortality due to malaria by reducing or eliminating malaria parasite transmission by mosquitoes. This report evaluates data from 31 sites throughout Africa to establish fundamental relationships between annual EIRs and the prevalence of Plasmodium falciparum malaria infection. The majority of sites fitted a linear relationship (r2 = 0.71) between malaria prevalence and the logarithm of the annual EIR. Some sites with EIRs < 5 infective bites per year had levels of P. falciparum prevalence exceeding 40%. When transmission exceeded 15 infective bites per year, there were no sites with prevalence rates < 50%. Annual EIRs of 200 or greater were consistently associated with prevalence rates > 80%. The basic relationship between EIR and P. falciparum prevalence, which likely holds in east and west Africa, and across different ecologic zones, shows convincingly that substantial reductions in malaria prevalence are likely to be achieved only when EIRs are reduced to levels less than 1 infective bite per person per year. The analysis also highlights that the EIR is a more direct measure of transmission intensity than traditional measures of malaria prevalence or hospital-based measures of infection or disease incidence. As such, malaria field programs need to consider both entomologic and clinical assessments of the efficacy of transmission control measures.

  3. Plasmodium falciparum infection in febrile Congolese children: prevalence of clinical malaria 10 years after introduction of artemisinin-combination therapies.

    PubMed

    Etoka-Beka, Mandingha Kosso; Ntoumi, Francine; Kombo, Michael; Deibert, Julia; Poulain, Pierre; Vouvoungui, Christevy; Kobawila, Simon Charles; Koukouikila-Koussounda, Felix

    2016-12-01

    To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever. © 2016 John Wiley & Sons Ltd.

  4. Non-falciparum malaria infections in pregnant women in West Africa.

    PubMed

    Williams, John; Njie, Fanta; Cairns, Matthew; Bojang, Kalifa; Coulibaly, Sheick Oumar; Kayentao, Kassoum; Abubakar, Ismaela; Akor, Francis; Mohammed, Khalifa; Bationo, Richard; Dabira, Edgar; Soulama, Alamissa; Djimdé, Moussa; Guirou, Etienne; Awine, Timothy; Quaye, Stephen L; Ordi, Jaume; Doumbo, Ogobara; Hodgson, Abraham; Oduro, Abraham; Magnussen, Pascal; Ter Kuile, Feiko O; Woukeu, Arouna; Milligan, Paul; Tagbor, Harry; Greenwood, Brian; Chandramohan, Daniel

    2016-01-29

    Non-Plasmodium falciparum malaria infections are found in many parts of sub-Saharan Africa but little is known about their importance in pregnancy. Blood samples were collected at first antenatal clinic attendance from 2526 women enrolled in a trial of intermittent screening and treatment of malaria in pregnancy (ISTp) versus intermittent preventive treatment (IPTp) conducted in Burkina Faso, The Gambia, Ghana and Mali. DNA was extracted from blood spots and tested for P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale using a nested PCR test. Risk factors for a non-falciparum malaria infection were investigated and the influence of these infections on the outcome of pregnancy was determined. P. falciparum infection was detected frequently (overall prevalence by PCR: 38.8 %, [95 % CI 37.0, 40.8]), with a prevalence ranging from 10.8 % in The Gambia to 56.1 % in Ghana. Non-falciparum malaria infections were found only rarely (overall prevalence 1.39 % [95 % CI 1.00, 1.92]), ranging from 0.17 % in the Gambia to 3.81 % in Mali. Ten non-falciparum mono-infections and 25 mixed falciparum and non-falciparum infections were found. P. malariae was the most frequent non-falciparum infection identified; P. vivax was detected only in Mali. Only four of the non-falciparum mono-infections were detected by microscopy or rapid diagnostic test. Recruitment during the late rainy season and low socio-economic status were associated with an increased risk of non-falciparum malaria as well as falciparum malaria. The outcome of pregnancy did not differ between women with a non-falciparum malaria infection and those who were not infected with malaria at first ANC attendance. Non-falciparum infections were infrequent in the populations studied, rarely detected when present as a mono-infection and unlikely to have had an important impact on the outcome of pregnancy in the communities studied due to the small number of women infected with non-falciparum parasites.

  5. Prevalence of PCR detectable malaria infection among febrile patients with a negative Plasmodium falciparum specific rapid diagnostic test in Zanzibar.

    PubMed

    Baltzell, Kimberly A; Shakely, Deler; Hsiang, Michelle; Kemere, Jordan; Ali, Abdullah Suleiman; Björkman, Anders; Mårtensson, Andreas; Omar, Rahila; Elfving, Kristina; Msellem, Mwinyi; Aydin-Schmidt, Berit; Rosenthal, Philip J; Greenhouse, Bryan

    2013-02-01

    We screened for malaria in 594 blood samples from febrile patients who tested negative by a Plasmodium falciparum-specific histidine-rich protein-2-based rapid diagnostic test at 12 health facilities in Zanzibar districts North A and Micheweni, from May to August 2010. Screening was with microscopy, polymerase chain reaction (PCR) targeting the cytochrome b gene (cytbPCR) of the four major human malaria species, and quantitative PCR (qPCR). The prevalence of cytbPCR-detectable malaria infection was 2% (12 of 594), including 8 P. falciparum, 3 Plasmodium malariae, and 1 Plasmodium vivax infections. Microscopy identified 4 of 8 P. falciparum infections. Parasite density as estimated by microscopy or qPCR was > 4,000 parasites/μL in 5 of 8 cytbPCR-detectable P. falciparum infections. The infections that were missed by the rapid diagnostic test represent a particular challenge in malaria elimination settings and highlight the need for more sensitive point-of-care diagnostic tools to improve case detection of all human malaria species in febrile patients.

  6. Direct detection of falciparum and non-falciparum malaria DNA from a drop of blood with high sensitivity by the dried-LAMP system.

    PubMed

    Hayashida, Kyoko; Kajino, Kiichi; Simukoko, Humphrey; Simuunza, Martin; Ndebe, Joseph; Chota, Amos; Namangala, Boniface; Sugimoto, Chihiro

    2017-01-13

    Because of the low sensitivity of conventional rapid diagnostic tests (RDTs) for malaria infections, the actual prevalence of the diseases, especially those caused by non-Plasmodium falciparum (non-Pf) species, in asymptomatic populations remain less defined in countries lacking in well-equipped facilities for accurate diagnoses. Our direct blood dry LAMP system (CZC-LAMP) was applied to the diagnosis of malaria as simple, rapid and highly sensitive method as an alternative for conventional RDTs in malaria endemic areas where laboratory resources are limited. LAMP primer sets for mitochondria DNAs of Plasmodium falciparum (Pf) and human-infective species other than Pf (non-Pf; P. vivax, P. ovale, P. malariae) were designed and tested by using human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested PCR and nucleotide sequencing of its product. The dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μl of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4, 25.3 and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia. We have developed new field-applicable malaria diagnostic tests. The malaria CZC-LAMPs showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new

  7. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  8. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm?

    PubMed

    Laporta, Gabriel Zorello; Burattini, Marcelo Nascimento; Levy, Debora; Fukuya, Linah Akemi; de Oliveira, Tatiane Marques Porangaba; Maselli, Luciana Morganti Ferreira; Conn, Jan Evelyn; Massad, Eduardo; Bydlowski, Sergio Paulo; Sallum, Maria Anice Mureb

    2015-04-25

    Recently an unexpectedly high prevalence of Plasmodium falciparum was found in asymptomatic blood donors living in the southeastern Brazilian Atlantic forest. The bromeliad-malaria paradigm assumes that transmission of Plasmodium vivax and Plasmodium malariae involves species of the subgenus Kerteszia of Anopheles and only a few cases of P. vivax malaria are reported annually in this region. The expectations of this paradigm are a low prevalence of P. vivax and a null prevalence of P. falciparum. Therefore, the aim of this study was to verify if P. falciparum is actively circulating in the southeastern Brazilian Atlantic forest remains. In this study, anophelines were collected with Shannon and CDC-light traps in seven distinct Atlantic forest landscapes over a 4-month period. Field-collected Anopheles mosquitoes were tested by real-time PCR assay in pools of ten, and then each mosquito from every positive pool, separately for P. falciparum and P. vivax. Genomic DNA of P. falciparum or P. vivax from positive anophelines was then amplified by traditional PCR for sequencing of the 18S ribosomal DNA to confirm Plasmodium species. Binomial probabilities were calculated to identify non-random results of the P. falciparum-infected anopheline findings. The overall proportion of anophelines naturally infected with P. falciparum was 4.4% (21/480) and only 0.8% (4/480) with P. vivax. All of the infected mosquitoes were found in intermixed natural and human-modified environments and most were Anopheles cruzii (22/25 = 88%, 18 P. falciparum plus 4 P. vivax). Plasmodium falciparum was confirmed by sequencing in 76% (16/21) of positive mosquitoes, whereas P. vivax was confirmed in only 25% (1/4). Binomial probabilities suggest that P. falciparum actively circulates throughout the region and that there may be a threshold of the forested over human-modified environment ratio upon which the proportion of P. falciparum-infected anophelines increases significantly. These results

  9. Spatial and temporal distribution of falciparum malaria in China

    PubMed Central

    Lin, Hualiang; Lu, Liang; Tian, Linwei; Zhou, Shuisen; Wu, Haixia; Bi, Yan; Ho, Suzanne C; Liu, Qiyong

    2009-01-01

    Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance

  10. High prevalence of asymptomatic Plasmodium falciparum infection in Gabonese adults.

    PubMed

    Dal-Bianco, Matthias P; Köster, Kai B; Kombila, Ulrich D; Kun, Jürgen F J; Grobusch, Martin P; Ngoma, Ghyslain Mombo; Matsiegui, Pierre B; Supan, Christian; Salazar, Carmen L Ospina; Missinou, Michel A; Issifou, Saadou; Lell, Bertrand; Kremsner, Peter

    2007-11-01

    Plasmodium falciparum, the most common malarial parasite in sub-Saharan Africa, accounts for a high number of deaths in children less than five years of age. In malaria-endemic countries with stable transmission, semi-immunity is usually acquired after childhood. For adults, severe malaria is rare. Infected adults have either uncomplicated malaria or asymptomatic parasitemia. During a period of one year, we screened 497 afebrile males to investigate the prevalence of asymptomatic P. falciparum parasitemia in villages near Lambaréné, Gabon by use of three different methods. A total of 52% of the individuals had parasites detected by a subtelomeric variable open reading frame polymerase chain reaction (stevor-PCR), 27% of the rapid diagnostic test results were positive, and 12% of the thick blood smears with low parasitemias had P. falciparum. Most positive cases were only detected by the stevor-PCR. Asymptomatic P. falciparum parasitemia in adults living in a malaria-endemic country is frequent.

  11. Spatial prediction of Plasmodium falciparum prevalence in Somalia

    PubMed Central

    Noor, Abdisalan M; Clements, Archie CA; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W

    2008-01-01

    Background Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Methods Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. Results For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with ≥ 5% prevalence were predominantly in the south. Conclusion The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia. PMID:18717998

  12. Spatial prediction of Plasmodium falciparum prevalence in Somalia.

    PubMed

    Noor, Abdisalan M; Clements, Archie C A; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W

    2008-08-21

    Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with > or = 5% prevalence were predominantly in the south. The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.

  13. Elimination of Plasmodium falciparum malaria in Tajikistan.

    PubMed

    Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N

    2017-05-30

    Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards

  14. Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria

    PubMed Central

    Ojurongbe, Olusola; Adegbayi, Adebola M; Bolaji, Oloyede S; Akindele, Akeem A; Adefioye, Olusegun A; Adeyeba, Oluwaseyi A

    2011-01-01

    BACKGROUND: Malaria and intestinal helminths are parasitic diseases causing high morbidity and mortality in most tropical parts of the world, where climatic conditions and sanitation practices favor their prevalence. The aim of this study was to determine the prevalence and possible impact of falciparum malaria and intestinal helminths co-infection among school children in Kajola, Osun state, Nigeria. METHODS: Fresh stool and blood samples were collected from 117 primary school children age range 4-15 years. The stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal parasitic infections. Blood was collected by finger prick to determine malaria parasitemia using thick film method; and packed cell volume (PCV) was determined by hematocrit. Univariate analysis and chi-square statistical tests were used to analyze the data. RESULTS: The prevalence of Plasmodium falciparum, intestinal helminth infections, and co-infection of malaria and helminth in the study were 25.6%, 40.2% and 4.3%, respectively. Five species of intestinal helminths were recovered from the stool samples and these were Ascaris lumbricoides (34.2%), hookworm (5.1%), Trichuris trichiura (2.6%), Diphyllobothrium latum (0.9%) and Trichostrongylus species (0.9%). For the co-infection of both malaria and intestinal helminths, females (5.9%) were more infected than males (2.0%) but the difference was not statistically significant (p = 0.3978). Children who were infected with helminths were equally likely to be infected with malaria as children without intestinal helminths [Risk Ratio (RR) = 0.7295]. Children with A. lumbricoides (RR = 1.359) were also likely to be infected with P. falciparum as compared with uninfected children. CONCLUSIONS: Asymptomatic falciparum malaria and intestinal helminth infections do co-exist without clinical symp-toms in school children in Nigeria. PMID:22091292

  15. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    PubMed

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  16. Seasonal prevalence of malaria in West Sumba district, Indonesia

    PubMed Central

    Syafruddin, Din; Krisin; Asih, Puji; Sekartuti; Dewi, Rita M; Coutrier, Farah; Rozy, Ismail E; Susanti, Augustina I; Elyazar, Iqbal RF; Sutamihardja, Awalludin; Rahmat, Agus; Kinzer, Michael; Rogers, William O

    2009-01-01

    Background Accurate information about the burden of malaria infection at the district or provincial level is required both to plan and assess local malaria control efforts. Although many studies of malaria epidemiology, immunology, and drug resistance have been conducted at many sites in Indonesia, there is little published literature describing malaria prevalence at the district, provincial, or national level. Methods Two stage cluster sampling malaria prevalence surveys were conducted in the wet season and dry season across West Sumba, Nusa Tenggara Province, Indonesia. Results Eight thousand eight hundred seventy samples were collected from 45 sub-villages in the surveys. The overall prevalence of malaria infection in the West Sumba District was 6.83% (95% CI, 4.40, 9.26) in the wet season and 4.95% (95% CI, 3.01, 6.90) in the dry. In the wet season Plasmodium falciparum accounted for 70% of infections; in the dry season P. falciparum and Plasmodium vivax were present in equal proportion. Malaria prevalence varied substantially across the district; prevalences in individual sub-villages ranged from 0–34%. The greatest malaria prevalence was in children and teenagers; the geometric mean parasitaemia in infected individuals decreased with age. Malaria infection was clearly associated with decreased haemoglobin concentration in children under 10 years of age, but it is not clear whether this association is causal. Conclusion Malaria is hypoendemic to mesoendemic in West Sumba, Indonesia. The age distribution of parasitaemia suggests that transmission has been stable enough to induce some clinical immunity. These prevalence data will aid the design of future malaria control efforts and will serve as a baseline against which the results of current and future control efforts can be assessed. PMID:19134197

  17. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study.

    PubMed

    Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Canier, Lydie; Kim, Nimol; Khim, Saorin; Alipon, Sweet C; Chuor Char, Meng; Chea, Nguon; Dysoley, Lek; Van den Bergh, Rafael; Etienne, William; De Smet, Martin; Ménard, Didier; Kindermans, Jean-Marie

    2014-10-06

    Intensified efforts are urgently needed to contain and eliminate artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion. Médecins Sans Frontières plans to support the Ministry of Health in eliminating P. falciparum in an area with artemisinin resistance in the north-east of Cambodia. As a first step, the prevalence of Plasmodium spp. and the presence of mutations associated with artemisinin resistance were evaluated in two districts of Preah Vihear Province. A cross-sectional population-based study using a two-stage cluster sampling was conducted in the rural districts of Chhaeb and Chey Saen, from September to October 2013. In each district, 30 clusters of 10 households were randomly selected. In total, blood samples were collected for 1,275 participants in Chhaeb and 1,224 in Chey Saen. Prevalence of Plasmodium spp. was assessed by PCR on dried blood spots. Plasmodium falciparum positive samples were screened for mutations in the K13-propeller domain gene (PF3D7_1343700). The prevalence of Plasmodium spp. was estimated at 1.49% (95% CI 0.71-3.11%) in Chhaeb and 2.61% (95% CI 1.45-4.66%) in Chey Saen. Twenty-seven samples were positive for P. falciparum, giving a prevalence of 0.16% (95% CI 0.04-0.65) in Chhaeb and 2.04% (95% CI 1.04-3.99%) in Chey Saen. Only 4.0% of the participants testing positive presented with fever or history of fever. K13-propeller domain mutant type alleles (C580Y and Y493H) were found, only in Chey Saen district, in seven out of 11 P. falciparum positive samples with enough genetic material to allow testing. The overall prevalence of P. falciparum was low in both districts but parasites presenting mutations in the K13-propeller domain gene, strongly associated with artemisinin-resistance, are circulating in Chey Saen.The prevalence might be underestimated because of the absentees - mainly forest workers - and the workers of private companies who were not included in the study. These results confirm the need to

  18. Discrete-Event Simulation Models of Plasmodium falciparum Malaria

    PubMed Central

    McKenzie, F. Ellis; Wong, Roger C.; Bossert, William H.

    2008-01-01

    We develop discrete-event simulation models using a single “timeline” variable to represent the Plasmodium falciparum lifecycle in individual hosts and vectors within interacting host and vector populations. Where they are comparable our conclusions regarding the relative importance of vector mortality and the durations of host immunity and parasite development are congruent with those of classic differential-equation models of malaria, epidemiology. However, our results also imply that in regions with intense perennial transmission, the influence of mosquito mortality on malaria prevalence in humans may be rivaled by that of the duration of host infectivity. PMID:18668185

  19. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon.

    PubMed

    Bouyou-Akotet, Marielle K; Ionete-Collard, Denisa E; Mabika-Manfoumbi, Modeste; Kendjo, Eric; Matsiegui, Pierre-Blaise; Mavoungou, Elie; Kombila, Maryvonne

    2003-06-25

    In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. A total of 177 women (57%) had microscopic parasitaemia; 139 (64%)of them were primigravidae, 38 (40%) in their second pregnancy and 180 (64%) were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.

  20. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    PubMed Central

    Bouyou-Akotet, Marielle K; Ionete-Collard, Denisa E; Mabika-Manfoumbi, Modeste; Kendjo, Eric; Matsiegui, Pierre-Blaise; Mavoungou, Elie; Kombila, Maryvonne

    2003-01-01

    Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57%) had microscopic parasitaemia; 139 (64%)of them were primigravidae, 38 (40%) in their second pregnancy and 180 (64%) were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population. PMID:12919637

  1. Cytokine profiles among patients co-infected with Plasmodium falciparum malaria and soil borne helminths attending Kampala International University Teaching Hospital, in Uganda.

    PubMed

    Bwanika, Richard; Kato, Charles D; Welishe, Johnson; Mwandah, Daniel C

    2018-01-01

    Malaria and helminths share the same geographical distribution in tropical Africa. Studies of the interaction of helminth and malaria co-infection in humans have been few and are mainly epidemiological, with little information on cellular immune responses. This study aimed to determine Cytokine profiles among patients co-infected with Plasmodium falciparum malaria and soil borne helminth attending Kampala International University Teaching Hospital (KIU). A case control study of 240 patients were recruited at KIU teaching hospital. Patients with Plasmodium falciparum malaria were 55 (22.9%) and those with soil-borne helminths were 63 (26.3%). The controls were 89 (37.1%), while those co-infected with Plasmodium falciparum malaria and soil-borne helminths were 33 (13.8%). Cases were defined as having a positive blood smear for P. falciparum malaria, those with helminths or co-infections of the two. Negative controls were those with a negative blood smear for P. falciparum malaria and those with no stool parasitic infections. Patients presenting with signs and symptoms of malaria or those suspected of having helminths were recruited for the study. A panel of five cytokines (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) were assayed from plasma samples in patients with and without Plasmodium falciparum malaria, patients with and without helminth, and then those co-infected with the two diseases diagnosis was done using thick blood smears stained with 10% Giemsa and stool examination was done following the Kato Katz technique following standard procedures. The prevalence of Plasmodium falciparum malaria by sex was 28 (11.7%) and 27 (11.3%) in male and female respectively. The overall prevalence of soil borne helminth was 26.3%, and among those harbouring helminths, 13.8% were co-infected with Plasmodium falciparum. Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and health controls for IFN-γ (P = 0.023), IL

  2. Prevalence of gestational, placental and congenital malaria in north-west Colombia

    PubMed Central

    2013-01-01

    Background The frequency of pregnancy-associated malaria is increasingly being documented in American countries. In Colombia, with higher frequency of Plasmodium vivax over Plasmodium falciparum infection, recent reports confirmed gestational malaria as a serious public health problem. Thick smear examination is the gold standard to diagnose malaria in endemic settings, but in recent years, molecular diagnostic methods have contributed to elucidate the dimension of the problem of gestational malaria. The study was aimed at exploring the prevalence of gestational, placental and congenital malaria in women who delivered at the local hospitals of north-west Colombia, between June 2008 and April 2011. Methods A group of 129 parturient women was selected to explore the prevalence of gestational, placental and congenital malaria in a descriptive, prospective and transversal (prevalence) design. Diagnosis was based on the simultaneous application of two independent diagnostic tests: microscopy of thick blood smears and a polymerase chain reaction assay (PCR). Results The prevalence of gestational malaria (thick smear /PCR) was 9.1%/14.0%; placental malaria was 3.3%/16.5% and congenital malaria was absent. A history of gestational malaria during the current pregnancy was significantly associated with gestational malaria at delivery. Plasmodium vivax caused 65% of cases of gestational malaria, whereas P. falciparum caused most cases of placental malaria. Conclusions Gestational and placental malaria are a serious problem in the region, but the risk of congenital malaria is low. A history of malaria during pregnancy may be a practical indicator of infection at delivery. PMID:24053184

  3. Paracheck Pf compared with microscopy for diagnosis of Plasmodium falciparum malaria among children in Tanga City, north-eastern Tanzania.

    PubMed

    Kamugisha, M L; Msangeni, H; Beale, E; Malecela, E K; Akida, J; Ishengoma, D R S; Lemnge, M M

    2008-01-01

    Malaria is a major public health problem particularly in rural Sub-Saharan Africa. In most urban areas, malaria transmission intensity is low thus monitoring trends using reliable tools is crucial to provide vital information for future management of the disease. Rapid diagnostic tests (RDT) such as Paracheck Pf are now increasingly adopted for Plasmodium falciparum malaria diagnosis and are advantageous and cost effective alternative to microscopy. This cross sectional survey was carried out during June 2005 to determine the prevalence of malaria in an urban setting and compare microscopy diagnosis versus Paracheck Pf for detecting Plasmodium falciparum. Blood samples from a total of 301 children (< 10 years) attending outpatient clinic at Makorora Health Centre, in Tanga, Tanzania were examined for the presence of malaria. Twenty-nine (9.6%) of the children were positive to malaria by microscopy while 30 (10.0%) were positive by Paracheck test. Three out of 30 positive cases detected by Paracheck were negative by microscopy; thus considered to be false positive results. For the 271 Paracheck Pf negative cases, 2 were positive by microscopy; yielding 2 false negative results. Paracheck Pf sensitivity and specificity were 93.1% and 98.9%, respectively. P. falciparum was the only malarial species observed among the 29 microscopy positive cases. The prevalence of anaemia among the children was 53.16%. These findings indicate a low prevalence of malaria in Tanga City and that Paracheck Pf can be an effective tool for malaria diagnosis.

  4. Prevalence and risk factors of Plasmodium falciparum infections in pregnant women of Luanda, Angola.

    PubMed

    Valente, Bianor; Campos, Paulo A; do Rosário, Virgílio E; Varandas, Luis; Silveira, Henrique

    2011-10-01

    Pregnant women are at increased risk of malaria, but in Angola, epidemiologic data from this group is almost inexistent. We conducted a cross-sectional study to determine the prevalence and risk factors of Plasmodium falciparum infections in 567 pregnant Angolan women living in Luanda province. One in five women had P. falciparum at delivery, diagnosed by PCR assay. Age, residence and history of malaria during pregnancy were significantly associated with P. falciparum infection, but gravidity and use of anti-malarial drugs were not. Placental infections were significantly more common in women ≤18 years old and in primigravidae, but we could not correlate placental infections with poor pregnancy outcomes. These findings are relevant to malaria control policies in Luanda, Angola. © 2011 Blackwell Publishing Ltd.

  5. Resisting and tolerating P. falciparum in pregnancy under different malaria transmission intensities.

    PubMed

    Ndam, Nicaise Tuikue; Mbuba, Emmanuel; González, Raquel; Cisteró, Pau; Kariuki, Simon; Sevene, Esperança; Rupérez, María; Fonseca, Ana Maria; Vala, Anifa; Maculuve, Sonia; Jiménez, Alfons; Quintó, Llorenç; Ouma, Peter; Ramharter, Michael; Aponte, John J; Nhacolo, Arsenio; Massougbodji, Achille; Briand, Valerie; Kremsner, Peter G; Mombo-Ngoma, Ghyslain; Desai, Meghna; Macete, Eusebio; Cot, Michel; Menéndez, Clara; Mayor, Alfredo

    2017-07-17

    Resistance and tolerance to Plasmodium falciparum can determine the progression of malaria disease. However, quantitative evidence of tolerance is still limited. We investigated variations in the adverse impact of P. falciparum infections among African pregnant women under different intensities of malaria transmission. P. falciparum at delivery was assessed by microscopy, quantitative PCR (qPCR) and placental histology in 946 HIV-uninfected and 768 HIV-infected pregnant women from Benin, Gabon, Kenya and Mozambique. Resistance was defined by the proportion of submicroscopic infections and the levels of anti-parasite antibodies quantified by Luminex, and tolerance by the relationship of pregnancy outcomes with parasite densities at delivery. P. falciparum prevalence by qPCR in peripheral and/or placental blood of HIV-uninfected Mozambican, Gabonese and Beninese women at delivery was 6% (21/340), 11% (28/257) and 41% (143/349), respectively. The proportion of peripheral submicroscopic infections was higher in Benin (83%) than in Mozambique (60%) and Gabon (55%; P = 0.033). Past or chronic placental P. falciparum infection was associated with an increased risk of preterm birth in Mozambican newborns (OR = 7.05, 95% CI 1.79 to 27.82). Microscopic infections were associated with reductions in haemoglobin levels at delivery among Mozambican women (-1.17 g/dL, 95% CI -2.09 to -0.24) as well as with larger drops in haemoglobin levels from recruitment to delivery in Mozambican (-1.66 g/dL, 95% CI -2.68 to -0.64) and Gabonese (-0.91 g/dL, 95% CI -1.79 to -0.02) women. Doubling qPCR-peripheral parasite densities in Mozambican women were associated with decreases in haemoglobin levels at delivery (-0.16 g/dL, 95% CI -0.29 to -0.02) and increases in the drop of haemoglobin levels (-0.29 g/dL, 95% CI -0.44 to -0.14). Beninese women had higher anti-parasite IgGs than Mozambican women (P < 0.001). No difference was found in the proportion of submicroscopic

  6. Falciparum malaria infection with invasive pulmonary aspergillosis in immunocompetent host – case report

    NASA Astrophysics Data System (ADS)

    Andriyani, Y.

    2018-03-01

    Invasive pulmonary aspergillosis is an extraordinary rare in the immunocompetent host. Falciparum malaria contributes to high morbidity and mortality of malaria infection cases in the world. The impairments of both humoral and cellular immunity could be the reason of invasive pulmonary aspergillosis in falciparum malaria infection. Forty-nine years old patient came with fever, jaundice, pain in the right abdomen, after visiting a remote area in Africa about one month before admission. Blood films and rapid test were positive for Plasmodium falciparum. After malaria therapy in five days, consciousness was altered into somnolence and intubated with respiratory deterioration. Invasive pulmonary aspergillosis after falciparum malaria infection is life-threatening. There should be awareness of physicians of invasive pulmonary aspergillosis in falciparum malaria infection.

  7. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  8. Artemisinin-Resistant Plasmodium falciparum Malaria.

    PubMed

    Fairhurst, Rick M; Dondorp, Arjen M

    2016-06-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.

  9. Origin of the human malaria parasite Plasmodium falciparum in gorillas

    PubMed Central

    Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.

    2010-01-01

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995

  10. Plasmodium falciparum Malaria, Southern Algeria, 2007

    PubMed Central

    Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria. PMID:20113565

  11. Malaria prevalence in asymptomatic and symptomatic children in Kiwangwa, Bagamoyo district, Tanzania.

    PubMed

    Sumari, Deborah; Mwingira, Felista; Selemani, Majige; Mugasa, Joseph; Mugittu, Kefas; Gwakisa, Paul

    2017-05-25

    Malaria prevalence continues to decline across sub-Saharan Africa as a result of various intervention strategies. However, the diseases still poses a public health concern in the region. While symptomatic malaria is recognized and treated, asymptomatic infections become increasingly important for interrupting transmission. A cross-sectional survey was conducted to assess malaria prevalence in symptomatic and asymptomatic children in Kiwangwa ward in Bagamoyo District in Tanzania. Four hundred school-aged children in Kiwanga ward were recruited in the study; 200 from Kiwangwa dispensary and 200 from nearby schools. Primary health parameters were examined and blood samples collected and examined for Plasmodium falciparum prevalence using rapid diagnostic test (RDT), light microscopy (LM) and reverse transcription quantitative PCR (RT-qPCR) targeting transcripts of A-type 18s rRNA of P. falciparum. Gametocytes were detected by LM and RT-qPCR targeting transcripts of gametocyte specific marker, Pfs25. Overall P. falciparum prevalence was 73.3, 40.8 and 36.3% by RT-qPCR, RDT and LM in the study area, respectively (P < 0.001). As expected symptomatic children had a significantly higher prevalence of 89, 67.5 and 64.5% by qPCR, RDT and LM, compared to 57.5, 14 and 8% in the asymptomatic group, respectively. However, gametocyte prevalence in asymptomatic individuals was higher by both LM (2%) and qPCR (14%) than in symptomatic individuals LM (0.5%) and qPCR (3%). A substantial difference in prevalence of symptomatic and asymptomatic infections observed in Kiwangwa ward underpins the use of molecular tools in malaria surveillance aiming at estimating prevalence and transmission. Notably, the higher gametocytaemia observed in asymptomatic children indicates the reservoir infections and points to the need for detection and treatment of both asymptomatic and symptomatic malaria.

  12. Systematic review of the accuracy of the ParaSight-F test in the diagnosis of Plasmodium falciparum malaria.

    PubMed

    Cruciani, Mario; Nardi, Stefano; Malena, Marina; Bosco, Oliviero; Serpelloni, Giovanni; Mengoli, Carlo

    2004-07-01

    The Parasight-F test is a device for the rapid diagnosis of Plasmodium falciparum malaria. In a number of field studies rather wide disparities in the performance of the test have been reported. To provide an evaluation of the quality of available reports and an overall summary of diagnostic accuracy of the Parasight-F test, we have performed a systematic review. Systematic review and meta-analysis of controlled studies evaluating the diagnostic accuracy of Parasight-F test in comparison with light microscopy. 15,359 subjects (4,119 with falciparum malaria) studied with the Parasight-F test as reported in 32 studies from 29 publications. Summary receiving operator characteristic (SROC) curve as well as odds ratio calculated by the fixed effect model and the random effect model. Based on pooled data, the predictive values were calculated for a range of P. falciparum prevalence through a Bayesian approach. Overall, the Parasight-F test demonstrated 0.90 (95%, confidence intervals 0.88-0.93) sensitivity and 0.94 (0.92-0.96) specificity. Both sensitivity and specificity were significantly higher in the non-resident than in the resident population. The post-test probability indicates that in settings of low malaria prevalence, a negative test almost absolutely excludes infection, while in settings of high prevalence, the same result still gives a substantial chance of infection being present. The Parasight-F test is a simple and accurate test for the diagnosis of P. falciparum infection. The test could be of particular value in the diagnosis of malaria in travelers returning from endemic areas.

  13. The efficiency of sporozoite transmission in the human malarias, Plasmodium falciparum and P. vivax*

    PubMed Central

    Burkot, T. R.; Graves, P. M.; Cattan, J. A.; Wirtz, R. A.; Gibson, F. D.

    1987-01-01

    Reported are malaria sporozoite and inoculation rates over a 1-year period in eight epidemiologically defined villages of different endemicity in Madang Province, Papua New Guinea. In the study, more than 41 000 wild-caught mosquitos were analysed for Plasmodium falciparum and P. vivax sporozoites by ELISA. In a given village the entomological inoculation rates correlated strongly with the prevalences of both these malarial parasites in children. However, the prevalence of P. falciparum infections in children was much higher than that of P. vivax, despite similar inoculation rates for the two species. These data suggest that in Papua New Guinea P. falciparum is more efficiently transmitted than P. vivax from mosquito to man. The increased efficiency of transmission of P. falciparum may be due to the heavier sporozoite densities in wild-caught mosquitos naturally infected with P. falciparum sporozoites that were tenfold greater than the sporozoite densities in mosquitos infected with P. vivax. PMID:3311441

  14. Plasmodium falciparum Malaria Endemicity in Indonesia in 2010

    PubMed Central

    Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Kusriastuti, Rita; Wismarini, Desak M.; Tarmizi, Siti N.; Baird, J. Kevin; Hay, Simon I.

    2011-01-01

    Background Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010. Methods Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface. Results We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas. Conclusion While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of

  15. A brief review on features of falciparum malaria during pregnancy

    PubMed Central

    Serdouma, Eugène; Ngbalé, Richard Norbert; Moussa, Sandrine; Gondjé, Samuel; Degana, Rock Mbetid; Bata, Gislain Géraud Banthas; Moyen, Jean Methode; Delmont, Jean; Grésenguet, Gérard; Sepou, Abdoulaye

    2017-01-01

    Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa. PMID:29456824

  16. Helminth Infection and Eosinophilia and the Risk of Plasmodium falciparum Malaria in 1- to 6-Year-Old Children in a Malaria Endemic Area

    PubMed Central

    Bejon, Philip; Mwangi, Tabitha W.; Lowe, Brett; Peshu, Norbert; Hill, Adrian V. S.; Marsh, Kevin

    2008-01-01

    Background Helminth infection is common in malaria endemic areas, and an interaction between the two would be of considerable public health importance. Animal models suggest that helminth infections may increase susceptibility to malaria, but epidemiological data has been limited and contradictory. Methodology/Principal Findings In a vaccine trial, we studied 387 one- to six-year-old children for the effect of helminth infections on febrile Plasmodium falciparum malaria episodes. Gastrointestinal helminth infection and eosinophilia were prevalent (25% and 50% respectively), but did not influence susceptibility to malaria. Hazard ratios were 1 for gastrointestinal helminth infection (95% CI 0.6–1.6) and 0.85 and 0.85 for mild and marked eosinophilia, respectively (95% CI 0.56–1.76 and 0.69–1.96). Incident rate ratios for multiple episodes were 0.83 for gastro-intestinal helminth infection (95% CI 0.5–1.33) and 0.86 and 0.98 for mild and marked eosinophilia (95% CI 0.5–1.4 and 0.6–1.5). Conclusions/Significance There was no evidence that infection with gastrointestinal helminths or urinary schistosomiasis increased susceptibility to Plasmodium falciparum malaria in this study. Larger studies including populations with a greater prevalence of helminth infection should be undertaken. PMID:18265875

  17. Prevalence of human malaria infection in Pakistani areas bordering with Iran.

    PubMed

    Yasinzai, Mohammad Iqbal; Kakarsulemankhel, Juma Khan

    2013-03-01

    To study the prevalence of malarial infections in human population of district Panjgur in south-western Pakistan. The cross-sectional study identified malarial parasites in the blood slides of 6119 suspected malaria patients from July 2006 to June 2008 through passive and active case detection methods. SPSS 11 was used for statistical analysis. Out of 6119 suspected cases of malaria, 2346 (38.3%) were found to be positive for malarial parasite on blood smear slides. Of these, 1868 (79.6%) cases were due to Plasmodium vivax infection, and 478 (20.3%) had P. falciparum. However, seasonal variation was also noted: P. vivax infection was the highest (n = 131/144, 90.9%) in November and the lowest (n=83/176, 47.1%) in October. The prevalence was higher (n=1831, 78%) in males. Age-wise, the prevalence of the disease was 81.2% (n=334) and 80% (n=860) for age groups 1-10 years and 11-20 years. No case of P. malariae and P. ovale was detected in the study period. No association was found between types of infection and age groups. Human malaria infection was quite frequent in the study region, which is one of the hottest areas of Balochistan, Pakistan. In clinically-suspected cases of malaria, there was a high slide positivity rate. The high prevalence rate of P. vivax poses a significant health hazard but R falciparum also may lead to serious complications, including cerebral malaria.

  18. Prevalence of Plasmodium falciparum and non-P. falciparum infections in a highland district in Ghana, and the influence of HIV and sickle cell disease.

    PubMed

    Owusu, Ewurama D A; Brown, Charles A; Grobusch, Martin P; Mens, Petra

    2017-04-24

    In the past two decades, there has been a reported decline in malaria in Ghana and the rest of the world; yet it remains the number one cause of mortality and morbidity. Human immuno-deficiency virus (HIV) and sickle cell disease (SCD) share a common geographical space with malaria in sub-Saharan Africa and an interaction between these three conditions has been suggested. This study determined the Plasmodium falciparum and non-P. falciparum status of symptomatic and non-symptomatic residents of Mpraeso in the highlands of Kwahu-South district of Ghana based on evidence of current national decline. The influence of HIV and SCD on malaria was also determined. Participants were 354 symptomatic patients visiting the Kwahu Government Hospital and 360 asymptomatic residents of the district capital. This cross-sectional study was conducted during the minor rainy season (October-December 2014). Rapid diagnostic tests (RDT), blood film microscopy and real-time polymerase chain reaction assessment of blood were done. Participants who tested positive with RDT were treated with artemisinin-based combination therapy; and assessment of venous blood was repeated 7 days after treatment. HIV screening and haemoglobin genotyping was done. Univariate and multivariate regression analysis was used to determine the influence of SCD and HIV. Plasmodium falciparum was prevalent at 124/142 (87.3%). Plasmodium malariae was the only non-falciparum species detected at 18/142 (12.7%). HIV and SCD did not significantly increase odds of malaria infection. However, the use of ITN and recent anti-malarial intake significantly decreased the odds of being malaria infected by 0.45-fold and 0.46-fold respectively. Plasmodium falciparum and P. malariae infection are the prevailing species in the study area; albeit varying from the national average. HIV and SCD were not associated with the risk of having malaria.

  19. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    PubMed

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  20. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  1. Antibody responses to P. falciparum blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso.

    PubMed

    Cherif, Mariama K; Ouédraogo, Oumarou; Sanou, Guillaume S; Diarra, Amidou; Ouédraogo, Alphonse; Tiono, Alfred; Cavanagh, David R; Michael, Theisen; Konaté, Amadou T; Watson, Nora L; Sanza, Megan; Dube, Tina J T; Sirima, Sodiomon B; Nebié, Issa

    2017-09-08

    High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.

  2. High prevalence of asymptomatic malaria in south-eastern Bangladesh

    PubMed Central

    2014-01-01

    Background The WHO has reported that RDT and microscopy-confirmed malaria cases have declined in recent years. However, it is still unclear if this reflects a real decrease in incidence in Bangladesh, as particularly the hilly and forested areas of the Chittagong Hill Tract (CHT) Districts report more than 80% of all cases and deaths. surveillance and epidemiological data on malaria from the CHT are limited; existing data report Plasmodium falciparum and Plasmodium vivax as the dominant species. Methods A cross-sectional survey was conducted in the District of Bandarban, the southernmost of the three Hill Tracts Districts, to collect district-wide malaria prevalence data from one of the regions with the highest malaria endemicity in Bangladesh. A multistage cluster sampling technique was used to collect blood samples from febrile and afebrile participants and malaria microscopy and standardized nested PCR for diagnosis were performed. Demographic data, vital signs and splenomegaly were recorded. Results Malaria prevalence across all subdistricts in the monsoon season was 30.7% (95% CI: 28.3-33.2) and 14.2% (95% CI: 12.5-16.2) by PCR and microscopy, respectively. Plasmodium falciparum mono-infections accounted for 58.9%, P. vivax mono-infections for 13.6%, Plasmodium malariae for 1.8%, and Plasmodium ovale for 1.4% of all positive cases. In 24.4% of all cases mixed infections were identified by PCR. The proportion of asymptomatic infections among PCR-confirmed cases was 77.0%, oligosymptomatic and symptomatic cases accounted for only 19.8 and 3.2%, respectively. Significantly (p < 0.01) more asymptomatic cases were recorded among participants older than 15 years as compared to younger participants, whereas prevalence and parasite density were significantly (p < 0.01) higher in patients younger than 15 years. Spleen rate and malaria prevalence in two to nine year olds were 18.6 and 34.6%, respectively. No significant difference in malaria prevalence and

  3. Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries.

    PubMed

    Drakeley, Chris; Abdulla, Salim; Agnandji, Selidji Todagbe; Fernandes, José Francisco; Kremsner, Peter; Lell, Bertrand; Mewono, Ludovic; Bache, Bache Emmanuel; Mihayo, Michael Gabriel; Juma, Omar; Tanner, Marcel; Tahita, Marc Christian; Tinto, Halidou; Diallo, Salou; Lompo, Palpouguini; D'Alessandro, Umberto; Ogutu, Bernhards; Otieno, Lucas; Otieno, Solomon; Otieno, Walter; Oyieko, Janet; Asante, Kwaku Poku; Dery, Dominic Bon-Ereme; Adjei, George; Adeniji, Elisha; Atibilla, Dorcas; Owusu-Agyei, Seth; Greenwood, Brian; Gesase, Samwel; Lusingu, John; Mahende, Coline; Mongi, Robert; Segeja, Method; Adjei, Samuel; Agbenyega, Tsiri; Agyekum, Alex; Ansong, Daniel; Bawa, John Tanko; Boateng, Harry Owusu; Dandalo, Léonard; Escamilla, Veronica; Hoffman, Irving; Maenje, Peter; Martinson, Francis; Carter, Terrell; Leboulleux, Didier; Kaslow, David C; Usuf, Effua; Pirçon, Jean-Yves; Bahmanyar, Edith Roset

    2017-10-27

    Plasmodium falciparum prevalence (PfPR) is a widely used metric for assessing malaria transmission intensity. This study was carried out concurrently with the RTS,S/AS01 candidate malaria vaccine Phase III trial and estimated PfPR over ≤ 4 standardized cross-sectional surveys. This epidemiology study (NCT01190202) was conducted in 8 sites from 6 countries (Burkina Faso, Gabon, Ghana, Kenya, Malawi, and Tanzania), between March 2011 and December 2013. Participants were enrolled in a 2:1:1 ratio according to age category: 6 months-4 years, 5-19 years, and ≥ 20 years, respectively, per year and per centre. All sites carried out surveys 1-3 while survey 4 was conducted only in 3 sites. Surveys were usually performed during the peak malaria parasite transmission season, in one home visit, when medical history and malaria risk factors/prevention measures were collected, and a blood sample taken for rapid diagnostic test, microscopy, and haemoglobin measurement. PfPR was estimated by site and age category. Overall, 6401 (survey 1), 6411 (survey 2), 6400 (survey 3), and 2399 (survey 4) individuals were included in the analyses. In the 6 months-4 years age group, the lowest prevalence (assessed using microscopy) was observed in 2 Tanzanian centres (4.6% for Korogwe and 9.95% for Bagamoyo) and Lambaréné, Gabon (6.0%), while the highest PfPR was recorded for Nanoro, Burkina Faso (52.5%). PfPR significantly decreased over the 3 years in Agogo (Ghana), Kombewa (Kenya), Lilongwe (Malawi), and Bagamoyo (Tanzania), and a trend for increased PfPR was observed over the 4 surveys for Kintampo, Ghana. Over the 4 surveys, for all sites, PfPR was predominantly higher in the 5-19 years group than in the other age categories. Occurrence of fever and anaemia was associated with high P. falciparum parasitaemia. Univariate analyses showed a significant association of anti-malarial treatment in 4 surveys (odds ratios [ORs]: 0.52, 0.52, 0.68, 0.41) and bed net use in 2

  4. Chloroquine-resistant falciparum malaria in East Kalimantan, Indonesia.

    PubMed

    Verdrager, J; Arwati; Simanjuntak, C H; Saroso, J S

    1976-03-01

    Following the discovery of four imported chloroquine-resistant P. falciparum infections in the Province of Yogyakarta (Island of Java) sensitivity tests were carried out in the Province of East Kalimantan Island of Borneo). Twenty subjects were given 25 mg. of chloroquine base per kilogram of body weight over three days. Two infections were found resistant at the RII level and a third at the RI level with early recrudescence on day 7. In the other 17 cases followed up to day 21, six were found again with asexual parasites between day 9 and day 14 and a seventh on day 21. These results confirm the presence of chloroquine resistance in P. falciparum in East Kalimantan and, together with previous findings, suggest a widespread distribution of chloroquine-resistant falciparum malaria in this Province of Indonesia. It is particularly interesting to note that chloroquine-resistant falciparum malaria has now been detected in almost all the area of dispersion of A. balabacensis.

  5. Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia

    PubMed Central

    2013-01-01

    Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by

  6. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants

    PubMed Central

    2012-01-01

    Background Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. Methods The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. Results The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. Conclusions This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which

  7. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants.

    PubMed

    Khaireh, Bouh Abdi; Briolant, Sébastien; Pascual, Aurélie; Mokrane, Madjid; Machault, Vanessa; Travaillé, Christelle; Khaireh, Mohamed Abdi; Farah, Ismail Hassan; Ali, Habib Moussa; Abdi, Abdul-Ilah Ahmed; Ayeh, Souleiman Nour; Darar, Houssein Youssouf; Ollivier, Lénaïck; Waiss, Mohamed Killeh; Bogreau, Hervé; Rogier, Christophe; Pradines, Bruno

    2012-11-28

    Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which should encourage authorities to

  8. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands.

    PubMed

    Waltmann, Andreea; Darcy, Andrew W; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G Dennis; Barry, Alyssa E; Whittaker, Maxine; Kazura, James W; Mueller, Ivo

    2015-05-01

    Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0-38.5%, p<0.001) and across age groups (5.3-25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands

  9. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  10. Severe thrombocytopaenia in patients with vivax malaria compared to falciparum malaria: a systematic review and meta-analysis.

    PubMed

    Naing, Cho; Whittaker, Maxine A

    2018-02-09

    Plasmodium vivax is the most geographically widespread species among human malaria parasites. Immunopathological studies have shown that platelets are an important component of the host innate immune response against malaria infections. The objectives of this study were to quantify thrombocytopaenia in P. vivax malaria patients and to determine the associated risks of severe thrombocytopaenia in patients with vivax malaria compared to patients with P. falciparum malaria. A systematic review and meta-analysis of the available literature on thrombocytopaenia in P. vivax malaria patients was undertaken. Relevant studies in health-related electronic databases were identified and reviewed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Fifty-eight observational studies (n = 29 664) were included in the current review. Severe thrombocytopaenia (< 50 000/mm 3 ) to very severe thrombocytopaenia (< 20 000/mm 3 ) was observed in 10.1% of patients with P. vivax infection. A meta-analysis of 11 observational studies showed an equal risk of developing severe/very severe thrombocytopaenia between the patients with P. vivax malaria and those with P. falciparum malaria (OR: 1.98, 95% CI: 0.92-4.25). This indicates that thrombocytopaenia is as equally a common manifestation in P. vivax and P. falciparum malaria patients. One study showed a higher risk of developing very severe thrombocytopaenia in children with severe P. vivax malaria than with severe P. falciparum malaria (OR: 2.80, 95% CI: 1.48-5.29). However, a pooled analysis of two studies showed an equal risk among adult severe cases (OR: 1.19, 95% CI: 0.51-2.77). This indicates that the risk of developing thrombocytopaenia in P. vivax malaria can vary with immune status in both children and adults. One study reported higher levels of urea and serum bilirubin in patients with P. vivax malaria and severe thrombocytopaenia compared with patients mild

  11. Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh.

    PubMed

    Alam, Mohammad Shafiul; Kabir, Mohammad Moktadir; Hossain, Mohammad Sharif; Naher, Shamsun; Ferdous, Nur E Naznin; Khan, Wasif Ali; Mondal, Dinesh; Karim, Jahirul; Shamsuzzaman, A K M; Ahmed, Be-Nazir; Islam, Akramul; Haque, Rashidul

    2016-11-11

    Malaria is endemic in 13 districts of Bangladesh. A baseline malaria prevalence survey across the endemic districts of Bangladesh was conducted in 2007, when the prevalence was reported around 39.7 per 1000 population. After two rounds of Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)-funded intervention by the National Malaria Control Programme (NMCP) and a BRAC-led NGO consortium, a follow-up survey was conducted across the malaria-endemic districts of Bangladesh to measure the change in prevalence rate and in people's knowledge of malaria. The survey was carried out from August to November 2013 in 70 upazilas (sub-districts) of 13 malaria-endemic districts of Bangladesh, following the same multi-stage cluster sampling design and the same number of households enrolled during the baseline prevalence survey in 2007, to collect 9750 randomly selected blood samples. For on-the-spot diagnosis of malaria, a rapid diagnostic test was used. The household head or eldest person available was interviewed using a pre-coded structured questionnaire to collect data on the knowledge and awareness of malaria in the household. Based on a weighted calculation, the overall malaria prevalence was found to be 1.41 per 1000 population. The proportion of Plasmodium falciparum mono-infection was 77.78% while both Plasmodium vivax mono-infection and mixed infection of the two species were found to be 11.11%. Bandarban had the highest prevalence (6.67 per 1000 population). Knowledge of malaria signs, symptoms and mode of transmission were higher in the follow-up survey (97.26%) than the baseline survey. Use of bed nets for prevention of malaria was found to be high (90.15%) at respondent level. People's knowledge of selected parameters increased significantly during the follow-up survey compared to the baseline survey conducted in 2007. A reduced prevalence rate of malaria and increased level of knowledge were observed in the present malaria prevalence survey in Bangladesh.

  12. Relative Susceptibilities of ABO Blood Groups to Plasmodium falciparum Malaria in Ghana.

    PubMed

    Afoakwah, Richmond; Aubyn, Edmond; Prah, James; Nwaefuna, Ekene Kwabena; Boampong, Johnson N

    2016-01-01

    The clinical outcome of falciparum malaria in endemic areas is influenced by erythrocyte polymorphisms including the ABO blood groups. Studies have reported association of ABO blood group to resistance, susceptibility, and severity of P. falciparum malaria infection. Individuals with blood group "A" have been found to be highly susceptible to falciparum malaria whereas blood group "O" is said to confer protection against complicated cases. We analyzed samples from 293 young children less than six years old with malaria in the Korle-Bu Teaching Hospital in Accra, Ghana. It was observed that group O was present in about 16.1% of complicated cases weighed against 40.9% of uncomplicated controls. Individuals with complicated malaria were about twice likely to be of blood groups A and B compared to group O (A versus O, OR = 1.90, 95% CI = 1.59-2.26, P < 0.0001; B versus O, OR = 1.82. 95% CI = 1.57-2.23, P < 0.0001). Blood group O participants with complicated diseases had low parasitaemia compared to the other blood groups (P < 0.0001). This may give blood group O individuals a survival advantage over the other groups in complicated malaria as suggested. Participants with complicated falciparum malaria were generally anaemic and younger than those with uncomplicated disease.

  13. Prevalence of Plasmodium falciparum Molecular Markers of Antimalarial Drug Resistance in a Residual Malaria Focus Area in Sabah, Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Abdullah, Noor Rain; Sastu, Umi Rubiah; Imwong, Mallika; Muniandy, Prem Kumar; Saat, Muhammad Nor Farhan; Muhammad, Amirrudin; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Rundi, Christina; Mudin, Rose Nani; Syed Mohamed, Ami Fazlin

    2016-01-01

    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control. PMID:27788228

  14. Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.

    PubMed

    Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda

    2017-01-03

    Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other

  15. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    PubMed

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  16. Efficacy of Chloroquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Honduras

    PubMed Central

    Torres, Rosa Elena Mejia; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A.; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-01-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization—World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras. PMID:23458957

  17. Chloroquine-resistant falciparum malaria in Madagascar and Kenya.

    PubMed

    Aronsson, B; Bengtsson, E; Björkman, A; Pehrson, P O; Rombo, L; Wahlgren, M

    1981-08-01

    3 African cases of chloroquine-resistent (RI) P. falciparum malaria, proved by recrudescences after administration of recommended doses and adequate serum levels of chloroquine, are described. The 3 patients, Swedish women aged 43, 27, and 41, had never visited areas where chloroquine-resistent P. falciparum is known to exist. 2 patients had taken regular prophylaxis with chloroquine, while the 3rd had interrupted chloroquine use with temporary use of pyrimethamine. All 3 were treated with chloroquine and had serum levels well above those considered necessary for cure of malaria due to sensitive strains of P. falciparum. All had recrudescences, ranging from 13 to 41 days after the previous chloroquine treatment. Reinfection was not possible for any of the patients and none took other drugs during the study period. In 2 cases the Rieckmann in vitro test for resistence failed. In 1 case from Madagascar the in vitro method described by Nguyen-Dinh and Trager produced results indicating resistence and in another case from Madagascar the results indicated probable resistence, but the procedure failed in the case from Kenya. The 2 cases mark the 1st time resistence has been reported from Madagascar. In vivo tests in all cases and in vitro results in 2 cases, together with the adequate serum levels of chloroquine, confirm that malaria due to chloroquine-resistent P. falciparum is being transmitted in some parts of Africa.

  18. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria.

    PubMed

    Smith, Thomas; Maire, Nicolas; Dietz, Klaus; Killeen, Gerry F; Vounatsou, Penelope; Molineaux, Louis; Tanner, Marcel

    2006-08-01

    We propose a stochastic model for the relationship between the entomologic inoculation rate (EIR) for Plasmodium falciparum malaria and the force of infection in endemic areas. The model incorporates effects of increased exposure to mosquito bites as a result of the growth in body surface area with the age of the host, naturally acquired pre-erythrocytic immunity, and the reduction in the proportion of entomologically assessed inoculations leading to infection, as the EIR increases. It is fitted to multiple datasets from field studies of the relationship between malaria infection and the EIR. We propose that this model can account for non-monotonic relationships between the age of the host and the parasite prevalence and incidence of disease. It provides a parsimonious explanation for the faster acquisition of natural immunity in adults than in children exposed to high EIRs. This forms one component of a new stochastic model for the entire transmission cycle of P. falciparum that we have derived to estimate the potential epidemiologic impact of malaria vaccines and other malaria control interventions.

  19. Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya

    PubMed Central

    Halliday, Katherine E; Karanja, Peris; Turner, Elizabeth L; Okello, George; Njagi, Kiambo; Dubeck, Margaret M; Allen, Elizabeth; Jukes, Matthew CH; Brooker, Simon J

    2012-01-01

    Objectives Studies have typically investigated health and educational consequences of malaria among school-aged children in areas of high malaria transmission, but few have investigated these issues in moderate transmission settings. This study investigates the patterns of and risks for Plasmodium falciparum and anaemia and their association with cognitive and education outcomes on the Kenyan coast, an area of moderate malaria transmission. Methods As part of a cluster randomised trial, a baseline cross-sectional survey assessed the prevalence of and risk factors for P. falciparum infection and anaemia and the associations between health status and measures of cognition and educational achievement. Results are presented for 2400 randomly selected children who were enrolled in the 51 intervention schools. Results The overall prevalence of P. falciparum infection and anaemia was 13.0% and 45.5%, respectively. There was marked heterogeneity in the prevalence of P. falciparum infection by school. In multivariable analysis, being male, younger age, not sleeping under a mosquito net and household crowding were adjusted risk factors for P. falciparum infection, whilst P. falciparum infection, being male and indicators of poor nutritional intake were risk factors for anaemia. No association was observed between either P. falciparum or anaemia and performance on tests of sustained attention, cognition, literacy or numeracy. Conclusion The results indicate that in this moderate malaria transmission setting, P. falciparum is strongly associated with anaemia, but there is no clear association between health status and education. Intervention studies are underway to investigate whether removing the burden of chronic asymptomatic P. falciparum and related anaemia can improve education outcomes. PMID:22950512

  20. Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya.

    PubMed

    Halliday, Katherine E; Karanja, Peris; Turner, Elizabeth L; Okello, George; Njagi, Kiambo; Dubeck, Margaret M; Allen, Elizabeth; Jukes, Matthew C H; Brooker, Simon J

    2012-05-01

    Studies have typically investigated health and educational consequences of malaria among school-aged children in areas of high malaria transmission, but few have investigated these issues in moderate transmission settings. This study investigates the patterns of and risks for Plasmodium falciparum and anaemia and their association with cognitive and education outcomes on the Kenyan coast, an area of moderate malaria transmission. As part of a cluster randomised trial, a baseline cross-sectional survey assessed the prevalence of and risk factors for P. falciparum infection and anaemia and the associations between health status and measures of cognition and educational achievement. Results are presented for 2400 randomly selected children who were enrolled in the 51 intervention schools. The overall prevalence of P. falciparum infection and anaemia was 13.0% and 45.5%, respectively. There was marked heterogeneity in the prevalence of P. falciparum infection by school. In multivariable analysis, being male, younger age, not sleeping under a mosquito net and household crowding were adjusted risk factors for P. falciparum infection, whilst P. falciparum infection, being male and indicators of poor nutritional intake were risk factors for anaemia. No association was observed between either P. falciparum or anaemia and performance on tests of sustained attention, cognition, literacy or numeracy. The results indicate that in this moderate malaria transmission setting, P. falciparum is strongly associated with anaemia, but there is no clear association between health status and education. Intervention studies are underway to investigate whether removing the burden of chronic asymptomatic P. falciparum and related anaemia can improve education outcomes. © 2012 Blackwell Publishing Ltd.

  1. Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors

    NASA Astrophysics Data System (ADS)

    Lai, Shengjie; Wardrop, Nicola A.; Huang, Zhuojie; Bosco, Claudio; Sun, Junling; Bird, Tomas; Wesolowski, Amy; Zhou, Sheng; Zhang, Qian; Zheng, Canjun; Li, Zhongjie; Tatem, Andrew J.; Yu, Hongjie

    2016-12-01

    Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011-2015, 8653 P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P = 0.006), parasite prevalence in Africa (P < 0.001), and the amount of official development assistance from China (P < 0.001) with investment in resource extraction having the strongest relationship with parasite importation. Risk factors for deaths from imported cases were related to the capacity of malaria diagnosis and diverse socioeconomic factors. The spatial heterogeneity uncovered, principal drivers explored, and risk factors for mortality found in the rising rates of P. falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted.

  2. Risk factors of shock in severe falciparum malaria.

    PubMed

    Arnold, Brendan J; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2013-07-04

    The objective of this study was to determine the risk factors for the development of shock in adult patients admitted with severe falciparum malaria. As an unmatched case-control study, the records of patients who were admitted to the Bangkok Hospital for Tropical Diseases, Thailand, between the years 2000-2010, were reviewed. One hundred patients with severe falciparum malaria and shock, and another 100 patients with severe malaria but without shock were studied. Demographics, presenting symptoms, physical observations, and laboratory data of these patients were analyzed. Five risk factors for the development of shock were identified: female gender (OR 6.16; 95% CI 3.17-11.97), red cell distribution width (RDW) >15% (adjusted OR 2.90; 95% CI 1.11-7.57), anorexia (adjusted OR 2.76; 95% CI 1.03-7.39), hypoalbuminemia (adjusted OR 2.19; 95% CI 1.10-4.34), and BUN-creatinine ratio >20 (adjusted OR 2.38; 95% CI 1.22-4.64). Diarrhea was found to be a protective factor (adjusted OR 0.33; 95% CI 0.14-0.78). Metabolic acidosis was only weakly correlated to mean arterial blood pressure on admission (r(s) = 0.23). Female gender was the strongest risk factor for the development of shock. We concluded that female gender, RDW >15%, anorexia, hypoalbuminemia, and BUN-creatinine ratio >20 were risk factors of shock development in severe falciparum malaria.

  3. [Evaluation of effect of prevention and control system for imported falciparum malaria in Hanjiang District].

    PubMed

    She, Guo-lin; Ma, Yu-Cai; Wang, Fu-biao

    2013-08-01

    To analyze the current situation of the comprehensive prevention and control system for imported falciparum malaria in Hanjiang District and evaluate its effect. According to the Management Scheme on Control of Imported Falciparum Malaria in Yangzhou City, the comprehensive prevention and control system for imported falciparum malaria was implemented, and the relevant malaria data were collected and analyzed statistically. The data included plasmodium blood test ratio of fever patients among exported labors and those returned, the ratio of laboratory-confirmed cases among all reported cases of falciparum malaria, the ratio of falciparum malaria patients who received the standard treatment within 24 hours after onset, etc from 2010 to 2012. After the implementation of the comprehensive prevention and control system, the confirmation ratio of falciparum malaria cases within 24 hours following first visit has reached 60.47%, the average time from first visit to confirmation has shortened to 1.8 d, and the average time from onset to confirmation has shortened to 3.7 d. The health education coverage ratio was 100%, the health knowledge awareness ratio was 95.56%, the ratio of patients seeking treatment on own initiative was 100%, the laboratory-confirmed ratio was 100%, and the ratio of standard treatment after malaria diagnosis was 100%. The comprehensive prevention and control system carried out by Hanjiang District has made remarkable achievements.

  4. Plasmodium falciparum-induced severe malaria with acute kidney injury and jaundice: a case report

    NASA Astrophysics Data System (ADS)

    Baswin, A.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    P. falciparum-induced severe malaria with life-threatening complications like acute kidney injury (AKI), jaundice, cerebral malaria, severe anemia, acidosis, and acute respiratory distress syndrome (ARDS). A 31-year-old soldier man who works in Aceh Singkil, Indonesia which is an endemic malaria area presented with a paroxysm of fever, shaking chills and sweats over four days, headache, arthralgia, abdominal pain, pale, jaundice, and oliguria. Urinalysis showed hemoglobinuria. Blood examination showed hemolytic anemia, thrombocytopenia, and hyperbilirubinemia. Falciparum malaria was then confirmed by peripheral blood smear, antimalarial medications were initiated, and hemodialysis was performed for eight times. The patient’s condition and laboratory results were quickly normalized. We report a case of P. falciparum-induced severe malaria with AKI and jaundice. The present case suggests that P. falciparum may induce severe malaria with life-threatening complications, early diagnosis and treatment is important to improve the quality of life of patients. Physicians must be alert for correct diagnosis and proper management of imported tropical malaria when patients have travel history in endemic areas.

  5. Treatment of Chronic Asymptomatic Plasmodium falciparum Infection Does Not Increase the Risk of Clinical Malaria Upon Reinfection.

    PubMed

    Portugal, Silvia; Tran, Tuan M; Ongoiba, Aissata; Bathily, Aboudramane; Li, Shanping; Doumbo, Safiatou; Skinner, Jeff; Doumtabe, Didier; Kone, Younoussou; Sangala, Jules; Jain, Aarti; Davies, D Huw; Hung, Christopher; Liang, Li; Ricklefs, Stacy; Homann, Manijeh Vafa; Felgner, Philip L; Porcella, Stephen F; Färnert, Anna; Doumbo, Ogobara K; Kayentao, Kassoum; Greenwood, Brian M; Traore, Boubacar; Crompton, Peter D

    2017-03-01

    Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Spread of artemisinin resistance in Plasmodium falciparum malaria.

    PubMed

    Ashley, Elizabeth A; Dhorda, Mehul; Fairhurst, Rick M; Amaratunga, Chanaki; Lim, Parath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Mao, Sivanna; Sam, Baramey; Sopha, Chantha; Chuor, Char Meng; Nguon, Chea; Sovannaroth, Siv; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chotivanich, Kesinee; Chutasmit, Kitipumi; Suchatsoonthorn, Chaiyaporn; Runcharoen, Ratchadaporn; Hien, Tran Tinh; Thuy-Nhien, Nguyen Thanh; Thanh, Ngo Viet; Phu, Nguyen Hoan; Htut, Ye; Han, Kay-Thwe; Aye, Kyin Hla; Mokuolu, Olugbenga A; Olaosebikan, Rasaq R; Folaranmi, Olaleke O; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Newton, Paul N; Onyamboko, Marie A; Fanello, Caterina I; Tshefu, Antoinette K; Mishra, Neelima; Valecha, Neena; Phyo, Aung Pyae; Nosten, Francois; Yi, Poravuth; Tripura, Rupam; Borrmann, Steffen; Bashraheil, Mahfudh; Peshu, Judy; Faiz, M Abul; Ghose, Aniruddha; Hossain, M Amir; Samad, Rasheda; Rahman, M Ridwanur; Hasan, M Mahtabuddin; Islam, Akhterul; Miotto, Olivo; Amato, Roberto; MacInnis, Bronwyn; Stalker, Jim; Kwiatkowski, Dominic P; Bozdech, Zbynek; Jeeyapant, Atthanee; Cheah, Phaik Yeong; Sakulthaew, Tharisara; Chalk, Jeremy; Intharabut, Benjamas; Silamut, Kamolrat; Lee, Sue J; Vihokhern, Benchawan; Kunasol, Chanon; Imwong, Mallika; Tarning, Joel; Taylor, Walter J; Yeung, Shunmay; Woodrow, Charles J; Flegg, Jennifer A; Das, Debashish; Smith, Jeffery; Venkatesan, Meera; Plowe, Christopher V; Stepniewska, Kasia; Guerin, Philippe J; Dondorp, Arjen M; Day, Nicholas P; White, Nicholas J

    2014-07-31

    Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; Clinical

  7. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  8. Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme.

    PubMed

    Landier, Jordi; Parker, Daniel M; Thu, Aung Myint; Lwin, Khin Maung; Delmas, Gilles; Nosten, François H

    2018-05-12

    Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria. The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether-lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin-piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration. Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships

  9. Evaluation of a rapid and inexpensive dipstick assay for the diagnosis of Plasmodium falciparum malaria.

    PubMed Central

    Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.

    1999-01-01

    Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878

  10. A new world malaria map: Plasmodium falciparum endemicity in 2010.

    PubMed

    Gething, Peter W; Patil, Anand P; Smith, David L; Guerra, Carlos A; Elyazar, Iqbal R F; Johnston, Geoffrey L; Tatem, Andrew J; Hay, Simon I

    2011-12-20

    Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and

  11. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum

  12. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins.

    PubMed

    Brazier, Andrew J; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Smith, Joseph D

    2017-01-01

    Plasmodium falciparum , the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi . We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum . Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum -infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum , it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum

  13. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes

    PubMed Central

    Yewhalaw, Delenasaw; Nguyen, Jennifer; Kebede, Estifanos; Zemene, Endalew; Getachew, Sisay; Tushune, Kora; Zhong, Daibin; Zhou, Guofa; Petros, Beyene; Yan, Guiyun

    2017-01-01

    Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence

  14. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes.

    PubMed

    Lo, Eugenia; Hemming-Schroeder, Elizabeth; Yewhalaw, Delenasaw; Nguyen, Jennifer; Kebede, Estifanos; Zemene, Endalew; Getachew, Sisay; Tushune, Kora; Zhong, Daibin; Zhou, Guofa; Petros, Beyene; Yan, Guiyun

    2017-07-01

    Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence

  15. Manual exchange transfusion for severe imported falciparum malaria: a retrospective study.

    PubMed

    Lin, Jinfeng; Huang, Xiaoying; Qin, Gang; Zhang, Suyan; Sun, Weiwei; Wang, Yadong; Ren, Ke; Xu, Junxian; Han, Xudong

    2018-01-16

    This study was designed to evaluate the efficacy of exchange transfusion in patients with severe imported falciparum malaria. Twelve patients who met the diagnostic criteria for severe malaria were treated with exchange transfusion 14 times according to a conventional anti-malarial treatment. This study evaluated the efficacy of exchange transfusion for severe imported falciparum malaria. Clinical data of severe imported falciparum malaria patients admitted to the intensive care unit (ICU) of Nantong Third People's Hospital from January 2007 to December 2016 were investigated in this retrospective study. Patients were divided into the intervention group, which received exchange transfusion, and the control group. This study assessed parasite clearance and outcomes of the two groups, and levels of erythrocytes, haemoglobin, platelets, coagulation, liver function, lactate, C-reactive protein, and procalcitonin, before and after exchange transfusion in the intervention group. There was no significant difference in the severity of admitted patients. Exchange transfusion was successfully applied 14 times in the intervention group. Differences in the levels of erythrocytes, haemoglobin and platelets did not reach statistical significance. Exchange transfusion improved coagulation, liver function, lactic acid, C-reactive protein, and procalcitonin. No differences were observed in parasite clearance, ICU and hospital length of stay, in-hospital mortality, and costs of hospitalization between the two groups. Exchange transfusion as adjunctive therapy for severe malaria was observed to be safe in this setting. Exchange transfusion can improve liver function and coagulation and reduce inflammation, but it failed to improve parasite clearance and the outcomes of severe imported falciparum malaria in this case series.

  16. Development of cultured Plasmodium falciparum blood-stage malaria cell banks for early phase in vivo clinical trial assessment of anti-malaria drugs and vaccines.

    PubMed

    Stanisic, Danielle I; Liu, Xue Q; De, Sai Lata; Batzloff, Michael R; Forbes, Tanya; Davis, Christopher B; Sekuloski, Silvana; Chavchich, Marina; Chung, Wendy; Trenholme, Katharine; McCarthy, James S; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Good, Michael F

    2015-04-07

    The ability to undertake controlled human malaria infection (CHMI) studies for preliminary evaluation of malaria vaccine candidates and anti-malaria drug efficacy has been limited by the need for access to sporozoite infected mosquitoes, aseptic, purified, cryopreserved sporozoites or blood-stage malaria parasites derived ex vivo from malaria infected individuals. Three different strategies are described for the manufacture of clinical grade cultured malaria cell banks suitable for use in CHMI studies. Good Manufacturing Practices (GMP)-grade Plasmodium falciparum NF54, clinically isolated 3D7, and research-grade P. falciparum 7G8 blood-stage malaria parasites were cultured separately in GMP-compliant facilities using screened blood components and then cryopreserved to produce three P. falciparum blood-stage malaria cell banks. These cell banks were evaluated according to specific criteria (parasitaemia, identity, viability, sterility, presence of endotoxin, presence of mycoplasma or other viral agents and in vitro anti-malarial drug sensitivity of the cell bank malaria parasites) to ensure they met the criteria to permit product release according to GMP requirements. The P. falciparum NF54, 3D7 and 7G8 cell banks consisted of >78% ring stage parasites with a ring stage parasitaemia of >1.4%. Parasites were viable in vitro following thawing. The cell banks were free from contamination with bacteria, mycoplasma and a broad panel of viruses. The P. falciparum NF54, 3D7 and 7G8 parasites exhibited differential anti-malarial drug susceptibilities. The P. falciparum NF54 and 3D7 parasites were susceptible to all anti-malaria compounds tested, whereas the P. falciparum 7G8 parasites were resistant/had decreased susceptibility to four compounds. Following testing, all defined release criteria were met and the P. falciparum cell banks were deemed suitable for release. Ethical approval has been obtained for administration to human volunteers. The production of cultured P

  17. Genetic Structure of Plasmodium falciparum and Elimination of Malaria, Comoros Archipelago

    PubMed Central

    Rebaudet, Stanislas; Bogreau, Hervé; Silaï, Rahamatou; Lepère, Jean-François; Bertaux, Lionel; Pradines, Bruno; Delmont, Jean; Gautret, Philippe; Parola, Philippe

    2010-01-01

    The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands. PMID:21029525

  18. Symptomatic malaria diagnosis overestimate malaria prevalence, but underestimate anaemia burdens in children: results of a follow up study in Kenya.

    PubMed

    Choge, Joseph K; Magak, Ng'wena G; Akhwale, Willis; Koech, Julius; Ngeiywa, Moses M; Oyoo-Okoth, Elijah; Esamai, Fabian; Osano, Odipo; Khayeka-Wandabwa, Christopher; Kweka, Eliningaya J

    2014-04-09

    The commonly accepted gold standard diagnostic method for detecting malaria is a microscopic reading of Giemsa-stained blood films. However, symptomatic diagnosis remains the basis of therapeutic care for the majority of febrile patients in malaria endemic areas. This study aims to compare the discrepancy in malaria and anaemia burdens between symptomatic diagnosed patients with those diagnosed through the laboratory. Data were collected from Western Kenya during a follow-up study of 887 children with suspected cases of malaria visiting the health facilities. In the laboratory, blood samples were analysed for malaria parasite and haemoglobin levels. Differences in malaria prevalence between symptomatic diagnosis and laboratory diagnosis were analysed by Chi-square test. Bayesian probabilities were used for the approximation of the malaria and anaemia burdens. Regression analysis was applied to: (1) determine the relationships between haemoglobin levels, and malaria parasite density and (2) relate the prevalence of anaemia and the prevalence of malaria. The prevalence of malaria and anaemia ranged from 10% to 34%, being highest during the rainy seasons. The predominant malaria parasite was P. falciparum (92.3%), which occurred in higher density in children aged 2‒5 years. Fever, high temperature, sweating, shivering, vomiting and severe headache symptoms were associated with malaria during presumptive diagnosis. After conducting laboratory diagnosis, lower malaria prevalence was reported among the presumptively diagnosed patients. Surprisingly, there were no attempts to detect anaemia in the same cohort. There was a significant negative correlation between Hb levels and parasite density. We also found a positive correlation between the prevalence of anaemia and the prevalence of malaria after laboratory diagnosis indicating possible co-occurrence of malaria and anaemia. Symptomatic diagnosis of malaria overestimates malaria prevalence, but underestimates the

  19. Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria.

    PubMed

    Walsh, Douglas S; Eamsila, Chirapa; Sasiprapha, Theerayuth; Sangkharomya, Suebpong; Khaewsathien, Pradith; Supakalin, Panpaka; Tang, Douglas B; Jarasrumgsichol, Phongsak; Cherdchu, Chainarong; Edstein, Michael D; Rieckmann, Karl H; Brewer, Thomas G

    2004-10-15

    We assessed monthly doses of tafenoquine for preventing Plasmodium vivax and multidrug-resistant P. falciparum malaria. In a randomized, double-blind, placebo-controlled study, 205 Thai soldiers received either a loading dose of tafenoquine 400 mg (base) daily for 3 days, followed by single monthly 400-mg doses (n = 104), or placebo (n = 101), for up to 5 consecutive months. In volunteers completing follow-up (96 tafenoquine and 91 placebo recipients), there were 22 P. vivax, 8 P. falciparum, and 1 mixed infection. All infections except 1 P. vivax occurred in placebo recipients, giving tafenoquine a protective efficacy of 97% for all malaria (95% confidence interval [CI], 82%-99%), 96% for P. vivax malaria (95% CI, 76%-99%), and 100% for P. falciparum malaria (95% CI, 60%-100%). Monthly tafenoquine was safe, well tolerated, and highly effective in preventing P. vivax and multidrug-resistant P. falciparum malaria in Thai soldiers during 6 months of prophylaxis. Copyright 2004 Infectious Diseases Society of America

  20. IgG antibodies to synthetic GPI are biomarkers of immune-status to both Plasmodium falciparum and Plasmodium vivax malaria in young children.

    PubMed

    França, Camila T; Li Wai Suen, Connie S N; Carmagnac, Amandine; Lin, Enmoore; Kiniboro, Benson; Siba, Peter; Schofield, Louis; Mueller, Ivo

    2017-09-25

    Further reduction in malaria prevalence and its eventual elimination would be greatly facilitated by the development of biomarkers of exposure and/or acquired immunity to malaria, as well as the deployment of effective vaccines against Plasmodium falciparum and Plasmodium vivax. A better understanding of the acquisition of immunity in naturally-exposed populations is essential for the identification of antigens useful as biomarkers, as well as to inform rational vaccine development. ELISA was used to measure total IgG to a synthetic form of glycosylphosphatidylinositol from P. falciparum (PfGPI) in a cohort of 1-3 years old Papua New Guinea children with well-characterized individual differences in exposure to P. falciparum and P. vivax blood-stage infections. The relationship between IgG levels to PfGPI and measures of recent and past exposure to P. falciparum and P. vivax infections was investigated, as well as the association between antibody levels and prospective risk of clinical malaria over 16 months of follow-up. Total IgG levels to PfGPI were low in the young children tested. Antibody levels were higher in the presence of P. falciparum or P. vivax infections, but short-lived. High IgG levels were associated with higher risk of P. falciparum malaria (IRR 1.33-1.66, P = 0.008-0.027), suggesting that they are biomarkers of increased exposure to P. falciparum infections. Given the cross-reactive nature of antibodies to PfGPI, high IgG levels were also associated with reduced risk of P. vivax malaria (IRR 0.65-0.67, P = 0.039-0.044), indicating that these antibodies are also markers of acquired immunity to P. vivax. This study highlights that in young children, IgG to PfGPI might be a useful marker of immune-status to both P. falciparum and P. vivax infections, and potentially useful to help malaria control programs to identify populations at-risk. Further functional studies are necessary to confirm the potential of PfGPI as a target for vaccine

  1. Decrease of microscopic Plasmodium falciparum infection prevalence during pregnancy following IPTp-SP implementation in urban cities of Gabon.

    PubMed

    Bouyou-Akotet, M K; Mawili-Mboumba, D P; Kendjo, E; Moutandou Chiesa, S; Tshibola Mbuyi, M L; Tsoumbou-Bakana, G; Zong, J; Ambounda, N; Kombila, M

    2016-06-01

    Six years after the implementation of intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) in Gabon, its impact on placental malaria and pregnancy outcomes remains unknown. Age, gestational data, use of IPTp-SP and birth weight were recorded during a hospital-based cross-sectional survey performed in 2011 in 387 women at the end of pregnancy. Malaria prevalence was 6.7 and 5.3% in peripheral and placental blood respectively. Overall, 59.0% women took at least two IPTp-SP doses which was associated with 50% reduction of Plasmodium; (P.) falciparum infection in primigravidae. Previous malaria treatment was a risk factor for peripheral P. falciparum infection, while uptake of IPTp-SP was associated with reduced parasitaemia. Anaemia prevalence was 38.0%, low birth weight and prematurity rates were 6.0 and 12.0% respectively. Young age was associated with a higher frequency of malaria, anaemia, low birth weight and preterm delivery (p<0.01). Birth weight significantly rose with increasing age (p<0.01), parity (p=0.03) and number of SP doses (p=0.03). A birth weight reduction of 230 g in case of peripheral parasitaemia (p=0.02) and of 210 g with placental parasitaemia (p=0.13) was observed. Microscopic P. falciparum prevalence during pregnancy significantly declined between 2005 and 2011, following IPTp-SP implementation in Gabon. Young women and paucigravidae remain the most susceptible to malaria and associated outcomes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review.

    PubMed

    Visser, Benjamin J; Wieten, Rosanne W; Kroon, Daniëlle; Nagel, Ingeborg M; Bélard, Sabine; van Vugt, Michèle; Grobusch, Martin P

    2014-11-26

    Artemisinin combination therapy (ACT) is recommended as first-line treatment for uncomplicated Plasmodium falciparum malaria, whereas chloroquine is still commonly used for the treatment of non-falciparum species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae). A more simplified, more uniform treatment approach across all malaria species is worthwhile to be considered both in endemic areas and for malaria as an imported condition alike. A PROSPERO-registered systematic review to determine the efficacy and safety of ACT for the treatment of non-falciparum malaria was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2014. The literature search identified 986 reports; 40 publications were found eligible for inclusion, all of them on non-falciparum malaria in endemic areas. Most evidence was available for P. vivax (n = 35). Five clinical trials in total were identified evaluating ACT for P. ovale, P. malariae and Plasmodium knowlesi. Most ACT presentations have high efficacy against P. vivax parasites; artemisinin-based combinations have shorter parasite and fever clearance times compared to chloroquine. ACT is as effective as chloroquine in preventing recurrent parasitaemia before day 28. Artemisinin-based combinations with long half-lives show significantly fewer recurrent parasitaemia up to day 63. The limited evidence available supports both the use of chloroquine and an ACT for P. ovale and P. malariae. ACT seems to be preferable for optimal treatment of P. knowlesi. ACT is at least equivalent to chloroquine in effectively treating non-falciparum malaria. These findings may facilitate development of simplified protocols for treating all forms of malaria with ACT, including returning travellers. Obtaining comprehensive efficacy and

  3. [Trends in the prevalence of malaria and anemia at delivery in Libreville from 1995 to 2011].

    PubMed

    Bouyou-Akotet, Marielle Karine; Nzenze-Afène, Solange; Mawili-Mboumba, Denise Patricia; Owono-Medang, Mathieu; Guiyedi, Vincent; Kombila, Maryvonne

    2011-01-01

    In 1995, 2005 and 2011, cross-sectional studies of 611 parturients at the Centre Hospitalier de Libreville in Gabon assessed the prevalence of maternal malaria and anaemia; two indicators of poor pregnancy outcomes. The prevalence of Plasmodium falciparum infection in maternal peripheral blood decreased from 25% in 2005 to 6% in 2011. Parasite density was significantly lower in 2005 (31 p/μL) than in 1995 (1,240 p/μL) or 2011 (35,055 p/μL). Anaemia prevalence was high (>50%) in 1995 and in 2005, but fell by more than 50% (24%) in 2011. After implementation of new malaria prevention strategies during pregnancy, the prevalence of both maternal peripheral P. falciparum infection and anaemia fell. Studies are necessary to assess the efficacy of these strategies and to seek other causes of anaemia.

  4. Plasmodium falciparum malaria parasitaemia among indigenous Batwa and non-indigenous communities of Kanungu district, Uganda.

    PubMed

    Donnelly, Blánaid; Berrang-Ford, Lea; Labbé, Jolène; Twesigomwe, Sabastian; Lwasa, Shuaib; Namanya, Didacus B; Harper, Sherilee L; Kulkarni, Manisha; Ross, Nancy A; Michel, Pascal

    2016-05-04

    The indigenous Batwa of southwestern Uganda are among the most highly impoverished populations in Uganda, yet there is negligible research on the prevalence of malaria in this population. Plasmodium falciparum malaria parasitaemia prevalence was estimated in an indigenous Batwa and a non-indigenous neighbouring population, and an exploration of modifiable risk factors was carried out to identify potential entry points for intervention. Additionally, evidence of zooprophylaxis was assessed, hypothesizing that livestock ownership may play a role in malaria risk. Two cross-sectional surveys of Batwa and non-Batwa communities were carried out in Kanungu District, Uganda in July 2013 and April 2014 based on a census of adult Batwa and a two-stage systematic random sample of adult non-Batwa in ten Local Councils where Batwa settlements are located. A community-based questionnaire and antigen rapid diagnostic test for P. falciparum were carried out in the cross-sectional health surveys. A multivariable logistic regression model was built to identify risk factors associated with positive malaria diagnostic test. A subset analysis of livestock owners tested for zooprophylaxis. Batwa experienced higher prevalence of malaria parasitaemia than non-Batwa (9.35 versus 4.45 %, respectively) with over twice the odds of infection (OR 2.21, 95 % CI 1.23-3.98). Extreme poverty (OR 1.96, 95 % CI 0.98-3.94) and having an iron sheet roof (OR 2.54, 95 % CI 0.96-6.72) increased the odds of infection in both Batwa and non-Batwa. Controlling for ethnicity, wealth, and bed net ownership, keeping animals inside the home at night decreased the odds of parasitaemia among livestock owners (OR 0.29, 95 % CI 0.09-0.94). A health disparity exists between indigenous Batwa and non-indigenous community members with Batwa having higher prevalence of malaria relative to non-Batwa. Poverty was associated with increased odds of malaria infection for both groups. Findings suggest that open eaves and

  5. Prevalence and hematological indicators of G6PD deficiency in malaria-infected patients.

    PubMed

    Kotepui, Manas; Uthaisar, Kwuntida; PhunPhuech, Bhukdee; Phiwklam, Nuoil

    2016-04-25

    This study aimed to evaluate the prevalence and alteration of hematological parameters in malaria patients with a glucose-6-phosphate dehydrogenase (G6PD) deficiency, in the western region of Thailand, an endemic region for malaria. Data about patients with malaria hospitalized between 2013 and 2015 were collected. Clinical and sociodemographic characteristics such as age and gender, diagnosis on admission, and parasitological results were mined from medical records of the laboratory unit of the Phop Phra Hospital in Tak Province, Thailand. Venous blood samples were collected at the time of admission to hospital to determine G6PD deficiency by fluorescence spot test and detect malaria parasites by thick and thin film examination. Other data such as complete blood count and parasite density were also collected and analyzed. Among the 245 malaria cases, 28 (11.4 %) were diagnosed as Plasmodium falciparum infections and 217 cases (88.6 %) were diagnosed as P. vivax infections. Seventeen (6.9 %) patients had a G6PD deficiency and 228 (93.1 %) patients did not have a G6PD deficiency. Prevalence of male patients with G6PD deficiency was higher than that of female patients (P < 0.05, OR = 5.167). Among the patients with a G6PD deficiency, two (11.8 %) were infected with P. falciparum, while the remaining were infected with P. vivax. Malaria patients with a G6PD deficiency have higher monocyte counts (0.6 × 10(3)/μL) than those without a G6PD deficiency (0.33 × 10(3)/μL) (P < 0.05, OR = 5.167). Univariate and multivariate analyses also confirmed that malaria patients with a G6PD deficiency have high monocyte counts. The association between G6PD status and monocyte counts was independent of age, gender, nationality, Plasmodium species, and parasite density (P < 0.005). This study showed a prevalence of G6PD deficiency in a malaria-endemic area. This study also supported the assertion that patients with G6PD-deficient red blood cells had no

  6. Host age and Plasmodium falciparum multiclonality are associated with gametocyte prevalence: a 1-year prospective cohort study.

    PubMed

    Adomako-Ankomah, Yaw; Chenoweth, Matthew S; Tocker, Aaron M; Doumbia, Saibou; Konate, Drissa; Doumbouya, Mory; Keita, Abdoul S; Anderson, Jennifer M; Fairhurst, Rick M; Diakite, Mahamadou; Miura, Kazutoyo; Long, Carole A

    2017-11-21

    Since Plasmodium falciparum transmission relies exclusively on sexual-stage parasites, several malaria control strategies aim to disrupt this step of the life cycle. Thus, a better understanding of which individuals constitute the primary gametocyte reservoir within an endemic population, and the temporal dynamics of gametocyte carriage, especially in seasonal transmission settings, will not only support the effective implementation of current transmission control programmes, but also inform the design of more targeted strategies. A 1-year prospective cohort study was initiated in June 2013 with the goal of assessing the longitudinal dynamics of P. falciparum gametocyte carriage in a village in Mali with intense seasonal malaria transmission. A cohort of 500 individuals aged 1-65 years was recruited for this study. Gametocyte prevalence was measured monthly using Pfs25-specific RT-PCR, and analysed for the effects of host age and gender, seasonality, and multiclonality of P. falciparum infection over 1 year. Most P. falciparum infections (51-89%) in this population were accompanied by gametocytaemia throughout the 1-year period. Gametocyte prevalence among P. falciparum-positive individuals (proportion of gametocyte positive infections) was associated with age (p = 0.003) but not with seasonality (wet vs. dry) or gender. The proportion of gametocyte positive infections were similarly high in children aged 1-17 years (74-82% on median among 5 age groups), while older individuals had relatively lower proportion, and those aged > 35 years (median of 43%) had significantly lower than those aged 1-17 years (p < 0.05). Plasmodium falciparum-positive individuals with gametocytaemia were found to have significantly higher P. falciparum multiclonality than those without gametocytaemia (p < 0.033 in two different analyses). Taken together, these results suggest that a substantial proportion of Pf-positive individuals carries gametocytes throughout the year, and

  7. Historical review: Does falciparum malaria destroy isolated tribal populations?

    PubMed

    Shanks, G Dennis

    Many isolated populations of tribal peoples were nearly destroyed when they first contacted infectious diseases particularly respiratory pathogens such as measles and smallpox. Surviving groups have often been found to have declining populations in the face of multiple social and infectious threats. Malaria, especially Plasmodium falciparum, was thought to be a major cause of depopulation in some tribal peoples isolated in tropical jungles. The dynamics of such host parasite interactions is unclear especially since most such populations would have had long histories of exposure to malaria. Three groups are individually reviewed: Meruts of Borneo, Yanomami of Amazonia, Jarawas of the Andaman Islands. The purpose of this review is to examine the role of falciparum malaria in the depopulation of some isolated tribal groups in order to understand what measures, if any, would be likely to prevent such losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Submicroscopic placental infection by non-falciparum Plasmodium spp.

    PubMed Central

    Doritchamou, Justin Y. A.; Akuffo, Richard A.; Moussiliou, Azizath; Luty, Adrian J. F.; Massougbodji, Achille; Deloron, Philippe

    2018-01-01

    Background Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Methods and findings Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed Conclusions Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum

  9. Submicroscopic placental infection by non-falciparum Plasmodium spp.

    PubMed

    Doritchamou, Justin Y A; Akuffo, Richard A; Moussiliou, Azizath; Luty, Adrian J F; Massougbodji, Achille; Deloron, Philippe; Tuikue Ndam, Nicaise G

    2018-02-01

    Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed. Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum Plasmodium and the lack of association of these

  10. [Efficiency and specificity of the KAT-test for rapid diagnosis of falciparum malaria].

    PubMed

    Cong, Le Dinh; Sergiev, V P; Rabinovich, S A; Nhah, Doan Hanh; Huong, Nguyen Van; Morozov, E N; Kukina, I V; Thinh, Ta Thi; Maksakovskaia, E V; Dao, Le Minh; Chalyĭ, V F; To, Dang Thi; Fandeev, V A; Hoa, Ngo Viet; Due, Nguyen Thi

    2002-01-01

    A new rapid KAT Quick Malaria test for the diagnosis of falciparum malaria, which is based on the detection of a monoclonal antibody-antigen complex of malaria parasites, has been worked out by the KAT Medical CC in South Africa. The efficiency and specificity of the KAT test were compared with those of the microscopic method and with the ICT test for rapid diagnosis of P. falciparum and P. vivax. The polymerase chain reaction was used as a control test. Testing for malaria was performed on 98 blood samples from feverish patients in Vietnam and Tadjikistan and among the persons who had returned to Moscow from endemic regions. The efficiency of the KAT test for falciparum-malaria was found to be 100% versus 90.5% with ICT. The absence of cross-reactions with P. vivax and the presence of pseudopositive results of the KAT test for fever cases of non-malaria origin indicate its high specificity. There was no correlation between the rate of test line colouring and the level of parasitemia. The KAT test yielded positive results only when gametocytes were found in blood specimens.

  11. Malaria in South Asia: Prevalence and control

    PubMed Central

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajanj, Satish N.; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K.; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2013-01-01

    The “Malaria Evolution in South Asia” (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US–India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public–private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012. PMID:22248528

  12. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    PubMed Central

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  13. Transfusion-transmitted malaria: donor prevalence of parasitaemia and a survey of healthcare workers knowledge and practices in a district hospital in Ghana.

    PubMed

    Owusu-Ofori, Alex; Gadzo, Dominic; Bates, Imelda

    2016-04-23

    Transfusion-transmitted malaria (TTM) is a risk of transfusion that has not been well described in malaria endemic regions. The risk of the recipient getting malaria is related to the prevalence of malaria in the blood donors. There is however little information on the prevalence of malaria among donors in Akatsi district of Ghana. Further, the knowledge and practices of healthcare workers to TTM is unknown. The study was undertaken to determine the prevalence of malaria parasite infection among blood donors and to evaluate the knowledge and practices of healthcare workers to TTM in the Akatsi district of Ghana. The study was conducted at Akatsi South District Hospital between May and August 2014. To screen for Plasmodium falciparum, 5 µl of capillary blood was obtained by finger prick from 200 participants (100 donors and 100 healthy controls). Plasmodium falciparum screening was done using CareStart™ Malaria Antigen kit. To obtain information regarding TTM knowledge and practices, questionnaires were completed by 100 health workers including nurses, doctors and laboratory staff. The prevalence of P. falciparum was the same (10 %) in both donors and controls. All those who were malaria RDT positive were aged 15-25 years. Out of the 100 healthcare workers (31 males and 69 females) surveyed, 45 % of respondents (45/100) had never heard of transfusion-transmitted malaria. Almost all respondents (91 %) had not attended any lecture/seminar/workshop on blood transfusion in the past 12 months. There were 44 respondents (44 %) who wrongly said malaria was being screened for prior to transfusion in their hospital. However, 98.2 % (54/55) of those who had heard about TTM rightly stated that TTM can be prevented. The prevalence of P. falciparum parasitaemia is 10 % in healthy blood donors in the Akatsi district and represents a risk for TTM though the extent of this risk is unclear. Knowledge about TTM in healthcare workers in the district is low. Continuous

  14. Evaluation of Ebola virus inactivation procedures for Plasmodium falciparum malaria diagnostics.

    PubMed

    Lau, Rachel; Wang, Amanda; Chong-Kit, Ann; Ralevski, Filip; Boggild, Andrea K

    2015-04-01

    Plasmodium falciparum malaria is highly endemic in the three most affected countries in the current epidemic of Ebola virus disease (EVD) in West Africa. As EVD and malaria are clinically indistinguishable, both remain part of the differential diagnosis of ill travelers from returning from areas of EVD transmission. We compared the performances of a rapid diagnostic test (BinaxNOW) and real-time PCR with P. falciparum-positive specimens before and after heat and Triton X-100 inactivation, and we documented no loss of sensitivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The weekly associations between climatic factors and Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Zhang, Wenyi; Guo, Yuming

    2017-05-01

    Meteorological factors play a crucial role in malaria transmission, but limited evidence is available from China. This study aimed to estimate the weekly associations between meteorological factors and Plasmodium vivax and Plasmodium falciparum malaria in China. The Distributed Lag Non-Linear Model was used to examine non-linearity and delayed effects of average temperature, rainfall, relative humidity, sunshine hours, wind speed and atmospheric pressure on malaria. Average temperature was associated with P. vivax and P. falciparum cases over long ranges of lags. The effect was more immediate on P. vivax (0-6 weeks) than on P. falciparum (1-9 weeks). Relative humidity was associated with P. vivax and P. falciparum over 8-10 weeks and 5-8 weeks lag, respectively. A significant effect of wind speed on P. vivax was observed at 0-2 weeks lag, but no association was found with P. falciparum. Rainfall had a decreasing effect on P. vivax, but no association was found with P. falciparum. Sunshine hours were negatively associated with P. falciparum, but the association was unclear for P. vixax. However, the effects of atmospheric pressure on both malaria types were not significant at any lag. Our study highlights a substantial effect of weekly climatic factors on P. vivax and P. falciparum malaria transmission in China, with different lags. This provides an evidence base for health authorities in developing a malaria early-warning system. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections.

    PubMed

    Sáenz, Fabián E; Arévalo-Cortés, Andrea; Valenzuela, Gabriela; Vallejo, Andrés F; Castellanos, Angélica; Poveda-Loayza, Andrea C; Gutierrez, Juan B; Alvarez, Alvaro; Yan, Yi Heng; Benavides, Yoldy; Castro, Luis Enrique; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2017-07-26

    The recent scale-up in malaria control measures in Latin America has resulted in a significant decrease in the number of reported cases in several countries including Ecuador, where it presented a low malaria incidence in recent years (558 reported cases in 2015) with occasional outbreaks of both Plasmodium falciparum and Plasmodium vivax in the coastal and Amazonian regions. This success in malaria control in recent years has led Ecuador to transition its malaria policy from control to elimination. This study evaluated the general knowledge, attitude and practices (KAP) about malaria, as well as its prevalence in four communities of an endemic area in northwest Ecuador. A total of 258 interviews to assess KAP in the community indicated that most people in the study area have a basic knowledge about the disease but did not use to contribute to its control. Six hundred and forty-eight blood samples were collected and analysed by thick blood smear and real-time PCR. In addition, the distribution of the infections was mapped in the study communities. Although, no parasites were found by microscopy, by PCR the total malaria prevalence was 7.5% (6.9% P. vivax and 0.6% P. falciparum), much higher than expected and comparable to that reported in endemic areas of neighbouring countries with higher malaria transmission. Serology using ELISA and immunofluorescence indicated 27% respondents for P. vivax and 22% respondents for P. falciparum. Results suggest that despite a great malaria reduction in Ecuador, transition from control to elimination would demand further improvement in malaria diagnostics, including active case detection to identify and treat parasite asymptomatic carriers, as well as community participation in its elimination.

  17. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    PubMed

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  18. Treatment Failure of Dihydroartemisinin/Piperaquine for Plasmodium falciparum Malaria, Vietnam.

    PubMed

    Phuc, Bui Quang; Rasmussen, Charlotte; Duong, Tran Thanh; Dong, Le Than; Loi, Mai Anh; Ménard, Didier; Tarning, Joel; Bustos, Dorina; Ringwald, Pascal; Galappaththy, Gawrie Loku; Thieu, Nguyen Quang

    2017-04-01

    We conducted a study in Binh Phuoc, Vietnam, in 2015 on the therapeutic efficacy of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria. A high number of treatment failures (14/40) was found, and piperaquine resistance in Vietnam was confirmed. A change in the malaria treatment policy for Vietnam is in process.

  19. Imported Malaria in Turkey: The Importance of Diagnosis and Treatment of Plasmodium falciparum/Plasmodium vivax Mixed Infection.

    PubMed

    Tünger, Özlem; Çakmak, Akide; Özbilgin, Ahmet; Tunalı, Varol; Çetin, Çiğdem Banu

    2018-05-21

    The most common types of malaria in the world are Plasmodium vivax and P. falciparum. In countries where both species are endemic, P. vivax and P. falciparum coinfection also occurs. Thus, the possibility of mixed malaria in Turkey should always be considered in cases with a traveling history to these countries. Here, we report a case of P. vivax/P. falciparum mixed infection that was diagnosed as P. falciparum malaria in Ethiopia. However, the administered treatment was inadequate, and infection recurred because of the miss in the diagnosis of P. vivax malaria, for which an effective drug for hypnozoites was not administered. This case report emphasizes the importance of diagnosis, correct and adequate treatment of infections, and a close follow-up of diseases.

  20. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.

    PubMed

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures.

  1. Prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria.

    PubMed

    Zhang, Hong-Wei; Li, San-Jin; Hu, Tao; Yu, Yong-Min; Yang, Cheng-Yun; Zhou, Rui-Min; Liu, Ying; Tang, Jing; Wang, Jing-Jing; Wang, Xiu-Yun; Sun, Yong-Xiang; Feng, Zhan-Chun; Xu, Bian-Li

    2017-04-04

    The spleen plays a pivotal role in the rapid clearance of parasitized red blood cells in patients with falciparum malaria after artemisinin treatment. Prolonged parasite clearance can be found in patients who have had a splenectomy, or those with hemoglobin abnormalities and/or reduced immunity, which are all distinguishable from artemisinin resistance. This paper reports on a case of prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. A 35-year-old Chinese male suffered 2 days of febrile illness after returning to Zhumadian city of Henan province from Nigeria on October 1, 2014. The main symptoms were febrile, including the highest axillary temperature of 40 °C, headache, and chills. A peripheral blood smear showed parasitemia (53 913 asexual parasites/μl) of Plasmodium falciparum. The patient had not used any chemoprophylaxis against malaria in Nigeria when he worked there as a construction worker between 2009 and 2014. The patient had three episodes of malaria in Nigeria and had a splenectomy due to a traffic accident 8 years ago from the time he was admitted to hospital. The patient was orally administrated a total of 320 mg/2.56 g dihydroartemisinin-piperaquine for 2 days and intravenously administrated a total of 3 000 mg artesunate for 18 days. The axillary temperature of the patient ranged between 37.0 and 37.7 °C from Day 0 to Day 3, and blood microscopy revealed falciparum malaria parasitemia (26 674 asexual parasites/μl) on Day 3. The patient was afebrile on Day 4, falciparum malaria parasitemia was continuously present and then gradually decreased on the next days, and was negative on Day 21. The patient was cured and left hospital on Day 24 after no plasmodium falciparum was found in the blood on Day 21 to Day 23. No mutation was found in the K13 propeller gene when compared with the PF3D7_1343700 K13 propeller gene reference sequence. This is the first reported case in China of

  2. Focused Screening and Treatment (FSAT): A PCR-Based Strategy to Detect Malaria Parasite Carriers and Contain Drug Resistant P. falciparum, Pailin, Cambodia

    PubMed Central

    Hoyer, Stefan; Nguon, Sokomar; Kim, Saorin; Habib, Najibullah; Khim, Nimol; Sum, Sarorn; Christophel, Eva-Maria; Bjorge, Steven; Thomson, Andrew; Kheng, Sim; Chea, Nguon; Yok, Sovann; Top, Samphornarann; Ros, Seyha; Sophal, Uth; Thompson, Michelle M.; Mellor, Steve; Ariey, Frédéric; Witkowski, Benoit; Yeang, Chhiang; Yeung, Shunmay; Duong, Socheat; Newman, Robert D.; Menard, Didier

    2012-01-01

    Recent studies have shown that Plasmodium falciparum malaria parasites in Pailin province, along the border between Thailand and Cambodia, have become resistant to artemisinin derivatives. To better define the epidemiology of P. falciparum populations and to assess the risk of the possible spread of these parasites outside Pailin, a new epidemiological tool named “Focused Screening and Treatment” (FSAT), based on active molecular detection of asymptomatic parasite carriers was introduced in 2010. Cross-sectional malariometric surveys using PCR were carried out in 20 out of 109 villages in Pailin province. Individuals detected as P. falciparum carriers were treated with atovaquone-proguanil combination plus a single dose of primaquine if the patient was non-G6PD deficient. Interviews were conducted to elicit history of cross-border travel that might contribute to the spread of artemisinin-resistant parasites. After directly observed treatment, patients were followed up and re-examined on day 7 and day 28. Among 6931 individuals screened, prevalence of P. falciparum carriers was less than 1%, of whom 96% were asymptomatic. Only 1.6% of the individuals had a travel history or plans to go outside Cambodia, with none of those tested being positive for P. falciparum. Retrospective analysis, using 2010 routine surveillance data, showed significant differences in the prevalence of asymptomatic carriers discovered by FSAT between villages classified as “high risk” and “low risk” based on malaria incidence data. All positive individuals treated and followed-up until day 28 were cured. No mutant-type allele related to atovaquone resistance was found. FSAT is a potentially useful tool to detect, treat and track clusters of asymptomatic carriers of P. falciparum along with providing valuable epidemiological information regarding cross-border movements of potential malaria parasite carriers and parasite gene flow. PMID:23049687

  3. Persistent foci of falciparum malaria among tribes over two decades in Koraput district of Odisha State, India.

    PubMed

    Sahu, Sudhansu Sekhar; Gunasekaran, Kasinathan; Vanamail, Perumal; Jambulingam, Purusothaman

    2013-02-21

    Koraput, a predominantly tribe-inhabited and one of the highly endemic districts of Odisha State that contributes a substantial number of malaria cases to the India's total. Control of malaria in such districts would contribute to change the national scenario on malaria situation. Hence, a study was carried out to measure the magnitude of malaria prevalence in the district to strengthen the malaria control activities. Prevalence of malaria was assessed through a sample blood survey (SBS) in seven randomly selected community health centres (CHCs). Individuals of all age groups in the villages selected (one in each subcentre) were screened for malaria infection. Both thick and thin smears were prepared from blood samples collected by finger prick, stained and examined for malaria parasites searching 100 fields in each smear. The results of a blood survey (n = 10,733) carried out, as a part of another study, during 1986-87 covering a population of 17,722 spread in 37 villages of Koraput district were compared with the current survey results. Software SPSS version 16.0 was used for data analysis. During the current study, blood survey was done in 135 villages screening 12,045 individuals (16.1% of the total population) and among them, 1,983 (16.5%) were found positive for malaria parasites. Plasmodium falciparum was the major malaria parasite species accounted for 89.1% (1,767) of the total positives; Plasmodium vivax and Plasmodium malariae accounted for 9.3% (184) and 0.2% (5), respectively. Gametocytes were found in 7.7% (n = 152) of the positive cases. The majority of parasite carriers (78.9%) were afebrile. The 1986-87 blood survey showed that of 10,733 people screened, 833 (7.8%) were positive for malaria parasites, 714 (85.7%) with P. falciparum, 86 (10.3%) with P. vivax, 12 (1.4%) with P. malariae and 21 (2.5%) with mixed infections. The results of the current study indicated a rising trend in transmission of malaria in Koraput district compared to the

  4. MBL-2 polymorphisms (codon 54 and Y-221X) and low MBL levels are associated with susceptibility to multi organ dysfunction in P. falciparum malaria in Odisha, India.

    PubMed

    Das, Bidyut K; Panda, Aditya K

    2015-01-01

    Mannose binding lectin, a plasma protein protects host from virus, bacteria, and parasites. Deficiency in MBL levels has been associated with susceptibility to various infectious diseases including P. falciparum malaria. Common MBL polymorphisms in promoter and coding regions are associated with decrease in plasma MBL levels or production of deformed MBL, respectively. In the present study, we hypothesized that MBL2 variants and plasma MBL levels could be associated with different clinical phenotypes of severe P. falciparum malaria. A hospital based study was conducted in eastern Odisha, India which is endemic to P. falciparum malaria. Common MBL-2 polymorphisms (codon 54, H-550L, and Y-221X) were typed in 336 cases of severe malaria (SM) [94 cerebral malaria (CM), 120 multi-organ dysfunction (MOD), 122 non-cerebral severe malaria (NCSM)] and 131 un-complicated malaria patients (UM). Plasma MBL levels were quantified by ELISA. Severe malaria patients displayed lower plasma levels of MBL compared to uncomplicated falciparum malaria. Furthermore, on categorization of severe malaria patients into various subtypes, plasma MBL levels were very low in MOD patients compared to other categories. Higher frequency of AB genotype and allele B was observed in MOD compared to UM (AB genotype: P = 0.006; B allele: P = 0.008). In addition, prevalence of YX genotype of MBL Y-221X polymorphism was also statistically more frequent in MOD case than UM (P = 0.009). The observations of the present study reveal that MBL-2 polymorphisms (codon 54 and Y-221X) and lower plasma MBL levels are associated with increased susceptibility to multi organ dysfunctions in P. falciparum malaria.

  5. Assessment of the therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal: an observational cohort study.

    PubMed

    Vaughan-Williams, Charles H; Raman, Jaishree; Raswiswi, Eric; Immelman, Etienne; Reichel, Holger; Gate, Kelly; Knight, Steve

    2012-12-28

    Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine resistance has yet to emerge in Kwa

  6. Assessment of the therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal: an observational cohort study

    PubMed Central

    2012-01-01

    Background Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. Methods An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. Results Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. Conclusions The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine

  7. Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study.

    PubMed

    Tiono, Alfred B; Guelbeogo, Moussa W; Sagnon, N Falé; Nébié, Issa; Sirima, Sodiomon B; Mukhopadhyay, Amitava; Hamed, Kamal

    2013-11-12

    In malaria-endemic countries, large proportions of individuals infected with Plasmodium falciparum are asymptomatic and constitute a reservoir of parasites for infection of newly hatched mosquitoes. Two studies were run in parallel in Burkina Faso to evaluate the impact of systematic identification and treatment of asymptomatic carriers of P. falciparum, detected by rapid diagnostic test, on disease transmission and susceptibility to clinical malaria episodes. A clinical study assessed the incidence of symptomatic malaria episodes with a parasite density >5,000/μL after three screening and treatment campaigns ~1 month apart before the rainy season; and an entomological study determined the effect of these campaigns on malaria transmission as measured by entomological inoculation rate. The intervention arm had lower prevalence of asymptomatic carriers of asexual parasites and lower prevalence of gametocyte carriers during campaigns 2 and 3 as compared to the control arm. During the entire follow-up period, out of 13,767 at-risk subjects, 2,516 subjects (intervention arm 1,332; control arm 1,184) had symptomatic malaria. Kaplan-Meier analysis of the incidence of first symptomatic malaria episode with a parasite density >5,000/μL showed that, in the total population, the two treatment arms were similar until Week 11-12 after campaign 3, corresponding with the beginning of the malaria transmission season, after which the probability of being free of symptomatic malaria was lower in the intervention arm (logrank p < 0.0001). Similar trends were observed in infants and children <5 years and in individuals ≥5 years of age. In infants and children <5 years old who experienced symptomatic malaria episodes, the geometric mean P. falciparum density was lower in the intervention arm than the control arm. This trend was not seen in those individuals aged ≥5 years. Over the year, monthly variation in mosquito density and entomological inoculation rate was

  8. Malaria in South Asia: prevalence and control.

    PubMed

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajan, Satish N; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2012-03-01

    The "Malaria Evolution in South Asia" (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US-India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public-private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Earth Observation, Geographic Information Systems and Plasmodium falciparum Malaria in Sub-Saharan Africa

    PubMed Central

    Hay, S.I.; Omumbo, J.A.; Craig, M.H.; Snow, R. W.

    2011-01-01

    This review highlights the progress and current status of remote sensing (RS) and geographical information systems (GIS) as currently applied to the problem of Plasmodium falciparum malaria in sub-Saharan Africa (SSA). The burden of P. falciparum malaria in SSA is first summarized and then contrasted with the paucity of accurate and recent information on the nature and extent of the disease. This provides perspective on both the global importance of the pathogen and the potential for contribution of RS and GIS techniques. The ecology of P. falciparum malaria and its major anopheline vectors in SSA is then outlined, to provide the epidemiological background for considering disease transmission processes and their environmental correlates. Because RS and GIS are recent techniques in epidemiology, all mosquito-borne diseases are considered in this review in order to convey the range of ideas, insights and innovation provided. To conclude, the impact of these initial studies is assessed and suggestions provided on how these advances could be best used for malaria control in an appropriate and sustainable manner, with key areas for future research highlighted. PMID:10997207

  10. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    PubMed

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  11. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries.

    PubMed

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-12-18

    In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species).More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). We included 47 studies

  12. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India

    PubMed Central

    Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R.; Pande, Veena

    2018-01-01

    Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance. PMID:29565981

  13. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India.

    PubMed

    Siwal, Nisha; Singh, Upasana Shyamsunder; Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R; Pande, Veena; Das, Aparup

    2018-01-01

    Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance.

  14. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    PubMed

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  15. Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen.

    PubMed

    Albiti, Anisa H; Nsiah, Kwabena

    2014-04-01

    Sickle haemoglobin (HbS) is known to offer considerable protection against falciparum malaria. However, the mechanism of protection is not yet completely understood. In this study, we investigate how the presence of the sickle cell trait affects the haematological profile of AS persons with malaria, in comparison with similarly infected persons with HbAA. This study is based on the hypothesis that the sickle cell trait plays a protective role against malaria. Children from an endemic malaria transmission area in Yemen were enrolled in this study. Hematological parameters were estimated using manual methods, the percentage of parasite density on stained thin smear was calculated, haemoglobin genotypes were determined on paper electrophoresis, ferritin was measured using enzyme-linked immunosorbent assay, serum iron and TIBC were assayed using spectrophotometer, transferrin saturation index was calculated by dividing serum iron by TIBC and expressing the result as a percentage. Haematological parameters were compared in HbAA- and HbAS-infected children. Falciparum malaria parasitaemia was confirmed in the blood smears of 62 children, 44 (55.7%) of AA and 18 (37.5%) AS, so there was higher prevalence in HbAA children (P = 0.047). Parasite density was lower in HbAS- than HbAA-infected children (P = 0.003). Anaemia was prominent in malaria-infected children, with high proportions of moderate and severe forms in HbAA (P = 0.001). The mean levels of haemoglobin, packed cell volume, reticulocyte count, platelets count, lymphocytes, eosinophils, and serum iron were significantly lower while total leukocytes, immature granulocytes, monocytes, erythrocyte sedimentation rate, transferrin saturation, and serum ferritin were significantly higher in HbAA-infected children than HbAS-infected children. Infection with Plasmodium falciparum malaria caused more significant haematological alterations of HbAA children than HbAS. This study supports the observation that sickle cell trait

  16. Prevalence of urban malaria and assocated factors in Gondar Town, Northwest Ethiopia.

    PubMed

    Tilaye, Tesfaye; Deressa, Wakgari

    2007-04-01

    Malaria has become one of the major health problems currently facing the urban communities. The rapid increase in urbanization, rural-urban migration and climatic changes are among the main factors contributing for the rise of malaria in urban areas. To our knowledge, there has been no malaria prevalence study so far conducted in Gondar Town. The aim of this study was to determine the prevalence of malaria infection and its associated risk factors in Gondar Town. A community-based survey was conducted in three randomly selected malarious Kebeles of Gondar Town during November-December 2004. Blood films were collected from a finger-prick of 734 members of the selected households for microscopic examination of malaria parasites. Among 734 examined blood films, 39 (5.3%) were positive for malaria infection, of which 29 (74.4%) were due to Plasmodium falciparum and 10 (25.6%) due to P. vivax. Seven (18%) malaria infections were reported from children under the age of five years, indicating the endemicity of malaria to the study area. Age-specific rates show that higher malaria prevalence rate was found among under-five children (7.2%) and 15-19 year-old age group (7.3%). Proximity to mosquito breeding sites was found to be the main risk factor for malaria infection (OR = 2.4, 95% CI. 1.2-5.1). The prevalence of malaria in Gondar Town was found to be high. The prevalence was strongly associated with proximity of residence to potential mosquito breeding sites. The occurrence of the disease among under-five children would indicate that malaria is indigenous to the area. Use of personal protection methods such as insecticide treated mosquito nets should be scaled up, and malaria control interventions should target residents who are at a closer proximity to mosquito breeding sites.

  17. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria.

    PubMed

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E M; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.

  18. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia.

    PubMed

    Loha, Eskindir; Lindtjørn, Bernt

    2010-06-16

    Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data

  19. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

    PubMed Central

    2010-01-01

    Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among

  20. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    PubMed Central

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  1. Mass screening and treatment on the basis of results of a Plasmodium falciparum-specific rapid diagnostic test did not reduce malaria incidence in Zanzibar.

    PubMed

    Cook, Jackie; Xu, Weiping; Msellem, Mwinyi; Vonk, Marlotte; Bergström, Beatrice; Gosling, Roly; Al-Mafazy, Abdul-Wahid; McElroy, Peter; Molteni, Fabrizio; Abass, Ali K; Garimo, Issa; Ramsan, Mahdi; Ali, Abdullah; Mårtensson, Andreas; Björkman, Anders

    2015-05-01

    Seasonal increases in malaria continue in hot spots in Zanzibar. Mass screening and treatment (MSAT) may help reduce the reservoir of infection; however, it is unclear whether rapid diagnostic tests (RDTs) detect a sufficient proportion of low-density infections to influence subsequent transmission. Two rounds of MSAT using Plasmodium falciparum-specific RDT were conducted in 5 hot spots (population, 12 000) in Zanzibar in 2012. In parallel, blood samples were collected on filter paper for polymerase chain reaction (PCR) analyses. Data on confirmed malarial parasite infections from health facilities in intervention and hot spot control areas were monitored as proxy for malaria transmission. Approximately 64% of the population (7859) were screened at least once. P. falciparum prevalence, as measured by RDT, was 0.2% (95% confidence interval [CI], .1%-.3%) in both rounds, compared with PCR measured prevalences (for all species) of 2.5% (95% CI, 2.1%-2.9%) and 3.8% (95% CI, 3.2%-4.4%) in rounds 1 and 2, respectively. Two fifths (40%) of infections detected by PCR included non-falciparum species. Treatment of RDT-positive individuals (4% of the PCR-detected parasite carriers) did not reduce subsequent malaria incidence, compared with control areas. Highly sensitive point-of-care diagnostic tools for detection of all human malaria species are needed to make MSAT an effective strategy in settings where malaria elimination programs are in the pre-elimination phase. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. G6PD deficiency in Plasmodium falciparum and Plasmodium vivax malaria-infected Cambodian patients.

    PubMed

    Khim, Nimol; Benedet, Christophe; Kim, Saorin; Kheng, Sim; Siv, Sovannaroth; Leang, Rithea; Lek, Soley; Muth, Sinuon; Chea, Nguon; Chuor, Char Meng; Duong, Socheat; Kerleguer, Alexandra; Tor, Pety; Chim, Pheaktra; Canier, Lydie; Witkowski, Benoit; Taylor, Walter R J; Ménard, Didier

    2013-05-28

    Glucose-6-phosphate-dehydrogenase deficiency (G6PDd) rates are unknown in malaria-infected Cambodian patients. These data are key to a rational drug policy for malaria elimination of Plasmodium falciparum and Plasmodium vivax. From September 2010-2012, a two-year survey of G6PDd and haemoglobinopathies assessed by quantitative enzyme activity assay and haemoglobin electrophoresis, respectively, was conducted in malaria-infected patients presenting to 19 health centres throughout Cambodia. A total of 2,408 confirmed malaria patients of mean age 26.7 (range 2-81) years were recruited from mostly western Cambodia (n = 1,732, 71.9%); males outnumbered females by 3.9:1. Plasmodium falciparum was present in 1,443 (59.9%) and P. vivax in 965 (40.1%) patients. Mean G6PD activity was 11.6 (CI 95%: 11.4-11.8) U/g Hb, G6PDd was present in 13.9% of all patients (335/2,408) and severe G6PDd (including WHO Class I and II variants) was more common in western (158/1,732, 9.1%) versus eastern (21/414, 5.1%) Cambodia (P = 0.01). Of 997/2,408 (41.4%) had a haemoglobinopathy. Mean haemoglobin concentrations were inversely related to age: 8.1 g/dL < five years, 8.7 g/dL five to 14 years, and 10.4 g/dL >15 years (P <0.001). G6PDd prevalence, anaemia and haemoglobinopathies were common in malaria-infected patients. The deployment of primaquine in Cambodia should be preceded by primaquine safety studies paralleled with evaluations of easy to use tests to detect G6PDd.

  3. Density-dependent blood stage Plasmodium falciparum suppresses malaria super-infection in a malaria holoendemic population.

    PubMed

    Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Vulule, John; Kazura, James W; Moormann, Ann M; Davenport, Miles P

    2013-11-01

    Recent studies of Plasmodium berghei malaria in mice show that high blood-stage parasitemia levels inhibit the development of subsequent liver-stage infections. Whether a similar inhibitory effect on liver-stage Plasmodium falciparum by blood-stage infection occurs in humans is unknown. We have analyzed data from a treatment-time-to-infection cohort of children < 10 years of age residing in a malaria holoendemic area of Kenya where people experience a new blood-stage infection approximately every 2 weeks. We hypothesized that if high parasitemia blocked the liver stage, then high levels of parasitemia should be followed by a "skipped" peak of parasitemia. Statistical analysis of "natural infection" field data and stochastic simulation of infection dynamics show that the data are consistent with high P. falciparum parasitemia inhibiting liver-stage parasite development in humans.

  4. Comparison of Clinical Profile between P. vivax and P. falciparum Malaria in Children: A Tertiary Care Centre Perspective from India.

    PubMed

    Goyal, Jagdish Prasad; Makwana, Aarti M

    2014-01-01

    Background. Malaria is a one of the leading causes of morbidity and mortality in tropical countries. Plasmodium vivax (P. vivax) is usually thought to be causing benign malaria with low incidence of complications as compared to Plasmodium falciparum (P. falciparum). Methods. This retrospective observational study included malaria patients who were admitted to K.T. Children Hospital and P.D.U. Government Medical College, Rajkot, a tertiary care teaching hospital, Gujarat, western India, during the period January 2012 to December 2012. Inclusion criteria were patients in whom either P. falciparum or P. vivax was positive on rapid malaria antigen test and peripheral blood smear. Patients showing mixed infections were excluded from study. Results. A total of 79 subjects (mean age 5.4 ± 3.6 years) were included in the study. It consisted of 47 P. vivax and 32 P. falciparum cases. The P. vivax cases consisted of 33 (70.2%) males and 11 (19.8%) females while P. falciparum cases consisted of 14 (43.8%) males and 18 (56.2%) females. One patient of each P. vivax and P. falciparum expired. There was no statistical significant difference found between complications such as anemia, thrombocytopenia, liver and renal dysfunction, ARDS, and cerebral malaria between P. vivax and P. falciparum. Conclusion. We conclude that P. vivax monoinfection tends to have as similar course and complications as compared to malaria due to P. falciparum monoinfection.

  5. Effect of meteorological variables on Plasmodium vivax and Plasmodium falciparum malaria in outbreak prone districts of Rajasthan, India.

    PubMed

    Lingala, Mercy A L

    Malaria is a public health problem caused by Plasmodium parasite and transmitted by anopheline mosquitoes. Arid and semi-arid regions of western India are prone to malaria outbreaks. Malaria outbreak prone districts viz. Bikaner, Barmer and Jodhpur were selected to study the effect of meteorological variables on Plasmodium vivax and Plasmodium falciparum malaria outbreaks for the period of 2009-2012. The data of monthly malaria cases and meteorological variables was analysed using SPSS 20v. Spearman correlation analysis was conducted to examine the strength of the relationship between meteorological variables, P. vivax and P. falciparum malaria cases. Pearson's correlation analysis was carried out among the meteorological variables to observe the independent effect of each independent variable on the outcome. Results indicate that malaria outbreaks have occurred in Bikaner and Barmer due to continuous rains for more than two months. Rainfall has shown to be an important predictor of malaria outbreaks in Rajasthan. P. vivax is more significantly correlated with rainfall, minimum temperature (P<0.01) and less significantly with relative humidity (P<0.05); whereas P. falciparum is significantly correlated with rainfall, relative humidity (P<0.01) and less significantly with temperature (P<0.05). The determination of the lag period for P. vivax is relative humidity and for P. falciparum is temperature. The lag period between malaria cases and rainfall is shorter for P. vivax than P. falciparum. In conclusion, the knowledge generated is not only useful to take prompt malaria control interventions but also helpful to develop better forecasting model in outbreak prone regions. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Prevalence of human malaria infection in bordering areas of East Balochistan, adjoining with Punjab: Loralai and Musakhel.

    PubMed

    Yasinzai, Mohammad Iqbal; Kakarsulemankhel, Juma Khan

    2009-03-01

    To study the prevalence of malarial infections in human population of districts Loralai and Musakhel areas of Pakistan. Malarial parasites were identified in the blood slides of suspected patients of the disease from July, 2004 to June, 2006, and encompassed 7899 subjects. Out of 7899 suspected cases of malaria, 2275 (28.8%) were found to be positive for malarial parasite in blood smear slides. Out of positive cases, 1633 (71.7%) were identified as Plasmodium falciparum infection, 642 (28.2%) cases with P. vivax. However, seasonal variation was also noted with the highest (83.9%:287/342) infection of P. falciparum in September and lowest (65.3%: 34/52) in January in Loralai area whereas highest (76.9%:30/39) in October and lowest (3/9) in February in Musa Khel area. There was no case of Plasmodium malariae and P. ovale infection observed in the present study. These results are compared with those of other studies done in Pakistan. The high prevalence rate (71.7%:1633/2275) of P. falciparum poses a significant health hazard but 28.2% of P. vivax (642/2275) also may lead to serious complications like cerebral malaria. No association was found between types of infection and age groups.

  7. The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006

    PubMed Central

    Chowell, Gerardo; Munayco, Cesar V; Escalante, Ananias A; McKenzie, F Ellis

    2009-01-01

    Background Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed. Methods Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index. Results Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions. Conclusion Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in

  8. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines.

    PubMed

    Walker, Andrew S; Lourenço, José; Hill, Adrian V S; Gupta, Sunetra

    2015-12-01

    Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals. © The American Society of Tropical Medicine and Hygiene.

  9. Asymptomatic malaria correlates with anaemia in pregnant women at Ouagadougou, Burkina Faso.

    PubMed

    Douamba, Zoenabo; Bisseye, Cyrille; Djigma, Florencia W; Compaoré, Tegwinde R; Bazie, Valérie Jean Telesphore; Pietra, Virginio; Nikiema, Jean-Baptiste; Simpore, Jacques

    2012-01-01

    Sub-Saharan Africa records each year about thirty-two million pregnant women living in areas of high transmission of Plasmodium falciparum causing malaria. The aim of this study was to carve out the prevalence of asymptomatic malaria among pregnant women and to emphasize its influence on haematological markers. The prevalence of Plasmodium falciparum asymptomatic infection among pregnant women was 30% and 24% with rapid detection test (RDT) and microscopy, respectively. The prevalence of P. falciparum asymptomatic malaria was reduced among pregnant women using sulfadoxine-pyrimethamine's intermittent preventive treatment and 61% of them were anaemic. Anaemia was significantly more common in women infected with P. falciparum compared with the uninfected pregnant women. Most of the women had normal levels of homocysteine and low levels of folate, respectively. Therefore, the systematic diagnosis of malaria should be introduced to pregnant women as a part of the antenatal care.

  10. Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010 to 2016).

    PubMed

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-01-01

    The World Health Organization currently recommends artemisinin (along with a partner drug) as the global frontline treatment for Plasmodium falciparum malaria. Artemisinin resistant P. falciparum are now found throughout the greater Mekong subregion of South East Asia. Several polymorphisms in the parasite's kelch gene have been demonstrated to confer artemisinin resistance. While genotypes within the greater Mekong subregion are thoroughly examined in the literature, P. falciparum populations within several areas that do not (yet) have endemic resistance are underrepresented. This investigation characterised the Pfkelch13 propeller domains from 153 blood samples of 140 imported cases of P. falciparum malaria in New South Wales from 2010 to 2016. A low level of propeller domain diversity was observed, including the C580Y coding mutation most strongly associated with artemisinin resistance in South East Asia. The resistance genotype was found in a sample originating in Papua New Guinea, where this mutation, or artemisinin treatment failure, have not been previously reported. Sequencing a panel of geographically informative polymorphisms within the organellar genomes identified the C580Y parasite as having Oceanic origins. Patient data analysis revealed that New South Wales, Australia, P. falciparum malaria cases often originated from regions with limited drug resistance screening. The C580Y finding from outside of the greater Mekong subregion supports the consensus to upscale molecular surveillance of artemisinin resistance outside of South East Asia. The genetic screening results identify a risk of importing resistant falciparum malaria to Australia, supporting an ongoing surveillance protocol to pre-empt treatment failure and contribute to global data gathering.

  11. Imported Plasmodium falciparum and locally transmitted Plasmodium vivax: cross-border malaria transmission scenario in northwestern Thailand.

    PubMed

    Sriwichai, Patchara; Karl, Stephan; Samung, Yudthana; Kiattibutr, Kirakorn; Sirichaisinthop, Jeeraphat; Mueller, Ivo; Cui, Liwang; Sattabongkot, Jetsumon

    2017-06-21

    Cross-border malaria transmission is an important problem for national malaria control programmes. The epidemiology of cross-border malaria is further complicated in areas where Plasmodium falciparum and Plasmodium vivax are both endemic. By combining passive case detection data with entomological data, a transmission scenario on the northwestern Thai-Myanmar border where P. falciparum is likely driven by importation was described, whereas P. vivax is also locally transmitted. This study highlights the differences in the level of control required to eliminate P. falciparum and P. vivax from the same region. Malaria case data were collected from malaria clinics in Suan Oi village, Tak Province, Thailand between 2011 and 2014. Infections were diagnosed by light microscopy. Demographic data, including migrant status, were correlated with concomitantly collected entomology data from 1330 mosquito trap nights using logistic regression. Malaria infection in the captured mosquitoes was detected by ELISA. Recent migrants were almost four times more likely to be infected with P. falciparum compared with Thai patients (OR 3.84, p < 0.001) and cases were significantly associated with seasonal migration. However, P. falciparum infection was not associated with the Anopheles mosquito capture rates, suggesting predominantly imported infections. In contrast, recent migrants were equally likely to present with P. vivax as mid-term migrants. Both migrant groups were twice as likely to be infected with P. vivax in comparison to the resident Thai population (OR 1.96, p < 0.001 and OR 1.94, p < 0.001, respectively). Plasmodium vivax cases were strongly correlated with age and local capture rates of two major vector species Anopheles minimus and Anopheles maculatus (OR 1.23, p = 0.020 and OR 1.33, p = 0.046, respectively), suggesting that a high level of local transmission might be causing these infections. On the Thai-Myanmar border, P. falciparum infections occur mostly in

  12. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification.

    PubMed

    Poon, Leo L M; Wong, Bonnie W Y; Ma, Edmund H T; Chan, Kwok H; Chow, Larry M C; Abeyewickreme, Wimal; Tangpukdee, Noppadon; Yuen, Kwok Y; Guan, Yi; Looareesuwan, Sornchai; Peiris, J S Malik

    2006-02-01

    Malaria is one of the most important parasitic infections in humans. A sensitive diagnostic test for malaria that could be applied at the community level could be useful in programs to control the disease. The aim of the present work was to develop a simple, inexpensive molecular test for Plasmodium falciparum. Blood was collected from controls (n = 100) and from patients diagnosed with falciparum malaria infection (n = 102), who were recruited to the study. Heat-treated blood samples were tested by a loop-mediated isothermal amplification (LAMP) assay for P. falciparum. Results were interpreted by a turbidity meter in real time or visually at the end of the assay. To evaluate the assay, DNA from these samples was purified and tested by PCR. Results from the LAMP and PCR assays were compared. The LAMP assay detected P. falciparum directly from heat-treated blood. The quantitative data from the assay correlated to the parasite counts obtained by blood-film microscopic analyses. When we used the PCR assay as the comparison method, the sensitivity and specificity of the LAMP assay were 95% and 99%, respectively. Unlike PCR, the LAMP assay does not require purified DNA for efficient DNA amplification, thereby reducing the cost and turnaround time for P. falciparum diagnosis. The assay requires only basic instruments, and assay positivity can be verified by visual inspection.

  13. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    PubMed Central

    2011-01-01

    Background Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of CQ and SP resistance in P. falciparum and Plasmodium vivax to determine if high levels of in vivo resistance are reflected at molecular level as well. Methods Finger prick blood samples (n = 189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum and P. vivax for CQ (Pfcrt, Pfmdr1, Pvmdr1) and SP (Pfdhfr, Pfdhps, Pvdhfr), using various PCR-based methods. Results and discussion Positive P. vivax and P. falciparum infections were identified by PCR in 92 and 41 samples respectively. However, some of these were negative in subsequent PCRs. Based on a few P. falciparum samples, the molecular level of CQ resistance in P. falciparum was high since nearly all parasites had the Pfcrt mutant haplotypes CVIET (55%) or SVMNT (42%), though frequency of the Pfmdr1 wild type haplotype was relatively low (35%). Molecular level of SP resistance in P. falciparum was found to be high. The most prevalent Pfdhfr haplotype was double mutant CNRNI (91%), while frequency of Pfdhps double mutant SGEAA and AGEAA were 38% and 33% respectively. Combined, the frequency of quadruple mutations (CNRNI-SGEAA/AGEAA) was 63%. Based on P. vivax samples, low CQ and SP resistance were most likely due to low prevalence of Pvmdr1 Y976F mutation (5%) and absence of triple/quadruple mutations in Pvdhfr. Conclusions Based on the limited number of samples, prevalence of

  14. Diagnostic delay for imported malaria: A case of Plasmodium falciparum malaria misdiagnosed as common cold.

    PubMed

    Hase, Ryota

    2018-01-01

    A 37-year-old Japanese man experienced fever and headache 8 days after returning to Japan following a 6-month stay in Nigeria. He visited two clinics but was sent home from each with a diagnosis of common cold. He was eventually brought to the emergency department with an altered mental status. Severe P. falciparum malaria was confirmed; his initial parasitemia index was 5.4%. He recovered fully with antimalarial treatment. This case suggests that primary care physicians should obtain recent travel history and consider malaria for any febrile patient who has returned from a malaria-endemic area.

  15. The accuracy of the first response histidine-rich protein2 rapid diagnostic test compared with malaria microscopy for guiding field treatment in an outbreak of falciparum malaria.

    PubMed

    Ghouth, Abdulla Salim Bin; Nasseb, Faraj Mubarak; Al-Kaldy, Khaled Hussin

    2012-01-01

    Recent WHO guidelines recommended a universal "test and treat" strategy for malaria mainly by use of the rapid diagnostic test (RDT) in all areas. There are concerns about RDT that use the antigen histidine-rich protein2 (HRP2) to detect Plasmodium falciparum, because infection can persist after effective treatment. The aim of this paper is to describe the accuracy of the first response (HRP2)-RDT compared with malaria microscopy used for guiding the field treatment of patients in an outbreak situation in the Al-Rahabah area in Al-Rydah district in Hadramout/Yemen. An ad hoc cross sectional survey of all febrile patients in the affected area was conducted in May 2011. The field team was developed including the case management group and the entomology group. The group of case management prepared their plan based on "test and treat" strategy by using First Response Malaria Antigen HRP2 rapid diagnostic test for falciparum malaria, artemsinin-based combination therapy (ACT) according to the national policy of anti-malaria drugs in Yemen were supplied to treat those who were found to be RDT positive in the field; also blood smear films were taken from every patient with fever in order to validate the use of the RDT in the field. Blood film slides prepared and read by skilled lab technicians, the fourth reading was done by one lab expert in the malaria referral lab. The accuracy parameters of HRP2 compared with microscopy are: Sensitivity (74%), specificity (94%). The positive predictive value is 68% and the negative predictive value is 96%. Total agreement is 148/162 (93%) and the overall prevalence is 14%. All the positive malaria cases were of P. falciparum either coming from RDT or microscopy. HRP2-rapid test is an acceptable test as a guide for field treatment in an outbreak situation where prompt response is indicated. Good prepared blood film slides should be used as it is feasible to evaluate the accuracy of RDTs as a quality control tool.

  16. Treatment regimens for pregnant women with falciparum malaria.

    PubMed

    Moore, Brioni R; Salman, Sam; Davis, Timothy M E

    2016-08-01

    With increasing parasite drug resistance, the WHO has updated treatment recommendations for falciparum malaria including in pregnancy. This review assesses the evidence for choice of treatment for pregnant women. Relevant studies, primarily those published since 2010, were identified from reference databases and were used to identify secondary data sources. Expert commentary: WHO recommends use of intravenous artesunate for severe malaria, quinine-clindamycin for uncomplicated malaria in first trimester, and artemisinin combination therapy for uncomplicated malaria in second/third trimesters. Because fear of adverse outcomes has often excluded pregnant women from conventional drug development, available data for novel therapies are usually based on preclinical studies and cases of inadvertent exposure. Changes in antimalarial drug disposition in pregnancy have been observed but are yet to be translated into specific treatment recommendations. Such targeted regimens may become important as parasite resistance demands that drug exposure is optimized.

  17. Epidemiological, Clinical, and Laboratory Evaluation of Plasmodium falciparum Malaria Cases Followed in Firat University Hospital: A 6-Year Retrospective Analysis.

    PubMed

    Sağmak Tartar, Ayşe; Akbulut, Ayhan

    2018-03-01

    Malaria is an infectious disease caused by Plasmodium parasite. Sporadic cases have not been observed in Turkey since 2010, but imported malaria cases are still prevalent owing to migration. The present study aimed to evaluate Plasmodium falciparum malaria in patients hospitalized in our hospital. A total of 15 adult patients (14 males and 1 female) who were diagnosed with malaria and who were managed at our clinic between January 2011 and 2017 were evaluated retrospectively for their epidemiological, clinical, and laboratory findings; treatment; and prognosis. Of the 15 cases, 14 (93.3%) were male and (6.7%), female. All patients had a history of travelling to endemic areas, and none of them undertook regular chemoprophylaxis. Fever (100%), splenomegaly (86.7%), hepatomegaly (26.7%), leukopenia (13.3%), thrombocytopenia (80%), elevated liver function tests (40%), and increased serum creatinine levels (13.3%) were found in the patients. The number of import cases is increasing owing to tourism, migration, and deficiency in eradication programs. Malaria caused by P. falciparum is an import case in Turkey. The current study emphasizes on the necessity of providing proper education to Turkish individuals traveling to endemic areas for the purpose of work or travel and on the necessity of initiating chemoprophylaxis.

  18. G6PD deficiency in Plasmodium falciparum and Plasmodium vivax malaria-infected Cambodian patients

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate-dehydrogenase deficiency (G6PDd) rates are unknown in malaria-infected Cambodian patients. These data are key to a rational drug policy for malaria elimination of Plasmodium falciparum and Plasmodium vivax. Methods From September 2010–2012, a two-year survey of G6PDd and haemoglobinopathies assessed by quantitative enzyme activity assay and haemoglobin electrophoresis, respectively, was conducted in malaria-infected patients presenting to 19 health centres throughout Cambodia. Results A total of 2,408 confirmed malaria patients of mean age 26.7 (range 2–81) years were recruited from mostly western Cambodia (n = 1,732, 71.9%); males outnumbered females by 3.9:1. Plasmodium falciparum was present in 1,443 (59.9%) and P. vivax in 965 (40.1%) patients. Mean G6PD activity was 11.6 (CI 95%: 11.4-11.8) U/g Hb, G6PDd was present in 13.9% of all patients (335/2,408) and severe G6PDd (including WHO Class I and II variants) was more common in western (158/1,732, 9.1%) versus eastern (21/414, 5.1%) Cambodia (P = 0.01). Of 997/2,408 (41.4%) had a haemoglobinopathy. Mean haemoglobin concentrations were inversely related to age: 8.1 g/dL < five years, 8.7 g/dL five to 14 years, and 10.4 g/dL >15 years (P <0.001). Conclusions G6PDd prevalence, anaemia and haemoglobinopathies were common in malaria-infected patients. The deployment of primaquine in Cambodia should be preceded by primaquine safety studies paralleled with evaluations of easy to use tests to detect G6PDd. PMID:23714236

  19. Artesunate, artemether or quinine in severe Plasmodium falciparum malaria?

    PubMed

    Checkley, Anna M; Whitty, Christopher J M

    2007-04-01

    Quinine and the artemisinin-derivative drugs artesunate and artemether are effective treatments for severe falciparum malaria. Trials comparing artemether with quinine have not demonstrated convincing evidence of a mortality advantage for artemether. The South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT), a multicenter, randomized, open-label trial in 1461 adults with severe malaria in Asia compared artesunate with quinine. Mortality was 15% in the artesunate group and 22% in the quinine group, a reduction of 34.7% (95% confidence interval: 18.5-47.6%) in the artesunate group, with almost all the benefit reported in those with high parasite counts. Artesunate should constitute first-line treatment for severe malaria in Asia. These results can probably be generalized to the treatment of severe malaria in adults from all areas, especially in those with hyperparasitemia. However, it is unclear whether these results can be generalized to children in Africa, who constitute the majority of those who die from severe malaria worldwide.

  20. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    PubMed Central

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  1. Dynamic alteration in splenic function during acute falciparum malaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than didmore » the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.« less

  2. Antibodies to Polymorphic Invasion-Inhibitory and Non-Inhibitory Epitopes of Plasmodium falciparum Apical Membrane Antigen 1 in Human Malaria

    PubMed Central

    Mugyenyi, Cleopatra K.; Elliott, Salenna R.; McCallum, Fiona J.; Anders, Robin F.; Marsh, Kevin; Beeson, James G.

    2013-01-01

    Background Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. Methodology/Findings We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. Conclusions/Significance Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1. PMID:23861883

  3. GCRBS score: a new scoring system for predicting outcome in severe falciparum malaria.

    PubMed

    Mohapatra, Biranchi Narayan; Jangid, Sanjay Kumar; Mohanty, Rina

    2014-01-01

    Severe falciparum malaria is a critical illness resulting in multi-organ dysfunction and death. Severe malaria is defined by the World Health Organisation as a qualitative variable. The purpose of this study is to devise a scoring system for predicting outcome in severe falciparum malaria. 112 cases of severe falciparum malaria diagnosed as per the WHO criteria, were evaluated to determine the parameters which were significantly associated with mortality. Of all the parameters studied, five variables namely cerebral malaria (GCS < 11), Renal failure (Creatinine > 3 mg/dl), Respiratory distress (Respiratory rate > 24/min), Jaundice (Bilirubin >10 mg/dl) and Shock (Systolic BP < 90 mm of Hg) were all found to be associated with a poor prognosis. The five selected parameters were analysed using the Odds ratio and a new scoring system named as GCRBS score was designed with a possible score from 0-10. With a cut-off score of 5, the GCRBS score predicted mortality with a sensitivity of 85.3% and a specificity of 95.6%. The GCRBS score is easy to calculate and apply. Of the 5 parameters, 3 are clinical which can be determined at bedside and only 2 are biochemical which can be done in any laboratory.The most important advantage of this scoring system is that all the 5 parameters are to be assessed quantitatively for allotting a score, which would eliminate the possibility of observer bias.

  4. The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004-2012: from intensified control to elimination.

    PubMed

    Zhang, Qian; Lai, Shengjie; Zheng, Canjun; Zhang, Honglong; Zhou, Sheng; Hu, Wenbiao; Clements, Archie C A; Zhou, Xiao-Nong; Yang, Weizhong; Hay, Simon I; Yu, Hongjie; Li, Zhongjie

    2014-11-03

    In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from <10% before 2010 to 55.2% in 2012. From 2004 to 2006, malaria showed a significantly increasing trend and with the highest incidence peak in 2006 (4.6/100,000), while from 2007 onwards, malaria decreased sharply to only 0.18/100,000 in 2012. Males and young age groups became the predominantly affected population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.

  5. Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan Province, China.

    PubMed

    Bi, Yan; Yu, Weiwei; Hu, Wenbiao; Lin, Hualiang; Guo, Yuming; Zhou, Xiao-Nong; Tong, Shilu

    2013-12-17

    Malaria remains a public health problem in the remote and poor area of Yunnan Province, China. Yunnan faces an increasing risk of imported malaria infections from Mekong river neighboring countries. This study aimed to identify the high risk area of malaria transmission in Yunnan Province, and to estimate the effects of climatic variability on the transmission of Plasmodium vivax and Plasmodium falciparum in the identified area. We identified spatial clusters of malaria cases using spatial cluster analysis at a county level in Yunnan Province, 2005-2010, and estimated the weekly effects of climatic factors on P. vivax and P. falciparum based on a dataset of daily malaria cases and climatic variables. A distributed lag nonlinear model was used to estimate the impact of temperature, relative humidity and rainfall up to 10-week lags on both types of malaria parasite after adjusting for seasonal and long-term effects. The primary cluster area was identified along the China-Myanmar border in western Yunnan. A 1°C increase in minimum temperature was associated with a lag 4 to 9 weeks relative risk (RR), with the highest effect at lag 7 weeks for P. vivax (RR = 1.03; 95% CI, 1.01, 1.05) and 6 weeks for P. falciparum (RR = 1.07; 95% CI, 1.04, 1.11); a 10-mm increment in rainfall was associated with RRs of lags 2-4 weeks and 9-10 weeks, with the highest effect at 3 weeks for both P. vivax (RR = 1.03; 95% CI, 1.01, 1.04) and P. falciparum (RR = 1.04; 95% CI, 1.01, 1.06); and the RRs with a 10% rise in relative humidity were significant from lag 3 to 8 weeks with the highest RR of 1.24 (95% CI, 1.10, 1.41) for P. vivax at 5-week lag. Our findings suggest that the China-Myanmar border is a high risk area for malaria transmission. Climatic factors appeared to be among major determinants of malaria transmission in this area. The estimated lag effects for the association between temperature and malaria are consistent with the life cycles of both mosquito vector and malaria

  6. [Severe Plasmodium falciparum malaria. Description of 5 cases].

    PubMed

    Espinosa, G; Tortajada, C; Gascón, J; Miquel, R; Nicolás, J M; Nadal, P; Corachán, M

    1997-09-01

    In the last few years a considerable number of imported malaria has been reported in Spain, probably due the increased tourism to areas with endemic malaria, particularly with P. falciparum. This is the species more frequently associated with severe complications and the only one capable of causing cerebral malaria. In this report we review five cases of malaria which required intensive care because of their severity. None of the patients had received chemoprophylaxis. In all cases the admission criterion to the intensive care unit was the organic failure of one or more systems (renal failure and disseminated intravascular coagulation [DIC] mainly) or the presence of changes in the central nervous system. Parasitemia at admission was higher than 5% in all patients. One patient died on account of cerebral malaria. Only one patient had severe complications not directly associated with malaria. In patients who already have severity criteria, a negative parasitemia test during the clinical course does not necessarily implies a clinical improvement nor does it exclude the emergence of complications. On the other hand, a low parasitemic degree is never a contraindication for admission to the intensive care unit when severity criteria are present.

  7. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    PubMed

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  8. Antibodies to Plasmodium falciparum antigens predict a higher risk of malaria but protection from symptoms once parasitemic.

    PubMed

    Greenhouse, Bryan; Ho, Benjamin; Hubbard, Alan; Njama-Meya, Denise; Narum, David L; Lanar, David E; Dutta, Sheetij; Rosenthal, Philip J; Dorsey, Grant; John, Chandy C

    2011-07-01

    Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses.

  9. Prevalence of Plasmodium falciparum Resistance Markers to Sulfadoxine-Pyrimethamine among Pregnant Women Receiving Intermittent Preventive Treatment for Malaria in Uganda

    PubMed Central

    Birungi, Josephine; Yanow, Stephanie K.; Shokoples, Sandra; Malamba, Samuel; Alifrangis, Michael; Magnussen, Pascal

    2015-01-01

    The aim of this study was to assess the prevalence of mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes among pregnant women using sulfadoxine-pyrimethamine (SP) as an intermittent preventive treatment (IPTp). A molecular epidemiological study of P. falciparum parasite resistance markers to SP was conducted from August 2010 to February 2012 in Mukono district in central Uganda. DNA was extracted from 413 P. falciparum-positive samples. Real-time PCR, followed by melting curve analysis, was used to characterize point mutations in the Pfdhfr and Pfdhps genes that are associated with SP resistance. The prevalence of the single-nucleotide mutations in Pfdhfr at codons 51I, 59R, and 108N and in Pfdhps at codons 437G and 540E was high (>98%), reaching 100% fixation after one dose of SP, while the prevalence of 581G was 3.3% at baseline, reaching 12.5% after one dose of SP. At baseline, the prevalence of Pfdhfr and Pfdhps quintuple mutations was 89%, whereas the sextuple mutations (including 581G) were not prevalent (3.9%), reaching 16.7% after one dose of SP. However, the numbers of infections at follow-up visits were small, and hence there was insufficient statistical power to test whether there was a true rise in the prevalence of this allele. The overall high frequency of Pfdhfr and Pfdhps quintuple mutations throughout pregnancy excluded further analyses of possible associations between certain haplotypes and the risk of lower birth weight and anemia. However, women infected with P. falciparum had 1.3-g/dl-lower hemoglobin levels (P = 0.001) and delivered babies with a 400-g-lower birth weight (P = 0.001) compared to nonparasitemic women. Despite this, 44 women who were P. falciparum positive at baseline became negative after one or two doses of SP (i.e., 50.5%), implying that SP-IPTp still has some efficacy. P. falciparum resistance markers to SP are high in this population, whereas P. falciparum

  10. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study

    PubMed Central

    Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Dek, Dalin; Try, Vorleak; Amato, Roberto; Blessborn, Daniel; Song, Lijiang; Tullo, Gregory S; Fay, Michael P; Anderson, Jennifer M; Tarning, Joel; Fairhurst, Rick M

    2016-01-01

    Background Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin–piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. Methods In this prospective cohort study, we enrolled patients aged 2–65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin–piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. Findings Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations

  11. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    PubMed Central

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  12. Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: potential for a non-invasive saliva-based diagnostic test for malaria.

    PubMed

    Mfuh, Kenji O; Tassi Yunga, Samuel; Esemu, Livo F; Bekindaka, Obase Ngemani; Yonga, Jessica; Djontu, Jean Claude; Mbakop, Calixt D; Taylor, Diane W; Nerurkar, Vivek R; Leke, Rose G F

    2017-10-27

    Current malaria diagnostic methods require blood collection, that may be associated with pain and the risk of transmitting blood-borne pathogens, and often create poor compliance when repeated sampling is needed. On the other hand, the collection of saliva is minimally invasive; but saliva has not been widely used for the diagnosis of malaria. The aim of this study was to evaluate the diagnostic performance of saliva collected and stored at room temperature using the OMNIgene ® •ORAL kit for diagnosing Plasmodium falciparum malaria. Paired blood and saliva samples were collected from 222 febrile patients in Cameroon. Saliva samples were collected using the OMNIgene ® •ORAL (OM-501) kit and stored at room temperature for up to 13 months. Thick blood film microscopy (TFM) was used to detect P. falciparum blood-stage parasites in blood. Detection of P. falciparum DNA in blood and saliva was based on amplification of the multi-copy 18 s rRNA gene using the nested-polymerase chain reaction (nPCR). Prevalence of malaria detected by TFM, nPCR-saliva and nPCR-blood was 22, 29, and 35%, respectively. Using TFM as the gold standard, the sensitivity of nPCR-saliva and nPCR-blood in detecting P. falciparum was 95 and 100%, respectively; with corresponding specificities of 93 and 87%. When nPCR-blood was used as gold standard, the sensitivity of nPCR-saliva and microscopy was 82 and 68%, respectively; whereas, the specificity was 99 and 100%, respectively. Nested PCR-saliva had a very good agreement with both TFM (kappa value 0.8) and blood PCR (kappa value 0.8). At parasitaemia > 10,000 parasites/µl of blood, the sensitivity of nPCR-saliva was 100%. Nested PCR-saliva detected 16 sub-microscopic malaria infections. One year after sample collection, P. falciparum DNA was detected in 80% of saliva samples stored at room temperature. Saliva can potentially be used as an alternative non-invasive sample for the diagnosis of malaria and the OMNIgene ® •ORAL kit is

  13. A prospective study from south India to compare the severity of malaria caused by Plasmodium vivax, P. falciparum and dual infection.

    PubMed

    Mitra, Shubhanker; Abhilash, Kpp; Arora, Shalabh; Miraclin, Angel

    2015-12-01

    Traditionally, Plasmodium falciparum has been attributed to cause severe malaria, whereas P. vivax is considered to cause "benign" tertian malaria. Recently, there has been an increasing body of evidence challenging this conviction. However, the spectrum and degree of severity of the disease caused by P. vivax, as per World Health Organization (2012) remains unclear. Thus, in this prospective study, we aimed at comparing the severity of malaria caused by P. vivax, P. falciparum and dual infection. Adult patients presenting to Christian Medical College, Vellore from October 2012 to September 2013 with microscopically confirmed malaria were included in the study. Their clinical and laboratory parameters were recorded and analyzed. Paired t-test and chi-square with 95% CI and post-hoc analyses using the Scheffι post-hoc criterion were used to assess the statistical significance at the level of α <0.05. In total, 131 cases of malaria were identified during the study period, comprising 83 cases of P. vivax, 35 cases of P. falciparum and 13 cases of mixed vivax and falciparum infections. The spectrum and degree of hematological, hepatic, renal, metabolic, central nervous system complications of vivax malaria was not different from that of falciparum group. Thrombocytopenia and hyperbilirubinemia were the most common laboratory abnormalities identified in all the groups. This cross-sectional comparative study clearly demonstrates that clinical features, complications and case-fatality rates in vivax malaria can be as severe as in falciparum malaria. Hence, vivax malaria could not be considered benign; and appropriate preventive strategies along with antimalarial therapies should be adopted for control and elimination of this disease.

  14. Prevalence of glucose-6-phosphate dehydrogenase deficiency and its association with Plasmodium falciparum infection among children in Iganga distric in Uganda.

    PubMed

    Bwayo, Denis; Kaddumukasa, Mark; Ddungu, Henry; Kironde, Fred

    2014-06-18

    Glucose-6-phosphate dehydrogenase (G6PD) is a metabolic enzyme involved in the pentose phosphate pathway, its especially important in red blood cell metabolism. Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive hereditary disease characterised by abnormally low levels of G6PD. About 400 million people worldwide have a deficiency of this enzyme. The remarkable geographic correlation of G6PD deficiency distribution with historical endemicity patterns of malaria has led to suggestions that the two could be linked. Some studies have concluded that G6PD deficiency confers resistance to malaria. To determine the prevalence of G6PD deficiency, and determine its relationship with prevalence and incidence of P. falciparum infection among children in Uganda. This was longitudinal study involving 245 children, 135 were actively followed up for 12 months. G6PD status was assessed for using PCR-RFLP method. A thick smear was done to determine presence of plasmodium trophozoites and parasite densities. A total of 245 children between 6 months and 9 years were recruited. Of these 46.5% were males. Overall prevalence for the X-linked G6PD A- mutation was; 79.59% wild type, 12.65% heterozygous and 7.76% homozygous or hemizygous. Among the males 14% were hemizygous. At baseline, 40.8% had asymptomatic P falciparum infection. There was no statistically significant difference in prevalence and incidence rates of malaria infection among the different G6PD genotypes with prevalence among heterozygous, homozygous, and wild type being 29%, 42.6% and 43% respectively (p = 0.11) and incidence among heterozygous and wild type being 0.56 and 0.52 episodes/year (p = 0.5). The heterozygous G6PD A- females had a lower parasite density compared to the wild type (2505 vs 941 parasites/μL; P = 0.024). This study showed that 20.41% of the population in this part of Uganda carry the G6PD A-mutation, within the range of 15-32% seen in other parts of Africa. P

  15. Falciparum Malaria Outbreak in Sabah Linked to an Immigrant Rubber Tapper.

    PubMed

    Jeffree, Saffree Mohammad; Ahmed, Kamruddin; Safian, Nazarudin; Hassan, Rohaizat; Mihat, Omar; Lukman, Khamisah Awang; Shamsudin, Shamsul Bahari; Kamaludin, Fadzilah

    2018-01-01

    Sabah is a Malaysian state situated in the northern part of Borneo, and it is endemic for malaria. The incidence of malaria is the lowest (0.05/1,000 population) in Penampang districts of Sabah. In June 26, 2012, two Plasmodium falciparum malaria cases were notified to public health department from a village in Penampang. Immediate investigation was initiated to identify the risk factors and to institute control measures. We performed active case finding by asking household members of all houses in the village regarding malaria symptoms and by examining blood smears. Environmental investigation was performed by collecting samples to detect mosquito breeding sites and to identify malaria transmitting vector mosquitoes. A case-control study with a ratio of 1:4 (11 cases and 44 controls) was conducted using self-administered questionnaire. The microscopic examination of blood smear for malarial parasite and entomology sampling was carried out. The malarial attack rate was 2.3%, 6/11 smears have gametocyte, and the case fatality rate was 9.1%. One case was a migrant rubber tapper from Indonesia which happened to be the first case with gametocyte positive. Overall, the incidence of malaria was higher (6/11) among rubber tappers. The odds of cases for those living nearby stagnant water were 7.3 [95% confidence interval: 1.2-43.5] times higher. In conclusion, an outbreak of P. falciparum malaria was introduced into a malaria-free village by a migrant rubber tapper, by whom the imported parasite was introduced to the community via vector Anopheles balabacensis . Living near stagnant water bodies was the risk factor in this outbreak.

  16. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Sastu, Umi Rubiah; Norahmad, Nor Azrina; Abdul-Karim, Abass; Muhammad, Amirrudin; Muniandy, Prem Kumar; Jelip, Jenarun; Rundi, Christina; Imwong, Mallika; Mudin, Rose Nani; Abdullah, Noor Rain

    2016-01-01

    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751–800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651–700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  17. Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination

    PubMed Central

    Noviyanti, Rintis; Coutrier, Farah; Utami, Retno A. S.; Trimarsanto, Hidayat; Tirta, Yusrifar K.; Trianty, Leily; Kusuma, Andreas; Sutanto, Inge; Kosasih, Ayleen; Kusriastuti, Rita; Hawley, William A.; Laihad, Ferdinand; Lobo, Neil; Marfurt, Jutta; Clark, Taane G.; Price, Ric N.; Auburn, Sarah

    2015-01-01

    Background Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. Methodology/ Principal Findings Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. Conclusions/ Significance Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given

  18. Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination.

    PubMed

    Noviyanti, Rintis; Coutrier, Farah; Utami, Retno A S; Trimarsanto, Hidayat; Tirta, Yusrifar K; Trianty, Leily; Kusuma, Andreas; Sutanto, Inge; Kosasih, Ayleen; Kusriastuti, Rita; Hawley, William A; Laihad, Ferdinand; Lobo, Neil; Marfurt, Jutta; Clark, Taane G; Price, Ric N; Auburn, Sarah

    2015-05-01

    Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given setting will have a major role in prioritising malaria control strategies

  19. Correlation between malaria incidence and prevalence of soil-transmitted helminths in Colombia: an ecologic evaluation.

    PubMed

    Valencia, Carlos Andrés; Fernández, Julián Alfredo; Cucunubá, Zulma Milena; Reyes, Patricia; López, Myriam Consuelo; Duque, Sofía

    2010-01-01

    Recent studies have suggested an association between the soil-transmitted helminth infections and malaria incidence. However, published evidence is still insufficient and diverging. Since 1977, new ecologic studies have not been carried out to explore this association. Ecologic studies could explore this correlation on a population level, assessing its potential importance on public health. The aim of this evaluation is to explore the association between soil-transmitted helminths prevalence and malaria incidence, at an ecologic level in Colombia. Using data from the National Health Survey, which was carried out in 1980 in Colombia, we calculated Spearman correlation coefficients between the prevalence of: Ascaris lumbricoides, Trichuris trichiura and hookworm, with the 1980 malaria incidence data of the same year provided from the Colombian Malaria National Eradication Service. A robust regression analysis with least trimmed squares was performed. Falciparum malaria incidence and Ascaris lumbricoides prevalence had a low correlation (R²= 0.086) but this correlation was stronger into the clusters of towns with prevalence of Ascaris lumbricoides infection above 30% were only included (R²= 0.916). This work showed an ecologic correlation in Colombia between malaria incidence and soil-transmitted helminths prevalence. This could suggest that either there is an association between these two groups of parasites, or could be explained by the presence of common structural determinants for both diseases.

  20. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria.

    PubMed

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-10-27

    In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4]. OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7]. CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI95 85.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI95 71.1-84.4], spec 97.8% [CI95 96.3-98.7]. Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35 degrees C). None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and

  1. Changing Malaria Prevalence on the Kenyan Coast since 1974: Climate, Drugs and Vector Control

    PubMed Central

    Snow, Robert W.; Kibuchi, Eliud; Karuri, Stella W.; Sang, Gilbert; Gitonga, Caroline W.; Mwandawiro, Charles; Bejon, Philip; Noor, Abdisalan M.

    2015-01-01

    Background Progress toward reducing the malaria burden in Africa has been measured, or modeled, using datasets with relatively short time-windows. These restricted temporal analyses may miss the wider context of longer-term cycles of malaria risk and hence may lead to incorrect inferences regarding the impact of intervention. Methods 1147 age-corrected Plasmodium falciparum parasite prevalence (PfPR2-10) surveys among rural communities along the Kenyan coast were assembled from 1974 to 2014. A Bayesian conditional autoregressive generalized linear mixed model was used to interpolate to 279 small areas for each of the 41 years since 1974. Best-fit polynomial splined curves of changing PfPR2-10 were compared to a sequence of plausible explanatory variables related to rainfall, drug resistance and insecticide-treated bed net (ITN) use. Results P. falciparum parasite prevalence initially rose from 1974 to 1987, dipped in 1991–92 but remained high until 1998. From 1998 onwards prevalence began to decline until 2011, then began to rise through to 2014. This major decline occurred before ITNs were widely distributed and variation in rainfall coincided with some, but not all, short-term transmission cycles. Emerging resistance to chloroquine and introduction of sulfadoxine/pyrimethamine provided plausible explanations for the rise and fall of malaria transmission along the Kenyan coast. Conclusions Progress towards elimination might not be as predictable as we would like, where natural and extrinsic cycles of transmission confound evaluations of the effect of interventions. Deciding where a country lies on an elimination pathway requires careful empiric observation of the long-term epidemiology of malaria transmission. PMID:26107772

  2. Comparison of detection methods to estimate asexual Plasmodium falciparum parasite prevalence and gametocyte carriage in a community survey in Tanzania.

    PubMed

    Mwingira, Felista; Genton, Blaise; Kabanywanyi, Abdu-Noor M; Felger, Ingrid

    2014-11-18

    The use of molecular techniques to detect malaria parasites has been advocated to improve the accuracy of parasite prevalence estimates, especially in moderate to low endemic settings. Molecular work is time-consuming and costly, thus the effective gains of this technique need to be carefully evaluated. Light microscopy (LM) and rapid diagnostic tests (RDT) are commonly used to detect malaria infection in resource constrained areas, but their limited sensitivity results in underestimation of the proportion of people infected with Plasmodium falciparum. This study aimed to evaluate the extent of missed infections via a community survey in Tanzania, using polymerase chain reaction (PCR) to detect P. falciparum parasites and gametocytes. Three hundred and thirty individuals of all ages from the Kilombero and Ulanga districts (Tanzania) were enrolled in a cross-sectional survey. Finger prick blood samples were collected for parasite detection by RDT, LM and molecular diagnosis using quantitative 18S rRNA PCR and msp2 nPCR. Gametocytes were detected by LM and by amplifying transcripts of the gametocyte-specific marker pfs25. Results from all three diagnostic methods were available for a subset of 226 individuals. Prevalence of P. falciparum was 38% (86/226; 95% CI 31.9-44.4%) by qPCR, 15.9% (36/226; 95% CI 11.1-20.7%) by RDT and 5.8% (13/226; 95% CI 2.69- 8.81%) by LM. qPCR was positive for 72% (26/36) of the RDT-positive samples. Gametocyte prevalence was 10.6% (24/226) by pfs25-qRT-PCR and 1.2% by LM. LM showed the poorest performance, detecting only 15% of P. falciparum parasite carriers identified by PCR. Thus, LM is not a sufficiently accurate technique from which to inform policies and malaria control or elimination efforts. The diagnostic performance of RDT was superior to that of LM. However, it is also insufficient when precise prevalence data are needed for monitoring intervention success or for determining point prevalence rates in countrywide surveillance

  3. Prevalence and distribution of human Plasmodium infection in Pakistan.

    PubMed

    Khattak, Aamer A; Venkatesan, Meera; Nadeem, Muhammad F; Satti, Humayoon S; Yaqoob, Adnan; Strauss, Kathy; Khatoon, Lubna; Malik, Salman A; Plowe, Christopher V

    2013-08-28

    Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high.

  4. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    PubMed Central

    2013-01-01

    Background In heavily endemic malaria areas, it is almost inevitable that malarial infection will be associated with anaemia, although malaria may not be the prime cause of it. Anaemia is a major public health problem in Cameroon. We hypothesized that, factors other than falciparum malaria account for anaemia in the study area. Methods A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community. The investigative methods included the use of a structured questionnaire, clinical evaluation and laboratory investigations. Results At enrolment the overall prevalence of anaemia as assessed by Hb concentration (Hb < 11 g/dl) was 80.3% (282). Following treatment the prevalence of persistent anaemia was 6% and 46.2% of the children achieved haematological recovery by day 42. Exploratory multiple linear regression analysis showed the following; parasitaemia density (P < 0.01), enlarged spleen (P < 0.05), duration of fever > 2 days (P < 0.01), high white blood cell count (P < 0.001), sex (P < 0.05), iron status indicators (ferritin and transferrin) (P < 0.001), level of education of the caregiver (P < 0.05), management of onset of malaria by caregiver (P < 0.005) and wasting (P < 0.05) to be risk factors for anaemia in children with falciparum infection. Approximately 75.5% (265) of the caregivers had some knowledge about anaemia. Conclusion The identified risk factors revealed the important contributors to the pathogenesis of anaemia in the Mount Cameroon region. Control efforts should therefore be directed towards proper health education emphasizing on proper health seeking behaviour and attitudes of the population. PMID:23497273

  5. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers.

    PubMed

    Sumbele, Irene Ule Ngole; Samje, Moses; Nkuo-Akenji, Theresa

    2013-03-05

    In heavily endemic malaria areas, it is almost inevitable that malarial infection will be associated with anaemia, although malaria may not be the prime cause of it. Anaemia is a major public health problem in Cameroon. We hypothesized that, factors other than falciparum malaria account for anaemia in the study area. A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community. The investigative methods included the use of a structured questionnaire, clinical evaluation and laboratory investigations. At enrolment the overall prevalence of anaemia as assessed by Hb concentration (Hb < 11 g/dl) was 80.3% (282). Following treatment the prevalence of persistent anaemia was 6% and 46.2% of the children achieved haematological recovery by day 42. Exploratory multiple linear regression analysis showed the following; parasitaemia density (P < 0.01), enlarged spleen (P < 0.05), duration of fever > 2 days (P < 0.01), high white blood cell count (P < 0.001), sex (P < 0.05), iron status indicators (ferritin and transferrin) (P < 0.001), level of education of the caregiver (P < 0.05), management of onset of malaria by caregiver (P < 0.005) and wasting (P < 0.05) to be risk factors for anaemia in children with falciparum infection. Approximately 75.5% (265) of the caregivers had some knowledge about anaemia. The identified risk factors revealed the important contributors to the pathogenesis of anaemia in the Mount Cameroon region. Control efforts should therefore be directed towards proper health education emphasizing on proper health seeking behaviour and attitudes of the population.

  6. Prevalence of malaria across Papua New Guinea after initial roll-out of insecticide-treated mosquito nets.

    PubMed

    Hetzel, Manuel W; Morris, Hector; Tarongka, Nandao; Barnadas, Céline; Pulford, Justin; Makita, Leo; Siba, Peter M; Mueller, Ivo

    2015-12-01

    To assess the population prevalence of malaria in villages across Papua New Guinea (PNG) following the first roll-out of free long-lasting insecticidal nets (LLIN). Between October 2008 and August 2009, a household survey was conducted in 49 random villages in districts covered by the LLIN distribution campaign. The survey extended to 19 villages in sentinel sites that had not yet been covered by the campaign. In each village, 30 households were randomly sampled, household heads were interviewed and capillary blood samples were collected from all consenting household members for microscopic diagnosis of malaria. Malaria prevalence ranged from 0% to 49.7% with a weighted average of 12.1% (95% CI 9.5, 15.3) in the national sample. More people were infected with Plasmodium falciparum (7.0%; 95% CI 5.4, 9.1) than with P. vivax (3.8%; 95% CI 2.4, 5.7) or P. malariae (0.3%; 95% CI 0.1, 0.6). Parasitaemia was strongly age-dependent with a P. falciparum peak at age 5-9 years and a P. vivax peak at age 1-4 years, yet with differences between geographical regions. Individual LLIN use and high community coverage were associated with reduced odds of infection (OR = 0.64 and 0.07, respectively; both P < 0.001). Splenomegaly in children and anaemia were common morbidities attributable to malaria. Malaria prevalence across PNG is again at levels comparable to the 1970s. The strong association of LLIN use with reduced parasitaemia supports efforts to achieve and maintain high country-wide coverage. P. vivax infections will require special targeted approaches across PNG. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  7. Response of falciparum malaria to different antimalarials in Myanmar.

    PubMed Central

    Ejov, M. N.; Tun, T.; Aung, S.; Sein, K.

    1999-01-01

    The purpose of the study was to ascertain the therapeutic efficacy of different treatments for uncomplicated falciparum malaria in the hospitals in Sagaing, northern and eastern Shan, to facilitate updating the existing national antimalarial drug policy. The proposed 14-day trial for monitoring the efficacy of treatments of uncomplicated falciparum malaria is an efficient method for identifying treatment failure patterns at the intermediate level (township hospital) in the Union of Myanmar. Minimal clinical and parasitological data for days 0-14 were required to classify treatment failure and success. Clinical and parasitiological responses on day 3 and days 4-14 were used as clear examples of early and late treatment failure, respectively. Mefloquine is five times more likely to be effective than chloroquine and sulfadoxine pyrimethamine (S-P), whereas chloroquine and S-P treatments have nearly identical failure patterns. The alarming frequency of clinical and parasitological failure (failure rate > 50%) following chloroquine treatment was reported in Sagaing and following S-P treatment in Sagaing and eastern Shan. PMID:10212515

  8. An Open-Label, Randomised Study of Dihydroartemisinin-Piperaquine Versus Artesunate-Mefloquine for Falciparum Malaria in Asia

    PubMed Central

    Valecha, Neena; Phyo, Aung Pyae; Mayxay, Mayfong; Newton, Paul N.; Krudsood, Srivicha; Keomany, Sommay; Khanthavong, Maniphone; Pongvongsa, Tiengkham; Ruangveerayuth, Ronnatrai; Uthaisil, Chirapong; Ubben, David; Duparc, Stephan; Bacchieri, Antonella; Corsi, Marco; Rao, Bappanad H. K.; Bhattacharya, Prabash C.; Dubhashi, Nagesh; Ghosh, Susanta K.; Dev, Vas; Kumar, Ashwani; Pukittayakamee, Sasithon

    2010-01-01

    Background The artemisinin-based combination treatment (ACT) of dihydroartemisinin (DHA) and piperaquine (PQP) is a promising novel anti-malarial drug effective against multi-drug resistant falciparum malaria. The aim of this study was to show non-inferiority of DHA/PQP vs. artesunate-mefloquine (AS+MQ) in Asia. Methods and Findings This was an open-label, randomised, non-inferiority, 63-day follow-up study conducted in Thailand, Laos and India. Patients aged 3 months to 65 years with Plasmodium falciparum mono-infection or mixed infection were randomised with an allocation ratio of 2∶1 to a fixed-dose DHA/PQP combination tablet (adults: 40 mg/160 mg; children: 20 mg/320 mg; n = 769) or loose combination of AS+MQ (AS: 50 mg, MQ: 250 mg; n = 381). The cumulative doses of study treatment over the 3 days were of about 6.75 mg/kg of DHA and 54 mg/kg of PQP and about 12 mg/kg of AS and 25 mg/kg of MQ. Doses were rounded up to the nearest half tablet. The primary endpoint was day-63 polymerase chain reaction (PCR) genotype-corrected cure rate. Results were 87.9% for DHA/PQP and 86.6% for AS+MQ in the intention-to-treat (ITT; 97.5% one-sided confidence interval, CI: >−2.87%), and 98.7% and 97.0%, respectively, in the per protocol population (97.5% CI: >−0.39%). No country effect was observed. Kaplan-Meier estimates of proportions of patients with new infections on day 63 (secondary endpoint) were significantly lower for DHA/PQP than AS+MQ: 22.7% versus 30.3% (p = 0.0042; ITT). Overall gametocyte prevalence (days 7 to 63; secondary endpoint), measured as person-gametocyte-weeks, was significantly higher for DHA/PQP than AS+MQ (10.15% versus 4.88%; p = 0.003; ITT). Fifteen serious adverse events were reported, 12 (1.6%) in DHA/PQP and three (0.8%) in AS+MQ, among which six (0.8%) were considered related to DHA/PQP and three (0.8%) to AS+MQ. Conclusions DHA/PQP was a highly efficacious drug for P. falciparum malaria in areas where multidrug parasites

  9. Spatio-temporal mapping of Madagascar's Malaria Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016.

    PubMed

    Kang, Su Yun; Battle, Katherine E; Gibson, Harry S; Ratsimbasoa, Arsène; Randrianarivelojosia, Milijaona; Ramboarina, Stéphanie; Zimmerman, Peter A; Weiss, Daniel J; Cameron, Ewan; Gething, Peter W; Howes, Rosalind E

    2018-05-23

    Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.

  10. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    PubMed

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  11. On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos

    PubMed Central

    Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges

    2010-01-01

    The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187

  12. Operational trial of ParaSight-F (dipstick) in the diagnosis of falciparum malaria at the primary health care level.

    PubMed

    Banchongaksorn, T; Prajakwong, S; Rooney, W; Vickers, P

    1997-06-01

    The rapid manual ParaSight-F test of Plasmodium falciparum malaria, an antigen capture test for detecting trophozoite-derived histidine rich protein-2 (PF HRP-2), is simple to perform and provides a definite diagnosis within 10 minutes. During an operational trial at health centers and mobile malaria units where microscopical diagnosis is not available and using defined symptom screening criteria, 3,361 subjects were tested yielding 618 positives (18.4%) for PF-HRP-2 by ParaSight-F. Microscopic examination of the same subjects by thick blood film examined 7 days later at a malaria clinic showed 578 falciparum, and 349 vivax and mixed infection (F+V) 41. The technology proved highly effective in detecting falciparum malaria at the peripheral levels where access to malaria laboratory services are difficult, thus allowing immediate administration of a complete course of treatment in the absence of a microscopic examination.

  13. Probable chloroquine-resistant Plasmodium falciparum malaria from Mozambique A case report.

    PubMed

    Pillay, N; Bhoola, R L

    1975-08-16

    A female patient with Plasmodium falciparum malaria apparently resistant to chloroquine is descirbed. She had recently returned from Mozambique, which may prove to be a new endemic are with resistant strains. The infection was successfully treated with quinine.

  14. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands

    PubMed Central

    2013-01-01

    Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646

  15. Placental Plasmodium falciparum malaria infection: Operational accuracy of HRP2 rapid diagnostic tests in a malaria endemic setting

    PubMed Central

    2011-01-01

    Background Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative. Methods HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental Plasmodium falciparum malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques. Results Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral P. falciparum malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental P. falciparum infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's X 2> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's X 2< 3.84). Presence of malaria in pregnancy and active placental malaria infection were 38% and 12% respectively. Placental infections were associated with poor pregnancy outcome [pre

  16. Epidemic Distribution and Variation of Plasmodium falciparum and Plasmodium vivax Malaria in Hainan, China during 1995–2008

    PubMed Central

    Xiao, Dan; Long, Yong; Wang, Shanqing; Wu, Kejian; Xu, Dezhong; Li, Haitao; Wang, Guangze; Yan, Yongping

    2012-01-01

    Hainan Province is the main area threatened by malaria in China. However, the epidemiologic patterns of malaria in this region are not yet defined. In this study, we determined the spatio-temporal distribution and variation of Plasmodium falciparum and Plasmodium vivax malaria in Hainan during 1995–2008 by using wavelet and cluster quantitative approaches. The results indicated a decreasing secular trend and obvious seasonal fluctuation of malaria in Hainan. In addition, the characteristic annual peak of malaria could not be detected after 2005. The southcentral region of Hainan has remained an area of relatively high malaria risk, but the incidence of P. falciparum malaria increased significantly in the southeast and southwest regions during 2002–2008. These findings identify epidemic patterns of malaria in Hainan, and are applicable for designing an effective and dynamic public health campaign to combat malaria in this region. PMID:22869636

  17. Plasmodium falciparum cerebral malaria complicated by disseminated intravascular coagulation and symmetrical peripheral gangrene: case report and review.

    PubMed

    Liechti, M E; Zumsteg, V; Hatz, C F R; Herren, T

    2003-09-01

    The case of a 56-year-old female tourist who survived cerebral Plasmodium falciparum malaria with disseminated intravascular coagulation and symmetrical peripheral gangrene, ultimately requiring amputation of her left-sided fingertips and toes, is reported. While symmetrical peripheral gangrene has been described rarely in Asian, African, and American patients with Plasmodium falciparum malaria and disseminated intravascular coagulation, no such case has been reported in travelers returning from endemic areas.

  18. Quinine Treatment Selects the pfnhe–1 ms4760–1 Polymorphism in Malian Patients with Falciparum Malaria

    PubMed Central

    Kone, Aminatou; Mu, Jianbing; Maiga, Hamma; Beavogui, Abdoul H.; Yattara, Omar; Sagara, Issaka; Tekete, Mamadou M.; Traore, Oumar B.; Dara, Antoine; Dama, Souleymane; Diallo, Nouhoum; Kodio, Aly; Traoré, Aliou; Björkman, Anders; Gil, Jose P.; Doumbo, Ogobara K.; Wellems, Thomas E.; Djimde, Abdoulaye A.

    2013-01-01

    Background. The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium–hydrogen exchanger (pfnhe–1) on chromosome 13. Methods. We conducted prospective quinine efficacy studies in 2 villages, Kollé and Faladié, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe–1 ms4760–1 among parasites before versus after quinine treatment was determined by direct sequencing. Results. Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760–1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine–pyrimethamine study, the prevalence of ms4760–1 was similar before and after treatment. Conclusions. This study supports a role for pfnhe–1 in decreased susceptibility of P. falciparum to quinine in the field. PMID:23162138

  19. Influence of host factors and parasite biomass on the severity of imported Plasmodium falciparum malaria

    PubMed Central

    Kendjo, Eric; Augé-Courtoi, Claire; Cojean, Sandrine; Clain, Jérôme; Houzé, Pascal; Thellier, Marc; Hubert, Veronique; Deloron, Philippe; Houzé, Sandrine

    2017-01-01

    Objectives Imported malaria in France is characterized by various clinical manifestations observed in a heterogeneous population of patients such as travelers/expatriates and African migrants. In this population, host factors and parasite biomass associated with severe imported malaria are poorly known. Methods From data collected by the Centre National de Référence du Paludisme, we identified epidemiological, demographic and biological features including parasite biomass and anti-plasmodial antibody levels (negative, positive and strongly positive serology) associated with different disease severity groups (very severe, moderately severe, and uncomplicated malaria) in 3 epidemiological groups (travelers/expatriates, first- and second-generation migrants). Results Age, ethnicity, absence of prior infection with P. falciparum, antibody levels, plasma PfHRP2 levels, total and circulating parasite biomass were related to severe malaria onset. Sequestered parasite biomass tended to be increased in very severe malaria, and was strongly correlated to the antibody level of the host. Conclusions Prior exposure to P. falciparum is associated with high anti-plasmodial antibody levels which influence clinical presentation of imported malaria and its correlated circulating and sequestered parasite burden. PMID:28410415

  20. Field evaluation of a PfHRP-2/pLDH rapid diagnostic test and light microscopy for diagnosis and screening of falciparum malaria during the peak seasonal transmission in an endemic area in Yemen.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Ali, Arwa A; Cheong, Fei-Wen; Tawfek, Rehab; Mahmud, Rohela

    2016-01-28

    Malaria is a public health threat in Yemen, with 149,451 cases being reported in 2013. Of these, Plasmodium falciparum represents 99%. Prompt diagnosis by light microscopy (LM) and rapid diagnostic tests (RTDs) is a key element in the national strategy of malaria control. The heterogeneous epidemiology of malaria in the country necessitates the field evaluation of the current diagnostic strategies, especially RDTs. Thus, the present study aimed to evaluate LM and an RDT, combining both P. falciparum histidine-rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH), for falciparum malaria diagnosis and survey in a malaria-endemic area during the transmission season against nested polymerase chain reaction (PCR) as the reference method. A household-based, cross-sectional malaria survey was conducted in Mawza District, a malaria-endemic area in Taiz governorate. A total of 488 participants were screened using LM and PfHRP-2/pLDH RDT. Positive samples (160) and randomly selected negative samples (52) by both RDT and LM were further analysed using 18S rRNA-based nested PCR. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RDT were 96.0% (95% confidence interval (CI): 90.9-98.3), 56.0% (95% CI: 44.7-66.8), 76.3% (95% CI: 69.0-82.3), and 90.4% (95% CI: 78.8-96.8), respectively. On the other hand, LM showed sensitivity of 37.6% (95% CI: 29.6-46.3), specificity of 97.6% (95% CI: 91.7-99.7), PPV of 95.9% (95% CI: 86.3-98.9), and NPV of 51.3% (95% CI: 43.2-59.2). The sensitivity of LM dropped to 8.5% for detecting asymptomatic malaria. Malaria prevalence was 32.8% (32.1 and 37.5% for ≥10 and <10 years, respectively) with the RDT compared with 10.7% (10.8 and 9.4% for age groups of ≥10 and <10 years, respectively) with LM. Among asymptomatic malaria individuals, LM and RDT-based prevalence rates were 1.6 and 25.6%, respectively. However, rates of 88.2 and 94.1% of infection with P. falciparum were found

  1. Neopterin and procalcitonin are suitable biomarkers for exclusion of severe Plasmodium falciparum disease at the initial clinical assessment of travellers with imported malaria.

    PubMed

    te Witt, René; van Wolfswinkel, Marlies E; Petit, Pieter L; van Hellemond, Jaap J; Koelewijn, Rob; van Belkum, Alex; van Genderen, Perry J J

    2010-09-14

    Most clinicians in developed, non-malaria endemic countries have limited or no experience in making clinical assessments of malaria disease severity and subsequent decisions regarding the need for parenteral therapy or high-level monitoring in febrile patients with imported malaria. In the present study, the diagnostic accuracy of plasma soluble Triggering Receptor Expressed on Myeloid cells 1 (TREM-1), neopterin and procalcitonin levels as biomarkers for severe Plasmodium falciparum disease was evaluated in 104 travellers with imported malaria (26 patients with non-P. falciparum malaria, 64 patients with uncomplicated P. falciparum malaria and 14 patients with severe P. falciparum malaria). TREM-1, neopterin and procalcitonin were determined in serum using commercially available ELISA or EIA tests. The diagnostic performance of these biomarkers for severe disease was compared with plasma lactate, a well-validated parameter for disease severity in patients with malaria, as reference. Severe malaria was defined according to the modified WHO criteria. No significant differences in TREM-1 levels were detected between the different patient groups. Patients with severe P. falciparum malaria had significantly higher neopterin and procalcitonin levels on admission when compared to patients with uncomplicated P. falciparum malaria or non-P. falciparum malaria. Receiver Operating Characteristic (ROC) curve analysis showed that neopterin had the highest Area-Under-the-ROC curve (AUROC 0.85) compared with plasma lactate (AUROC 0.80) and procalcitonin (AUROC 0.78). At a cut-off point of 10.0 ng/ml, neopterin had a positive and negative predictive value of 0.38 and 0.98 whereas procalcitonin, at a cut-off point of 0.9 ng/ml, had a positive and negative predictive value of 0.30 and 1.00. Although the diagnostic value of neopterin and procalcitonin is limited, the high negative predictive value of both neopterin and procalcitonin may be helpful for a rapid exclusion of severe

  2. To report a case of unilateral proliferative retinopathy following noncerebral malaria with Plasmodium falciparum in Southern India.

    PubMed

    Verma, Aditya; Krishna, M S

    2015-01-01

    The retinopathy in association with malaria fever described so far includes retinal hemorrhages, vessel changes, retinal discoloration/whitening and papilledema. Malaria retinopathy has been mostly described in severe cases, associated with Plasmodium falciparum, correlating the patho-physiology of retinal and cerebral manifestations. We report an unusual case of proliferative retinopathy as a manifestation of malaria fever, caused by P. falciparum with no cerebral involvement. The patient had features of unilateral retinal vascular occlusion with proliferative changes and vitreous hemorrhage. To the best of our knowledge, such a case has never been reported so far in the literature. This report highlights the possible occurrence of severe proliferative changes associated with malaria fever, which if diagnosed early can prevent possible blindness.

  3. [Construction of Plasmodium falciparum signal peptide peptidase-GFP mutant and its expression analysis in the malaria parasite].

    PubMed

    Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti

    2014-08-01

    To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.

  4. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers.

    PubMed

    Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C

    2006-03-01

    Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.

  5. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  6. Exchange transfusion with red blood cells preserved in adenine clears a child of severe falciparum malaria.

    PubMed

    Boctor, F N; Ali, N M; Choi, Y J; Morse, E E

    1997-01-01

    Falciparum malaria may be associated with significant morbidity and mortality. The degree of mortality and morbidity usually corresponds to the degree of parasitemia. Quinine and other antimalarial drugs are relatively slow acting and not always effective owing to the presence of drug resistance falciparum. Rapid reduction of the number of circulating parasites may be required. Exchange transfusion has been used as a safe and quick approach to decreasing the parasitemia and antimalaria drugs used to eradicate the rest of the Plasmodium. In the present report, a case is described of a child with severe falciparum malaria who was successfully treated with exchange transfusion using the new adenine and mannitol enriched preservative media, Adsol.

  7. Household level spatio-temporal analysis of Plasmodium falciparum and Plasmodium vivax malaria in Ethiopia.

    PubMed

    Seyoum, Dinberu; Yewhalaw, Delenasaw; Duchateau, Luc; Brandt, Patrick; Rosas-Aguirre, Angel; Speybroeck, Niko

    2017-04-20

    The global decline of malaria burden and goals for elimination has led to an increased interest in the fine-scale epidemiology of malaria. Micro-geographic heterogeneity of malaria infection could have implications for designing targeted small-area interventions. Two-year longitudinal cohort study data were used to explore the spatial and spatio-temporal distribution of malaria episodes in 2040 children aged < 10 years in 16 villages near the Gilgel-Gibe hydropower dam in Southwest Ethiopia. All selected households (HHs) were geo-referenced, and children were followed up through weekly house-to-house visits for two consecutive years to identify febrile episodes of P. falciparum and P. vivax infections. After confirming the spatial dependence of malaria episodes with Ripley's K function, SatScan TM was used to identify purely spatial and space-time clusters (hotspots) of annual malaria incidence for 2 years follow-up: year 1 (July 2008-June 2009) and year 2 (July 2009-June 2010). In total, 685 P. falciparum episodes (in 492 HHs) and 385 P. vivax episodes (in 290 HHs) were identified, representing respectively incidence rates of 14.6 (95% CI: 13.4-15.6) and 8.2 (95% CI: 7.3-9.1) per 1000 child-months at risk. In year 1, the most likely (128 HHs with 63 episodes, RR = 2.1) and secondary (15 HHs with 12 episodes, RR = 5.31) clusters of P. vivax incidence were found respectively in southern and north-western villages; while in year 2, the most likely cluster was located only in north-western villages (85 HHs with 16 episodes, RR = 4.4). Instead, most likely spatial clusters of P. falciparum incidence were consistently located in villages south of the dam in both years: year 1 (167 HHs with 81 episodes, RR = 1.8) and year 2 (133 HHs with 67 episodes, RR = 2.2). Space-time clusters in southern villages for P. vivax were found in August-November 2008 in year 1 and between November 2009 and February 2010 in year 2; while for P. falciparum, they

  8. Antibodies to Plasmodium falciparum Antigens Predict a Higher Risk of Malaria But Protection From Symptoms Once Parasitemic

    PubMed Central

    Hubbard, Alan; Njama-Meya, Denise; Narum, David L.; Lanar, David E.; Dutta, Sheetij; Rosenthal, Philip J.; Dorsey, Grant; John, Chandy C.

    2011-01-01

    (See the article by Bejon et al, on pages 9–18, and Bousema et al, on pages 1–3.) Background. Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. Methods. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Results. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Conclusions. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses. PMID:21628654

  9. Prevalence and distribution of human Plasmodium infection in Pakistan

    PubMed Central

    2013-01-01

    Background Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. Methods A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Results Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Conclusions Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high. PMID:23984968

  10. Treatment of acute uncomplicated falciparum malaria with artemether-lumefantrine in nonimmune populations: a safety, efficacy, and pharmacokinetic study.

    PubMed

    Hatz, Christoph; Soto, Jaime; Nothdurft, Hans Dieter; Zoller, Thomas; Weitzel, Thomas; Loutan, Louis; Bricaire, Francois; Gay, Frederick; Burchard, Gerd-Dieter; Andriano, Kim; Lefèvre, Gilbert; De Palacios, Patricia Ibarra; Genton, Blaise

    2008-02-01

    The efficacy and safety of artemether-lumefantrine for the treatment of malaria in nonimmune populations are not well defined. In this study, 165 nonimmune patients from Europe and non-malarious areas of Colombia with acute, uncomplicated falciparum malaria or mixed infection including P. falciparum were treated with the six-dose regimen of artemether-lumefantrine. The parasitologic cure rate at 28 days was 96.0% for the per protocol population (119/124 patients). Median times to parasite clearance and fever clearance were 41.5 and 36.8 hours, respectively. No patient had gametocytes after Day 7. Treatment was well tolerated; most adverse events were mild to moderate and seemed to be related to malaria. There were few serious adverse events, none of which were considered to be drug-related. No significant effects on ECG or laboratory parameters were observed. In conclusion, the six-dose regimen of artemether-lumefantrine was effective and well tolerated in the treatment of acute uncomplicated falciparum malaria in nonimmune patients.

  11. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  12. Plasmodium falciparum malaria in 1st-2nd century CE southern Italy.

    PubMed

    Marciniak, Stephanie; Prowse, Tracy L; Herring, D Ann; Klunk, Jennifer; Kuch, Melanie; Duggan, Ana T; Bondioli, Luca; Holmes, Edward C; Poinar, Hendrik N

    2016-12-05

    The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Association of High Prevalence of Trophozoites in Peripheral Blood with Lower Antibody Response to P. falciparum Infected Erythrocytes among Asymptomatic Children in Sudan.

    PubMed

    Mohamed, Sara N; Hassan, Dina A; El Hussein, Abdelrahim M; Osman, Ihssan M; Ibrahim, Muntasir E; Mohamed, Hiba S; Nour, Bakri Y; Abdulhadi, Nasreldin H

    2016-01-01

    Background. The most prominent variant surface antigens (VSAs) of Plasmodium falciparum are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which serves as a parasite-sequestering ligand to endothelial cells. In this study we have examined the antibody reactivity of autologous plasma from symptomatic and asymptomatic malaria infected children against the infected erythrocytes' surface antigens using flow cytometry. Methods. Ethidium-bromide-labelled erythrocytic mature forms of P. falciparum parasites obtained from symptomatic and asymptomatic children were sequentially incubated with autologous plasma and fluorescein isothiocyanate-conjugated (FITC) antihuman IgG. Plasma antibody reactivity was detected by flow cytometry. Results. Asymptomatic children had more prevalence of trophozoites in peripheral blood (66%) compared to symptomatic children (16%), p = 0.002. The mean percentage of infected RBCs reacting with autologous sera was 89.78 among symptomatic children compared to 79.62 among asymptomatic children (p = 0.09). Moreover, the mean fluorescence intensity (MFI) in the asymptomatic was significantly higher compared to symptomatic children (p value = 0.040). Conclusion. Variant surface antigens on Plasmodium falciparum infected RBCs from symptomatic malaria children tend to be better recognized by IgG antibodies. This may suggest a role of some IgG antibodies in severity of malaria.

  14. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    PubMed

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  15. Test characteristics of the SD FK80 Plasmodium falciparum/Plasmodium vivax malaria rapid diagnostic test in a non-endemic setting

    PubMed Central

    2009-01-01

    Background The SD FK80 P.f/P.v Malaria Antigen Rapid Test (Standard Diagnostics, Korea) (FK80) is a three-band malaria rapid diagnostic test detecting Plasmodium falciparum histidine-rich protein-2 (HRP-2) and Plasmodium vivax-specific lactate dehydrogenase (Pv-pLDH). The present study assessed its performance in a non-endemic setting. Methods Stored blood samples (n = 416) from international travellers suspected of malaria were used, with microscopy corrected by PCR as the reference method. Samples infected by Plasmodium falciparum (n = 178), Plasmodium vivax (n = 99), Plasmodium ovale (n = 75) and Plasmodium malariae (n = 24) were included, as well as 40 malaria negative samples. Results Overall sensitivities for the diagnosis of P. falciparum and P. vivax were 91.6% (95% confidence interval (CI): 86.2% - 95.0%) and 75.8% (65.9% - 83.6%). For P. falciparum, sensitivity at parasite densities ≥ 100/μl was 94.6% (88.8% - 97.6%); for P. vivax, sensitivity at parasite densities ≥ 500/μl was 86.8% (75.4% - 93.4%). Four P. falciparum samples showed a Pv-pLDH line, three of them had parasite densities exceeding 50.000/μl. Two P. vivax samples, one P. ovale and one P. malariae sample showed a HRP-2 line. For the HRP-2 and Pv-pLDH lines, respectively 81.4% (136/167) and 55.8% (43/77) of the true positive results were read as medium or strong line intensities. The FK80 showed good reproducibility and reliability for test results and line intensities (kappa values for both exceeding 0.80). Conclusion The FK80 test performed satisfactorily in diagnosing P. falciparum and P. vivax infections in a non-endemic setting. PMID:19930609

  16. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria

    PubMed Central

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau; Lavstsen, Thomas; Aide, Pedro; Jiménez, Alfons; Turner, Louise; Gupta, Himanshu; De Las Salas, Briegel; Mandomando, Inacio; Wang, Christian W.; Petersen, Jens E. V.; Muñoz, Jose; Gascón, Joaquim; Macete, Eusebio; Alonso, Pedro L.; Chitnis, Chetan E.

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction. PMID:27835682

  17. Genetic Diversity of Plasmodium falciparum Merozoite Surface Protein-1 Block 2 in Sites of Contrasting Altitudes and Malaria Endemicities in the Mount Cameroon Region

    PubMed Central

    Wanji, Samuel; Kengne-Ouafo, Arnaud J.; Joan Eyong, Ebanga E.; Kimbi, Helen K.; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L.; Nana-Djeunga, Hugues C.; Bourguinat, Catherine; Sofeu-Feugaing, David D.; Charvet, Claude L.

    2012-01-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein–enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction–based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms. PMID:22556072

  18. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 block 2 in sites of contrasting altitudes and malaria endemicities in the Mount Cameroon region.

    PubMed

    Wanji, Samuel; Kengne-Ouafo, Arnaud J; Eyong, Ebanga E Joan; Kimbi, Helen K; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L; Nana-Djeunga, Hugues C; Bourguinat, Catherine; Sofeu-Feugaing, David D; Charvet, Claude L

    2012-05-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein-enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction-based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms.

  19. Hyperparasitaemia during clinical malaria episodes in infants aged 0-24 months and its association with in utero exposure to Plasmodium falciparum.

    PubMed

    Sylvester, Boniphace; Gasarasi, Dinah B; Aboud, Said; Tarimo, Donath; Massawe, Siriel; Mpembeni, Rose; Swedberg, Gote

    2018-04-04

    Existing information has shown that infants who are prenatally exposed to P. falciparum are susceptible to subsequent malaria infections. However, the effect of prenatal exposure to P. falciparum on parasite density during clinical malaria episodes has not been fully elucidated. This study is a component of a prospective cohort study for which initial results have been published. This component was designed to determine the effect of prenatal exposure to P. falciparum on parasite density during clinical malaria episodes in the first 24 months of life. A total of 215 infants were involved and monitored for clinical malaria episodes defined by fever (≥ 37 °C) and parasitaemia. The geometric mean parasite counts between exposed and unexposed infants were compared using independent samples t test. The effect of in utero exposure to P. falciparum on parasite density was assessed using binary logistic regression. The geometric mean parasite count per µl of blood during clinical malaria episodes in exposed infants was 24,889 (95% CI 18,286-31,490) while in unexposed infants it was 14,035 (95% CI 12,111-15,960), P < 0.05. Prenatal exposure to P. falciparum was associated with hyperparasitaemia during clinical malaria episodes (OR 7.04, 95% CI 2.31-21.74), while other factors were not significantly associated (P > 0.05).

  20. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria

    PubMed Central

    Plewes, Katherine; Maude, Richard J.; Hanson, Josh; Herdman, M. Trent; Leopold, Stije J.; Ngernseng, Thatsanun; Charunwatthana, Prakaykaew; Phu, Nguyen Hoan; Ghose, Aniruddha; Hasan, M. Mahtab Uddin; Fanello, Caterina I.; Faiz, Md Abul; Hien, Tran Tinh; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.

    2017-01-01

    Background Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. Methods Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African ‘AQUAMAT’ trial comparing artesunate and quinine (children), and the Vietnamese ‘AQ’ study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. Results Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the ‘AQUAMAT’ study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. Conclusions The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid

  1. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria.

    PubMed

    Jeeyapant, Atthanee; Kingston, Hugh W; Plewes, Katherine; Maude, Richard J; Hanson, Josh; Herdman, M Trent; Leopold, Stije J; Ngernseng, Thatsanun; Charunwatthana, Prakaykaew; Phu, Nguyen Hoan; Ghose, Aniruddha; Hasan, M Mahtab Uddin; Fanello, Caterina I; Faiz, Md Abul; Hien, Tran Tinh; Day, Nicholas P J; White, Nicholas J; Dondorp, Arjen M

    2017-01-01

    Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African 'AQUAMAT' trial comparing artesunate and quinine (children), and the Vietnamese 'AQ' study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the 'AQUAMAT' study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid surrogate endpoints for mortality.

  2. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules

    PubMed Central

    2018-01-01

    ABSTRACT The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress or host invasion, providing hitherto unavailable insights into the possible mechanisms affected. First, the Malaria Box library was screened against tachyzoite stage T. gondii and the half-maximal effective concentrations (EC50s) of molecules showing ≥80% growth inhibition at 10 µM were determined. Comparison of the EC50s for T. gondii and P. falciparum identified a subset of 24 molecules with nanomolar potency against both parasites. Thirty molecules that failed to induce acute growth inhibition in T. gondii tachyzoites in a 2-day assay caused delayed parasite death upon extended exposure, with at least three molecules interfering with apicoplast segregation during daughter cell formation. Using flow cytometry and microscopy-based examinations, we prioritized 26 molecules with the potential to inhibit host cell egress/invasion during asexual developmental stages of P. falciparum. None of the inhibitors affected digestive vacuole integrity, ruling out a mechanism mediated by broadly specific protease inhibitor activity. Interestingly, five of the plasmodial egress inhibitors inhibited ionophore-induced egress of T. gondii tachyzoites. These findings highlight the advantage of comparative and targeted phenotypic screens in related species as a means to identify lead molecules with a conserved mode of action. Further work on target identification and mechanism analysis will facilitate the development of antiparasitic compounds with cross-species efficacy. IMPORTANCE The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum

  3. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure.

    PubMed

    Kessler, Anne; Campo, Joseph J; Harawa, Visopo; Mandala, Wilson L; Rogerson, Stephen J; Mowrey, Wenzhu B; Seydel, Karl B; Kim, Kami

    2018-04-25

    Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of "virulent" PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including Pf

  4. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study.

    PubMed

    Douglas, Nicholas M; Lampah, Daniel A; Kenangalem, Enny; Simpson, Julie A; Poespoprodjo, Jeanne R; Sugiarto, Paulus; Anstey, Nicholas M; Price, Ric N

    2013-12-01

    The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81-9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16-9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44-9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49-9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99-3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00-2.23), 1.87 (95% CI 1.74-2.01), and 2.18 (95% CI 1.76-2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%-13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%-16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17-6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in

  5. Procalcitonin as a biomarker for severe Plasmodium falciparum disease: a critical appraisal of a semi-quantitative point-of-care test in a cohort of travellers with imported malaria.

    PubMed

    Hesselink, Dennis A; Burgerhart, Jan-Steven; Bosmans-Timmerarends, Hanna; Petit, Pieter; van Genderen, Perry J J

    2009-09-01

    Imported malaria occurs as a relatively rare event in developed countries. As a consequence, most clinicians have little experience in making clinical assessments of disease severity and decisions regarding the need for parenteral therapy or high-level monitoring. In this study, the diagnostic accuracy of procalcitonin (PCT) for severe Plasmodium falciparum disease was assessed in a cohort of 100 consecutive travellers with various species of imported malaria. In all patients, PCT was measured on admission with a semi-quantitative 'point-of-care' test. Patients with severe P. falciparum malaria had significantly higher median PCT levels on admission as compared with patients with uncomplicated P. falciparum disease. In addition, PCT levels in patients with non-falciparum malaria were also higher compared with patients with non-severe falciparum malaria but lower compared with severe P. falciparum malaria. At a cut-off point of 10 ng/mL, PCT had a sensitivity of 0,67 and a specificity of 0,94 for severe falciparum disease. However, at lower cut-off points the specificity and positive predictive value were rather poor although the sensitivity and negative predictive value remained high. Potential drawbacks in the interpretation of elevated PCT levels on admission may be caused by infections with non-falciparum species and by concomitant bacterial infections. Semi-quantitative determination of PCT on admission is of limited use in the initial clinical assessment of disease severity in travellers with imported malaria, especially in settings with limited experience with the treatment of malaria.

  6. High prevalence of malaria in a non-endemic setting: comparison of diagnostic tools and patient outcome during a four-year survey (2013-2017).

    PubMed

    Calderaro, Adriana; Piccolo, Giovanna; Montecchini, Sara; Buttrini, Mirko; Rossi, Sabina; Dell'Anna, Maria Loretana; De Remigis, Valeria; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2018-02-05

    Malaria is no longer endemic in Italy since 1970 when the World Health Organization declared Italy malaria-free, but it is now the most commonly imported disease. The aim of the study was to analyse the trend of imported malaria cases in Parma, Italy, during January 2013-June 2017, reporting also the treatment and the outcome of cases, exploring the comparison of the three diagnostic tests used for malaria diagnosis: microscopy, immunochromatographic assay (ICT) (BinaxNOW ® ) and Real-time PCR assays detecting Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium knowlesi. Of the 288 patients with suspected malaria, 87 were positive by microscopy: 73 P. falciparum, 2 P. vivax, 8 P. ovale, 1 P. vivax/P. ovale, 1 P. malariae and 2 Plasmodium sp. All samples were positive by ICT except 6. Plasmodial DNA was revealed in the 87 cases and in 2 additional cases showing P. falciparum-specific bands by ICT, as follows: 75 P. falciparum, 2 P. vivax, 6 P. ovale curtisi, 3 P. ovale wallikeri, 1 P. malariae, and 2 mixed infections. 72 patients were foreigners and 17 Italians travelling for tourism or business. The majority of these patients presented with fever at blood collection and did not have chemoprophylaxis. No fatal cases were observed and the drug mostly used was quinine observing a negative blood smear or a parasitaemia < 0.001% after 48-72 h' therapy. The study shows an update and a thorough analysis of imported malaria cases in the area of Parma during 4.5 years from the point of view of the total case management, clinical and diagnostic. The prevalence of malaria in such area in the considered period was especially due to immigrants mostly from Africa. Molecular methods were more sensitive and specific than microscopy and ICT, both detecting additional cases of P. falciparum malaria missed by microscopy and correctly identifying the Plasmodium species of medical interest. The data

  7. Non-falciparum malaria imported mainly from Africa: a review from a Portuguese hospital.

    PubMed

    Ruas, Rogério; Pinto, André; Nuak, João; Sarmento, António; Abreu, Cândida

    2017-07-25

    Non-falciparum malaria (NFM) has been reported to be responsible for around 25% of imported malaria cases in Europe but is often neglected due to its less severe clinical course when compared to Plasmodium falciparum. Differentiation between species is however crucial for a correct approach. The objective of this study is to report the cases of this often missed aetiology of malaria in a tertiary hospital in Portugal. Data were retrospectively analysed from patients admitted from January 2006 to August 2016 with a NFM diagnosis based on microscopy, rapid diagnostic tests (RDT) (BinaxNow ® ) and/or PCR. Epidemiologic and clinical aspects were reviewed. A total of 19 NFM cases were diagnosed, corresponding to 8.4% of the total 225 cases of malaria. Seventeen (89%) were male with a median age of 41 years. All but one case were imported from sub-Saharan Africa, with 12 (63%) of the cases returned from Angola. Microscopy was positive for all patients and correctly identified the species in 12 (63%) patients. BinaxNOW ® was performed in all patients and it was positive in 11 cases, showing a sensitivity of 58%. PCR was performed in nine patients and was positive in eight of them, being responsible for the identification of the species in four cases. Plasmodium malariae accounted for 37% (n = 7) of the cases, Plasmodium ovale for 32% (n = 6) and Plasmodium vivax for 17% (n = 3). In three (16%) patients, morphology was suggestive of P. vivax or P. ovale, but precise species identification was not possible. Regarding presentation, fever was the most reported symptom, and the most frequent laboratory finding was thrombocytopaenia. Quinine-doxycycline was prescribed in eleven patients (58%), chloroquine in six cases (32%) and artemether-lumefantrine in two (11%). All of the patients showed clinical improvement. NFM remains an important cause of imported malaria in patients from sub-Saharan Africa, alone or as mixed infection with P. falciparum. Access to PCR

  8. Changes in cytokine production associated with acquired immunity to Plasmodium falciparum malaria

    PubMed Central

    Rhee, M S M; Akanmori, B D; Waterfall, M; Riley, E M

    2001-01-01

    Individuals living in malaria-endemic areas eventually develop clinical immunity to Plasmodium falciparum. That is, they are able to limit blood parasite densities to extremely low levels and fail to show symptoms of infection. As the clinical symptoms of malaria infection are mediated in part by pro-inflammatory cytokines it is not clear whether the acquisition of clinical immunity is due simply to the development of antiparasitic mechanisms or whether the ability to regulate inflammatory cytokine production is also involved. We hypothesize that there is a correlation between risk of developing clinical malaria and the tendency to produce high levels of proinflammatory cytokines in response to malaria infection. In order to test this hypothesis, we have compared the ability of peripheral blood mononuclear cells from malaria-naive and malaria-exposed adult donors to proliferate and to secrete IFN-γ in response to P. falciparum schizont extract (PfSE). In order to determine how PfSE-induced IFN-γ production is regulated, we have also measured production of IL-12p40 and IL-10 from PfSE-stimulated PBMC and investigated the role of neutralizing antibody to IL-12 in modulating IFN-γ production. We find that cells from naive donors produce moderate amounts of IFN-γ in response to PfSE and that IFN-γ production is strongly IL-12 dependent. Cells from malaria-exposed donors living in an area of low malaria endemicity produce much higher levels of IFN-γ and this response is also at least partially IL-12 dependent. In complete contrast, cells from donors living in an area of very high endemicity produce minimal amounts of IFN-γ. No significant differences were detected between the groups in IL-10 production, suggesting that this cytokine does not play a major role in regulating malaria-induced IFN-γ production. The data from this study thus strongly support the hypothesis that down-regulation of inflammatory cytokine production may be a component of acquired clinical

  9. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    PubMed

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  10. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study.

    PubMed

    Midzi, Nicholas; Mtapuri-Zinyowera, Sekesai; Sangweme, Davison; Paul, Noah H; Makware, Godfrey; Mapingure, Munyaradzi P; Brouwer, Kimberly C; Mudzori, James; Hlerema, Gibson; Chadukura, Vivian; Mutapi, Francisca; Kumar, Nirbhay; Mduluza, Takafira

    2011-06-22

    The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. A cohort of primary schoolchildren (5-17 years) received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p < 0.001, p < 0.001, p < 0.001, p < 0.001 respectively). More importantly, the prevalence of STH + schistosomes, P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months follow up survey to 10

  11. Malaria epidemiology in central Myanmar: identification of a multi-species asymptomatic reservoir of infection.

    PubMed

    Ghinai, Isaac; Cook, Jackie; Hla, Teddy Tun Win; Htet, Hein Myat Thu; Hall, Tom; Lubis, Inke Nd; Ghinai, Rosanna; Hesketh, Therese; Naung, Ye; Lwin, Mya Mya; Latt, Tint Swe; Heymann, David L; Sutherland, Colin J; Drakeley, Chris; Field, Nigel

    2017-01-05

    The spread of artemisinin-resistant Plasmodium falciparum is a global health concern. Myanmar stands at the frontier of artemisinin-resistant P. falciparum. Myanmar also has the highest reported malaria burden in Southeast Asia; it is integral in the World Health Organization's plan to eliminate malaria in Southeast Asia, yet few epidemiological data exist for the general population in Myanmar. This cross-sectional, probability household survey was conducted in Phyu township, Bago Region (central Myanmar), during the wet season of 2013. Interviewers collected clinical and behavioural data, recorded tympanic temperature and obtained dried blood spots for malaria PCR and serology. Plasmodium falciparum positive samples were tested for genetic mutations in the K13 region that may confer artemisinin resistance. Estimated type-specific malaria PCR prevalence and seroprevalence were calculated, with regression analysis to identify risk factors for seropositivity to P. falciparum. Data were weighted to account for unequal selection probabilities. 1638 participants were sampled (500 households). Weighted PCR prevalence was low (n = 41, 2.5%) and most cases were afebrile (93%). Plasmodium falciparum was the most common species (n = 19. 1.1%) and five (26%) P. falciparum samples harboured K13 mutations. Plasmodium knowlesi was detected in 1.0% (n = 16) and Plasmodium vivax was detected in 0.4% (n = 7). Seroprevalence was 9.4% for P. falciparum and 3.1% for P. vivax. Seroconversion to P. falciparum was 0.003/year in the whole population, but 16-fold higher in men over 23 years old (LR test p = 0.016). This is the first population-based seroprevalence study from central Myanmar. Low overall prevalence was discovered. However, these data suggest endemic transmission continues, probably associated with behavioural risk factors amongst working-age men. Genetic mutations associated with P. falciparum artemisinin resistance, the presence of P. knowlesi and discrete

  12. Prevalence and intensity of soil-transmitted helminthiasis, prevalence of malaria and nutritional status of school going children in honduras.

    PubMed

    Mejia Torres, Rosa Elena; Franco Garcia, Dora Nelly; Fontecha Sandoval, Gustavo Adolfo; Hernandez Santana, Adriana; Singh, Prabhjot; Mancero Bucheli, Sandra Tamara; Saboya, Martha; Paz, Mirian Yolanda

    2014-10-01

    Many small studies have been done in Honduras estimating soil-transmitted helminthiasis (STH) prevalence but a country-wide study was last done in 2005. The country has the highest burden of malaria among all Central American countries. The present study was done to estimate country-wide STH prevalence and intensity, malaria prevalence and nutritional status in school going children. A cross-sectional study was conducted following PAHO/WHO guidelines to select a sample of school going children of 3rd to 5th grades, representative of ecological regions in the country. A survey questionnaire was filled; anthropometric measurements, stool sample for STH and blood sample for malaria were taken. Kato-Katz method was used for STH prevalence and intensity and rapid diagnostic tests, microscopy, and polymerase chain reaction (PCR) were used for malaria parasite detection. A total of 2554 students were studied of which 43.5% had one or more STH. Trichuriasis was the most prevalent (34%) followed by ascariasis (22.3%) and hookworm (0.9%). Ecological regions II (59.7%) and VI (55.6%) in the north had the highest STH prevalence rates while IV had the lowest (10.6%). Prevalence of one or more high intensity STH was low (1.6%). Plasmodium vivax was detected by PCR in only 5 students (0.2%), all of which belonged to the same municipality; no P. falciparum infection was detected. The majority of children (83%) had normal body mass index for their respective age but a significant proportion were overweight (10.42%) and obese (4.35%). Biannual deworming campaigns would be necessary in ecological regions II and VI, where STH prevalence is >50%. High prevalence of obesity in school going children is a worrying trend and portends of future increase in obesity related diseases. Malaria prevalence, both symptomatic and asymptomatic, was low and provides evidence for Honduras to embark on elimination of the disease.

  13. Prevalence and Intensity of Soil-Transmitted Helminthiasis, Prevalence of Malaria and Nutritional Status of School Going Children in Honduras

    PubMed Central

    Mejia Torres, Rosa Elena; Franco Garcia, Dora Nelly; Fontecha Sandoval, Gustavo Adolfo; Hernandez Santana, Adriana; Singh, Prabhjot; Mancero Bucheli, Sandra Tamara; Saboya, Martha; Paz, Mirian Yolanda

    2014-01-01

    Background Many small studies have been done in Honduras estimating soil-transmitted helminthiasis (STH) prevalence but a country-wide study was last done in 2005. The country has the highest burden of malaria among all Central American countries. The present study was done to estimate country-wide STH prevalence and intensity, malaria prevalence and nutritional status in school going children. Methods and Findings A cross-sectional study was conducted following PAHO/WHO guidelines to select a sample of school going children of 3rd to 5th grades, representative of ecological regions in the country. A survey questionnaire was filled; anthropometric measurements, stool sample for STH and blood sample for malaria were taken. Kato-Katz method was used for STH prevalence and intensity and rapid diagnostic tests, microscopy, and polymerase chain reaction (PCR) were used for malaria parasite detection. A total of 2554 students were studied of which 43.5% had one or more STH. Trichuriasis was the most prevalent (34%) followed by ascariasis (22.3%) and hookworm (0.9%). Ecological regions II (59.7%) and VI (55.6%) in the north had the highest STH prevalence rates while IV had the lowest (10.6%). Prevalence of one or more high intensity STH was low (1.6%). Plasmodium vivax was detected by PCR in only 5 students (0.2%), all of which belonged to the same municipality; no P. falciparum infection was detected. The majority of children (83%) had normal body mass index for their respective age but a significant proportion were overweight (10.42%) and obese (4.35%). Conclusions Biannual deworming campaigns would be necessary in ecological regions II and VI, where STH prevalence is >50%. High prevalence of obesity in school going children is a worrying trend and portends of future increase in obesity related diseases. Malaria prevalence, both symptomatic and asymptomatic, was low and provides evidence for Honduras to embark on elimination of the disease. PMID:25330010

  14. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Performance of "VIKIA Malaria Ag Pf/Pan" (IMACCESS®), a new malaria rapid diagnostic test for detection of symptomatic malaria infections.

    PubMed

    Chou, Monidarin; Kim, Saorin; Khim, Nimol; Chy, Sophy; Sum, Sarorn; Dourng, Dany; Canier, Lydie; Nguon, Chea; Ménard, Didier

    2012-08-24

    Recently, IMACCESS® developed a new malaria test (VIKIA Malaria Ag Pf/Pan™), based on the detection of falciparum malaria (HRP-2) and non-falciparum malaria (aldolase). The performance of this new malaria rapid diagnostic test (RDT) was assessed using 1,000 febrile patients seeking malaria treatment in four health centres in Cambodia from August to December 2011. The results of the VIKIA Malaria Ag Pf/Pan were compared with those obtained by microscopy, the CareStart Malaria™ RDT (AccessBio®) which is currently used in Cambodia, and real-time PCR (as "gold standard"). The best performances of the VIKIA Malaria Ag Pf/Pan™ test for detection of both Plasmodium falciparum and non-P. falciparum were with 20-30 min reading times (sensitivity of 93.4% for P. falciparum and 82.8% for non-P. falciparum and specificity of 98.6% for P. falciparum and 98.9% for non-P. falciparum) and were similar to those for the CareStart Malaria™ test. This new RDT performs similarly well as other commercially available tests (especially the CareStart Malaria™ test, used as comparator), and conforms to the World Health Organization's recommendations for RDT performance. It is a good alternative tool for the diagnosis of malaria in endemic areas.

  16. Lung uptake of /sup 99m/Tc--sulfur colloid in falciparum malaria: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziessman, H.A.

    Increased lung uptake of /sup 99m/Tc-sulfur colloid was seen during liver scanning in a patient with falciparum malaria. This finding was due to the enhanced activity of the phagocytic cells of the reticuloendothelial system in the liver, spleen, and lung found in human and experimental malaria. Similar findings in other clinical situations and the relevant literature are reviewed.

  17. Therapeutic efficacy and safety of dihydroartemisinin-piperaquine versus artesunate-mefloquine in uncomplicated Plasmodium falciparum malaria in India

    PubMed Central

    2012-01-01

    Background Resistance in Plasmodium falciparum to commonly used anti-malarial drugs, especially chloroquine, is being increasingly documented in India. By 2007, the first-line treatment for uncomplicated malaria has been revised to recommend artemisinin-based combination therapy (ACT) for all confirmed P. falciparum cases. Objective The objective of this study was to compare the efficacy, safety and tolerability between dihydroartemisinin-piperaquine (DP) and artesunate plus mefloquine (A + M) drug combinations in the treatment of uncomplicated P. falciparum malaria in India. Methods Between 2006 and 2007, 150 patients with acute uncomplicated P. falciparum malaria were enrolled, randomized to DP (101) or A + M (49) and followed up for 63 days as part of an open-label, non-inferiority, randomized, phase III multicenter trial in Asia. Results The heterogeneity analysis showed no statistically significant difference between India and the other countries involved in the phase III study, for both the PCR-corrected and uncorrected cure rates. As shown at the whole study level, both forms of ACT were highly efficacious in India. In fact, in the per protocol population, the 63-day cure rates were 100% for A + M and 98.8% for DP. The DP combination exerted a significant post-treatment prophylactic effect, and compared with A + M a significant reduction in the incidence of new infections for DP was observed (respectively 17.1% versus 7.5% of patients experienced new infection within follow up). Parasite and fever clearance was rapid in both treatment arms (median time to parasite clearance of one day for both groups). Both DP and A + M were well tolerated, with the majority of adverse events of mild or moderate severity. The frequencies of individual adverse events were generally similar between treatments, although the incidence of post treatment adverse events was slightly higher in patients who received A + M with respect to those treated with

  18. Evaluation of CareStart™ malaria Pf/Pv combo test for Plasmodium falciparum and Plasmodium vivax malaria diagnosis in Butajira area, south-central Ethiopia.

    PubMed

    Woyessa, Adugna; Deressa, Wakgari; Ali, Ahmed; Lindtjørn, Bernt

    2013-06-27

    Malaria is a major public health problem in Ethiopia. Plasmodium falciparum and Plasmodium vivax co-exist and malaria rapid diagnostic test (RDTs) is vital in rendering parasite-confirmed treatment especially in areas where microscopy from 2008 to 2010 is not available. CareStartTM Malaria Pf/Pv combo test was evaluated compared to microscopy in Butajira area, south-central Ethiopia. This RDT detects histidine-rich protein-2 (HRP2) found in P. falciparum, and Plasmodium enzyme lactate dehydrogenase (pLDH) for diagnosis of P. vivax. The standard for the reporting of diagnostic accuracy studies was complied. Among 2,394 participants enrolled, 10.9% (n=87) were Plasmodium infected (household survey) and 24.5% (n=392) health facility-based using microscopy. In the household surveys, the highest positivity was caused by P. vivax (83.9%, n=73), P. falciparum (15.0%, n=13), and the rest due to mixed infections of both (1.1%, n=1). In health facility, P. vivax caused 78.6% (n=308), P. falciparum caused 20.4% (n=80), and the rest caused by mixed infections 1.0% (n=4). RDT missed 9.1% (n=8) in household and 4.3% (n=17) in health facility-based surveys among Plasmodium positive confirmed by microscopy while 3.3% (n=24) in household and 17.2% (n=208) in health facility-based surveys were detected false positive. RDT showed agreement with microscopy in detecting 79 positives in household surveys (n=796) and 375 positives in health centre survey (n=1,598).RDT performance varied in both survey settings, lowest PPV (64.3%) for Plasmodium and P. falciparum (77.2%) in health centres; and Plasmodium (76.7%) and P. falciparum (87.5%) in household surveys. NPV was low in P. vivax in health centres (77.2%) and household (87.5%) surveys. Seasonally varying RDT precision of as low as 14.3% PPV (Dec. 2009), and 38.5% NPV (Nov. 2008) in health centre surveys; and 40-63.6% PPV was observed in household surveys. But the influence of age and parasite density on RDT performance was not

  19. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.

    PubMed

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-04-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

  20. Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum infections could lead to severe malaria, principally in non-immune individuals as children and travellers from countries exempted of malaria. Severe malaria is often associated with the sequestration of P. falciparum-infected erythrocytes in deep micro-vascular beds via interactions between host endothelial receptors and parasite ligands expressed on the surface of the infected erythrocyte. Although, serological responses from individuals living in endemic areas against proteins expressed at surface of the infected erythrocyte have been largely studied, seldom data are available about the specific targets of antibody response from travellers. Methods In order to characterize antigens recognized by traveller sera, a comparison of IgG immune response against membrane protein extracts from uninfected and P. falciparum-infected red blood cells (iRBC), using immunoblots, was performed between non exposed individuals (n = 31) and briefly exposed individuals (BEI) (n = 38) to malaria transmission. Results Immune profile analysis indicated that eight protein bands from iRBC were significantly detected more frequently in the BEI group. Some of these antigenic proteins were identified by an original immuno-proteomic approach. Conclusion Collectively, these data may be useful to characterize the singular serological immune response against a primary malaria infection in individuals briefly exposed to transmission. PMID:20932351

  1. Major Burden of Severe Anemia from Non-Falciparum Malaria Species in Southern Papua: A Hospital-Based Surveillance Study

    PubMed Central

    Douglas, Nicholas M.; Lampah, Daniel A.; Kenangalem, Enny; Simpson, Julie A.; Poespoprodjo, Jeanne R.; Sugiarto, Paulus; Anstey, Nicholas M.; Price, Ric N.

    2013-01-01

    Background The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Methods and Findings Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81–9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16–9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44–9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49–9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99–3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00–2.23), 1.87 (95% CI 1.74–2.01), and 2.18 (95% CI 1.76–2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%–13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%–16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17–6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for

  2. Application of Serological Tools and Spatial Analysis to Investigate Malaria Transmission Dynamics in Highland Areas of Southwest Uganda

    PubMed Central

    Lynch, Caroline A.; Cook, Jackie; Nanyunja, Sarah; Bruce, Jane; Bhasin, Amit; Drakeley, Chris; Roper, Cally; Pearce, Richard; Rwakimari, John B.; Abeku, Tarekegn A.; Corran, Patrick; Cox, Jonathan

    2016-01-01

    Serological markers, combined with spatial analysis, offer a comparatively more sensitive means by which to measure and detect foci of malaria transmission in highland areas than traditional malariometric indicators. Plasmodium falciparum parasite prevalence, seroprevalence, and seroconversion rate to P. falciparum merozoite surface protein-119 (MSP-119) were measured in a cross-sectional survey to determine differences in transmission between altitudinal strata. Clusters of P. falciparum parasite prevalence and high antibody responses to MSP-119 were detected and compared. Results show that P. falciparum prevalence and seroprevalence generally decreased with increasing altitude. However, transmission was heterogeneous with hotspots of prevalence and/or seroprevalence detected in both highland and highland fringe altitudes, including a serological hotspot at 2,200 m. Results demonstrate that seroprevalence can be used as an additional tool to identify hotspots of malaria transmission that might be difficult to detect using traditional cross-sectional parasite surveys or through vector studies. Our study findings identify ways in which malaria prevention and control can be more effectively targeted in highland or low transmission areas via serological measures. These tools will become increasingly important for countries with an elimination agenda and/or where malaria transmission is becoming patchy and focal, but receptivity to malaria transmission remains high. PMID:27022156

  3. The epidemiology of malaria in adults in a rural area of southern Mozambique.

    PubMed

    Mayor, Alfredo; Aponte, John J; Fogg, Carole; Saúte, Francisco; Greenwood, Brian; Dgedge, Martinho; Menendez, Clara; Alonso, Pedro L

    2007-01-17

    Epidemiological studies of malaria in adults who live in malaria endemic areas are scarce. More attention to the natural history of malaria affecting adults is needed to understand the dynamics of malaria infection and its interaction with the immune system. The present study was undertaken to investigate the clinical, parasitological and haematological status of adults exposed to malaria, and to characterize parasites in these individuals who progressively acquire protective immunity. A cross-sectional survey of 249 adults was conducted in a malaria endemic area of Mozambique. Clinical, parasitological and haematological status of the study population was recorded. Sub-microscopic infections and multiplicity of infections were investigated using polymerase chain reaction (PCR) and restriction fragment length polymorphism of Plasmodium falciparum merozoite surface protein 2 (msp2). Prevalence of P. falciparum infection by microscopy (14%) and PCR (42%) decreased progressively during adulthood, in parallel with an increase in the prevalence of sub-microscopic infections. Anaemia was only related to parasitaemia as detected by PCR. Multiplicity of infection decreased with age and was higher in subjects with high P. falciparum densities, highlighting density-dependent constraints upon the PCR technique. Adults of Manhiça progressively develop non-sterile, protective immunity against P. falciparum malaria. The method of parasite detection has a significant effect on the observed natural history of malaria infections. A more sensitive definition of malaria in adults should be formulated, considering symptoms such as diarrhoea, shivering and headache, combined with the presence of parasitaemia.

  4. The spectrum of retinopathy in adults with Plasmodium falciparum malaria

    PubMed Central

    Maude, Richard J.; Beare, Nicholas A.V.; Sayeed, Abdullah Abu; Chang, Christina C.; Charunwatthana, Prakaykaew; Faiz, M. Abul; Hossain, Amir; Yunus, Emran Bin; Hoque, M. Gofranul; Hasan, Mahtab Uddin; White, Nicholas J.; Day, Nicholas P.J.; Dondorp, Arjen M.

    2009-01-01

    Summary A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P = 0.039), bacterial sepsis (0/5, 0%; P = 0.038) or healthy controls (0/18, 0%; P < 0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P = 0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy. PMID:19344925

  5. The spectrum of retinopathy in adults with Plasmodium falciparum malaria.

    PubMed

    Maude, Richard J; Beare, Nicholas A V; Abu Sayeed, Abdullah; Chang, Christina C; Charunwatthana, Prakaykaew; Faiz, M Abul; Hossain, Amir; Yunus, Emran Bin; Hoque, M Gofranul; Hasan, Mahtab Uddin; White, Nicholas J; Day, Nicholas P J; Dondorp, Arjen M

    2009-07-01

    A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.

  6. Rapid antigen detection tests for malaria diagnosis in severely ill Papua New Guinean children: a comparative study using Bayesian latent class models.

    PubMed

    Manning, Laurens; Laman, Moses; Rosanas-Urgell, Anna; Turlach, Berwin; Aipit, Susan; Bona, Cathy; Warrell, Jonathan; Siba, Peter; Mueller, Ivo; Davis, Timothy M E

    2012-01-01

    Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs) which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax. We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR) results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV) to nPCR (≥96.0%). LM was the least sensitive test (87.4%) and had the lowest NPV (89.7%), but had the highest specificity (99.1%) and positive predictive value (98.9%). For severe falciparum malaria (prevalence 42.9%), the findings were similar. For non-falciparum severe malaria (prevalence 6.9%), no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6%) and had the lowest NPV (96.7%). RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.

  7. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  8. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea.

    PubMed

    Fola, Abebe A; Harrison, G L Abby; Hazairin, Mita Hapsari; Barnadas, Céline; Hetzel, Manuel W; Iga, Jonah; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E

    2017-03-01

    Abstract Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3 , and 758 positive P. falciparum samples were genotyped at Pfmsp2 . The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax . The genetic diversity of P. vivax ( PvMS16 : expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3 : 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum ( Pfmsp2 : 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum . Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax . The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.

  9. Immunoproteomic analysis of Plasmodium falciparum antigens using sera from patients with clinical history of imported malaria

    PubMed Central

    2013-01-01

    Background The malaria caused by Plasmodium falciparum remains a serious public health problem in the world, due largely to the absence of an effective vaccine. There is a lack of information on the structural properties and antigens capable of activating the immunological mechanisms for the induction of protective immunity. Therefore, the objective of this study is to evaluate the serological reactivity of sera from individuals with imported malaria and identify major immunogenic proteins. Methods The study was conducted in 227 individuals with imported malaria and 23 healthy individuals who had never been in areas endemic for malaria. The determination of anti-P. falciparum IgG antibodies was performed by an ELISA validated and optimized for this study. Sera showing higher reactivity to anti-P. falciparum by ELISA were analysed by immunoblotting and immunogenic proteins were identified by mass spectroscopy. Results The results of anti-P. falciparum antibodies research by ELISA indicates 78 positive, 137 negative and 12 indeterminate sera. Analysis of immunoblotting demonstrated a consistent pattern with respect to immunoreactivity of antigens with molecular weights in the range of 40 to 60 kDa. Between 40 and 60 kDa six immunogenic proteins were identified: elongation factor-1 alpha (EF-1α), protein disulphide isomerase (PDI); phosphoglycerate kinase (PGK); 78 kDa glucose-regulated protein homologue (GRP-78); rhoptry-associated protein 2 (RAP-2) and rhoptry-associated protein 3 (RAP-3). Conclusions It was identified immunogenic proteins essential for parasite survival in the host, two of which (RAP-2 and RAP-3) are already described in the literature as proteins that play an important role in the invasion of erythrocytes by extracellular merozoites. PMID:23506095

  10. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  11. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria.

    PubMed

    Krause, Robert G E; Goldring, J P Dean

    2018-01-01

    Plasmodium knowlesi is recognised as the main cause of human malaria in Southeast Asia. The disease is often misdiagnosed as P. falciparum or P. malariae infections by microscopy, and the disease is difficult to eliminate due to its presence in both humans and monkeys. P. knowlesi infections can rapidly cause severe disease and require prompt diagnosis and treatment. No protein biomarker exists for the rapid diagnostic test (RDT) detection of P. knowlesi infections. Plasmodium knowlesi infections can be diagnosed by PCR. Phosphoethanolamine-N-methyltransferase (PMT) is involved in malaria lipid biosynthesis and is not found in the human host. The P. falciparum, P. vivax and P. knowlesi PMT proteins were recombinantly expressed in BL21(DE3) Escherichia coli host cells, affinity purified and used to raise antibodies in chickens. Antibodies against each recombinant PMT protein all detected all three recombinant proteins and the native 29 kDa P. falciparum PMT protein on western blots and in ELISA. Antibodies against a PMT epitope (PLENNQYTDEGVKC) common to all three PMT orthologues detected all three proteins. Antibodies against unique peptides from each orthologue of PMT, PfCEVEHKYLHENKE, PvVYSIKEYNSLKDC, PkLYPTDEYNSLKDC detected only the parent protein in western blots and P. falciparum infected red blood cell lysates or blood lysates spiked with the respective proteins. Similar concentrations of PfPMT and the control, PfLDH, were detected in the same parasite lysate. The recombinant PfPMT protein was detected by a human anti-malaria antibody pool. PMT, like the pan-specific LDH biomarker used in RDT tests, is both soluble, present at comparable concentrations in the parasite and constitutes a promising antimalarial drug target. PMT is absent from the human proteome. PMT has the potential as a biomarker for human malaria and in particular as the first P. knowlesi specific protein with diagnostic potential for the identification of a P. knowlesi infection.

  12. Performance of “VIKIA Malaria Ag Pf/Pan” (IMACCESS®), a new malaria rapid diagnostic test for detection of symptomatic malaria infections

    PubMed Central

    2012-01-01

    Background Recently, IMACCESS® developed a new malaria test (VIKIA Malaria Ag Pf/Pan™), based on the detection of falciparum malaria (HRP-2) and non-falciparum malaria (aldolase). Methods The performance of this new malaria rapid diagnostic test (RDT) was assessed using 1,000 febrile patients seeking malaria treatment in four health centres in Cambodia from August to December 2011. The results of the VIKIA Malaria Ag Pf/Pan were compared with those obtained by microscopy, the CareStart Malaria™ RDT (AccessBio®) which is currently used in Cambodia, and real-time PCR (as “gold standard”). Results The best performances of the VIKIA Malaria Ag Pf/Pan™ test for detection of both Plasmodium falciparum and non-P. falciparum were with 20–30 min reading times (sensitivity of 93.4% for P. falciparum and 82.8% for non-P. falciparum and specificity of 98.6% for P. falciparum and 98.9% for non-P. falciparum) and were similar to those for the CareStart Malaria™ test. Conclusions This new RDT performs similarly well as other commercially available tests (especially the CareStart Malaria™ test, used as comparator), and conforms to the World Health Organization’s recommendations for RDT performance. It is a good alternative tool for the diagnosis of malaria in endemic areas. PMID:22920654

  13. Comparative Study on Antenatal and Perinatal Outcome of Vivax and Falciparum Malaria in a Tertiary Care Hospital of Kolkata, India

    PubMed Central

    Datta, Mousumi; Dasgupta, Shyamal; Banerjee, Kaushik; Choudhury, Subhendu; Sengupta, Sandip Kumar; Das, Prakash

    2017-01-01

    Introduction Malaria occurring in pregnancy is associated with considerable maternal and perinatal morbidity. In India, the problem is compounded by dual parasitological aetiology of Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. falciparum). Aim To compare the outcome of infections by P. vivax and P. falciparum species among pregnant women in a hospital setting. Materials and Methods Pregnant women who tested positive for malaria either by microscopy of peripheral blood smear or ELISA test for double antigen were enrolled in the study. They were followed up till their delivery and discharge from hospital. Demographic, clinical and laboratory data was collected at enrolment, on event of complication and at delivery. Data was analyzed for univariate and multivariate associations. Results There were 64 pregnant women diagnosed with malaria. A total of 76.6% study subjects had vivax infection rest were infected with p. falciparum. Anaemia (84%) was the commonest complication. A total of 60.9% women had pathological placenta. Preterm delivery, low birth weight and Apgar score <7 were the adverse pregnancy outcomes which were more frequent with falciparum infection. There were three perinatal deaths. Multigravidas were at significantly higher risk for low birth weight and low Apgar score of newborn. Infection in later trimester was associated with low Apgar score. Conclusion Both types of malaria cause considerable morbidity in pregnant women. More cases occurred among primigravida but multigravida and later trimester of pregnancy had more severe disease. PMID:28274003

  14. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016.

    PubMed

    Thuy-Nhien, Nguyen; Tuyen, Nguyen Kim; Tong, Nguyen Thanh; Vy, Nguyen Tuong; Thanh, Ngo Viet; Van, Huynh Thuy; Huong-Thu, Pham; Quang, Huynh Hong; Boni, Maciej F; Dolecek, Christiane; Farrar, Jeremy; Thwaites, Guy E; Miotto, Olivo; White, Nicholas J; Hien, Tran Tinh

    2017-04-01

    The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites. Copyright © 2017 Thuy-Nhien et al.

  15. The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum.

    PubMed

    Bryan, Donna; Silva, Nilupa; Rigsby, Peter; Dougall, Thomas; Corran, Patrick; Bowyer, Paul W; Ho, Mei Mei

    2017-08-05

    At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-1 19 , MSP-1 42 , MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross

  16. Transfusion-transmitted malaria in Ghana.

    PubMed

    Owusu-Ofori, Alex K; Betson, Martha; Parry, Christopher M; Stothard, J Russell; Bates, Imelda

    2013-06-01

    In sub-Saharan Africa, the prevalence of malaria parasitemia in blood donors varies from 0.6% to 50%. Although the burden of TTM in malaria-endemic countries is unknown, it is recommended that all donated blood is screened for malaria parasites. This study aimed to establish the incidence of TTM and identify a suitable screening test. Pregnant women, children, and immunocompromised malaria-negative transfusion recipients in a teaching hospital in Ghana were recruited over the course of 1 year. Parasites detected in recipients within 14 days of the transfusion were genotyped and compared to parasites in the transfused blood. The presence of genotypically identical parasites in the recipient and the transfused blood confirmed transfusion-transmitted malaria. Four malaria screening tests were compared to assess their usefulness in the context of African blood banks. Of the 50 patients who received transfusions that were positive for Plasmodium falciparum by polymerase chain reaction (PCR), 7 recipients developed PCR-detectable parasitemia. In only 1 of the 50 recipients (2%) was the parasite identical to that in the transfused blood. The prevalence of P. falciparum malaria in transfused blood was 4.7% (21/445) by microscopy, 13.7% (60/440) by rapid diagnostic test, 18% (78/436) by PCR, and 22.2% (98/442) by enzyme immunoassay. Although malaria parasites are commonly detected in blood donors in malaria-endemic areas, transfusion-transmitted malaria occurs infrequently. Policies recommend screening blood donors for malaria, but none of the commonly used methods is sufficiently sensitive to be used by blood banks in malaria-endemic countries.

  17. Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum.

    PubMed

    Singh, Naveen K; Arya, Sunil K; Estrela, Pedro; Goswami, Pranab

    2018-06-08

    A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (K d = 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests

    PubMed Central

    2013-01-01

    Background An accurate diagnosis is essential for the rapid and appropriate treatment of malaria. The accuracy of the histidine-rich protein 2 (PfHRP2)-based rapid diagnostic test (RDT) Palutop+4® was assessed here. One possible factor contributing to the failure to detect malaria by this test is the diversity of the parasite PfHRP2 antigens. Methods PfHRP2 detection with the Palutop+4® RDT was carried out. The pfhrp2 and pfhrp3 genes were amplified and sequenced from 136 isolates of Plasmodium falciparum that were collected in Dakar, Senegal from 2009 to 2011. The DNA sequences were determined and statistical analyses of the variation observed between these two genes were conducted. The potential impact of PfHRP2 and PfHRP3 sequence variation on malaria diagnosis was examined. Results Seven P. falciparum isolates (5.9% of the total isolates, regardless of the parasitaemia; 10.7% of the isolates with parasitaemia ≤0.005% or ≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT. Low parasite density is not sufficient to explain the PfHRP2 detection failure. Three of these seven samples showed pfhrp2 deletion (2.4%). The pfhrp3 gene was deleted in 12.8%. Of the 122 PfHRP2 sequences, 120 unique sequences were identified. Of the 109 PfHRP3 sequences, 64 unique sequences were identified. Using the Baker’s regression model, at least 7.4% of the P. falciparum isolates in Dakar were likely to be undetected by PfHRP2 at a parasite density of ≤250 parasites/μl (slightly lower than the evaluated prevalence of 10.7%). This predictive prevalence increased significantly between 2009 and 2011 (P = 0.0046). Conclusion In the present work, 10.7% of the isolates with a parasitaemia ≤0.005% (≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT (7.4% by the predictive Baker’model). In addition, all of the parasites with pfhrp2 deletion (2.4% of the total samples) and 2.1% of the parasites with parasitaemia >0.005% and presence of pfhrp2 were

  19. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

    PubMed Central

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-01-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines. PMID:25925176

  20. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study

    PubMed Central

    2011-01-01

    Background The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. Methods A cohort of primary schoolchildren (5-17 years) received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. Results Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p < 0.001, p < 0.001, p < 0.001, p < 0.001 respectively). More importantly, the prevalence of STH + schistosomes, P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months

  1. Epidemiology of malaria in pregnancy in central India.

    PubMed Central

    Singh, N.; Shukla, M. M.; Sharma, V. P.

    1999-01-01

    Analysis of three years of data from a malaria clinic operated by the Indian Council of Medical Research (ICMR) in the Government Medical College Hospital in Jabalpur, central India, showed a high malaria prevalence among pregnant women, which was statistically highly significant (P < 0.0001) compared with the situation among nonpregnant women. Cerebral malaria was a common complication of severe Plasmodium falciparum infection, with a high mortality during pregnancy, requiring immediate attention. The study also showed that malaria infection was more frequent in primigravidae, falling progressively with increasing parity. Mean parasite densities were significantly higher in pregnant women compared with nonpregnant women for both P. falciparum (P < 0.001; df = 137) and P. vivax (P < 0.05; df = 72) infection. Pregnant women with falciparum or vivax malaria were significantly more anaemic than noninfected pregnant women or infected nonpregnant women. The average weight of 155 neonates from infected mothers was 350 g less than that of 175 neonates from noninfected mothers. This difference in birth weight was statistically significant for both P. falciparum (P < 0.0001; df = 278) and P. vivax (P < 0.0001; df = 223) infection. Congenital malaria was not recorded. We conclude that pregnant women from this geographical area require systematic intervention owing to their high susceptibility to malaria during pregnancy and the puerperium. PMID:10444880

  2. Prevalence of plasmodium falciparum in active conflict areas of eastern Burma: a summary of cross-sectional data

    PubMed Central

    Richards, Adam K; Smith, Linda; Mullany, Luke C; Lee, Catherine I; Whichard, Emily; Banek, Kristin; Mahn, Mahn; Shwe Oo, Eh Kalu; Lee, Thomas J

    2007-01-01

    Background Burma records the highest number of malaria deaths in southeast Asia and may represent a reservoir of infection for its neighbors, but the burden of disease and magnitude of transmission among border populations of Burma remains unknown. Methods Plasmodium falciparum (Pf) parasitemia was detected using a HRP-II antigen based rapid test (Paracheck-Pf®). Pf prevalence was estimated from screenings conducted in 49 villages participating in a malaria control program, and four retrospective mortality cluster surveys encompassing a sampling frame of more than 220,000. Crude odds ratios were calculated to evaluate Pf prevalence by age, sex, and dry vs. rainy season. Results 9,796 rapid tests were performed among 28,410 villagers in malaria program areas through four years (2003: 8.4%, 95% CI: 8.3 – 8.6; 2004: 7.1%, 95% CI: 6.9 – 7.3; 2005:10.5%, 95% CI: 9.3 – 11.8 and 2006: 9.3%, 95% CI: 8.2 – 10.6). Children under 5 (OR = 1.99; 95% CI: 1.93 – 2.06) and those 5 to 14 years (OR = 2.24, 95% CI: 2.18 – 2.29) were more likely to be positive than adults. Prevalence was slightly higher among females (OR = 1.04, 95% CI: 1.02 – 1.06) and in the rainy season (OR = 1.48, 95% CI: 1.16 – 1.88). Among 5,538 rapid tests conducted in four cluster surveys, 10.2% were positive (range 6.3%, 95% CI: 3.9 – 8.8; to 12.4%, 95% CI: 9.4 – 15.4). Conclusion Prevalence of plasmodium falciparum in conflict areas of eastern Burma is higher than rates reported among populations in neighboring Thailand, particularly among children. This population serves as a large reservoir of infection that contributes to a high disease burden within Burma and likely constitutes a source of infection for neighboring regions. PMID:17803819

  3. Protection, pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria.

    PubMed

    Roberts, D J; Biggs, B A; Brown, G; Newbold, C I

    1993-08-01

    Why does Plasmodium falciparum cause severe illness in some but not all infections? How is clinical immunity acquired? These questions have intrigued investigators since the clinical epidemiology of malaria was first described. The search for answers to both questions has highlighted the changes that take place at the surface of infected red blood cells during the last half of the erythrocytic cycle. These changes specify the antigenic and adhesive or cytoadherence phenotypes for the infected cell. Now the antigenic and adhesive phenotypes appear to be linked and together undergo clonal variation. In this article David Roberts, Beverley-Ann Biggs, Graham Brown and Christopher Newbold explain how clonal phenotypic variation and the linkage between adhesive and antigenic types contribute to our understanding of naturally acquired immunity and of pathogenesis of severe malaria.

  4. Field performance of malaria rapid diagnostic test for the detection of Plasmodium falciparum infection in Odisha State, India.

    PubMed

    Sahu, S S; Gunasekaran, K; Jambulingam, P

    2015-12-01

    Rapid diagnostic tests (RDTs) have become an essential surveillance tool in the malaria control programme in India. The current study aimed to assess the performance of ParaHIT-f, a rapid test in diagnosis of Plasmodium falciparum infection through detecting its specific antigen, histidine rich protein 2 (PfHRP-2), in Odisha State, India. The study was undertaken in eight falciparum malaria endemic southern districts of Odisha State. Febrile patients included through active case detection, were diagnosed by Accredited Social Health Activists (ASHAs) for P. falciparum infection using the RDT, ParaHIT-f. The performance of ParaHIT-f was evaluated using microscopy as the gold standard. A total of 1030 febrile patients were screened by both microscopy and the RDT for P. falciparum infection. The sensitivity of ParaHIT-f was 63.6% (95% CI: 56.0-70.6) and specificity was 98.9% (95% CI: 97.9-99.5), with positive and negative predictive values (PPV and NPV) of 92.6% (95% CI: 86.0-96.3) and 93.0% (95% CI: 91.0-94.5), respectively. When related to parasitaemia, the RDT sensitivity was 47.8% at the low parasitaemia of 4 to 40 parasites/µl of blood. The results showed that the performance of the RDT, ParaHIT-f, was not as sensitive as microscopy in detecting true falciparum infections; a high specificity presented a low frequency of false-positive RDT results. t0 he sensitivity of ParaHIT-f was around 60 per cent. It is, therefore, essential to improve the efficiency (sensitivity) of the kit so that the true falciparum infections will not be missed especially in areas where P. falciparum has been the predominant species causing cerebral malaria.

  5. Temporal and spatial patterns of serologic responses to Plasmodium falciparum antigens in a region of declining malaria transmission in southern Zambia.

    PubMed

    Kobayashi, Tamaki; Chishimba, Sandra; Shields, Timothy; Hamapumbu, Harry; Mharakurwa, Sungano; Thuma, Philip E; Glass, Gregory; Moss, William J

    2012-12-31

    was associated with an increase in EIA OD value in 2007 (mean increase 0.177, p = 0.002) but not in 2008 (-0.063, p =0.50). Households comprised of individuals with serologic evidence of recent malaria overlapped areas of high malaria risk for serologic data from 2009, when parasite prevalence was lowest. Serological surveys to whole asexual P. falciparum antigens using blood collected as dried blood spots can be used to detect temporal and spatial patterns of malaria transmission in a region of declining malaria burden, and have the potential to identify focal areas of recent transmission.

  6. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria

    PubMed Central

    Woodberry, Tonia; Kienzle, Vivian; McPhun, Virginia; Minigo, Gabriela; Lampah, Daniel A.; Kenangalem, Enny; Engwerda, Christian; López, J. Alejandro; Anstey, Nicholas M.

    2013-01-01

    Malaria causes significant morbidity worldwide and a vaccine is urgently required. Plasmodium infection causes considerable immune dysregulation, and elicitation of vaccine immunity remains challenging. Given the central role of dendritic cells (DCs) in initiating immunity, understanding their biology during malaria will improve vaccination outcomes. Circulating DCs are particularly important, as they shape immune responses in vivo and reflect the functional status of other subpopulations. We performed cross-sectional and longitudinal assessments of the frequency, phenotype, and function of circulating DC in 67 Papuan adults during acute uncomplicated P. falciparum, P. vivax, and convalescent P. falciparum infections. We demonstrate that malaria patients display a significant reduction in circulating DC numbers and the concurrent accumulation of immature cells. Such alteration is associated with marked levels of spontaneous apoptosis and impairment in the ability of DC to mature, capture, and present antigens to T cells. Interestingly, sustained levels of plasma IL-10 were observed in patients with acute infection and were implicated in the induction of DC apoptosis. DC apoptosis was reversed upon IL-10 blockade, and DC function recovered when IL-10 levels returned to baseline by convalescence. Our data provide key information on the mechanisms behind DC suppression during malaria and will assist in developing strategies to better harness DC’s immunotherapeutic potential. PMID:23835848

  7. False-negative malaria rapid diagnostic tests in Rwanda: impact of Plasmodium falciparum isolates lacking hrp2 and declining malaria transmission.

    PubMed

    Kozycki, Christina T; Umulisa, Noella; Rulisa, Stephen; Mwikarago, Emil I; Musabyimana, Jean Pierre; Habimana, Jean Pierre; Karema, Corine; Krogstad, Donald J

    2017-03-20

    Rapid diagnostic tests (RDTs) for histidine rich protein 2 (HRP2) are often used to determine whether persons with fever should be treated with anti-malarials. However, Plasmodium falciparum parasites with a deletion of the hrp2 gene yield false-negative RDTs and there are concerns the sensitivity of HRP2-based RDTs may fall when the intensity of transmission decreases. This observational study enrolled 9226 patients at three health centres in Rwanda from April 2014 to April 2015. It then compared the sensitivity of RDTs based on HRP2 and the Plasmodium lactate dehydrogenase (pLDH) to microscopy (thick smears) for the diagnosis of malaria. PCR was used to determine whether deletions of the histidine-rich central repeat region of the hrp2 gene (exon 2) were associated with false-negative HRP2-based RDTs. In comparison to microscopy, the sensitivity and specificity of HRP2- and pLDH-based RDTs were 89.5 and 86.2% and 80.2 and 94.3%, respectively. When the results for both RDTs were combined, sensitivity rose to 91.8% and specificity was 85.7%. Additionally, when smear positivity fell from 46 to 3%, the sensitivity of the HRP2-based RDT fell from 88 to 67%. Of 370 samples with false-negative HRP2 RDT results for which PCR was performed, 140 (38%) were identified as P. falciparum by PCR. Of the isolates identified as P. falciparum by PCR, 32 (23%) were negative for the hrp2 gene based on PCR. Of the 32 P. falciparum isolates negative for hrp2 by PCR, 17 (53%) were positive based on the pLDH RDT. This prospective study of RDT performance coincided with a decline in the intensity of malaria transmission in Kibirizi (fall in slide positivity from 46 to 3%). This decline was associated with a decrease in HRP2 RDT sensitivity (from 88 to 67%). While P. falciparum isolates without the hrp2 gene were an important cause of false-negative HRP2-based RDTs, most were identified by the pLDH-based RDT. Although WHO does not recommend the use of combined HRP2/pLDH testing in sub

  8. Randomized Controlled Trial of Levamisole Hydrochloride as Adjunctive Therapy in Severe Falciparum Malaria With High Parasitemia

    PubMed Central

    Maude, Richard J.; Silamut, Kamolrat; Plewes, Katherine; Charunwatthana, Prakaykaew; Ho, May; Abul Faiz, M.; Rahman, Ridwanur; Hossain, Md Amir; Hassan, Mahtab U.; Bin Yunus, Emran; Hoque, Gofranul; Islam, Faridul; Ghose, Aniruddha; Hanson, Josh; Schlatter, Joel; Lacey, Rachel; Eastaugh, Alison; Tarning, Joel; Lee, Sue J.; White, Nicholas J.; Chotivanich, Kesinee; Day, Nicholas P. J.; Dondorp, Arjen M.

    2014-01-01

    Background. Cytoadherence and sequestration of erythrocytes containing mature stages of Plasmodium falciparum are central to the pathogenesis of severe malaria. The oral anthelminthic drug levamisole inhibits cytoadherence in vitro and reduces sequestration of late-stage parasites in uncomplicated falciparum malaria treated with quinine. Methods. Fifty-six adult patients with severe malaria and high parasitemia admitted to a referral hospital in Bangladesh were randomized to receive a single dose of levamisole hydrochloride (150 mg) or no adjuvant to antimalarial treatment with intravenous artesunate. Results. Circulating late-stage parasites measured as the median area under the parasite clearance curves were 2150 (interquartile range [IQR], 0–28 025) parasites/µL × hour in patients treated with levamisole and 5489 (IQR, 192–25 848) parasites/µL × hour in controls (P = .25). The “sequestration ratios” at 6 and 12 hours for all parasite stages and changes in microvascular blood flow did not differ between treatment groups (all P > .40). The median time to normalization of plasma lactate (<2 mmol/L) was 24 (IQR, 12–30) hours with levamisole vs 28 (IQR, 12–36) hours without levamisole (P = .15). Conclusions. There was no benefit of a single-dose of levamisole hydrochloride as adjuvant to intravenous artesunate in the treatment of adults with severe falciparum malaria. Rapid parasite killing by intravenous artesunate might obscure the effects of levamisole. PMID:23943850

  9. High prevalence of asymptomatic malaria infections: a cross-sectional study in rural areas in six departments in Haiti.

    PubMed

    Elbadry, Maha A; Al-Khedery, Basima; Tagliamonte, Massimiliano S; Yowell, Charles A; Raccurt, Christian P; Existe, Alexandre; Boncy, Jacques; Weppelmann, Thomas A; Beau De Rochars, Valery E M; Lemoine, Jean F; Okech, Bernard A; Dame, John B

    2015-12-21

    Public health measures are poised for transition from malaria control to malaria elimination on the island of Hispaniola. Assessment of the reservoir of asymptomatic infections from which acute malaria cases may derive is critical to plan and evaluate elimination efforts. Current field technology is ill suited for detecting sub-microscopic infections, thus highly sensitive survey methods capable of detecting virtually all infections are needed. In this study the prevalence of infection with Plasmodium falciparum was determined in patients seeking medical care primarily for non-febrile conditions in six departments in Haiti using a newly designed qRT-PCR-based assay. Three different methods of parasite detection were compared to assess their utility in approximating the prevalence of P. falciparum infections in the population: malaria rapid diagnostic test (RDT) designed to detect histidine-rich protein 2 (HRP2), thick smear microscopy, and a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based upon the small sub-unit ribosomal RNA. The limit of detection of the qRT-PCR assay utilized was 0.0003 parasite/µL of blood. Venous blood was obtained from a total of 563 subjects from six departments in Haiti, all of whom were seeking medical attention without complaints consistent with malaria. Each subject was questioned for knowledge and behaviour using demographic and epidemiological survey to identify risk factors for disease transmission. Among the 563 samples tested, ten and 16 were found positive for malaria by RDT and microscopy, respectively. Using the qRT-PCR test to assess the infection status of these subjects, an additional 92 were identified for a total of 108. Based upon the qRT-PCR assay results, a wide variation in prevalence of infection in asymptomatic subjects was seen between geographic locations ranging from 4-41%. The prevalence of infection was highest in the Grand Anse, Nord and Sud-Est Departments, and demographic

  10. South American Plasmodium falciparum after the Malaria Eradication Era: Clonal Population Expansion and Survival of the Fittest Hybrids

    PubMed Central

    Griffing, Sean M.; Mixson-Hayden, Tonya; Sridaran, Sankar; Alam, Md Tauqeer; McCollum, Andrea M.; Cabezas, César; Marquiño Quezada, Wilmer; Barnwell, John W.; Macedo De Oliveira, Alexandre; Lucas, Carmen; Arrospide, Nancy; Escalante, Ananias A.; Bacon, David J.; Udhayakumar, Venkatachalam

    2011-01-01

    Malaria has reemerged in many regions where once it was nearly eliminated. Yet the source of these parasites, the process of repopulation, their population structure, and dynamics are ill defined. Peru was one of malaria eradication's successes, where Plasmodium falciparum was nearly eliminated for two decades. It reemerged in the 1990s. In the new era of malaria elimination, Peruvian P. falciparum is a model of malaria reinvasion. We investigated its population structure and drug resistance profiles. We hypothesized that only populations adapted to local ecological niches could expand and repopulate and originated as vestigial populations or recent introductions. We investigated the genetic structure (using microsatellites) and drug resistant genotypes of 220 parasites collected from patients immediately after peak epidemic expansion (1999–2000) from seven sites across the country. The majority of parasites could be grouped into five clonal lineages by networks and AMOVA. The distribution of clonal lineages and their drug sensitivity profiles suggested geographic structure. In 2001, artesunate combination therapy was introduced in Peru. We tested 62 parasites collected in 2006–2007 for changes in genetic structure. Clonal lineages had recombined under selection for the fittest parasites. Our findings illustrate that local adaptations in the post-eradication era have contributed to clonal lineage expansion. Within the shifting confluence of drug policy and malaria incidence, populations continue to evolve through genetic outcrossing influenced by antimalarial selection pressure. Understanding the population substructure of P. falciparum has implications for vaccine, drug, and epidemiologic studies, including monitoring malaria during and after the elimination phase. PMID:21949680

  11. Acute Kidney Injury in Children with Plasmodium falciparum Malaria: Determinants for Mortality.

    PubMed

    Prasad, Rajniti; Mishra, Om P

    2016-01-01

    ♦ Acute kidney injury (AKI) in P. falciparum malaria infection is an important morbidity in children. The purpose of the present study was done to observe the renal involvement, associated morbidities and outcome. ♦ Out of 156 patients with severe P. falciparum malaria, diagnosed on the basis of compatible clinical presentations and positive malarial parasites in the peripheral blood smear and/or histidine rich protein 2 antigen, 31 had AKI at presentation and were analyzed. ♦ Of 31 (19.9%) patients with AKI, 4 were classified at risk, 11 injury, and 16 failure stage, as per pRIFLE criteria (pediatric version of RIFLE [R = risk, I = injury, F = failure, L = loss E = end-stage kidney disease]). Mean age of children with AKI was 7.7 ± 3.2 years. A significantly higher proportion of patients with AKI had hypoglycemia (41.9%), pulmonary edema (32.2%), and disseminated intravascular coagulation (DIC) (29.0%) compared to those without AKI (18.4%, 4.8%, and 3.2%, respectively). Twelve patients (38.7%) required peritoneal dialysis (PD), 8 (25.8%) died, and all were in failure stage. The non-survivors had significantly higher blood urea (p = 0.005) and serum creatinine levels (p = 0.042), lower glomerular filtration rate (p < 0.001), longer duration of illness (p = 0.003), and oliguria/anuria (p = 0.001) than survivors at admission. On logistic regression analysis, the disseminated intravascular coagulation (DIC), jaundice and parasite density (≥ 3+) were found to be significant factors contributing to mortality in children with AKI. ♦ Acute kidney injury in falciparum malaria is one of the severe systemic complications. Duration of illness and presence of comorbidities adversely affected the outcome. Copyright © 2016 International Society for Peritoneal Dialysis.

  12. Persistent Plasmodium falciparum infection in women with an intent to become pregnant is a risk factor for pregnancy-associated malaria.

    PubMed

    Tuikue Ndam, Nicaise; Tornyigah, Bernard; Dossou, Akpéyédjé Yannelle; Escriou, Guillaume; Nielsen, Morten A; Salanti, Ali; Issifou, Saadou; Massougbodji, Achille; Chippaux, Jean-Philippe; Deloron, Philippe

    2018-05-04

    Pregnant women are more susceptible to P. falciparum than before pregnancy, and infection has consequences for both mother and offspring. WHO recommends that pregnant woman in areas of transmission receive intermittent preventive treatment starting in the second trimester. Consequently, women are not protected during the first trimester, although P. falciparum infections are both frequent and harmful. A cohort of nulligravidae women was followed during subsequent pregnancy. Malaria was diagnosed by microscopy and PCR. Parasites were genotyped at polymorphic loci. Among 275 nulligravidae enrolled, 68 women became pregnant and were followed during pregnancy. Before pregnancy, P. falciparum prevalence rates were 15% by microscopy and 66% by PCR. Microscopic infection rates increased to 29% until IPT administration, while their density increased by 20-fold. Conversely, submicroscopic infections decreased. Following IPT administration, all types of infections decreased, but increased again late in pregnancy. The risk of infection during pregnancy was higher in women with a microscopic (OR = 6.5, p = 0.047) or submicroscopic (OR = 3.06, p = 0.05) infection before pregnancy and was not related to the season of occurrence. Most infections during pregnancy were persistent infections acquired before pregnancy. Microscopic and sub-microscopic malaria infections were frequent in nulligravidae women from south Benin. During the first trimester of pregnancy, microscopic infections were more frequent, with a higher parasite density, and mainly derived from parasites infecting the woman before conception. Prevention strategies targeting non-pregnant women with a desire of conception need to be designed.

  13. Detection of anti-neutrophil cytoplasmic antibodies after acute Plasmodium falciparum malaria.

    PubMed Central

    Wenisch, C; Wenisch, H; Bankl, H C; Exner, M; Graninger, W; Looareesuwan, S; Rumpold, H

    1996-01-01

    Four of 30 patients with Plasmodium falciparum infection in Bangkok, Thailand, were positive for anti-neutrophil cytoplasmic antibodies by indirect immunofluorescence 1 month after antimalarial therapy. No myeloperoxidase, proteinase 3, lactoferrin, or elastase reactivity was found. Since no evidence of vasculitis was seen in these patients, anti-neutrophil cytoplasmic antibody production in malaria-infected susceptible patients probably represents a secondary response, indicating neutrophil activation. PMID:8770517

  14. Early treatment of imported falciparum malaria in the intermediate and intensive care unit setting: an 8-year single-center retrospective study.

    PubMed

    Schwake, Lukas; Streit, Judith Pamela; Edler, Lutz; Encke, Jens; Stremmel, Wolfgang; Junghanss, Thomas

    2008-01-01

    Imported falciparum malaria is characterized by a broad spectrum of potentially life-threatening complications that may arise even after initiation of appropriate antimalarial drug therapy. Hence, at Heidelberg University Hospital, all patients with newly diagnosed falciparum malaria are initially treated in the intermediate care unit (IMC) or intensive care unit (ICU). The present study was undertaken to evaluate critically the benefit of this strategy, which includes daily consultation with senior specialists in tropical medicine. We conducted a retrospective cohort study at the 14-bed combined IMC/ICU of a 1,685-bed university hospital. A cohort of 122 patients with imported falciparum malaria admitted from 1 January 1996 to 31 December 2003 was included. Thirty-four patients (27.9%) developed complications, defined according to the current World Health Organization classification. Most patients (80.3%) studied did not take the recommended chemoprophylaxis against malaria. The majority of patients (89.3% [n = 109]) could be adequately treated in the IMC. Life-threatening complications requiring ICU support occurred in 13 patients (10.7%). All complications were successfully managed. Fifty-five patients (45.1%) fulfilling recently published criteria for outpatient treatment had an excellent therapeutic response and did not require ICU support. This retrospective evaluation demonstrated favourable therapeutic results in hospitalized patients with imported falciparum malaria. Both initial treatment in the medical IMC/ICU and close collaboration between intensivists and specialists in tropical medicine may improve disease outcome among affected patients. Prospective studies are needed to confirm these preliminary findings.

  15. Identification of a Platelet Membrane Glycoprotein as a Falciparum Malaria Sequestration Receptor

    NASA Astrophysics Data System (ADS)

    Ockenhouse, Christian F.; Tandon, Narendra N.; Magowan, Cathleen; Jamieson, G. A.; Chulay, Jeffrey D.

    1989-03-01

    Infections with the human malaria parasite Plasmodium falciparum are characterized by sequestration of erythrocytes infected with mature forms of the parasite. Sequestration of infected erythrocytes appears to be critical for survival of the parasite and to mediate immunopathological abnormalities in severe malaria. A leukocyte differentiation antigen (CD36) was previously suggested to have a role in sequestration of malaria-infected erythrocytes. CD36 was purified from platelets, where it is known as GPIV, and was shown to be a receptor for binding of infected erythrocytes. Infected erythrocytes adhered to CD36 immobilized on plastic; purified CD36 exhibited saturable, specific binding to infected erythrocytes; and purified CD36 or antibodies to CD36 inhibited and reversed binding of infected erythrocytes to cultured endothelial cells and melanoma cells in vitro. The portion of the CD36 molecule that reverses cytoadherence may be useful therapeutically for rapid reversal of sequestration in cerebral malaria.

  16. Implications of Parasites Lacking Plasmodium falciparum Histidine-Rich Protein 2 on Malaria Morbidity and Control When Rapid Diagnostic Tests Are Used for Diagnosis.

    PubMed

    Gatton, Michelle L; Dunn, Jessica; Chaudhry, Alisha; Ciketic, Sadmir; Cunningham, Jane; Cheng, Qin

    2017-04-01

    Rapid diagnostic tests (RDTs) are an important tool for malaria diagnosis, with most using antibodies against Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Reports of P. falciparum lacking this protein are increasing, creating a problem for diagnosis of falciparum malaria in locations without quality-assured microscopy. An agent-based stochastic simulation model of P. falciparum transmission was used to investigate the selective pressure exerted on parasite populations by use of RDTs for diagnosis of symptomatic cases. The model considered parasites with normal, reduced, or no PfHRP2, and diagnosis using PfHRP2-only or combination RDTs. Use of PfHRP2-only RDTs in communities where a PfHRP2-negative parasite was introduced during the simulation resulted in transmission of the parasite in >80% of cases, compared with <30% for normal or PfHRP2-reduced parasites. Using PfHRP2-only RDTs in the presence of PfHRP2-negative parasites caused an increase in prevalence, reduced RDT positivity within symptomatic patients but no change in the number of antimalarial treatments due to false-negative RDT results. Diagnosis with PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs did not select for PfHRP2-negative parasites. The use of PfHRP2-only RDTs is sufficient to select P. falciparum parasites lacking this protein, thus posing a significant public health problem, which could be moderated by using PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Increased carboxyhemoglobin in adult falciparum malaria is associated with disease severity and mortality.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N; Anstey, Nicholas M

    2013-09-01

    Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%-13%) and in 20 with severe sepsis (8%; 95% CI, 5%-12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%-8%) and 36 controls (3.6%; 95% CI, 3%-5%; P < .001). An increased carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02-1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models.

  18. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.

    PubMed

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V; Rizk, Shahir S; Njimoh, Dieudonne L; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M; Wiest, Olaf; Haldar, Kasturi

    2015-04-30

    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.

  19. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria

    PubMed Central

    2018-01-01

    Background Plasmodium knowlesi is recognised as the main cause of human malaria in Southeast Asia. The disease is often misdiagnosed as P. falciparum or P. malariae infections by microscopy, and the disease is difficult to eliminate due to its presence in both humans and monkeys. P. knowlesi infections can rapidly cause severe disease and require prompt diagnosis and treatment. No protein biomarker exists for the rapid diagnostic test (RDT) detection of P. knowlesi infections. Plasmodium knowlesi infections can be diagnosed by PCR. Methods and principal findings Phosphoethanolamine-N-methyltransferase (PMT) is involved in malaria lipid biosynthesis and is not found in the human host. The P. falciparum, P. vivax and P. knowlesi PMT proteins were recombinantly expressed in BL21(DE3) Escherichia coli host cells, affinity purified and used to raise antibodies in chickens. Antibodies against each recombinant PMT protein all detected all three recombinant proteins and the native 29 kDa P. falciparum PMT protein on western blots and in ELISA. Antibodies against a PMT epitope (PLENNQYTDEGVKC) common to all three PMT orthologues detected all three proteins. Antibodies against unique peptides from each orthologue of PMT, PfCEVEHKYLHENKE, PvVYSIKEYNSLKDC, PkLYPTDEYNSLKDC detected only the parent protein in western blots and P. falciparum infected red blood cell lysates or blood lysates spiked with the respective proteins. Similar concentrations of PfPMT and the control, PfLDH, were detected in the same parasite lysate. The recombinant PfPMT protein was detected by a human anti-malaria antibody pool. Conclusion PMT, like the pan-specific LDH biomarker used in RDT tests, is both soluble, present at comparable concentrations in the parasite and constitutes a promising antimalarial drug target. PMT is absent from the human proteome. PMT has the potential as a biomarker for human malaria and in particular as the first P. knowlesi specific protein with diagnostic potential for the

  20. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru

    PubMed Central

    2012-01-01

    Background Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturally acquired immunity and immunity generated by parasite blood stage vaccine candidates. The hypotheses tested in this study were 1) that antibody responses against specific P. falciparum invasion ligands (EBL and PfRh) differ between symptomatic and asymptomatic individuals living in the low-transmission region of the Peruvian Amazon and 2), such antibody responses might have an association, either direct or indirect, with clinical immunity observed in asymptomatically parasitaemic individuals. Methods ELISA was used to assess antibody responses (IgG, IgG1 and IgG3) against recombinant P. falciparum invasion ligands of the EBL (EBA-175, EBA-181, EBA-140) and PfRh families (PfRh1, PfRh2a, PfRh2b, PfRh4 and PfRh5) in 45 individuals infected with P. falciparum from Peruvian Amazon. Individuals were classified as having symptomatic malaria (N=37) or asymptomatic infection (N=8). Results Antibody responses against both EBL and PfRh family proteins were significantly higher in asymptomatic compared to symptomatic individuals, demonstrating an association with clinical immunity. Significant differences in the total IgG responses were observed with EBA-175, EBA-181, PfRh2b, and MSP119 (as a control). IgG1 responses against EBA-181, PfRh2a and PfRh2b were significantly higher in the asymptomatic individuals. Total IgG antibody responses against PfRh1, PfRh2a, PfRh2b, PfRh5, EBA-175, EBA-181 and MSP119 proteins were negatively correlated with level of parasitaemia. IgG1 responses against EBA-181, PfRh2a and PfRh2b and IgG3 response for PfRh2a were also negatively correlated with parasitaemia. Conclusions These data suggest that falciparum malaria patients who develop clinical immunity

  1. Rapid diagnostic test-based management of malaria: an effectiveness study in Papua New Guinean infants with Plasmodium falciparum and Plasmodium vivax malaria.

    PubMed

    Senn, Nicolas; Rarau, Patricia; Manong, Doris; Salib, Mary; Siba, Peter; Robinson, Leanne J; Reeder, John; Rogerson, Stephen; Mueller, Ivo; Genton, Blaise

    2012-03-01

    In malaria-endemic areas it is recommended that febrile children be tested for malaria by rapid diagnostic test (RDT) or blood slide (BS) and receive effective malaria treatment only if results are positive. However, RDTs are known to perform less well for Plasmodium vivax. We evaluated the safety of withholding antimalarial drugs from young Papua New Guinean children with negative RDT results in areas with high levels of both Plasmodium falciparum and P. vivax infections. Longitudinal prospective study of children aged 3-27 months visiting outpatient clinics for fever. RDT was administered at first visit. RDT and microscopy were performed if children returned because of persistent symptoms. Outcomes were rates of reattendance and occurrence of severe illnesses. Of 5670 febrile episodes, 3942 (70%) involved a negative RDT result. In 133 cases (3.4%), the children reattended the clinic within 7 days for fever, of whom 29 (0.7%) were parasitemic by RDT or microscopy. Of children who reattended, 24 (0.7%) presented with a severe illness: 2 had lower respiratory tract infections (LRTIs) with low-density P. vivax on BS; 2 received a diagnosis of P. vivax malaria on the basis of RDT but BSs were negative; 16 had LRTIs; 3 had alternative diagnoses. Of these 24, 22 were cured at day 28. Two children died of illnesses other than malaria and were RDT and BS negative at the initial and subsequent visits. Treatment for malaria based on RDT results is safe and feasible even in infants living in areas with moderate to high endemicity for both P. falciparum and P. vivax infections.

  2. Malaria transmission in Tripura: Disease distribution & determinants.

    PubMed

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  3. Prenatal exposure to Plasmodium falciparum increases frequency and shortens time from birth to first clinical malaria episodes during the first two years of life: prospective birth cohort study.

    PubMed

    Sylvester, Boniphace; Gasarasi, Dinah B; Aboud, Said; Tarimo, Donath; Massawe, Siriel; Mpembeni, Rose; Swedberg, Gote

    2016-07-22

    Prenatal exposure to Plasmodium falciparum affects development of protective immunity and susceptibility to subsequent natural challenges with similar parasite antigens. However, the nature of these effects has not been fully elucidated. The aim of this study was to determine the effect of prenatal exposure to P. falciparum on susceptibility to natural malaria infection, with a focus on median time from birth to first clinical malaria episode and frequency of clinical malaria episodes in the first 2 years of life. A prospective birth cohort study was conducted in Rufiji district in Tanzania, between January 2013 and December 2015. Infants born to mothers with P. falciparum in the placenta at time of delivery were defined as exposed, and infants born to mothers without P. falciparum parasites in placenta were defined as unexposed. Placental infection was established by histological techniques. Out of 206 infants recruited, 41 were in utero exposed to P. falciparum and 165 infants were unexposed. All infants were monitored for onset of clinical malaria episodes in the first 2 years of life. The outcome measure was time from birth to first clinical malaria episode, defined by fever (≥37 °C) and microscopically determined parasitaemia. Median time to first clinical malaria episode between exposed and unexposed infants was assessed using Kaplan-Meier survival analysis and comparison was done by log rank. Association of clinical malaria episodes with prenatal exposure to P. falciparum was assessed by multivariate binary logistic regression. Comparative analysis of mean number of clinical malaria episodes between exposed and unexposed infants was done using independent sample t test. The effect of prenatal exposure to P. falciparum infection on clinical malaria episodes was statistically significant (Odds Ratio of 4.79, 95 % CI 2.21-10.38, p < 0.01) when compared to other confounding factors. Median time from birth to first clinical malaria episode for exposed

  4. Prevalence of G6PD deficiency and Plasmodium falciparum parasites in asymptomatic school children living in southern Ghana.

    PubMed

    Amoah, Linda Eva; Opong, Akua; Ayanful-Torgby, Ruth; Abankwa, Joana; Acquah, Festus K

    2016-07-26

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder that results in impaired enzyme activity. Although G6PD deficiency is globally distributed it is more prevalent in malaria-endemic countries. Several mutations have been identified in the G6PD gene, which alter enzyme activity. The G6PD genotype predominantly found in sub-Saharan Africa is the G6PDB (G6PD376A) with (G6PD376G) and G6PDA- (G6PD376G/202A, G6PD376G/542T, G6PD376G/680T and G6PD376G/968C) occurring at lower frequencies. The aim of this study was to identify the prevalence of G6PD deficiency and asymptomatic Plasmodium falciparum carriage in children living in southern Ghana and determine whether G6PD deficiency influences asymptomatic carriage of P. falciparum parasites. Blood samples were obtained once a month from 170 healthy Ghanaian school children aged between 5 and 12 years from Basic schools in two communities Obom and Abura with similar rainfall patterns and malaria peak seasons. G6PD enzyme activity was assessed using the qualitative G6PD RDT kit (AccessBIO). G6PD genotyping and asymptomatic parasite carriage was determined by PCR followed by restriction fragment length polymorphism (RFLP) of DNA extracted from dried blood spots. The only sub-Saharan G6PD A- allele detected was the A376G/G202A found in 12.4 % (21/170), of the children and distributed as 4.1 % (7/170) A-, 1.8 % (3/170) A-/A- homozygous deficient males and females and 6.5 % (11/170) A/A- and B/A- heterozygous deficient females. Phenotypically, 10.6 % (15/142) of the children were G6PD deficient. The asymptomatic carriage of P. falciparum by PCR was 50, 29.4, 38.2 and 38.8 % over the months of February through May 2015, respectively, and 28.8, 22.4, 25.9 and 5.9 % by microscopy during the same periods. G6PD deficiency was significantly associated with a lowered risk of PCR-estimated asymptomatic P. falciparum carriage in children during the off peak malaria season in Southern Ghana.

  5. High proportion of knowlesi malaria in recent malaria cases in Malaysia

    PubMed Central

    2014-01-01

    Background Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia. Methods A total of 457 microscopically confirmed, malaria-positive blood samples were collected from 22 state and main district hospitals in Malaysia between September 2012 and December 2013. Nested PCR assay targeting the 18S rRNA gene was used to determine the infecting Plasmodium species. Results A total of 453 samples were positive for Plasmodium species by using nested PCR assay. Plasmodium knowlesi was identified in 256 (56.5%) samples, followed by 133 (29.4%) cases of Plasmodium vivax, 49 (10.8%) cases of Plasmodium falciparum, two (0.4%) cases of Plasmodium ovale and one (0.2%) case of Plasmodium malariae. Twelve mixed infections were detected, including P. knowlesi/P. vivax (n = 10), P. knowlesi/P. falciparum (n = 1), and P. falciparum/P. vivax (n = 1). Notably, P. knowlesi (Included mixed infections involving P. knowlesi (P. knowlesi/P. vivax and P. knowlesi /P. falciparum)) showed the highest proportion in Sabah (84/115 cases, prevalence of 73.0%), Sarawak (83/120, 69.2%), Kelantan (42/56, 75.0%), Pahang (24/25, 96.0%), Johor (7/9, 77.8%), and Terengganu (4/5, 80.0%,). In contrast, the rates of P. knowlesi infection in Selangor and Negeri Sembilan were found to be 16.2% (18/111 cases) and 50.0% (5/10 cases), respectively. Sample of P. knowlesi was not obtained from Kuala Lumpur, Melaka, Perak, Pulau Pinang, and Perlis during the study period, while a microscopically-positive sample from Kedah was negative by PCR. Conclusion In addition to Sabah and Sarawak, which have been known for high prevalence of P. knowlesi infection, the findings from this study

  6. Acquired Antibodies to Merozoite Antigens in Children from Uganda with Uncomplicated or Severe Plasmodium falciparum Malaria

    PubMed Central

    Ahmed Ismail, Hodan; Ribacke, Ulf; Reiling, Linda; Normark, Johan; Egwang, Tom; Kironde, Fred; Beeson, James G.; Wahlgren, Mats

    2013-01-01

    Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates. PMID:23740926

  7. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  8. In vivo testing of the therapeutic efficacy of chloroquine on falciparum malaria infections in Chirundu, Mashonaland West, Zimbabwe.

    PubMed

    Barduagni, P; Schwartz, U; Nyamayaro, W; Chauke, T L

    1998-10-01

    To detect the level of the in vivo chloroquine efficacy in falciparum malaria infections, in order to assess the need for change in the management and treatment of uncomplicated malaria. Prospective descriptive study. Chirundu Rural Clinic, Mashonaland West Province. 63 patients confirmed by a positive blood slide for P. falciparum who attended Chirundu clinic, who were eligible for the study and, who also agreed to participate. Frequency of treatment success, early treatment failure and late treatment failure in uncomplicated patients treated with chloroquine. Out of 63 cases enrolled and completely followed up, chloroquine treatment was effective in 54 cases (85.7%) and was not effective in nine cases (14.3%). All treatment failures were successfully treated with sulphadoxine + pyrimethamine (Fansidar) or quinine following the approved guidelines. Chloroquine remains highly effective in the treatment of malaria due to P. falciparum in the Zambezi Valley of Hurungwe district and therefore, has to remain the first line drug. Likewise, guidelines for the use of sulphadoxine + pyrimethamine (Fansidar) or quinine as second line drugs, are adequate to the local situation. Health workers directly supervised the patients when they were swallowing the tablets during the whole course, and this without doubt, indirectly increased the efficacy of chloroquine. It is vital to confirm the malaria diagnosis on the spot appointing microscopists or distributing a limited stock of Parasight-F test.

  9. Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is associated with high parasitemia but not severe clinical manifestations of malaria in African children

    PubMed Central

    Arman, Mònica; Raza, Ahmed; Tempest, Louisa J.; Lyke, Kirsten E.; Thera, Mahamadou A.; Koné, Abdoulaye; Plowe, Christopher V.; Doumbo, Ogobara K.; Rowe, J. Alexandra

    2009-01-01

    Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is an adhesive phenotype commonly found in field isolates that has previously been associated with severe malaria. Here, clumping was assessed in 131 isolates from Malian children. The clumping phenotype was seen in 6% (n=51) of uncomplicated malaria, 24% (n=51) of severe malaria, and 45% (n=29) of high parasitemia non-severe malaria isolates. Multivariate analysis indicated that clumping was strongly positively associated with parasitemia (F1,122=24.1, p<0.001) but not with disease category (F2,122=1.8, p=0.17). Therefore platelet-mediated clumping in Malian P. falciparum isolates is primarily associated with high parasitemia and not with severe clinical manifestations of malaria. PMID:17984358

  10. Urban malaria in the Brazilian Western Amazon Region I: high prevalence of asymptomatic carriers in an urban riverside district is associated with a high level of clinical malaria.

    PubMed

    Tada, Mauro Shugiro; Marques, Russimeire Paula; Mesquita, Elieth; Dalla Martha, Rosimeire Cristina; Rodrigues, Juan Abel; Costa, Joana D'Arc Neves; Pepelascov, Rosario Rocha; Katsuragawa, Tony Hiroshi; Pereira-da-Silva, Luiz Hildebrando

    2007-06-01

    Cross sectional studies on malaria prevalence was performed in 2001, 2002, and 2004 in Vila Candelária, an urban riverside area of Porto Velho, Rondônia, in the Brazilian Western Amazon, followed by longitudinal surveys on malaria incidence. Vila Candelária is a working class district, provided with electricity, water supply, and basic sanitation. Previous preliminary surveys indicated high malaria incidence in this community. At the end of year 2000 regular diagnostic and treatment measures for malaria were introduced, with active search of febrile cases among residents. Despite of both rapid treatment of cases and relative good sanitary and housing conditions, the malaria incidence persisted at high levels during the following years with an annual parasite index of 150 to 300/1000 inhabitants. Parasite surveys in 2001, 2002, and 2004 achieved through microscopy and polymerase chain reaction to diagnose malaria showed a constant high prevalence of asymptomatic carriers for both Plasmodium falciparum and P. vivax parasites. It was concluded that asymptomatic carriers represent an important reservoirs of parasites and that the carriers might contribute to maintaining the high level of transmission. Comparing our findings to similar geo-demographic situations found in other important urban communities of the Brazilian Amazon, we propose that asymptomatic carriers could explain malaria's outbreaks like the one recently observed in Manaus.

  11. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  12. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Loy, Dorothy E; Liu, Weimin; Li, Yingying; Learn, Gerald H; Plenderleith, Lindsey J; Sundararaman, Sesh A; Sharp, Paul M; Hahn, Beatrice H

    2017-02-01

    Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Malaria

    MedlinePlus

    Quartan malaria; Falciparum malaria; Biduoterian fever; Blackwater fever; Tertian malaria; Plasmodium ... Malaria is caused by a parasite that is passed to humans by the bite of infected anopheles ...

  14. Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya.

    PubMed

    Beier, J C; Oster, C N; Onyango, F K; Bales, J D; Sherwood, J A; Perkins, P V; Chumo, D K; Koech, D V; Whitmire, R E; Roberts, C R

    1994-05-01

    Relationships between Plasmodium falciparum incidence and entomologic inoculation rates (EIRs) were determined for a 21-month period in Saradidi, western Kenya, in preparation for malaria vaccine field trials. Children, ranging in age from six months to six years and treated to clear malaria parasites, were monitored daily for up to 12 weeks to detect new malaria infections. Overall, new P. falciparum infections were detected in 77% of 809 children. The percentage of children that developed infections per two-week period averaged 34.7%, ranging from 7.3% to 90.9%. Transmission by vector populations was detected in 86.4% (38 of 44) of the two-week periods, with daily EIRs averaging 0.75 infective bites per person. Periods of intense transmission during April to August, and from November to January, coincided with seasonal rains. Relationships between daily malaria attack rates and EIRs indicated that an average of only 7.5% (1 in 13) of the sporozoite inoculations produced new infections in children. Regression analysis demonstrated that EIRs accounted for 74% of the variation in attack rates. One of the components of the EIR, the human-biting rate, alone accounted for 68% of the variation in attack rates. Thus, measurements of either the EIR or the human-biting rate can be used to predict corresponding attack rates in children. These baseline epidemiologic studies indicate that the intense transmission patterns of P. falciparum in Saradidi will provide excellent conditions for evaluating malaria vaccine efficacy.

  15. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    PubMed

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines.

    PubMed

    Sheehy, Susanne H; Douglas, Alexander D; Draper, Simon J

    2013-09-01

    In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success to date in clinical trials. However, only a fraction of potential blood-stage vaccine antigens have been evaluated as targets, and a number of new promising candidate antigen formulations and delivery platforms are approaching clinical development. It is therefore essential that reliable and sensitive methods of detecting, or ruling out, even modest efficacy of blood-stage vaccines in small clinical trials be established. In this article we evaluate the challenges facing blood-stage vaccine developers, assess the appropriateness and limitations of various in vivo approaches for efficacy assessment and suggest future directions for the field.

  17. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

    PubMed

    Win, Aye A; Imwong, Mallika; Kyaw, Myat P; Woodrow, Charles J; Chotivanich, Kesinee; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon

    2016-02-24

    Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210-726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. The proportion of P. falciparum isolates with mutations in the propeller region of k

  18. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  19. Marked Decline in Malaria Prevalence among Pregnant Women and Their Offspring from 1996 to 2010 on the South Kenyan Coast

    PubMed Central

    Kalayjian, Benjamin C.; Malhotra, Indu; Mungai, Peter; Holding, Penny; King, Christopher L.

    2013-01-01

    Expanded malaria control in Kenya since the early 2000s has resulted in marked reduction in hospital admissions for malaria; however, no studies have reported changes in malaria infection rates in the same population over this period. Randomly selected archived blood samples from four cohorts of pregnant women and their children from 1996 to 2010 in Kwale District, Coast Province, Kenya, were examined for Plasmodium falciparum (Pf), P. malariae, P. ovale, and Plasmodium vivax by quantitative polymerase chain reaction (PCR) and microscopy. Maternal delivery Pf prevalence by PCR declined from 40% in 2000–2005 to 1% in 2009–2010, concordant with increased bed net and malaria chemoprophylaxis use. Individual risk of Pf infection in children from birth to 3 years in serial longitudinal cohort studies declined from almost 100% in 1996–1999 to 15% in 2006–2010. Declines in P. malariae and P. ovale infections rates were also observed. These results show a profound reduction in malaria transmission in coastal Kenya. PMID:24080635

  20. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

    PubMed Central

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V.; Rizk, Shahir; Njimoh, Dieudonne L.; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M.; Wiest, Olaf; Haldar, Kasturi

    2015-01-01

    Artemisinins are the corner stone of anti-malarial drugs1. Emergence and spread of resistance to them2–4 raises risk of wiping out recent gains achieved in reducing world-wide malaria burden and threatens future malaria control and elimination on a global level. Genome wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance5–10. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase as well as its lipid product phosphatidylinositol 3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signaling, where transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination. PMID:25874676

  1. A modified Plasmodium falciparum growth inhibition assay (GIA) to assess activity of plasma from malaria endemic areas.

    PubMed

    Mlambo, Godfree; Kumar, Nirbhay

    2007-02-01

    Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).

  2. Prevalence of malaria from blood smears examination: a seven-year retrospective study from metema hospital, northwest ethiopia.

    PubMed

    Ferede, Getachew; Worku, Abiyu; Getaneh, Alemtegna; Ahmed, Ali; Haile, Tarekegn; Abdu, Yenus; Tessema, Belay; Wondimeneh, Yitayih; Alemu, Abebe

    2013-01-01

    Background. Malaria is a major public health problem in Ethiopia where an estimated 68% of the population lives in malarious areas. Studying its prevalence is necessary to implement effective control measures. Therefore, the aim of this study was to determine seven-year slide positive rate of malaria. Methods. A retrospective study was conducted at Metema Hospital from September 2006 to August 2012. Seven-year malaria cases data had been collected from laboratory registration book. Results. A total of 55,833 patients were examined for malaria; of these, 9486 (17%) study subjects were positive for malaria. The predominant Plasmodium species detected was P. falciparum (8602) (90.7%) followed by P. vivax (852) (9%). A slide positive rate of malaria within the last seven years (2006-2012) was almost constant with slight fluctuation. The age groups of 5-14 years old were highly affected by malariainfection (1375) (20.1%), followed by 15-29 years old (3986) (18.5%). High slide positive rate of malaria occurred during spring (September-November), followed by summer (June-August). Conclusion. Slide positive rate of malaria was high in study area. Therefore, health planners and administrators should give intensive health education for the community.

  3. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients.

    PubMed

    Kumsiri, Ratchanok; Troye-Blomberg, Marita; Pattanapanyasat, Kovit; Krudsood, Srivicha; Maneerat, Yaowapa

    2016-02-01

    Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (p<0.001) groups. At admission, a strong significant negative correlation was found between specific IgG and sCD23 (r=-0.762, p=0.028), and TNF-α and IgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand

    PubMed Central

    Kuesap, Jiraporn; Chaijaroenkul, W.; Rungsihirunrat, K.; Pongjantharasatien, K.; Na-Bangchang, Kesara

    2015-01-01

    Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients. PMID:26174819

  5. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Zani, Babalwa; Gathu, Michael; Donegan, Sarah; Olliaro, Piero L; Sinclair, David

    2014-01-01

    Background The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. Objectives To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. Selection criteria Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy’ and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrine In Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower

  6. Increased Carboxyhemoglobin in Adult Falciparum Malaria is Associated With Disease Severity and Mortality

    PubMed Central

    Yeo, Tsin W.; Lampah, Daniel A.; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N.; Anstey, Nicholas M.

    2013-01-01

    Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%–13%) and in 20 with severe sepsis (8%; 95% CI, 5%–12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%–8%) and 36 controls (3.6%; 95% CI, 3%–5%; P < .001). An increased carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02–1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models. PMID:23852587

  7. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda.

    PubMed

    Maziarz, Marlena; Kinyera, Tobias; Otim, Isaac; Kagwa, Paul; Nabalende, Hadijah; Legason, Ismail D; Ogwang, Martin D; Kirimunda, Samuel; Emmanuel, Benjamin; Reynolds, Steven J; Kerchan, Patrick; Joloba, Moses M; Bergen, Andrew W; Bhatia, Kishor; Talisuna, Ambrose O; Biggar, Robert J; Goedert, James J; Pfeiffer, Ruth M; Mbulaiteye, Sam M

    2017-03-20

    Falciparum malaria is an important risk factor for African Burkitt lymphoma (BL), but few studies have evaluated malaria patterns in healthy BL-age children in populations where both diseases are endemic. To obtain accurate current data, patterns of asymptomatic malaria were investigated in northern Uganda, where BL is endemic. Between 2011 and 2015, 1150 apparently healthy children under 15 years old were sampled from 100 villages in northern Uganda using a stratified, multi-stage, cluster survey design. Falciparum malaria prevalence (pfPR) was assessed by questionnaire, rapid diagnostic test (RDT) and thick film microscopy (TFM). Weighted pfPR and unadjusted and adjusted associations of prevalence with covariates were calculated using logistic models and survey methods. Based on 1143 children successfully tested, weighted pfPR was 54.8% by RDT and 43.4% by TFM. RDT sensitivity and specificity were 97.5 and 77.8%, respectively, as compared to TFM, because RDT detect malaria antigens, which persist in peripheral blood after clinical malaria, thus results based on RDT are reported. Weighted pfPR increased from 40% in children aged under 2 years to 61.8% in children aged 6-8 years (odds ratio 2.42, 95% confidence interval (CI) 1.26-4.65), then fell slightly to 49% in those aged 12-15 years. Geometric mean parasite density was 1805.5 parasites/µL (95% CI 1344.6-2424.3) among TFM-positive participants, and it was higher in children aged <5 years at 5092.9/µL (95% CI 2892.7-8966.8) and lower in those aged ≥10 years at 983.8/µL (95% CI 472.7-2047.4; P = 0.001). Weighted pfPR was lower in children residing in sub-regions employing indoor residual spraying (IRS) than in those residing in non-IRS sub-regions (32.8 versus 65.7%; OR 0.26, 95% CI 0.14, 0.46). However, pfPR varied both within IRS (3.2-55.3%) and non-IRS sub-regions (29.8-75.8%; Pheterogeneity <0.001). pfPR was inversely correlated with a child's mother's income (P = 0.011) and positively correlated

  8. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria.

    PubMed

    Happi, C T; Gbotosho, G O; Folarin, O A; Sowunmi, A; Hudson, T; O'Neil, M; Milhous, W; Wirth, D F; Oduola, A M J

    2009-03-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca(2+) ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P < 0.00001) with treatment failures and was selected for among posttreatment samples obtained from patients with newly acquired or recrudescing infections (P < 0.00001; chi(2) = 36.5) and in gametocytes (log rank statistic = 5; P = 0.0253) after treatment with AL. All pre- and posttreatment samples as well as gametocytes harbored a single copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa.

  9. Haemolytic anaemia in an HIV-infected patient with severe falciparum malaria after treatment with oral artemether-lumefantrine.

    PubMed

    Corpolongo, Angela; De Nardo, Pasquale; Ghirga, Piero; Gentilotti, Elisa; Bellagamba, Rita; Tommasi, Chiara; Paglia, Maria Grazia; Nicastri, Emanuele; Narciso, Pasquale

    2012-03-27

    Intravenous (i.v.) artesunate is now the recommended first-line treatment of severe falciparum malaria in adults and children by WHO guidelines. Nevertheless, several cases of haemolytic anaemia due to i.v. artesunate treatment have been reported. This paper describes the case of an HIV-infected patient with severe falciparum malaria who was diagnosed with haemolytic anaemia after treatment with oral artemether-lumefantrine.The patient presented with fever, headache, and arthromyalgia after returning from Central African Republic where he had been working. The blood examination revealed acute renal failure, thrombocytopaenia and hypoxia. Blood for malaria parasites indicated hyperparasitaemia (6%) and Plasmodium falciparum infection was confirmed by nested-PCR. Severe malaria according to the laboratory WHO criteria was diagnosed. A treatment with quinine and doxycycline for the first 12 hours was initially administered, followed by arthemeter/lumefantrine (Riamet(®)) for a further three days. At day 10, a diagnosis of severe haemolytic anaemia was made (Hb 6.9 g/dl, LDH 2071 U/l). Hereditary and autoimmune disorders and other infections were excluded through bone marrow aspiration, total body TC scan and a wide panel of molecular and serologic assays. The patient was treated by transfusion of six units of packed blood red cell. He was discharged after complete remission at day 25. At present, the patient is in a good clinical condition and there is no evidence of haemolytic anaemia recurrence.This is the first report of haemolytic anaemia probably associated with oral artemether/lumefantrine. Further research is warranted to better define the adverse events occurring during combination therapy with artemisinin derivatives.

  10. Artemether–lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Ehrhardt, Stephan; Meyer, Christian G

    2009-01-01

    The World Health Organization strongly recommends artemisinin-based combination therapy (ACT) regimens for the treatment of uncomplicated Plasmodium falciparum malaria cases in endemic areas. Among the combinations of compounds that are available at present, excellent results have been obtained for the artemisinin derivative artemether, in a combination galenic preparation with lumefantrine (artemether–lumefantrine, AL). Here, the pharmacological properties and the therapeutic options of both substances are briefly reviewed and a cursory overview is given on recent trials that have compared the therapeutic effects of AL in the standard 6-dose regimen with other antimalarials and combinations. In order to ensure the most achievable and reliable adherence and compliance of children in the treatment of malaria, a dispersible formulation of AL is now attainable. Recent reports on the emergence of resistance to ACT regimens in Asia, however, are alarming. PMID:19851528

  11. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination

    PubMed Central

    Bousema, Teun; Drakeley, Chris

    2011-01-01

    Summary: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed. PMID:21482730

  12. Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission

    PubMed Central

    Gomes, Fabio M.; Hixson, Bretta L.; Tyner, Miles D. W.; Ramirez, Jose Luis; Canepa, Gaspar E.; Alves e Silva, Thiago Luiz; Molina-Cruz, Alvaro; Keita, Moussa; Kane, Fouseyni; Traoré, Boïssé; Sogoba, Nafomon; Barillas-Mury, Carolina

    2017-01-01

    A naturally occurring Wolbachia strain (wAnga-Mali) was identified in mosquitoes of the Anopheles gambiae complex collected in the Malian villages of Dangassa and Kenieroba. Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains from supergroup A and has the highest homology to a Wolbachia strain isolated from cat fleas (Ctenocephalides). wAnga-Mali is different from two Wolbachia strains previously reported in A. gambiae from Burkina Faso (wAnga_VK5_STP and wAnga_VK5_3.1a). Quantitative analysis of Wolbachia and Plasmodium sporozoite infection in field-collected mosquitoes indicates that the prevalence and intensity of Plasmodium falciparum sporozoite infection is significantly lower in Wolbachia-infected females. The presence of Wolbachia in females from a laboratory Anopheles coluzzii (A. gambiae, M form) colony experimentally infected with P. falciparum (NF54 strain) gametocyte cultures slightly enhanced oocyst infection. However, Wolbachia infection significantly reduced the prevalence and intensity of sporozoite infection, as observed in the field. This indicates that wAnga-Mali infection does not limit early stages of Plasmodium infection in the mosquito, but it has a strong deleterious effect on sporozoites and reduces malaria transmission. PMID:29114059

  13. Leukogram Profile and Clinical Status in vivax and falciparum Malaria Patients from Colombia

    PubMed Central

    Tobón-Castaño, Alberto; Mesa-Echeverry, Esteban; Miranda-Arboleda, Andrés Felipe

    2015-01-01

    Introduction. Hematological alterations are frequent in malaria patients; the relationship between alterations in white blood cell counts and clinical status in malaria is not well understood. In Colombia, with low endemicity and unstable transmission for malaria, with malaria vivax predominance, the hematologic profile in malaria patients is not well characterized. The aim of this study was to characterize the leukogram in malaria patients and to analyze its alterations in relation to the clinical status. Methods. 888 leukogram profiles of malaria patients from different Colombian regions were studied: 556 with P. falciparum infection (62.6%), 313 with P. vivax infection (35.2%), and 19 with mixed infection by these species (2.1%). Results. Leukocyte counts at diagnosis were within normal range in 79% of patients and 18% had leucopenia; the most frequent alteration was lymphopenia (54%) followed by monocytosis (11%); the differential granulocyte count in 298 patients revealed eosinophilia (15%) and high basophil counts (8%). Leukocytosis, eosinopenia, and neutrophilia were associated with clinical complications. The utility of changes in leukocyte counts as markers of severity should be explored in depth. A better understanding of these hematological parameters will allow their use in prompt diagnosis of malaria complications and monitoring treatment response. PMID:26664413

  14. Malaria epidemic and drug resistance, Djibouti.

    PubMed

    Rogier, Christophe; Pradines, Bruno; Bogreau, H; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-02-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  15. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study.

    PubMed

    Degarege, Abraham; Legesse, Mengistu; Medhin, Girmay; Animut, Abebe; Erko, Berhanu

    2012-11-09

    The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio for being infected with non

  16. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study

    PubMed Central

    2012-01-01

    Background The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. Methods A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Results Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio

  17. Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission.

    PubMed

    Rice, Benjamin L; Golden, Christopher D; Anjaranirina, Evelin Jean Gasta; Botelho, Carolina Mastella; Volkman, Sarah K; Hartl, Daniel L

    2016-12-20

    Encouraging advances in the control of Plasmodium falciparum malaria have been observed across much of Africa in the past decade. However, regions of high relative prevalence and transmission that remain unaddressed or unrecognized provide a threat to this progress. Difficulties in identifying such localized hotspots include inadequate surveillance, especially in remote regions, and the cost and labor needed to produce direct estimates of transmission. Genetic data can provide a much-needed alternative to such empirical estimates, as the pattern of genetic variation within malaria parasite populations is indicative of the level of local transmission. Here, genetic data were used to provide the first empirical estimates of P. falciparum malaria prevalence and transmission dynamics for the rural, remote Makira region of northeastern Madagascar. Longitudinal surveys of a cohort of 698 total individuals (both sexes, 0-74 years of age) were performed in two communities bordering the Makira Natural Park protected area. Rapid diagnostic tests, with confirmation by molecular methods, were used to estimate P. falciparum prevalence at three seasonal time points separated by 4-month intervals. Genomic loci in a panel of polymorphic, putatively neutral markers were genotyped for 94 P. falciparum infections and used to characterize genetic parameters known to correlate with transmission levels. Overall, 27.8% of individuals tested positive for P. falciparum over the 10-month course of the study, a rate approximately sevenfold higher than the countrywide average for Madagascar. Among those P. falciparum infections, a high level of genotypic diversity and a high frequency of polygenomic infections (68.1%) were observed, providing a pattern consistent with high and stable transmission. Prevalence and genetic diversity data indicate that the Makira region is a hotspot of P. falciparum transmission in Madagascar. This suggests that the area should be highlighted for future

  18. Malaria in Wanokaka and Loli sub-districts, West Sumba District, East Nusa Tenggara Province, Indonesia.

    PubMed

    Syafruddin, Din; Asih, Puji B S; Coutrier, Farah N; Trianty, Leily; Noviyanti, Rintis; Luase, Yaveth; Sumarto, Wajiyo; Caley, Marten; van der Ven, Andre J A M; Sauerwein, Robert W

    2006-05-01

    Malaria has long been known as one of the major public health problems in West Sumba District, East Nusa Tenggara Province, Indonesia. To obtain baseline data for establishment of a suitable malaria control program in the area, malariometric surveys were conducted in two sub-districts, Wanokaka and Loli, during the periods of January, May, and August 2005. The survey included three selected villages in each sub-district, and blood smear analyses of 701, 921, and 894 randomly selected subjects in January, May, and August revealed 30.5%, 25.3%, and 28.2% malaria positives, respectively, consisting mainly of Plasmodium falciparum and P. vivax, and in a few cases, P. malariae. Analysis of malaria prevalence at different age groups clearly reflected the common phenomenon that younger individuals are more vulnerable by infection of either P. falciparum or P. vivax. In falciparum malaria, the frequency of cases carrying gametocytes was also relatively high involving all age groups. The findings indicate that the malaria incidence and transmission in the area are relatively high and that further exploration is warranted to establish a precise malaria control program.

  19. Plasmodium falciparum Genetic Diversity in Bangladesh Does Not Suggest a Hypoendemic Population Structure

    PubMed Central

    Alam, Mohammad Shafiul; Elahi, Rubayet; Mohon, Abu Naser; Al-Amin, Hasan Mohammad; Kibria, Mohammad Golam; Khan, Wasif A.; Khanum, Hamida; Haque, Rashidul

    2016-01-01

    Despite the recommendation for the use of merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2), and glutamate-rich protein (glurp) genes as markers in drug efficacy studies by World Health Organization and their limited use in Bangladesh, the circulating Plasmodium falciparum population genetic structure has not yet been assessed in Bangladesh. This study presents a comprehensive report on the circulating P. falciparum population structure based on msp1, msp2, and glurp polymorphic gene markers in Bangladesh. Among the 130 pretreatment (day 0) P. falciparum samples from seven malaria-endemic districts, 14 distinct genotypes were observed for msp1, 20 for msp2, and 13 for glurp. Polyclonal infection was reported in 94.6% (N = 123) of the samples. Multiplicity of infection (MOI) for msp1 was the highest (1.5) among the MOIs of the markers. The heterozygosity for msp1, msp2, and glurp was 0.89, 0.93, and 0.83, respectively. Data according to different malaria-endemic areas are also presented and discussed. Bangladesh is considered as a malaria-hypoendemic country. However, the prevalence of polyclonal infection and the genetic diversity of P. falciparum do not represent hypoendemicity. PMID:27139455

  20. Standardizing Plasmodium falciparum infection prevalence measured via microscopy versus rapid diagnostic test.

    PubMed

    Mappin, Bonnie; Cameron, Ewan; Dalrymple, Ursula; Weiss, Daniel J; Bisanzio, Donal; Bhatt, Samir; Gething, Peter W

    2015-11-17

    Large-scale mapping of Plasmodium falciparum infection prevalence relies on opportunistic assemblies of infection prevalence data arising from thousands of P. falciparum parasite rate (PfPR) surveys conducted worldwide. Variance in these data is driven by both signal, the true underlying pattern of infection prevalence, and a range of factors contributing to 'noise', including sampling error, differing age ranges of subjects and differing parasite detection methods. Whilst the former two noise components have been addressed in previous studies, the effect of different diagnostic methods used to determine PfPR in different studies has not. In particular, the majority of PfPR data are based on positivity rates determined by either microscopy or rapid diagnostic test (RDT), yet these approaches are not equivalent; therefore a method is needed for standardizing RDT and microscopy-based prevalence estimates prior to use in mapping. Twenty-five recent Demographic and Health surveys (DHS) datasets from sub-Saharan Africa provide child diagnostic test results derived using both RDT and microscopy for each individual. These prevalence estimates were aggregated across level one administrative zones and a Bayesian probit regression model fit to the microscopy- versus RDT-derived prevalence relationship. An errors-in-variables approach was employed to account for sampling error in both the dependent and independent variables. In addition to the diagnostic outcome, RDT type, fever status and recent anti-malarial treatment were extracted from the datasets in order to analyse their effect on observed malaria prevalence. A strong non-linear relationship between the microscopy and RDT-derived prevalence was found. The results of regressions stratified by the additional diagnostic variables (RDT type, fever status and recent anti-malarial treatment) indicate that there is a distinct and consistent difference in the relationship when the data are stratified by febrile status and RDT

  1. Malaria epidemiology in Lihir Island, Papua New Guinea.

    PubMed

    Mitjà, Oriol; Paru, Raymond; Selve, Billy; Betuela, Inoni; Siba, Peter; De Lazzari, Elisa; Bassat, Quique

    2013-03-15

    Plasmodium vivax and Plasmodium falciparum malaria remain highly endemic in the Pacific Islands including Lihir Island, Papua New Guinea. Lihir Gold Limited is conducting mining activities and funded an integrated vector control intervention within the villages surrounding the mine. The aim of this study was to assess the impact of such programme by comparing the epidemiological trends of malaria in different parts of the island. Two cross-sectional surveys were conducted before and after the intervention (2006-2010) to determine malaria prevalence in mine-impact (MI) and non-MI areas. Incidence of malaria was estimated for the Lihir Medical Centre catchment area using island population denominators and a health-centre passive case detection ongoing from 2006-2011. A total of 2,264 and 1,653 children < 15 were surveyed in the cross-sectional studies. The prevalence of any malaria parasitaemia initially was 31.5% in MI areas and, 34.9% in non-MI (POR 1.17; 95 CI 0.97 - 1.39). After four years there was a significant reduction in prevalence in the MI areas (5.8%; POR 0.13, 95 CI 0.09-0.20), but reduction was less marked in non-MI areas (26.9%; POR 0.69, 95 CI 0.58-0.81).28,747 patients were included in the evaluation of incidence trends and overall malaria in local Lihirian population in MI areas declined over time, while it remained at similar high levels among migrants. The age-incidence analysis showed that for each higher age range the malaria incidence declines compared to that of the previous stratum. There was a substantial reduction in prevalence and incidence rates of both P. vivax and P. falciparum in the mining area following implementation of a malaria control intervention, which was not seen in the area outside the mining activities.

  2. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission.

    PubMed

    Carrasco-Escobar, Gabriel; Miranda-Alban, Julio; Fernandez-Miñope, Carlos; Brouwer, Kimberly C; Torres, Katherine; Calderon, Maritza; Gamboa, Dionicia; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2017-10-16

    The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/μL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with

  3. Prevalence and Clinical Manifestations of Malaria in Aligarh, India

    PubMed Central

    Asma, Umm-e; Taufiq, Farha

    2014-01-01

    Malaria is one of the most widespread infectious diseases of tropical countries with an estimated 207 million cases globally. In India, there are endemic pockets of this disease, including Aligarh. Hundreds of Plasmodium falciparum and P. vivax cases with severe pathological conditions are recorded every year in this district. The aim of this study is to find out changes in liver enzymes and kidney markers. Specific diagnosis for P. falciparum and P. vivax was made by microscopic examination of Giemsa stained slides. Clinical symptoms were observed in both of these infections. Liver enzymes, such as AST, ALT, and ALP, and kidney function markers, such as creatinine and urea, were estimated by standard biochemical techniques. In Aligarh district, P. vivax, P. falciparum, and mixed infections were 64%, 34%, and 2%, respectively. In case of P. falciparum infection, the incidences of anemia, splenomegaly, renal failure, jaundice, and neurological sequelae were higher compared to those in P. vivax infection. Recrudescence and relapse rates were 18% and 20% in P. falciparum and P. vivax infections, respectively. Liver dysfunctions and renal failures were more common in P. falciparum patients, particularly in elderly patients. Artesunate derivatives must, therefore, be introduced for the treatment of P. falciparum as they resist to chloroquine as well as sulfadoxine-pyrimethamine combinations. PMID:25548413

  4. Prevalence and clinical manifestations of malaria in Aligarh, India.

    PubMed

    Asma, Umm-e; Taufiq, Farha; Khan, Wajihullah

    2014-12-01

    Malaria is one of the most widespread infectious diseases of tropical countries with an estimated 207 million cases globally. In India, there are endemic pockets of this disease, including Aligarh. Hundreds of Plasmodium falciparum and P. vivax cases with severe pathological conditions are recorded every year in this district. The aim of this study is to find out changes in liver enzymes and kidney markers. Specific diagnosis for P. falciparum and P. vivax was made by microscopic examination of Giemsa stained slides. Clinical symptoms were observed in both of these infections. Liver enzymes, such as AST, ALT, and ALP, and kidney function markers, such as creatinine and urea, were estimated by standard biochemical techniques. In Aligarh district, P. vivax, P. falciparum, and mixed infections were 64%, 34%, and 2%, respectively. In case of P. falciparum infection, the incidences of anemia, splenomegaly, renal failure, jaundice, and neurological sequelae were higher compared to those in P. vivax infection. Recrudescence and relapse rates were 18% and 20% in P. falciparum and P. vivax infections, respectively. Liver dysfunctions and renal failures were more common in P. falciparum patients, particularly in elderly patients. Artesunate derivatives must, therefore, be introduced for the treatment of P. falciparum as they resist to chloroquine as well as sulfadoxine-pyrimethamine combinations.

  5. Pharmacokinetic properties of intramuscular versus oral syrup paracetamol in Plasmodium falciparum malaria.

    PubMed

    Wattanakul, Thanaporn; Teerapong, Pramote; Plewes, Katherine; Newton, Paul N; Chierakul, Wirongrong; Silamut, Kamolrat; Chotivanich, Kesinee; Ruengweerayut, Ronnatrai; White, Nicholas J; Dondorp, Arjen M; Tarning, Joel

    2016-04-27

    Fever is an inherent symptom of malaria in both adults and children. Paracetamol (acetaminophen) is the recommended antipyretic as it is inexpensive, widely available and has a good safety profile, but patients may not be able to take the oral drug reliably. A comparison between the pharmacokinetics of oral syrup and intramuscular paracetamol given to patients with acute falciparum malaria and high body temperature was performed. A randomized, open-label, two-treatment, crossover, pharmacokinetic study of paracetamol dosed orally and intramuscularly was conducted. Twenty-one adult patients with uncomplicated falciparum malaria were randomized to receive a single 600 mg dose of paracetamol either as syrup or intramuscular injection on day 0 followed by a single dose administered by the alternative route on day 1. Paracetamol plasma concentrations were quantified frequently and modelled simultaneously using nonlinear mixed-effects modelling. The final population pharmacokinetic model was used for dose optimization simulations. Relationships between paracetamol concentrations with temperature and parasite half-life were investigated using linear and non-linear regression analyses. The population pharmacokinetic properties of paracetamol were best described by a two-compartment disposition model, with zero-order and first-order absorption for intramuscular and oral syrup administration, respectively. The relative bioavailability of oral syrup was 84.4 % (95 % CI 68.2-95.1 %) compared to intramuscular administration. Dosing simulations showed that 1000 mg of intramuscular or oral syrup administered six-hourly reached therapeutic steady state concentrations for antipyresis, but more favourable concentration-time profiles were achieved with a loading dose of 1500 mg, followed by a 1000 mg maintenance dose. This ensured that maximum therapeutic concentrations were reached rapidly during the first 6 h. No significant relationships between paracetamol concentrations

  6. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    PubMed Central

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  7. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    PubMed

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both

  8. Coma in fatal adult human malaria is not caused by cerebral oedema

    PubMed Central

    2011-01-01

    Background The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. Methods The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. Results The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Conclusions Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria

  9. Coma in fatal adult human malaria is not caused by cerebral oedema.

    PubMed

    Medana, Isabelle M; Day, Nicholas P J; Sachanonta, Navakanit; Mai, Nguyen T H; Dondorp, Arjen M; Pongponratn, Emsri; Hien, Tran T; White, Nicholas J; Turner, Gareth D H

    2011-09-17

    The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water

  10. Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area.

    PubMed

    Li, Peipei; Zhao, Zhenjun; Xing, Hua; Li, Wenli; Zhu, Xiaotong; Cao, Yaming; Yang, Zhaoqing; Sattabongkot, Jetsumon; Yan, Guiyun; Fan, Qi; Cui, Liwang

    2016-11-15

    The Greater Mekong Subregion is aiming to achieve regional malaria elimination by 2030. Though a shift in malaria parasite species predominance by Plasmodium vivax has been recently documented, the transmission of the two minor Plasmodium species, Plasmodium malariae and Plasmodium ovale spp., is poorly characterized in the region. This study aims to determine the prevalence of these minor species in the China-Myanmar border area and their genetic diversity. Epidemiology study was conducted during passive case detection in hospitals and clinics in Myanmar and four counties in China along the China-Myanmar border. Cross-sectional surveys were conducted in villages and camps for internally displaced persons to determine the prevalence of malaria infections. Malaria infections were diagnosed initially by microscopy and later in the laboratory using nested PCR for the SSU rRNA genes. Plasmodium malariae and P. ovale infections were confirmed by sequencing the PCR products. The P. ovale subtypes were determined by sequencing the Pocytb, Pocox1 and Pog3p genes. Parasite populations were evaluated by PCR amplification and sequencing of the MSP-1 genes. Antifolate sensitivity was assessed by sequencing the dhfr-ts and dhps genes from the P. malariae and P. ovale isolates. Analysis of 2701 blood samples collected from the China-Myanmar border by nested PCR targeting the parasite SSU rRNA genes identified 561 malaria cases, including 161 Plasmodium falciparum, 327 P. vivax, 66 P. falciparum/P. vivax mixed infections, 4 P. malariae and 3 P. ovale spp. P. vivax and P. falciparum accounted for >60 and ~30% of all malaria cases, respectively. In comparison, the prevalence of P. malariae and P. ovale spp. was very low and only made up ~1% of all PCR-positive cases. Nevertheless, these two species were often misidentified as P. vivax infections or completely missed by microscopy even among symptomatic patients. Phylogenetic analysis of the SSU rRNA, Pocytb, Pocox1 and Pog3p genes

  11. Malaria Epidemic and Drug Resistance, Djibouti

    PubMed Central

    Pradines, Bruno; Bogreau, H.; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-01-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations. PMID:15752455

  12. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria

    PubMed Central

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2009-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P < 0.00001) with treatment failures and was selected for among posttreatment samples obtained from patients with newly acquired or recrudescing infections (P < 0.00001; χ2 = 36.5) and in gametocytes (log rank statistic = 5; P = 0.0253) after treatment with AL. All pre- and posttreatment samples as well as gametocytes harbored a single copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa. PMID:19075074

  13. Co-infections of malaria and geohelminthiasis in two rural communities of Nkassomo and Vian in the Mfou health district, Cameroon.

    PubMed

    Zeukeng, Francis; Tchinda, Viviane Hélène Matong; Bigoga, Jude Daiga; Seumen, Clovis Hugues Tiogang; Ndzi, Edward Shafe; Abonweh, Géraldine; Makoge, Valérie; Motsebo, Amédée; Moyou, Roger Somo

    2014-10-01

    Human co-infection with malaria and helmimths is ubiquitous throughout Africa. Nevertheless, its public health significance on malaria severity remains poorly understood. To contribute to a better understanding of epidemiology and control of this co-infection in Cameroon, a cross-sectional study was carried out to assess the prevalence of concomitant intestinal geohelminthiasis and malaria, and to evaluate its association with malaria and anaemia in Nkassomo and Vian. Finger prick blood specimens from a total of 263 participants aged 1-95 years were collected for malaria microscopy, assessment of haemoglobin levels, and molecular identification of Plasmodium species by PCR. Fresh stool specimens were also collected for the identification and quantification of geohelminths by the Kato-Katz method. The prevalence of malaria, geohelminths, and co-infections were 77.2%, 28.6%, and 22.1%, respectively. Plasmodium falciparum was the only malaria parasite species identified with mean parasite density of 111 (40; 18,800) parasites/µl of blood. The geohelminths found were Ascaris lumbricoides (21.6%) and Trichuris trichiura (10.8%), with mean parasite densities of 243 (24; 3,552) and 36 (24; 96) eggs/gram of faeces, respectively. Co-infections of A. lumbricoides and P. falciparum were the most frequent and correlated positively. While no significant difference was observed on the prevalences of single and co-infections between the two localities, there was a significant difference in the density of A. lumbricoides infection between the two localities. The overall prevalence of anaemia was 42%, with individuals co-infected with T. trichiura and P. falciparum (60%) being the most at risk. While the prevalence of malaria and anaemia were inversely related to age, children aged 5-14 years were more susceptible to geohelminthiasis and their co-infections with malaria. Co-existence of geohelminths and malaria parasites in Nkassomo and Vian enhances the occurrence of co

  14. Phase II trial in China of a new, rapidly-acting and effective oral antimalarial, CGP 56697, for the treatment of Plasmodium falciparum malaria.

    PubMed

    Jiao, X; Liu, G Y; Shan, C O; Zhao, X; Li, X W; Gathmann, I; Royce, C

    1997-09-01

    One hundred and two Chinese out-patients with naturally acquired, previously untreated, falciparum malaria were selected to evaluate the efficacy of a new combination anti-malaria therapy, CGP 56697 (artemether plus benflumetol). In this open non-comparative trial each patient received a combination of 80 mg artemether and 480 mg benflumetol given orally at 0, 8, 24 and 48 hours (total: 320 mg artemether, 1,920 mg benflumetol). Patients were kept for 28 days in a transmission-free hospital in an area with chloroquine resistant falciparum malaria to prevent reinfection and to aid diagnosis of recrudescence. Progress and possible adverse effects were monitored by blood film parasitology, blood biochemistry assays, urinalysis, ECG and X-ray. Ninety-eight of the 102 patients were shown to be free of infection at 28 days, a 96.1% cure rate. Parasite reduction at 24 hours was 99.4%. Time to effect complete parasite clearance ranged from 24 to 54 hours (median 30 hours). Time for fever clearance ranged from 6 to 78 hours (median 18 hours). Recrudescence was low (3.9%). No significant adverse side-effects were encountered. It is concluded that CGP 56697, a combination anti-malaria therapy of artemether with benflumetol, offered a rapid and highly effective treatment for acute uncomplicated falciparum malaria in an area of chloroquine-resistant malaria in China.

  15. Prevalence and risk factors of malaria among children in southern highland Rwanda.

    PubMed

    Gahutu, Jean-Bosco; Steininger, Christian; Shyirambere, Cyprien; Zeile, Irene; Cwinya-Ay, Neniling; Danquah, Ina; Larsen, Christoph H; Eggelte, Teunis A; Uwimana, Aline; Karema, Corine; Musemakweri, Andre; Harms, Gundel; Mockenhaupt, Frank P

    2011-05-18

    Increased control has produced remarkable reductions of malaria in some parts of sub-Saharan Africa, including Rwanda. In the southern highlands, near the district capital of Butare (altitude, 1,768 m), a combined community-and facility-based survey on Plasmodium infection was conducted early in 2010. A total of 749 children below five years of age were examined including 545 randomly selected from 24 villages, 103 attending the health centre in charge, and 101 at the referral district hospital. Clinical, parasitological, haematological, and socio-economic data were collected. Plasmodium falciparum infection (mean multiplicity, 2.08) was identified by microscopy and PCR in 11.7% and 16.7%, respectively; 5.5% of the children had malaria. PCR-based P. falciparum prevalence ranged between 0 and 38.5% in the villages, and was 21.4% in the health centre, and 14.9% in the hospital. Independent predictors of infection included increasing age, low mid-upper arm circumference, absence of several household assets, reported recent intake of artemether-lumefantrine, and chloroquine in plasma, measured by ELISA. Self-reported bed net use (58%) reduced infection only in univariate analysis. In the communities, most infections were seemingly asymptomatic but anaemia was observed in 82% and 28% of children with and without parasitaemia, respectively, the effect increasing with parasite density, and significant also for submicroscopic infections. Plasmodium falciparum infection in the highlands surrounding Butare, Rwanda, is seen in one out of six children under five years of age. The abundance of seemingly asymptomatic infections in the community forms a reservoir for transmission in this epidemic-prone area. Risk factors suggestive of low socio-economic status and insufficient effectiveness of self-reported bed net use refer to areas of improvable intervention.

  16. Haemolytic anaemia in an HIV-infected patient with severe falciparum malaria after treatment with oral artemether-lumefantrine

    PubMed Central

    2012-01-01

    Intravenous (i.v.) artesunate is now the recommended first-line treatment of severe falciparum malaria in adults and children by WHO guidelines. Nevertheless, several cases of haemolytic anaemia due to i.v. artesunate treatment have been reported. This paper describes the case of an HIV-infected patient with severe falciparum malaria who was diagnosed with haemolytic anaemia after treatment with oral artemether-lumefantrine. The patient presented with fever, headache, and arthromyalgia after returning from Central African Republic where he had been working. The blood examination revealed acute renal failure, thrombocytopaenia and hypoxia. Blood for malaria parasites indicated hyperparasitaemia (6%) and Plasmodium falciparum infection was confirmed by nested-PCR. Severe malaria according to the laboratory WHO criteria was diagnosed. A treatment with quinine and doxycycline for the first 12 hours was initially administered, followed by arthemeter/lumefantrine (Riamet®) for a further three days. At day 10, a diagnosis of severe haemolytic anaemia was made (Hb 6.9 g/dl, LDH 2071 U/l). Hereditary and autoimmune disorders and other infections were excluded through bone marrow aspiration, total body TC scan and a wide panel of molecular and serologic assays. The patient was treated by transfusion of six units of packed blood red cell. He was discharged after complete remission at day 25. At present, the patient is in a good clinical condition and there is no evidence of haemolytic anaemia recurrence. This is the first report of haemolytic anaemia probably associated with oral artemether/lumefantrine. Further research is warranted to better define the adverse events occurring during combination therapy with artemisinin derivatives. PMID:22453057

  17. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children.

    PubMed

    Chan, Jo-Anne; Stanisic, Danielle I; Duffy, Michael F; Robinson, Leanne J; Lin, Enmoore; Kazura, James W; King, Christopher L; Siba, Peter M; Fowkes, Freya Ji; Mueller, Ivo; Beeson, James G

    2017-12-01

    Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Evaluation of malaria rapid diagnostic test Optimal-IT® pLDH along the Plasmodium falciparum distribution limit in Mauritania].

    PubMed

    Ba, H; Ahouidi, A D; Duffy, C W; Deh, Y B; Diedhiou, C; Tandia, A; Diallo, M Y; Assefa, S; Lô, B B; Elkory, M B; Conway, D J

    2017-02-01

    Performance of the malaria Rapid Diagnostic Test (RDT) OptiMal-IT® was evaluated in Mauritania where malaria is low and dependent on a short transmission season. Slide microscopy was considered as the reference method of diagnosis. Febrile patients with suspected malaria were recruited from six health facilities, 3 urban and 3 rural, during two periods (December 2011 to February 2012, and August 2012 to March 2013). Overall, 780 patients were sampled, with RDT and thick blood film microscopy results being obtained for 759 of them. Out of 774 slides examined, of which 200 were positive, P. falciparum and P. vivax mono-infections were detected in 63.5% (127) and 29.5% (59), while P. falciparum/P. vivax coinfections were detected in 7% (14). Both species were observed in all study sites, although in significantly different proportions. The proportions of thick blood film and OptiMal-IT® RDT positive individuals was 26.3% and 30.3% respectively. Sensitivity and specificity of OptiMal-IT® RDT were 89% [95% CI, 84.7-93.3] and 91.1% [88.6-93.4]. Positives and negative predictive values were 78.1% [72.2-83.7] and 95.9% [94.1-97.5]. These diagnostic values are similar to those generally reported elsewhere, and support the use of RDTs as the main diagnostic tool for malaria in Mauritanian health facilities. In the future, choice of RDTs to be used must take account of thermostability in a hot, dry environment and their ability to detect P. falciparum and P. vivax.

  19. Novel pfdhps Haplotypes among Imported Cases of Plasmodium falciparum Malaria in the United Kingdom ▿

    PubMed Central

    Sutherland, Colin J.; Fifer, Helen; Pearce, Richard J.; bin Reza, Faisal; Nicholas, Meredydd; Haustein, Thomas; Njimgye-Tekumafor, Njah E.; Doherty, Justin F.; Gothard, Philip; Polley, Spencer D.; Chiodini, Peter L.

    2009-01-01

    Treatment of acute malaria caused by Plasmodium falciparum may include long-half-life drugs, such as the antifolate combination sulfadoxine-pyrimethamine (SP), to provide posttreatment chemoprophylaxis against parasite recrudescence or delayed emergence from the liver. An unusual case of P. falciparum recrudescence in a returned British traveler who received such a regimen, as well as a series of 44 parasite isolates from the same hospital, was analyzed by PCR and direct DNA sequencing for the presence of markers of parasite resistance to chloroquine and antifolates. The index patient harbored a mixture of wild-type and resistant pfdhfr and pfdhps alleles upon initial presentation. During his second malaria episode, he harbored only resistant parasites, with the haplotypes IRNI (codons 51, 59, 108, and 164) and SGEAA (codons 436, 437, 540, 581, and 613) at these two loci, respectively. Analysis of isolates from 44 other patients showed that the pfdhfr haplotype IRNI was common (found in 81% of cases). The SGEAA haplotype of pfdhps was uncommon (found only in eight cases of East African origin [17%]). A previously undescribed mutation, I431V, was observed for seven cases of Nigerian origin, occurring as one of two haplotypes, VAGKGS or VAGKAA. The presence of this mutation was also confirmed in isolates of Nigerian origin from the United Kingdom Malaria Reference Laboratory. The presence of the pfdhps haplotype SGEAA in P. falciparum parasites of East African origin appears to compromise the efficacy of treatment regimens that include SP as a means to prevent recrudescence. Parasites with novel pfdhps haplotypes are circulating in West Africa. The response of these parasites to chemotherapy needs to be evaluated. PMID:19433569

  20. An investigation of the protective effect of alpha+-thalassaemia against severe Plasmodium falciparum amongst children in Kumasi, Ghana.

    PubMed

    Opoku-Okrah, C; Gordge, M; Kweku Nakua, E; Abgenyega, T; Parry, M; Robertson, C; Smith, C L

    2014-02-01

    Several factors influence the severity of Plasmodium falciparum; here, we investigate the impact of alpha+-thalassaemia genotype on P. falciparum parasitemia and prevalence of severe anaemia amongst microcytic children from Kumasi, Ghana. Seven hundred and thirty-two children (≤10 years) with P. falciparum were categorised into normocytic and microcytic (mean cell volume ≤76 fL). Microcytic individuals were genotyped for the -α(3.7) deletional thalassaemia mutation and parasite densities determined. Amongst microcytic patients both parasite densities and prevalence of severe malaria parasitemia (≥100 000/μL) were significantly lower (P < 0.001) in the presence of an alpha+-thalassaemia genotype compared with non-alpha+-thalassaemia genotype. There was no evidence that alpha+-thalassaemia protected against severe anaemia. The protection conferred by alpha-thalassaemia genotype against severe P. falciparum parasitemia did not change with increasing age. The severity of P. falciparum parasitemia was significantly lower in both the homozygous and heterozygous alpha+-thalassaemia groups compared with microcytic individuals with non-alpha+-thalassaemia genotype. The protective effect, from severe malaria, of the alpha+-thalassaemia allele does not alter with age. © 2013 John Wiley & Sons Ltd.

  1. Malaria Hotspots Drive Hypoendemic Transmission in the Chittagong Hill Districts of Bangladesh

    PubMed Central

    Ahmed, Sabeena; Galagan, Sean; Scobie, Heather; Khyang, Jacob; Prue, Chai Shwai; Khan, Wasif Ali; Ram, Malathi; Alam, Mohammad Shafiul; Haq, M. Zahirul; Akter, Jasmin; Glass, Gregory; Norris, Douglas E.; Nyunt, Myaing Myaing; Shields, Timothy; Sullivan, David J.; Sack, David A.

    2013-01-01

    Background Malaria is endemic in 13 of 64 districts of Bangladesh, representing a population at risk of about 27 million people. The highest rates of malaria in Bangladesh occur in the Chittagong Hill Districts, and Plasmodium falciparum (predominately chloroquine resistant) is the most prevalent species. Methods The objective of this research was to describe the epidemiology of symptomatic P. falciparum malaria in an area of Bangladesh following the introduction of a national malaria control program. We carried out surveillance for symptomatic malaria due to P. falciparum in two demographically defined unions of the Chittagong Hill Districts in Bangladesh, bordering western Myanmar, between October 2009 and May 2012. The association between sociodemographics and temporal and climate factors with symptomatic P. falciparum infection over two years of surveillance data was assessed. Risk factors for infection were determined using a multivariate regression model. Results 472 cases of symptomatic P. falciparum malaria cases were identified among 23,372 residents during the study period. Greater than 85% of cases occurred during the rainy season from May to October, and cases were highly clustered geographically within these two unions with more than 80% of infections occurring in areas that contain approximately one-third of the total population. Risk factors statistically associated with infection in a multivariate logistic regression model were living in the areas of high incidence, young age, and having an occupation including jhum cultivation and/or daily labor. Use of long lasting insecticide-treated bed nets was high (89.3%), but its use was not associated with decreased incidence of infection. Conclusion Here we show that P. falciparum malaria continues to be hypoendemic in the Chittagong Hill Districts of Bangladesh, is highly seasonal, and is much more common in certain geographically limited hot spots and among certain occupations. PMID:23936345

  2. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings

    PubMed Central

    2011-01-01

    Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%), with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1%) were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15%) schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection were identified within

  3. A Large Proportion of P. falciparum Isolates in the Amazon Region of Peru Lack pfhrp2 and pfhrp3: Implications for Malaria Rapid Diagnostic Tests

    PubMed Central

    Gamboa, Dionicia; Ho, Mei-Fong; Bendezu, Jorge; Torres, Katherine; Chiodini, Peter L.; Barnwell, John W.; Incardona, Sandra; Perkins, Mark; Bell, David; McCarthy, James; Cheng, Qin

    2010-01-01

    Background Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes. Methods Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru. Findings Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes. Conclusions This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries

  4. Investigation of pregnancy-associated malaria by microscopy, rapid diagnostic test and PCR in Bandundu, the Democratic Republic of Congo.

    PubMed

    Ruh, Emrah; Bateko, Jean Paul; Imir, Turgut; Taylan-Ozkan, Aysegul

    2018-01-01

    The study was conducted to investigate malaria prevalence among a group of women in the Democratic Republic of Congo (DRC) who received intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP). A total of 250 women from Bandundu city who received two doses of IPTp-SP were enrolled in the survey. Blood samples were collected at the time of delivery and malaria prevalence was determined using microscopy, rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR). Malaria infection was detected in 81 (32.4%), 93 (37.2%), and 92 (36.8%) samples by microscopy, RDT, and PCR, respectively. Among 92 samples, P. falciparum mono-infection (n=87; 94.5%), P. falciparum+P. vivax (n=2; 2.2%) and P. falciparum+P. malariae (n=1; 1.1%) mixed infections, and P. vivax mono-infection (n=2; 2.2%) were detected. Prevalence of malaria was not affected by age and number of pregnancies (p>0.05). Microscopy and RDT, either alone (κ=0.29; p<0.001) or in combination (κ=0.33; p<0.001) showed a fair agreement with PCR. Our findings indicate that two doses of IPTp-SP did not protect the women against malaria in the DRC, and support the World Health Organization (WHO) guidelines that ensure a minimum of three doses of SP in pregnancy.

  5. Characterization of asymptomatic Plasmodium falciparum infection and its risk factors in pregnant women from the Republic of Congo.

    PubMed

    Francine, Ntoumi; Damien, Bakoua; Anna, Fesser; Michael, Kombo; Christevy, Vouvoungui J; Felix, Koukouikila-Koussounda

    2016-01-01

    Malaria in pregnancy remains a serious public health problem in the Republic of Congo despite the implementation of intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) in 2006. The aim of this cross-sectional study was to characterize Plasmodium falciparum infections and determine possible risk factors in pregnant Congolese women attending an antenatal clinic in a periurban area of southern Brazzaville. This study was conducted from March 2012 to December 2013 in a site where several years ago, high malaria resistance to SP was reported. Pregnant women were enrolled during antenatal visits and the number of received IPTp-SP doses was recorded as well as individual sociodemographic data. Peripheral blood was collected and P. falciparum infection was checked by microscopy and by PCR targeting P. falciparum merozoite surface protein gene (msp2). Haemoglobin concentration was measured and P. falciparum positive samples were typed for msp2 allelic diversity. A total of 363 pregnant women were recruited. The prevalence of asymptomatic P. falciparum infection was 7% and 19% by microscopy and by PCR, respectively. More than one half (51.5%) of the pregnant women were anaemic. Multivariate analysis indicated that P. falciparum infection was associated with anaemia. It was also observed that women who have received IPTp-SP have significantly lower prevalence of infection. The administration of IPTp-SP did not influence the multiplicity of infection (MOI). This first study investigating asymptomatic malaria infection on pregnant women of the Republic of Congo shows that P. falciparum infections were clearly associated with maternal anaemia, and use of IPTp-SP reduced the risk of carrying asymptomatic infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

    PubMed

    Talundzic, Eldin; Chenet, Stella M; Goldman, Ira F; Patel, Dhruviben S; Nelson, Julia A; Plucinski, Mateusz M; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-01

    Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.

  7. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda.

    PubMed

    Ocan, Moses; Bwanga, Freddie; Okeng, Alfred; Katabazi, Fred; Kigozi, Edgar; Kyobe, Samuel; Ogwal-Okeng, Jasper; Obua, Celestino

    2016-08-19

    In the absence of an effective vaccine, malaria treatment and eradication is still a challenge in most endemic areas globally. This is especially the case with the current reported emergence of resistance to artemisinin agents in Southeast Asia. This study therefore explored the prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites in northern Uganda. Adult patients (≥18 years) presenting to out-patients department of Lira and Gulu regional referral hospitals in northern Uganda were randomly recruited. Laboratory investigation for presence of plasmodium infection among patients was done using Plasmodium falciparum exclusive rapid diagnostic test, histidine rich protein-2 (HRP2) (Pf). Finger prick capillary blood from patients with a positive malaria test was spotted on a filter paper Whatman no. 903. The parasite DNA was extracted using chelex resin method and sequenced for mutations in K13-propeller gene using Sanger sequencing. PCR DNA sequence products were analyzed using in DNAsp 5.10.01software, data was further processed in Excel spreadsheet 2007. A total of 60 parasite DNA samples were sequenced. Polymorphisms in the K13-propeller gene were detected in four (4) of the 60 parasite DNA samples sequenced. A non-synonymous polymorphism at codon 533 previously detected in Cambodia was found in the parasite DNA samples analyzed. Polymorphisms at codon 522 (non-synonymous) and codon 509 (synonymous) were also found in the samples analyzed. The study found evidence of positive selection in the Plasmodium falciparum population in northern Uganda (Tajima's D = -1.83205; Fu and Li's D = -1.82458). Polymorphism in the K13-propeller gene previously reported in Cambodia has been found in the Ugandan Plasmodium falciparum parasites. There is need for continuous surveillance for artemisinin resistance gene markers in the country.

  8. Prolonged Neutrophil Dysfunction Following Plasmodium falciparum Malaria is Related to Hemolysis and Heme Oxygenase-1 Induction1

    PubMed Central

    Cunnington, Aubrey J.; Njie, Madi; Correa, Simon; Takem, Ebako N.; Riley, Eleanor M.; Walther, Michael

    2012-01-01

    It is not known why people are more susceptible to bacterial infections such as non-Typhoid Salmonella (NTS) during and after a malaria infection but, in mice, malarial hemolysis impairs resistance to NTS by impairing the neutrophil oxidative burst. This acquired neutrophil dysfunction is a consequence of induction of the cytoprotective, heme degrading enzyme heme oxygenase-1 (HO-1) in neutrophil progenitors in bone marrow. In this study, we assessed whether neutrophil dysfunction occurs in humans with malaria and how this relates to hemolysis. We evaluated neutrophil function in 58 Gambian children with Plasmodium falciparum malaria (55 (95%) with uncomplicated disease), and examined associations with erythrocyte count, haptoglobin, hemopexin, plasma heme, expression of receptors for heme uptake, and HO-1 induction. Malaria caused the appearance of a dominant population of neutrophils with reduced oxidative burst activity, which gradually normalized over 8 weeks of follow-up. The degree of neutrophil impairment correlated significantly with markers of hemolysis and HO-1 induction. HO-1 expression was increased in blood during acute malaria, but at a cellular level HO-1 expression was modulated by changes in surface expression of the haptoglobin receptor (CD163). These findings demonstrate that neutrophil dysfunction occurs in P. falciparum malaria and support the relevance of the mechanistic studies in mice. Furthermore, they suggest the presence of a regulatory pathway to limit HO-1 induction by hemolysis in the context of infection, and indicate new targets for therapeutic intervention to abrogate the susceptibility to bacterial infection in the context of hemolysis in humans. PMID:23100518

  9. The use of insecticide-treated nets for reducing malaria morbidity among children aged 6-59 months, in an area of high malaria transmission in central Côte d'Ivoire

    PubMed Central

    2010-01-01

    Background Long-lasting insecticidal nets (LLINs) are an important tool for controlling malaria. Much attention has been devoted to determine both the effect of LLINs on the reduction of Plasmodium infection rate and on clinically-confirmed malaria cases in sub-Saharan Africa. We carried out an epidemiological study to investigate whether LLINs impact on Plasmodium prevalence rate and the proportion of clinically-confirmed malaria cases, in five villages in the district of Toumodi, central Côte d'Ivoire. Methods From April 2007 to November 2008, a community-based malaria control programme was implemented in the study villages, which involved large-scale distribution of LLINs, and training and sensitization activities within the community. We determined the effect of this programme on Plasmodium prevalence rate, clinically-confirmed malaria cases and proportion of high parasitaemia rates in children aged 6-59 months through a series of cross-sectional surveys starting in April 2007 and repeated once every 6 months. Results We observed a significant decrease in the mean P. falciparum prevalence rate from April 2007 to April 2008 (p = 0.029). An opposite trend was observed from November 2007 to November 2008 when P. falciparum prevalence rate increased significantly (p = 0.003). Highly significant decreases in the proportions of clinical malaria cases were observed between April 2007 and April 2008 (p < 0.001), and between November 2007 and November 2008 (p = 0.001). Conclusions Large-scale distribution of LLINs, accompanied by training and sensitization activities, significantly reduced Plasmodium prevalence rates among young children in the first year of the project, whereas overall clinical malaria rates dropped over the entire 18-month project period. A decrease in community motivation to sleep under bed nets, perhaps along with changing patterns of malaria transmission, might explain the observed increase in the Plasmodium prevalence rate between November 2007

  10. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR

    PubMed Central

    2012-01-01

    Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa. PMID:22682065

  11. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

    PubMed

    Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai

    2012-06-10

    Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.

  12. Development of loop-mediated isothermal amplification with Plasmodium falciparum unique genes for molecular diagnosis of human malaria.

    PubMed

    Zhang, Yijing; Yao, Yi; Du, Weixing; Wu, Kai; Xu, Wenyue; Lin, Min; Tan, Huabing; Li, Jian

    2017-07-01

    In order to achieve better outcomes for treatment and in the prophylaxis of malaria, it is imperative to develop a sensitive, specific, and accurate assay for early diagnosis of Plasmodium falciparum infection, which is the major cause of malaria. In this study, we aimed to develop a loop-mediated isothermal amplification (LAMP) assay with P. falciparum unique genes for sensitive, specific, and accurate detection of P. falciparum infection. The unique genes of P. falciparum were randomly selected from PlasmoDB. The LAMP primers of the unique genes were designed using PrimerExplorer V4. LAMP assays with primers from unique genes of P. falciparum and conserved 18S rRNA gene were developed and their sensitivity was assessed. The specificity of the most sensitive LAMP assay was further examined using genomic DNA from Plasmodium vivax, Plasmodium yoelii and Toxoplasma gondii. Finally, the unique gene-based LAMP assay was validated using clinical samples of P. falciparum infection cases. A total of 31 sets of top-scored LAMP primers from nine unique genes were selected from the pools of designed primers. The LAMP assay with PF3D7_1253300-5 was the most sensitive with the detection limit 5 parasites/μl, and it displayed negative LAMP assay with the genomic DNA samples of P. vivax, P. yoelii, and T. gondii. The LAMP assay with PF3D7_0112300 (18S rRNA) was less sensitive with the detection limit 50 parasites/μl, and it displayed negative LAMP assay with the genomic DNA samples of P. yoelii and T. gondii, but displayed positive LAMP detection with P. vivax. The positive detection rate of the LAMP assay with PF3D7_1253300-5 was 90% (27/30), higher than that (80%, 24/30) of the positive rate of PF3D7_0112300 (18S rRNA) in examining clinical samples of P. falciparum infection cases. The LAMP assay with the primer set PF3D7_1253300-5 was more sensitive, specific, and accurate than those with PF3D7_0112300 (18S rRNA) in examining P. falciparum infection, and therefore it is a

  13. Expression of Plasmodium falciparum Circumsporozoite Proteins in Escherichia coli for Potential Use in a Human Malaria Vaccine

    NASA Astrophysics Data System (ADS)

    Young, James F.; Hockmeyer, Wayne T.; Gross, Mitchell; Ripley Ballou, W.; Wirtz, Robert A.; Trosper, James H.; Beaudoin, Richard L.; Hollingdale, Michael R.; Miller, Louis H.; Diggs, Carter L.; Rosenberg, Martin

    1985-05-01

    The circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum may be the most promising target for the development of a malaria vaccine. In this study, proteins composed of 16, 32, or 48 tandem copies of a tetrapeptide repeating sequence found in the CS protein were efficiently expressed in the bacterium Escherichia coli. When injected into mice, these recombinant products resulted in the production of high titers of antibodies that reacted with the authentic CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro. These CS protein derivatives are therefore candidates for a human malaria vaccine.

  14. The Complexity of Plasmodium Falciparum Infections in Children in Western Kenya

    DTIC Science & Technology

    2006-01-01

    decrease in COI following vaccine administration. In that group of children, the RO33 allele was identified in much greater prevalence following...known as panmixia [11], that is a hallmark of holoendemic transmission areas that have an exceptionally high prevalence of falciparum malaria. The...found to be affected by many factors such as age, parasitemia, pregnancy , drug treatment and resistance, experimental vaccines and the presence of

  15. Plasmodium falciparum malaria: Convergent evolutionary trajectories towards delayed clearance following artemisinin treatment.

    PubMed

    Wilairat, Prapon; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2016-05-01

    Malaria is a major global health challenge with 300million new cases every year. The most effective regimen for treating Plasmodium falciparum malaria is based on artemisinin and its derivatives. The drugs are highly effective, resulting in rapid clearance of parasites even in severe P. falciparum malaria patients. During the last five years, artemisinin-resistant parasites have begun to emerge first in Cambodia and now in Thailand and Myanmar. At present, the level of artemisinin resistance is relatively low with clinical presentation of delayed artemisinin clearance (a longer time to reduce parasite load) and a small decrease in artemisinin sensitivity in cultured isolates. Nevertheless, multiple genetic loci associated with delayed parasite clearance have been reported, but they cannot account for a large portion of cases. Even the most well-studied kelch 13 propeller mutations cannot always predict the outcome of artemisinin treatment in vitro and in vivo. Here we propose that delayed clearance by artemisinin could be the result of convergent evolution, driven by multiple trajectories to overcome artemisinin-induced stress, but precluded to become full blown resistance by high fitness cost. Genetic association studies by several genome-wide approaches reveal linkage disequilibrium between multiple loci and delayed parasite clearance. Genetic manipulations at some of these loci already have resulted in loss in artemisinin sensitivity. The notion presented here is by itself consistent with existing evidence on artemisinin resistance and has the potential to be explored using available genomic data. Most important of all, molecular surveillance of artemisinin resistance based on multi-genic markers could be more informative than relying on any one particular molecular marker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identifying New Chemical Entities that Treat and Prevent Relapsing Vivax and Drug-Resistant Falciparum Malaria in U.S. Military Personnel

    DTIC Science & Technology

    2016-10-01

    Malaria in U.S. Military Personnel PRINCIPAL INVESTIGATOR: David A. Fidock CONTRACTING ORGANIZATION: Trustees of Columbia University New York NY 10032...Relapsing Vivax and Drug-Resistant Falciparum Malaria in U.S. Military Personnel 5b. GRANT NUMBER W81XWH-15-2-0033 5c. PROGRAM ELEMENT NUMBER 6...concentrations Nearly 600 of our prioritized hit compounds have been tested against rodent malaria liver stages and we have a set of 43 active

  17. Identifying New Chemical Entities that Treat and Prevent Relapsing Vivax and Drug Resistant Falciparum Malaria in U.S. Military Personnel

    DTIC Science & Technology

    2016-10-01

    Malaria in U.S. Military Personnel PRINCIPAL INVESTIGATOR: Dr. Norman Waters CONTRACTING ORGANIZATION: The Geneva Foundation Tacoma, WA 98402 REPORT...Vivax and Drug-Resistant Falciparum Malaria in U.S. Military Personnel 5b. GRANT NUMBER W81XWH-15-2-0034 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...compounds that inhibit growth at low to submicromolar concentrations Nearly 600 of our prioritized hit compounds have been tested against rodent malaria

  18. Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors.

    PubMed

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-07-07

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. I. Incidence and class specificity.

    PubMed Central

    Facer, C A; Bray, R S; Brown, J

    1979-01-01

    Gambian children with past or present Plasmodium falciparum malaria were investigated for the incidence of Coombs positivity using monospecific antisera. Approximately 50% were positive and the most frequent form of erythrocyte sensitization was with C3d. Other specificities, EIgG, EIgGC3d and EIgGC4bC3d were less common. Erthyrocytes were never found sensitized with IgA or IgM. There was no correlation between a positive test and age, tribal status or level of parasitaemia at presentation, although a positive test was often found in association with anaemia. Sensitized erythrocytes were present in the circulation for a period of up to 6 weeks following initial observation. The mechanism of erythrocyte sensitization is not known, but the results suggest a Type III complex-mediated hypersensitivity involving parasite antigen-antibody complexes. It is likely that these reactions contribute to the pathogenesis of the anaemia in falciparum malaria. Images FIG. 3 PMID:371880

  20. Plasmodium falciparum malaria skews globin gene expression balance in in-vitro haematopoietic stem cell culture system: Its implications in malaria associated anemia.

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2018-02-01

    Understanding the pathophysiology and associated host parasite interactions of the malaria infection is the prerequisite for developing effective prevention and treatment strategies. The exact mechanism underlying malaria associated ineffective and dyserythropoiesis is not yet fully understood. Being an important protein, haemoglobin serves as the main amino acid reservoir available to the intra-erythrocytic plasmodium. It is important to check the expression profiling of globin genes which may help us to understand host parasite interactions and its potential contribution to both infection and disease. Here, an in-vitro culture system was used to study the effect of different doses of Plasmodium falciparum on haematopoietic stem cell expansion, differentiation and expression of globin genes. Upon exposure to the different doses of P. falciparum parasites of strains 3D7, Dd2 and RKL9 (intact and lysed form) at different stages of erythroid development, cells demonstrated suppression in growth and differentiation. At almost all stages of erythroid development upon parasite exposure, the γ globin gene was found to be downregulated and the α/β as well as α/non- α globin mRNA ratios in late stage erythroid cells were found to be reduced (p < .01) compared to the untreated controls. The imbalance in globin chain expression might be considered as one of the factors involved in malaria associated inappropriate erythropoietic responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    PubMed

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at <470 parasites/μl and <4900 parasites/μl for HRP2 and aldolase, respectively. Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  2. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    PubMed

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  3. Frequency and distribution of mixed Plasmodium falciparum-vivax infections in French Guiana between 2000 and 2008.

    PubMed

    Ginouves, Marine; Veron, Vincent; Musset, Lise; Legrand, Eric; Stefani, Aurélia; Prevot, Ghislaine; Demar, Magalie; Djossou, Félix; Brousse, Paul; Nacher, Mathieu; Carme, Bernard

    2015-11-10

    The two main plasmodial species in French Guiana are Plasmodium vivax and Plasmodium falciparum whose respective prevalence influences the frequency of mixed plasmodial infections. The accuracy of their diagnosis is influenced by the sensitivity of the method used, whereas neither microscopy nor rapid diagnostic tests allow a satisfactory evaluation of mixed plasmodial infections. In the present study, the frequency of mixed infections in different part of French Guiana was determined using real time PCR, a sensitive and specific technique. From 400 cases of malaria initially diagnosed by microscopy, real time PCR showed that 10.75 % of the cases were mixed infections. Their prevalence varied considerably between geographical areas. The presence, in equivalent proportions, of the two plasmodial species in eastern French Guiana was associated with a much higher prevalence of mixed plasmodial infections than in western French Guiana, where the majority of the population was Duffy negative and thus resistant to vivax malaria. Clinicians must be more vigilant regarding mixed infections in co-endemic P. falciparum/P. vivax areas, in order to deliver optimal care for patients suffering from malaria. This may involve the use of rapid diagnostic tests capable of detecting mixed infections or low density single infections. This is important as French Guiana moves towards malaria elimination.

  4. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    PubMed

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  5. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  6. Adolescent pregnancy and the risk of Plasmodium falciparum malaria and anaemia-a pilot study from Sekondi-Takoradi metropolis, Ghana.

    PubMed

    Orish, Verner N; Onyeabor, Onyekachi S; Boampong, Johnson N; Aforakwah, Richmond; Nwaefuna, Ekene; Iriemenam, Nnaemeka C

    2012-09-01

    The problem of malaria in adolescence has been surpassed by the immense burden of malaria in children, most especially less than 5. A substantial amount of work done on malaria in pregnancy in endemic regions has not properly considered the adolescence. The present study therefore aimed at evaluating the prevalence of Plasmodium falciparum and anaemia infection in adolescent pregnant girls in the Sekondi-Takoradi metropolis, Ghana. The study was carried out at four hospitals in the Sekondi-Takoradi metropolis of the western region of Ghana from January 2010 to October 2010. Structured questionnaires were administered to the consenting pregnant women during their antenatal care visits. Information on education, age, gravidae, occupation and socio-demographic characteristics were recorded. Venous bloods were screened for malaria using RAPID response antibody kit and Geimsa staining while haemoglobin estimations were done by cyanmethemoglobin method. The results revealed that adolescent pregnant girls were more likely to have malaria infection than the adult pregnant women (34.6% verses 21.3%, adjusted OR 1.65, 95% CI, 1.03-2.65, P=0.039). In addition, adolescent pregnant girls had higher odds of anaemia than their adult pregnant women equivalent (43.9% versus 33.2%; adjusted OR 1.63, 95% CI, 1.01-2.62, P=0.046). Taken together, these data suggest that adolescent pregnant girls were more likely to have malaria and anaemia compared to their adult pregnant counterpart. Results from this study shows that proactive adolescent friendly policies and control programmes for malaria and anaemia are needed in this region in order to protect this vulnerable group of pregnant women. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    PubMed

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  8. Analysis of malaria endemic areas on the Indochina Peninsula using remote sensing.

    PubMed

    Nihei, Naoko; Hashida, Yoshihiko; Kobayashi, Mutsuo; Ishii, Akira

    2002-10-01

    We applied remote sensing using satellite images capable of obtaining data over a broad range, transcending national borders, as a method of rapidly, precisely, and safely increasing our understanding of the potential distribution of malaria. Our target region was the so-called Mekong malaria region on the Indochina Peninsula. As a malaria index, we used existing distribution maps of total reported malaria cases, malaria mortality, vivax malaria and falciparum malaria incidences, and so forth for 1997 and 1998. We produced monthly distribution maps of a normalized difference vegetation index (NDVI) with values of 0.2+, 0.3+, 0.35+, and 0.4+ using the geographical information system/remote sensing software based on the East Asia monthly NDVI maps of 1997. These maps were overlaid with various malaria index distribution maps, and cross-tabulations were carried out. The resulting maps with NDVI values of 0.3+ and 0.4+ matched the falciparum malaria distribution well, and we realized, in particular, that falciparum malaria is prevalent in regions in which NDVI values of 0.4+ continue for 6 months or more, while cases are fewer in regions with NDVI values of 0.4+ that continue for 5 months or less. It will be necessary in the future to examine the relationship between NDVI values and the habitats of the various vector mosquitoes using high-resolution satellite images and to implement detailed forecasts for malaria endemic areas by means of NDVI.

  9. Plasmodium falciparum malaria in pregnancy: prevalence of peripheral parasitaemia, anaemia and malaria care-seeking behaviour among pregnant women attending two antenatal clinics in Edo State, Nigeria.

    PubMed

    Enato, E F O; Mens, P F; Okhamafe, A O; Okpere, E E; Pogoson, E; Schallig, H D F H

    2009-05-01

    This study evaluated malaria care-seeking behaviour, as well as the prevalence of parasitaemia and anaemia among pregnant women attending antenatal clinics of two tertiary healthcare facilities in Edo State, Nigeria. Malaria was highly prevalent in the study group (20% by microscopy and estimated 25% by PCR), but parasitaemia and incidence decreased with increasing number of pregnancies. Although the level of education of the study participants was relatively high, antimalarial control measures during pregnancy were found to be poorly utilised by the women and malaria care-seeking was often delayed. A minority of the interviewed pregnant women said they had received sulphadoxine/pyrimethamine-based intermittent preventive therapy (IPT) during current pregnancy. Moreover, the use of inferior antimalaria treatment (e.g. chloroquine) was frequent. The majority of the pregnant women, mainly primigravidae, were anaemic. Efforts to improve antimalaria healthcare must be intensified, targeting pregnant women, particularly the primigravidae and secundigravidae and the healthcare providers.

  10. Patterns of mixed Plasmodium species infections among children six years and under in selected malaria hyper-endemic communities of Zambia: population-based survey observations.

    PubMed

    Sitali, Lungowe; Chipeta, James; Miller, John M; Moonga, Hawela B; Kumar, Nirbhay; Moss, William J; Michelo, Charles

    2015-05-02

    Although malaria is preventable and treatable, it still claims 660,000 lives every year globally with children under five years of age having the highest burden. In Zambia, malaria rapid diagnostic tests (RDTs) that only detect Plasmodium falciparum are the main confirmatory means for malaria diagnosis in most health facilities without microscopy services. As a consequence of this P. falciparum species diagnostic approach, non-falciparum malaria is not only under-diagnosed but entirely missed, thereby making the exact disease burden unknown. We thus investigated the prevalence of various Plasmodium spp. and associated burden of infection in selected communities in Zambia. Data from two malaria hyper-endemic provinces (Eastern and Luapula) of the 2012 National Malaria Indicator Survey (MIS), conducted between April and May 2012, were used. The MIS is a nationally representative, two-stage cluster survey conducted to coincide with the end of the malaria transmission season. Social, behavioural and background information were collected from households as part of the survey. Thick blood smears, RDTs and dried blood spots (DBS) were collected from children below six years of age. Slides were stained using Giemsa and examined by microscopy while polymerase chain reaction (PCR) was used to analyse the DBS for malaria Plasmodium spp. Multivariate logistic regression was employed to examine the association between background factors and malaria. Overall, 873 children younger than six years of age were surveyed. The overall prevalence of Plasmodium spp. by PCR was 54.3% (95% CI 51-57.6%). Of the total Plasmodium isolates, 88% were P. falciparum, 10.6% were mixed infections and 1.4% were non-falciparum mono infections. Among the mixed infections, the majority were a combination of P. falciparum and P. malariae (6.5% of all mixed infections). Children two years and older (2-5 years) had three-fold higher risk of mixed malaria infections (aOR 2.8 CI 1.31-5.69) than children

  11. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulummore » of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.« less

  12. High Levels of Plasmodium falciparum Rosetting in All Clinical Forms of Severe Malaria in African Children

    PubMed Central

    Doumbo, Ogobara K.; Thera, Mahamadou A.; Koné, Abdoulaye K.; Raza, Ahmed; Tempest, Louisa J.; Lyke, Kirsten E.; Plowe, Christopher V.; Rowe, J. Alexandra

    2010-01-01

    Plasmodium falciparum rosetting (the spontaneous binding of infected erythrocytes to uninfected erythrocytes) is a well-recognized parasite virulence factor. However, it is currently unclear whether rosetting is associated with all clinical forms of severe malaria, or only with specific syndromes such as cerebral malaria. We investigated the relationship between rosetting and clinical malaria in 209 Malian children enrolled in a case-control study of severe malaria. Rosetting was significantly higher in parasite isolates from severe malaria cases compared with non-severe hyperparasitemia and uncomplicated malaria controls (F2,117 = 8.15, P < 0.001). Analysis of sub-categories of severe malaria (unrousable coma, severe anemia, non-comatose neurological impairment, repeated seizures or a small heterogeneous group with signs of renal failure or jaundice) showed high levels of rosetting in all sub-categories, and no statistically significant differences in rosetting between sub-categories (F4,67 = 1.28, P = 0.28). Thus rosetting may contribute to the pathogenesis of all severe malaria syndromes in African children, and interventions to disrupt rosetting could be potential adjunctive therapies for all forms of severe malaria in Africa. PMID:19996426

  13. Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation.

    PubMed

    Goheen, M M; Wegmüller, R; Bah, A; Darboe, B; Danso, E; Affara, M; Gardner, D; Patel, J C; Prentice, A M; Cerami, C

    2016-12-01

    Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6-24months; hemoglobin <11g/dl) participating in an iron supplementation trial (ISRCTN registry, number ISRCTN07210906) in which they received iron (12mg/day) as part of a micronutrient powder for 84days. Children donated RBCs at baseline, Day 49, and Day 84 for use in flow cytometry-based in vitro growth and invasion assays with P. falciparum laboratory and field strains. In vitro parasite growth in subject RBCs was the primary endpoint. Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49days of iron supplementation relative to baseline (p<0.001), paralleling increases in erythropoiesis. These results confirm and quantify a plausible mechanism by which anemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African

  14. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria.

    PubMed

    Lalani, Tahaniyat; Yun, Heather; Tribble, David; Ganesan, Anuradha; Kunz, Anjali; Fairchok, Mary; Schnaubelt, Elizabeth; Fraser, Jamie; Mitra, Indrani; Kronmann, Karl C; Burgess, Timothy; Deiss, Robert G; Riddle, Mark S; Johnson, Mark D

    2016-05-01

    There is limited information on compliance rates with anti-vectorial protective measures (AVPMs) during travel to countries with risk of dengue and chikungunya. We evaluated differences in mosquito exposures, and factors associated with AVPM compliance in travellers going to countries where the principal mosquito-borne infectious disease threat is falciparum malaria and those where risk of dengue or chikungunya predominates. Department of Defence beneficiaries with planned travel to regions where the predominant mosquito-borne infection is falciparum malaria, and those with predominantly dengue or chikungunya risk, were included. Regions were divided into three groups: 'high-risk falciparum malaria', 'low-risk falciparum malaria' and 'chikungunya/dengue risk'. Demographics, trip characteristics, arthropod exposure and AVPM compliance were captured using pre- and post-travel surveys. Skin repellent compliance was defined as self-reported use, categorized as 'often/every day'. A logistic regression model was used to estimate factors associated with AVPM compliance. 183 (9%), 185 (9%) and 149 (7%) travelled to high and low falciparum malaria risk regions, and chikungunya/dengue risk regions, respectively. Overall, 53% (95% CI: 48-57%) and 16% (95% CI: 12-19%) were compliant with repellent use on skin and clothing, respectively. Daytime bites were reported more frequently in chikungunya/dengue risk regions than high malaria risk regions (37% vs. 10%), while night time bites were frequently in high malaria risk regions (53% vs 20%; P < 0.001). Compliance with skin repellents was associated with female gender [RR: 1.54 (95% CI: 1.05-2.28)], observing mosquitoes during travel [RR: 2.77 (95% CI: 1.76-4.36)] and travel during the rainy season [RR: 2.45 (95% CI: 1.66-3.71)]). Poor AVPM compliance was observed in the overall cohort. Compliance with skin repellent use was associated with female gender, observing mosquitoes and travelling during the rainy season, and was not

  15. Micro-heterogeneity of malaria transmission in the Peruvian Amazon: a baseline assessment underlying a population-based cohort study.

    PubMed

    Rosas-Aguirre, Angel; Guzman-Guzman, Mitchel; Gamboa, Dionicia; Chuquiyauri, Raul; Ramirez, Roberson; Manrique, Paulo; Carrasco-Escobar, Gabriel; Puemape, Carmen; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2017-08-04

    Understanding the dynamics of malaria transmission in diverse endemic settings is key for designing and implementing locally adapted and sustainable control and elimination strategies. A parasitological and epidemiological survey was conducted in September-October 2012, as a baseline underlying a 3-year population-based longitudinal cohort study. The aim was to characterize malaria transmission patterns in two contrasting ecological rural sites in the Peruvian Amazon, Lupuna (LUP), a riverine environment, and Cahuide (CAH), associated with road-linked deforestation. After a full population census, 1941 individuals 3 years and older (829 in LUP, 1112 in CAH) were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites by microscopy and PCR. Species-specific parasite prevalence was estimated overall and by site. Multivariate logistic regression models assessed risk factors for parasite infection by PCR, while SaTScan detected spatial clusters of PCR-positive individuals within each site. In addition, data from routine malaria surveillance in the period 2009-2012 were obtained. Parasite prevalence by PCR was higher in CAH than in LUP for Plasmodium vivax (6.2% vs. 3.9%) and for Plasmodium falciparum (2.6% vs. 1.2%). Among PCR-confirmed infections, asymptomatic (Asy) parasite carriers were always more common than symptomatic (Sy) infections for P. vivax (Asy/Sy ratio: 2/1 in LUP and 3.7/1 in CAH) and for P. falciparum (Asy/Sy ratio: 1.3/1 in LUP and 4/1 in CAH). Sub-patent (Spat) infections also predominated over patent (Pat) infections for both species: P. vivax (Spat/Pat ratio: 2.8/1 in LUP and 3.7/1 in CAH) and P. falciparum malaria (Spat/Pat ratio: 1.9/1 in LUP and 26/0 in CAH). For CAH, age, gender and living in a household without electricity were significantly associated with P. vivax infection, while only age and living in a household with electricity was associated with P. falciparum infection. For LUP, only

  16. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  17. Malaria epidemiology in Lihir Island, Papua New Guinea

    PubMed Central

    2013-01-01

    Background Plasmodium vivax and Plasmodium falciparum malaria remain highly endemic in the Pacific Islands including Lihir Island, Papua New Guinea. Lihir Gold Limited is conducting mining activities and funded an integrated vector control intervention within the villages surrounding the mine. The aim of this study was to assess the impact of such programme by comparing the epidemiological trends of malaria in different parts of the island. Methods Two cross-sectional surveys were conducted before and after the intervention (2006–2010) to determine malaria prevalence in mine-impact (MI) and non-MI areas. Incidence of malaria was estimated for the Lihir Medical Centre catchment area using island population denominators and a health-centre passive case detection ongoing from 2006–2011. Results A total of 2,264 and 1,653 children < 15 were surveyed in the cross-sectional studies. The prevalence of any malaria parasitaemia initially was 31.5% in MI areas and, 34.9% in non-MI (POR 1.17; 95 CI 0.97 – 1.39). After four years there was a significant reduction in prevalence in the MI areas (5.8%; POR 0.13, 95 CI 0.09–0.20), but reduction was less marked in non-MI areas (26.9%; POR 0.69, 95 CI 0.58-0.81). 28,747 patients were included in the evaluation of incidence trends and overall malaria in local Lihirian population in MI areas declined over time, while it remained at similar high levels among migrants. The age-incidence analysis showed that for each higher age range the malaria incidence declines compared to that of the previous stratum. Conclusions There was a substantial reduction in prevalence and incidence rates of both P. vivax and P. falciparum in the mining area following implementation of a malaria control intervention, which was not seen in the area outside the mining activities. PMID:23497296

  18. Current and cumulative malaria infections in a setting embarking on elimination: Amhara, Ethiopia.

    PubMed

    Yalew, Woyneshet G; Pal, Sampa; Bansil, Pooja; Dabbs, Rebecca; Tetteh, Kevin; Guinovart, Caterina; Kalnoky, Michael; Serda, Belendia A; Tesfay, Berhane H; Beyene, Belay B; Seneviratne, Catherine; Littrell, Megan; Yokobe, Lindsay; Noland, Gregory S; Domingo, Gonzalo J; Getachew, Asefaw; Drakeley, Chris; Steketee, Richard W

    2017-06-08

    Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid

  19. Impact of age of first exposure to Plasmodium falciparum on antibody responses to malaria in children: a randomized, controlled trial in Mozambique

    PubMed Central

    2014-01-01

    Background The impact of the age of first Plasmodium falciparum infection on the rate of acquisition of immunity to malaria and on the immune correlates of protection has proven difficult to elucidate. A randomized, double-blind, placebo-controlled trial using monthly chemoprophylaxis with sulphadoxine-pyrimethamine plus artesunate was conducted to modify the age of first P. falciparum erythrocytic exposure in infancy and assess antibodies and malaria risk over two years. Methods Participants (n = 349) were enrolled at birth to one of three groups: late exposure, early exposure and control group, and were followed up for malaria morbidity and immunological analyses at birth, 2.5, 5.5, 10.5, 15 and 24 months of age. Total IgG, IgG subclasses and IgM responses to MSP-119, AMA-1, and EBA-175 were measured by ELISA, and IgG against variant antigens on the surface of infected erythrocytes by flow cytometry. Factors affecting antibody responses in relation to chemoprophylaxis and malaria incidence were evaluated. Results Generally, antibody responses did not vary significantly between exposure groups except for levels of IgM to EBA-175, and seropositivity of IgG1 and IgG3 to MSP-119. Previous and current malaria infections were strongly associated with increased IgG against MSP-119, EBA-175 and AMA-1 (p < 0.0001). After adjusting for exposure, only higher levels of anti-EBA-175 IgG were significantly associated with reduced clinical malaria incidence (IRR 0.67, p = 0.0178). Conclusions Overall, the age of first P. falciparum infection did not influence the magnitude and breadth of IgG responses, but previous exposure was critical for antibody acquisition. IgG responses to EBA-175 were the strongest correlate of protection against clinical malaria. Trial registration ClinicalTrials.gov: NCT00231452. PMID:24674654

  20. Lack of an Association between Antibodies to Plasmodium falciparum Glycosylphosphatidylinositols and Malaria-Associated Placental Changes in Cameroonian Women with Preterm and Full-Term Deliveries

    PubMed Central

    Suguitan, Amorsolo L.; Gowda, D. Channe; Fouda, Genevieve; Thuita, Lucy; Zhou, Ainong; Djokam, Rosine; Metenou, Simon; Leke, Rose G. F.; Taylor, Diane Wallace

    2004-01-01

    Sequestration of Plasmodium falciparum parasites within the placenta often leads to an accumulation of macrophages within the intervillous space and increased production of tumor necrosis factor alpha (TNF-α), a cytokine associated with placental pathology and poor pregnancy outcomes. P. falciparum glycosylphosphatidylinositol (GPI) anchors have been shown to be the major parasite component that induces TNF-α production by monocytes and macrophages. Antibodies against P. falciparum GPI (anti-PfGPI), however, can inhibit the induction of TNF-α and inflammation. Thus, the study was undertaken to determine whether anti-PfGPI antibodies down-regulate inflammatory-type changes in the placentas of women with malaria. Anti-PfGPI immunoglobulin M (IgM) and IgG levels were measured in 380 pregnant women with or without placental malaria, including those who delivered prematurely and at term. Results showed that anti-PfGPI antibody levels increased with gravidity and age and that malaria infection boosted anti-PfGPI antibodies in pregnant women. However, no association was found between anti-PfGPI antibodies and placental TNF-α levels or the presence of acute or chronic placental malaria. Furthermore, anti-PfGPI antibody levels were similar in women with preterm and full-term deliveries and were not associated with an increase in infant birth weight. Thus, these results fail to support a strong role for anti-PfGPI antibodies in the prevention of chronic placental malaria infections and malaria-associated poor birth outcomes. PMID:15322022

  1. Detection of mixed infection level of Plasmodium falciparum and Plasmodium vivax by SYBR Green I-based real-time PCR in North Gondar, north-west Ethiopia.

    PubMed

    Tajebe, Addimas; Magoma, Gabriel; Aemero, Mulugeta; Kimani, Francis

    2014-10-18

    Malaria is caused by five Plasmodium species and transmitted by anopheline mosquitoes. It occurs in single and mixed infections. Mixed infection easily leads to misdiagnosis. Accurate detection of malaria species is vital. Therefore, the study was conducted to determine the level of mixed infection and misdiagnosis of malaria species in the study area using SYBR Green I-based real time PCR. The study was conducted in seven health centres from North Gondar, north-west Ethiopia. The data of all febrile patients, who attended the outpatient department for malaria diagnosis, from October to December 2013, was recorded. Dried blood spots were prepared from 168 positive samples for molecular re-evaluation. Parasite DNA was extracted using a commercial kit and Plasmodium species were re-evaluated with SYBR Green I-based real time PCR to detect mixed infections and misdiagnosed mono-infections. Among 7343 patients who were diagnosed for malaria in six study sites within the second quarter of the Ethiopian fiscal year (2013) 1802 (24.54%) were positive for malaria parasite. Out of this, 1,216 (67.48%) Plasmodium falciparum, 553 (30.68%) Plasmodium vivax and 33 (1.8%) mixed infections of both species were recorded. The result showed high prevalence of P. falciparum and P. vivax, but very low prevalence of mixed infections. Among 168 samples collected on dried blood spot 7 (4.17%) were P. vivax, 158 (94.05%) were P. falciparum and 3 (1.80%) were mixed infections of both species. After re-evaluation 10 (5.95%) P. vivax, 112 (66.67%) P. falciparum, 21 (12.50%) P. falciparum + P. vivax mixed infection, and 17 (10.12%) Plasmodium ovale positive rate was recorded. The re-evaluation showed high level of mixed infection, and misdiagnosis of P. ovale and P. vivax. The result shows that P. falciparum prevalence is higher than P. vivax in the study area. The results, obtained from SYBR Green I-based real time PCR, indicated that the diagnosis efficiency of microscopy is very low for

  2. Differential T-cell responses to a chimeric Plasmodium falciparum antigen; UB05-09, correlates with acquired immunity to malaria.

    PubMed

    Dinga, J N; Njimoh, D L; Kiawa, B; Djikeng, A; Nyasa, R B; Nkuo-Akenji, T; Pellé, R; Titanji, V P K

    2016-05-01

    The development of a sterilizing and cost-effective vaccine against malaria remains a major problem despite recent advances. In this study, it is demonstrated that two antigens of P. falciparum UB05, UB09 and their chimera UB05-09 can serve as protective immunity markers by eliciting higher T-cell responses in malaria semi-immune subjects (SIS) than in frequently sick subjects (FSS) and could be used to distinguish these two groups. UB05, UB09 and UB05-09 were cloned, expressed in E. coli, purified and used to stimulate PBMCs isolated from 63 subjects in a malaria endemic area, for IFN-γ production, which was measured by the ELISpot assay. The polymorphism of UB09 gene in the malaria infected population was also studied by PCR/sequencing of the gene in P. falciparum field isolates. All three antigens were preferentially recognized by PBMCs from SIS. IFN-γ production induced by these antigens correlated with the absence of fever and parasitaemia. UB09 was shown to be relatively well-conserved in nature. It is concluded that UB05, UB09 and the chimera UB05-09 posses T-cell epitopes that are associated with protection against malaria and could thus be used to distinguish SIS from FSS eventhough acute infection with malaria has been shown to reduce cytokine production in some studies. Further investigations of these antigens as potential diagnostic and/or vaccine candidates for malaria are indicated. © 2016 John Wiley & Sons Ltd.

  3. Coinfection with Plasmodium falciparum and Schistosoma haematobium: Additional Evidence of the Protective Effect of Schistosomiasis on Malaria in Senegalese Children

    PubMed Central

    Lemaitre, Magali; Watier, Laurence; Briand, Valérie; Garcia, André; Le Hesran, Jean Yves; Cot, Michel

    2014-01-01

    Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1–9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development. PMID:24323515

  4. Coinfection with Plasmodium falciparum and Schistosoma haematobium: additional evidence of the protective effect of Schistosomiasis on malaria in Senegalese children.

    PubMed

    Lemaitre, Magali; Watier, Laurence; Briand, Valérie; Garcia, André; Le Hesran, Jean Yves; Cot, Michel

    2014-02-01

    Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1-9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development.

  5. Detection of specific antibodies to Plasmodium falciparum in blood bank donors from malaria-endemic and non-endemic areas of Venezuela.

    PubMed

    Contreras, C E; Pance, A; Marcano, N; González, N; Bianco, N

    1999-06-01

    Malaria antibody detection is valuable in providing retrospective confirmation of an attack of malaria. Blood bank screening is another area were malaria serology is potentially useful. In the present study, we tested the presence of antibodies to Plasmodium falciparum in sera from blood bank donors of non-endemic and malaria-endemic areas of Venezuela. Sera from 1,000 blood donors were tested by an indirect immunofluorescent antibody (IFA) assay and an IgG-ELISA for the presence of malaria antibodies using a synchronized in vitro-cultured Venezuelan isolate of P. falciparum as the antigen source. A selected group of positive and negative sera (n = 100) was also tested by a dot-IgG-ELISA. Positive results (reciprocal titer > or = 40) were found in 0.8% and 3.8% of blood donors when tested by the IFA assay and in 0.8% and 2% (optical density > or = 0.2) when tested by the IgG-ELISA in Caracas (non-endemic area) and Bolivar City (endemic area), respectively. The presence of anti-malarial antibodies in some sera from non-endemic areas such as Caracas reflects the increased potential risk of post-transfusional malaria in those areas due to the mobility of the blood donors. The data obtained indicate the need to implement new blood donor policy in blood banks in developing areas. Our results also indicate that the IFA assay is the most reliable test to use in malaria serodiagnosis.

  6. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    PubMed

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Characterization of the Plasmodium falciparum and P. berghei glycerol 3-phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast.

    PubMed

    Shears, Melanie J; MacRae, James I; Mollard, Vanessa; Goodman, Christopher D; Sturm, Angelika; Orchard, Lindsey M; Llinás, Manuel; McConville, Malcolm J; Botté, Cyrille Y; McFadden, Geoffrey I

    2017-01-01

    Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti-malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3-phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N-terminal targeting sequence to GFP and 3' tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site-directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3-phosphate acyltransferase in malaria parasites. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  8. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krungkrai, Sudaratana R.; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871; Tokuoka, Keiji

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 asmore » a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})« less

  9. Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test.

    PubMed

    Atroosh, Wahib M; Al-Mekhlafi, Hesham M; Al-Jasari, Adel; Sady, Hany; Al-Delaimy, Ahmed K; Nasr, Nabil A; Dawaki, Salwa; Abdulsalam, Awatif M; Ithoi, Init; Lau, Yee Ling; Fong, Mun Yik; Surin, Johari

    2015-07-22

    The genetic variation in the Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene that may compromise the use of pfhrp2-based rapid diagnostic tests (RDTs) for the diagnosis of malaria was assessed in P. falciparum isolates from Yemen. This study was conducted in Hodeidah and Al-Mahwit governorates, Yemen. A total of 622 individuals with fever were examined for malaria by CareStart malaria HRP2-RDT and Giemsa-stained thin and thick blood films. The Pfhrp2 gene was amplified and sequenced from 180 isolates, and subjected to amino acid repeat types analysis. A total of 188 (30.2%) participants were found positive for P. falciparum by the RDT. Overall, 12 different amino acid repeat types were identified in Yemeni isolates. Six repeat types were detected in all the isolates (100%) namely types 1, 2, 6, 7, 10 and 12 while types 9 and 11 were not detected in any of the isolates. Moreover, the sensitivity and specificity of the used PfHRP2-based RDTs were high (90.5% and 96.1%, respectively). The present study provides data on the genetic variation within the pfhrp2 gene, and its potential impact on the PfHRP2-based RDTs commonly used in Yemen. CareStart Malaria HRP2-based RDT showed high sensitivity and specificity in endemic areas of Yemen.

  10. Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax

    PubMed Central

    Talundzic, Eldin; Chenet, Stella M.; Goldman, Ira F.; Patel, Dhruviben S.; Nelson, Julia A.; Plucinski, Mateusz M.; Barnwell, John W.; Udhayakumar, Venkatachalam

    2015-01-01

    Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species. PMID:26292024

  11. Polymorphisms of TNF-enhancer and gene for FcgammaRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population.

    PubMed

    Sinha, Swapnil; Mishra, Shrawan K; Sharma, Shweta; Patibandla, Phani K; Mallick, Prashant K; Sharma, Surya K; Mohanty, Sanjib; Pati, Sudhanshu S; Mishra, Saroj K; Ramteke, Bheshaj K; Bhatt, Rm; Joshi, Hema; Dash, Aditya P; Ahuja, Ramesh C; Awasthi, Shally; Venkatesh, Vimala; Habib, Saman

    2008-01-14

    Susceptibility/resistance to Plasmodium falciparum malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the TNF and FCGR2A genes in determining severity/resistance to P. falciparum malaria in Indian subjects. Allelic frequency distribution in populations across India was first determined by typing genetic variants of the TNF enhancer and the FCGR2A G/A SNP in 1871 individuals from 55 populations. Genotyping was carried out by DNA sequencing, single base extension (SNaPshot), and DNA mass array (Sequenom). Plasma TNF was determined by ELISA. Comparison of datasets was carried out by Kruskal-Wallis and Mann-Whitney tests. Haplotypes and LD plots were generated by PHASE and Haploview, respectively. Odds ratio (OR) for risk assessment was calculated using EpiInfotrade mark version 3.4. A novel single nucleotide polymorphism (SNP) at position -76 was identified in the TNF enhancer along with other reported variants. Five TNF enhancer SNPs and the FCGR2A R131H (G/A) SNP were analyzed for association with severity of P. falciparum malaria in a malaria-endemic and a non-endemic region of India in a case-control study with ethnically-matched controls enrolled from both regions. TNF -1031C and -863A alleles as well as homozygotes for the TNF enhancer haplotype CACGG (-1031T>C, -863C>A, -857C>T, -308G>A, -238G>A) correlated with enhanced plasma TNF levels in both patients and controls. Significantly higher TNF levels were observed in patients with severe malaria. Minor alleles of -1031 and -863 SNPs were associated with increased susceptibility to severe malaria. The high-affinity IgG2 binding FcgammaRIIa AA (131H) genotype was significantly associated with protection from disease manifestation, with stronger association observed in the malaria non-endemic region. These

  12. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  13. The Relative Contribution of Symptomatic and Asymptomatic Plasmodium vivax and Plasmodium falciparum Infections to the Infectious Reservoir in a Low-Endemic Setting in Ethiopia.

    PubMed

    Tadesse, Fitsum G; Slater, Hannah C; Chali, Wakweya; Teelen, Karina; Lanke, Kjerstin; Belachew, Mulualem; Menberu, Temesgen; Shumie, Girma; Shitaye, Getasew; Okell, Lucy C; Graumans, Wouter; van Gemert, Geert-Jan; Kedir, Soriya; Tesfaye, Addisu; Belachew, Feleke; Abebe, Wake; Mamo, Hassen; Sauerwein, Robert; Balcha, Taye; Aseffa, Abraham; Yewhalaw, Delenasaw; Gadisa, Endalamaw; Drakeley, Chris; Bousema, Teun

    2018-06-01

    The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.

  14. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria

    PubMed Central

    Lalani, Tahaniyat; Yun, Heather; Tribble, David; Ganesan, Anuradha; Kunz, Anjali; Fairchok, Mary; Schnaubelt, Elizabeth; Fraser, Jamie; Mitra, Indrani; Kronmann, Karl C.; Burgess, Timothy; Deiss, Robert G.; Riddle, Mark S.; Johnson, Mark D.

    2016-01-01

    Background. There is limited information on compliance rates with anti-vectorial protective measures (AVPMs) during travel to countries with risk of dengue and chikungunya. We evaluated differences in mosquito exposures, and factors associated with AVPM compliance in travellers going to countries where the principal mosquito-borne infectious disease threat is falciparum malaria and those where risk of dengue or chikungunya predominates. Methods. Department of Defence beneficiaries with planned travel to regions where the predominant mosquito-borne infection is falciparum malaria, and those with predominantly dengue or chikungunya risk, were included. Regions were divided into three groups: ‘high-risk falciparum malaria’, ‘low-risk falciparum malaria’ and ‘chikungunya/dengue risk’. Demographics, trip characteristics, arthropod exposure and AVPM compliance were captured using pre- and post-travel surveys. Skin repellent compliance was defined as self-reported use, categorized as ‘often/every day’. A logistic regression model was used to estimate factors associated with AVPM compliance. Results. 183 (9%), 185 (9%) and 149 (7%) travelled to high and low falciparum malaria risk regions, and chikungunya/dengue risk regions, respectively. Overall, 53% (95% CI: 48–57%) and 16% (95% CI: 12–19%) were compliant with repellent use on skin and clothing, respectively. Daytime bites were reported more frequently in chikungunya/dengue risk regions than high malaria risk regions (37% vs. 10%), while night time bites were frequently in high malaria risk regions (53% vs 20%; P < 0.001). Compliance with skin repellents was associated with female gender [RR: 1.54 (95% CI: 1.05–2.28)], observing mosquitoes during travel [RR: 2.77 (95% CI: 1.76–4.36)] and travel during the rainy season [RR: 2.45 (95% CI: 1.66–3.71)]). Conclusions. Poor AVPM compliance was observed in the overall cohort. Compliance with skin repellent use was associated with female gender

  15. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    PubMed Central

    2011-01-01

    Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4%) while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day). Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly to infection with P

  16. Insights into the Performance of SD Bioline Malaria Ag P.f/Pan Rapid Diagnostic Test and Plasmodium falciparum Histidine-Rich Protein 2 Gene Variation in Madagascar.

    PubMed

    Willie, Nigani; Mehlotra, Rajeev K; Howes, Rosalind E; Rakotomanga, Tovonahary A; Ramboarina, Stephanie; Ratsimbasoa, Arsène C; Zimmerman, Peter A

    2018-06-01

    Plasmodium falciparum histidine-rich protein 2 (PfHRP2) forms the basis of many current malaria rapid diagnostic tests (RDTs). However, the parasites lacking part or all of the pfhrp2 gene do not express the PfHRP2 protein and are, therefore, not identifiable by PfHRP2-detecting RDTs. We evaluated the performance of the SD Bioline Malaria Ag P.f/Pan RDT together with pfhrp2 variation in Madagascar. Genomic DNA isolated from 260 patient blood samples were polymerase chain reaction (PCR)-amplified for the parasite 18S rRNA and pfhrp2 genes. Post-PCR ligation detection reaction-fluorescent microsphere assay (LDR-FMA) was performed for the identification of parasite species. Plasmodium falciparum histidine-rich protein 2 amplicons were sequenced. Polymerase chain reaction diagnosis of patient samples showed that 29% (75/260) were infected and P. falciparum was present in 95% (71/75) of these PCR-positive samples. Comparing RDT and P. falciparum detection by LDR-FMA, eight samples were RDT negative but P. falciparum positive (false negatives), all of which were pfhrp2 positive. The sensitivity and specificity of the RDT were 87% and 90%, respectively. Seventy-three samples were amplified for pfhrp2 , from which nine randomly selected amplicons were sequenced, yielding 13 sequences. Amplification of pfhrp2 , combined with RDT analysis and P. falciparum detection by LDR-FMA, showed that there was no indication of pfhrp2 deletion. Sequence analysis of pfhrp2 showed that the correlation between pfhrp2 sequence structure and RDT detection rates was unclear. Although the observed absence of pfhrp2 deletion from the samples screened here is encouraging, continued monitoring of the efficacy of the SD Bioline Malaria Ag P.f/Pan RDT for malaria diagnosis in Madagascar is warranted.

  17. Evaluation of the Clearview® malaria pLDH malaria rapid diagnostic test in a non-endemic setting

    PubMed Central

    2011-01-01

    Background Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). Methods The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Results Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. Conclusion The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs PMID:21951996

  18. Evaluation of the Clearview® Malaria pLDH Malaria Rapid Diagnostic Test in a non-endemic setting.

    PubMed

    Houzé, Sandrine; Hubert, Véronique; Cohen, Dorit Pessler; Rivetz, Baruch; Le Bras, Jacques

    2011-09-27

    Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs.

  19. An epidemiological overview of malaria in Bangladesh.

    PubMed

    Islam, Nazrul; Bonovas, Stefanos; Nikolopoulos, Georgios K

    2013-01-01

    Bangladesh is one of the four major malaria-endemic countries in South-East Asia having approximately 34% of its population at risk of malaria. This paper aims at providing an overview of the malaria situation in this country. Relevant information was retrieved from published articles and reports in PubMed and Google Scholar. Malaria in Bangladesh is concentrated in 13 districts with a prevalence ranging between 3.1% and 36%, and is mostly caused by Plasmodium falciparum. Geographical conditions pose a potential risk for Plasmodium knowlesi malaria. Resistance to a number of drugs previously recommended for treatment has been reported. Low socio-economic status, poor schooling and close proximity to water bodies and forest areas comprise important risk factors. Despite the significant steps in Long Lasting Insecticide Net (LLIN)/Insecticide Treated Net (ITN) coverage in Bangladesh, there are still many challenges including the extension of malaria support to the remote areas of Bangladesh, where malaria prevalence is higher, and further improvements in the field of referral system and treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014

    PubMed Central

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar

    2016-01-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  1. Challenges for malaria elimination in Brazil.

    PubMed

    Ferreira, Marcelo U; Castro, Marcia C

    2016-05-20

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas.

  2. Plasmodium vivax Malaria in Cambodia

    PubMed Central

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  3. Nonradioactive heteroduplex tracking assay for the detection of minority-variant chloroquine-resistant Plasmodium falciparum in Madagascar

    PubMed Central

    Juliano, Jonathan J; Randrianarivelojosia, Milijaona; Ramarosandratana, Benjamin; Ariey, Frédéric; Mwapasa, Victor; Meshnick, Steven R

    2009-01-01

    Background Strains of Plasmodium falciparum genetically resistant to chloroquine (CQ) due to the presence of pfcrt 76T appear to have been recently introduced to the island of Madagascar. The prevalence of such resistant genotypes is reported to be low (< 3%) when evaluated by conventional PCR. However, these methods are insensitive to low levels of mutant parasites present in patients with polyclonal infections. Thus, the current estimates may be an under representation of the prevalence of the CQ-resistant P. falciparum isolates on the island. Previously, minority variant chloroquine resistant parasites were described in Malawian patients using an isotopic heteroduplex tracking assay (HTA), which can detect pfcrt 76T-bearing P. falciparum minority variants in individual patients that were undetectable by conventional PCR. However, as this assay required a radiolabeled probe, it could not be used in many resource-limited settings. Methods This study describes a digoxigenin (DIG)-labeled chemiluminescent heteroduplex tracking assay (DIG-HTA) to detect pfcrt 76T-bearing minority variant P. falciparum. This assay was compared to restriction fragment length polymorphism (RFLP) analysis and to the isotopic HTA for detection of genetically CQ-resistant parasites in clinical samples. Results Thirty one clinical P. falciparum isolates (15 primary isolates and 16 recurrent isolates) from 17 Malagasy children treated with CQ for uncomplicated malaria were genotyped for the pfcrt K76T mutation. Two (11.7%) of 17 patients harboured genetically CQ-resistant P. falciparum strains after therapy as detected by HTA. RFLP analysis failed to detect any pfcrt K76T-bearing isolates. Conclusion These findings indicate that genetically CQ-resistant P. falciparum are more common than previously thought in Madagascar even though the fitness of the minority variant pfcrt 76T parasites remains unclear. In addition, HTAs for malaria drug resistance alleles are promising tools for the

  4. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  5. Treatment uptake by individuals infected with Plasmodium falciparum in rural Gambia, West Africa.

    PubMed Central

    von Seidlein, Lorenz; Clarke, Sian; Alexander, Neâl; Manneh, Fandingding; Doherty, Tom; Pinder, Margaret; Walraven, Gijs; Greenwood, Brian

    2002-01-01

    OBJECTIVE: To find out what proportion of Plasmodium falciparum infections are treated in rural Gambia. METHODS: Subjects from four villages in the Gambia were followed over nine months through visits to village health workers. Monthly cross-sectional malaria surveys measured the prevalence of P. falciparum infection. Linked databases were searched for treatment requests. Treated cases were individuals with parasitaemia who requested treatment during narrow or extended periods (14 or 28 days, respectively) before or after a positive blood film was obtained. FINDINGS: Parasite prevalence peaked in November 1998, when 399/653 (61%) individuals had parasitaemia. Parasite prevalence was highest throughout the study in children aged 5-10 years. Although access to treatment was better than in most of sub-Saharan Africa, only 20% of infected individuals sought medical treatment up to 14 days before or after a positive blood film. Within two months of a positive blood film, 199/726 (27%) individuals with parasitaemia requested treatment. Despite easy access to health care, less than half (42%) of those with parasite densities consistent with malaria attacks (5000/ l) requested treatment. High parasite density and infection during October-November were associated with more frequent treatment requests. Self-treatment was infrequent in study villages: in 3/120 (2.5%) households antimalarial drugs had been used in the preceding malaria season. CONCLUSION: Many P. falciparum infections may be untreated because of their subclinical nature. Intermittent presumptive treatment may reduce morbidity and mortality. It is likely that not all untreated infections were asymptomatic. Qualitative research should explore barriers to treatment uptake, to allow educational interventions to be planned. PMID:12471399

  6. Drug monitoring of quinine in men with nonsevere falciparum malaria: study in the Amazon region of Brazil.

    PubMed

    Vieira, J L; Midio, A F

    2001-12-01

    Quinine sulfate has been the drug of choice for the treatment of the ever-increasing number of cases of falciparum malaria in tropical countries. Because of the spectrum of adverse effects produced by the drug in the so-called cinchona syndrome, the variation in its pharmacokinetics during the episodes of falciparum malaria, and the different therapeutic regimens proposed in different countries, the authors monitored quinine plasma concentrations in daily samples of 20 men of the Amazon region in Brazil with nonsevere falciparum malaria who were administered 1 g quinine sulfate every 12 hours for 7 days. Three blood samples were collected from each patient each day: two immediately before administration of the drug (7 am and 7 pm) and one at 11 am. A total of 440 samples were analyzed by a validated method developed in the authors' laboratories using the high-performance liquid chromatographic technique. The overall quinine plasma levels obtained varied from 1.52 to 16.89 microg/mL. From the second day of treatment, overall levels varied from 2.33 to 14.29 microg/mL; the peak concentrations showed values from 4.22 to 16.89 microg/mL, showing the efficacy of the therapeutic regimen used. Adverse effects (signs and symptoms of cinchonism) were observed in all patients. However, no cases of hypoglycemia were detected. Intrapatient comparisons of the obtained quinine plasma concentrations were statistically significant. The quinine dose may be reduced on day 4 of treatment when asexual parasitemia is absent. This way, no resistance to the drug is observed, cinchonism can be minimized, and good adherence to the regimen is obtained.

  7. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria.

    PubMed

    Paris, Daniel H; Imwong, Mallika; Faiz, Abul M; Hasan, Mahtabuddin; Yunus, Emran Bin; Silamut, Kamolrat; Lee, Sue J; Day, Nicholas P J; Dondorp, Arjen M

    2007-11-01

    A recently described loop-mediated isothermal polymerase chain reaction (LAMP) for molecular detection of Plasmodium falciparum was compared with microscopy, PfHRP2-based rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR) as the "gold standard" in 115 Bangladeshi in-patients with fever. DNA extraction for LAMP was conducted by conventional methods or simple heating of the sample; test results were either assessed visually or by gel electrophoresis. Conventional DNA extraction followed by gel electrophoresis had the highest agreement with the reference method (81.7%, kappa = 0.64), with a sensitivity (95% CI) of 76.1% (68.3-83.9%), comparable to RDT and microscopy, but a specificity of 89.6% (84.0-95.2%) compared with 100% for RDT and microscopy. DNA extraction by heat treatment deteriorated specificity to unacceptable levels. LAMP enables molecular diagnosis of falciparum malaria in settings with limited technical resources but will need further optimization. The results are in contrast with a higher accuracy reported in an earlier study comparing LAMP with a non-validated PCR method.

  8. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    PubMed

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations.

    PubMed

    Sugiarto, Sri Riyati; Davis, Timothy M E; Salman, Sam

    2017-11-01

    Artemisinin-based combination therapy (ACT) is used extensively as first-line treatment for uncomplicated falciparum malaria. There has been no rigorous assessment of the potential for racial/ethnic differences in the pharmacokinetic properties of ACTs that might influence their efficacy. Areas covered: A comprehensive literature search was performed that identified 72 publications in which the geographical origin of the patients could be ascertained and the key pharmacokinetic parameters maximum drug concentration (C max ), area under the plasma concentration-time curve (AUC) and elimination half-life (t ½β ) were available for one or more of the five WHO-recommended ACTs (artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine and artesunate-sulfadoxine-pyrimethamine). Comparisons of each of the three pharmacokinetic parameters of interest were made by drug (artemisinin derivative and long half-life partner), race/ethnicity (African, Asian, Caucasian, Melanesian, South American) and patient categories based on age and pregnancy status. Expert opinion: The review identified no evidence of a clinically significant influence of race/ethnicity on the pharmacokinetic properties of the nine component drugs in the five ACTs currently recommended by WHO for first-line treatment of uncomplicated falciparum malaria. This provides reassurance for health workers in malaria-endemic regions that ACTs can be given in recommended doses with the expectation of adequate blood concentrations regardless of race/ethnicity.

  10. Symptomatic Falciparum Malaria After Living in a Nonendemic Area for 10 Years: Recrudescence or Indigenous Transmission?

    PubMed

    Salas-Coronas, Joaquín; Soriano-Pérez, Manuel Jesús; Lozano-Serrano, Ana B; Pérez-Moyano, Rosario; Porrino-Herrera, Carmen; Cabezas-Fernández, María Teresa

    2017-06-01

    AbstractWe report the case of a patient from Mali who, after 10 years of living in Spain, presented with symptomatic Plasmodium falciparum malaria without having visited an endemic area during that time. We cannot completely rule out the possibility of indigenous transmission, but this case most likely represents recrudescence of an infection acquired over 10 years earlier.

  11. Hidden reservoir of resistant parasites: the missing link in the elimination of falciparum malaria.

    PubMed

    Abdul-Ghani, Rashad; Mahdy, Mohammed A K; Beier, John C; Basco, Leonardo K

    2017-02-06

    To successfully eliminate malaria, an integrated system that includes a number of approaches and interventions-aimed at overcoming the threat of antimalarial drug resistance-is required. Significant progress has been made in reducing malaria incidence through large-scale use of artemisinin-based combination therapies and insecticide-treated nets. To consolidate these gains, attention should be paid to the missing links in the elimination of malaria. One of these gaps is the residual reservoir of submicroscopic resistant parasites, which remains after case management or other control measures have been carried out. Therefore, the present opinion piece highlights the importance of exploring the role that submicroscopic resistant parasites could play in hindering malaria elimination by allowing the persistence of transmission, particularly in areas of low transmission or in the pre-elimination and/or elimination phase. If malaria elimination interventions are to be effective, the relative role of the hidden reservoir of resistant parasites needs to be assessed, particularly in regions that are low-transmission settings and/or in pre-elimination and/or elimination phases. Various ongoing studies are focusing on the role of submicroscopic malaria infections in malaria transmission but overlook the possible build-up of resistance to antimalarial drugs among submicroscopic parasite populations. This is an important factor as it may eventually limit the effectiveness of malaria elimination strategies. An evidence-based estimation of the "true" reservoir of resistant parasites can help target the existing and emerging foci of resistant parasites before they spread. Emergence and spread of artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia underline the need to contain drug resistance.

  12. Uneven malaria transmission in geographically distinct districts of Bobo-Dioulasso, Burkina Faso.

    PubMed

    Soma, Dieudonné Diloma; Kassié, Daouda; Sanou, Seydou; Karama, Fatou Biribama; Ouari, Ali; Mamai, Wadaka; Ouédraogo, Georges Anicet; Salem, Gérard; Dabiré, Roch Kounbobr; Fournet, Florence

    2018-05-11

    Urbanization is a main trend in developing countries and leads to health transition. Although non-communicable diseases are increasing in cities of low-income countries, vector-borne diseases such as malaria, are still present. In the case of malaria, transmission is lower than in rural areas, but is uneven and not well documented. In this study, we wanted to evaluate intra-urban malaria transmission in a West African country (Burkina Faso). A cross-sectional study on 847 adults (35 to 59 year-old) and 881 children (6 months to 5 year-old) living in 1045 households of four districts (Dogona, Yeguere, Tounouma and Secteur 25) of Bobo-Dioulasso was performed between October and November 2013. The districts were selected according to a geographical approach that took into account the city heterogeneity. Malaria prevalence was evaluated using thick and thin blood smears. Human exposure to Anopheles bites was measured by assessing the level of IgG against the Anopheles gSG6-P1 salivary peptide. Adult mosquitoes were collected using CDC traps and indoor insecticide spraying in some houses of the four neighbourhoods. The Anopheles species and Plasmodium falciparum infection rate were determined using PCR assays. In this study, 98.5% of the malaria infections were due to Plasmodium falciparum. Malaria transmission occurred in the four districts. Malaria prevalence was higher in children than in adults (19.2 vs 4.4%), and higher in the central districts than in the peripheral ones (P = 0.001). The median IgG level was more elevated in P. falciparum-infected than in non-infected individuals (P < 0.001). Anopheles arabiensis was the main vector identified (83.2%; 227 of the 273 tested mosquito specimens). Five P. falciparum-infected mosquitoes were caught, and they were all caught in the central district of Tounouma where 28.6% (14/49) of the tested blood-fed mosquito specimens had a human blood meal. This study showed that urban malaria transmission occurred in Bobo

  13. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia

    PubMed Central

    2014-01-01

    Background Increased resistance by Plasmodium falciparum parasites led to the withdrawal of the antimalarial drugs chloroquine and sulphadoxine-pyrimethamine in Ethiopia. Since 2004 artemether-lumefantrine has served to treat uncomplicated P. falciparum malaria. However, increasing reports on delayed parasite clearance to artemisinin opens up a new challenge in anti-malarial therapy. With the complete withdrawal of CQ for the treatment of Plasmodium falciparum malaria, this study assessed the evolution of CQ resistance by investigating the prevalence of mutant alleles in the pfmdr1 and pfcrt genes in P. falciparum and pvmdr1 gene in Plasmodium vivax in Southern and Eastern Ethiopia. Methods Of the 1,416 febrile patients attending primary health facilities in Southern Ethiopia, 329 febrile patients positive for P. falciparum or P. vivax were recruited. Similarly of the 1,304 febrile patients from Eastern Ethiopia, 81 febrile patients positive for P. falciparum or P. vivax were included in the study. Of the 410 finger prick blood samples collected from malaria patients, we used direct sequencing to investigate the prevalence of mutations in pfcrt and pfmdr1. This included determining the gene copy number in pfmdr1 in 195 P. falciparum clinical isolates, and mutations in the pvmdr1 locus in 215 P. vivax clinical isolates. Results The pfcrt K76 CQ-sensitive allele was observed in 84.1% of the investigated P.falciparum clinical isolates. The pfcrt double mutations (K76T and C72S) were observed less than 3%. The pfcrt SVMNT haplotype was also found to be present in clinical isolates from Ethiopia. The pfcrt CVMNK-sensitive haplotypes were frequently observed (95.9%). The pfmdr1 mutation N86Y was observed only in 14.9% compared to 85.1% of the clinical isolates that carried sensitive alleles. Also, the sensitive pfmdr1 Y184 allele was more common, in 94.9% of clinical isolates. None of the investigated P. falciparum clinical isolates carried S1034C, N1042D and D1246Y

  14. Clinical, genetic and fertility studies of Indians with beta S-globin gene and the influence of Hb S on Plasmodium falciparum malaria infection.

    PubMed

    Joishy, S K; Hassan, K; Lopes, M; Lie-Injo, L E

    1988-01-01

    Clinical studies were carried out on mild Indian sickle cell anaemia in Malaysia, and genetic and fertility studies were carried out on 101 families with and without sickle-cell haemoglobin (Hb S). The Indian sickle cell anaemia patients reached adulthood, and pregnancies and deliveries were uneventful without blood transfusion. There was no foetal wastage and the number of children produced was not significantly different from that in families without Hb S. 28 Indian patients hospitalized with Plasmodium falciparum malaria infection were also examined for their beta S genotype. P. falciparum malaria infection occurred much more frequently in individuals without Hb S than in Hb S carriers.

  15. Is Nigeria winning the battle against malaria? Prevalence, risk factors and KAP assessment among Hausa communities in Kano State.

    PubMed

    Dawaki, Salwa; Al-Mekhlafi, Hesham M; Ithoi, Init; Ibrahim, Jamaiah; Atroosh, Wahib M; Abdulsalam, Awatif M; Sady, Hany; Elyana, Fatin Nur; Adamu, Ado U; Yelwa, Saadatu I; Ahmed, Abdulhamid; Al-Areeqi, Mona A; Subramaniam, Lahvanya R; Nasr, Nabil A; Lau, Yee-Ling

    2016-07-08

    Malaria is one of the most severe global public health problems worldwide, particularly in Africa, where Nigeria has the greatest number of malaria cases. This community-based study was designed to investigate the prevalence and risk factors of malaria and to evaluate the knowledge, attitudes, and practices (KAP) regarding malaria among rural Hausa communities in Kano State, Nigeria. A cross-sectional community-based study was conducted on 551 participants from five local government areas in Kano State. Blood samples were collected and examined for the presence of Plasmodium species by rapid diagnostic test (RDT), Giemsa-stained thin and thick blood films, and PCR. Moreover, demographic, socioeconomic, and environmental information as well as KAP data were collected using a pre-tested questionnaire. A total of 334 (60.6 %) participants were found positive for Plasmodium falciparum. The prevalence differed significantly by age group (p < 0.01), but not by gender or location. A multivariate analysis showed that malaria was associated significantly with being aged 12 years or older, having a low household family income, not using insecticide treated nets (ITNs), and having no toilets in the house. Overall, 95.6 % of the respondents had prior knowledge about malaria, and 79.7, 87.6 and 95.7 % of them knew about the transmission, symptoms, and prevention of malaria, respectively. The majority (93.4 %) of the respondents considered malaria a serious disease. Although 79.5 % of the respondents had at least one ITN in their household, utilization rate of ITNs was 49.5 %. Significant associations between the respondents' knowledge concerning malaria and their age, gender, education, and household monthly income were reported. Malaria is still highly prevalent among rural Hausa communities in Nigeria. Despite high levels of knowledge and attitudes in the study area, significant gaps persist in appropriate preventive practices, particularly the use of ITNs

  16. Climate drivers on malaria transmission in Arunachal Pradesh, India.

    PubMed

    Upadhyayula, Suryanaryana Murty; Mutheneni, Srinivasa Rao; Chenna, Sumana; Parasaram, Vaideesh; Kadiri, Madhusudhan Rao

    2015-01-01

    The present study was conducted during the years 2006 to 2012 and provides information on prevalence of malaria and its regulation with effect to various climatic factors in East Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Analysis and Hotelling's T² statistics models are adopted to understand the effect of weather variables on malaria transmission. The epidemiological study shows that the prevalence of malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falciparum. It is noted that, the intensity of malaria cases declined gradually from the year 2006 to 2012. The transmission of malaria observed was more during the rainy season, as compared to summer and winter seasons. Further, the data analysis study with Principal Component Analysis and Hotelling's T² statistic has revealed that the climatic variables such as temperature and rainfall are the most influencing factors for the high rate of malaria transmission in East Siang district of Arunachal Pradesh.

  17. Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé, Cameroon.

    PubMed

    Megnekou, Rosette; Djontu, Jean Claude; Bigoga, Jude Daiga; Medou, Fabrice Mbah; Tenou, Sandrine; Lissom, Abel

    2015-01-01

    Impact of the pathophysiology of Plasmodium falciparum placental malaria (PM) on the profile of some oxidative stress biomarkers and their relationship with poor pregnancy outcomes in women remain unknown. Between 2013 and 2014, peripheral blood and placenta tissue from 120 Cameroonian women at delivery were assessed for maternal haemoglobin and, parasitaemia respectively. Parasite accumulation in the placenta was investigated histologically. The levels of oxidative stress biomarkers Malondialdehyde (MDA), Nitric Oxide (NO), Superoxide dismutase (SOD), Catalase (CAT) and Gluthatione (GSH) in the supernatant of teased placenta tissues were determined by Colorimetric enzymatic assays. Parasitaemia was inversely related to haemoglobin levels and birth weight (P <0.001 and 0.012, respectively). The level of lipid peroxide product (MDA) was significantly higher in the malaria infected (P = 0.0047) and anaemic (P = 0.024) women compared to their non-infected and non-anaemic counterparts, respectively. A similar trend was observed with SOD levels, though not significant. The levels of MDA also correlated positively with parasitaemia (P = 0.0024) but negatively with haemoglobin levels (P = 0.002). There was no association between parasitaemia, haemoglobin level and the other oxidative stress biomarkers. From histological studies, levels of MDA associated positively and significantly with placenta malaria infection and the presence of malaria pigments. The levels of SOD, NO and CAT increased with decreasing leukocyte accumulation in the intervillous space. Baby birth weight increased significantly with SOD and CAT levels, but decreased with levels of GSH. Placental P. falciparum infection may cause oxidative stress of the placenta tissue with MDA as a potential biomarker of PM, which alongside GSH could lead to poor pregnancy outcomes (anaemia and low birth weight). This finding contributes to the understanding of the pathophysiology of P. falciparum placental malaria in

  18. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds

    PubMed Central

    Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro

    2015-01-01

    Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647

  19. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker

    PubMed Central

    Tun, Kyaw M; Imwong, Mallika; Lwin, Khin M; Win, Aye A; Hlaing, Tin M; Hlaing, Thaung; Lin, Khin; Kyaw, Myat P; Plewes, Katherine; Faiz, M Abul; Dhorda, Mehul; Cheah, Phaik Yeong; Pukrittayakamee, Sasithon; Ashley, Elizabeth A; Anderson, Tim J C; Nair, Shalini; McDew-White, Marina; Flegg, Jennifer A; Grist, Eric P M; Guerin, Philippe; Maude, Richard J; Smithuis, Frank; Dondorp, Arjen M; Day, Nicholas P J; Nosten, François; White, Nicholas J; Woodrow, Charles J

    2015-01-01

    Summary Background Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. Methods We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Findings Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Interpretation Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Funding Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research

  20. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda.

    PubMed

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Steven; Hakizimana, Emmanuel; Mutesa, Leon; Mens, Petra F; Grobusch, Martin P; van Vugt, Michèle; Kumar, Nirbhay

    2016-12-01

    Faced with intense levels of chloroquine (CQ) resistance in Plasmodium falciparum malaria, Rwanda replaced CQ with amodiaquine (AQ)+sulfadoxine-pyrimethamine (SP) in 2001, and subsequently with artemether-lumefantrine (AL) in 2006, as first-line treatments for uncomplicated malaria. Following years of discontinuation of CQ use, re-emergence of CQ-susceptible parasites has been reported in countries including Malawi, Kenya and Tanzania. In contrast, high levels of SP resistant mutant parasites continue to be reported even in countries of presumed reduced SP drug selection pressure. The prevalence and distributions of genetic polymorphisms linked with CQ and SP resistance at two sites of different malaria transmission intensities are described here to better understand drug-related genomic adaptations over time and exposure to varying drug pressures in Rwanda. Using filter paper blood isolates collected from P. falciparum infected patients, DNA was extracted and a nested PCR performed to identify resistance-mediating polymorphisms in the pfcrt, pfmdr1, pfdhps and pfdhfr genes. Amplicons from a total of 399 genotyped samples were analysed by ligase detection reaction fluorescent microsphere assay. CQ susceptible pfcrt 76K and pfmdr1 86N wild-type parasites were found in about 50% and 81% of isolates, respectively. Concurrently, SP susceptible pfdhps double (437G-540E), pfdhfr triple (108N-51I-59R), quintuple pfdhps 437G-540E/pfdhfr 51I-59R-108N and sextuple haplotypes were found in about 84%, 85%, 74% and 18% of isolates, respectively. High-level SP resistance associated pfdhfr 164L and pfdhps 581G mutant prevalences were noted to decline. Mutations pfcrt 76T, pfdhfr 59R and pfdhfr 164L were found differentially distributed between the two study sites with the pfdhfr 164L mutants found only at Ruhuha site, eastern Rwanda. Overall, sustained intense levels of SP resistance mutations and a recovery of CQ susceptible parasites were found in this study following 7 years

  1. Decreasing pfmdr1 Copy Number Suggests that Plasmodium falciparum in Western Cambodia Is Regaining In Vitro Susceptibility to Mefloquine

    PubMed Central

    Lim, Pharath; Dek, Dalin; Try, Vorleak; Sreng, Sokunthea; Suon, Seila

    2015-01-01

    Dihydroartemisinin-piperaquine is the current frontline artemisinin combination therapy (ACT) for Plasmodium falciparum malaria in Cambodia but is now failing in several western provinces. To investigate artesunate plus mefloquine (AS+MQ) as a replacement ACT, we measured the prevalence of multiple pfmdr1 copies—a molecular marker for MQ resistance—in 844 P. falciparum clinical isolates collected in 2008 to 2013. The pfmdr1 copy number is decreasing in Western Cambodia, suggesting that P. falciparum is regaining in vitro susceptibility to MQ. PMID:25712365

  2. Genetic polymorphisms in Plasmodium falciparum chloroquine resistance genes, pfcrt and pfmdr1, in North Sulawesi, Indonesia.

    PubMed

    Reteng, Patrick; Vrisca, Visia; Sukarno, Inka; Djarkoni, Ilham Habib; Kalangi, Jane Angela; Jacobs, George Eduardo; Runtuwene, Lucky Ronald; Eshita, Yuki; Maeda, Ryuichiro; Suzuki, Yutaka; Mongan, Arthur Elia; Warouw, Sarah Maria; Yamagishi, Junya; Tuda, Josef

    2017-04-04

    Malaria still poses one of the major threats to human health. Development of effective antimalarial drugs has decreased this threat; however, the emergence of drug-resistant Plasmodium falciparum, a cause of Malaria, is disconcerting. The antimalarial drug chloroquine has been effectively used, but resistant parasites have spread worldwide. Interestingly, the withdrawal of the drug reportedly leads to an increased population of susceptible parasites in some cases. We examined the prevalence of genomic polymorphisms in a malaria parasite P. falciparum, associated with resistance to an antimalarial drug chloroquine, after the withdrawal of the drug from Indonesia. Blood samples were collected from 95 malaria patients in North Sulawesi, Indonesia, in 2010. Parasite DNA was extracted and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for pfcrt and pfmdr1. In parallel, multiplex amplicon sequencing for the same genes was carried out with Illumina MiSeq. Of the 59 cases diagnosed as P. falciparum infection by microscopy, PCR-RFLP analysis clearly identified the genotype 76T in pfcrt in 44 cases. Sequencing analysis validated the identified genotypes in the 44 cases and demonstrated that the haplotype in the surrounding genomic region was exclusively SVMNT. Results of pfmdr1 were successfully obtained for 51 samples, where the genotyping results obtained by the two methods were completely consistent. In pfmdr1, the 86Y mutant genotype was observed in 45 cases (88.2%). Our results suggest that the prevalence of the mutated genotypes remained dominant even 6 years after the withdrawal of chloroquine from this region. Diversified haplotype of the resistance-related locus, potentially involved in fitness costs, unauthorized usage of chloroquine, and/or a short post-withdrawal period may account for the observed high persistence of prevalence.

  3. Malaria control by chlorproguanil. I. Clinical effects and susceptibility of Plasmodium falciparum in vivo after seven years of monthly chlorproguanil administration to children in a Liberian village.

    PubMed

    Björkman, A; Brohult, J; Willcox, M; Pehrson, P O; Rombo, L; Hedman, P; Hetland, G; Kollie, E; Hanson, A P; Bengtsson, E

    1985-12-01

    For seven years, chlorproguanil (1.0 to 2.0 mg kg-1) was administered monthly to the children below 15 years of age in a village with holoendemic malaria. Malariometric indices were recorded every six months. Susceptibility in vivo was monitored by the clearance of Plasmodium falciparum parasitaemia after drug intake. Three parasite species were found initially: P. falciparum (52%), P. malariae (8%) and P. ovale (4%). The parasites found during the study were mainly P. falciparum, and parasite rates ranged from 37 to 87% at the different surveys one month after respective drug intake. A fifty-fold decrease of mean parasite density was generally observed seven days after drug intake. Splenomegaly was initially recorded in all two to nine year old children, with a mean size of 2.64 according to Hackett's index. From 18 months onwards as the mean spleen index was 1.15 in the same age group. Chlorproguanil may represent an important alternative drug to groups at risk in malaria control schemes.

  4. Global malaria connectivity through air travel.

    PubMed

    Huang, Zhuojie; Tatem, Andrew J

    2013-08-02

    Air travel has expanded at an unprecedented rate and continues to do so. Its effects have been seen on malaria in rates of imported cases, local outbreaks in non-endemic areas and the global spread of drug resistance. With elimination and global eradication back on the agenda, changing levels and compositions of imported malaria in malaria-free countries, and the threat of artemisinin resistance spreading from Southeast Asia, there is a need to better understand how the modern flow of air passengers connects each Plasmodium falciparum- and Plasmodium vivax-endemic region to the rest of the world. Recently constructed global P. falciparum and P.vivax malaria risk maps, along with data on flight schedules and modelled passenger flows across the air network, were combined to describe and quantify global malaria connectivity through air travel. Network analysis approaches were then utilized to describe and quantify the patterns that exist in passenger flows weighted by malaria prevalence. Finally, the connectivity within and to the Southeast Asia region where the threat of imported artemisinin resistance arising is highest, was examined to highlight risk routes for its spread. The analyses demonstrate the substantial connectivity that now exists between and from malaria-endemic regions through air travel. While the air network provides connections to previously isolated malarious regions, it is clear that great variations exist, with significant regional communities of airports connected by higher rates of flow standing out. The structures of these communities are often not geographically coherent, with historical, economic and cultural ties evident, and variations between P. falciparum and P. vivax clear. Moreover, results highlight how well connected the malaria-endemic areas of Africa are now to Southeast Asia, illustrating the many possible routes that artemisinin-resistant strains could take. The continuing growth in air travel is playing an important role in the

  5. Global malaria connectivity through air travel

    PubMed Central

    2013-01-01

    Background Air travel has expanded at an unprecedented rate and continues to do so. Its effects have been seen on malaria in rates of imported cases, local outbreaks in non-endemic areas and the global spread of drug resistance. With elimination and global eradication back on the agenda, changing levels and compositions of imported malaria in malaria-free countries, and the threat of artemisinin resistance spreading from Southeast Asia, there is a need to better understand how the modern flow of air passengers connects each Plasmodium falciparum- and Plasmodium vivax-endemic region to the rest of the world. Methods Recently constructed global P. falciparum and P.vivax malaria risk maps, along with data on flight schedules and modelled passenger flows across the air network, were combined to describe and quantify global malaria connectivity through air travel. Network analysis approaches were then utilized to describe and quantify the patterns that exist in passenger flows weighted by malaria prevalence. Finally, the connectivity within and to the Southeast Asia region where the threat of imported artemisinin resistance arising is highest, was examined to highlight risk routes for its spread. Results The analyses demonstrate the substantial connectivity that now exists between and from malaria-endemic regions through air travel. While the air network provides connections to previously isolated malarious regions, it is clear that great variations exist, with significant regional communities of airports connected by higher rates of flow standing out. The structures of these communities are often not geographically coherent, with historical, economic and cultural ties evident, and variations between P. falciparum and P. vivax clear. Moreover, results highlight how well connected the malaria-endemic areas of Africa are now to Southeast Asia, illustrating the many possible routes that artemisinin-resistant strains could take. Discussion The continuing growth in air

  6. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    PubMed

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  7. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso.

    PubMed

    Somé, Anyirékun Fabrice; Bazié, Thomas; Zongo, Issaka; Yerbanga, R Serge; Nikiéma, Frédéric; Neya, Cathérine; Taho, Liz Karen; Ouédraogo, Jean-Bosco

    2018-05-30

    In Burkina Faso, malaria remains the overall leading cause of morbidity and mortality accounting for 35.12% of consultations, 40.83% of hospitalizations and 37.5% of deaths. Genotyping of malaria parasite populations remains an important tool to determine the types and number of parasite clones in an infection. The present study aimed to evaluate the merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) genetic diversity and allele frequencies in Bobo-Dioulasso, Burkina Faso. Dried blood spots (DBS) were collected at baseline from patients with uncomplicated malaria in urban health centers in Bobo-Dioulasso. Parasite DNA was extracted using chelex-100 and species were identified using nested PCR. Plamodium falciparum msp1 and msp2 genes were amplified by nested polymerase chain reaction (PCR) and PCR products were analyzed by electrophoresis on a 2.5% agarose gel. Alleles were categorized according to their molecular weight. A total of 228 blood samples were analyzed out of which 227 (99.9%) were confirmed as P. falciparum-positive and one sample classified as mixed infection for P. malaria and P. falciparum. In msp1, the K1 allelic family was predominant with 77.4% (162/209) followed respectively by the MAD20 allelic family with 41.3% and R033 allelic family with 36%. In msp2, the 3D7 allelic family was the most frequently detected with 93.1 % compared to FC27 with 41.3%. Twenty-one different alleles were observed in msp1 with 9 alleles for K1, 8 alleles for MAD20 and 4 alleles for R033. In msp2, 25 individual alleles were detected with 10 alleles for FC27 and 15 alleles for 3D7. The mean multiplicity of falciparum infection was 1.95 with respectively 1.8 (1.76-1.83) and 2.1 (2.03-2.16) for msp1 and msp2 (P = 0.01). Our study showed high genetic diversity and allelic frequencies of msp1 and msp2 in Plasmodium falciparum isolates from symptomatic malaria patients in Bobo-Dioulasso.

  8. Development, standardization and validation of molecular techniques for malaria vector species identification, trophic preferences, and detection of Plasmodium falciparum.

    PubMed

    Rath, Animesha; Prusty, Manas R; Barik, Sushanta K; Das, Mumani; Tripathy, Hare K; Mahapatra, Namita; Hazra, Rupenangshu K

    2017-01-01

    Knowledge on prevalence of malaria vector species of a certain area provides important information for implementation of appropriate control strategies. The present study describes a rapid method for screening of major Anopheline vector species and at the same time detection of Plasmodium falciparum sporozoite infection and blood meal preferences/trophic preferences. The study was carried from February 2012 to March 2013 in three seasons, i.e. rainy, winter and summer in Jhumpura PHC of Keonjhar district, Odisha, India. Processing of mosquitoes was carried out in two different methods, viz. mosquito pool (P1) and mosquito DNA pool (P2). Pool size for both the methods was standardized for DNA isolation and multiplex PCR assay. This PCR based assay was employed to screen the major vector com- position in three different seasons of four different ecotypes of Keonjhar district. Pearson's correlation coefficient was determined for a comparative analysis of the morphological identification with the pool prevalence assay for each ecotype. A pool size of 10 was standardized for DNA isolation as well as PCR. PCR assay revealed that the average pool prevalence for all ecotypes was highest for An. annularis in winter and summer whereas for An. culicifacies it was rainy season. Foothill and plain ecotypes contributed to highest and lowest vectorial abundance respectively. The results of the prevalence of vector species in pool from PCR based assay were found to be highly correlated with that of the results of morphological identification. Screening by pool based PCR assay is relatively rapid as compared to conventional identification and can be employed as an important tool in malaria control programmes.

  9. Severe falciparum malaria with dengue coinfection complicated by rhabdomyolysis and acute kidney injury: an unusual case with myoglobinemia, myoglobinuria but normal serum creatine kinase.

    PubMed

    Yong, Kok Pin; Tan, Ban Hock; Low, Chian Yong

    2012-12-20

    Acute kidney injury (AKI) is a complication of severe malaria, and rhabdomyolysis with myoglobinuria is an uncommon cause. We report an unusual case of severe falciparum malaria with dengue coinfection complicated by AKI due to myoglobinemia and myoglobinuria while maintaining a normal creatine kinase (CK). A 49-year old Indonesian man presented with fever, chills, and rigors with generalized myalgia and was diagnosed with falciparum malaria based on a positive blood smear. This was complicated by rhabdomyolysis with raised serum and urine myoglobin but normal CK. Despite rapid clearance of the parasitemia with intravenous artesunate and aggressive hydration maintaining good urine output, his myoglobinuria and acidosis worsened, progressing to uremia requiring renal replacement therapy. High-flux hemodiafiltration effectively cleared his serum and urine myoglobin with recovery of renal function. Further evaluation revealed evidence of dengue coinfection and past infection with murine typhus. In patients with severe falciparum malaria, the absence of raised CK alone does not exclude a diagnosis of rhabdomyolysis. Raised serum and urine myoglobin levels could lead to AKI and should be monitored. In the event of myoglobin-induced AKI requiring dialysis, clinicians may consider using high-flux hemodiafiltration instead of conventional hemodialysis for more effective myoglobin removal. In Southeast Asia, potential endemic coinfections that can also cause or worsen rhabdomyolysis, such as dengue, rickettsiosis and leptospirosis, should be considered.

  10. Routine parallel diagnosis of malaria using microscopy and the malaria rapid diagnostic test SD 05FK60: the experience of Médecins Sans Frontières in Myanmar.

    PubMed

    Kosack, Cara S; Naing, Wint Thu; Piriou, Erwan; Shanks, Leslie

    2013-05-21

    Malaria rapid diagnostic tests (RDTs) are commonly used in Médecins Sans Frontières (MSF) programmes to detect acute malaria infection. Programmes in regions with both Plasmodium falciparum and non-falciparum malaria (i.e. Plasmodium ovale, Plasmodium malariae and Plasmodium vivax) use a three-band P. falciparum/Pan test such as the SD Bioline Malaria Ag P.f/Pan 05FK60 (Standard Diagnostics, Kyonggi, Republic of Korea), hereafter referred to as SD 05FK60, as used by the MSF-Holland clinics in Rakhine state, Myanmar. In spite of published reports of generally good test performance, medical and paramedical staff on the ground often doubt the diagnostic accuracy of these RDTs. Parallel testing with malaria microscopy and RDT was conducted at two clinics in Rakhine state, Myanmar, for a period of 14 months as a programmatic response due to doubts and concerns of medical and paramedical staff into malaria RDTs. A total of 2,585 blood samples from non-pregnant suspected malaria patients were examined by the SD 05FK60 RDT and microscopy at two clinics in Myanmar from October 2010 to December 2011. The reference standard microscopy diagnosed 531 P. falciparum and 587 P. vivax or P. malariae mono-infections. The overall sensitivity for P. falciparum detection by the SD 05FK60 was 90.2% (95% CI: 87.4-92.6) and for P. vivax/P. malariae 79.4% (95% CI: 75.9-82.6). The overall specificity for P. falciparum detection by the SD 05FK60 was 98.5% (95% CI: 97.7-99.1) and for P. vivax/P. malariae 98.7% (95% CI: 97.9-99.2). The sensitivity for P. falciparum was >91% for parasitaemia levels of >100-1,000 parasites/μl and increased for P. vivax/P. malariae with the parasitaemia level but was overall lower than for P. falciparum 25/408 and 13/420 cases, respectively, of P. falciparum and non-falciparum malaria were missed by the RDT. In field conditions in Myanmar, the SD 05FK60 malaria RDT performed consistent with other reports. The test detected malaria caused by P. vivax

  11. Multicenter Pivotal Clinical Trial of Urine Malaria Test for Rapid Diagnosis of Plasmodium falciparum Malaria

    PubMed Central

    Ezeigwe, Nnenna; Ntadom, Godwin; Oladosu, Oladipo O.; Rainwater-Loveth, Kaitlin; O'Meara, Wendy; Okpokoro, Evaezi; Brieger, William

    2016-01-01

    ABSTRACT The need to expand malaria diagnosis capabilities alongside policy requirements for mandatory testing before treatment motivates exploration of noninvasive rapid diagnostic tests (RDTs). We report the outcome of the first cross-sectional, single-blind clinical performance evaluation of a urine malaria test (UMT) for diagnosis of Plasmodium falciparum malaria in febrile patients. Matched urine and finger-prick blood samples from participants ≥2 years of age with fever (axillary temperature of ≥37.5°C) or with a history of fever in the preceding 48 h were tested with UMT and microscopy (as the gold standard). BinaxNOW (Pf and Pan versions) blood RDTs were done to assess relative performance. Urinalysis and rheumatoid factor (RF) tests were conducted to evaluate possible interference. Diagnostic performance characteristics were computed at 95% confidence intervals (CIs). Of 1,800 participants screened, 1,691 were enrolled; of these 566 (34%) were febrile, and 1,125 (66%) were afebrile. Among enrolled participants, 341 (20%) tested positive by microscopy, 419 (25%) were positive by UMT, 676 (40%) were positive by BinaxNOW Pf, and 368 (22%) were positive by BinaxNow Pan. UMT sensitivity among febrile patients (for whom the test was indicated) was 85%, and specificity was 84%. Among febrile children ≤5 years of age, UMT sensitivity was 93%, and specificity was 83%. The area under the receiver-operator characteristic curve (AUC) of UMT (0.84) was not significantly different from that of BinaxNOW Pf (0.86) or of BinaxNOW Pan (0.87), indicating that the tests do not differ in overall performance. Gender, seasons, and RF did not impact UMT performance. Leukocytes, hematuria, and urobilinogen concentrations in urine were associated with lower UMT specificities. UMT performance was comparable to that of the BinaxNOW Pf/Pan tests, making UMT a promising tool to expand malaria testing in public and private health care settings where there are challenges to blood

  12. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  13. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar.

    PubMed

    Soe, Than Naing; Wu, Yanrui; Tun, Myo Win; Xu, Xin; Hu, Yue; Ruan, Yonghua; Win, Aung Ye Naung; Nyunt, Myat Htut; Mon, Nan Cho Nwe; Han, Kay Thwe; Aye, Khin Myo; Morris, James; Su, Pincan; Yang, Zhaoqing; Kyaw, Myat Phone; Cui, Liwang

    2017-07-04

    The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are

  14. Co-reactivity of plasmodial histidine-rich protein 2 and aldolase on a combined immuno-chromographic-malaria dipstick (ICT) as a potential semi-quantitative marker of high Plasmodium falciparum parasitaemia.

    PubMed

    Richter, Joachim; Göbels, Klaus; Müller-Stöver, Irmela; Hoppenheit, Barbara; Häussinger, Dieter

    2004-11-01

    The combined immuno-chromographic-malaria dipstick (ICT) for the rapid diagnosis of malaria detects both Plasmodium falciparum (P.f.)-specific, histidine-rich protein 2 (HRP-2) and a plasmodial aldolase expressed by all Plasmodium species pathogenic to humans. ICT was applied in 674 febrile returnees from malaria-endemic regions attending our Tropical Diseases Unit. Microscopy confirmed malaria in 69/674 cases, of whom 67/69 had returned from Africa or Madagascar, and 2/69 from the Caribbean. Monoparasitic P.f. infection occurred in 52/69, mixed infection was due to P.f.+ P. ovale (P.o.) in 3/69, and P.f.+P. malariae (P.m.) in 1/69 cases. Monoparasitic P. vivax (P.v.) infection occurred in 8/69 , P.o. in 3/69, and P.m. in 2/69 cases . Whereas a positive HRP-2 band on the test was a highly sensitive indicator for P.f. infection (52/52 patients; sensitivity 100%), this was not the case for a positive aldolase band (25/52 patients; sensitivity 48.1%). Sensitivity of aldolase band for non-falciparum plasmodia was even lower: aldolase was positive in only 3/8 (37.5%) of patients with vivax malaria, and in 0/5 cases with P.o.- or P.m. infection. Co-reaction of both bands occurred more frequently in patients with P.f. parasitaemia of > or =40,000/microl (20/25, 80.0%) as compared to patients with P.f. parasitaemia <40,000/microl (5/27, 18.5%; P<0.00005), and to patients with mixed infection (P.f.+ P.o., P.f.+ P.m.: 2/4, 50.0%; diff. n.s.). In our series, co-reaction of HRP-2 and aldolase indicated monoparasitic falciparum malaria with high P.f. parasitaemia, rather than mixed infection. Whereas the aldolase band is not a reliable qualitative marker for malaria, co-reaction of HRP-2 and aldolase band may have a potential for indicating high parasitaemia in falciparum malaria.

  15. Investigation of malaria prevalence at National Thermal Power Corporation, Shaktinagar, Sonbhadra District (Uttar Pradesh), India.

    PubMed

    Dua, V K; Nanda, N; Gupta, N C; Kar, P K; Subbarao, S K; Sharma, V P

    2000-12-01

    Malaria in industrial complexes is promoted by extensive mosquitogenic potential generated by excavations and importation of parasite through migratory labor. The National Thermal Power Corporation (NTPC), Shaktinagar, Sonbhadra district was surveyed for malariogenic conditions from 1994 to 1996. The major mosquito breeding sites were drains, storm-water drains, lakes, outside tanks, overhead tanks, sluice-valve chambers, ornamental tanks, wells, pit wells and water reservoirs, etc. Anopheles culicifacies was the major vector of malaria in this area. Sibling species identification of An. culicifacies revealed that species C predominated during the transmission season and responsible to transmit malaria. Insecticide susceptibility tests against An. culicifacies sl showed that An.culicifacies population was 100% susceptible to malathion, fenitrothorn and deltamethrin while it was found 44% resistant to DDT. The malaria cases recorded in 1994, 1995 and 1996 were 847, 590 and 409 respectively. In vitro study on P. falciparum cases showed that 41, 70, 50% of the isolates tested were resistant to chloroquine in 1994, 1995 and 1996 respectively while an in vivo follow-up study showed 20-30% P. falciparum cases resistant to chloroquine. An integrated approach involving alternate vector control measures along with judicious use of insecticides has been suggested to bring down malaria in industrial complexes.

  16. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study.

    PubMed

    McGready, R; Lee, S J; Wiladphaingern, J; Ashley, E A; Rijken, M J; Boel, M; Simpson, J A; Paw, M K; Pimanpanarak, M; Mu, Oh; Singhasivanon, P; White, N J; Nosten, F H

    2012-05-01

    The effects of malaria and its treatment in the first trimester of pregnancy remain an area of concern. We aimed to assess the outcome of malaria-exposed and malaria-unexposed first-trimester pregnancies of women from the Thai-Burmese border and compare outcomes after chloroquine-based, quinine-based, or artemisinin-based treatments. We analysed all antenatal records of women in the first trimester of pregnancy attending Shoklo Malaria Research Unit antenatal clinics from May 12, 1986, to Oct 31, 2010. Women without malaria in pregnancy were compared with those who had a single episode of malaria in the first trimester. The association between malaria and miscarriage was estimated using multivariable logistic regression. Of 48,426 pregnant women, 17,613 (36%) met the inclusion criteria: 16,668 (95%) had no malaria during the pregnancy and 945 (5%) had a single episode in the first trimester. The odds of miscarriage increased in women with asymptomatic malaria (adjusted odds ratio 2·70, 95% CI 2·04-3·59) and symptomatic malaria (3·99, 3·10-5·13), and were similar for Plasmodium falciparum and Plasmodium vivax. Other risk factors for miscarriage included smoking, maternal age, previous miscarriage, and non-malaria febrile illness. In women with malaria, additional risk factors for miscarriage included severe or hyperparasitaemic malaria (adjusted odds ratio 3·63, 95% CI 1·15-11·46) and parasitaemia (1·49, 1·25-1·78 for each ten-fold increase in parasitaemia). Higher gestational age at the time of infection was protective (adjusted odds ratio 0·86, 95% CI 0·81-0·91). The risk of miscarriage was similar for women treated with chloroquine (92 [26%] of 354), quinine (95 [27%) of 355), or artesunate (20 [31%] of 64; p=0·71). Adverse effects related to antimalarial treatment were not observed. A single episode of falciparum or vivax malaria in the first trimester of pregnancy can cause miscarriage. No additional toxic effects associated with artesunate

  17. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy.

    PubMed

    Manyando, Christine; Kayentao, Kassoum; D'Alessandro, Umberto; Okafor, Henrietta U; Juma, Elizabeth; Hamed, Kamal

    2012-05-01

    Malaria during pregnancy, particularly Plasmodium falciparum malaria, has been linked to increased morbidity and mortality, which must be reduced by both preventive measures and effective case management. The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) to treat uncomplicated falciparum malaria during the second and third trimesters of pregnancy, and quinine plus clindamycin during the first trimester. However, the national policies of many African countries currently recommend quinine throughout pregnancy. Therefore, the aim of this article is to provide a summary of the available data on the safety and efficacy of artemether-lumefantrine (AL) in pregnancy. An English-language search identified 16 publications from 1989 to October 2011 with reports of artemether or AL exposure in pregnancy, including randomized clinical trials, observational studies and systematic reviews. Overall, there were 1,103 reports of AL use in pregnant women: 890 second/third trimester exposures; 212 first trimester exposures; and one case where the trimester of exposure was not reported. In the second and third trimesters, AL was not associated with increased adverse pregnancy outcomes as compared with quinine or sulphadoxine-pyrimethamine, showed improved tolerability relative to quinine, and its efficacy was non-inferior to quinine. There is evidence to suggest that the pharmacokinetics of anti-malarial drugs may change in pregnancy, although the impact on efficacy and safety needs to be studied further, especially since the majority of studies report high cure rates and adequate tolerability. As there are fewer reports of AL safety in the first trimester, additional data are required to assess the potential to use AL in the first trimester. Though the available safety and efficacy data support the use of AL in the second and third trimesters, there is still a need for further information. These findings reinforce the WHO recommendation to

  18. Can Mixed Parasite Infections Thwart Targeted Malaria Elimination Program in India?

    PubMed

    Singh, Upasana Shyamsunder; Siwal, Nisha; Pande, Veena; Das, Aparup

    2017-01-01

    India is highly endemic to malaria with prevalence of all five species of human malaria parasites of Plasmodium genus. India is set for malaria elimination by 2030. Since cases of mixed Plasmodium species infections remain usually undetected but cause huge disease burden, in order to understand the distributional prevalence of both monospecies infections and mixed species infections in India, we collated published data on the differential infection incidences of the five different malaria parasites based on PCR diagnostic assay. About 11% of total cases were due to mixed species infection. Among several interesting observations on both single and mixed parasitic infections, incidences of Plasmodium falciparum monoinfection were found to be significantly higher than P. vivax monoinfection. Also, P. malariae seems to be emerging as a potential malaria threat in India. Putting all the facts together, it appears that the dream of achieving malaria elimination in India will not be completely successful without dealing with mixed species infection.

  19. The ring-stage of Plasmodium falciparum observed in RBCs of hospitalized malaria patients.

    PubMed

    Kozicki, Mateusz; Czepiel, Jacek; Biesiada, Grażyna; Nowak, Piotr; Garlicki, Aleksander; Wesełucha-Birczyńska, Aleksandra

    2015-12-07

    Raman spectra of the blood samples obtained directly from hospitalized malaria patients with Plasmodium falciparum (P. falciparum) in the ring-stage were analyzed. Changes observed in the Raman band intensities of the infected patients compared to healthy volunteers are the result of parasite activity inside red blood cells. The obtained spectra were discussed by analyzing differences in particular spectral regions by evaluating changes in the band intensity ratios as well as using PCA analysis. The alterations of erythrocyte membranes caused by parasite penetration are visible by a reduced I1130/I1075 intensity ratio expressing the lowering of the amount of domains arranged in trans conformation. The I2930/I2850 ratio, which is a measure of modifications in structures of membrane proteins and lipids, in infected red blood cells increases, which is caused by malaria protein export to the erythrocyte membrane and expresses the membrane disarrangement. In the pyrrole ring vibration region, the ν4 band marker of the oxygenated-Hb shows at 1371 cm(-1) whereas the ν4 band at 1353 cm(-1) related to the deoxygenated-Hb is observed for malaria patients and is characterized by a higher intensity in infected erythrocytes. The amide I analysis shows the modifications in the secondary structure composition in the infected RBCs. We found that the P. falciparum infection leads to a decrease in the α-helical content and a concurrent increase in undefined (random-coil) structures. It was observed that the Raman spectra changes are also the result of the hemozoin formation process. In the pyrrole ring stretching vibration region, the increase of 1220 cm(-1) (deoxyHb) as against 1248 cm(-1) (oxyHb) may be considered as a signal of hemozoin formation in the RBCs. Relatively intense band patterns at 1560 cm(-1) and also at 1570 cm(-1) and 1552 cm(-1) may be due to the hemozoin that is formed according to parasite activity. The results of medical diagnostic tests had not presented

  20. Insights Into Circulating Cytokine Dynamics during Pregnancy in HIV-Infected Beninese Exposed to Plasmodium falciparum Malaria

    PubMed Central

    Ibitokou, Samad A.; Denoeud-Ndam, Lise; Ezinmegnon, Sèm; Ladékpo, Rodolphe; Zannou, Djimon-Marcel; Massougbodji, Achille; Girard, Pierre-Marie; Cot, Michel; Luty, Adrian J. F.; Ndam, Nicaise Tuikue

    2015-01-01

    We investigated the circulating plasma levels of Th1- (Interleukin-2 [IL-2], tumor necrosis factor-α [TNF-α], interferon-gamma [IFN-γ]) and Th2-type (IL-4, IL-5, IL-10) cytokines in human immunodeficiency virus (HIV)-infected pregnant women living in a malaria-endemic area. We analyzed samples from 200 pregnant women included in the prevention of pregnancy-associated malaria in HIV-infected women: cotrimoxazole prophylaxis versus mefloquine (PACOME) clinical trial who were followed until delivery. Cytokine concentrations were measured by flow cytometry-based multiplex bead array. Significantly elevated levels of IL-10 and lower levels of TNF-α were observed at delivery compared with inclusion (P = 0.005). At inclusion, the presence of circulating IFN-γ, a higher CD4+ T cell count and having initiated intermittent preventive treatment of malaria with sulfadoxine pyrimethamine (SP-IPTp) were all associated with a lower likelihood of Plasmodium falciparum infection. At delivery, the inverse relationship between the presence of infection and circulating IFN-γ persisted, although there was a positive association between the likelihood of infection and the presence of circulating TNF-α. Initiation of antiretroviral therapy was associated with elevated IL-5 production. Consistent with our own and others' observations in HIV seronegative subjects, this study shows circulating IL-10 to be a marker of infection with P. falciparum during pregnancy even in HIV-infected women, although plasma IFN-γ may be a marker of anti-malarial protection in such women. PMID:26101276

  1. Plasmodium falciparum, but not P. vivax, can induce erythrocytic apoptosis.

    PubMed

    Totino, Paulo Renato Rivas; Magalhães, Aline das Dores; Alves, Eliana Brasil; Costa, Monica Regina Farias; de Lacerda, Marcus Vinícius Guimarães; Daniel-Ribeiro, Cláudio Tadeu; Ferreira-da-Cruz, Maria de Fátima

    2014-10-18

    Apoptosis can occur in red blood cells (RBC) and seems to be involved in hematologic disorders related to many diseases. In malaria it is known that parasitized RBC (pRBC) is involved in the development of anemia and thrombosis; however, non-parasitized RBC (nRBC) apoptosis could amplify these malaria-associated hematologic events. In fact, in experimental malaria, increased levels of apoptosis were observed in nRBC during lethal Plasmodium yoelii 17XL infection, but in human malaria erythrocytic apoptosis has never been studied. The present study was performed to investigate if nRBC apoptosis also occurs in P. vivax and P. falciparum infections. Apoptosis of nRBC was evaluated in blood samples of P. vivax malaria patients and clinically healthly individuals living in Manaus, Brazil, both ex vivo and after incubation of RBC for 24 h. Additionally, the capacity of plasma from P. vivax or P. falciparum patients was tested for induction of in vitro apoptosis of normal RBC from a clinically healthy individual living in a non-endemic malaria region. Apoptosis was detected by flow cytometry using annexin V staining. In contrast to experimental malaria that significantly increased the levels of apoptotic nRBC both ex-vivo and after 24 h of incubation, no significant alteration on apoptotic nRBC rates was detected in P. vivax infected patients when compared with non-infected control individuals. Similar results were observed when plasma of these P. vivax patients was incubated with normal RBC. Conversely, plasma from P. falciparum-infected subjects induced significant apoptosis of these cells. Apoptosis of normal RBC can be induced by plasma from individuals with P. falciparum (but not with P. vivax) malaria. This finding could reflect the existence of erythrocytic apoptosis during infection that could contribute to the pathogenesis of hematological and vascular complications associated with falciparum malaria.

  2. Effect of combining mosquito repellent and insecticide treated net on malaria prevalence in Southern Ethiopia: a cluster-randomised trial.

    PubMed

    Deressa, Wakgari; Yihdego, Yemane Y; Kebede, Zelalem; Batisso, Esey; Tekalegne, Agonafer; Dagne, Getachew A

    2014-03-28

    A mosquito repellent has the potential to prevent malaria infection, but there has been few studies demonstrating the effectiveness of combining this strategy with the highly effective long-lasting insecticidal nets (LLINs). This study aimed to determine the effect of combining community-based mosquito repellent with LLINs in the reduction of malaria. A community-based clustered-randomised trial was conducted in 16 rural villages with 1,235 households in southern Ethiopia between September and December of 2008. The villages were randomly assigned to intervention (mosquito repellent and LLINs, eight villages) and control (LLINs alone, eight villages) groups. Households in the intervention villages received mosquito repellent (i.e., Buzz-Off petroleum jelly, essential oil blend) applied every evening. The baseline survey was followed by two follow-up surveys, at one month interval. The primary outcome was detection of Plasmodium falciparum, Plasmodium vivax, or both parasites, through microscopic examination of blood slides. Analysis was by intention to treat. Baseline imbalances and clustering at individual, household and village levels were adjusted using a generalized linear mixed model. 3,078 individuals in intervention and 3,004 in control group were enrolled into the study. Compared with the control arm, the combined use of mosquito repellent and LLINs significantly reduced malaria infection of all types over time [adjusted Odds Ratio (aOR) = 0.66; 95% CI = 0.45-0.97]. Similarly, a substantial reduction in P. falciparum malaria infection during the follow-up surveys was observed in the intervention group (aOR = 0.53, 95% CI = 0.31-0.89). The protective efficacy of using mosquito repellent and LLINs against malaria infection of both P. falciparum/P. vivax and P. falciparum was 34% and 47%, respectively. Daily application of mosquito repellent during the evening followed by the use of LLINs during bedtime at community level has significantly

  3. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors.

    PubMed

    Phyo, Aung Pyae; Ashley, Elizabeth A; Anderson, Tim J C; Bozdech, Zbynek; Carrara, Verena I; Sriprawat, Kanlaya; Nair, Shalini; White, Marina McDew; Dziekan, Jerzy; Ling, Clare; Proux, Stephane; Konghahong, Kamonchanok; Jeeyapant, Atthanee; Woodrow, Charles J; Imwong, Mallika; McGready, Rose; Lwin, Khin Maung; Day, Nicholas P J; White, Nicholas J; Nosten, Francois

    2016-09-15

    Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Birthweight in Offspring of Mothers with High Prevalence of Helminth and Malaria Infection in Coastal Kenya

    PubMed Central

    Fairley, Jessica K.; Bisanzio, Donal; King, Charles H.; Kitron, Uriel; Mungai, Peter; Muchiri, Eric; King, Christopher L.; Malhotra, Indu

    2013-01-01

    Results of studies on the associations of maternal helminth infection and malaria-helminth co-infection on birth outcomes have been mixed. A group of 696 pregnant women from the Kwale district in Kenya were recruited and tested for malaria and helminth infection at delivery. Birthweight was documented for 664 infants. A total of 42.7% of the mothers were infected with Plasmodium falciparum, 30.6% with Schistosoma haematobium, 36.2% with filariasis, 31.5% with hookworm, and 5.9% with Trichuris trichiura; co-infection was present in 46.7%. Low birthweight (LBW) (weight < 2,500 grams) was present in 15.4% of the offspring, and 8.3% had a weight z-score ≤ 2 SD below the World Health Organization mean. Only gravida, age, and locale had a significant association with LBW. The high prevalence of maternal infection coupled with a higher than expected percentage of LBW highlight a need for further investigation of the association of maternal co-infection with LBW. PMID:23166193

  5. Pyronaridine-artesunate and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children: a randomized controlled non-inferiority trial.

    PubMed

    Roth, Johanna M; Sawa, Patrick; Makio, Nicodemus; Omweri, George; Osoti, Victor; Okach, Selpha; Choy, Felix; Schallig, Henk D F H; Mens, Pètra

    2018-05-15

    Pyronaridine-artesunate is a novel artemisinin-based combination therapy. The efficacy and safety of pyronaridine-artesunate were compared with artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in children. This phase III open-label randomized controlled non-inferiority trial was conducted in Western Kenya. Children aged 6 months to ≤ 12 years with a bodyweight > 5 kg and microscopically confirmed P. falciparum malaria were randomly assigned in a 1:1 ratio to orally receive pyronaridine-artesunate or artemether-lumefantrine, dosed according to bodyweight, for 3 days. Of 197 participants, 101 received pyronaridine-artesunate and 96 received artemether-lumefantrine. The day-28 adequate clinical and parasitological response in the per-protocol population, PCR-corrected for reinfections, was 98.9% (93/94, 95% CI 94.2-99.8) for pyronaridine-artesunate and 96.4% (81/84, 95% CI 90.0-98.8) for artemether-lumefantrine. Pyronaridine-artesunate was found to be non-inferior to artemether-lumefantrine: the treatment difference was 2.5% (95% CI - 2.8 to 9.0). Adverse events occurred in 41.6% (42/101) and 34.4% (33/96) of patients in the pyronaridine-artesunate group and the artemether-lumefantrine group, respectively. No participants were found to have alanine or aspartate aminotransferase levels > 3 times the upper limit of normal. Pyronaridine-artesunate was well tolerated, efficacious and non-inferior to artemether-lumefantrine for the treatment of uncomplicated P. falciparum malaria in Kenyan children. Results are in line with previous reports and inclusion of pyronaridine-artesunate in paediatric malaria treatment programmes should be considered. This study is registered at clinicaltrials.gov under NCT02411994. Registration date: 8 April 2015. https://clinicaltrials.gov/ct2/show/NCT02411994?term=pyronaridine-artesunate&cond=Malaria&cntry=KE&rank=1.

  6. Structural insights into a key carotenogenesis related enzyme phytoene synthase of P. falciparum: a novel drug target for malaria.

    PubMed

    Agarwal, Shalini; Sharma, Vijeta; Phulera, Swastik; Abdin, M Z; Ayana, R; Singh, Shailja

    2015-12-01

    Carotenoids represent a diverse group of pigments derived from the common isoprenoid precursors and fulfill a variety of critical functions in plants and animals. Phytoene synthase (PSY), a transferase enzyme that catalyzes the first specific step in carotenoid biosynthesis plays a central role in the regulation of a number of essential functions mediated via carotenoids. PSYs have been deeply investigated in plants, bacteria and algae however in apicomplexans it is poorly studied. In an effort to characterize PSY in apicomplexans especially the malaria parasite Plasmodium falciparum (P. falciparum), a detailed bioinformatics analysis is undertaken. We have analysed the Phylogenetic relationship of PSY also referred to as octaprenyl pyrophosphate synthase (OPPS) in P. falciparum with other taxonomic groups. Further, we in silico characterized the secondary and tertiary structures of P. falciparum PSY/OPPS and compared the tertiary structures with crystal structure of Thermotoga maritima (T. maritima) OPPS. Our results evidenced the resemblance of P. falciparum PSY with the active site of T. maritima OPPS. Interestingly, the comparative structural analysis revealed an unconserved unique loop in P. falciparum OPPS/PSY. Such structural insights might contribute novel accessory functions to the protein thus, offering potential drug targets.

  7. Establishing the extent of malaria transmission and challenges facing pre-elimination in the Republic of Djibouti.

    PubMed

    Noor, Abdisalan M; Mohamed, Maoulid B; Mugyenyi, Cleopatra K; Osman, Mouna A; Guessod, Hawa H; Kabaria, Caroline W; Ahmed, Ifrah A; Nyonda, Mary; Cook, Jackie; Drakeley, Christopher J; Mackinnon, Margaret J; Snow, Robert W

    2011-05-11

    Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs) and confirmed using Polymerase Chain Reaction (PCR). Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119) of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. A total of 7151 individuals were tested using RDTs of which only 42 (0.5%) were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769) for all ages; 6.9% (46/649) in children under the age of five years; and 14.2% (76/510) in the oldest age group (≥50 years). The combined infection and/or antibody prevalence was 10.5% (550/4769) and varied from 8.1% to 14.1% but overall regional differences were not statistically significant (χ2=33.98, p=0.3144). Increasing

  8. Establishing the extent of malaria transmission and challenges facing pre-elimination in the Republic of Djibouti

    PubMed Central

    2011-01-01

    Background Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. Methods A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs) and confirmed using Polymerase Chain Reaction (PCR). Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119) of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. Results A total of 7151 individuals were tested using RDTs of which only 42 (0.5%) were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769) for all ages; 6.9% (46/649) in children under the age of five years; and 14.2% (76/510) in the oldest age group (≥ 50 years). The combined infection and/or antibody prevalence was 10.5% (550/4769) and varied from 8.1% to 14.1% but overall regional differences were not statistically significant (χ2

  9. Low prevalence of laboratory-confirmed malaria in clinically diagnosed adult women from the Wakiso district of Uganda.

    PubMed

    Yegorov, Sergey; Galiwango, Ronald M; Ssemaganda, Aloysious; Muwanga, Moses; Wesonga, Irene; Miiro, George; Drajole, David A; Kain, Kevin C; Kiwanuka, Noah; Bagaya, Bernard S; Kaul, Rupert

    2016-11-14

    The malaria burden in sub-Saharan Africa (SSA) has fallen substantially. Nevertheless, malaria remains a serious health concern, and Uganda ranks third in SSA in total malaria burden. Epidemiological studies of adult malaria in Uganda are scarce and little is known about rates of malaria in non-pregnant adult women. This pilot study assessed malaria prevalence among adult women from Wakiso district, historically a highly malaria endemic region. Adult women using public health services were screened for malaria, HIV and pregnancy. A physician-selected subset of women presenting to the Outpatient Department of Entebbe General Hospital (EGH) with current fever (axillary temperature ≥37.5 °C) or self-reporting fever during the previous 24 h, and a positive thick smear for malaria in the EGH laboratory were enrolled (n = 86). Women who self-identified as pregnant or HIV-positive were excluded from screening. Malaria infection was then assessed using HRP2/pLDH rapid diagnostic tests (RDTs) in all participants. Repeat microscopy and PCR were performed at a research laboratory for a subset of participants. In addition, 104 women without a history of fever were assessed for asymptomatic parasitaemia using RDT, and a subset of these women screened for parasitaemia using microscopy (40 women) and PCR (40 women). Of 86 women diagnosed with malaria by EGH, only two (2.3%) had malaria confirmed using RDT, subsequently identified as a Plasmodium falciparum infection by research microscopy and PCR. Subset analysis of hospital diagnosed RDT-negative participants detected one sub-microscopic infection with Plasmodium ovale. Compared to RDT, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 19.8-100), 0% (CI 0-5.32) and 2.33% (CI 0.403-8.94) respectively. Compared to PCR, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 31.0-100), 0% (CI 0-34.5) and 23.1% (CI 6.16-54.0), respectively. No malaria was detected among asymptomatic women

  10. Comparison of a PfHRP2-based rapid diagnostic test and PCR for malaria in a low prevalence setting in rural southern Zambia: implications for elimination.

    PubMed

    Laban, Natasha M; Kobayashi, Tamaki; Hamapumbu, Harry; Sullivan, David; Mharakurwa, Sungano; Thuma, Philip E; Shiff, Clive J; Moss, William J

    2015-01-28

    Rapid diagnostic tests (RDTs) detecting histidine-rich protein 2 (PfHRP2) antigen are used to identify individuals with Plasmodium falciparum infection even in low transmission settings seeking to achieve elimination. However, these RDTs lack sensitivity to detect low-density infections, produce false negatives for P. falciparum strains lacking pfhrp2 gene and do not detect species other than P. falciparum. Results of a PfHRP2-based RDT and Plasmodium nested PCR were compared in a region of declining malaria transmission in southern Zambia using samples from community-based, cross-sectional surveys from 2008 to 2012. Participants were tested with a PfHRP2-based RDT and a finger prick blood sample was spotted onto filter paper for PCR analysis and used to prepare blood smears for microscopy. Species-specific, real-time, quantitative PCR (q-PCR) was performed on samples that tested positive either by microscopy, RDT or nested PCR. Of 3,292 total participants enrolled, 12 (0.4%) tested positive by microscopy and 42 (1.3%) by RDT. Of 3,213 (98%) samples tested by nested PCR, 57 (1.8%) were positive, resulting in 87 participants positive by at least one of the three tests. Of these, 61 tested positive for P. falciparum by q-PCR with copy numbers ≤ 2 x 10(3) copies/μL, 5 were positive for both P. falciparum and Plasmodium malariae and 2 were positive for P. malariae alone. RDT detected 32 (53%) of P. falciparum positives, failing to detect three of the dual infections with P. malariae. Among 2,975 participants enrolled during a low transmission period between 2009 and 2012, sensitivity of the PfHRP2-based RDT compared to nested PCR was only 17%, with specificity of >99%. The pfhrp gene was detected in 80% of P. falciparum positives; however, comparison of copy number between RDT negative and RDT positive samples suggested that RDT negatives resulted from low parasitaemia and not pfhrp2 gene deletion. Low-density P. falciparum infections not identified by currently

  11. Polymorphisms of TNF-enhancer and gene for FcγRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population

    PubMed Central

    Sinha, Swapnil; Mishra, Shrawan K; Sharma, Shweta; Patibandla, Phani K; Mallick, Prashant K; Sharma, Surya K; Mohanty, Sanjib; Pati, Sudhanshu S; Mishra, Saroj K; Ramteke, Bheshaj K; Bhatt, RM; Joshi, Hema; Dash, Aditya P; Ahuja, Ramesh C; Awasthi, Shally; Venkatesh, Vimala; Habib, Saman

    2008-01-01

    Background Susceptibility/resistance to Plasmodium falciparum malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the TNF and FCGR2A genes in determining severity/resistance to P. falciparum malaria in Indian subjects. Methods Allelic frequency distribution in populations across India was first determined by typing genetic variants of the TNF enhancer and the FCGR2A G/A SNP in 1871 individuals from 55 populations. Genotyping was carried out by DNA sequencing, single base extension (SNaPshot), and DNA mass array (Sequenom). Plasma TNF was determined by ELISA. Comparison of datasets was carried out by Kruskal-Wallis and Mann-Whitney tests. Haplotypes and LD plots were generated by PHASE and Haploview, respectively. Odds ratio (OR) for risk assessment was calculated using EpiInfo™ version 3.4. Results A novel single nucleotide polymorphism (SNP) at position -76 was identified in the TNF enhancer along with other reported variants. Five TNF enhancer SNPs and the FCGR2A R131H (G/A) SNP were analyzed for association with severity of P. falciparum malaria in a malaria-endemic and a non-endemic region of India in a case-control study with ethnically-matched controls enrolled from both regions. TNF -1031C and -863A alleles as well as homozygotes for the TNF enhancer haplotype CACGG (-1031T>C, -863C>A, -857C>T, -308G>A, -238G>A) correlated with enhanced plasma TNF levels in both patients and controls. Significantly higher TNF levels were observed in patients with severe malaria. Minor alleles of -1031 and -863 SNPs were associated with increased susceptibility to severe malaria. The high-affinity IgG2 binding FcγRIIa AA (131H) genotype was significantly associated with protection from disease manifestation, with stronger association observed in the malaria non

  12. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo

    PubMed Central

    2014-01-01

    Background In areas of high malaria transmission, Plasmodium falciparum infection during pregnancy is characterized by malaria-related anaemia, placental malaria and does not always result in clinical symptoms. This situation is associated with poor pregnancy outcomes. The aim of this study was to determine the extent of asymptomatic P. falciparum infection, its relation with anaemia as well as the most cost-effective technique for its diagnosis in healthy pregnant women living in Kinshasa, Democratic Republic of the Congo. Methods In a cross-sectional study design, information on socio-demographic characteristics and cost data were collected in healthy pregnant women attending antenatal care consultations. Plasmodium falciparum infection was diagnosed using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR). Haemoglobin concentration was also determined. Results In total, 332 pregnant women were enrolled. RDT and microscopy data were available for all the blood samples and 166 samples were analysed by PCR. The prevalence of asymptomatic P. falciparum infection using microscopy, RDTs and PCR, were respectively 21.6%, 27.4% and 29.5%. Taking PCR as a reference, RDTs had a sensitivity of 81.6% and a specificity of 94.9% to diagnose asymptomatic P. falciparum infection. The corresponding values for microscopy were 67.3% and 97.4%. The prevalence of anaemia was 61.1% and asymptomatic malaria increased five times the odds (p < 0.001) of having anaemia. RDTs were more cost-effective compared to microscopy. Incremental cost-effectiveness ratio was US$ 63.47 per microscopy adequately diagnosed case. Conclusion These alarming results emphasize the need to actively diagnose and treat asymptomatic malaria infection during all antenatal care visits. Moreover, in DRC, malaria and anaemia control efforts should be strengthened by promoting the use of insecticide-treated nets, intermittent preventive treatment with sulphadoxine-pyrimethamine and iron

  13. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo.

    PubMed

    Matangila, Junior R; Lufuluabo, Jean; Ibalanky, Axel L; Inocêncio da Luz, Raquel A; Lutumba, Pascal; Van Geertruyden, Jean-Pierre

    2014-04-02

    In areas of high malaria transmission, Plasmodium falciparum infection during pregnancy is characterized by malaria-related anaemia, placental malaria and does not always result in clinical symptoms. This situation is associated with poor pregnancy outcomes. The aim of this study was to determine the extent of asymptomatic P. falciparum infection, its relation with anaemia as well as the most cost-effective technique for its diagnosis in healthy pregnant women living in Kinshasa, Democratic Republic of the Congo. In a cross-sectional study design, information on socio-demographic characteristics and cost data were collected in healthy pregnant women attending antenatal care consultations. Plasmodium falciparum infection was diagnosed using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR). Haemoglobin concentration was also determined. In total, 332 pregnant women were enrolled. RDT and microscopy data were available for all the blood samples and 166 samples were analysed by PCR. The prevalence of asymptomatic P. falciparum infection using microscopy, RDTs and PCR, were respectively 21.6%, 27.4% and 29.5%. Taking PCR as a reference, RDTs had a sensitivity of 81.6% and a specificity of 94.9% to diagnose asymptomatic P. falciparum infection. The corresponding values for microscopy were 67.3% and 97.4%. The prevalence of anaemia was 61.1% and asymptomatic malaria increased five times the odds (p < 0.001) of having anaemia. RDTs were more cost-effective compared to microscopy. Incremental cost-effectiveness ratio was US$ 63.47 per microscopy adequately diagnosed case. These alarming results emphasize the need to actively diagnose and treat asymptomatic malaria infection during all antenatal care visits. Moreover, in DRC, malaria and anaemia control efforts should be strengthened by promoting the use of insecticide-treated nets, intermittent preventive treatment with sulphadoxine-pyrimethamine and iron and folic acid supplements.

  14. Assessing malaria transmission in a low endemicity area of north-western Peru

    PubMed Central

    2013-01-01

    Background Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI using both molecular and serological tools. Methods Epidemiological, parasitological and serological data were collected from 2,667 individuals in three settlements of Bellavista district, in May 2010. Parasite infection was detected using microscopy and polymerase chain reaction (PCR). Antibodies to Plasmodium vivax merozoite surface protein-119 (PvMSP119) and to Plasmodium falciparum glutamate-rich protein (PfGLURP) were detected by ELISA. Risk factors for exposure to malaria (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific antibody prevalence of both P. falciparum and P. vivax were analysed using a previously published catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR). Results The overall parasite prevalence by microscopy and PCR were extremely low: 0.3 and 0.9%, respectively for P. vivax, and 0 and 0.04%, respectively for P. falciparum, while seroprevalence was much higher, 13.6% for P. vivax and 9.8% for P. falciparum. Settlement, age and occupation as moto-taxi driver during previous year were significantly associated with P. falciparum exposure, while age and distance to the water drain were associated with P. vivax exposure. Likelihood ratio tests supported age seroprevalence curves with two SCR for both P. vivax and P. falciparum indicating significant changes in the MTI over time. The SCR for PfGLURP was 19-fold lower after 2002 as compared to before (λ1 = 0.022 versus λ2 = 0.431), and the SCR for PvMSP119 was four-fold higher after 2006 as compared to before (λ1 = 0.024 versus λ2 = 0.006). Conclusion Combining molecular and serological tools

  15. Prolongation of the QTc interval in African children treated for falciparum malaria.

    PubMed

    vn Seidlein, L; Jaffar, S; Greenwood, B

    1997-05-01

    Antimalarial drugs can affect the heart and trigger life-threatening arrhythmias. However, little is known about the frequency with which cardiac abnormalities occur during uncomplicated attacks of malaria. Therefore, we have studied the electrocardiograms of 139 Gambian children with uncomplicated falciparum malaria who were treated with co-artemether, pyrimethamine/sulfadoxine, or chloriquine. The QTc intervals were measured on presentation, and four and eight days after treatment. No significant differences in mean QTc or heart rate were found between children in the three treatment groups on days 0, 4, or 8. After adjustment for the type of antimalarial thearapy in an analysis of variance, the mean (SD) QTc intervals on days 0, 4, and 8 were 402 (22.6), 416 (23.1), and 405 (24.3) msec, respectively. The mean QTc on day 4 was significantly longer than the mean QTc on days 0 or 8 (P < 0.01 in both cases). A quadratic line was fitted for QTc against time for each antimalarial therapy. No significant differences were found between the quadratic lines of the three groups. A weak association was found between QTc and the degree of parasitemia (r = 0.17, P = 0.04) and temperature (r = -0.23, P = 0.01) measured on day 0. The QTcs were measured in 18 children who experienced a second episode of malaria. The changes in QTc observed during second episodes were similar to those observed during the first attack. Changes in QTc in five children who developed severe malaria were similar to those found in the remaining children who did not develop severe malaria. This study indicates that the QTc interval changes during the early phase of malaria and this change is independent of the type of antimalarial therapy given.

  16. Spatial mapping and prediction of Plasmodium falciparum infection risk among school-aged children in Côte d'Ivoire.

    PubMed

    Houngbedji, Clarisse A; Chammartin, Frédérique; Yapi, Richard B; Hürlimann, Eveline; N'Dri, Prisca B; Silué, Kigbafori D; Soro, Gotianwa; Koudou, Benjamin G; Assi, Serge-Brice; N'Goran, Eliézer K; Fantodji, Agathe; Utzinger, Jürg; Vounatsou, Penelope; Raso, Giovanna

    2016-09-07

    In Côte d'Ivoire, malaria remains a major public health issue, and thus a priority to be tackled. The aim of this study was to identify spatially explicit indicators of Plasmodium falciparum infection among school-aged children and to undertake a model-based spatial prediction of P. falciparum infection risk using environmental predictors. A cross-sectional survey was conducted, including parasitological examinations and interviews with more than 5,000 children from 93 schools across Côte d'Ivoire. A finger-prick blood sample was obtained from each child to determine Plasmodium species-specific infection and parasitaemia using Giemsa-stained thick and thin blood films. Household socioeconomic status was assessed through asset ownership and household characteristics. Children were interviewed for preventive measures against malaria. Environmental data were gathered from satellite images and digitized maps. A Bayesian geostatistical stochastic search variable selection procedure was employed to identify factors related to P. falciparum infection risk. Bayesian geostatistical logistic regression models were used to map the spatial distribution of P. falciparum infection and to predict the infection prevalence at non-sampled locations via Bayesian kriging. Complete data sets were available from 5,322 children aged 5-16 years across Côte d'Ivoire. P. falciparum was the predominant species (94.5 %). The Bayesian geostatistical variable selection procedure identified land cover and socioeconomic status as important predictors for infection risk with P. falciparum. Model-based prediction identified high P. falciparum infection risk in the north, central-east, south-east, west and south-west of Côte d'Ivoire. Low-risk areas were found in the south-eastern area close to Abidjan and the south-central and west-central part of the country. The P. falciparum infection risk and related uncertainty estimates for school-aged children in Côte d'Ivoire represent the most up

  17. Malaria seroprevalence in blood bank donors from endemic and non-endemic areas of Venezuela.

    PubMed

    Contreras, Carmen Elena; Donato, Marcos de; Rivas, María Ana; Rodulfo, Hectorina; Mora, Robert; Batista, María Eulalia; Marcano, Norka

    2011-03-01

    In Venezuela, a total of 363,466 malaria cases were reported between 1999-2009. Several states are experiencing malaria epidemics, increasing the risk of vector and possibly transfusion transmission. We investigated the risk of transfusion transmission in blood banks from endemic and non-endemic areas of Venezuela by examining blood donations for evidence of malaria infection. For this, commercial kits were used to detect both malaria-specific antibodies (all species) and malaria antigen (Plasmodium falciparum only) in samples from Venezuelan blood donors (n = 762). All samples were further studied by microscopy and polymerase chain reaction (PCR). The antibody results showed that P. falciparum-infected patients had a lower sample/cut-off ratio than Plasmodium vivax-infected patients. Conversely, a higher ratio for antigen was observed among all P. falciparum-infected individuals. Sensitivity and specificity were higher for malarial antigens (100 and 99.8%) than for antibodies (82.2 and 97.4%). Antibody-positive donors were observed in Caracas, Ciudad Bolívar, Puerto Ayacucho and Cumaná, with prevalences of 1.02, 1.60, 3.23 and 3.63%, respectively. No PCR-positive samples were observed among the donors. However, our results show significant levels of seropositivity in blood donors, suggesting that more effective measures are required to ensure that transfusion transmission does not occur.

  18. Physiographic and entomologic risk factors of malaria in Assam, India.

    PubMed

    Dev, Vas; Phookan, Sobhan; Sharma, Vinod P; Anand, Suraj P

    2004-10-01

    Fever surveys were conducted in several districts of the Indian state of Assam to ascertain the prevalence of malaria in relation to vector abundance, entomologic inoculation rates (EIRs), and geographic location of human settlements. Anopheles minimus were incriminated, but their relative abundance and biting rates varied among districts, and no significant correlation was observed between these two indicators (r = 0.43, P = 0.34). Plasmodium falciparum was the predominant parasite species except in two districts where P. vivax was the majority parasite. The EIRs per person/night were 0.46-0.71 in P. falciparum-predominant areas and 0.12 in the district where P. vivax predominated. The correlation of percentage of fever cases positive for malaria infection in each district with the corresponding EIR was not significant (r = 0.6, P = 0.21). Malaria cases were detected in all months of the year but peaked during May-June, which corresponded to the months of heavy rainfall. These were also the months with highest incidence of infection with P. falciparum. Malaria cases were observed in all age groups of both sexes, and there was clustering of cases in villages near the vector-breeding habitat (perennial seepage streams), and foothill villages. However, malaria incidences were consistently lower in villages within 5 km of the nearest health care facility, which were in town areas. The data presented are indicative of low-to-moderate levels of malaria transmission by An. minimus, and would be of value for developing future intervention strategies.

  19. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings.

    PubMed

    Ouédraogo, André Lin; Eckhoff, Philip A; Luty, Adrian J F; Roeffen, Will; Sauerwein, Robert W; Bousema, Teun; Wenger, Edward A

    2018-05-01

    Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001) but not submicroscopic (p = 0.937) gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the human infectious

  20. Evaluation of the malaria rapid diagnostic test VIKIA malaria Ag Pf/Pan™ in endemic and non-endemic settings

    PubMed Central

    2013-01-01

    Background Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Methods Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Results Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. Conclusions The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions. PMID:23742633

  1. Evaluation of the malaria rapid diagnostic test VIKIA malaria Ag Pf/Pan™ in endemic and non-endemic settings.

    PubMed

    Eibach, Daniel; Traore, Boubacar; Bouchrik, Mourad; Coulibaly, Boubacar; Coulibaly, Nianégué; Siby, Fanta; Bonnot, Guillaume; Bienvenu, Anne-Lise; Picot, Stéphane

    2013-06-06

    Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.

  2. Artesunate + amodiaquine versus artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in the Colombian Pacific region: a noninferiority trial.

    PubMed

    De la Hoz Restrepo, Fernando; Porras Ramírez, Alexandra; Rico Mendoza, Alejandro; Córdoba, Freddy; Rojas, Diana Patricia

    2012-12-01

    In Colombia, there are no published studies for the treatment of uncomplicated Plasmodium falciparum malaria comparing artemisinin combination therapies. Hence, it is intended to demonstrate the non-inferior efficacy/safety profiles of artesunate + amodiaquine versus artemether-lumefantrine treatments. A randomized, controlled, open-label, noninferiority (Δ≤5%) clinical trial was performed in adults with uncomplicated P. falciparum malaria using the 28-day World Health Organization validated design/definitions. Patients were randomized 1:1 to either oral artesunate + amodiaquine or artemether-lumefantrine. The primary efficacy endpoint: adequate clinical and parasitological response; secondary endpoints: - treatment failures defined per the World Health Organization. assessed through adverse events. A total of 105 patients was included in each group: zero censored observations. Mean (95%CI - Confidence interval) adequate clinical and parasitological response rates: 100% for artesunate + amodiaquine and 99% for artemether-lumefantrine; the noninferiority criteria was met (Δ=1.7%). There was one late parasitological therapeutic failure (1%; artemether-lumefantrine group), typified by polymerase chain reaction as the MAD20 MSP1 allele. The fever clearance time (artesunate + amodiaquine group) was significantly shorter (p=0.002). Respectively, abdominal pain for artesunate + amodiaquine and artemether-lumefantrine was 1.9% and 3.8% at baseline (p=0.68) and 1% and 13.3% after treatment (p<0.001). Uncomplicated P. falciparum malaria treatment with artesunate + amodiaquine is noninferior to the artemether-lumefantrine standard treatment. The efficacy/safety profiles grant further studies in this and similar populations.

  3. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate.

    PubMed

    Ntege, Edward H; Arisue, Nobuko; Ito, Daisuke; Hasegawa, Tomoyuki; Palacpac, Nirianne M Q; Egwang, Thomas G; Horii, Toshihiro; Takashima, Eizo; Tsuboi, Takafumi

    2016-11-04

    Genetic variability in Plasmodium falciparum malaria parasites hampers current malaria vaccine development efforts. Here, we hypothesize that to address the impact of genetic variability on vaccine efficacy in clinical trials, conserved antigen targets should be selected to achieve robust host immunity across multiple falciparum strains. Therefore, suitable vaccine antigens should be assessed for levels of polymorphism and genetic diversity. Using a total of one hundred and two clinical isolates from a region of high malaria transmission in Uganda, we analyzed extent of polymorphism and genetic diversity in four recently reported novel blood-stage malaria vaccine candidate proteins: Rh5 interacting protein (PfRipr), GPI anchored micronemal antigen (PfGAMA), rhoptry-associated leucine zipper-like protein 1 (PfRALP1) and Duffy binding-like merozoite surface protein 1 (PfMSPDBL1). In addition, utilizing the wheat germ cell-free system, we expressed recombinant proteins for the four candidates based on P. falciparum laboratory strain 3D7 sequences, immunized rabbits to obtain specific antibodies (Abs) and performed functional growth inhibition assay (GIA). The GIA activity of the raised Abs was demonstrated using both homologous 3D7 and heterologous FVO strains in vitro. Both pfripr and pfralp1 are less polymorphic but the latter is comparatively more diverse, with varied number of regions having insertions and deletions, asparagine and 6-mer repeats in the coding sequences. Pfgama and pfmspdbl1 are polymorphic and genetically diverse among the isolates with antibodies against the 3D7-based recombinant PfGAMA and PfMSPDBL1 inhibiting merozoite invasion only in the 3D7 but not FVO strain. Moreover, although Abs against the 3D7-based recombinant PfRipr and PfRALP1 proteins potently inhibited merozoite invasion of both 3D7 and FVO, the GIA activity of anti-PfRipr was much higher than that of anti-PfRALP1. Thus, PfRipr is regarded as a promising blood-stage vaccine

  4. Comparison of rapid diagnostic test Plasmotec Malaria-3, microscopy, and quantitative real-time PCR for diagnoses of Plasmodium falciparum and Plasmodium vivax infections in Mimika Regency, Papua, Indonesia.

    PubMed

    Fransisca, Liony; Kusnanto, Josef Hari; Satoto, Tri Baskoro T; Sebayang, Boni; Supriyanto; Andriyan, Eko; Bangs, Michael J

    2015-03-05

    The World Health Organization recommends malaria be diagnosed by standard microscopy or rapid diagnostic test (RDT) before treatment. RDTs have been used with greater frequency in the absence of matching blood slide confirmation in the majority of RDT reported cases in Mimika Regency, Papua Province, Indonesia. Given the importance of RDT in current health system as point-of-care tool, careful validation of RDT product performance for providing accurate malaria diagnosis is critical. Plasmotec Malaria-3 (XW-P07) performance was evaluated by comparing it with paired blood film microscopy and quantitative real-time PCR (qPCR). Consecutive whole blood samples were derived from one clinic in Mimika as part of routine passive malaria case detection. RDT results were read by two trained technicians and interpreted by consensus. Expert microscopic examination of blood slides was cross-checked by observer-blinded second reader and a third examiner if discordant between examinations. qPCR was used as the 'gold standard', followed by microscopy for the outcome/disease variable. Comparison analysis included sensitivity (Sn), specificity (Sp), positive and negative predictive values (PPV & NPV), and other diagnostic screening performance measures for detecting Plasmodium falciparum and Plasmodium vivax infections. Overall malaria positive samples from qPCR was 42.2% (175/415 samples); and from matching blood slides 40.5% (168/415) of which those infections with relatively low parasite densities ≤100/μl blood was 5.7% of P. falciparum and 16.5% of P. vivax samples examined. Overall RDT performance when compared with microscopy for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:72.9%, Sp:99.1%, PPV:95.4%, NPV:93.4%, Kappa:0.79. Overall RDT performance when compared with qPCR for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:66%, Sp:99.1%, PPV:95.4%, NPV:90.9%, Kappa:0

  5. Clinical trial of extended-dose chloroquine for treatment of resistant falciparum malaria among Afghan refugees in Pakistan.

    PubMed

    Howard, Natasha; Durrani, Naeem; Sanda, Sanda; Beshir, Khalid; Hallett, Rachel; Rowland, Mark

    2011-06-23

    Falciparum malaria is a significant problem for Afghan refugees in Pakistan. Refugee treatment guidelines recommended standard three-day chloroquine treatment (25 mg/kg) for first episodes and extended five-day treatment (40 mg/kg) for recrudescent infections, based on the assumption that a five-day course would more likely achieve a cure. An in-vivo randomized controlled trial was conducted among refugees with uncomplicated falciparum malaria to determine whether five-day treatment (CQ40) was more effective than standard treatment (CQ25). 142 falciparum patients were recruited into CQ25 or CQ40 treatment arms and followed up to 60 days with regular blood smears. The primary outcome was parasitological cure without recrudescence. Treatment failures were retreated with CQ40. PCR genotyping of 270 samples, from the same and nearby sites, was used to support interpretation of outcomes. 84% of CQ25 versus 51% of CQ40 patients experienced parasite recrudescence during follow-up (adjusted odds ratio 0.17, 95%CI 0.08-0.38). Cure rates were significantly improved with CQ40, particularly among adults. Fever clearance time, parasite clearance time, and proportions gametocytaemic post-treatment were similar between treatment groups. Second-line CQ40 treatment resulted in higher failure rates than first-line CQ40 treatment. CQ-resistance marker pfcrt 76T was found in all isolates analysed, while pfmdr1 86Y and 184Y were found in 18% and 37% of isolates respectively. CQ is not suitable for first-line falciparum treatment in Afghan refugee communities. The extended-dose CQ regimen can overcome 39% of resistant infections that would recrudesce under the standard regimen, but the high failure rate after directly observed treatment demonstrates its use is inappropriate.

  6. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine.

    PubMed

    Longley, Rhea J; Halbroth, Benedict R; Salman, Ahmed M; Ewer, Katie J; Hodgson, Susanne H; Janse, Chris J; Khan, Shahid M; Hill, Adrian V S; Spencer, Alexandra J

    2017-03-01

    Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei - P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei ; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. Copyright © 2017 Longley et al.

  7. Is there a risk of suburban transmission of malaria in Selangor, Malaysia?

    PubMed

    Braima, Kamil A; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R; Elamin, Alaa-Eldeen M; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M

    2013-01-01

    The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia.

  8. The epidemiology of malaria in the Papua New Guinea highlands: 5. Aseki, Menyamya and Wau-Bulolo, Morobe Province.

    PubMed

    Mueller, Ivo; Sie, Albert; Ousari, Moses; Iga, Jonah; Yala, Simon; Ivivi, Rex; Reeder, John C

    2007-01-01

    Although not strictly a highlands province, Morobe encompasses large highlands areas, the most important being Aseki, Menyamya and Wau-Bulolo. A series of rapid malaria surveys conducted in both the wet and dry seasons found malaria to be clearly endemic in areas below 1400 m in Menyamya and Wau-Bulolo, with overall prevalence rates in the wet season (25.5%, range: 9.1%-39.2%) greatly exceeding those in the dry season (8.3%, range: 2.4%-22.8%; p < 0.001). In the wet season surveys Plasmodium falciparum was the clearly predominant species, accounting for 63% of all infections. P. vivax increased in frequency in the dry season (from 27% to 46%, p < 0.001), while P. falciparum and P. malariae decreased. In line with past surveys a low prevalence of malaria was found in the Aseki area. Malaria was found to be the main source of febrile illness in the wet season with at least 60% of measured or reported fever associated with parasitaemia. Other causes of febrile illness dominated in the dry. In villages with parasite prevalence rates < 20% mean haemoglobin levels and prevalence of severe anaemia were strongly correlated with overall parasite prevalence. In addition concurrent malarial infections were associated with a strong reduction of individual haemoglobin levels (-1.2 g/dl) and there was increased risk of moderate-to-severe anaemia with concurrent malaria. Malarial infections are thus the most significant cause of febrile illness and anaemia in the highlands fringe populations in Morobe. As a consequence all villages below 1500-1600 m in Morobe Province should be included in malaria control activities.

  9. Hotspots of Malaria Transmission in the Peruvian Amazon: Rapid Assessment through a Parasitological and Serological Survey

    PubMed Central

    Rosas-Aguirre, Angel; Speybroeck, Niko; Llanos-Cuentas, Alejandro; Rosanas-Urgell, Anna; Carrasco-Escobar, Gabriel; Rodriguez, Hugo; Gamboa, Dionicia; Contreras-Mancilla, Juan; Alava, Freddy; Soares, Irene S.; Remarque, Edmond; D´Alessandro, Umberto; Erhart, Annette

    2015-01-01

    Background With low and markedly seasonal malaria transmission, increasingly sensitive tools for better stratifying the risk of infection and targeting control interventions are needed. A cross-sectional survey to characterize the current malaria transmission patterns, identify hotspots, and detect recent changes using parasitological and serological measures was conducted in three sites of the Peruvian Amazon. Material and Methods After full census of the study population, 651 participants were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites (microscopy and PCR) and antibodies against P. vivax (PvMSP119, PvAMA1) and P. falciparum (PfGLURP, PfAMA1) antigens by ELISA. Risk factors for malaria infection (positive PCR) and malaria exposure (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific seroprevalence was analyzed using a reversible catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR, λ). SaTScan was used to detect spatial clusters of serology-positive individuals within each site. Results The overall parasite prevalence by PCR was low, i.e. 3.9% for P. vivax and 6.7% for P. falciparum, while the seroprevalence was substantially higher, 33.6% for P. vivax and 22.0% for P. falciparum, with major differences between study sites. Age and location (site) were significantly associated with P. vivax exposure; while location, age and outdoor occupation were associated with P. falciparum exposure. P. falciparum seroprevalence curves showed a stable transmission throughout time, while for P. vivax transmission was better described by a model with two SCRs. The spatial analysis identified well-defined clusters of P. falciparum seropositive individuals in two sites, while it detected only a very small cluster of P. vivax exposure. Conclusion The use of a single parasitological and serological malaria survey has proven to be an efficient

  10. Haemoglobin dynamics in Papuan and non-Papuan adults in northeast Papua, Indonesia, with acute, uncomplicated vivax or falciparum malaria

    PubMed Central

    2013-01-01

    Background Haemoglobin (Hb) recovers slowly in malaria and may be influenced by naturally acquired immunity. Hb recovery was compared in malaria immune, indigenous Papuan and non-Papuan adults with limited malaria exposure. Methods Hb concentrations were measured on Days (D) 0, 3, 7, and 28 in 57 Papuans and 105 non-Papuans treated with chloroquine, doxycycline or both drugs for acute, uncomplicated Plasmodium vivax (n?=?64) or Plasmodium falciparum (n?=?98). Results Mean (SD, range) D0 Hb was 12.7 (2.2, 7–21.3) g/dL and was similar in P. falciparum infected Papuans and non-Papuans: 12.2 vs. 12.8 g/dL (P?=?0.15) but significantly lower in: (i) P. vivax-infected Papuans vs. P. vivax-infected non-Papuans: 11.4 vs. 13.47 g/dL [∆?=?−2.07 (95% CI: –3.3 – –0.8), P?=?0.0018], (ii) all patients with splenomegaly (vs. those without splenomegaly): 12.16 vs. 13.01 g/dL [∆?=?−0.85 (−1.6– –0.085), P?=?0.029], and (iii) all females vs. all males: 10.18 vs. 13.01 g/dL [∆?=?−2.82 (−3.97 – –1.67), P?falciparum patients) and Papuan ethnicity (P?=?0.017) (P. vivax patients) as significant factors for a lower D0 Hb. Mean D28 Hb increased to 13.6 g/dL [∆?=?1.01 (0.5-1.5) vs. D0 Hb, P?=?0.0001]. It was: (i) positively correlated with the D0 Hb (adjusted R2?=?0.24, P?=?0.000), and was significantly lower in P. vivax infected Papuans vs. non-Papuans: 12.71 vs. 14.46 g/dL [∆?=?−1.7 (−2.95– –0.5, P?=?0.006). Conclusions Haemoglobin recovery was related to baseline Hb. Vivax-infected malaria immune Papuans had persistently lower Hb concentrations compared to non-Papuans with limited malaria exposure. This haematological disadvantage remains unexplained. PMID:23777546

  11. Changing Trends in P. falciparum Burden, Immunity, and Disease in Pregnancy.

    PubMed

    Mayor, Alfredo; Bardají, Azucena; Macete, Eusebio; Nhampossa, Tacilta; Fonseca, Ana Maria; González, Raquel; Maculuve, Sonia; Cisteró, Pau; Rupérez, Maria; Campo, Joe; Vala, Anifa; Sigaúque, Betuel; Jiménez, Alfons; Machevo, Sonia; de la Fuente, Laura; Nhama, Abel; Luis, Leopoldina; Aponte, John J; Acácio, Sozinho; Nhacolo, Arsenio; Chitnis, Chetan; Dobaño, Carlota; Sevene, Esperanza; Alonso, Pedro Luis; Menéndez, Clara

    2015-10-22

    Prevention of reinfection and resurgence is an integral component of the goal to eradicate malaria. However, the adverse effects of malaria resurgences are not known. We assessed the prevalence of Plasmodium falciparum infection among 1819 Mozambican women who delivered infants between 2003 and 2012. We used microscopic and histologic examination and a quantitative polymerase-chain-reaction (qPCR) assay, as well as flow-cytometric analysis of IgG antibody responses against two parasite lines. Positive qPCR tests for P. falciparum decreased from 33% in 2003 to 2% in 2010 and increased to 6% in 2012, with antimalarial IgG antibody responses mirroring these trends. Parasite densities in peripheral blood on qPCR assay were higher in 2010-2012 (geometric mean [±SD], 409±1569 genomes per microliter) than in 2003-2005 (44±169 genomes per microliter, P=0.02), as were parasite densities in placental blood on histologic assessment (50±39% of infected erythrocytes vs. 4±6%, P<0.001). The malaria-associated reduction in maternal hemoglobin levels was larger in 2010-2012 (10.1±1.8 g per deciliter in infected women vs. 10.9±1.7 g per deciliter in uninfected women; mean difference, -0.82 g per deciliter; 95% confidence interval [CI], -1.39 to -0.25) than in 2003-2005 (10.5±1.1 g per deciliter vs. 10.6±1.5 g per deciliter; difference, -0.12 g per deciliter; 95% CI, -0.67 to 0.43), as was the reduction in birth weight (2863±440 g in women with past or chronic infections vs. 3070±482 g in uninfected women in 2010-2012; mean difference, -164.5 g; 95% CI, -289.7 to -39.4; and 2994±487 g vs. 3117±455 g in 2003-2005; difference, -44.8 g; 95% CI, -139.1 to 49.5). Antimalarial antibodies were reduced and the adverse consequences of P. falciparum infections were increased in pregnant women after 5 years of a decline in the prevalence of malaria. (Funded by Malaria Eradication Scientific Alliance and others.).

  12. Malaria burden in human population of Quetta, Pakistan

    PubMed Central

    Tareen, A. M.; Rafique, M.; Wadood, A.; Qasim, M.; Rahman, H.; Shah, S. H.; Khan, K.; Pirkani, G. S.

    2012-01-01

    Malaria is a serious global health challenge, which is responsible for more than one million deaths a year. Malarial infection is more prevalent in developing countries including Pakistan. Significant efforts have been made to control malaria; however, due to socio-environmental factors, it remains a frequent problem in Quetta. The present study was undertaken to determine the malarial incidence, species prevalence, and its demographic evaluation in human population of Quetta, Pakistan. A total of 1831 subjects, comprising 1072 male and 759 female presenting symptoms of malaria, were included in this study. Blood samples from clinically suspected individuals were subjected to the standard immunochromatographic and malaria parasite smear analysis for malaria diagnosis. Out of 1831 subjects, 338 (18.45%) patients were positive for malarial parasite while the species prevalence was found as 276 (81.66%) and 62 (18.34%) for Plasmodium vivax, and Plasmodium falciparum, respectively. Furthermore, seasonal variations gradual increase in the prevalence rate. The age group of 21–30 years (30.47%) was found more prone to malaria. The suspected malaria cases were found more frequent in rural (72.1%) as compared to urban (27.9%). In addition, the malaria burden was high in urban area (22.89%) population as compared to the rural area (16.74%) population. It was observed that the highest disease occurrence was caused by P. vivax, which reflects a serious threat for public health. The current findings will be helpful to plan effective strategies to prevent and control malaria in this area. PMID:24688766

  13. Routine delivery of artemisinin-based combination treatment at fixed health facilities reduces malaria prevalence in Tanzania: an observational study

    PubMed Central

    2012-01-01

    Background Artemisinin-based combination therapy (ACT) has been promoted as a means to reduce malaria transmission due to their ability to kill both asexual blood stages of malaria parasites, which sustain infections over long periods and the immature derived sexual stages responsible for infecting mosquitoes and onward transmission. Early studies reported a temporal association between ACT introduction and reduced malaria transmission in a number of ecological settings. However, these reports have come from areas with low to moderate malaria transmission, been confounded by the presence of other interventions or environmental changes that may have reduced malaria transmission, and have not included a comparison group without ACT. This report presents results from the first large-scale observational study to assess the impact of case management with ACT on population-level measures of malaria endemicity in an area with intense transmission where the benefits of effective infection clearance might be compromised by frequent and repeated re-infection. Methods A pre-post observational study with a non-randomized comparison group was conducted at two sites in Tanzania. Both sites used sulphadoxine-pyrimethamine (SP) monotherapy as a first-line anti-malarial from mid-2001 through 2002. In 2003, the ACT, artesunate (AS) co-administered with SP (AS + SP), was introduced in all fixed health facilities in the intervention site, including both public and registered non-governmental facilities. Population-level prevalence of Plasmodium falciparum asexual parasitaemia and gametocytaemia were assessed using light microscopy from samples collected during representative household surveys in 2001, 2002, 2004, 2005 and 2006. Findings Among 37,309 observations included in the analysis, annual asexual parasitaemia prevalence in persons of all ages ranged from 11% to 28% and gametocytaemia prevalence ranged from <1% to 2% between the two sites and across the five survey years. A

  14. Clinical and molecular surveillance of artemisinin resistant falciparum malaria in Myanmar (2009-2013).

    PubMed

    Nyunt, Myat Htut; Soe, Myat Thu; Myint, Hla Win; Oo, Htet Wai; Aye, Moe Moe; Han, Soe Soe; Zaw, Ni Ni; Cho, Cho; Aung, Phyo Zaw; Kyaw, Khin Thiri; Aye, Thin Thin; San, Naychi Aung; Ortega, Leonard; Thimasarn, Krongthong; Bustos, Maria Dorina G; Galit, Sherwin; Hoque, Mohammad Rafiul; Ringwald, Pascal; Han, Eun-Taek; Kyaw, Myat Phone

    2017-08-14

    Emergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2. A prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples. True recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively). Apart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.

  15. Accuracy of a Plasmodium falciparum specific histidine-rich protein 2 rapid diagnostic test in the context of the presence of non-malaria fevers, prior anti-malarial use and seasonal malaria transmission.

    PubMed

    Kiemde, Francois; Bonko, Massa Dit Achille; Tahita, Marc Christian; Lompo, Palpouguini; Rouamba, Toussaint; Tinto, Halidou; van Hensbroek, Michael Boele; Mens, Petra F; Schallig, Henk D F H

    2017-07-20

    It remains challenging to distinguish malaria from other fever causing infections, as a positive rapid diagnostic test does not always signify a true active malaria infection. This study was designed to determine the influence of other causes of fever, prior anti-malarial treatment, and a possible seasonality of the performance of a PfHRP2 RDT for the diagnosis of malaria in children under-5 years of age living in a malaria endemic area. A prospective etiology study was conducted in 2015 among febrile children under 5 years of age in Burkina Faso. In order to assess the influence of other febrile illnesses, prior treatment and seasonality on the performance of a PfHRP2 RDT in diagnosing malaria, the RDT results were compared with the gold standard (expert microscopic diagnosis of Plasmodium falciparum) and test results were analysed by assuming that prior anti-malarial use and bacterial/viral infection status would have been known prior to testing. To assess bacterial and viral infection status blood, urine and stool samples were analysed. In total 683 blood samples were analysed with microscopy and RDT-PfHRP2. Plasmodium falciparum malaria was diagnosed in 49.8% (340/683) by microscopy compared to 69.5% (475/683) by RDT-PfHRP2. The RDT-PfHRP2 reported 29.7% (141/475) false positive results and 1.8% (6/340) false negative cases. The RDT-PfHRP2 had a high sensitivity (98.2%) and negative predictive value (97.1%), but a low specificity (58.9%) and positive predictive value (70.3%). Almost 50% of the alternative cause of fever were diagnosed by laboratory testing in the RDT false positive malaria group. The use of a malaria RDT-PfHRP2 in a malaria endemic area may cause misdiagnosis of the actual cause of fever due to false positive test results. The development of a practical diagnostic tool to screen for other causes of fever in malaria endemic areas is required to save lives.

  16. Seroprevalence of pediatric malaria in quetta, balochistan, pakistan.

    PubMed

    Hussain, K; Shafee, M; Khan, N; Jan, S; Tareen, Am; Khan, Ma

    2013-04-01

    Malaria is one of the most devastating protozoal diseases in under developing countries like Pakistan where health facilities are scarce. It is the second most frequently reported disease with 4.5 million suspected cases in Pakistan. The current study was designed to determine the incidence of pediatric malaria in Quetta, Balochistan. The study was conducted at Children Hospital Quetta (CHQ) during July 2011march 2012. Blood samples were collected from 3418 clinically suspected and were evaluated using thin and thick blood films stained with Giemsa stain. Out of 3418 total of 230 (6.72%) children were found positive for any of the malarial parasitic infestation. Plasmodium vivax was observed to be more common 54.34% (n= 125/230) than P. falciparum 44.78% (n = 103/230). Male children were 65.21% (150/230) i.e. two times more commonly affected than female 34.78% (80/230) children. The prevalence among age groups was 7.41% (n = 89/1200) in preschool-aged children aged 1-5 years, 7.11% (n = 75/1054) in school-aged children aged 6-10 years while 6.78% (n = 46/678) in 11-15 years-old children, and 6.66% (n = 20/300) in >15 year-olds children. Peak prevalence was noted in summer and mild in winter. Mixed infection of (0.86%: 2/230) P. vivax and P. falciparum was also observed in two cases although no case of P. malariae or P. ovale infection was seen during entire study. The results reflect the higher prevalence of malaria in Quetta, Pakistan that poses a significant health threat and requires urgent attention of high-ups to launch programme to control the disease in the area.

  17. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors.

    PubMed

    Tokponnon, Filémon T; Ogouyémi, Aurore Hounto; Sissinto, Yolande; Sovi, Arthur; Gnanguenon, Virgile; Cornélie, Sylvie; Adéothy, Adicath Adéola; Ossè, Razaki; Wakpo, Abel; Gbénou, Dina; Oke, Mariam; Kinde-Gazard, Dorothée; Kleinschmidt, Immo; Akogbeto, Martin C; Massougbodji, Achille

    2014-03-01

    The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p=0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31-59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31-59 month old children (p=0.00) but no difference associated with resistance areas was observed (p=0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p<0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40-70), and was significantly higher than that observed in low resistance areas (p<0.05). The results of this study showed that the

  18. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum

    PubMed Central

    Prugnolle, Franck; Durand, Patrick; Neel, Cécile; Ollomo, Benjamin; Ayala, Francisco J.; Arnathau, Céline; Etienne, Lucie; Mpoudi-Ngole, Eitel; Nkoghe, Dieudonné; Leroy, Eric; Delaporte, Eric; Peeters, Martine; Renaud, François

    2010-01-01

    Plasmodium reichenowi, a chimpanzee parasite, was until very recently the only known close relative of Plasmodium falciparum, the most virulent agent of human malaria. Recently, Plasmodium gaboni, another closely related chimpanzee parasite, was discovered, suggesting that the diversity of Plasmodium circulating in great apes in Africa might have been underestimated. It was also recently shown that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite and that the world diversity of P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. The evidence indicates that all extant populations of P. falciparum originated from P. reichenowi, likely by a single transfer from chimpanzees. In this work, we have studied the diversity of Plasmodium species infecting chimpanzees and gorillas in Central Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used noninvasive sampling methods. We confirm the presence of P. reichenowi and P. gaboni in wild chimpanzees. Moreover, our results reveal the existence of an unexpected genetic diversity of Plasmodium lineages circulating in gorillas. We show that gorillas are naturally infected by two related lineages of parasites that have not been described previously, herein referred to as Plasmodium GorA and P. GorB, but also by P. falciparum, a species previously considered as strictly human specific. The continuously increasing contacts between humans and primate populations raise concerns about further reciprocal host transfers of these pathogens. PMID:20133889

  19. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria

    PubMed Central

    Fry, Andrew E.; Griffiths, Michael J.; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T.; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N.; Marsh, Kevin; Molyneux, Malcolm E.; Taylor, Terrie E.; Rockett, Kirk A.; Kwiatkowski, Dominic P.

    2009-01-01

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across 3 African populations. Using population- and family-based tests we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: Case-control allelic odds ratio (OR) 1.2, 95% confidence interval (CI) 1.09 – 1.32, P=0.0003; Family-studies allelic OR 1.19, CI 1.08 – 1.32, P=0.001; Pooled across all studies allelic OR 1.18, CI 1.11 - 1.26, P=2×10−7. Analyzing the family trios we found suggestive evidence of a parent-of-origin effect at the ABO locus. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P=0.046). Finally we used HapMap data to demonstrate a region of low FST (−0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of FST across chromosome 9 (~99.5 – 99.9th centile). This low FST region may be a signal of longstanding balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum. PMID:18003641

  20. Prevalence of malaria parasites in adults and its determinants in malaria endemic area of Kisumu County, Kenya.

    PubMed

    Jenkins, Rachel; Omollo, Raymond; Ongecha, Michael; Sifuna, Peter; Othieno, Caleb; Ongeri, Linnet; Kingora, James; Ogutu, Bernhards

    2015-07-08

    The prevalence of malaria parasites in adults in Africa is less well researched than in children. Therefore, a demographic surveillance site was used to conduct a household survey of adults in the malaria endemic area of Maseno division in Kisumu County near Lake Victoria. A random survey of 1,190 adults living in a demographic health surveillance site in a malaria endemic area of 70,805 population size was conducted, measuring presence of malaria parasites by slide microscopy. Data were analysed using STATA to calculate the prevalence of malaria and associated risk factors. The adult prevalence of presence of malaria parasites in Maseno was 28% (95% CI: 25.4-31.0%). Gender was a significant sociodemographic risk factor in both univariate (OR 1.5, p = 0.005) and multivariate (OR 1.4, p = 0.019) analyses. Females were 50% more likely to have malaria than men. Presence of malaria parasites is common in the adult population of this endemic area, and the rate is greatly increased in women. The presence of such an adult pool of malaria parasites represents a key reservoir factor in transmission of parasites to children, and is relevant for plans to eradicate malaria.

  1. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    PubMed Central

    2010-01-01

    Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P

  2. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting.

    PubMed

    Harris, Ivor; Sharrock, Wesley W; Bain, Lisa M; Gray, Karen-Ann; Bobogare, Albino; Boaz, Leonard; Lilley, Ken; Krause, Darren; Vallely, Andrew; Johnson, Marie-Louise; Gatton, Michelle L; Shanks, G Dennis; Cheng, Qin

    2010-09-07

    Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥ 38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect

  3. Prolonged Plasmodium falciparum Infection in Immigrants, Paris

    PubMed Central

    Godineau, Nadine; Fontanet, Arnaud; Houze, Sandrine; Bouchaud, Olivier; Matheron, Sophie; Le Bras, Jacques

    2008-01-01

    Few immigrant travelers have Plasmodium falciparum infections >2 months after leaving malaria-endemic areas. We conducted a case–control study to identify factors associated with prolonged P. falciparum infection in immigrant travelers. Results suggest that P. falciparum infection should be systematically suspected, even months after travel, especially in pregnant women and first-arrival immigrants. PMID:18258132

  4. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  5. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, weremore » also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.« less

  6. Sustained Malaria Control Over an 8-Year Period in Papua New Guinea: The Challenge of Low-Density Asymptomatic Plasmodium Infections.

    PubMed

    Koepfli, Cristian; Ome-Kaius, Maria; Jally, Shadrach; Malau, Elisheba; Maripal, Samuel; Ginny, Jason; Timinao, Lincoln; Kattenberg, Johanna Helena; Obadia, Thomas; White, Michael; Rarau, Patricia; Senn, Nicolas; Barry, Alyssa E; Kazura, James W; Mueller, Ivo; Robinson, Leanne J

    2017-12-12

    The scale-up of effective malaria control in the last decade has resulted in a substantial decline in the incidence of clinical malaria in many countries. The effects on the proportions of asymptomatic and submicroscopic infections and on transmission potential are yet poorly understood. In Papua New Guinea, vector control has been intensified since 2008, and improved diagnosis and treatment was introduced in 2012. Cross-sectional surveys were conducted in Madang Province in 2006 (with 1280 survey participants), 2010 (with 2117 participants), and 2014 (with 2516 participants). Infections were quantified by highly sensitive quantitative polymerase chain reaction (PCR) analysis, and gametocytes were quantified by reverse-transcription qPCR analysis. Plasmodium falciparum prevalence determined by qPCR decreased from 42% in 2006 to 9% in 2014. The P. vivax prevalence decreased from 42% in 2006 to 13% in 2010 but then increased to 20% in 2014. Parasite densities decreased 5-fold from 2006 to 2010; 72% of P. falciparum and 87% of P. vivax infections were submicroscopic in 2014. Gametocyte density and positivity correlated closely with parasitemia, and population gametocyte prevalence decreased 3-fold for P. falciparum and 29% for P. vivax from 2010 to 2014. Sustained control has resulted in reduced malaria transmission potential, but an increasing proportion of gametocyte carriers are asymptomatic and submicroscopic and represent a challenge to malaria control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Methionine transport in the malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Martin, Rowena E; Kirk, Kiaran

    2011-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na(+) and H(+). Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria.

    PubMed

    Shanks, G D; Oloo, A J; Aleman, G M; Ohrt, C; Klotz, F W; Braitman, D; Horton, J; Brueckner, R

    2001-12-15

    We tested tafenoquine (WR 238605), a new long-acting 8-aminoquinoline, for its ability to prevent malaria in an area that is holoendemic for Plasmodium falciparum. In a double-blinded, placebo-controlled, randomized clinical trial in western Kenya, adult volunteers received a treatment course of 250 mg halofantrine per day for 3 days, to effect clearance of preexisting parasites. The volunteers were then assigned to 1 of 4 drug regimens: placebo throughout; 3 days of 400 mg (base) of tafenoquine per day, followed by placebo weekly; 3 days of 200 mg of tafenoquine per day, followed by 200 mg per week; and 3 days of 400 mg of tafenoquine per day, followed by 400 mg per week. Prophylaxis was continued for up to 13 weeks. Of the evaluable subjects (223 of 249 randomized subjects), volunteers who received 400 mg tafenoquine for only 3 days had a protective efficacy of 68% (95% confidence interval [CI], 53%-79%), as compared with placebo recipients; those who received 200 mg per day for 3 days followed by 200 mg per week had a protective efficacy of 86% (95% CI, 73%-93%); and those who received 400 mg for 3 days followed by 400 mg per week had a protective efficacy of 89% (95% CI, 77%-95%). A similar number of volunteers in the 4 treatment groups reported adverse events. Prophylactic regimens of 200 mg or 400 mg of tafenoquine, taken weekly for < or =13 weeks, are highly efficacious in preventing falciparum malaria and are well tolerated.

  9. Differences in Gene Transcriptomic Pattern of Plasmodium falciparum in Children with Cerebral Malaria and Asymptomatic Carriers

    PubMed Central

    Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida

    2014-01-01

    The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum. PMID:25479608

  10. Glucose-6-phosphate metabolism in Plasmodium falciparum.

    PubMed

    Preuss, Janina; Jortzik, Esther; Becker, Katja

    2012-07-01

    Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based. Copyright © 2012 Wiley Periodicals, Inc.

  11. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    PubMed

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru. © The American Society of Tropical Medicine and Hygiene.

  12. Deaths due to Plasmodium knowlesi malaria in Sabah, Malaysia: association with reporting as Plasmodium malariae and delayed parenteral artesunate

    PubMed Central

    2012-01-01

    Background The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory. Methods Details of reported malaria deaths during 2010-2011 were reviewed to determine the proportion of each Plasmodium species. Demographics, clinical presentations and management of severe malaria caused by each species were compared. Results Fourteen malaria deaths were reported, comprising seven Plasmodium falciparum, six P. knowlesi and one Plasmodium vivax (all PCR-confirmed). Of the six P. knowlesi deaths, five were attributable to knowlesi malaria and one was attributable to P. knowlesi-associated enterobacter sepsis. Patients with directly attributable P. knowlesi deaths (N = 5) were older than those with P. falciparum (median age 51 [IQR 50-65] vs 22 [IQR 9-55] years, p = 0.06). Complications in fatal P. knowlesi included respiratory distress (N = 5, 100%), hypotension (N = 4, 80%), and renal failure (N = 4, 80%). All patients with P. knowlesi were reported as P. malariae by microscopy. Only two of five patients with severe knowlesi malaria on presentation received immediate parenteral anti-malarial treatment. The patient with P. vivax-associated severe illness did not receive parenteral treatment. In contrast six of seven patients with severe falciparum malaria received immediate parenteral treatment. Conclusion Plasmodium knowlesi was responsible, either directly or through gram-negative bacteraemia, for almost half of malaria deaths in Sabah

  13. Case Report: A Case of Plasmodium falciparum hrp2 and hrp3 Gene Mutation in Bangladesh.

    PubMed

    Nima, Maisha Khair; Hougard, Thomas; Hossain, Mohammad Enayet; Kibria, Mohammad Golam; Mohon, Abu Naser; Johora, Fatema Tuj; Rahman, Rajibur; Haque, Rashidul; Alam, Mohammad Shafiul

    2017-10-01

    Several species of Plasmodium are responsible for causing malaria in humans. Proper diagnoses are crucial to case management, because severity and treatment varies between species. Diagnoses can be made using rapid diagnostic tests (RDTs), which detect Plasmodium proteins. Plasmodium falciparum causes the most virulent cases of malaria, and P. falciparum histidine-rich protein 2 (PfHRP2) is a common target of falciparum malaria RDTs. Here we report a case in which a falciparum malaria patient in Bangladesh tested negative on PfHRP2-based RDTs. The negative results can be attributed to a deletion of part of the pfhrp2 gene and frameshift mutations in both pfhrp2 and pfhrp3 gene. This finding may have implications for malaria diagnostics and case management in Bangladesh and other regions of South Asia.

  14. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker.

    PubMed

    Tun, Kyaw M; Imwong, Mallika; Lwin, Khin M; Win, Aye A; Hlaing, Tin M; Hlaing, Thaung; Lin, Khin; Kyaw, Myat P; Plewes, Katherine; Faiz, M Abul; Dhorda, Mehul; Cheah, Phaik Yeong; Pukrittayakamee, Sasithon; Ashley, Elizabeth A; Anderson, Tim J C; Nair, Shalini; McDew-White, Marina; Flegg, Jennifer A; Grist, Eric P M; Guerin, Philippe; Maude, Richard J; Smithuis, Frank; Dondorp, Arjen M; Day, Nicholas P J; Nosten, François; White, Nicholas J; Woodrow, Charles J

    2015-04-01

    Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation. Copyright © 2015

  15. Prevalence of Malaria in Pregnant Women in Lagos, South-West Nigeria

    PubMed Central

    Agomo, Chimere O.; Anorlu, Rose I.; Agomo, Philip U.

    2009-01-01

    Prevalence rates reported for malaria in pregnancy in Nigeria vary considerably. The accuracy of results of malaria diagnosis is dependent on training, experience, and motivation of the microscopist as well as the laboratory facility available. Results of training programmes on malaria microscopy have shown low levels of sensitivity and specificity of those involved in malaria diagnosis routinely and for research. This study was done to ascertain the true prevalence of malaria in pregnancy in Lagos, South-West Nigeria. A total of 1,084 pregnant women were recruited into this study. Blood smears stained with Giemsa were used for malaria diagnosis by light microscopy. Malaria infection during pregnancy presents mostly as asymptomatic infection. The prevalence of malaria in this population was 7.7% (95% confidence interval; 6.2-9.4%). Factors identified to increase the risk of malaria infection include young maternal age (< 20 years), and gravidity (primigravida). In conclusion, this study exposes the over-diagnosis of malaria in pregnancy and the need for training and retraining of laboratory staffs as well as establishing the malaria diagnosis quality assurance programme to ensure the accuracy of malaria microscopy results at all levels. PMID:19488427

  16. Dispensing and determinants of non-adherence to treatment for non complicated malaria caused by Plasmodium vivax and Plasmodium falciparum in high-risk municipalities in the Brazilian Amazon.

    PubMed

    Osorio-de-Castro, Claudia G S; Suárez-Mutis, Martha C; Miranda, Elaine S; Luz, Tatiana C B

    2015-11-26

    In Brazil, 99.7 % of malaria cases occur in the Amazon region. Although the number of cases is decreasing, the country accounted for almost 60 % of cases in the Americas Region, in 2013. Novel approaches for malaria treatment open the possibility of eliminating the disease, but suboptimal dispensing and lack of adherence influence treatment outcomes. The aim of this paper is to show the results on dispensing practices, non-adherence and determinants of non-adherence to treatment of non-complicated malaria. The study was conducted in six high-risk municipalities with Plasmodium vivax and Plasmodium falciparum transmission in the Brazilian Amazon and based on the theoretical framework of the Mafalda Project, which included investigation of dispensing and adherence. The World Health Organization Rapid Evaluation Method has been used to estimate sample size. Individuals over 15 years of age with malaria were approached at health facilities and invited to participate through informed consent. Data was collected in chart review forms focusing on diagnosis, Plasmodium type, prescribing, and dispensing (kind, quantity, labelling and procedures). Follow-up household interviews complemented data collection at health facility. Non-adherence was measured during the implementation phase, by self-reports and pill-counts. Analysis was descriptive and statistical tests were carried out. Determinants of non-adherence and quality of dispensing were assessed according to the literature. The study involved 165 patients. Dispensing was done according to the national guidelines. Labelling was adequate for P. vivax but inadequate for P. falciparum medicines. Non-adherent patients were 12.1 % according to self-reports and 21.8 % according to pill-counts. Results point to greater non-adherence among all P. falciparum patients and among malaria non-naîve patients. More patients informed understanding adverse effects than 'how to use' anti-malarials. Non-adherent patients were mostly those

  17. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study.

    PubMed

    Brady, Oliver J; Slater, Hannah C; Pemberton-Ross, Peter; Wenger, Edward; Maude, Richard J; Ghani, Azra C; Penny, Melissa A; Gerardin, Jaline; White, Lisa J; Chitnis, Nakul; Aguas, Ricardo; Hay, Simon I; Smith, David L; Stuckey, Erin M; Okiro, Emelda A; Smith, Thomas A; Okell, Lucy C

    2017-07-01

    Mass drug administration for elimination of Plasmodium falciparum malaria is recommended by WHO in some settings. We used consensus modelling to understand how to optimise the effects of mass drug administration in areas with low malaria transmission. We collaborated with researchers doing field trials to establish a standard intervention scenario and standard transmission setting, and we input these parameters into four previously published models. We then varied the number of rounds of mass drug administration, coverage, duration, timing, importation of infection, and pre-administration transmission levels. The outcome of interest was the percentage reduction in annual mean prevalence of P falciparum parasite rate as measured by PCR in the third year after the final round of mass drug administration. The models predicted differing magnitude of the effects of mass drug administration, but consensus answers were reached for several factors. Mass drug administration was predicted to reduce transmission over a longer timescale than accounted for by the prophylactic effect alone. Percentage reduction in transmission was predicted to be higher and last longer at lower baseline transmission levels. Reduction in transmission resulting from mass drug administration was predicted to be temporary, and in the absence of scale-up of other interventions, such as vector control, transmission would return to pre-administration levels. The proportion of the population treated in a year was a key determinant of simulated effectiveness, irrespective of whether people are treated through high coverage in a single round or new individuals are reached by implementation of several rounds. Mass drug administration was predicted to be more effective if continued over 2 years rather than 1 year, and if done at the time of year when transmission is lowest. Mass drug administration has the potential to reduce transmission for a limited time, but is not an effective replacement for existing

  18. Antibodies among men and children to placental-binding Plasmodium falciparum-infected erythrocytes that express var2csa.

    PubMed

    Beeson, James G; Ndungu, Francis; Persson, Kristina E M; Chesson, Joanne M; Kelly, Greg L; Uyoga, Sophie; Hallamore, Sandra L; Williams, Thomas N; Reeder, John C; Brown, Graham V; Marsh, Kevin

    2007-07-01

    During pregnancy, specific variants of Plasmodium falciparum-infected erythrocytes (IEs) can accumulate in the placenta through adhesion to chondroitin sulfate A (CSA) mediated by expression of PfEMP1 encoded by var2csa-type genes. Antibodies against these variants are associated with protection from maternal malaria. We evaluated antibodies among Kenyan, Papua New Guinean, and Malawian men and Kenyan children against two different CSA-binding P. falciparum isolates expressing var2csa variants. Specific IgG was present at significant levels among some men and children from each population, suggesting exposure to these variants is not exclusive to pregnancy. However, the level and prevalence of antibodies was substantially lower overall than exposed multigravidas. IgG-binding was specific and did not represent antibodies to subpopulations of non-CSA-binding IEs, and some sera inhibited IE adhesion to CSA. These findings have significant implications for understanding malaria pathogenesis and immunity and may be significant for understanding the acquisition of immunity to maternal malaria.

  19. The sickle-cell trait modifies the intensity and specificity of the immune response against P. falciparum malaria and leads to acquired protective immunity.

    PubMed

    Bayoumi, R A

    1987-03-01

    It is proposed that the in vivo mechanism of protection against falciparum malaria in individuals of the Hb AS genotype is not due solely to the adverse influence of Hb AS erythrocytes on the intraerythrocytic growth and development of P. falciparum. Instead, the simple physiological effect of Hb S on parasite growth appears to trigger an in vivo process of enhancement of the intensity and/or specificity of the host immune response, leading to acquired protective immunity, in a process simulating vaccination. Testing the hypothesis may lead to the identification of plasmodial antigens that induce protective responses in the human host and distinguish them from non-protective, immunosuppressive or decoy antigens that promote parasite survival. This may ultimately help in the selection of candidate antigens for a malaria blood-stage vaccine.

  20. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana.

    PubMed

    Motshoge, Thato; Ababio, Grace K; Aleksenko, Larysa; Read, John; Peloewetse, Elias; Loeto, Mazhani; Mosweunyane, Tjantilili; Moakofhi, Kentse; Ntebele, Davies S; Chihanga, Simon; Motlaleng, Mpho; Chinorumba, Anderson; Vurayai, Moses; Pernica, Jeffrey M; Paganotti, Giacomo M; Quaye, Isaac K

    2016-09-29

    Botswana is one of eight SADC countries targeting malaria elimination by 2018. Through spirited upscaling of control activities and passive surveillance, significant reductions in case incidence of Plasmodium falciparum (0.96 - 0.01) was achieved between 2008 and 2012. As part of the elimination campaign, active detection of asymptomatic Plasmodium species by a highly sensitive method was deemed necessary. This study was carried out to determine asymptomatic Plasmodium species carriage by nested PCR in the country, in 2012. A cross-sectional study involving 3924 apparently healthy participants were screened for Plasmodium species in 14 districts (5 endemic: Okavango, Ngami, Tutume, Boteti and Bobirwa; and 9 epidemic: North East, Francistown, Serowe-Palapye, Ghanzi, Kweneng West, Kweneng East, Kgatleng, South East, and Good Hope). Venous blood was taken from each participant for a nested PCR detection of Plasmodium species. The parasite rates of asymptomatic Plasmodium species detected were as follows: Plasmodium falciparum, 0.16 %; Plasmodium vivax, 4.66 %; Plasmodium malariae, (Pm) 0.16 %; Plasmodium ovale, 0 %, mixed infections (P. falciparum and P. vivax), 0.055 %; and (P. vivax and P. malariae), 0.027 %, (total: 5.062 %). The high proportion of asymptomatic reservoir of P. vivax was clustered in the East, South Eastern and Central districts of the country. There appeared to be a correlation between the occurrence of P. malariae infection with P. vivax infection, with the former only occurring in districts that had substantial P. vivax circulation. The median age among 2-12 year olds for P. vivax infection was 5 years (Mean 5.13 years, interquartile range 3-7 years). The odds of being infected with P. vivax decreased by 7 % for each year increase in age (OR 0.93, 95 % CI 0.87-1.00, p = 0.056). We have confirmed low parasite rate of asymptomatic Plasmodium species in Botswana, with the exception of P.vivax which was unexpectedly high. This has

  1. A morphometric and histological study of placental malaria shows significant changes to villous architecture in both Plasmodium falciparum and Plasmodium vivax infection

    PubMed Central

    2014-01-01

    Background Malaria in pregnancy remains a major health problem. Placental malaria infection may cause pathophysiological changes in pregnancy and result in morphological changes to placental villi. Quantitative histomorphological image analysis of placental biopsies was performed to compare placental villous architecture between active or treated placental malaria cases and controls. Methods A total of 67 placentas were studied from three clinical groups: control patients who did not have malaria (n = 27), active (n = 14) and treated (n=26) malaria cases, including both Plasmodium falciparum and Plasmodium vivax infections. Image analysis of histological placental sections was performed using ImageJ software to measure the number and size (area) of terminal villi, perimeter measurement per villus and total perimeter per unit area, and number of capillaries per villus (vascularity). Histological features of placental malaria were scored and these results were correlated with malaria status and clinical outcomes. Results Villous size correlated with vascularity (p <0.0001) but was inversely correlated with observed villi per unit area, (p = 0.0001). Significantly greater villous area and vascularity was observed in UK controls. Indices of histological malaria infection were significantly greater in active versus treated malaria cases. Active placental malaria cases showed significantly smaller villous area (p <0.0084), vascularity (p <0.0139) and perimeter (p <0.0006) than treated malaria cases or controls, but significantly more villi per unit area (p <0.0001). Villous size in treated malaria cases was significantly larger than active placental malaria cases (p <0.001) and similar to controls. There was a significant relationship between villous number and anaemia at the time of infection (p <0.0034), but not placental weight, birth weight or gestational age at delivery. No differences were found between histology or villous morphology comparing infections with P

  2. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development.

    PubMed

    Das, Sujaan; Lemgruber, Leandro; Tay, Chwen L; Baum, Jake; Meissner, Markus

    2017-08-15

    The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.

  3. Malaria Prevalence among Young Infants in Different Transmission Settings, Africa

    PubMed Central

    Ceesay, Serign J.; Koivogui, Lamine; Nahum, Alain; Taal, Makie Abdoulie; Okebe, Joseph; Affara, Muna; Kaman, Lama Eugène; Bohissou, Francis; Agbowai, Carine; Tolno, Benoit Gniouma; Amambua-Ngwa, Alfred; Bangoura, NFaly; Ahounou, Daniel; Muhammad, Abdul Khalie; Duparc, Stephan; Hamed, Kamal; Ubben, David; Bojang, Kalifa; Achan, Jane

    2015-01-01

    The prevalence and consequences of malaria among infants are not well characterized and may be underestimated. A better understanding of the risk for malaria in early infancy is critical for drug development and informed decision making. In a cross-sectional survey in Guinea, The Gambia, and Benin, countries with different malaria transmission intensities, the overall prevalence of malaria among infants <6 months of age was 11.8% (Guinea, 21.7%; The Gambia, 3.7%; and Benin, 10.2%). Seroprevalence ranged from 5.7% in The Gambia to 41.6% in Guinea. Mean parasite densities in infants were significantly lower than those in children 1–9 years of age in The Gambia (p<0.0001) and Benin (p = 0.0021). Malaria in infants was significantly associated with fever or recent history of fever (p = 0.007) and anemia (p = 0.001). Targeted preventive interventions, adequate drug formulations, and treatment guidelines are needed to address the sizeable prevalence of malaria among young infants in malaria-endemic countries. PMID:26079062

  4. Artesunate-mefloquine combination therapy in acute Plasmodium falciparum malaria in young children: a field study regarding neurological and neuropsychiatric safety.

    PubMed

    Frey, Sarabel G; Chelo, David; Kinkela, Mina N; Djoukoue, Florence; Tietche, Felix; Hatz, Christoph; Weber, Peter

    2010-10-21

    Mefloquine-artesunate combination therapy for uncomplicated falciparum malaria is one of the treatments used in African children. Data concerning neurological safety in adults and children treated with mefloquine and artesunate combination therapy is well documented in Asia. Safety data for neurological and neuropsychiatric side effects of mefloquine and artesunate combination therapy in African children are scarce, although WHO recommends this therapy in Africa. A phase IV, open label, single arm study was conducted among African children between 10 and 20 kg with acute uncomplicated falciparum malaria. They were treated over three consecutive days with a paediatric fixed-dose combination of artesunate (50 mg/d) and mefloquine (125 mg/d). Parasitological, clinical and neurological examinations and standardized questions about neuropsychiatric symptoms were carried out on days 0, 4, 7, 28 and 63. The primary objective was to assess the neurological and neuropsychiatric safety of artesunate-mefloquine combination therapy in young children. From December 2007 to March 2009, 220 children with uncomplicated Plasmodium falciparum malaria were treated with artesunate and mefloquine. 213 children were analysed according to study protocol. 50 neurological and neuropsychiatric adverse events occurred in 28 patients. Eleven drug-related neurological and neuropsychiatric adverse events occurred in eight patients. Sleeping disorders were present in 2.3%, neurological disorders in 1.4%, neuropsychiatric disorders in 1% and eating disorders in 0.5% of the patients. Adverse events were of mild to moderate intensity and resolved spontaneously. African children showed a low percentage of self-limited neurological and neuropsychiatric adverse events, confirming studies on neurological safety in Asian children treated with artesunate and mefloquine. Sleeping disorders were most frequently observed.

  5. Effective treatment with a tetrandrine/chloroquine combination for chloroquine-resistant falciparum malaria in Aotus monkeys

    PubMed Central

    2013-01-01

    Background In vitro evidence indicates that tetrandrine (TT) can potentiate the action of chloroquine 40-fold against choloquine-resistant Plasmodium falciparum. The key question emanating from that study is “would tetrandine and chloroquine be highly effective in a live Aotus monkey model with chloroquine-resistant parasites”. This study was designed to closely mimic the pharmacological/anti-malarial activity in man. Methods The Vietnam Smith/RE strain of P. falciparum, which is chloroquine-resistant was used in this study. Previous experimental procedures were followed. Panamanian owl monkeys (Aotus) were inoculated with 5×106 erythrocytes parasitized with the CQ-resistant strain of P. falciparum. Oral drug treatment was with CQ (20 mg/kg) and/or tetrandrine at 15 mg/Kg, 30 mg/Kg or 60 mg/Kg or 25 mg/Kg depending on experimental conditions. Results and Discussion Parasitaemia was cleared rapidly with CQ and TT while CQ treatment alone was ineffective. Recrudescence of malaria occurred after seven days post-infection. However, four animals were treated orally with TT and CQ parasites were cleared. It is likely that monkeys were cured via a combination of both drug and host immune responses. A single Aotus monkey infected with P. falciparum and untreated with drugs, died. No side effects were observed with these drug treatments. Conclusions This combination of chloroquine and tetrandrine forms the basis of a new attack on chloroquine-resistant malaria - one based upon inhibition of the basis of chloroquine resistance, the multiple drug resistance pump. Previous studies demonstrated that the parasite MDR pump was found on parasite membranes using 3H azidopine photoaffinity labelling. Since MDR-based choloroquine resistance is induced by chloroquine, the basis of the action of tetrandrine is the following: 1) tetrandrine inhibits the MDR pump by stimulating MDR ATPase which limits the energy of the pump by depletion of parasite ATP, 2) tetrandrine blocks the

  6. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    PubMed

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  7. Therapeutic Efficacy of Artemether-Lumefantrine (Coartem®) in Treating Uncomplicated P. falciparum Malaria in Metehara, Eastern Ethiopia: Regulatory Clinical Study.

    PubMed

    Nega, Desalegn; Assefa, Ashenafi; Mohamed, Hussein; Solomon, Hiwot; Woyessa, Adugna; Assefa, Yibeltal; Kebede, Amha; Kassa, Moges

    2016-01-01

    As per the WHO recommendation, the development of resistance by P. falciparum to most artemisinin combination therapies (ACTs) triggered the need for routine monitoring of the efficacy of the drugs every two years in all malaria endemic countries. Hence, this study was carried out to assess the therapeutic efficacy of Artemether-Lumefantrine (Coartem®) in treating the uncomplicated falciparum malaria, after 9 years of its introduction in the Metehara, Eastern Ethiopia. This is part of the therapeutic efficacy studies by the Federal Ministry of Health Ethiopia, which were conducted in regionally representative sentinel sites in the country from October 2014 to January 2015. Based on the study criteria set by WHO, febrile and malaria suspected outpatients in the health center were consecutively recruited to study. A standard six-dose regimen of AL was administered over three days and followed up for measuring therapeutic responses over 28 days. Data entry and analysis was done by using the WHO designed Excel spreadsheet and SPSS version 20 for Windows. Statistical significant was considered for P-value less than 0.05. Of the 91 patients enrolled, the day-28 analysis showed 83 adequate clinical and parasitological responses (ACPRs). Per protocol analysis, PCR-uncorrected & corrected cure rates of Coartem® among the study participants were 97.6% (95%CI: 93.6-99.5) and 98.8% (CI: 93.5-100%), respectively. No parasite detected on day 3 and onwards. Fever clearance was above 91% on day-3. Mean hemoglobin was significantly increased (P<0.000) from 12.39 g/dl at day 0 to 13.45 g/dl on day 28. No serious adverse drug reactions were observed among the study participants. This study showed high efficacy of AL in the study area, which suggests the continuation of AL as first line drug for the treatment of uncomplicated P. falciparum malaria in the study area. This study recommends further studies on drug toxicity, particularly on repeated cough and oral ulceration.

  8. Quinine Pharmacokinetics and Pharmacodynamics in Children with Malaria Caused by Plasmodium falciparum

    PubMed Central

    Le Jouan, M.; Jullien, V.; Tetanye, E.; Tran, A.; Rey, E.; Tréluyer, J.-M.; Tod, M.; Pons, G.

    2005-01-01

    The aim of the present study was to assess the pharmacokinetics and the efficacy of a shorter than usual 5-day quinine treatment given orally to children in Cameroon with malaria caused by Plasmodium falciparum. Quinine (8.3 mg of base per kg of body weight every 8 h) was administered as a 2% formiate salt syrup for 5 days to 30 children (age range, 0.55 to 6.7 years) with uncomplicated falciparum malaria (initial parasitemia, 1.4 × 103 to 1.8 × 105/μl). Quinine concentrations in plasma samples (five to nine per patient) were measured by liquid chromatography on days 1 to 3. Parasitemia was counted on days 0, 1, 2, 3, 4, 7, and 14. Pharmacokinetic and pharmacodynamic data were analyzed by population approaches by using NONMEM and WinBugs, respectively. The kinetics of quinine were best described by a one-compartment model with time-varying protein binding. Clearance and the volume of distribution were positively correlated with body weight and increased over time. Parasitemia was undetectable from day 3 to 14 in all children. The time to a 4-log reduction of the initial level of parasitemia (Ter) was related to the average quinine concentration from 0 to 72 h (Cav) as Ter = Tmin [1 + (C50/Cav)s], where sigmoidicity (s) is equal to 2, Tmin is the time to eradication at infinite Cav, and C50 is the value of Cav for which Ter is twice Tmin. The C50 distribution was unimodal, and all C50 values were less than 8 mg/liter, while Cav ranged from 5.9 to 18.3 mg/liter. The median (10th to 90th percentile) Ter was 47 h (range, 39 to 76 h). The efficacy of a 5-day treatment course should be evaluated in a larger clinical trial. PMID:16127036

  9. Prevalence of HIV and malaria: a cross-sectional study on Bioko Island, Equatorial Guinea.

    PubMed

    Zheng, Xiangbin; Lin, Min; Xie, Dong-De; Li, Jian; Chen, Jiang-Tao; Eyi, Urbano Monsuy; Monte-Nguba, Santiago-M; Ehapo, Juan Carlos Sala; Yang, Hui; Yang, Hui-Tian; Yang, Li-Ye

    2017-03-01

    Malaria and HIV are two of the most severe public health problems in Africa. However, epidemiological data on Bioko Island is scarce. To investigate the prevalence of malaria and HIV infections and assess association of malaria and HIV infections and possible confounding factors, we performed a cross-sectional survey of people of malaria-endemic Bioko Island, Equatorial Guinea. A cross-sectional study of 1 526 subjects was carried out to determine the prevalence of malaria and HIV infection in Malabo region hospital on Bioko Island. Questionnaires were administered and venous blood samples were drawn for malaria parasites and HIV detection. The prevalence of participants infected with malaria and HIV in this area were 13.8% and 6.6% respectively. The average prevalence of co-infection for malaria and HIV was 0.92%. HIV-infection was significantly associated with the age and gender. Malaria infections were significantly associated with the age. This study showed that the prevalence of HIV and malaria on Bioko Island was higher than expected, although the co-infection prevalence of malaria and HIV was low. The results also indicated that malaria and HIV infections lead to more public health risk to youngsters and women.

  10. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    PubMed Central

    Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S

    2006-01-01

    Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349

  11. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System.

    PubMed

    Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S

    2006-08-01

    Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897-0.668 (P > 0.95) and 0.0002-0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System.

  12. Relation between Plasmodium falciparum asymptomatic infection and malaria attacks in a cohort of Senegalese children

    PubMed Central

    Le Port, Agnès; Cot, Michel; Etard, Jean-François; Gaye, Oumar; Migot-Nabias, Florence; Garcia, André

    2008-01-01

    Background It is important to establish whether or not the presence of malaria parasites in peripheral blood of asymptomatic individuals is a predictor of future clinical mild malaria attacks (MMA). The aim of this study was to determine how an asymptomatic positive thick blood smear could be related to the occurrence of a MMA during the nine following days. Methods The study was conducted in a cohort of 569 Senegalese children, who were investigated for Plasmodium falciparum asymptomatic carriage at two different times of the transmission season, the beginning (September) and the end (November). The occurrence of MMA was investigated in asymptomatic carriers and non-carriers, every three days for nine consecutive days. Survival analysis was performed and risk estimates were calculated by Cox proportional hazards model. Results At the beginning of the transmission season, 27.8% (147/529) of the children were asymptomatic carriers (ACs) and 5.4% (8/147) of MMA occurred among these, versus 1% (4/382) among non-carriers (RR = 5.32; IC = [1.56–18.15], p = 0.008). At the end of the transmission season, the frequency of asymptomatic carriers was similar to that observed at the beginning of the season (31.9%, p = 0.15), but no MMA was detected during this period. Conclusion A significant association between P. falciparum asymptomatic carriage and the occurrence of MMA at the beginning of the transmission season was demonstrated, with a five-fold increase in the risk of developing a MMA in ACs. In the context of a possible distribution of IPTc in the future, drug strategies may have dramatic consequences due to the existence of ACs (both long term and short term), as they seem to play an important role in the individual protection to malaria, in the most exposed age groups. PMID:18823542

  13. High Antibody Responses against Plasmodium falciparum in Immigrants after Extended Periods of Interrupted Exposure to Malaria

    PubMed Central

    Jiménez, Alfons; Nhabomba, Augusto; Casas-Vila, Núria; Puyol, Laura; Campo, Joseph J.; Manaca, Maria Nelia; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Bardají, Azucena; Angov, Evelina; Dutta, Sheetij; Chitnis, Chetan E.; Alonso, Pedro L.; Gascón, Joaquim; Dobaño, Carlota

    2013-01-01

    Background Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. Methods A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. Results Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. Conclusions Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on

  14. Diagnostic potential of monoclonal antibodies developed against C-terminal polypeptide of P. falciparum Histidine Rich Protein2 (PfHRP2) in malaria infected patients from India.

    PubMed

    Verma, Reena; Chandy, Sara; Jayaprakash, N S; Manoharan, Anand; Vijayalakshmi, M A; Venkataraman, Krishnan

    2017-09-01

    Malaria, caused by Plasmodium falciparum has become a major health burden in most tropical and developing countries. P. falciparum Histidine Rich Protein2 (PfHRP2), which exhibits polymorphism, is being widely used as a diagnostic marker. Recently, we reported the development of monoclonal antibodies against conserved C-terminal 105 amino acids of PfHRP2 for malaria diagnosis. Now, in this study, the diagnostic performance of two anti-C-terminal PfHRP2 mAbs (b10c1 and Aa3c10) were evaluated with 100 blood samples from clinically identified malaria patients from seven different geographical centers in India. Sandwich ELISA, polymerase chain reaction (PCR) and statistical tools were used for the evaluation of the performance of the anti-C-terminal PfHRP2 mAb. These mAbs detected P. falciparum (mean OD value 1.525 ± 0.56) malaria with great accuracy with no cross reactivity with P. Plasmodium vivax (mean OD value 0.285 ± 0.051) and normal healthy control samples (mean OD value 0.185 ± 0.06) in Sandwich ELISA assay. The samples which were RDT negative for P. falciparum were also reactive in Sandwich ELISA with mean OD value of (1.303 ± 0.532). The amount of PfHRP2 antigen in the patients' blood sample was quantified and categorized into three distinct groups having the HRP2 antigen in high, intermediate and low amounts. The presence of Pfhrp2 gene was also confirmed by PCR analysis. The sensitivity and specificity of the mAb were found to be 95 and 96% respectively. These data strongly suggest that the anti-C-terminal PfHRP2 mAbs b10c1 and Aa3c10 have merits for improvising the existing malarial diagnostics.

  15. The Effect of Indoor Residual Spraying on the Prevalence of Malaria Parasite Infection, Clinical Malaria and Anemia in an Area of Perennial Transmission and Moderate Coverage of Insecticide Treated Nets in Western Kenya

    PubMed Central

    Gimnig, John E.; Otieno, Peter; Were, Vincent; Marwanga, Doris; Abong’o, Daisy; Wiegand, Ryan; Williamson, John; Wolkon, Adam; Zhou, Ying; Bayoh, M. Nabie; Lobo, Neil F.; Laserson, Kayla; Kariuki, Simon; Hamel, Mary J.

    2016-01-01

    Background Insecticide treated nets (ITNs) and indoor residual spraying (IRS) have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55–65% use of any net the previous night). Methods The Kenya Division of Malaria Control, with support from the US President’s Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever) and anemia (Hb<8) of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset. Results At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22–0.59, p<0.001). The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20–0.68, p = 0.001). The prevalence of anemia was lower in the IRS district but only in children

  16. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study

    PubMed Central

    Griffin, Jamie T; Bhatt, Samir; Sinka, Marianne E; Gething, Peter W; Lynch, Michael; Patouillard, Edith; Shutes, Erin; Newman, Robert D; Alonso, Pedro; Cibulskis, Richard E; Ghani, Azra C

    2016-01-01

    Summary Background Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. Methods We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011–13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006–08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. Findings With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19–29) and a reduction in mortality rates of 40% (27–61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community

  17. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai.

    PubMed

    Kumar, Divya Subash; Andimuthu, Ramachandran; Rajan, Rupa; Venkatesan, Mada Suresh

    2014-01-08

    Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011. Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson's correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey. Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The 'hotspot' analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem. Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It

  18. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia.

    PubMed

    Tsegaye, Arega; Golassa, Lemu; Mamo, Hassen; Erko, Berhanu

    2014-11-18

    Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is widespread across malaria endemic regions. G6PD-deficient individuals are at risk of haemolysis when exposed, among other agents, to primaquine and tafenoquine, which are capable of blocking malaria transmission by killing Plasmodium falciparum gametocytes and preventing Plasmodium vivax relapses by targeting hypnozoites. It is evident that no measures are currently in place to ensure safe delivery of these drugs within the context of G6PDd risk. Thus, determining G6PDd prevalence in malarious areas would contribute towards avoiding possible complications in malaria elimination using the drugs. This study, therefore, was aimed at determining G6PDd prevalence in Gambella hospital, southwest Ethiopia, using CareStart™ G6PDd fluorescence spot test. Venous blood samples were collected from febrile patients (n = 449) attending Gambella hospital in November-December 2013. Malaria was diagnosed using blood films and G6PDd was screened using CareStart™ G6PDd screening test (Access Bio, New Jersey, USA). Haematological parameters were also measured. The association of G6PD phenotype with sex, ethnic group and malaria smear positivity was tested. Malaria prevalence was 59.2% (96.6% of the cases being P. falciparum mono infections). Totally 33 participants (7.3%) were G6PD-deficient with no significant difference between the sexes. The chance of being G6PD-deficient was significantly higher for the native ethnic groups (Anuak and Nuer) compared to the 'highlanders'/settlers (odds ratio (OD) = 3.9, 95% confidence interval (CI) 0.481-31.418 for Anuak vs 'highlanders'; OD = 4.9, 95% CI 0.635-38.00 for Nuer vs 'highlanders'). G6PDd prevalence among the Nuer (14.3%) was significantly higher than that for the Anuak (12.0%). G6PDd prevalence in the area is substantial with 30 (90.9%) of the 33 deficient individuals having malaria suggesting the non-protective role of the disorder at least from clinical malaria

  19. Seroprevalence of Pediatric Malaria in Quetta, Balochistan, Pakistan

    PubMed Central

    Hussain, K; Shafee, M; Khan, N; Jan, S; Tareen, AM; Khan, MA

    2013-01-01

    Background Malaria is one of the most devastating protozoal diseases in under developing countries like Pakistan where health facilities are scarce. It is the second most frequently reported disease with 4.5 million suspected cases in Pakistan. The current study was designed to determine the incidence of pediatric malaria in Quetta, Balochistan. Methods The study was conducted at Children Hospital Quetta (CHQ) during July 2011march 2012. Blood samples were collected from 3418 clinically suspected and were evaluated using thin and thick blood films stained with Giemsa stain. Results Out of 3418 total of 230 (6.72%) children were found positive for any of the malarial parasitic infestation. Plasmodium vivax was observed to be more common 54.34% (n= 125/230) than P. falciparum 44.78% (n = 103/230). Male children were 65.21% (150/230) i.e. two times more commonly affected than female 34.78% (80/230) children. The prevalence among age groups was 7.41% (n = 89/1200) in preschool-aged children aged 1-5 years, 7.11% (n = 75/1054) in school-aged children aged 6—10 years while 6.78% (n = 46/678) in 11-15 years-old children, and 6.66% (n = 20/300) in >15 year-olds children. Peak prevalence was noted in summer and mild in winter. Mixed infection of (0.86%: 2/230) P. vivax and P. falciparum was also observed in two cases although no case of P. malariae or P. ovale infection was seen during entire study. Conclusion The results reflect the higher prevalence of malaria in Quetta, Pakistan that poses a significant health threat and requires urgent attention of high-ups to launch programme to control the disease in the area. PMID:23914251

  20. UK malaria treatment guidelines 2016.

    PubMed

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9