Science.gov

Sample records for falciparum parasite rate

  1. Substantially reduced pre-patent parasite multiplication rates are associated with naturally acquired immunity to Plasmodium falciparum.

    PubMed

    Douglas, A D; Andrews, L; Draper, S J; Bojang, K; Milligan, P; Gilbert, S C; Imoukhuede, E B; Hill, A V S

    2011-05-01

    Naturally acquired immunity to Plasmodium falciparum's asexual blood stage reduces parasite multiplication at microscopically detectable densities. The effect of natural immunity on initial prepatent parasite multiplication during the period following a new infection has been uncertain, contributing to doubt regarding the utility of experimental challenge models for blood-stage vaccine trials. Here we present data revealing that parasite multiplication rates during the initial prepatent period in semi-immune Gambian adults are substantially lower than in malaria-naive participants. This supports the view that a blood-stage vaccine capable of emulating the disease-reducing effect of natural immunity could achieve a detectable effect during the prepatent period. PMID:21459819

  2. Chloroquine-Resistant Haplotype Plasmodium falciparum Parasites, Haiti

    PubMed Central

    Londono, Berlin L.; Eisele, Thomas P.; Keating, Joseph; Bennett, Adam; Chattopadhyay, Chandon; Heyliger, Gaetan; Mack, Brian; Rawson, Ian; Vely, Jean-Francois; Désinor, Olbeg

    2009-01-01

    Plasmodium falciparum parasites have been endemic to Haiti for >40 years without evidence of chloroquine (CQ) resistance. In 2006 and 2007, we obtained blood smears for rapid diagnostic tests (RDTs) and filter paper blots of blood from 821 persons by passive and active case detection. P. falciparum infections diagnosed for 79 persons by blood smear or RDT were confirmed by PCR for the small subunit rRNA gene of P. falciparum. Amplification of the P. falciparum CQ resistance transporter (pfcrt) gene yielded 10 samples with amplicons resistant to cleavage by ApoI. A total of 5 of 9 samples had threonine at position 76 of pfcrt, which is consistent with CQ resistance (haplotypes at positions 72–76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had only the wild-type haplotype associated with CQ susceptibility (CVMNK). These results indicate that CQ-resistant haplotype P. falciparum malaria parasites are present in Haiti. PMID:19402959

  3. Genetically Determined Response to Artemisinin Treatment in Western Kenyan Plasmodium falciparum Parasites.

    PubMed

    Chebon, Lorna J; Ngalah, Bidii S; Ingasia, Luicer A; Juma, Dennis W; Muiruri, Peninah; Cheruiyot, Jelagat; Opot, Benjamin; Mbuba, Emmanuel; Imbuga, Mabel; Akala, Hoseah M; Bulimo, Wallace; Andagalu, Ben; Kamau, Edwin

    2016-01-01

    Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya. PMID:27611315

  4. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-01-01

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies. PMID:27259224

  5. Genome sequence of the human malaria parasite Plasmodium falciparum

    PubMed Central

    Gardner, Malcolm J.; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W.; Carlton, Jane M.; Pain, Arnab; Nelson, Karen E.; Bowman, Sharen; Paulsen, Ian T.; James, Keith; Eisen, Jonathan A.; Rutherford, Kim; Salzberg, Steven L.; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J.; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W.; Vaidya, Akhil B.; Martin, David M. A.; Fairlamb, Alan H.; Fraunholz, Martin J.; Roos, David S.; Ralph, Stuart A.; McFadden, Geoffrey I.; Cummings, Leda M.; Subramanian, G. Mani; Mungall, Chris; Venter, J. Craig; Carucci, Daniel J.; Hoffman, Stephen L.; Newbold, Chris; Davis, Ronald W.; Fraser, Claire M.; Barrell, Bart

    2013-01-01

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria. PMID:12368864

  6. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species [1-3], providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database [4], and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H) system [5], blood stage microarray experiments [6-8], proteomics [9-12], literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle

  7. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites

    PubMed Central

    Lee, Andrew H.; Fidock, David A.

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  8. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  9. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  10. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M; Holder, Anthony A

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  11. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  12. Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum.

    PubMed

    Krungkrai, J; Burat, D; Kudan, S; Krungkrai, S; Prapunwattana, P

    1999-12-01

    The two developmental stages of human malarial parasite Plasmodium falciparum, asexual and sexual blood stages, were continuously cultivated in vitro. Both asexual and sexual stages of the parasites were assayed for mitochondrial oxygen consumption by using a polarographic assay. The rate of oxygen consumption by both stages was found to be relatively low, and was not much different. Furthermore, the mitochondrial oxygen consumption by both stages was inhibited to various degrees by mammalian mitochondrial inhibitors that targeted each component of complexes I- IV of the respiratory system. The oxygen consumption by both stages was also affected by 5-fluoroorotate, a known inhibitor of enzyme dihydroorotate dehydrogenase of the pyrimidine pathway and by an antimalarial drug atovaquone that acted specifically on mitochondrial complex III of the parasite. Moreover, antimalarials primaquine and artemisinin had inhibitory effects on the oxygen consumption by both stages of the parasites. Our results suggest that P. falciparum in both developmental stages have functional mitochondria that operate a classical electron transport system, containing complexes I-IV, and linked to the pyrimidine biosynthetic pathway. PMID:10928353

  13. Serological Evidence of Discrete Spatial Clusters of Plasmodium falciparum Parasites

    PubMed Central

    Bejon, Philip; Turner, Louise; Lavstsen, Thomas; Cham, Gerald; Olotu, Ally; Drakeley, Chris J.; Lievens, Marc; Vekemans, Johan; Savarese, Barbara; Lusingu, John; von Seidlein, Lorenz; Bull, Peter C.; Marsh, Kevin; Theander, Thor G.

    2011-01-01

    Background Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations. Methods and Findings We measured the antibody responses to 46 individual PfEMP1 domains at four time points among 450 children in Kenya, and identified distinct spatial clusters of antibody responses to individual domains. 35 domains showed strongly significant sero-clusters at p = 0.001. Individuals within the high transmission hotspot showed the greatest diversity of anti-PfEMP1 responses. Individuals outside the hotspot had a less diverse range of responses, even if as individuals they were at relatively intense exposure. Conclusions We infer that antigenically distinct sub-populations of parasites exist on a fine spatial scale in a study area of rural Kenya. Further studies should examine antigenic variation over longer periods of time and in different study areas. PMID:21747921

  14. Plasmodium falciparum Bloom homologue, a nucleocytoplasmic protein, translocates in 3' to 5' direction and is essential for parasite growth.

    PubMed

    Rahman, Farhana; Tarique, Mohammed; Tuteja, Renu

    2016-05-01

    Malaria caused by Plasmodium, particularly Plasmodium falciparum, is the most serious and widespread parasitic disease of humans. RecQ helicase family members are essential in homologous recombination-based error-free DNA repair processes in all domains of life. RecQ helicases present in each organism differ and several homologues have been identified in various multicellular organisms. These proteins are involved in various pathways of DNA metabolism by providing duplex unwinding function. Five members of RecQ family are present in Homo sapiens but P. falciparum contains only two members of this family. Here we report the detailed biochemical and functional characterization of the Bloom (Blm) homologue (PfBlm) from P. falciparum 3D7 strain. Purified PfBlm exhibits ATPase and 3' to 5' direction specific DNA helicase activity. The calculated average reaction rate of ATPase was ~13 pmol of ATP hydrolyzed/min/pmol of enzyme. The immunofluorescence assay results show that PfBlm is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain. In some stages of development in addition to nucleus PfBlm also localizes in the cytoplasm. The gene disruption studies of PfBlm by dsRNA showed that it is required for the ex-vivo intraerythrocytic development of the parasite P. falciparum 3D7 strain. The dsRNA mediated inhibition of parasite growth suggests that a variety of pathways are affected resulting in curtailing of the parasite growth. This study will be helpful in unravelling the basic mechanism of DNA transaction in the malaria parasite and additionally it may provide leads to understand the parasite specific characteristics of this protein. PMID:26917473

  15. Plasma Concentration of Parasite DNA as a Measure of Disease Severity in Falciparum Malaria

    PubMed Central

    Imwong, Mallika; Woodrow, Charles J.; Hendriksen, Ilse C. E.; Veenemans, Jacobien; Verhoef, Hans; Faiz, M. Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D.; Day, Nicholas P. J.; Dondorp, Arjen M.; White, Nicholas J.

    2015-01-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples. PMID:25344520

  16. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death.

    PubMed

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite's growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  17. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  18. Synthesis and in vitro evaluation of hydrazinyl phthalazines against malaria parasite, Plasmodium falciparum.

    PubMed

    Subramanian, Gowtham; Babu Rajeev, C P; Mohan, Chakrabhavi Dhananjaya; Sinha, Ameya; Chu, Trang T T; Anusha, Sebastian; Ximei, Huang; Fuchs, Julian E; Bender, Andreas; Rangappa, Kanchugarakoppal S; Chandramohanadas, Rajesh; Basappa

    2016-07-15

    In this report, we describe the synthesis of 1-(Phthalazin-4-yl)-hydrazine using bronsted acidic ionic liquids and demonstrate their ability to inhibit asexual stage development of human malaria parasite, Plasmodium falciparum. Through computational studies, we short-listed chemical scaffolds with potential binding affinity to an essential parasite protein, dihydroorotate dehydrogenase (DHODH). Further, these compounds were synthesized in the lab and tested against P. falciparum. Several compounds from our library showed inhibitory activity at low micro-molar concentrations with minimal cytotoxic effects. These results indicate the potential of hydralazine derivatives as reference scaffolds to develop novel antimalarials. PMID:27261180

  19. The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis*

    PubMed Central

    Spry, Christina; Saliba, Kevin J.

    2009-01-01

    Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of [14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require. PMID:19584050

  20. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.

    PubMed Central

    Elliott, J L; Saliba, K J; Kirk, K

    2001-01-01

    The mature, intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, is reliant on glycolysis for its energetic requirements. It produces large quantities of lactic acid, which have to be removed from the parasite's cytosol to maintain the cell's integrity and metabolic viability. Here we show that the monocarboxylates lactate and pyruvate are both transported across the parasite's plasma membrane via a H(+)/monocarboxylate symport process that is saturable and inhibited by the bioflavonoid phloretin. The results provide direct evidence for the presence at the parasite surface of a H(+)-coupled monocarboxylate transporter with features in common with members of the MCT (monocarboxylate transporter) family of higher eukaryotes. PMID:11311136

  1. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    PubMed Central

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  2. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    PubMed

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  3. Chloroquine and sulphadoxine-pyrimethamine sensitivity of Plasmodium falciparum parasites in a Brazilian endemic area

    PubMed Central

    Gama, Bianca Ervatti; de Oliveira, Natália K Almeida; Zalis, Mariano G; de Souza, José Maria; Santos, Fátima; Daniel-Ribeiro, Cláudio Tadeu; Ferreira-da-Cruz, Maria de Fátima

    2009-01-01

    Background The goal of the present study was the characterization of Plasmodium falciparum genes associated to malaria drug resistance (pfcrt, pfdhfr and pfdhps), in samples from two Brazilian localities. Methods Parasites from 65 P. falciparum samples were genotyped using nested-PCR and direct DNA sequencing. Results Six resistant sulphadoxine-pyrimethamine (SP) pfdhfr genotypes and one haplotype associated to SP sensitivity were detected. For pfcrt gene, SVMNT chloroquine (CQ)-resistant genotype was detected as well as the CVMNK CQ-sensitive haplotype in the same sample from Paragominas, that showed a SP-sensitive genotype. Conclusion This study is the first to document the sensitivity of P. falciparum parasites to CQ and SP in Brazilian field samples. The importance of these findings is discussed. PMID:19602248

  4. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Sigala, Paul A.; Crowley, Jan R.; Hsieh, Samantha; Henderson, Jeffrey P.; Goldberg, Daniel E.

    2012-01-01

    Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO's lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. PMID:22992734

  5. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum

    PubMed Central

    Alves, Eduardo; Maluf, Fernando V.; Bueno, Vânia B.; Guido, Rafael V. C.; Oliva, Glaucius; Singh, Maneesh; Scarpelli, Pedro; Costa, Fahyme; Sartorello, Robson; Catalani, Luiz H.; Brady, Declan; Tewari, Rita; Garcia, Celia R. S.

    2016-01-01

    In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action. PMID:26915471

  6. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Llinás, Manuel; Kirk, Kiaran

    2016-06-01

    Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes. PMID:26633083

  7. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    PubMed

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito. PMID:20161781

  8. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum

    PubMed Central

    Lambrechts, Louis; Halbert, Jean; Durand, Patrick; Gouagna, Louis C; Koella, Jacob C

    2005-01-01

    Background Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant to one subset of the parasite's genotypes, while other hosts are resistant to a different subset. Methods To test for genotype by genotype interactions between malaria parasites and their anopheline vectors, different genetic backgrounds (families consisting of the F1 offspring of individual females) of the major African vector Anopheles gambiae were challenged with several isolates of the human malaria parasite Plasmodium falciparum (obtained from naturally infected children in Kenya). Results Averaged across all parasites, the proportion of infected mosquitoes and the number of oocysts found in their midguts were similar in all mosquito families. Both indices of resistance, however, differed considerably among isolates of the parasite. In particular, no mosquito family was most resistant to all parasites, and no parasite isolate was most infectious to all mosquitoes. Conclusions These results suggest that the level of mosquito resistance depends on the interaction between its own and the parasite's genotype. This finding thus emphasizes the need to take into account the range of genetic diversity exhibited by mosquito and malaria field populations in ideas and studies concerning the control of malaria. PMID:15644136

  9. Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum.

    PubMed

    Newby, Zachary E R; O'Connell, Joseph; Robles-Colmenares, Yaneth; Khademi, Shahram; Miercke, Larry J; Stroud, Robert M

    2008-06-01

    The 2.05-A resolution structure of the aquaglyceroporin from the malarial parasite Plasmodium falciparum (PfAQP), a protein important in the parasite's life cycle, has been solved. The structure provides key evidence for the basis of water versus glycerol selectivity in aquaporin family members. Unlike its closest homolog of known structure, GlpF, the channel conducts both glycerol and water at high rates, framing the question of what determines high water conductance in aquaporin channels. The universally conserved arginine in the selectivity filter is constrained by only two hydrogen bonds in GlpF, whereas there are three in all water-selective aquaporins and in PfAQP. The decreased cost of dehydrating the triply-satisfied arginine cation may provide the basis for high water conductance. The two Asn-Pro-Ala (NPA) regions of PfAQP, which bear rare substitutions to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), participate in preserving the orientation of the selectivity filter asparagines in the center of the channel. PMID:18500352

  10. Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Foth, Bernardo Javier; Zhang, Neng; Chaal, Balbir Kaur; Sze, Siu Kwan; Preiser, Peter Rainer; Bozdech, Zbynek

    2011-01-01

    Studies of the Plasmodium falciparum transcriptome have shown that the tightly controlled progression of the parasite through the intra-erythrocytic developmental cycle (IDC) is accompanied by a continuous gene expression cascade in which most expressed genes exhibit a single transcriptional peak. Because the biochemical and cellular functions of most genes are mediated by the encoded proteins, understanding the relationship between mRNA and protein levels is crucial for inferring biological activity from transcriptional gene expression data. Although studies on other organisms show that <50% of protein abundance variation may be attributable to corresponding mRNA levels, the situation in Plasmodium is further complicated by the dynamic nature of the cyclic gene expression cascade. In this study, we simultaneously determined mRNA and protein abundance profiles for P. falciparum parasites during the IDC at 2-hour resolution based on oligonucleotide microarrays and two-dimensional differential gel electrophoresis protein gels. We find that most proteins are represented by more than one isoform, presumably because of post-translational modifications. Like transcripts, most proteins exhibit cyclic abundance profiles with one peak during the IDC, whereas the presence of functionally related proteins is highly correlated. In contrast, the abundance of most parasite proteins peaks significantly later (median 11 h) than the corresponding transcripts and often decreases slowly in the second half of the IDC. Computational modeling indicates that the considerable and varied incongruence between transcript and protein abundance may largely be caused by the dynamics of translation and protein degradation. Furthermore, we present cyclic abundance profiles also for parasite-associated human proteins and confirm the presence of five human proteins with a potential role in antioxidant defense within the parasites. Together, our data provide fundamental insights into transcript

  11. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria

    PubMed Central

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E. M.; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status. PMID:25906165

  12. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006–2009

    PubMed Central

    Charles, Macarthur; Das, Sanchita; Daniels, Rachel; Kirkman, Laura; Delva, Glavdia G.; Destine, Rodney; Escalante, Ananias; Villegas, Leopoldo; Daniels, Noah M.; Shigyo, Kristi; Volkman, Sarah K.; Pape, Jean W.

    2016-01-01

    Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006–2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin. PMID:27089479

  13. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006-2009.

    PubMed

    Charles, Macarthur; Das, Sanchita; Daniels, Rachel; Kirkman, Laura; Delva, Glavdia G; Destine, Rodney; Escalante, Ananias; Villegas, Leopoldo; Daniels, Noah M; Shigyo, Kristi; Volkman, Sarah K; Pape, Jean W; Golightly, Linnie M

    2016-05-01

    Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006-2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin. PMID:27089479

  14. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.

    PubMed

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2016-06-01

    Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria. PMID:27262062

  15. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.

    PubMed

    Phaiphinit, Suthat; Pattaradilokrat, Sittiporn; Lursinsap, Chidchanok; Plaimas, Kitiporn

    2016-01-01

    Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasite's metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo

  16. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  17. Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes

    PubMed Central

    Hott, Amanda; Casandra, Debora; Sparks, Kansas N.; Morton, Lindsay C.; Castanares, Geocel-Grace; Rutter, Amanda

    2015-01-01

    Artemisinin derivatives are used in combination with other antimalarial drugs for treatment of multidrug-resistant malaria worldwide. Clinical resistance to artemisinin recently emerged in southeast Asia, yet in vitro phenotypes for discerning mechanism(s) of resistance remain elusive. Here, we describe novel phenotypic resistance traits expressed by artemisinin-resistant Plasmodium falciparum. The resistant parasites exhibit altered patterns of development that result in reduced exposure to drug at the most susceptible stage of development in erythrocytes (trophozoites) and increased exposure in the most resistant stage (rings). In addition, a novel in vitro delayed clearance assay (DCA) that assesses drug effects on asexual stages was found to correlate with parasite clearance half-life in vivo as well as with mutations in the Kelch domain gene associated with resistance (Pf3D7_1343700). Importantly, all of the resistance phenotypes were stable in cloned parasites for more than 2 years without drug pressure. The results demonstrate artemisinin-resistant P. falciparum has evolved a novel mechanism of phenotypic resistance to artemisinin drugs linked to abnormal cell cycle regulation. These results offer insights into a novel mechanism of drug resistance in P. falciparum and new tools for monitoring the spread of artemisinin resistance. PMID:25779582

  18. The Maurer's clefts of Plasmodium falciparum: parasite-induced islands within an intracellular ocean.

    PubMed

    Przyborski, Jude M

    2008-07-01

    It is suggested that Maurer's clefts, membranous structures observed within the cytoplasm of Plasmodium-falciparum-infected human erythrocytes, play an important role in trafficking virulence proteins from the parasite to the surface of the host cell. How they fulfil this role, however, still is unclear. A recent study by Bhattacharjee et al. now suggests that the clefts function as the major conduit through which parasite-encoded proteins pass before entering the host cell. In this article we comment on the significance of this information in our understanding of the novel 'extracellular' secretory pathway of this important human pathogen. PMID:18514031

  19. Delayed Parasite Clearance after Treatment with Dihydroartemisinin-Piperaquine in Plasmodium falciparum Malaria Patients in Central Vietnam

    PubMed Central

    Hong, Nguyen Van; Rosanas-Urgell, Anna; Phuc, Bui Quang; Ha, Do Manh; Pockele, Evi; Guetens, Pieter; Van, Nguyen Van; Duong, Tran Thanh; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Erhart, Annette

    2014-01-01

    Reduced susceptibility of Plasmodium falciparum toward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-day in vivo and in vitro efficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), and in vitro sensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles, in vitro sensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, the P. falciparum prevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%; P = 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time

  20. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  1. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  2. The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences.

    PubMed

    Baumeister, Stefan; Winterberg, Markus; Przyborski, Jude M; Lingelbach, Klaus

    2010-04-01

    Apicomplexan parasites obligatorily invade and multiply within eukaryotic cells. Phylogenetically, they are related to a group of algae which, during their evolution, have acquired a secondary endosymbiont. This organelle, which in the parasite is called the apicoplast, is highly reduced compared to the endosymbionts of algae, but still contains many plant-specific biosynthetic pathways. The malaria parasite Plasmodium falciparum infects mammalian erythrocytes which are devoid of intracellular compartments and which largely lack biosynthetic pathways. Despite the limited resources of nutrition, the parasite grows and generates up to 32 merozoites which are the infectious stages of the complex life cycle. A large part of the intra-erythrocytic development takes place in the so-called parasitophorous vacuole, a compartment which forms an interface between the parasite and the cytoplasm of the host cell. In the course of parasite growth, the host cell undergoes dramatic alterations which on one hand contribute directly to the symptoms of severe malaria and which, on the other hand, are also required for parasite survival. Some of these alterations facilitate the acquisition of nutrients from the extracellular environment which are not provided by the host cell. Here, we describe the cell biologically unique interactions between an intracellular eukaryotic pathogen and its metabolically highly reduced host cell. We further discuss current models to explain the appearance of pathogen-induced novel physiological properties in a host cell which has lost its genetic programme. PMID:19949823

  3. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  4. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. PMID:22326740

  5. K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa

    PubMed Central

    Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A.

    2015-01-01

    Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. PMID:25367300

  6. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa.

    PubMed

    Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A

    2015-04-15

    Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. PMID:25367300

  7. Selective Killing of the Human Malaria Parasite Plasmodium falciparum by a Benzylthiazolium dye

    PubMed Central

    Kelly, Jane X.; Winter, Rolf W.; Braun, Theodore P.; Osei-Agyemang, Myralyn; Hinrichs, David J.; Riscoe, Michael K.

    2007-01-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by P. falciparum which infects hundreds of millions of people and is responsible for the deaths of 1 to 2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel. PMID:17266952

  8. Artesunate Tolerance in Transgenic Plasmodium falciparum Parasites Overexpressing a Tryptophan-Rich Protein▿†

    PubMed Central

    Deplaine, Guillaume; Lavazec, Catherine; Bischoff, Emmanuel; Natalang, Onguma; Perrot, Sylvie; Guillotte-Blisnick, Micheline; Coppée, Jean-Yves; Pradines, Bruno; Mercereau-Puijalon, Odile; David, Peter H.

    2011-01-01

    Due to their rapid, potent action on young and mature intraerythrocytic stages, artemisinin derivatives are central to drug combination therapies for Plasmodium falciparum malaria. However, the evidence for emerging parasite resistance/tolerance to artemisinins in southeast Asia is of great concern. A better understanding of artemisinin-related drug activity and resistance mechanisms is urgently needed. A recent transcriptome study of parasites exposed to artesunate led us to identify a series of genes with modified levels of expression in the presence of the drug. The gene presenting the largest mRNA level increase, Pf10_0026 (PArt), encoding a hypothetical protein of unknown function, was chosen for further study. Immunodetection with PArt-specific sera showed that artesunate induced a dose-dependent increase of the protein level. Bioinformatic analysis showed that PArt belongs to a Plasmodium-specific gene family characterized by the presence of a tryptophan-rich domain with a novel hidden Markov model (HMM) profile. Gene disruption could not be achieved, suggesting an essential function. Transgenic parasites overexpressing PArt protein were generated and exhibited tolerance to a spike exposure to high doses of artesunate, with increased survival and reduced growth retardation compared to that of wild-type-treated controls. These data indicate the involvement of PArt in parasite defense mechanisms against artesunate. This is the first report of genetically manipulated parasites displaying a stable and reproducible decreased susceptibility to artesunate, providing new possibilities to investigate the parasite response to artemisinins. PMID:21464256

  9. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeatrich parasite proteome during malarial fevers

    PubMed Central

    Muralidharan, Vasant; Oksman, Anna; Pal, Priya; Lindquist, Susan; E. Goldberg, Daniel

    2013-01-01

    One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. We report that a Plasmodium Asn repeat-containing protein (PFI1155w) formed aggregates in mammalian cells at febrile temperatures, as did a yeast Asn/Gln-rich protein (Sup35). Co-expression of the cytoplasmic P. falciparum heat shock protein 110 (PfHsp110c) prevented aggregation. Human or yeast orthologs were much less effective. All-Asn and all-Gln versions of Sup35 were protected from aggregation by PfHsp110c, suggesting that this chaperone is not limited to handling runs of Asn. PfHsp110c gene knockout parasites were not viable and conditional knockdown parasites died slowly in the absence of protein-stabilizing ligand. When exposed to brief heat shock, these knockdowns were unable to prevent aggregation of PFI1155w or Sup35 and died rapidly. We conclude that PfHsp110c protects the parasite from harmful effects of its asparagine repeat-rich proteome during febrile episodes. PMID:23250440

  10. Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites

    PubMed Central

    Dharia, Neekesh V.; Plouffe, David; Bopp, Selina E.R.; González-Páez, Gonzalo E.; Lucas, Carmen; Salas, Carola; Soberon, Valeria; Bursulaya, Badry; Kochel, Tadeusz J.; Bacon, David J.; Winzeler, Elizabeth A.

    2010-01-01

    Here, we fully characterize the genomes of 14 Plasmodium falciparum patient isolates taken recently from the Iquitos region using genome scanning, a microarray-based technique that delineates the majority of single-base changes, indels, and copy number variants distinguishing the coding regions of two clones. We show that the parasite population in the Peruvian Amazon bears a limited number of genotypes and low recombination frequencies. Despite the essentially clonal nature of some isolates, we see high frequencies of mutations in subtelomeric highly variable genes and internal var genes, indicating mutations arising during self-mating or mitotic replication. The data also reveal that one or two meioses separate different isolates, showing that P. falciparum clones isolated from different individuals in defined geographical regions could be useful in linkage analyses or quantitative trait locus studies. Through pairwise comparisons of different isolates we discovered point mutations in the apicoplast genome that are close to known mutations that confer clindamycin resistance in other species, but which were hitherto unknown in malaria parasites. Subsequent drug sensitivity testing revealed over 100-fold increase of clindamycin EC50 in strains harboring one of these mutations. This evidence of clindamycin-resistant parasites in the Amazon suggests that a shift should be made in health policy away from quinine + clindamycin therapy for malaria in pregnant women and infants, and that the development of new lincosamide antibiotics for malaria should be reconsidered. PMID:20829224

  11. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  12. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    PubMed

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  13. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  14. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  15. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission.

    PubMed

    Naissant, Bernina; Dupuy, Florian; Duffier, Yoann; Lorthiois, Audrey; Duez, Julien; Scholz, Judith; Buffet, Pierre; Merckx, Anais; Bachmann, Anna; Lavazec, Catherine

    2016-06-16

    Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission. PMID:27136945

  16. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  17. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

    2011-12-31

    The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  18. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. PMID:26984625

  19. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  20. Associations Between Helminth Infections, Plasmodium falciparum Parasite Carriage and Antibody Responses to Sexual and Asexual Stage Malarial Antigens.

    PubMed

    Ateba-Ngoa, Ulysse; Jones, Sophie; Zinsou, Jeannot Fréjus; Honkpehedji, Josiane; Adegnika, Ayola Akim; Agobe, Jean-Claude Dejon; Massinga-Loembe, Marguerite; Mordmüller, Benjamin; Bousema, Teun; Yazdanbakhsh, Maria

    2016-08-01

    Infections with helminths and Plasmodium spp. overlap in their geographical distribution. It has been postulated that helminth infections may influence malarial transmission by altering Plasmodium falciparum gametocytogenesis. This cross-sectional study assessed the effect of helminth infections on P. falciparum gametocyte carriage and on humoral immune responses to sexual stage antigens in Gabon. Schistosoma haematobium and filarial infections as well as P. falciparum asexual forms and gametocyte carriage were determined. The antibody responses measured were to sexual (Pfs230, Pfs48/45) and asexual P. falciparum antigens (AMA1, MSP1, and GLURP). A total of 287 subjects were included. The prevalence of microscopically detectable P. falciparum asexual parasites was higher in S. haematobium-infected subjects in comparison to their uninfected counterparts (47% versus 26%, P = 0.003), but this was not different when filarial infections were considered. Plasmodium falciparum gametocyte carriage was similar between Schistosoma- or filaria-infected and uninfected subjects. We observed a significant decrease of Pfs48/45 immunoglobulin G titer in S. haematobium-infected subjects (P = 0.037), whereas no difference was seen for Pfs230 antibody titer, nor for antibodies to AMA1, MSP1, or GLURP. Our findings suggest an effect of S. haematobium on antibody responses to some P. falciparum gametocyte antigens that may have consequences for transmission-blocking immunity. PMID:27273645

  1. Purification and biochemical characterization of a heme containing peroxidase from the human parasite P. falciparum.

    PubMed

    Trivedi, Vishal; Srivastava, Kumkum; Puri, Sunil K; Maulik, Prakas R; Bandyopadhyay, Uday

    2005-05-01

    A peroxidase (30 kDa) has been purified from the human malaria parasite Plasmodium falciparum to its homogeneity. The protein is a dimer of 15 kDa subunit as evident from SDS-PAGE and MALDI-TOF mass analysis. The antibodies developed against the purified protein cross-react selectively with this protein present in parasite lysate. It is a heme containing peroxidase [R/Z value (A408/A278)=2.33] showing characteristic heme spectra with Soret peak at 408 nm and visible peaks at 536 and 572 nm. Analysis of Soret spectra in presence or absence of cyanide or azide reveals that iron of heme is in Fe-III state. Circular dichroism spectral analysis establishes that this protein contains mainly alpha-helix (60-70%). H2O2 interacts with the heme moiety of the enzyme as evidenced by optical difference spectroscopy and spectral studies indicate the formation of catalytically active peroxidase-H2O2 complex (Soret peak at 413 nm) to exhibit peroxidase activity. During the erythrocytic stages of its life cycle, the parasite is exposed to oxidative stress. As the parasite is susceptible to oxidative stress, this peroxidase may offer antioxidant role by scavenging endogenous H2O2. PMID:15802233

  2. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia

    PubMed Central

    2014-01-01

    Background Increased resistance by Plasmodium falciparum parasites led to the withdrawal of the antimalarial drugs chloroquine and sulphadoxine-pyrimethamine in Ethiopia. Since 2004 artemether-lumefantrine has served to treat uncomplicated P. falciparum malaria. However, increasing reports on delayed parasite clearance to artemisinin opens up a new challenge in anti-malarial therapy. With the complete withdrawal of CQ for the treatment of Plasmodium falciparum malaria, this study assessed the evolution of CQ resistance by investigating the prevalence of mutant alleles in the pfmdr1 and pfcrt genes in P. falciparum and pvmdr1 gene in Plasmodium vivax in Southern and Eastern Ethiopia. Methods Of the 1,416 febrile patients attending primary health facilities in Southern Ethiopia, 329 febrile patients positive for P. falciparum or P. vivax were recruited. Similarly of the 1,304 febrile patients from Eastern Ethiopia, 81 febrile patients positive for P. falciparum or P. vivax were included in the study. Of the 410 finger prick blood samples collected from malaria patients, we used direct sequencing to investigate the prevalence of mutations in pfcrt and pfmdr1. This included determining the gene copy number in pfmdr1 in 195 P. falciparum clinical isolates, and mutations in the pvmdr1 locus in 215 P. vivax clinical isolates. Results The pfcrt K76 CQ-sensitive allele was observed in 84.1% of the investigated P.falciparum clinical isolates. The pfcrt double mutations (K76T and C72S) were observed less than 3%. The pfcrt SVMNT haplotype was also found to be present in clinical isolates from Ethiopia. The pfcrt CVMNK-sensitive haplotypes were frequently observed (95.9%). The pfmdr1 mutation N86Y was observed only in 14.9% compared to 85.1% of the clinical isolates that carried sensitive alleles. Also, the sensitive pfmdr1 Y184 allele was more common, in 94.9% of clinical isolates. None of the investigated P. falciparum clinical isolates carried S1034C, N1042D and D1246Y

  3. Immune Characterization of Plasmodium falciparum Parasites with a Shared Genetic Signature in a Region of Decreasing Transmission

    PubMed Central

    Bei, Amy K.; Diouf, Ababacar; Miura, Kazutoyo; Larremore, Daniel B.; Ribacke, Ulf; Tullo, Gregory; Moss, Eli L.; Neafsey, Daniel E.; Daniels, Rachel F.; Zeituni, Amir E.; Nosamiefan, Iguosadolo; Volkman, Sarah K.; Ahouidi, Ambroise D.; Ndiaye, Daouda; Dieye, Tandakha; Mboup, Souleymane; Buckee, Caroline O.; Long, Carole A.

    2014-01-01

    As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population. PMID:25368109

  4. Preferential binding of 4-hydroxynonenal to lysine residues in specific parasite proteins in plakortin-treated Plasmodium falciparum-parasitized red blood cells

    PubMed Central

    Schwarzer, Evelin; Gallo, Valentina; Valente, Elena; Ulliers, Daniela; Taglialatela-Scafati, Orazio; Arese, Paolo; Skorokhod, Oleksii A.

    2015-01-01

    The data show the frequencies by which the amino acid residues lysine, histidine and cysteine of six proteins of the malaria parasite Plasmodium falciparum are post-translationally modified by the lipoperoxydation endproduct 4-hydroxynonenal after challenging the parasitized red blood cell with plakortin. Plakortin is an antimalarial endoperoxide whose molecular anti-parasitic effect is described in Skorokhod et al. (2015) [1]. Plakortin did not elicit hemoglobin leakage from host red blood cells and did not oxidize reduced glutathione. PMID:26702418

  5. Dynamic Epigenetic Regulation of Gene Expression during the Life Cycle of Malaria Parasite Plasmodium falciparum

    PubMed Central

    Gupta, Archna P.; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-01-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5′ ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome. PMID:23468622

  6. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  7. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  8. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Ponts, Nadia; Fu, Lijuan; Harris, Elena Y.; Zhang, Jing; Chung, Duk-Won D.; Cervantes, Michael C.; Prudhomme, Jacques; Atanasova-Penichon, Vessela; Zehraoui, Enric; Bunnik, Evelien; Rodrigues, Elisandra M.; Lonardi, Stefano; Hicks, Glenn R.; Wang, Yinsheng; Le Roch, Karine G.

    2014-01-01

    SUMMARY Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase, PfDNMT, that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated, in which only one DNA strand is methylated, and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated and transcript levels correlate with intra-exonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and uniqueness of PfDNMT suggest that the methylation pathway is a potential target for anti-malarial strategies. PMID:24331467

  9. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes.

    PubMed

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A; Sauerwein, Robert W

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  10. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

    PubMed Central

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A.; Sauerwein, Robert W.

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3–5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  11. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites.

    PubMed

    Cevenini, Luca; Camarda, Grazia; Michelini, Elisa; Siciliano, Giulia; Calabretta, Maria Maddalena; Bona, Roberta; Kumar, T R Santha; Cara, Andrea; Branchini, Bruce R; Fidock, David A; Roda, Aldo; Alano, Pietro

    2014-09-01

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z' factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z' factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing D-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level. PMID:25102353

  12. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. Methods Here, the remainders of 74 blood samples collected as part of the chimpanzees’ routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. Results/Conclusions Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum. Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species. An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region

  13. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom.

    PubMed

    El Chamy Maluf, S; Dal Mas, C; Oliveira, E B; Melo, P M; Carmona, A K; Gazarini, M L; Hayashi, M A F

    2016-04-01

    We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles. PMID:26806200

  14. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs

    PubMed Central

    Das, Sujaan; Hertrich, Nadine; Perrin, Abigail J.; Withers-Martinez, Chrislaine; Collins, Christine R.; Jones, Matthew L.; Watermeyer, Jean M.; Fobes, Elmar T.; Martin, Stephen R.; Saibil, Helen R.; Wright, Gavin J.; Treeck, Moritz; Epp, Christian; Blackman, Michael J.

    2015-01-01

    Summary The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. PMID:26468747

  15. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs.

    PubMed

    Das, Sujaan; Hertrich, Nadine; Perrin, Abigail J; Withers-Martinez, Chrislaine; Collins, Christine R; Jones, Matthew L; Watermeyer, Jean M; Fobes, Elmar T; Martin, Stephen R; Saibil, Helen R; Wright, Gavin J; Treeck, Moritz; Epp, Christian; Blackman, Michael J

    2015-10-14

    The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. PMID:26468747

  16. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria.

    PubMed

    Bertin, Gwladys I; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  17. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria

    PubMed Central

    Bertin, Gwladys I.; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M.; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  18. Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed Central

    Hanada, K; Mitamura, T; Fukasawa, M; Magistrado, P A; Horii, T; Nishijima, M

    2000-01-01

    Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial parasites. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic parasite Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in parasite-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the parasite-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in parasite-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated parasites than in infected erythrocyte ghosts; further fractionation of lysates of the isolated parasites showed that the activity was bound largely to the membrane fraction of the parasites. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the malaria parasites possess SMase activity might explain why the parasites seem to have an SM synthase activity but no activity to synthesize ceramide de novo. PMID:10698693

  19. Plasmodium falciparum parasites causing cerebral malaria share variant surface antigens, but are they specific?

    PubMed Central

    2010-01-01

    Background Variant surface antigens (VSA) expressed on the surface of Plasmodium falciparum-infected red blood cells constitute a key for parasite sequestration and immune evasion. In distinct malaria pathologies, such as placental malaria, specific antibody response against VSA provides protection. This study investigated the antibody response specifically directed against VSA expressed by parasites isolated from individuals presenting a given type of clinical presentation. Methods Plasma and isolates were obtained from four groups of Beninese subjects: healthy adults, patients presenting uncomplicated malaria (UM), cerebral malaria (CM), or pregnancy-associated malaria (PAM). The reactivity of plasma samples from each clinical group was measured by flow cytometry against parasites isolated from individuals from each clinical group. Results Antibody responses against VSAUM were predominant in CM, UM and HA plasmas. When analysed according to age in all plasma groups, anti-VSACM and -VSAUM antibody levels were similar until six years of age. In older groups (6-18 and >19 years of age), VSAUM antibody levels were higher than VSACM antibody levels (P = .01, P = .0008, respectively). Mean MFI values, measured in all plasmas groups except the PAM plasmas, remained low for anti-VSAPAM antibodies and did not vary with age. One month after infection the level of anti-VSA antibodies able to recognize heterologous VSACM variants was increased in CM patients. In UM patients, antibody levels directed against heterologous VSAUM were similar, both during the infection and one month later. Conclusions In conclusion, this study suggests the existence of serologically distinct VSACM and VSAUM. CM isolates were shown to share common epitopes. Specific antibody response to VSAUM was predominant, suggesting a relative low diversity of VSAUM in the study area. PMID:20663188

  20. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    PubMed Central

    Davenport, Gregory C.; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Ong'echa, John M.

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[−] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  1. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    DOE PAGESBeta

    Davenport, Gregory C.; Hittner, James B.; Otieno, Vincent; Karim, Zachary; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Kempaiah, Prakasha; Ong’echa, John M.; et al

    2016-01-01

    Bmore » acteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) entericacilli and Plasmodium falciparum ( Pf [+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/ μ L), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children ( n = 206 , aged <3 yrs): healthy; Pf [+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN- γ , and IFN- α and decreased TNF- α relative to malaria alone. Children with G[−] coinfection had higher IL-1 β and IL-1Ra and lower IL-10 than the Pf [+] group and higher IFN- γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN- γ . Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden.« less

  2. Mitochondrial Membrane Potential in a Small Subset of Artemisinin-Induced Dormant Plasmodium falciparum Parasites In Vitro.

    PubMed

    Peatey, Christopher L; Chavchich, Marina; Chen, Nanhua; Gresty, Karryn J; Gray, Karen-Ann; Gatton, Michelle L; Waters, Norman C; Cheng, Qin

    2015-08-01

    Artemisinin-induced dormancy is a proposed mechanism for failures of monotherapy and is linked with artemisinin resistance in Plasmodium falciparum. The biological characterization and dynamics of dormant parasites are not well understood. Here we report that after dihydroartemisinin treatment in vitro, a small subset of morphologically dormant parasites was stained with rhodamine 123 (RH), a mitochondrial membrane potential marker, and persisted to recovery. RH-positive parasites sorted with fluorescence-activated cell sorting resumed growth at 10,000/well whereas RH-negative parasites failed to recover at 5 million/well. Furthermore, transcriptional activity for mitochondrial enzymes was detected only in RH-positive dormant parasites. Importantly, after treatment of dormant parasites with different concentrations of atovaquone, a mitochondrial inhibitor, the recovery of dormant parasites was delayed or stopped. This demonstrates that mitochondrial activity is critical for survival and regrowth of dormant parasites and that RH staining provides a means of identifying these parasites. These findings provide novel paths for studying and eradicating this dormant stage. PMID:25635122

  3. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    PubMed

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made. PMID:27001144

  4. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background In eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels. Results In this study, we compare steady-state mRNA and polysome-associated mRNA levels of Plasmodium falciparum at different time points during its asexual cell cycle. For more than 30% of its genes, we observe a delay in peak transcript abundance in the polysomal fraction as compared to the steady-state mRNA fraction, suggestive of strong translational control. Our data show that key regulatory mechanisms could include inhibitory activity of upstream open reading frames and translational repression of the major virulence gene family by intronic transcripts. In addition, we observe polysomal mRNA-specific alternative splicing events and widespread transcription of non-coding transcripts. Conclusions These different layers of translational regulation are likely to contribute to a complex network that controls gene expression in this eukaryotic pathogen. Disrupting the mechanisms involved in such translational control could provide novel anti-malarial strategies. PMID:24267660

  5. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum

    PubMed Central

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-01-01

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression. PMID:25691743

  6. Assessing the cost-benefit effect of a Plasmodium falciparum drug resistance mutation on parasite growth in vitro.

    PubMed

    Fröberg, Gabrielle; Ferreira, Pedro Eduardo; Mårtensson, Andreas; Ali, Abdullah; Björkman, Anders; Gil, José Pedro

    2013-02-01

    Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost, but beyond a breakpoint concentration they grew more due to a predominating benefit of increased resistance. The cost-benefit indexes indicated that pfmdr1 1246Y was most advantageous for amodiaquine-exposed parasites. In vivo, a first drug selection of mutant parasites followed by a fitness selection of wild-type parasites supported the in vitro data. This cost-benefit model may predict the risk for selection of drug resistance mutations in different malaria transmission settings. PMID:23208719

  7. Assessing the Cost-Benefit Effect of a Plasmodium falciparum Drug Resistance Mutation on Parasite Growth In Vitro

    PubMed Central

    Ferreira, Pedro Eduardo; Mårtensson, Andreas; Ali, Abdullah; Björkman, Anders; Gil, José Pedro

    2013-01-01

    Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost, but beyond a breakpoint concentration they grew more due to a predominating benefit of increased resistance. The cost-benefit indexes indicated that pfmdr1 1246Y was most advantageous for amodiaquine-exposed parasites. In vivo, a first drug selection of mutant parasites followed by a fitness selection of wild-type parasites supported the in vitro data. This cost-benefit model may predict the risk for selection of drug resistance mutations in different malaria transmission settings. PMID:23208719

  8. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    PubMed

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  9. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum

    PubMed Central

    Holding, Thomas; Recker, Mario

    2015-01-01

    Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure. PMID:26674193

  10. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum.

    PubMed

    Holding, Thomas; Recker, Mario

    2015-12-01

    Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure. PMID:26674193

  11. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  12. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    PubMed Central

    2013-01-01

    Background Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or to artesunate were compared with patients treated with parenteral treatment with quinine or artesunate but who did not receive ET. ET was executed using a standardized manual isovolumetric exchange protocol. Methods All patients in the Rotterdam Malaria Cohort treated for severe P. falciparum malaria at the Institute for Tropical Diseases of the Harbour Hospital between 1999 and 2011 were included in this retrospective follow-up study. Both a two-stage approach and a log-linear mixed model approach were used to estimate parasite clearance times (PCTs) in patients with imported malaria. Severe malaria was defined according to WHO criteria. Results A total of 87 patients with severe malaria was included; 61 received intravenous quinine, whereas 26 patients received intravenous artesunate. Thirty-nine patients received ET as an adjunct treatment to either quinine (n = 23) or artesunate (n = 16). Data from 84 of 87 patients were suitable for estimation of parasite clearance rates. PCTs were significantly shorter after administration of artesunate as compared with quinine. In both models, ET did not contribute significantly to overall parasite clearance. Conclusion Manual exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals. There may be a small effect of ET on parasite clearance under quinine treatment. Institution of ET to promote parasite clearance in settings where artesunate is available is not recommended, at least not with manually executed exchange procedures. PMID:23537187

  13. Characterization of antigen-expressing Plasmodium falciparum cDNA clones that are reactive with parasite inhibitory antibodies.

    PubMed

    Horii, T; Bzik, D J; Inselburg, J

    1988-07-01

    A Plasmodium falciparum (FCR3 strain) lambda gt11 cDNA expression library was constructed from trophozoite and schizont poly(A) RNA and was screened immunologically with a pooled human immune serum from Nigeria to form a gene bank of 288 positive clones. The gene bank was subsequently screened with parasite inhibitory mouse monoclonal antibodies (mMAb) and with individual human Liberian sera. Two mMAb, 43E5 and 5H10, strongly reacted with 8 and 3 cDNA clones, respectively. Several of those clones also weakly cross-reacted with the other mMAb. Two of those weakly cross-reactive clones, cDNA#366 and cDNA#22, were shown to be located in different chromosomal regions of the parasite by Southern hybridization and so appeared to represent two different parasite genes. The genomic organization of both cDNA#366 and cDNA#22 sequences were identical in the FCR3 and the Honduras-1 strain. The nucleotide sequence of cDNA#366 and the amino acid sequence it coded for were homologous to a partial DNA and amino acid sequence previously reported for a P. falciparum (Camp strain) exoantigen designated p126. The mRNA for cDNA#366 appeared to represent an abundant message in blood stage trophozoites and schizonts. PMID:2456465

  14. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  15. Yeast-based high-throughput screen identifies Plasmodium falciparum equilibrative nucleoside transporter 1 inhibitors that kill malaria parasites.

    PubMed

    Frame, I J; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D; Adjalley, Sophie H; Coburn-Flynn, Olivia; Fidock, David A; Willis, Ian M; Landry, Donald W; Akabas, Myles H

    2015-03-20

    Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 μM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 μM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  16. Global distribution of polymorphisms associated with delayed Plasmodium falciparum parasite clearance following artemisinin treatment: genotyping of archive blood samples.

    PubMed

    Murai, Kenji; Culleton, Richard; Hisaoka, Teruhiko; Endo, Hiroyoshi; Mita, Toshihiro

    2015-06-01

    The recent emergence and spread of artemisinin-resistant Plasmodium falciparum isolates is a growing concern for global malaria-control efforts. A recent genome-wide analysis study identified two SNPs at genomic positions MAL10-688956 and MAL13-1718319, which are linked to delayed clearance of parasites following artemisinin combination therapy (ACT). It is expected that continuous artemisinin pressure will affect the distribution of these SNPs. Here, we investigate the worldwide distribution of these SNPs using a large number of archived samples in order to generate baseline data from the period before the emergence of ACT resistance. The presence of SNPs in MAL10-688956 and MAL13-1718319 was assessed by nested PCR RFLP and direct DNA sequencing using 653 global P. falciparum samples obtained before the reported emergence of ACT resistance. SNPs at MAL10-688956 and MAL13-1718319 associated with delayed parasite clearance following ACT administration were observed in 8% and 3% of parasites, respectively, mostly in Cambodia and Thailand. Parasites harbouring both SNPs were found in only eight (1%) isolates, all of which were from Cambodia and Thailand. Linkage disequilibrium was detected between MAL10-688956 and MAL13-1718319, suggesting that this SNP combination may have been selected by ACT drug pressure. Neither of the SNPs associated with delayed parasite clearance were observed in samples from Africa or South America. Baseline information of the geographical difference of MAL10-688956 and MAL13-1718319 SNPs provides a solid basis for assessing whether these SNPs are selected by artemisinin-based combination therapies. PMID:25449286

  17. Focused Screening and Treatment (FSAT): A PCR-Based Strategy to Detect Malaria Parasite Carriers and Contain Drug Resistant P. falciparum, Pailin, Cambodia

    PubMed Central

    Hoyer, Stefan; Nguon, Sokomar; Kim, Saorin; Habib, Najibullah; Khim, Nimol; Sum, Sarorn; Christophel, Eva-Maria; Bjorge, Steven; Thomson, Andrew; Kheng, Sim; Chea, Nguon; Yok, Sovann; Top, Samphornarann; Ros, Seyha; Sophal, Uth; Thompson, Michelle M.; Mellor, Steve; Ariey, Frédéric; Witkowski, Benoit; Yeang, Chhiang; Yeung, Shunmay; Duong, Socheat; Newman, Robert D.; Menard, Didier

    2012-01-01

    Recent studies have shown that Plasmodium falciparum malaria parasites in Pailin province, along the border between Thailand and Cambodia, have become resistant to artemisinin derivatives. To better define the epidemiology of P. falciparum populations and to assess the risk of the possible spread of these parasites outside Pailin, a new epidemiological tool named “Focused Screening and Treatment” (FSAT), based on active molecular detection of asymptomatic parasite carriers was introduced in 2010. Cross-sectional malariometric surveys using PCR were carried out in 20 out of 109 villages in Pailin province. Individuals detected as P. falciparum carriers were treated with atovaquone-proguanil combination plus a single dose of primaquine if the patient was non-G6PD deficient. Interviews were conducted to elicit history of cross-border travel that might contribute to the spread of artemisinin-resistant parasites. After directly observed treatment, patients were followed up and re-examined on day 7 and day 28. Among 6931 individuals screened, prevalence of P. falciparum carriers was less than 1%, of whom 96% were asymptomatic. Only 1.6% of the individuals had a travel history or plans to go outside Cambodia, with none of those tested being positive for P. falciparum. Retrospective analysis, using 2010 routine surveillance data, showed significant differences in the prevalence of asymptomatic carriers discovered by FSAT between villages classified as “high risk” and “low risk” based on malaria incidence data. All positive individuals treated and followed-up until day 28 were cured. No mutant-type allele related to atovaquone resistance was found. FSAT is a potentially useful tool to detect, treat and track clusters of asymptomatic carriers of P. falciparum along with providing valuable epidemiological information regarding cross-border movements of potential malaria parasite carriers and parasite gene flow. PMID:23049687

  18. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

    PubMed Central

    Phyo, Aung Pyae; Ashley, Elizabeth A.; Anderson, Tim J. C.; Bozdech, Zbynek; Carrara, Verena I.; Sriprawat, Kanlaya; Nair, Shalini; White, Marina McDew; Dziekan, Jerzy; Ling, Clare; Proux, Stephane; Konghahong, Kamonchanok; Jeeyapant, Atthanee; Woodrow, Charles J.; Imwong, Mallika; McGready, Rose; Lwin, Khin Maung; Day, Nicholas P. J.; White, Nicholas J.; Nosten, Francois

    2016-01-01

    Background. Deployment of mefloquine–artesunate (MAS3) on the Thailand–Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. Methods. Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. Results. Polymerase chain reaction (PCR)–adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. Conclusions. The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand–Myanmar border. PMID:27313266

  19. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    PubMed

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion. PMID:26375591

  20. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite

    PubMed Central

    Park, Daniel J.; Lukens, Amanda K.; Neafsey, Daniel E.; Schaffner, Stephen F.; Chang, Hsiao-Han; Valim, Clarissa; Ribacke, Ulf; Van Tyne, Daria; Galinsky, Kevin; Galligan, Meghan; Becker, Justin S.; Ndiaye, Daouda; Mboup, Souleymane; Wiegand, Roger C.; Hartl, Daniel L.; Sabeti, Pardis C.; Wirth, Dyann F.; Volkman, Sarah K.

    2012-01-01

    Through rapid genetic adaptation and natural selection, the Plasmodium falciparum parasite—the deadliest of those that cause malaria—is able to develop resistance to antimalarial drugs, thwarting present efforts to control it. Genome-wide association studies (GWAS) provide a critical hypothesis-generating tool for understanding how this occurs. However, in P. falciparum, the limited amount of linkage disequilibrium hinders the power of traditional array-based GWAS. Here, we demonstrate the feasibility and power improvements gained by using whole-genome sequencing for association studies. We analyzed data from 45 Senegalese parasites and identified genetic changes associated with the parasites’ in vitro response to 12 different antimalarials. To further increase statistical power, we adapted a common test for natural selection, XP-EHH (cross-population extended haplotype homozygosity), and used it to identify genomic regions associated with resistance to drugs. Using this sequence-based approach and the combination of association and selection-based tests, we detected several loci associated with drug resistance. These loci included the previously known signals at pfcrt, dhfr, and pfmdr1, as well as many genes not previously implicated in drug-resistance roles, including genes in the ubiquitination pathway. Based on the success of the analysis presented in this study, and on the demonstrated shortcomings of array-based approaches, we argue for a complete transition to sequence-based GWAS for small, low linkage-disequilibrium genomes like that of P. falciparum. PMID:22826220

  1. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane.

    PubMed

    Ziegler, Hanne L; Staerk, Dan; Christensen, Jette; Hviid, Lars; Hägerstrand, Henry; Jaroszewski, Jerzy W

    2002-05-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 +/- 0.5 microM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value and the membrane curvature changes caused by lupeol was observed. Preincubation of erythrocytes with lupeol, followed by extensive washing, made the cells unsuitable for parasite growth, suggesting that the compound incorporates into erythrocyte membrane irreversibly. On the other hand, lupeol-treated parasite culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay. PMID:11959580

  2. In Vitro Plasmodium falciparum Drug Sensitivity Assay: Inhibition of Parasite Growth by Incorporation of Stomatocytogenic Amphiphiles into the Erythrocyte Membrane

    PubMed Central

    Ziegler, Hanne L.; Stærk, Dan; Christensen, Jette; Hviid, Lars; Hägerstrand, Henry; Jaroszewski, Jerzy W.

    2002-01-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 ± 0.5 μM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value and the membrane curvature changes caused by lupeol was observed. Preincubation of erythrocytes with lupeol, followed by extensive washing, made the cells unsuitable for parasite growth, suggesting that the compound incorporates into erythrocyte membrane irreversibly. On the other hand, lupeol-treated parasite culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay. PMID:11959580

  3. Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea.

    PubMed

    Forsyth, K P; Philip, G; Smith, T; Kum, E; Southwell, B; Brown, G V

    1989-09-01

    Antigens were detected on the surface of erythrocytes from children with acute falciparum malaria in Madang, Papua New Guinea. These parasite-induced erythrocyte surface antigens (PIESA) were serotyped with convalescent sera from children and hyperimmune sera from adults in parasite infected cell agglutination assays (PICAs) and by inhibition of binding of infected cells to melanoma cells. Extensive serological diversity of PIESA was demonstrated. A significant correlation between serotypes defined by reactivity of immune sera in PICA and inhibition of melanoma cell binding (MCB) was observed. This suggests that both assays measure antibody responses to the same antigen(s). Increased recognition of different PIESA specificities with age is consistent with the hypothesis that repeated exposure to malaria confers immunity against a range of PIESA serotypes and parallels the development of clinical immunity to malaria in this area of Papua New Guinea. PMID:2679156

  4. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed

    Hastings, Ian M; Kay, Katherine; Hodel, Eva Maria

    2015-10-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  5. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed Central

    Kay, Katherine; Hodel, Eva Maria

    2015-01-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  6. Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Buckee, Caroline O.; Recker, Mario

    2012-01-01

    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria. PMID:22511852

  7. Genome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features

    PubMed Central

    Chahar, Priyanka; Kaushik, Manjeri; Gill, Sarvajeet Singh; Gakhar, Surendra Kumar; Gopalan, Natrajan; Datt, Manish; Sharma, Amit; Gill, Ritu

    2015-01-01

    Despite a significant drop in malaria deaths during the past decade, malaria continues to be one of the biggest health problems around the globe. WD40 repeats (WDRs) containing proteins comprise one of the largest and functionally diverse protein superfamily in eukaryotes, acting as scaffolds for assembling large protein complexes. In the present study, we report an extensive in silico analysis of the WDR gene family in human malaria parasite Plasmodium falciparum. Our genome-wide identification has revealed 80 putative WDR genes in P. falciparum (PfWDRs). Five distinct domain compositions were discovered in Plasmodium as compared to the human host. Notably, 31 PfWDRs were annotated/re-annotated on the basis of their orthologs in other species. Interestingly, most PfWDRs were larger as compared to their human homologs highlighting the presence of parasite-specific insertions. Fifteen PfWDRs appeared specific to the Plasmodium with no assigned orthologs. Expression profiling of PfWDRs revealed a mixture of linear and nonlinear relationships between transcriptome and proteome, and only nine PfWDRs were found to be stage-specific. Homology modeling identified conservation of major binding sites in PfCAF-1 and PfRACK. Protein-protein interaction network analyses suggested that PfWDRs are highly connected proteins with ~1928 potential interactions, supporting their role as hubs in cellular networks. The present study highlights the roles and relevance of the WDR family in P. falciparum, and identifies unique features that lay a foundation for further experimental dissection of PfWDRs. PMID:26043001

  8. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Heinberg, Adina R.; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.

    2015-01-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent “true” switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent “default” switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation

  9. Early variations in plasmodium falciparum dynamics in Nigerian children after treatment with two artemisinin-based combinations: implications on delayed parasite clearance

    PubMed Central

    2010-01-01

    Background Combination treatments, preferably containing an artemisinin derivative, are recommended to improve efficacy and prevent Plasmodium falciparum drug resistance. Artemether-lumefantrine (AL) and artesunate-amodiaquine (AA) are efficacious regimens that have been widely adopted in sub-Saharan Africa. However, most study designs ignore the effects of these regimens on peripheral parasitaemia in the first 24 hours of therapy. The study protocol was designed to evaluate more closely the early effects and the standard measures of efficacies of these two regimens. Methods In an open label, randomized controlled clinical trial, children aged 12 months to 132 months were randomized to receive AL (5-14 kg, one tablet; 15-24 kg, two tablets and 25-34 kg, three tablets twice daily) or artesunate (4 mg/kg daily) plus amodiaquine (10 mg/kg daily) for three days. Peripheral blood smears were made hourly in the first 4 hours, 8 h, 16 h, 24 h, and daily on days 2-7, and on days 7, 14, 21, 28, 35, and 42 for microscopic identification and quantification of Plasmodium falciparum. Results A total of 193 children were randomized to receive either AL (97) or AA (96). In children that received both medications, early response of peripheral parasitaemia showed that 42% of children who received AL and 36.7% of those who received AA had an immediate rise in peripheral parasitaemia (0-4 h after treatment) followed by a rapid fall. The rise in parasitaemia was significant and seems to suggest a mobilization of asexual parasites from the deep tissues to the periphery. Days 3, 7, 14, 28, and 42 cure rates in the per protocol (PP) population were > 90% in both groups of children. Both drug combinations were well tolerated with minimal side effects. Conclusion The study showed the high efficacy of AL and AA in Nigerian children. In addition the study demonstrated the mobilisation of asexual parasites from the deep to the periphery in the early hours of commencing ACT treatment in a

  10. Induction of Adhesion-Inhibitory Antibodies against Placental Plasmodium falciparum Parasites by Using Single Domains of VAR2CSA▿

    PubMed Central

    Nielsen, Morten A.; Pinto, Vera V.; Resende, Mafalda; Dahlbäck, Madeleine; Ditlev, Sisse B.; Theander, Thor G.; Salanti, Ali

    2009-01-01

    In areas of endemicity pregnancy-associated malaria is an important cause of maternal anemia, stillbirth, and delivery of low-birth-weight children. The syndrome is precipitated by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta, mediated through an interaction between a parasite protein expressed on erythrocytes named variant surface antigen 2-chondroitin sulfate A (VAR2CSA) and CSA on syncytiotrophoblasts. VAR2CSA is a large polymorphic protein consisting of six Duffy binding-like (DBL), domains and with current constraints on recombinant protein production it is not possible to produce entire VAR2CSA recombinant proteins. Furthermore, the presence of polymorphisms has raised the question of whether it is feasible to define VAR2CSA antigens eliciting broadly protective antibodies. Thus, the challenge for vaccine development is to define smaller parts of the molecule which induce antibodies that inhibit CSA binding of different parasite strains. In this study, we produced a large panel of VAR2CSA proteins and raised antibodies against these antigens. We show that antibodies against the DBL4 domain effectively inhibit parasite binding. As the inhibition was not limited to homologous parasite strains, it seems feasible to base a protective malaria vaccine on a single VAR2CSA DBL domain. PMID:19307213

  11. Radicicol-Mediated Inhibition of Topoisomerase VIB-VIA Activity of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Chalapareddy, Sureshkumar; Chakrabarty, Swati; Bhattacharyya, Mrinal Kanti

    2016-01-01

    ABSTRACT Plasmodium falciparum topoisomerase VIB (TopoVIB)-TopoVIA (TopoVIB-VIA) complex can be potentially exploited as a drug target against malaria due to its absence from the human genome. Previous work in our laboratory has suggested that P. falciparum TopoVIB (PfTopoVIB) might be a target of radicicol since treatment of parasite cultures with this antibiotic is associated with upregulation of Plasmodium TopoVIB at the transcript level as well as at the protein level. Further studies demonstrated that radicicol treatment impaired mitochondrial replication of human malaria parasite P. falciparum. However, the technical challenge associated with the expression of the above protein complex hampered its functional characterization. Using Saccharomyces cerevisiae as a heterologous system, we expressed PfTopoVIB (Myc-tagged) and PfTopoVIA (Flag-tagged) (PfTopoVIB-VIA) proteins. Yeast two-hybrid analysis showed the formation of PfTopoVIB homodimers and PfTopoVIB/PfTopoVIA heteromers. Our study demonstrated that PfTopoVIB and PfTopoVIA together can rescue the lethal phenotype of yeast ΔtopoII mutants, whereas Plasmodium topoisomerase VIB alone cannot. Using yeast cell-free extracts harboring the PfTopoVIB-VIA protein complex, we have performed a decatenation assay and observed that PfTopoVIB-VIA can decatenate DNA in an ATP- and Mg2+-dependent manner. The specificity of this enzyme is established by abrogation of its activity in the presence of PfTopoVIB-specific antibody. Our study results show that radicicol and etoposide can specifically inhibit PfTopoVIB-VIA decatenation activity whereas the gyrase inhibitor novobiocin cannot. Such a yeast-based assay system can be employed in screening specific inhibitors against Plasmodium VIB-VIA. IMPORTANCE In this study we characterize topoisomerase VI from Plasmodium falciparum using genetic and biochemical approaches. We use various inhibitors and identify radicicol as a specific inhibitor of its decatenation activity. We

  12. Yeast-based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites

    PubMed Central

    Frame, I. J.; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D.; Adjalley, Sophie H.; Coburn-Flynn, Olivia; Fidock, David A.; Willis, Ian M.; Landry, Donald W.; Akabas, Myles H.

    2015-01-01

    Equilibrative transporters are potential drug targets, however most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64,560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2–2 µM). These nine compounds completely blocked [3H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5–50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5–50 µM). Wild-type (WT) parasite IC50 values were up to four-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  13. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    PubMed

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance. PMID:25691625

  14. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence.

    PubMed

    Berry, Laurence; Chen, Chun-Ti; Reininger, Luc; Carvalho, Teresa G; El Hajj, Hiba; Morlon-Guyot, Juliette; Bordat, Yann; Lebrun, Maryse; Gubbels, Marc-Jan; Doerig, Christian; Daher, Wassim

    2016-08-01

    Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target. PMID:26833682

  15. Molecular Epidemiology of Blood-Borne Human Parasites in a Loa loa-, Mansonella perstans-, and Plasmodium falciparum-Endemic Region of Cameroon

    PubMed Central

    Drame, Papa M.; Montavon, Céline; Pion, Sébastien D.; Kubofcik, Joseph; Fay, Michael P.; Nutman, Thomas B.

    2016-01-01

    The study of the interactions among parasites within their hosts is crucial to the understanding of epidemiology of disease and for the design of effective control strategies. We have conducted an assessment of infections with Loa loa, Mansonella perstans, Wuchereria bancrofti, and Plasmodium falciparum in eastern Cameroon using a highly sensitive and specific quantitative polymerase chain reaction assay using archived dried whole blood spots. The resident population (N = 1,085) was parasitized with M. perstans (76%), L. loa (39%), and P. falciparum (33%), but not with W. bancrofti. Compared with single infections (40.1%), coinfection was more common (48.8%): 21.0% had L. loa–M. perstans (Ll+/Mp+/Pf−), 2.7% had L. loa–P. falciparum (Ll+/Pf+/Mp−), 15.1% had M. perstans–P. falciparum (Mp+/Pf+/Ll−), and 10.0% had L. loa–M. perstans–P. falciparum (Ll+/Mp+/Pf+). Interestingly, those with all three infections (Ll+/Mp+/Pf+) had significantly higher L. loa microfilaria (mf) counts than either single Ll+ (P = 0.004) or double Ll+/Mp+ (P = 0.024) infected individuals. Of those infected with L. loa, the mean estimated counts of L. loa mf varied based on location and were positively correlated with estimated intensities of M. perstans mf. Finally, at a community level, heavy L. loa infections were concentrated in a few individuals whereby they were likely the major reservoir for infection. PMID:27044568

  16. Molecular Epidemiology of Blood-Borne Human Parasites in a Loa loa-, Mansonella perstans-, and Plasmodium falciparum-Endemic Region of Cameroon.

    PubMed

    Drame, Papa M; Montavon, Céline; Pion, Sébastien D; Kubofcik, Joseph; Fay, Michael P; Nutman, Thomas B

    2016-06-01

    The study of the interactions among parasites within their hosts is crucial to the understanding of epidemiology of disease and for the design of effective control strategies. We have conducted an assessment of infections with Loa loa, Mansonella perstans, Wuchereria bancrofti, and Plasmodium falciparum in eastern Cameroon using a highly sensitive and specific quantitative polymerase chain reaction assay using archived dried whole blood spots. The resident population (N = 1,085) was parasitized with M. perstans (76%), L. loa (39%), and P. falciparum (33%), but not with W. bancrofti Compared with single infections (40.1%), coinfection was more common (48.8%): 21.0% had L. loa-M. perstans (Ll(+)/Mp(+)/Pf(-)), 2.7% had L. loa-P. falciparum (Ll(+)/Pf(+)/Mp(-)), 15.1% had M. perstans-P. falciparum (Mp(+)/Pf(+)/Ll(-)), and 10.0% had L. loa-M. perstans-P. falciparum (Ll(+)/Mp(+)/Pf(+)). Interestingly, those with all three infections (Ll(+)/Mp(+)/Pf(+)) had significantly higher L. loa microfilaria (mf) counts than either single Ll(+) (P = 0.004) or double Ll(+)/Mp(+) (P = 0.024) infected individuals. Of those infected with L. loa, the mean estimated counts of L. loa mf varied based on location and were positively correlated with estimated intensities of M. perstans mf. Finally, at a community level, heavy L. loa infections were concentrated in a few individuals whereby they were likely the major reservoir for infection. PMID:27044568

  17. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development

    PubMed Central

    Miao, Jun; Lawrence, Matthew; Jeffers, Victoria; Zhao, Fangqing; Parker, Daniel; Ge, Ying; Sullivan, William J.; Cui, Liwang

    2013-01-01

    Summary Lysine acetylation has emerged as a major posttranslational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine-acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion, and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely-related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium-specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites. PMID:23796209

  18. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    PubMed

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. PMID:23489321

  19. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte.

    PubMed

    Külzer, Simone; Rug, Melanie; Brinkmann, Klaus; Cannon, Ping; Cowman, Alan; Lingelbach, Klaus; Blatch, Gregory L; Maier, Alexander G; Przyborski, Jude M

    2010-10-01

    Plasmodium falciparum is predicted to transport over 300 proteins to the cytosol of its chosen host cell, the mature human erythrocyte, including 19 members of the Hsp40 family. Here, we have generated transfectant lines expressing GFP- or HA-Strep-tagged versions of these proteins, and used these to investigate both localization and other properties of these Hsp40 co-chaperones. These fusion proteins labelled punctate structures within the infected erythrocyte, initially suggestive of a Maurer's clefts localization. Further experiments demonstrated that these structures were distinct from the Maurer's clefts in protein composition. Transmission electron microscopy verifies a non-cleft localization for HA-Strep-tagged versions of these proteins. We were not able to label these structures with BODIPY-ceramide, suggesting a lower size and/or different lipid composition compared with the Maurer's clefts. Solubility studies revealed that the Hsp40-GFP fusion proteins appear to be tightly associated with membranes, but could be released from the bilayer under conditions affecting membrane cholesterol content or organization, suggesting interaction with a binding partner localized to cholesterol-rich domains. These novel structures are highly mobile in the infected erythrocyte, but based on velocity calculations, can be distinguished from the 'highly mobile vesicles' previously described. Our study identifies a further extra-parasitic structure in the P. falciparum-infected erythrocyte, which we name 'J-dots' (as their defining characteristic so far is the content of J-proteins). We suggest that these J-dots are involved in trafficking of parasite-encoded proteins through the cytosol of the infected erythrocyte. PMID:20482550

  20. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study

    PubMed Central

    Mitchell, David; Bell, Angus

    2003-01-01

    Background Inhibitors of the protease calpain are known to have selectively toxic effects on Plasmodium falciparum. The enzyme has a natural inhibitor calpastatin and in eukaryotes is responsible for turnover of proteins containing short sequences enriched in certain amino acids (PEST sequences). The genome of P. falciparum was searched for this protease, its natural inhibitor and putative substrates. Methods The publicly available P. falciparum genome was found to have too many errors to permit reliable analysis. An earlier annotation of chromosome 2 was instead examined. PEST scores were determined for all annotated proteins. The published genome was searched for calpain and calpastatin homologs. Results Typical PEST sequences were found in 13% of the proteins on chromosome 2, including a surprising number of cell-surface proteins. The annotated calpain gene has a non-biological "intron" that appears to have been created to avoid an unrecognized frameshift. Only the catalytic domain has significant similarity with the vertebrate calpains. No calpastatin homologs were found in the published annotation. Conclusion A calpain gene is present in the genome and many putative substrates of this enzyme have been found. Calpastatin homologs may be found once the re-annotation is completed. Given the selective toxicity of calpain inhibitors, this enzyme may be worth exploring further as a potential drug target. PMID:12857354

  1. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites

    PubMed Central

    Verlinden, Bianca K.; de Beer, Marna; Pachaiyappan, Boobalan; Besaans, Ethan; Andayi, Warren A.; Reader, Janette; Niemand, Jandeli; van Biljon, Riette; Guy, Kiplin; Egan, Timothy; Woster, Patrick M.; Birkholtz, Lyn-Marie

    2015-01-01

    A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites. PMID:25684422

  2. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites.

    PubMed

    Verlinden, Bianca K; de Beer, Marna; Pachaiyappan, Boobalan; Besaans, Ethan; Andayi, Warren A; Reader, Janette; Niemand, Jandeli; van Biljon, Riette; Guy, Kiplin; Egan, Timothy; Woster, Patrick M; Birkholtz, Lyn-Marie

    2015-08-15

    A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites. PMID:25684422

  3. Real-time quantitative PCR for determining the burden of Plasmodium falciparum parasites during pregnancy and infancy.

    PubMed

    Malhotra, Indu; Dent, Arlene; Mungai, Peter; Muchiri, Eric; King, Christopher L

    2005-08-01

    Real-time quantitative PCR (RTQ-PCR) provides a quick, accurate, and reproducible quantification of parasites. However, the value of RTQ-PCR for predicting clinical outcomes of malaria is unknown. Here, we compared RTQ-PCR to microscopy of blood smears, nested PCR (nPCR), and parasite circulating-antigen (CAg) assays for detection of Plasmodium falciparum in pregnant Kenyan women and their infants and related these findings to parity and birth weights in their newborns (n = 554). nPCR was the most sensitive assay for detection of malaria in pregnancy, followed in decreasing order of sensitivity by RTQ-PCR, CAg assays, and blood smears. RTQ-PCR detected a higher frequency of malaria infection (46%) in maternal peripheral blood in primiparous than in multiparous women (35%; P < 0.001), with a >12-fold difference in parasite burden (geometric mean = 25,870 versus 2,143 amplicons/microl blood; P < 0.0001). Similarly, the presence of placental malaria determined by RTQ-PCR was approximately twofold higher in primiparous versus multiparous women (21% versus 13%; P < 0.01). The presence and intensity of malaria infection in pregnant women estimated by RTQ-PCR strongly correlated with low-birth-weight babies, especially in those with high amplicon numbers. RTQ-PCR identified malaria-infected women, missed by blood smear, who were at risk for having underweight offspring. By contrast, malaria detected by nPCR and CAg assay showed a much weaker association with parity or low birth weight. Thus, RTQ-PCR provides an estimate of parasite burden that is more sensitive than blood smear and is predictive of clinical outcomes of malaria infection in pregnant women and newborns. PMID:16081889

  4. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria. PMID:26883585

  5. Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival.

    PubMed

    Fréville, Aline; Landrieu, Isabelle; García-Gimeno, M Adelaida; Vicogne, Jérôme; Montbarbon, Muriel; Bertin, Benjamin; Verger, Alexis; Kalamou, Hadidjatou; Sanz, Pascual; Werkmeister, Elisabeth; Pierrot, Christine; Khalife, Jamal

    2012-01-01

    Growing evidence indicates that the protein regulators governing protein phosphatase 1 (PP1) activity have crucial functions because their deletion drastically affects cell growth and division. PP1 has been found to be essential in Plasmodium falciparum, but little is known about its regulators. In this study, we have identified a homolog of Inhibitor-3 of PP1, named PfI3. NMR analysis shows that PfI3 belongs to the disordered protein family. High affinity interaction of PfI3 and PfPP1 is demonstrated in vitro using several methods, with an apparent dissociation constant K(D) of 100 nm. We further show that the conserved (41)KVVRW(45) motif is crucial for this interaction as the replacement of the Trp(45) by an Ala(45) severely decreases the binding to PfPP1. Surprisingly, PfI3 was unable to rescue a yeast strain deficient in I3 (Ypi1). This lack of functional orthology was supported as functional assays in vitro have revealed that PfI3, unlike yeast I3 and human I3, increases PfPP1 activity. Reverse genetic approaches suggest an essential role of PfI3 in the growth and/or survival of blood stage parasites because attempts to obtain knock-out parasites were unsuccessful, although the locus of PfI3 is accessible. The main localization of a GFP-tagged PfI3 in the nucleus of all blood stage parasites is compatible with a regulatory role of PfI3 on the activity of nuclear PfPP1. PMID:22128182

  6. Plasmodium falciparum Inhibitor-3 Homolog Increases Protein Phosphatase Type 1 Activity and Is Essential for Parasitic Survival*

    PubMed Central

    Fréville, Aline; Landrieu, Isabelle; García-Gimeno, M. Adelaida; Vicogne, Jérôme; Montbarbon, Muriel; Bertin, Benjamin; Verger, Alexis; Kalamou, Hadidjatou; Sanz, Pascual; Werkmeister, Elisabeth; Pierrot, Christine; Khalife, Jamal

    2012-01-01

    Growing evidence indicates that the protein regulators governing protein phosphatase 1 (PP1) activity have crucial functions because their deletion drastically affects cell growth and division. PP1 has been found to be essential in Plasmodium falciparum, but little is known about its regulators. In this study, we have identified a homolog of Inhibitor-3 of PP1, named PfI3. NMR analysis shows that PfI3 belongs to the disordered protein family. High affinity interaction of PfI3 and PfPP1 is demonstrated in vitro using several methods, with an apparent dissociation constant KD of 100 nm. We further show that the conserved 41KVVRW45 motif is crucial for this interaction as the replacement of the Trp45 by an Ala45 severely decreases the binding to PfPP1. Surprisingly, PfI3 was unable to rescue a yeast strain deficient in I3 (Ypi1). This lack of functional orthology was supported as functional assays in vitro have revealed that PfI3, unlike yeast I3 and human I3, increases PfPP1 activity. Reverse genetic approaches suggest an essential role of PfI3 in the growth and/or survival of blood stage parasites because attempts to obtain knock-out parasites were unsuccessful, although the locus of PfI3 is accessible. The main localization of a GFP-tagged PfI3 in the nucleus of all blood stage parasites is compatible with a regulatory role of PfI3 on the activity of nuclear PfPP1. PMID:22128182

  7. Asexual Populations of the Human Malaria Parasite, Plasmodium falciparum, Use a Two-Step Genomic Strategy to Acquire Accurate, Beneficial DNA Amplifications

    PubMed Central

    Ahyong, Vida; Patrapuvich, Rapatbhorn; White, John; Gujjar, Ramesh; Phillips, Margaret A.; DeRisi, Joseph; Rathod, Pradipsinh K.

    2013-01-01

    Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes. PMID:23717205

  8. Plasmodium falciparum enolase complements yeast enolase functions and associates with the parasite food vacuole.

    PubMed

    Das, Sujaan; Shevade, Saudamini; LaCount, Douglas J; Jarori, Gotam K

    2011-09-01

    Plasmodium falciparum enolase (Pfeno) localizes to the cytosol, nucleus, cell membrane and cytoskeletal elements, suggesting multiple non-glycolytic functions for this protein. Our recent observation of association of enolase with the food vacuole (FV) in immuno-gold electron microscopic images of P. falciparum raised the possibility for yet another moonlighting function for this protein. Here we provide additional support for this localization by demonstrating the presence of Pfeno in purified FVs by immunoblotting. To examine the potential functional role of FV-associated Pfeno, we assessed the ability of Pfeno to complement a mutant Saccharomyces cervisiae strain deficient in enolase activity. In this strain (Tetr-Eno2), the enolase 1 gene is deleted and expression of the enolase 2 gene is under the control of a tetracycline repressible promoter. Enolase deficiency in this strain was previously shown to cause growth retardation, vacuolar fragmentation and altered expression of certain vacuolar proteins. Expression of Pfeno in the enolase-deficient yeast strain restored all three phenotypic effects. However, transformation of Tetr-eno2 with an enzymatically active, monomeric mutant form of Pfeno (Δ(5)Pfeno) fully restored cell growth, but only partially rescued the fragmented vacuolar phenotype, suggesting that the dimeric structure of Pfeno is required for the optimal vacuolar functions. Bioinformatic searches revealed the presence of Plasmodium orthologs of several yeast vacuolar proteins that are predicted to form complexes with Pfeno. Together, these observations raise the possibility that association of Pfeno with food vacuole in Plasmodium may have physiological function(s). PMID:21600245

  9. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  10. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7.

    PubMed

    Ismail, Hanafy M; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H L; Hemingway, Janet; Biagini, Giancarlo A; O'Neill, Paul M; Ward, Stephen A

    2016-02-23

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  11. Polymorphism in dhfr/dhps genes, parasite density and ex vivo response to pyrimethamine in Plasmodium falciparum malaria parasites in Thies, Senegal.

    PubMed

    Ndiaye, Daouda; Dieye, Baba; Ndiaye, Yaye D; Van Tyne, Daria; Daniels, Rachel; Bei, Amy K; Mbaye, Aminata; Valim, Clarissa; Lukens, Amanda; Mboup, Souleymane; Ndir, Omar; Wirth, Dyann F; Volkman, Sarah

    2013-12-01

    Resistance to sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum malaria parasites is associated with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes, and these mutations have spread resistance worldwide. SP, used for several years in Senegal, has been recommended for intermittent preventive treatment for malaria in pregnancy (IPTp) and has been widely implemented since 2003 in this country. There is currently limited data on SP resistance from molecular marker genotyping, and no data on pyrimethamine ex vivo sensitivity in Senegal. Molecular markers of SP resistance and pyrimethamine ex vivo sensitivity were investigated in 416 parasite samples collected from the general population, from the Thies region between 2003 and 2011. The prevalence of the N51I/C59R/S108N triple mutation in dhfr increased from 40% in 2003 to 93% in 2011. Furthermore, the prevalence of the dhfr N51I/C59R/S108N and dhps A437G quadruple mutation increased, from 20% to 66% over the same time frame, then down to 44% by 2011. There was a significant increase in the prevalence of the dhfr triple mutation, as well as an association between dhfr genotypes and pyrimethamine response. Conversely, dhps mutations in codons 436 and 437 did not show consistent variation between 2003 and 2011. These findings suggest that regular screening for molecular markers of antifolate resistance and ex vivo drug response monitoring should be incorporated with ongoing in vivo efficacy monitoring in areas where IPTp-SP is implemented and where pyrimethamine and sulfa drugs are still widely administered in the general population. PMID:24533303

  12. An interplay between 2 signaling pathways: Melatonin-cAMP and IP{sub 3}–Ca{sup 2+} signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    SciTech Connect

    Furuyama, Wakako; Enomoto, Masahiro; Mossaad, Ehab; Kawai, Satoru; Mikoshiba, Katsuhiko; Kawazu, Shin-ichiro

    2014-03-28

    Highlights: • A melatonin receptor antagonist blocked Ca{sup 2+} oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca{sup 2+}- and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca{sup 2+}) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca{sup 2+} imaging showed that LZ treatment completely abolished Ca{sup 2+} oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP{sub 3}–Ca{sup 2+} and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.

  13. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development.

    PubMed

    Hanspal, Manjit; Dua, Meenakshi; Takakuwa, Yuichi; Chishti, Athar H; Mizuno, Akiko

    2002-08-01

    Plasmodium falciparum-derived cysteine protease falcipain-2 cleaves host erythrocyte hemoglobin at acidic pH and specific components of the membrane skeleton at neutral pH. Analysis of stage-specific expression of these 2 proteolytic activities of falcipain-2 shows that hemoglobin-hydrolyzing activity is maximum in early trophozoites and declines rapidly at late stages, whereas the membrane skeletal protein hydrolyzing activity is markedly increased at the late trophozoite and schizont stages. Among the erythrocyte membrane skeletal proteins, ankyrin and protein 4.1 are cleaved by native and recombinant falcipain-2 near their C-termini. To identify the precise peptide sequence at the hydrolysis site of protein 4.1, we used a recombinant construct of protein 4.1 as substrate followed by MALDI-MS analysis of the cleaved product. We show that falcipain-2-mediated cleavage of protein 4.1 occurs immediately after lysine 437, which lies within a region of the spectrin-actin-binding domain critical for erythrocyte membrane stability. A 16-mer peptide containing the cleavage site completely inhibited the enzyme activity and blocked falcipain-2-induced fragmentation of erythrocyte ghosts. Based on these results, we propose that falcipain-2 cleaves hemoglobin in the acidic food vacuole at the early trophozoite stage, whereas it cleaves specific components of the red cell skeleton at the late trophozoite and schizont stages. It is the proteolysis of skeletal proteins that causes membrane instability, which, in turn, facilitates parasite release in vivo. PMID:12130521

  14. Distribution of Drug Resistance Genotypes in Plasmodium falciparum in an Area of Limited Parasite Diversity in Saudi Arabia

    PubMed Central

    Bin Dajem, Saad M.; Al-Farsi, Hissa M.; Al-Hashami, Zainab S.; Al-Sheikh, Adel Ali H.; Al-Qahtani, Ahmed; Babiker, Hamza A.

    2012-01-01

    Two hundred and three Plasmodium falciparum isolates from Jazan area, southwest Saudi Arabia, were typed for Pfcrt, Pfmdr1, dhps, and dhfr mutations associated with resistance to chloroquine, mefloquine, halofantrine, artemisinin, sulfadoxine-pyrimethamine, and the neutral polymorphic gene Pfg377. A large proportion (33%) of isolates harbored double mutant dhfr genotype (51I,59C,108N). However, only one isolate contained mutation dhps-437G. For Pfcrt, almost all examined isolates (163; 99%) harbored the mutant genotype (72C,73V,74I,75E,76T), whereas only 49 (31%) contained the mutant Pfmdr1 genotype (86Y,184F,1034S,1042N), 109 (66%) harbored the single mutant genotype (86N,184F,1034S,1042N), and no mutations were seen in codons 1034, 1042, and 1246. Nonetheless, three new single-nucleotide polymorphisms were detected at codons 182, 192, and 102. No differences were seen in distribution of drug resistance genes among Saudis and expatriates. There was a limited multiplicity (5%), mean number of clones (1.05), and two dominant multilocus genotypes among infected individuals in Jazan. A pattern consistent with limited cross-mating and recombination among local parasite was apparent. PMID:22556074

  15. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes.

    PubMed

    Jaganathan, Anitha; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Dinesh, Devakumar; Vadivalagan, Chithravel; Aziz, Al Thabiani; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Subramaniam, Jayapal; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Benelli, Giovanni

    2016-06-01

    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies. PMID:26873539

  16. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe

    PubMed Central

    Sheehy, Susanne H.; Spencer, Alexandra J.; Douglas, Alexander D.; Sim, B. Kim Lee; Longley, Rhea J.; Edwards, Nick J.; Poulton, Ian D.; Kimani, Domtila; Williams, Andrew R.; Anagnostou, Nicholas A.; Roberts, Rachel; Kerridge, Simon; Voysey, Merryn; James, Eric R.; Billingsley, Peter F.; Gunasekera, Anusha; Lawrie, Alison M.; Hoffman, Stephen L.; Hill, Adrian V. S.

    2013-01-01

    Background Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection. Methodology We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18). Six participants received 2,500 sporozoites intradermally (ID), six received 2,500 sporozoites intramuscularly (IM) and six received 25,000 sporozoites IM. Findings Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test). Conclusions 2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants. Trial Registration ClinicalTrials.gov NCT01465048 PMID:23823332

  17. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  18. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  19. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  20. Stable Translocation Intermediates Jam Global Protein Export in Plasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation Activity

    PubMed Central

    Mesén-Ramírez, Paolo; Reinsch, Ferdinand; Blancke Soares, Alexandra; Bergmann, Bärbel; Ullrich, Ann-Katrin; Tenzer, Stefan

    2016-01-01

    Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as well as transmembrane proteins. Taking advantage of conditionally foldable domains, we here dissected the translocation events in the parasite periphery, showing that two successive translocation steps are needed for the export of transmembrane proteins, one at the PPM and one at the PVM. Our data provide evidence that, depending on the length of the C-terminus of the exported substrate, these steps occur by transient interaction of the PPM and PVM translocon, similar to the situation for protein transport across the mitochondrial membranes. Remarkably, we obtained constructs of exported proteins that remained arrested in the process of being translocated across the PVM. This clogged the translocation pore, prevented the export of all types of exported proteins and, as a result, inhibited parasite growth. The substrates stuck in translocation were found in a complex with the proposed PTEX membrane pore component EXP2, suggesting a role of this protein in translocation. These data for the first time provide evidence for EXP2 to be part of a translocating entity, suggesting that PTEX has translocation activity and provide a mechanistic framework for the transport of soluble as well as transmembrane proteins from the parasite boundary into the host cell. PMID:27168322

  1. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence

    PubMed Central

    Chisholm, Scott A.; McHugh, Emma; Lundie, Rachel; Dixon, Matthew W. A.; Ghosh, Sreejoyee; O’Keefe, Meredith; Tilley, Leann; Kalanon, Ming; de Koning-Ward, Tania F.

    2016-01-01

    Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins. PMID:26886275

  2. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area.

    PubMed

    Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui; Li, Peipei; Liu, Fei; Liu, Jun; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-04-01

    To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs. PMID:26825252

  3. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  4. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    PubMed Central

    Tokumasu, Fuyuki; Crivat, Georgeta; Ackerman, Hans; Hwang, Jeeseong; Wellems, Thomas E.

    2014-01-01

    ABSTRACT Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM) experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC) decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM). Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes. PMID:24876390

  5. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali.

    PubMed

    Ouattara, Amed; Kone, Aminatou; Adams, Matthew; Fofana, Bakary; Maiga, Amelia Walling; Hampton, Shay; Coulibaly, Drissa; Thera, Mahamadou A; Diallo, Nouhoum; Dara, Antoine; Sagara, Issaka; Gil, Jose Pedro; Bjorkman, Anders; Takala-Harrison, Shannon; Doumbo, Ogobara K; Plowe, Christopher V; Djimde, Abdoulaye A

    2015-06-01

    Artemisinin-resistant Plasmodium falciparum malaria has been documented in southeast Asia and may already be spreading in that region. Molecular markers are important tools for monitoring the spread of antimalarial drug resistance. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain were shown to be associated with artemisinin resistance in vivo and in vitro. The prevalence and role of K13-propeller mutations are poorly known in sub-Saharan Africa. K13-propeller mutations were genotyped by direct sequencing of nested polymerase chain reaction (PCR) amplicons from dried blood spots of pre-treatment falciparum malaria infections collected before and after the use of artemisinin-based combination therapy (ACT) as first-line therapy in Mali. Although K13-propeller mutations previously associated with delayed parasite clearance in Cambodia were not identified, 26 K13-propeller mutations were identified in both recent samples and pre-ACT infections. Parasite clearance time was comparable between infections with non-synonymous K13-propeller mutations and infections with the reference allele. These findings suggest that K13-propeller mutations are present in artemisinin-sensitive parasites and that they preceded the wide use of ACTs in Mali. PMID:25918205

  6. Polymorphisms in the K13-Propeller Gene in Artemisinin-Susceptible Plasmodium falciparum Parasites from Bougoula-Hameau and Bandiagara, Mali

    PubMed Central

    Ouattara, Amed; Kone, Aminatou; Adams, Matthew; Fofana, Bakary; Maiga, Amelia Walling; Hampton, Shay; Coulibaly, Drissa; Thera, Mahamadou A.; Diallo, Nouhoum; Dara, Antoine; Sagara, Issaka; Gil, Jose Pedro; Bjorkman, Anders; Takala-Harrison, Shannon; Doumbo, Ogobara K.; Plowe, Christopher V.; Djimde, Abdoulaye A.

    2015-01-01

    Artemisinin-resistant Plasmodium falciparum malaria has been documented in southeast Asia and may already be spreading in that region. Molecular markers are important tools for monitoring the spread of antimalarial drug resistance. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain were shown to be associated with artemisinin resistance in vivo and in vitro. The prevalence and role of K13-propeller mutations are poorly known in sub-Saharan Africa. K13-propeller mutations were genotyped by direct sequencing of nested polymerase chain reaction (PCR) amplicons from dried blood spots of pre-treatment falciparum malaria infections collected before and after the use of artemisinin-based combination therapy (ACT) as first-line therapy in Mali. Although K13-propeller mutations previously associated with delayed parasite clearance in Cambodia were not identified, 26 K13-propeller mutations were identified in both recent samples and pre-ACT infections. Parasite clearance time was comparable between infections with non-synonymous K13-propeller mutations and infections with the reference allele. These findings suggest that K13-propeller mutations are present in artemisinin-sensitive parasites and that they preceded the wide use of ACTs in Mali. PMID:25918205

  7. Batflies parasitic on some phyllostomid bats in southeastern Brazil: parasitism rates and host-parasite relationships.

    PubMed

    Komeno, C A; Linhares, A X

    1999-01-01

    Ectoparasitic batflies were studied on 12 species of phyllostomid bats, by making 35 nightly collections of bats using mist nets at the "Panga" Ecological Reservation near Uberlândia, State of Minas Gerais, southeastern Brazil, from August 1989 to July 1990. Eleven species of Streblidae and one of Nycteribiidae were collected on 12 species of bats. Prevalence of ectoparasitic flies was lower than those reported by other authors for the New World and may be the result of the lack of caves in the study area, causing bats to roost in less favorable locations, forming smaller colonies. The fly, Trichobius joblingi Wenzel, was found on Carollia perspicillata (Linnaeus), showing preference for adult male bats. This could be explained by the predominance of males in the bat colonies, and by the fact that females rest in isolation during the reproductive period making them less exposed to the parasites. The streblid flies, Aspidoptera falcata Wenzel and Megistopoda proxima (Séguy), were found on Sturnira lilium (Geoffroy). A. falcata occurred mainly on young and adult females, whereas M. proxima did not show any preferences relative to the reproductive condition of the host. Ecological factors are important in determining differential numbers of parasites occurring on the different sexes, ages and reproductive state of the hosts. PMID:10224519

  8. α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes

    PubMed Central

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J.; Bandoh, Betty; Barfod, Lea; Cavanagh, David R.; Andersen, Gregers R.; Hviid, Lars

    2015-01-01

    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M—(and IgM-) binding domains of PfEMP1

  9. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.

    PubMed Central

    Birkholtz, Lyn-Marie; Wrenger, Carsten; Joubert, Fourie; Wells, Gordon A; Walter, Rolf D; Louw, Abraham I

    2004-01-01

    Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains

  10. Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data

    PubMed Central

    Bekessy, A.; Molineaux, L.; Storey, J.

    1976-01-01

    A method is described of estimating the malaria incidence rate ĥ and the recovery rate r from longitudinal data. The method is based on the assumption that the phenomenon of patent parasitaemia can be represented by a reversible two-state catalytic model; it is applicable to all problems that can be represented by such a model. The method was applied to data on falciparum malaria from the West African savanna and the findings suggested that immunity increases the rate of recovery from patent parasitaemia by a factor of up to 10, and also reduces the number of episodes of patent parasitaemia resulting from one inoculation. Under the effect of propoxur, ĥ varies with the estimated man-biting rate of the vector while r̂ increases, possibly owing to reduced super-infection. PMID:800968

  11. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum

    PubMed Central

    Wezena, Cletus A.; Urscher, Miriam; Vince, Robert; More, Swati S.; Deponte, Marcel

    2016-01-01

    Glyoxalases prevent the formation of advanced glycation end products by converting glycolysis-derived methylglyoxal to d-lactate with the help of glutathione. Vander Jagt and colleagues previously showed that erythrocytes release about thirty times more d-lactate after infection with the human malaria parasite Plasmodium falciparum. Functional glyoxalases in the host-parasite unit might therefore be crucial for parasite survival. Here, we determined the antimalarial and hemolytic activity of two tight-binding glyoxalase inhibitors using infected and uninfected erythrocytes. In addition, we synthesized and analyzed a set of diester derivates of both tight-binding inhibitors resulting in up to threefold lower IC50 values and an altered methemoglobin formation and hemolytic activity depending on the type of ester. Inhibitor treatments of uninfected erythrocytes revealed an extremely slow inactivation of the host cell glyoxalase, irrespective of inhibitor modifications, and a potential dispensability of the host cell enzyme for parasite survival. Our study highlights the benefits and drawbacks of different esterifications of glutathione-derived inhibitors and demonstrates the suitability of glyoxalase inhibitors as a tool for deciphering the relevance and mode of action of different glyoxalase systems in a host-parasite unit. PMID:26972115

  12. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum.

    PubMed

    Wezena, Cletus A; Urscher, Miriam; Vince, Robert; More, Swati S; Deponte, Marcel

    2016-08-01

    Glyoxalases prevent the formation of advanced glycation end products by converting glycolysis-derived methylglyoxal to d-lactate with the help of glutathione. Vander Jagt and colleagues previously showed that erythrocytes release about thirty times more d-lactate after infection with the human malaria parasite Plasmodium falciparum. Functional glyoxalases in the host-parasite unit might therefore be crucial for parasite survival. Here, we determined the antimalarial and hemolytic activity of two tight-binding glyoxalase inhibitors using infected and uninfected erythrocytes. In addition, we synthesized and analyzed a set of diester derivates of both tight-binding inhibitors resulting in up to threefold lower IC50 values and an altered methemoglobin formation and hemolytic activity depending on the type of ester. Inhibitor treatments of uninfected erythrocytes revealed an extremely slow inactivation of the host cell glyoxalase, irrespective of inhibitor modifications, and a potential dispensability of the host cell enzyme for parasite survival. Our study highlights the benefits and drawbacks of different esterifications of glutathione-derived inhibitors and demonstrates the suitability of glyoxalase inhibitors as a tool for deciphering the relevance and mode of action of different glyoxalase systems in a host-parasite unit. PMID:26972115

  13. Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites

    PubMed Central

    Chen, Patty B.; Ding, Shuai; Zanghì, Gigliola; Soulard, Valérie; DiMaggio, Peter A.; Fuchter, Matthew J.; Mecheri, Salah; Mazier, Dominique; Scherf, Artur; Malmquist, Nicholas A.

    2016-01-01

    Epigenetic control via reversible histone methylation regulates transcriptional activation throughout the malaria parasite genome, controls the repression of multi-copy virulence gene families and determines sexual stage commitment. Plasmodium falciparum encodes ten predicted SET domain-containing protein methyltransferases, six of which have been shown to be refractory to knock-out in blood stage parasites. We have expressed and purified the first recombinant malaria methyltransferase in sufficient quantities to perform a full enzymatic characterization and reveal the ill-defined PfSET7 is an AdoMet-dependent histone H3 lysine methyltransferase with highest activity towards lysines 4 and 9. Steady-state kinetics of the PfSET7 enzyme are similar to previously characterized histone methyltransferase enzymes from other organisms, however, PfSET7 displays specific protein substrate preference towards nucleosomes with pre-existing histone H3 lysine 14 acetylation. Interestingly, PfSET7 localizes to distinct cytoplasmic foci adjacent to the nucleus in erythrocytic and liver stage parasites, and throughout the cytoplasm in salivary gland sporozoites. Characterized recombinant PfSET7 now allows for target based inhibitor discovery. Specific PfSET7 inhibitors can aid in further investigating the biological role of this specific methyltransferase in transmission, hepatic and blood stage parasites, and may ultimately lead to the development of suitable antimalarial drug candidates against this novel class of essential parasite enzymes. PMID:26902486

  14. Genetic distance in housekeeping genes between Plasmodium falciparum and Plasmodium reichenowi and within P. falciparum.

    PubMed

    Tanabe, Kazuyuki; Sakihama, Naoko; Hattori, Tetsuya; Ranford-Cartwright, Lisa; Goldman, Ira; Escalante, Ananias A; Lal, Altaf A

    2004-11-01

    The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+ -ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672 +/- 0.0088 and 0.0011 +/- 0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30 +/- 5.40) x 10(4) and (11.62 +/- 7.56) x 10(4) years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively. PMID:15693624

  15. Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites.

    PubMed

    Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W

    2015-01-01

    A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2

  16. Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites

    PubMed Central

    Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F.; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S.; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W.

    2015-01-01

    A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative

  17. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito

    PubMed Central

    2013-01-01

    Background The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using

  18. Evaluation of parasite subpopulations and genetic diversity of the msp1, msp2 and glurp genes during and following artesunate monotherapy treatment of Plasmodium falciparum malaria in Western Cambodia

    PubMed Central

    2013-01-01

    Background Despite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed. Methods Blood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections. Results Considerable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases. Conclusions The parasites responsible for artemisinin-resistant malaria in a

  19. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype.

    PubMed

    Brown, Tyler S; Jacob, Christopher G; Silva, Joana C; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V; Cummings, Michael P

    2015-03-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives. PMID:25514047

  20. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype

    PubMed Central

    Brown, Tyler S.; Jacob, Christopher G.; Silva, Joana C.; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M.; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V.; Cummings, Michael P.

    2015-01-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives. PMID:25514047

  1. Polymorphisms in Plasmodium falciparum Chloroquine Resistance Transporter and Multidrug Resistance 1 Genes: Parasite Risk Factors that Affect Treatment Outcomes for P. falciparum Malaria after Artemether-Lumefantrine and Artesunate-Amodiaquine

    PubMed Central

    Venkatesan, Meera; Gadalla, Nahla B.; Stepniewska, Kasia; Dahal, Prabin; Nsanzabana, Christian; Moriera, Clarissa; Price, Ric N.; Mårtensson, Andreas; Rosenthal, Philip J.; Dorsey, Grant; Sutherland, Colin J.; Guérin, Philippe; Davis, Timothy M. E.; Ménard, Didier; Adam, Ishag; Ademowo, George; Arze, Cesar; Baliraine, Frederick N.; Berens-Riha, Nicole; Björkman, Anders; Borrmann, Steffen; Checchi, Francesco; Desai, Meghna; Dhorda, Mehul; Djimdé, Abdoulaye A.; El-Sayed, Badria B.; Eshetu, Teferi; Eyase, Frederick; Falade, Catherine; Faucher, Jean-François; Fröberg, Gabrielle; Grivoyannis, Anastasia; Hamour, Sally; Houzé, Sandrine; Johnson, Jacob; Kamugisha, Erasmus; Kariuki, Simon; Kiechel, Jean-René; Kironde, Fred; Kofoed, Poul-Erik; LeBras, Jacques; Malmberg, Maja; Mwai, Leah; Ngasala, Billy; Nosten, Francois; Nsobya, Samuel L.; Nzila, Alexis; Oguike, Mary; Otienoburu, Sabina Dahlström; Ogutu, Bernhards; Ouédraogo, Jean-Bosco; Piola, Patrice; Rombo, Lars; Schramm, Birgit; Somé, A. Fabrice; Thwing, Julie; Ursing, Johan; Wong, Rina P. M.; Zeynudin, Ahmed; Zongo, Issaka; Plowe, Christopher V.; Sibley, Carol Hopkins

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 – 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36–17.97, P < 0.001) were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine. PMID:25048375

  2. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    PubMed

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia; Dahal, Prabin; Nsanzabana, Christian; Moriera, Clarissa; Price, Ric N; Mårtensson, Andreas; Rosenthal, Philip J; Dorsey, Grant; Sutherland, Colin J; Guérin, Philippe; Davis, Timothy M E; Ménard, Didier; Adam, Ishag; Ademowo, George; Arze, Cesar; Baliraine, Frederick N; Berens-Riha, Nicole; Björkman, Anders; Borrmann, Steffen; Checchi, Francesco; Desai, Meghna; Dhorda, Mehul; Djimdé, Abdoulaye A; El-Sayed, Badria B; Eshetu, Teferi; Eyase, Frederick; Falade, Catherine; Faucher, Jean-François; Fröberg, Gabrielle; Grivoyannis, Anastasia; Hamour, Sally; Houzé, Sandrine; Johnson, Jacob; Kamugisha, Erasmus; Kariuki, Simon; Kiechel, Jean-René; Kironde, Fred; Kofoed, Poul-Erik; LeBras, Jacques; Malmberg, Maja; Mwai, Leah; Ngasala, Billy; Nosten, Francois; Nsobya, Samuel L; Nzila, Alexis; Oguike, Mary; Otienoburu, Sabina Dahlström; Ogutu, Bernhards; Ouédraogo, Jean-Bosco; Piola, Patrice; Rombo, Lars; Schramm, Birgit; Somé, A Fabrice; Thwing, Julie; Ursing, Johan; Wong, Rina P M; Zeynudin, Ahmed; Zongo, Issaka; Plowe, Christopher V; Sibley, Carol Hopkins

    2014-10-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine. PMID:25048375

  3. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    PubMed Central

    Kane, Elizabeth G.; Taylor-Robinson, Andrew W.

    2011-01-01

    Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal. PMID:22363896

  4. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review

    PubMed Central

    Hay, Simon I.; Rogers, David J.; Toomer, Jonathan F.; Snow, Robert W.

    2011-01-01

    This paper presents the results of an extensive search of the formal and informal literature on annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa from 1980 onwards. It first describes how the annual EIR data were collated, summarized, neo-referenced and staged for public access on the internet. Problems of data standardization, reporting accuracy and the subsequent publishing of information on the internet follow. The review was conducted primarily to investigate the spatial heterogeneity of malaria exposure in Africa and supports the idea of highly heterogeneous risk at the continental, regional and country levels. The implications for malaria control of the significant spatial (and seasonal) variation in exposure to infected mosquito bites are discussed. PMID:10897348

  5. Artemisinin Action and Resistance in Plasmodium falciparum.

    PubMed

    Tilley, Leann; Straimer, Judith; Gnädig, Nina F; Ralph, Stuart A; Fidock, David A

    2016-09-01

    The worldwide use of artemisinin-based combination therapies (ACTs) has contributed in recent years to a substantial reduction in deaths resulting from Plasmodium falciparum malaria. Resistance to artemisinins, however, has emerged in Southeast Asia. Clinically, resistance is defined as a slower rate of parasite clearance in patients treated with an artemisinin derivative or an ACT. These slow clearance rates associate with enhanced survival rates of ring-stage parasites briefly exposed in vitro to dihydroartemisinin. We describe recent progress made in defining the molecular basis of artemisinin resistance, which has identified a primary role for the P. falciparum K13 protein. Using K13 mutations as molecular markers, epidemiological studies are now tracking the emergence and spread of artemisinin resistance. Mechanistic studies suggest potential ways to overcome resistance. PMID:27289273

  6. Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar

    PubMed Central

    Gupta, Bhavna; Xu, Shuhui; Wang, Zenglei; Sun, Ling; Miao, Jun; Cui, Liwang; Yang, Zhaoqing

    2014-01-01

    Objectives Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) has recently emerged as an important determinant of drug resistance and mutations in the gene have been associated with several drugs. The aim of this study was to understand the level of genetic diversity in pfmrp1 and to determine the association of different mutations with altered drug susceptibilities of P. falciparum. Methods We analysed 193 sequences of pfmrp1 from South-East Asia, west Asia, Africa, Oceania and South America. We measured the level of genetic diversity and determined signatures of selection on the gene. In vitro susceptibilities of 28 P. falciparum isolates from north-east Myanmar to a panel of seven commonly used antimalarials were determined. Statistical analysis was performed to determine the association of different mutations with in vitro drug susceptibilities. Results A total of 28 single nucleotide polymorphisms were identified in 193 sequences, of which 22 were non-synonymous. Whereas mutations in the pfmrp1 gene were conserved among different countries within a continent, they were different between continents. Seven non-synonymous mutations were identified in the north-east Myanmar isolates; all were relatively frequent in this region as well as in other neighbouring countries. Molecular evolutionary analysis detected signatures of positive selection on the gene. Moreover, some mutations in this gene were found to be associated with reduced susceptibilities to chloroquine, mefloquine, pyronaridine and lumefantrine. Conclusions Evidence of the positive selection of pmfrp1 and its association with the susceptibilities of parasites to multiple drugs signifies its potential as an important candidate for monitoring drug resistance. PMID:24855124

  7. Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex

    PubMed Central

    Peng, Mindy; Cascio, Duilio; Egea, Pascal F.

    2016-01-01

    Survival of the malaria parasite Plasmodium falciparum when it infects red blood cells depends upon its ability to export hundreds of its proteins beyond an encasing vacuole. Protein export is mediated by a parasite-derived protein complex, the Plasmodium translocon of exported proteins (PTEX), and requires unfolding of the different cargos prior to their translocation across the vacuolar membrane. Unfolding is performed by the AAA + protein unfoldase HSP101/ClpB2 and the thioredoxin-2 enzyme (TRX2). Protein trafficking is dramatically impaired in parasites with defective HSP101 or lacking TRX2. These two PTEX subunits drive export and are targets for the design of a novel class of antimalarials: protein export inhibitors. To rationalize inhibitor design, we solved the crystal structure of Pfal-TRX2 at 2.2-Å resolution. Within the asymmetric unit, the three different copies of this protein disulfide reductase sample its two redox catalytic states. Size exclusion chromatography and small-angle X-ray scattering (SAXS) analyses demonstrate that Pfal-TRX2 is monomeric in solution. A non-conserved N-terminal extension precedes the canonical thioredoxin-fold; although it is not observed in our structure, our solution analysis suggests it is flexible in contrast to Plasmodium thioredoxin-1. This represents a first step towards the reconstitution of the entire PTEX for mechanistic and structural studies. PMID:25475729

  8. Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Strain differences indicate receptor heterogeneity and two pathways for invasion.

    PubMed Central

    Hadley, T J; Klotz, F W; Pasvol, G; Haynes, J D; McGinniss, M H; Okubo, Y; Miller, L H

    1987-01-01

    To determine the ligands on erythrocytes for invasion by Plasmodium falciparum, we tested invasion into MkMk erythrocytes that lack glycophorins A and B and enzyme-treated erythrocytes by parasites that differ in their requirement for erythrocyte sialic acid. The 7G8 strain invaded MkMk erythrocytes and neuraminidase-treated normal erythrocytes with greater than 50% the efficiency of normal erythrocytes. In contrast, the Camp strain invaded MkMk erythrocytes at 20% of control and neuraminidase-treated normal erythrocytes at only 1.8% of control. Invasion of MkMk erythrocytes by 7G8 parasites was unaffected by treatment with neuraminidase but was markedly reduced by treatment with trypsin. In contrast, invasion of MkMk cells by Camp parasites was markedly reduced by neuraminidase but was unaffected by trypsin. We conclude that the 7G8 and Camp strains differ in ligand requirements for invasion and that 7G8 requires a trypsin sensitive ligand distinct from glycophorins A and B. Images PMID:3308959

  9. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria.

    PubMed

    Chiu, Chris Y H; Hodder, Anthony N; Lin, Clara S; Hill, Danika L; Li Wai Suen, Connie S N; Schofield, Louis; Siba, Peter M; Mueller, Ivo; Cowman, Alan F; Hansen, Diana S

    2015-08-01

    Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates. PMID:25646353

  10. Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana.

    PubMed

    Mockenhaupt, F P; Rong, B; Till, H; Eggelte, T A; Beck, S; Gyasi-Sarpong, C; Thompson, W N; Bienzle, U

    2000-03-01

    Malarial parasitaemia below the threshold of microscopy but detectable by polymerase chain reaction (PCR) assays is common in endemic regions. This study was conducted to examine prevalence, predictors, and effects of submicroscopic Plasmodium falciparum infections in pregnancy. In a cross-sectional study among 530 pregnant women in Ghana, plasmodial infections were assessed by microscopy and PCR assays. Concentrations of haemoglobin and C-reactive protein (CRP) were measured and antimalarial drugs (chloroquine, pyrimethamine) in urine were demonstrated by ELISA dipsticks. By microscopy, 32% of the women were found to harbour malaria parasites. This rate increased to 63% adding the results of the parasite-specific PCR. P. falciparum was present in all but one infection. With increasing gravidity, infection rates and parasite densities decreased and the proportions of submicroscopic parasitaemia among infected women grew. Correspondingly, anaemia, fever and evidence of inflammation (CRP > 0.6 mg/dl) were more frequent in primigravidae than in multigravidae. Antimalarial drugs were detected in 65% of the women and were associated with a reduced prevalence of P. falciparum infections and a raised proportion of submicroscopic parasitaemia. Both gravidity and antimalarial drug use were independent predictors of submicroscopic P. falciparum infections. These infections caused a slight reduction of Hb levels and considerably increased serum concentrations of CRP. Conventional microscopy underestimates the actual extent of malarial infections in pregnancy in endemic regions. Submicroscopic P. falciparum infections are frequent and may contribute to mild anaemia and inflammation in seemingly aparasitaemic pregnant women. PMID:10747278

  11. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity

    PubMed Central

    Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E.; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W.; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-01-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  12. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    PubMed

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  13. The Limits and Intensity of Plasmodium falciparum Transmission: Implications for Malaria Control and Elimination Worldwide

    PubMed Central

    Guerra, Carlos A; Gikandi, Priscilla W; Tatem, Andrew J; Noor, Abdisalan M; Smith, Dave L; Hay, Simon I; Snow, Robert W

    2008-01-01

    Background The efficient allocation of financial resources for malaria control using appropriate combinations of interventions requires accurate information on the geographic distribution of malaria risk. An evidence-based description of the global range of Plasmodium falciparum malaria and its endemicity has not been assembled in almost 40 y. This paper aims to define the global geographic distribution of P. falciparum malaria in 2007 and to provide a preliminary description of its transmission intensity within this range. Methods and Findings The global spatial distribution of P. falciparum malaria was generated using nationally reported case-incidence data, medical intelligence, and biological rules of transmission exclusion, using temperature and aridity limits informed by the bionomics of dominant Anopheles vector species. A total of 4,278 spatially unique cross-sectional survey estimates of P. falciparum parasite rates were assembled. Extractions from a population surface showed that 2.37 billion people lived in areas at any risk of P. falciparum transmission in 2007. Globally, almost 1 billion people lived under unstable, or extremely low, malaria risk. Almost all P. falciparum parasite rates above 50% were reported in Africa in a latitude band consistent with the distribution of Anopheles gambiae s.s. Conditions of low parasite prevalence were also common in Africa, however. Outside of Africa, P. falciparum malaria prevalence is largely hypoendemic (less than 10%), with the median below 5% in the areas surveyed. Conclusions This new map is a plausible representation of the current extent of P. falciparum risk and the most contemporary summary of the population at risk of P. falciparum malaria within these limits. For 1 billion people at risk of unstable malaria transmission, elimination is epidemiologically feasible, and large areas of Africa are more amenable to control than appreciated previously. The release of this information in the public domain will

  14. Full-Length Recombinant Plasmodium falciparum VAR2CSA Binds Specifically to CSPG and Induces Potent Parasite Adhesion-Blocking Antibodies

    PubMed Central

    Khunrae, Pongsak; Dahlbäck, Madeleine; Nielsen, Morten A.; Andersen, Gorm; Ditlev, Sisse B.; Resende, Mafalda; Pinto, Vera V.; Theander, Thor G.; Higgins, Matthew K.; Salanti, Ali

    2010-01-01

    Plasmodium falciparum malaria remains one of the world's leading causes of human suffering and poverty. Each year, the disease takes 1–3 million lives, mainly in sub-Saharan Africa. The adhesion of infected erythrocytes (IEs) to vascular endothelium or placenta is the key event in the pathogenesis of severe P. falciparum infection. In pregnant women, the parasites express a single and unique member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family named VAR2CSA, which is associated with the ability of the IEs to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several Duffy-binding-like domains from VAR2CSA molecules have been shown in vitro to bind to CSA, but it has also been demonstrated that Duffy-binding-like domains from PfEMP1 proteins other than VAR2CSA can bind CSA. In addition, the specificity of the binding of VAR2CSA domains to glycosaminoglycans does not match that of VAR2CSA-expressing IEs. This has led to speculation that the domains of native VAR2CSA need to come together to form a specific binding site or that VAR2CSA might bind to CSA through a bridging molecule. Here, we describe the expression and purification of the complete extracellular region of VAR2CSA secreted at high yields from insect cells. Using surface plasmon resonance, we demonstrate that VAR2CSA alone binds with nanomolar affinity to human chondroitin sulphate proteoglycan and with significantly weaker affinity to other glycosaminoglycans, showing a specificity similar to that observed for IEs. Antibodies raised against full-length VAR2CSA completely inhibit recombinant VAR2CSA binding, as well as parasite binding to chondroitin sulphate proteoglycan. This is the first study to describe the successful production and functionality of a full-length PfEMP1. The specificity of the binding and anti-adhesion potency of induced IgG, together with high-yield production, encourages the use of full-length PfEMP1 in vaccine development strategies. PMID

  15. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  16. The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium falciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites.

    PubMed

    Darko, Christian A; Angov, Evelina; Collins, William E; Bergmann-Leitner, Elke S; Girouard, Autumn S; Hitt, Stacy L; McBride, Jana S; Diggs, Carter L; Holder, Anthony A; Long, Carole A; Barnwell, John W; Lyon, Jeffrey A

    2005-01-01

    A 42-kDa fragment from the C terminus of major merozoite surface protein 1 (MSP1) is among the leading malaria vaccine candidates that target infection by asexual erythrocytic-stage malaria parasites. The MSP1(42) gene fragment from the Vietnam-Oak Knoll (FVO) strain of Plasmodium falciparum was expressed as a soluble protein in Escherichia coli and purified according to good manufacturing practices. This clinical-grade recombinant protein retained some important elements of correct structure, as it was reactive with several functional, conformation-dependent monoclonal antibodies raised against P. falciparum malaria parasites, it induced antibodies (Abs) that were reactive to parasites in immunofluorescent Ab tests, and it induced strong growth and invasion inhibitory antisera in New Zealand White rabbits. The antigen quality was further evaluated by vaccinating Aotus nancymai monkeys and challenging them with homologous P. falciparum FVO erythrocytic-stage malaria parasites. The trial included two control groups, one vaccinated with the sexual-stage-specific antigen of Plasmodium vivax, Pvs25, as a negative control, and the other vaccinated with baculovirus-expressed MSP1(42) (FVO) as a positive control. Enzyme-linked immunosorbent assay (ELISA) Ab titers induced by E. coli MSP1(42) were significantly higher than those induced by the baculovirus-expressed antigen. None of the six monkeys that were vaccinated with the E. coli MSP1(42) antigen required treatment for uncontrolled parasitemia, but two required treatment for anemia. Protective immunity in these monkeys correlated with the ELISA Ab titer against the p19 fragment and the epidermal growth factor (EGF)-like domain 2 fragment of MSP1(42), but not the MSP1(42) protein itself or the EGF-like domain 1 fragment. Soluble MSP1(42) (FVO) expressed in E. coli offers excellent promise as a component of a vaccine against erythrocytic-stage falciparum malaria. PMID:15618165

  17. Plasmodium falciparum: an epitope within a highly conserved region of the 47-kDa amino-terminal domain of the serine repeat antigen is a target of parasite-inhibitory antibodies.

    PubMed

    Fox, B A; Xing-Li, P; Suzue, K; Horii, T; Bzik, D J

    1997-02-01

    Previously, the Plasmodium falciparum serine repeat antigen has been shown to be protective in primate models of malaria immunity and also to be a target of in vitro parasite-inhibitory antibodies. To further define parasite-inhibitory epitopes a series of deletions from the amino-terminal 47-kDa domain of the serine repeat antigen (SERA) were constructed as glutathione-S-transferase fusion proteins. Several GST-SERA fusion proteins were used to vaccinate mice with Freund's adjuvant and the resulting immune sera were used to assay for the inhibition of P. falciparum invasion of erythrocytes in vitro. The minimal epitope shown to be the target of invasion-blocking antibodies was SERA amino acids 17-165. Additional GST-SERA deletion constructs of the 47-kDa domain were developed and evaluated for reactivity, by Western immunoblot analysis, with a parasite-inhibitory murine monoclonal antibody (mAb 43E5), a parasite-inhibitory pooled goat polyclonal sera, and a pooled human Nigerian immune serum. The parasite-inhibitory epitope defined by mAb 43E5 was mapped to SERA amino acids 17-110 and, at least, part of the epitope was defined to include amino acids in the region of amino acids 59-72. The parasite-inhibitory epitope recognized by mAb 43E5 appears to be well conserved between diverse geographical isolates of P. falciparum. The results have relevance for malaria vaccine development and suggest that an appropriately designed recombinant SERA antigen produced from a synthetic gene in Escherichia coli may be an effective component of a candidate malaria vaccine. PMID:9030663

  18. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali.

    PubMed

    Sissoko, Mahamadou S; van den Hoogen, Lotus L; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K

    2015-10-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728

  19. Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites.

    PubMed

    Souza, Nicolli Bellotti de; Aguiar, Anna Caroline Campos; Oliveira, Alane Cabral de; Top, Siden; Pigeon, Pascal; Jaouen, Gérard; Goulart, Marilia Oliveira Fonseca; Krettli, Antoniana Ursine

    2015-12-01

    This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile. PMID:26602875

  20. Suramin and suramin analogues inhibit merozoite surface protein-1 secondary processing and erythrocyte invasion by the malaria parasite Plasmodium falciparum.

    PubMed

    Fleck, Suzanne L; Birdsall, Berry; Babon, Jeffrey; Dluzewski, Anton R; Martin, Stephen R; Morgan, William D; Angov, Evelina; Kettleborough, Catherine A; Feeney, James; Blackman, Michael J; Holder, Anthony A

    2003-11-28

    Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP142) is further cleaved to a 33-kDa N-terminal polypeptide (MSP133) and an 19-kDa C-terminal fragment (MSP119) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP142 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P. falciparum MSP142 (Kd = 0.2 microM) and to Plasmodium vivax MSP142 (Kd = 0.3 microM) as measured by fluorescence enhancement in the presence of the protein and by isothermal titration calorimetry. Suramin bound only slightly less tightly to the P. vivax MSP133 (Kd = 1.5 microM) secondary processing product (fluorescence measurements), but very weakly to MSP119 (Kd approximately 15 mM) (NMR measurements). Several residues in MSP119 were implicated in the interaction with suramin using NMR measurements. A series of symmetrical suramin analogues that differ in the number of aromatic rings and substitution patterns of the terminal naphthylamine groups was examined in invasion and processing assays. Two classes of analogue with either two or four bridging rings were found to be active in both assays, whereas two other classes without bridging rings were inactive. We propose that suramin and related compounds inhibit erythrocyte invasion by binding to MSP1 and by preventing its cleavage by the secondary processing protease. The results indicate that enzymatic events during invasion are suitable targets for drug development and validate the novel concept of an inhibitor binding to a macromolecular substrate to prevent its proteolysis by a protease. PMID:13679371

  1. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum.

    PubMed

    Gabryszewski, Stanislaw J; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A

    2016-06-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field. PMID:26908582

  2. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum

    PubMed Central

    Gabryszewski, Stanislaw J.; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A.

    2016-01-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field. PMID:26908582

  3. Geographic variation in parasitism rates of two sympatric cuckoo hosts in China.

    PubMed

    Yang, Can-Chao; Li, Dong-Lai; Wang, Long-Wu; Liang, Guo-Xian; Zhang, Zheng-Wang; Liang, Wei

    2014-01-01

    Rates of brood parasitism vary extensively among host species and populations of a single host species. In this study, we documented and compared parasitism rates of two sympatric hosts, the Oriental Reed Warbler (Acrocephalus orientalis) and the Reed Parrotbill (Paradoxornis heudei), in three populations in China. We found that the Common Cuckoo (Cuculus canorus) is the only parasite using both the Oriental Reed Warbler and Reed Parrotbill as hosts, with a parasitism rate of 22.4%-34.3% and 0%-4.6%, respectively. The multiple parasitism rates were positively correlated with local parasitism rates across three geographic populations of Oriental Reed Warbler, which implies that higher pressure of parasitism lead to higher multiple parasitism rate. Furthermore, only one phenotype of cuckoo eggs was found in the nests of these two host species. Our results lead to two conclusions: (1) The Oriental Reed Warbler should be considered the major host of Common Cuckoo in our study sites; and (2) obligate parasitism on Oriental Reed Warbler by Common Cuckoo is specialized but flexible to some extent, i.e., using Reed Parrotbill as a secondary host. Further studies focusing on egg recognition and rejection behaviour of these two host species should be conducted to test our predictions. PMID:24470456

  4. Parasites

    MedlinePlus

    ... CME and CNE for clinicians... Parasitic Disease and Malaria Strategic Priorities: 2015—2020... Cyclosporiasis: Most U.S. cases ... R S T U V W X Y Z Malaria An ancient disease that affects millions of people ...

  5. Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium falciparum.

    PubMed

    Castro-Sesquen, Yagahira E; Kim, Chloe; Gilman, Robert H; Sullivan, David J; Searson, Peter C

    2016-08-01

    A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western blot analysis demonstrated that magnetic beads allow the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and quantum dots conjugated to anti-HRP2 antibodies allows the detection of low concentrations of HRP2 protein (0.5 ng/mL), and quantification in the range of 33-2,000 ng/mL corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a noninvasive point-of-care test for classification of severe malaria. PMID:27185769

  6. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether–lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya

    PubMed Central

    Achieng, Angela O.; Muiruri, Peninah; Ingasia, Luicer A.; Opot, Benjamin H.; Juma, Dennis W.; Yeda, Redemptah; Ngalah, Bidii S.; Ogutu, Bernhards R.; Andagalu, Ben; Akala, Hoseah M.; Kamau, Edwin

    2015-01-01

    Artemether–lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995–2003) and 745 after (post-ACT; 2008–2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995–1996 to 93.2% in 2014 and 0.0% in 2002–2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to

  7. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya.

    PubMed

    Achieng, Angela O; Muiruri, Peninah; Ingasia, Luicer A; Opot, Benjamin H; Juma, Dennis W; Yeda, Redemptah; Ngalah, Bidii S; Ogutu, Bernhards R; Andagalu, Ben; Akala, Hoseah M; Kamau, Edwin

    2015-12-01

    Artemether-lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995-2003) and 745 after (post-ACT; 2008-2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995-1996 to 93.2% in 2014 and 0.0% in 2002-2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use

  8. Plasmodium falciparum msp2 Genotypes and Multiplicity of Infections among Children under Five Years with Uncomplicated Malaria in Kibaha, Tanzania

    PubMed Central

    Kidima, W.; Nkwengulila, G.

    2015-01-01

    Genetic diversity of Plasmodium falciparum may pose challenges in malaria treatment and prevention through chemotherapy and vaccination. We assessed Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) of P. falciparum infections and sort relationship of parasitaemia with P. falciparum msp2 genotypes as well as with the number of infecting clones. The study was carried out in Kibaha, Tanzania. Ninety-nine children under five years with uncomplicated malaria were recruited. Genetic diversity was analyzed by genotyping the msp2 gene using PCR-Restriction Fragment Length Polymorphism. Thirty-two different msp2 alleles were obtained. The msp2 3D7 allelic frequency was higher (48.1%) and more prevalent than FC27 (27.3%) (p < 0.05). Twenty-four percent of the infections were mixed alleles. The individuals with FC27 had high parasitemia compared to those with 3D7 alleles (p = 0.038). The mean MOI was low (1.4 clones, 95% CI 1.2–1.5). The P. falciparum population among children at Kibaha is composed of distinct P. falciparum clones, and parasites having 3D7 are more frequent than those with FC27 alleles. Individuals with parasite having FC27 alleles have high parasite densities suggesting that parasites with FC27 alleles may associate with severity of disease in Kibaha. Low MOI at Kibaha suggests low malaria transmission rate. PMID:26770821

  9. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite.

    PubMed

    Chua, Chun Song; Low, Huiyu; Lehming, Norbert; Sim, T S

    2012-01-01

    The recent recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a promising anti-malaria drug target has sparked interest in identifying factors that regulate its function and drug-interaction. Co-chaperones are well-known regulators of Hsp90's chaperone function, and certain members have been implicated in conferring protection against lethal cellular effects of Hsp90-specific inhibitors. In this context, studies on PfHsp90's co-chaperones are imperative to gain insight into the regulation of the chaperone in the malaria parasite. In this study, a putative co-chaperone P. falciparum Aha1 (PfAha1) was identified and investigated for its interaction and regulation of PfHsp90. A previous genome-wide yeast two-hybrid study failed to identify PfAha1's association with PfHsp90, which prompted us to use a directed assay to investigate their interaction. PfAha1 was shown to interact with PfHsp90 via the in vivo split-ubiquitin assay and the association was confirmed in vitro by GST pull-down experiments. The GST pull-down assay further revealed PfAha1's interaction with PfHsp90 to be dependent on MgCl(2) and ATP, and was competed by co-chaperone Pfp23 that binds PfHsp90 under the same condition. In addition, the PfHsp90-PfAha1 complex was found to be sensitive to disruption by high salt, indicating a polar interaction between them. Using bio-computational modelling coupled with site-directed mutagenesis, the polar residue N108 in PfAha1 was found to be strategically located and essential for PfHsp90 interaction. The functional significance of PfAha1's interaction was clearly that of exerting a stimulatory effect on the ATPase activity of PfHsp90, likely to be essential for promoting the activation of PfHsp90's client proteins. PMID:22100910

  10. Isoprenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Guggisberg, Ann M.; Amthor, Rachel E.

    2014-01-01

    Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research. PMID:25217461

  11. Stereoselective preparation of pyridoxal 1,2,3,4-tetrahydro-β-carboline derivatives and the influence of their absolute and relative configuration on the proliferation of the malaria parasite Plasmodium falciparum.

    PubMed

    Brokamp, Renate; Bergmann, Bärbel; Müller, Ingrid B; Bienz, Stefan

    2014-03-15

    We have selectively synthesized by Pictet-Spengler condensation of tryptophan and pyridoxal the four stereoisomers of a pyridoxal β-carboline derivative that was designed to inhibit the proliferation of Plasmodium falciparum. Biological investigation of the four compounds revealed that they all inhibit the growth of P. falciparum. With an IC50 value of 8 ± 1 μM, the highest inhibitory effect on the proliferation of the parasite was found for the 1,3-trans-substituted tetrahydro-β-carboline that was obtained from d-tryptophan. Lower activity was found for its enantiomer, while the two diastereomeric cis-products were markedly less effective. Apparently a distinct spacial orientation of the carboxyl group of the substituted tetrahydropyridine unit of the compounds is needed for high activity, while the absolute configuration of the molecules is of lesser importance. PMID:24565970

  12. Genotypic variation in host response to infection affects parasite reproductive rate.

    PubMed

    Tavalire, Hannah F; Blouin, Michael S; Steinauer, Michelle L

    2016-02-01

    Parasite fitness is largely influenced by a variation in host response due to the host's genetic background. Here we investigated the impact of host genotype on pathogen success in the snail vector of its castrating parasite, Schistosoma mansoni. We infected five inbred lines of Biomphalaria glabrata with two infection doses and followed their growth, reproductive output and parasite production throughout the course of infection. There was no difference in resistance to infection among inbred lines, but lines varied in their responses to infection and the numbers of parasites produced. Snails did not compensate for castration by increasing their fecundity during the early phase of infection (fecundity compensation). However, some lines were able to delay parasite shedding for up to 30 weeks, thus prolonging reproduction before the onset of castration. Here we propose this strategy as a novel defense against castrating pathogens in snails. Gigantism, a predicted outcome of castration due to energy reallocation, occurred early in infection (<15 weeks) and was not universal among the snail lines. Lines that did not show gigantism were also characterised by a high parasite production rate and low survivorship, perhaps indicating energy reallocation into parasite production and costly immune defense. We observed no differences in total parasite production among lines throughout the entire course of infection, although lines differed in their parasite reproductive rate. The average rate of parasite production varied among lines from 1300 to 2450 cercariae within a single 2h shedding period, resulting in a total production of 6981-29,509 cercariae over the lifetime of a single snail. Regardless of genetic background, snail size was a strong predictor of parasite reproduction: each millimetre increase in snail size at the time of the first shed resulted in up to 3500 more cercariae over the lifetime of the snail. The results of this study provide a detailed picture of

  13. Influence of medium osmolality on the in vitro growth of Plasmodium falciparum: a morphologic and radioisotopic study

    SciTech Connect

    Dei-Cas, E.; Wattez, A.; Vernes, A.

    1985-02-01

    The study of the growth rate and incorporation of (/sup 3/H)hypoxanthine and (/sup 14/C)isoleucine showed that in vitro variations of Plasmodium falciparum parasitemia levels and incorporation rates of the two radiolabeled molecules have been correlated. In experimental conditions, P. falciparum blood forms in vitro tolerate osmolalities ranging from 180 to 360 mOSM. A weak hypo-osmolality (241 mOSM) favored the development of the parasite. The highest sensitivity of the parasite to osmotic variations was observed during schizogony. The merozoite stage and reinvasion process seemed less affected by hypo-osmolalities than by hyperosmolalities. The minor alterations in morphology of the parasites in hypo- and hyperosmotic media suggested that P. falciparum may have efficient osmoregulatory power.

  14. The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents

    PubMed Central

    2009-01-01

    Background Malaria endemicity in Zanzibar has reached historically low levels, and the epidemiology of malaria transmission is in transition. To capitalize on these gains, Zanzibar has commissioned a feasibility assessment to help inform on whether to move to an elimination campaign. Declining local transmission has refocused attention on imported malaria. Recent studies have shown that anonimized mobile phone records provide a valuable data source for characterizing human movements without compromizing the privacy of phone users. Such movement data in combination with spatial data on P. falciparum endemicity provide a way of characterizing the patterns of parasite carrier movements and the rates of malaria importation, which have been used as part of the malaria elimination feasibility assessment for the islands of Zanzibar. Data and Methods Records encompassing three months of complete mobile phone usage for the period October-December 2008 were obtained from the Zanzibar Telecom (Zantel) mobile phone network company, the principal provider on the islands of Zanzibar. The data included the dates of all phone usage by 770,369 individual anonymous users. Each individual call and message was spatially referenced to one of six areas: Zanzibar and five mainland Tanzania regions. Information on the numbers of Zanzibar residents travelling to the mainland, locations visited and lengths of stay were extracted. Spatial and temporal data on P. falciparum transmission intensity and seasonality enabled linkage of this information to endemicity exposure and, motivated by malaria transmission models, estimates of the expected patterns of parasite importation to be made. Results Over the three month period studied, 88% of users made calls that were routed only through masts on Zanzibar, suggesting that no long distance travel was undertaken by this group. Of those who made calls routed through mainland masts the vast majority of trips were estimated to be of less than five days

  15. Pseudacteon decapitating fly parasitism rates in fire ant colonies around Gainesville, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to assess the impacts of phorid flies on fire ants in the Gainesville area, we collected 3 g of worker ants from 36 colonies. A total of 672 parasitized workers were recovered from the 36 colony samples. Confirmed parasitism rates ranged from 0-5% with an average of about 0.5%. Including c...

  16. The Dynamics of Natural Plasmodium falciparum Infections

    PubMed Central

    Felger, Ingrid; Maire, Martin; Bretscher, Michael T.; Falk, Nicole; Tiaden, André; Sama, Wilson; Beck, Hans-Peter; Owusu-Agyei, Seth; Smith, Thomas A.

    2012-01-01

    Background Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. Methods An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI) and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. Results Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5–9 year old children (average duration 319 days, 95% confidence interval 318;320). Conclusions The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections. PMID:23029082

  17. The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites

    PubMed Central

    Greenspoon, Philip B.; M'Gonigle, Leithen K.

    2013-01-01

    By constantly selecting for novel genotypes, coevolution between hosts and parasites can favour elevated mutation rates. Models of this process typically assume random encounters. However, offspring are often more likely to encounter their mother's parasites. Because parents and offspring are genetically similar, they may be susceptible to the same parasite strains and thus, in hosts, maternal transmission should select for mechanisms that decrease intergenerational genetic similarity. In parasites, however, maternal transmission should select for genetic similarity. We develop and analyse a model of host and parasite mutation rate evolution when parasites are maternally inherited. In hosts, we find that maternal transmission has two opposing effects. First, it eliminates coevolutionary cycles that previous work shows select for higher mutation. Second, it independently selects for higher mutation rates, because offspring that differ from their mothers are more likely to avoid infection. In parasites, however, the two effects of maternal transmission act in the same direction. As for hosts, maternal transmission eliminates coevolutionary cycles, thereby reducing selection for increased mutation. Unlike for hosts, however, maternal transmission additionally selects against higher mutation by favouring parasite offspring that are the same as their mothers. PMID:23760645

  18. Laboratory detection of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Chotivanich, Kesinee; Tripura, Rupam; Das, Debashish; Yi, Poravuth; Day, Nicholas P J; Pukrittayakamee, Sasithon; Chuor, Char Meng; Socheat, Duong; Dondorp, Arjen M; White, Nicholas J

    2014-06-01

    Conventional 48-h in vitro susceptibility tests have low sensitivity in identifying artemisinin-resistant Plasmodium falciparum, defined phenotypically by low in vivo parasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistant P. falciparum is prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P = 0.001). TMI IC50s correlated significantly with the in vivo responses to artesunate (parasite clearance time [r = 0.44, P = 0.001] and parasite clearance half-life [r = 0.46, P = 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility. PMID:24663013

  19. Bayesian Hierarchical Regression on Clearance Rates in the Presence of “Lag” and “Tail” Phases with an Application to Malaria Parasites

    PubMed Central

    Fogarty, Colin B.; Fay, Michael P.; Flegg, Jennifer A.; Stepniewska, Kasia; Fairhurst, Rick M.; Small, Dylan S.

    2015-01-01

    Summary We present a principled technique for estimating the effect of covariates on malaria parasite clearance rates in the presence of “lag” and “tail” phases through the use of a Bayesian hierarchical linear model. The hierarchical approach enables us to appropriately incorporate the uncertainty in both estimating clearance rates in patients and assessing the potential impact of covariates on these rates into the posterior intervals generated for the parameters associated with each covariate. Furthermore, it permits us to incorporate information about individuals for whom there exists only one observation time before censoring, which alleviates a systematic bias affecting inference when these individuals are excluded. We use a changepoint model to account for both lag and tail phases, and hence base our estimation of the parasite clearance rate only on observations within the decay phase. The Bayesian approach allows us to treat the delineation between lag, decay, and tail phases within an individual’s clearance profile as themselves being random variables, thus taking into account the additional uncertainty of boundaries between phases. We compare our method to existing methodology used in the antimalarial research community through a simulation study and show that it possesses desirable frequentist properties for conducting inference. We use our methodology to measure the impact of several covariates on Plasmodium falciparum clearance rate data collected in 2009 and 2010. Though our method was developed with this application in mind, it can be easily applied to any biological system exhibiting these hindrances to estimation. PMID:25851174

  20. Malaria’s Eve: Evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum

    PubMed Central

    Rich, Stephen M.; Licht, Monica C.; Hudson, Richard R.; Ayala, Francisco J.

    1998-01-01

    We have analyzed DNA sequences from world-wide geographic strains of Plasmodium falciparum and found a complete absence of synonymous DNA polymorphism at 10 gene loci. We hypothesize that all extant world populations of the parasite have recently derived (within several thousand years) from a single ancestral strain. The upper limit of the 95% confidence interval for the time when this most recent common ancestor lived is between 24,500 and 57,500 years ago (depending on different estimates of the nucleotide substitution rate); the actual time is likely to be much more recent. The recent origin of the P. falciparum populations could have resulted from either a demographic sweep (P. falciparum has only recently spread throughout the world from a small geographically confined population) or a selective sweep (one strain favored by natural selection has recently replaced all others). The selective sweep hypothesis requires that populations of P. falciparum be effectively clonal, despite the obligate sexual stage of the parasite life cycle. A demographic sweep that started several thousand years ago is consistent with worldwide climatic changes ensuing the last glaciation, increased anthropophilia of the mosquito vectors, and the spread of agriculture. P. falciparum may have rapidly spread from its African tropical origins to the tropical and subtropical regions of the world only within the last 6,000 years. The recent origin of the world-wide P. falciparum populations may account for its virulence, as the most malignant of human malarial parasites. PMID:9539753

  1. Assessment of the Induction of Dormant Ring Stages in Plasmodium falciparum Parasites by Artemisone and Artemisone Entrapped in Pheroid Vesicles In Vitro

    PubMed Central

    Grobler, Lizette; Chavchich, Marina; Haynes, Richard K.; Edstein, Michael D.

    2014-01-01

    The in vitro antimalarial activities of artemisone and artemisone entrapped in Pheroid vesicles were compared, as was their ability to induce dormancy in Plasmodium falciparum. There was no increase in the activity of artemisone entrapped in Pheroid vesicles against multidrug-resistant P. falciparum lines. Artemisone induced the formation of dormant ring stages similar to dihydroartemisinin. Thus, the Pheroid delivery system neither improved the activity of artemisone nor prevented the induction of dormant rings. PMID:25288088

  2. Global Dynamics of a Parasite-Host Model with Nonlinear Incidence Rate

    NASA Astrophysics Data System (ADS)

    Tang, Yilei

    The paper is concerned with the effect of a nonlinear incidence rate Sp Iq on dynamical behaviors of a parasite-host model. It is shown that the global attractor of the parasite-host model is an equilibrium if q = 1, which is similar to that of the parasite-host model with a nonlinear incidence rate of the fractional function (SI)/(S+I). However, when q is greater than one, more positive equilibria appear and limit cycles arise from Hopf bifurcations at the positive equilibria for the model with the incidence rate Sp Iq. It reveals that the nonlinear incidence rate of the exponential function Sp Iq for generic p and q can lead to more complicated and richer dynamics than the bilinear incidence rate or the fractional incidence rate for this model.

  3. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells.

    PubMed

    Waller, Karena L; Nunomura, Wataru; An, Xiuli; Cooke, Brian M; Mohandas, Narla; Coppel, Ross L

    2003-09-01

    The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by exon 10 of the 4.1R gene. The 3D structure of this region reveals that the MESA binding site overlaps the region of 4.1R involved in the p55, glycophorin C, and 4.1R ternary complex. Further binding studies using p55, 4.1R, and MESA showed competition between p55 and MESA for 4.1R, implying that MESA bound at the IRBC membrane skeleton may modulate normal 4.1R and p55 interactions in vivo. Definition of minimal binding domains involved in critical protein interactions in IRBCs may aid the development of novel therapies for falciparum malaria. PMID:12730097

  4. Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations

    PubMed Central

    2010-01-01

    Background Mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes of Plasmodium falciparum are associated with resistance to anti-folate drugs, most notably sulphadoxine-pyrimethamine (SP). Molecular studies document the prevalence of these mutations in parasite populations across the African continent. However, there is no systematic review examining the collective epidemiological significance of these studies. This meta-analysis attempts to: 1) summarize genotype frequency data that are critical for molecular surveillance of anti-folate resistance and 2) identify the specific challenges facing the development of future molecular databases. Methods This review consists of 220 studies published prior to 2009 that report the frequency of select dhfr and dhps mutations in 31 African countries. Maps were created to summarize the location and prevalence of the highly resistant dhfr triple mutant (N51I, C59R, S108N) genotype and dhps double mutant (A437G and K540E) genotype in Africa. A hierarchical mixed effects logistic regression was used to examine the influence of various factors on reported mutant genotype frequency. These factors include: year and location of study, age and clinical status of sampled population, and reporting conventions for mixed genotype data. Results A database consisting of dhfr and dhps mutant genotype frequencies from all African studies that met selection criteria was created for this analysis. The map illustrates particularly high prevalence of both the dhfr triple and dhps double mutant genotypes along the Kenya-Tanzania border and Malawi. The regression model shows a statistically significant increase in the prevalence of both the dhfr triple and dhps double mutant genotypes in Africa. Conclusion Increasing prevalence of the dhfr triple mutant and dhps double mutant genotypes in Africa are consistent with the loss of efficacy of SP for treatment of clinical malaria in most parts of this continent

  5. Parasite infection rates of impala (Aepyceros melampus) in fenced game reserves in relation to reserve characteristics

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    Under certain conditions reserves can pose a threat to wildlife conservation by increasing the transmission of parasites and pathogens. In this study, I investigated associations between reserve characteristics including area, density and species richness and parasite infection rates in impala (Aepyceros melampus). Using coprological methods to measure gastrointestinal parasitism rates of impala inhabiting five fully or partially fenced game reserves in central Kenya, I found that bovid species richness was correlated with parasite taxa richness across reserves, and that prevalence rates of multi-host strongyle nematodes were higher in reserves with more species. In addition, reserve size was also implicated as a potential predictor of infection risk. Overall, these results suggest that wildlife inhabiting highly diverse and small reserves may suffer from higher than normal rates of infection. Given the potential debilitating effects increases in parasitism can have on wildlife, these results underscore the importance of considering parasite transmission dynamics in the management of small, fenced protected areas. ?? 2003 Elsevier Ltd. All rights reserved.

  6. Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

    PubMed Central

    2014-01-01

    Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions

  7. In Vitro Generation of Plasmodium falciparum Ookinetes

    PubMed Central

    Bounkeua, Viengngeun; Li, Fengwu; Vinetz, Joseph M.

    2010-01-01

    Plasmodium transmission from the human host to the mosquito depends on the ability of gametocytes to differentiate into ookinetes, the invasive form of the parasite that invades and establishes infection in the mosquito midgut. The biology of P. falciparum ookinetes is poorly understood, because sufficient quantities of this stage of this parasite species have not been obtained for detailed study. This report details methods to optimize production of P. falciparum sexual stage parasites, including ookinetes. Flow cytometric sorting was used to separate diploid/tetraploid zygotes and ookinetes from haploid gametetocytes and unfertilized gametes based on DNA content. Consistent production of 106–107 P. falciparum ookinetes per 10 mL culture was observed, with ookinete transformation present in 10–40% of all parasite forms. Transmission electron micrographs of cultured parasites confirmed ookinete development. PMID:21118920

  8. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  9. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2016-03-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  10. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families

    PubMed Central

    Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.

    2013-01-01

    Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to

  11. Identification of an Atg8-Atg3 Protein–Protein Interaction Inhibitor from the Medicines for Malaria Venture Malaria Box Active in Blood and Liver Stage Plasmodium falciparum Parasites

    PubMed Central

    2015-01-01

    Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8’s function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein–protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization. PMID:24786226

  12. Antibodies to Pf155, a major antigen of Plasmodium falciparum: seroepidemiological studies in Haiti*

    PubMed Central

    Deloron, P.; Duverseau, Y. T.; Zevallos-Ipenza, A.; Magloire, R.; Stanfill, P. S.; Nguyen-Dinh, Phuc

    1987-01-01

    The presence of malaria parasites and the serological antibody responses against whole Plasmodium falciparum and the Pf155 antigen were studied in the population of a small rural locality in Haiti in December 1985. Only 7 (1.5%) of the individuals were found to be infected with P. falciparum, the only species observed. Antibodies to P. falciparum were detected in an ELISA in 38.2% of the sera, the positivity rates being age-related. Anti-Pf155 antibodies were detected in 12.5% and 13.6% of individuals by two different techniques used. The anti-Pf155 positivity rates increased only after 25 years of age. No trends were detected for a clear-cut protective value of Pf155 antibodies against clinical malaria and further longitudinally conducted field surveys are needed to satisfactorily assess the potential protective effect of Pf155 antibodies. ImagesFig. 2 PMID:3311436

  13. Plasmodium falciparum: attenuation by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-12-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.

  14. Predation and Parasitism Rates on Sentinel and Naturally Occurring Egg Masses of the Squash Bug (Hemiptera: Coreidae) in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly ...

  15. Detectability of Plasmodium falciparum clones

    PubMed Central

    2010-01-01

    Background In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. Methods A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. Results The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. Conclusions A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week

  16. Sensitivity of Plasmodium falciparum to Antimalarial Drugs in Hainan Island, China

    PubMed Central

    Wang, Shan-Qing; Wang, Guang-Ze; Li, Yu-Chun; Meng, Feng; Lin, Shi-Gan; Zhu, Zhen-Hu; Sun, Ding-Wei; He, Chang-Hua; Hu, Xi-Min; Du, Jian-Wei

    2015-01-01

    Pyronaridine and artesunate have been shown to be effective in falciparum malaria treatment. However, pyronaridine is rarely used in Hainan Island clinically, and artesunate is not widely used as a therapeutic agent. Instead, conventional antimalarial drugs, chloroquine and piperaquine, are used, explaining the emergence of chloroquine-resistant Plasmodium falciparum. In this article, we investigated the sensitivity of P. falciparum to antimalarial drugs used in Hainan Island for rational drug therapy. We performed in vivo (28 days) and in vitro tests to determine the sensitivity of P. falciparum to antimalarial drugs. Total 46 patients with falciparum malaria were treated with dihydroartemisinin/piperaquine phosphate (DUO-COTECXIN) and followed up for 28 day. The cure rate was 97.8%. The mean fever clearance time (22.5±10.6 hr) and the mean parasite clearance time (27.3±12.2 hr) showed no statistical significance with different genders, ages, temperatures, or parasite density (P>0.05). The resistance rates of chloroquine, piperaquine, pyronarididine, and artesunate detected in vitro were 71.9%, 40.6%, 12.5%, and 0%, respectively (P<0.0001). The resistance intensities decreased as follows: chloroquine>piperaquine>pyronarididine>artesunate. The inhibitory dose 50 (IC50) was 3.77×10-6 mol/L, 2.09×10-6 mol/L, 0.09×10-6 mol/L, and 0.05×10-6 mol/L, and the mean concentrations for complete inhibition (CIMC) of schizont formation were 5.60×10-6 mol/L, 9.26×10-6 mol/L, 0.55×10-6 mol/L, and 0.07×10-6 mol/L, respectively. Dihydroartemisinin showed a strong therapeutic effect against falciparum malaria with a low toxicity. PMID:25748707

  17. Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

    PubMed Central

    Ha, Young Ran; Hwang, Bae-Geun; Hong, Yeonchul; Yang, Hye-Won; Lee, Sang Joon

    2015-01-01

    The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites. PMID:26323840

  18. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border

    PubMed Central

    2013-01-01

    Background The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Methods Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. Results There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (He) results were similarly low for both populations. A moderate differentiation was revealed by the FST index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America. PMID:24093629

  19. Empirical Bayes estimation of proportions with application to cowbird parasitism rates

    USGS Publications Warehouse

    Link, W.A.; Hahn, D.C.

    1996-01-01

    Bayesian models provide a structure for studying collections of parameters such as are considered in the investigation of communities, ecosystems, and landscapes. This structure allows for improved estimation of individual parameters, by considering them in the context of a group of related parameters. Individual estimates are differentially adjusted toward an overall mean, with the magnitude of their adjustment based on their precision. Consequently, Bayesian estimation allows for a more credible identification of extreme values in a collection of estimates. Bayesian models regard individual parameters as values sampled from a specified probability distribution, called a prior. The requirement that the prior be known is often regarded as an unattractive feature of Bayesian analysis and may be the reason why Bayesian analyses are not frequently applied in ecological studies. Empirical Bayes methods provide an alternative approach that incorporates the structural advantages of Bayesian models while requiring a less stringent specification of prior knowledge. Rather than requiring that the prior distribution be known, empirical Bayes methods require only that it be in a certain family of distributions, indexed by hyperparameters that can be estimated from the available data. This structure is of interest per se, in addition to its value in allowing for improved estimation of individual parameters; for example, hypotheses regarding the existence of distinct subgroups in a collection of parameters can be considered under the empirical Bayes framework by allowing the hyperparameters to vary among subgroups. Though empirical Bayes methods have been applied in a variety of contexts, they have received little attention in the ecological literature. We describe the empirical Bayes approach in application to estimation of proportions, using data obtained in a community-wide study of cowbird parasitism rates for illustration. Since observed proportions based on small sample

  20. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda

    PubMed Central

    2014-01-01

    Background The Plasmodium falciparum entomological inoculation rate (PfEIR) is a measure of exposure to infectious mosquitoes. It is usually interpreted as the number of P. falciparum infective bites received by an individual during a season or annually (aPfEIR). In an area of perennial transmission, the accuracy, precision and seasonal distribution (i.e., month by month) of aPfEIR were investigated. Data were drawn from three sites in Uganda with differing levels of transmission where falciparum malaria is transmitted mainly by Anopheles gambiae s.l. Estimates of aPfEIR derived from human-landing catches – the classic method for estimating biting rates – were compared with data from CDC light traps, and with catches of knock down and exit traps separately and combined. Methods Entomological surveillance was carried out over one year in 2011/12 in three settings: Jinja, a peri-urban area with low transmission; Kanungu, a rural area with moderate transmission; and Nagongera, Tororo District, a rural area with exceptionally high malaria transmission. Three sampling approaches were used from randomly selected houses with collections occurring once a month: human-landing collections (eight houses), CDC light traps (100 houses) and paired knock-down and exit traps each month (ten houses) for each setting. Up to 50 mosquitoes per month from each household were tested for sporozoites with P. falciparum by ELISA. Human biting rate (HBR) data were estimated month by month. P. falciparum Sporozoite rate (PfSR) for yearly and monthly data and confidence intervals were estimated using the binomial exact test. Monthly and yearly estimates of the HBR, the PfSR, and the PfEIR were estimated and compared. Results The estimated aPfEIR values using human-landing catch data were 3.8 (95% Confidence Intervals, CI 0-11.4) for Jinja, 26.6 (95% CI 7.6-49.4) for Kanungu, and 125 (95% CI 72.2-183.0) for Tororo. In general, the monthly PfEIR values showed strong seasonal signals with

  1. Spread of Artemisinin Resistance in Plasmodium falciparum Malaria

    PubMed Central

    Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C.M.; Nguon, C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.; Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.; Runcharoen, R.; Hien, T.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Phu, N.H.; Htut, Y.; Han, K-T.; Aye, K.H.; Mokuolu, O.A.; Olaosebikan, R.R.; Folaranmi, O.O.; Mayxay, M.; Khanthavong, M.; Hongvanthong, B.; Newton, P.N.; Onyamboko, M.A.; Fanello, C.I.; Tshefu, A.K.; Mishra, N.; Valecha, N.; Phyo, A.P.; Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.; Peshu, J.; Faiz, M.A.; Ghose, A.; Hossain, M.A.; Samad, R.; Rahman, M.R.; Hasan, M.M.; Islam, A.; Miotto, O.; Amato, R.; MacInnis, B.; Stalker, J.; Kwiatkowski, D.P.; Bozdech, Z.; Jeeyapant, A.; Cheah, P.Y.; Sakulthaew, T.; Chalk, J.; Intharabut, B.; Silamut, K.; Lee, S.J.; Vihokhern, B.; Kunasol, C.; Imwong, M.; Tarning, J.; Taylor, W.J.; Yeung, S.; Woodrow, C.J.; Flegg, J.A.; Das, D.; Smith, J.; Venkatesan, M.; Plowe, C.V.; Stepniewska, K.; Guerin, P.J.; Dondorp, A.M.; Day, N.P.; White, N.J.

    2014-01-01

    BACKGROUND Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand–Cambodia border. Slowly clearing in fections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the “propeller” region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of

  2. UV-triggered Affinity Capture Identifies Interactions between the Plasmodium falciparum Multidrug Resistance Protein 1 (PfMDR1) and Antimalarial Agents in Live Parasitized Cells*

    PubMed Central

    Brunner, Ralf; Ng, Caroline L.; Aissaoui, Hamed; Akabas, Myles H.; Boss, Christoph; Brun, Reto; Callaghan, Paul S.; Corminboeuf, Olivier; Fidock, David A.; Frame, Ithiel J.; Heidmann, Bibia; Le Bihan, Amélie; Jenö, Paul; Mattheis, Corinna; Moes, Suzette; Müller, Ingrid B.; Paguio, Michelle; Roepe, Paul D.; Siegrist, Romain; Voss, Till; Welford, Richard W. D.; Wittlin, Sergio; Binkert, Christoph

    2013-01-01

    A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615. PMID:23754276

  3. The antigenic switching network of Plasmodium falciparum and its implications for the immuno-epidemiology of malaria

    PubMed Central

    Noble, Robert; Christodoulou, Zóe; Kyes, Sue; Pinches, Robert; Newbold, Chris I; Recker, Mario

    2013-01-01

    Antigenic variation in the human malaria parasite Plasmodium falciparum involves sequential and mutually exclusive expression of members of the var multi-gene family and appears to follow a non-random pattern. In this study, using a detailed in vitro gene transcription analysis of the culture-adapted HB3 strain of P. falciparum, we show that antigenic switching is governed by a global activation hierarchy favouring short and highly diverse genes in central chromosomal location. Longer and more conserved genes, which have previously been associated with severe infection in immunologically naive hosts, are rarely activated, however, implying an in vivo fitness advantage possibly through adhesion-dependent survival rates. We further show that a gene’s activation rate is positively associated sequence diversity, which could offer important new insights into the evolution and maintenance of antigenic diversity in P. falciparum malaria. DOI: http://dx.doi.org/10.7554/eLife.01074.001 PMID:24062941

  4. Thymine distribution in genes provides novel insight into the functional significance of the proteome of the malaria parasite Plasmodium falciparum 3D7.

    PubMed

    Palanisamy, Balamurugan; Ekambaram, Rajasekaran; Heese, Klaus

    2014-03-01

    Plasmodium falciparum (Pf)-mediated malaria is one of the most devastating diseases in the world, and the search for suitable antimalarial drugs remains an extraordinary challenge for scientists working in this area. Novel unconventional approaches could reveal new potential targets that may be useful for the treatment of malaria. We used a bioinformatics approach to analyze the entire genome of the Pf3D7 strain. Because the carbon (C-) content is a pivotal parameter that determines the hydrophobicity of a protein, which in turn controls protein folding and function, we analyzed the entire Pf3D7 proteome based on the gene's thymine (T)-controlled amino acid expression. Our data disclose a total of 14 proteins encoded by chromosome-4 and chromosome-9 that have an outstanding T-encoded and C-controlled hydrophobic character. The identification of these proteins could open new pivotal drug-targeting avenues. PMID:24132930

  5. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  6. Analysis of gene mutations involved in chloroquine resistance in Plasmodium falciparum parasites isolated from patients in the southwest of Saudi Arabia

    PubMed Central

    Bin Dajem, Saad M.; Al-Qahtani, Ahmed

    2010-01-01

    BACKGROUND AND OBJECTIVES: Chloroquine has been the drug of choice for the treatment of malaria for many decades. We aimed to examine the molecular basis of chloroquine resistance among Plasmodium falciparum isolates from the southwestern region of Saudi Arabia by analyzing the K76T and N86Y mutations in the PfCRT and PfMDR1 genes, respectively. PATIENTS AND METHODS: P falciparum-infected blood spot samples (n=121) were collected on filter papers. DNA was extracted and fragments from the above genes were amplified using nested PCR. The amplicons were digested by ApoI enzyme and sequenced. RESULTS: Of the 121 samples, 95 and 112 samples could be amplified for PfCRT K76T and PfMDR1 N86Y mutations, respectively. All of the samples amplified for the PfCRT K76T mutation were undigestible by ApoI, suggesting the presence of the K76T mutation. For the PfMDR1 N86Y mutation, 65/109 samples (59.6%) were digestible when treated with ApoI in a pattern, suggestive of the presence of the investigated wild allele (N86). However, 44/109 samples (40.4%) were digestible by ApoI, suggesting the presence of the mutated allele (Y) at position 86. DNA sequencing confirmed these results. CONCLUSION: Surprisingly, all isolates exhibited the mutated allele at codon 76 (K76T) of PfCRT. However, the mutated mutant allele at codon 86 (N86Y) of PfMDR1 was found in 40.4% of the samples studied. To our knowledge, this is the first study that has investigated the existence of the mutation in the PfMDR1 gene in the country. This study will contribute to the development of new strategies for therapeutic intervention against malaria in Saudi Arabia. PMID:20427933

  7. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  8. Epigenetic regulation of the Plasmodium falciparum genome.

    PubMed

    Duffy, Michael F; Selvarajah, Shamista A; Josling, Gabrielle A; Petter, Michaela

    2014-05-01

    Recent research has highlighted some unique aspects of chromatin biology in the malaria parasite Plasmodium falciparum. During its erythrocytic lifecycle P. falciparum maintains its genome primarily as unstructured euchromatin. Indeed there is no clear role for chromatin-mediated silencing of the majority of the developmentally expressed genes in P. falciparum. However discontinuous stretches of heterochromatin are critical for variegated expression of contingency genes that mediate key pathogenic processes in malaria. These range from invasion of erythrocytes and antigenic variation to solute transport and growth adaptation in response to environmental changes. Despite lack of structure within euchromatin the nucleus maintains functional compartments that regulate expression of many genes at the nuclear periphery, particularly genes with clonally variant expression. The typical components of the chromatin regulatory machinery are present in P. falciparum; however, some of these appear to have evolved novel species-specific functions, e.g. the dynamic regulation of histone variants at virulence gene promoters. The parasite also appears to have repeatedly acquired chromatin regulatory proteins through lateral transfer from endosymbionts and from the host. P. falciparum chromatin regulators have been successfully targeted with multiple drugs in laboratory studies; hopefully their functional divergence from human counterparts will allow the development of parasite-specific inhibitors. PMID:24326119

  9. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates

    PubMed Central

    Straimer, Judith; Gnädig, Nina F.; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D.; Urnov, Fyodor D.; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M.; Ménard, Didier; Fidock, David A.

    2015-01-01

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites. PMID:25502314

  10. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    PubMed

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites. PMID:25502314

  11. Feeding Ecology Informs Parasite Epidemiology: Prey Selection Modulates Encounter Rate with Echinococcus multilocularis in Urban Coyotes

    PubMed Central

    Liccioli, Stefano; Bialowas, Carly; Ruckstuhl, Kathreen E.; Massolo, Alessandro

    2015-01-01

    We investigated the role of urban coyote feeding ecology in the transmission of Echinococcus multilocularis, the causative agent of Alveolar Echinococcosis in humans. As coyotes can play a main role in the maintenance of this zoonotic parasite within North American urban settings, such study can ultimately aid disease risk management. Between June 2012 and June 2013, we collected 251 coyote feces and conducted trapping of small mammals (n = 971) in five parks in the city of Calgary, Alberta, Canada. We investigated E. multilocularis epidemiology by assessing seasonal variations of coyote diet and the selective consumption of different rodent intermediate host species. Furthermore, accounting for small mammal digestibility and coyote defecation rates we estimated the number of small mammal preys ingested by coyote and consequently, coyote encounter rates with the parasite. Dominant food items included small mammals, fruit and vegetation, although hare and deer were seasonally relevant. The lowest frequency of occurrence per scat of small mammals was recorded in winter (39.4 %), when consumption of deer was highest (36.4 %). However, highest encounter rates (number of infected hosts predated/season) with E. multilocularis (95% CI: 1.0 - 22.4), combined with the lack of predation on non-competent small mammal species, suggest that winter is the critical season for transmission and control of this parasite. Within the small mammal assemblage, voles (Microtus pennsylvanicus and Myodes gapperi) were the selected preys of urban coyotes and likely played a key role for the maintenance of the urban sylvatic life-cycle of E. multilocularis in Calgary. PMID:25768437

  12. Feeding ecology informs parasite epidemiology: prey selection modulates encounter rate with Echinococcus multilocularis in urban coyotes.

    PubMed

    Liccioli, Stefano; Bialowas, Carly; Ruckstuhl, Kathreen E; Massolo, Alessandro

    2015-01-01

    We investigated the role of urban coyote feeding ecology in the transmission of Echinococcus multilocularis, the causative agent of Alveolar Echinococcosis in humans. As coyotes can play a main role in the maintenance of this zoonotic parasite within North American urban settings, such study can ultimately aid disease risk management. Between June 2012 and June 2013, we collected 251 coyote feces and conducted trapping of small mammals (n = 971) in five parks in the city of Calgary, Alberta, Canada. We investigated E. multilocularis epidemiology by assessing seasonal variations of coyote diet and the selective consumption of different rodent intermediate host species. Furthermore, accounting for small mammal digestibility and coyote defecation rates we estimated the number of small mammal preys ingested by coyote and consequently, coyote encounter rates with the parasite. Dominant food items included small mammals, fruit and vegetation, although hare and deer were seasonally relevant. The lowest frequency of occurrence per scat of small mammals was recorded in winter (39.4%), when consumption of deer was highest (36.4%). However, highest encounter rates (number of infected hosts predated/season) with E. multilocularis (95% CI: 1.0-22.4), combined with the lack of predation on non-competent small mammal species, suggest that winter is the critical season for transmission and control of this parasite. Within the small mammal assemblage, voles (Microtus pennsylvanicus and Myodes gapperi) were the selected preys of urban coyotes and likely played a key role for the maintenance of the urban sylvatic life-cycle of E. multilocularis in Calgary. PMID:25768437

  13. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    PubMed

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  14. Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure

    PubMed Central

    Ménard, Sandie; Ben Haddou, Tanila; Ramadani, Arba Pramundita; Ariey, Frédéric; Iriart, Xavier; Beghain, Johann; Bouchier, Christiane; Witkowski, Benoit; Berry, Antoine; Mercereau-Puijalon, Odile

    2015-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy. PMID:26401601

  15. Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure.

    PubMed

    Ménard, Sandie; Ben Haddou, Tanila; Ramadani, Arba Pramundita; Ariey, Frédéric; Iriart, Xavier; Beghain, Johann; Bouchier, Christiane; Witkowski, Benoit; Berry, Antoine; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise

    2015-10-01

    Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy. PMID:26401601

  16. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  17. Efficacy of oral single dose therapy with artemisinin-naphthoquine phosphate in uncomplicated falciparum malaria.

    PubMed

    Tun, Thein; Tint, Hla Soe; Lin, Khin; Kyaw, Thar Tun; Myint, Moe Kyaw; Khaing, Win; Tun, Zaw Win

    2009-09-01

    All artemisinin-based combination therapies (ACTs), recommended by the World Health Organization, are 3-day regimens. A considerable level of non-compliance on ACTs has been reported from some countries. The study aimed to assess the therapeutic efficacy of single dose treatment with new generation ACT containing artemisinin plus naphthoquine. An oral single dose of eight tablets (400 mg of naphthoquine+1000 mg artemisinin) of the combination drug was administered to adult uncomplicated falciparum malaria patients. Observations of fever, parasite clearance and reappearance, and other clinical manifestations were made on Days 0, 1, 2, 3, 7, 14, 21 and 28. Fifty-three adult falciparum positive cases, with fever or history of fever within the previous 24 h, were included in the final evaluation of the study. Mean fever clearance time, parasite clearance time were 18.2+/-8.6 h and 34.6+/-14.3 h, respectively. Adequate clinical and parasitological response was achieved in 52 cases, the rate being 98.1% (95% CI, 91.1-99.9). One patient was classified as late parasitological failure because of the reappearance of falciparum parasite on Day 14. The drug was well tolerated and no adverse reactions were detected in the patients. Since it is a single dose therapy, health workers can administer the drug as directly observed treatment. PMID:19464245

  18. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1.

    PubMed

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline; Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Spliid, Charlotte; Mathiesen, Line; E Knudsen, Lisbeth; Damm, Peter; G Theander, Thor; R Hansson, Stefan; A Nielsen, Morten; Salanti, Ali

    2016-08-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  19. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    PubMed Central

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  20. Thalassemic erythrocytes inhibit in vitro growth of Plasmodium falciparum.

    PubMed Central

    Brockelman, C R; Wongsattayanont, B; Tan-ariya, P; Fucharoen, S

    1987-01-01

    Blood specimens from 100 thalassemic patients were screened in vitro for inhibitory effects on growth and multiplication of Plasmodium falciparum. The culture medium mixture designated REM consisted of 9 volumes of minimum essential medium (GIBCO Laboratories, Grand Island, N.Y.) and 1 volume of RPMI 1640 (GIBCO) supplemented with 10% heat-inactivated human serum. Parasite multiplication in erythrocytes containing normal hemoglobin cultured in RPMI or REM was similar. Significant reduction in parasite multiplication rates was observed in erythrocytes containing abnormal hemoglobin when these were cultured in REM. The degree of reduction in five types of thalassemic erythrocytes was in the following descending order: hemoglobin H disease with Hb Constant Spring, classical hemoglobin H disease, beta(0)-thalassemia-hemoglobin E in which blood harbored a high percentage of hemoglobin F-containing cells, beta (0)-thalassemia-hemoglobin E in which blood harbored few hemoglobin F-containing cells, and beta-thalassemia heterozygous variant. PMID:3539999

  1. Latitudinal variation in parasitoid guild composition and parasitism rates of North American hawthorn infesting Rhagoletis.

    PubMed

    Rull, Juan; Wharton, Robert; Feder, Jeffrey L; Guillén, Larissa; Sivinski, John; Forbes, Andrew; Aluja, Martín

    2009-06-01

    Rhagoletis pomonella (Diptera: Tephritidae) populations in North America have diverged by exploiting host plants with varying fruiting phenologies in environments that differ markedly in temperature and humidity. As a result, four genetically and ecologically distinct R. pomonella populations that display partial reproductive isolation have evolved. Host shifting by Rhagoletis and similar evolutionary histories could have had cascading effects across trophic levels, influencing the diversity and distribution of associated parasitoid guilds. To establish the basis for a future understanding of the possible effect of divergence in R. pomonella populations on the parasitoids attacking these flies, we surveyed parasitoids from five different species of hawthorns distributed over 15 states in México and 2 states in the midwestern United States. Emerging parasitoids were identified, parasitism rates were calculated, and regional fly and parasitoid emergence schedules were determined. Parasitism rate, emergence schedules, Shannon-Weiner diversity indexes, and species accumulation curves were compared across three main geographical regions. Parasitism levels varied greatly among regions from an overall high of 27.2% in the United States to 5.5% in the Sierra Madre Oriental (SMO) mountains of Mexico, to as low as 0.19% in the Eje Volcánico Trans Mexicano (EVTM). Shannon-Weiner diversity indexes showed that parasitoid species diversity was similar across the distribution range of R. pomonella in Mexico and the United States because of the fact that total parasitism was dominated by only two species, one of them recovered across the whole North American range of hawthorn infesting Rhagoletis. Nevertheless, eight parasitoids were found attacking R. pomonella in Mexico compared with only four collected in the United States. Only two diapausing parasitoid species were shared between the U.S. and Mexican R. pomonella populations: Utetes canaliculatus and Diachasmimorpha mellea

  2. EWGWS insert in Plasmodium falciparum ookinete surface enolase is involved in binding of PWWP containing peptides: Implications to mosquito midgut invasion by the parasite.

    PubMed

    Mukherjee, Debanjan; Mishra, Pushpa; Joshi, Mamata; Thakur, Prasoon Kumar; Hosur, R V; Jarori, Gotam K

    2016-01-01

    There are multiple stages in the life cycle of Plasmodium that invade host cells. Molecular machinery involved is such host-pathogen interactions constitute excellent drug targets and/or vaccine candidates. A screen using a phage display library has previously demonstrated presence of enolase on the surface of the Plasmodium ookinete. Phage-displayed peptides that bound to the ookinete contained a conserved motif (PWWP) in their sequence. Here, direct binding of these peptides with recombinant Plasmodium falciparum enolase (rPfeno) was investigated. These peptides showed specific binding to rPfeno, but failed to bind to other enolases. Plasmodium spp enolases are distinct in having an insert of five amino acids ((104)EWGWS(108)) that is not found in host enolases. The possibility of this insert being the recognition motif for the PWWP containing peptides was examined, (i) by comparing the binding of the peptides with rPfeno and a deletion variant Δ-rPfeno lacking (104)EWGWS(108), (ii) by measuring the changes in proton chemical shifts of PWWP peptides on binding to different enolases and (iii) by inter-molecular docking experiment to locate the peptide binding site. Results from these studies showed that the pentapeptide insert of Pfeno indeed constitutes the binding site for the PWWP domain containing peptide ligands. Search for sequences homologous to phage displayed peptides among peritrophic matrix proteins resulted in identification of perlecan, laminin, peritrophin and spacran. The possibility of these PWWP domain-containing proteins in the peritrophic matrix of insect gut to interact with ookinete cell surface enolase and facilitate the invasion of mosquito midgut epithelium is discussed. PMID:26592350

  3. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model.

    PubMed

    Obaldía, Nicanor; Dow, Geoffrey S; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M; Buckee, Caroline; Duraisingh, Manoj T; Volkman, Sarah K; Wirth, Dyann F; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  4. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model

    PubMed Central

    Obaldía III, Nicanor; Dow, Geoffrey S.; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M.; Buckee, Caroline; Duraisingh, Manoj T.; Volkman, Sarah K.; Wirth, Dyann F.; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  5. A genome-wide map of diversity in Plasmodium falciparum.

    PubMed

    Volkman, Sarah K; Sabeti, Pardis C; DeCaprio, David; Neafsey, Daniel E; Schaffner, Stephen F; Milner, Danny A; Daily, Johanna P; Sarr, Ousmane; Ndiaye, Daouda; Ndir, Omar; Mboup, Soulyemane; Duraisingh, Manoj T; Lukens, Amanda; Derr, Alan; Stange-Thomann, Nicole; Waggoner, Skye; Onofrio, Robert; Ziaugra, Liuda; Mauceli, Evan; Gnerre, Sante; Jaffe, David B; Zainoun, Joanne; Wiegand, Roger C; Birren, Bruce W; Hartl, Daniel L; Galagan, James E; Lander, Eric S; Wirth, Dyann F

    2007-01-01

    Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (pi = 1.16 x 10(-3)) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite. PMID:17159979

  6. Influence of trees in the landscape on parasitism rates of grassland passerine nests in Southeastern North Dakota

    USGS Publications Warehouse

    Pietz, P.J.; Buhl, D.A.; Shaffer, J.A.; Winter, M.; Johnson, D.H.

    2009-01-01

    Woody vegetation has been linked to increased rates of Brown-headed Cowbird (Molothrus ater) parasitism for some grassland hosts. In northern North Dakota, however, studies reported that parasitism of grassland passerine nests was lower in landscapes with trees than in those without trees. We looked for evidence of this pattern elsewhere, using data from two studies conducted on the Sheyenne National Grassland in southeastern North Dakota. Specifically, we examined the probability of parasitism relative to percent tree cover within 2 km of a nest. We found a negative relationship for grassland passerine nests of all species tested. Our results support the suggestion that cowbirds are less likely to parasitize nests of grassland passerines where tree cover on the landscape is greater. This pattern could be explained by cowbirds switching to alternative hosts in woodlands, but this hypothesis needs further testing. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  7. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries.

    PubMed

    Frost, Carol M; Peralta, Guadalupe; Rand, Tatyana A; Didham, Raphael K; Varsani, Arvind; Tylianakis, Jason M

    2016-01-01

    Species have strong indirect effects on others, and predicting these effects is a central challenge in ecology. Prey species sharing an enemy (predator or parasitoid) can be linked by apparent competition, but it is unknown whether this process is strong enough to be a community-wide structuring mechanism that could be used to predict future states of diverse food webs. Whether species abundances are spatially coupled by enemy movement across different habitats is also untested. Here, using a field experiment, we show that predicted apparent competitive effects between species, mediated via shared parasitoids, can significantly explain future parasitism rates and herbivore abundances. These predictions are successful even across edges between natural and managed forests, following experimental reduction of herbivore densities by aerial spraying of insecticide over 20 hectares. This result shows that trophic indirect effects propagate across networks and habitats in important, predictable ways, with implications for landscape planning, invasion biology and biological control. PMID:27577948

  8. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  9. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  10. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    PubMed

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds. PMID:18703053

  11. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination. PMID:24261139

  12. Bat flies (Diptera: Streblidae, Nycteribiidae) parasitic on bats (Mammalia: Chiroptera) at Parque Estadual da Cantareira, São Paulo, Brazil: parasitism rates and host-parasite associations.

    PubMed

    Bertola, Patrícia Beloto; Aires, Caroline Cotrim; Favorito, Sandra Elisa; Graciolli, Gustavo; Amaku, Marcos; Pinto-da-Rocha, Ricardo

    2005-02-01

    A total of 443 bat flies belonging to the families Nycteribiidae and Strelidae, were collected on 22 species of bats (Molossidae, Phyllostomidae, and Vespertilionidae) from Parque Estadual da Cantareira (São Paulo, Brazil), between January, 2000 and January, 2001. Eighteen new occurrences of bat flies were recorded on Anoura geoffroyi (Anastrebla caudiferae), Glossophaga soricina (A. caudiferae), Sturnira lilium (Trichobius phyllostomae, T. furmani, and Paraeuctenodes similis), Artibeus lituratus (A. caudiferae), A. fimbriatus (Megistopoda proxima), A. obscurus (Metelasmus pseudopterus), Myotis nigricans (M. proxima, M. aranea, Paratrichobius longicrus), M. ruber (Anatrichobius passosi, Joblingia sp.), M. levis (A. passosi), M. albescens (A. passosi, Basilia andersoni), and Histiotus velatus (M. aranea). Seven new occurrences were recorded for the state of São Paulo, increasing the range for T. tiptoni, T. furmani, M. proxima, Aspidoptera falcata, A. caudiferae, A. modestini and B. andersoni. The relationships between parasitism and host sex, reproductive stage, age hyperparasitism by fungi are discussed. PMID:15867959

  13. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  14. Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis

    PubMed Central

    Kekre, Mihir; Otto, Thomas D.; Faizullabhoy, Adnan; Rayner, Julian C.; Kwiatkowski, Dominic

    2014-01-01

    The most polymorphic gene family in P. falciparum is the ∼60 var genes distributed across parasite chromosomes, both in the subtelomeres and in internal regions. They encode hypervariable surface proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) that are critical for pathogenesis and immune evasion in Plasmodium falciparum. How var gene sequence diversity is generated is not currently completely understood. To address this, we constructed large clone trees and performed whole genome sequence analysis to study the generation of novel var gene sequences in asexually replicating parasites. While single nucleotide polymorphisms (SNPs) were scattered across the genome, structural variants (deletions, duplications, translocations) were focused in and around var genes, with considerable variation in frequency between strains. Analysis of more than 100 recombination events involving var exon 1 revealed that the average nucleotide sequence identity of two recombining exons was only 63% (range: 52.7–72.4%) yet the crossovers were error-free and occurred in such a way that the resulting sequence was in frame and domain architecture was preserved. Var exon 1, which encodes the immunologically exposed part of the protein, recombined in up to 0.2% of infected erythrocytes in vitro per life cycle. The high rate of var exon 1 recombination indicates that millions of new antigenic structures could potentially be generated each day in a single infected individual. We propose a model whereby var gene sequence polymorphism is mainly generated during the asexual part of the life cycle. PMID:25521112

  15. Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture.

    PubMed Central

    Kwiatkowski, D; Cannon, J G; Manogue, K R; Cerami, A; Dinarello, C A; Greenwood, B M

    1989-01-01

    To investigate the involvement of tumour necrosis factor (TNF) in human malaria, we studied TNF production in patients infected with Plasmodium falciparum, and in co-cultures of human mononuclear cells and malaria parasites in vitro. In the examined sample, plasma TNF levels of over 39 pg/ml were detected in the plasma of 59% of Gambian children with acute malaria, 17% of convalescents, 9% of children with mild infections other than malaria, and 7% of healthy Gambian adults. Mononuclear cells of acute malaria patients, when stimulated with endotoxin in vitro, secreted twice as much TNF as did those of convalescent individuals, and three times that of healthy adult controls. Erythrocytic cultures of P. falciparum stimulated increased TNF secretion by mononuclear cells from uninfected individuals, and a sharp rise in the rate of secretion occurred shortly after schizont rupture. We suggest that malaria fever is mediated, at least in part, through paroxysmal TNF release associated with schizont rupture. PMID:2680183

  16. How to measure patch encounter rate: decision-making mechanisms in the parasitic wasp Asobara tabida.

    PubMed

    Thiel, Andra

    2011-01-01

    Parasitic wasps are faced with the decision of where and for how long to search for hosts. Their leaving decisions depend on the rate at which new host-containing patches are encountered: parasitoids increase foraging efficiency by leaving earlier when patch encounter rates become higher. The mechanisms by which these often tiny insects can assess patch encounter rates have not been thoroughly investigated so far. The aim of the present study, where females of the braconid wasp Asobara tabida encountered patches after varying time intervals, was to measure the shape of the travel-time response curve and to analyse how information on inter-patch distances is translated into foraging behaviour. I examined several proxies for travel-time duration, like those of physiological nature as egg content, cues of senescence, amount of energy spent, or muscle fatigue, as well as true cognitive mechanisms, like measurement of distance or interval timing. Constraints in the wasp's ability to detect patch borders accurately after travelling, e.g. habituation to the patch odour or receptor blocking, are also discussed. From the data presented, most of the above-mentioned mechanisms and constraints can be rejected to work for A. tabida. The effects of inter-patch travel time are strongest when they are short, and even though it cannot be excluded that time measures are processed using an internal clock, I suggest that a Bayesian-like mechanism of timing, the biological basis of which might involve the build-up of neurosecretory material, is the most likely candidate influencing leaving decisions in A. tabida. PMID:20658163

  17. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest.

    PubMed

    Hrcek, Jan; Miller, Scott E; Whitfield, James B; Shima, Hiroshi; Novotny, Vojtech

    2013-10-01

    The processes maintaining the enormous diversity of herbivore-parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84% of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5%) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar-parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2%) as exposed caterpillars. PMID:23463243

  18. Increasing the in vitro proliferation rate of Perkinsus mediterraneus, a parasite of the European flat oyster Ostrea edulis.

    PubMed

    Casas, Sandra M; Li, Yanli; La Peyre, Jerome F

    2011-07-01

    Perkinsus mediterraneus is an alveolate parasite first described in Ostrea edulis from the Balearic Islands (Mediterranean Sea, Spain), and little is known about its biology or the disease it causes. Continuous in vitro cultures of P. mediterraneus have recently been established in the protein-deficient culture medium JL-ODRP-2F to facilitate its study. Parasite proliferation rate in vitro however was low, with densities increasing 2- to 6-fold between subcultures at 6-week intervals. To increase the proliferation rate of P. mediterraneus cultures to rates similar to other Perkinsus species, various culture conditions (temperature, osmolality, pH, O(2), and CO(2) concentrations), culture procedures (seeding density and frequency of medium changes), concentrations of medium components, and addition of medium supplements (oyster tissue lysate, oyster plasma, animal sera, growth factors, and hormones) were tested. All treatments were evaluated by measuring parasite densities after 2 weeks of culture. The greatest increase in parasite densities, a 35-fold increase over the cell seeding density and 18 times that of the control (cells without supplementation), occurred in medium supplemented with 1,000 μg/mL of O. edulis tissue lysate. P. mediterraneus proliferation was also significantly increased by oyster tissue lysate concentration as low as 125 μg/mL. PMID:21243504

  19. Monkey-derived monoclonal antibodies against Plasmodium falciparum.

    PubMed Central

    Stanley, H A; Reese, R T

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a Mr 95,000 antigen. Images PMID:3898084

  20. Evaluation of community-based systems for the surveillance of day three-positive Plasmodium falciparum cases in Western Cambodia

    PubMed Central

    2014-01-01

    Background Delayed clearance of Plasmodium falciparum parasites is used as an operational indicator of potential artemisinin resistance. Effective community-based systems to detect P. falciparum cases remaining positive 72 hours after initiating treatment would be valuable for guiding case follow-up in areas of known resistance risk and for detecting areas of emerging resistance. Methods Systems incorporating existing networks of village malaria workers (VMWs) to monitor day three-positive P. falciparum cases were piloted in three provinces in western Cambodia. Quantitative and qualitative data were used to evaluate the wider feasibility and sustainability of community-based surveillance of day three-positive P. falciparum cases. Results Of 294 day-3 blood slides obtained across all sites (from 297 day-0 positives), 63 were positive for P. falciparum, an overall day-3 positivity rate of 21%. There were significant variations in the systems implemented by different partners. Full engagement of VMWs and health centre staff is critical. VMWs are responsible for a range of individual tasks including preparing blood slides on day-0, completing forms, administering directly observed therapy (DOT) on days 0–2, obtaining follow-up slides on day-3 and transporting slides and paperwork to their supervising health centre. When suitably motivated, unsalaried VMWs are willing and able to produce good quality blood smears and achieve very high rates of DOT and day-3 follow-up. Conclusions Community-based surveillance of day-3 P. falciparum cases is feasible, but highly intensive, and as such needs strong and continuous support, particularly supervision and training. The purpose and role of community-based day-3 surveillance should be assessed in the light of resource requirements; scaling-up would need to be systematic and targeted, based on clearly defined epidemiological criteria. To be truly comprehensive, the system would need to be extended beyond VMWs to other public

  1. Expression of Plasmodium falciparum surface antigens in Escherichia coli.

    PubMed Central

    Ardeshir, F; Flint, J E; Reese, R T

    1985-01-01

    The asexual blood stages of the human malarial parasite Plasmodium falciparum produce many antigens, only some of which are important for protective immunity. Most of the putative protective antigens are believed to be expressed in schizonts and merozoites, the late stages of the asexual cycle. With the aim of cloning and characterizing genes for important parasite antigens, we used late-stage P. falciparum mRNA to construct a library of cDNA sequences inserted in the Escherichia coli expression vector pUC8. Nine thousand clones from the expression library were immunologically screened in situ with serum from Aotus monkeys immune to P. falciparum, and 95 clones expressing parasite antigens were identified. Mice were immunized with lysates from 49 of the bacterial clones that reacted with Aotus sera, and the mouse sera were tested for their reactivity with parasite antigens by indirect immunofluorescence, immunoprecipitation, and immunoblotting assays. Several different P. falciparum antigens were identified by these assays. Indirect immunofluorescence studies of extracellular merozoites showed that three of these antigens appear to be located on the merozoite surface. Thus, we have identified cDNA clones to three different P. falciparum antigens that may be important in protective immunity. Images PMID:3887406

  2. Plasmodium falciparum: multifaceted resistance to artemisinins.

    PubMed

    Paloque, Lucie; Ramadani, Arba P; Mercereau-Puijalon, Odile; Augereau, Jean-Michel; Benoit-Vical, Françoise

    2016-01-01

    Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance. PMID:26955948

  3. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  4. Dynamic alteration in splenic function during acute falciparum malaria

    SciTech Connect

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  5. Improved In Vitro Culture of Plasmodium falciparum Permits Establishment of Clinical Isolates with Preserved Multiplication, Invasion and Rosetting Phenotypes

    PubMed Central

    Albrecht, Letusa; Ahmed Ismail, Hodan; Normark, Johan; Flaberg, Emilie; Szekely, Laszlo; Hultenby, Kjell; Persson, Kristina E. M.; Egwang, Thomas G.; Wahlgren, Mats

    2013-01-01

    To be able to robustly propagate P. falciparum at optimal conditions in vitro is of fundamental importance for genotypic and phenotypic studies of both established and fresh clinical isolates. Cryo-preserved P. falciparum isolates from Ugandan children with severe or uncomplicated malaria were investigated for parasite phenotypes under different in vitro growth conditions or studied directly from the peripheral blood. The parasite cultures showed a minimal loss of parasite-mass and preserved percentage of multiple infected pRBCs to that in peripheral blood, maintained adhesive phenotypes and good outgrowth and multiplication rates when grown in suspension and supplemented with gas. In contrast, abnormal and greatly fluctuating levels of multiple infections were observed during static growth conditions and outgrowth and multiplication rates were inferior. Serum, as compared to Albumax, was found necessary for optimal presentation of PfEMP1 at the pRBC surface and/or for binding of serum proteins (immunoglobulins). Optimal in vitro growth conditions of P. falciparum therefore include orbital shaking (50 rev/min), human serum (10%) and a fixed gas composition (5% O2, 5% CO2, 90% N2). We subsequently established 100% of 76 frozen patient isolates and found rosetting with schizont pRBCs in every isolate (>26% schizont rosetting rate). Rosetting during schizogony was often followed by invasion of the bound RBC as seen by regular and time-lapse microscopy as well as transmission electron microscopy. The peripheral parasitemia, the level of rosetting and the rate of multiplication correlated positively to one another for individual isolates. Rosetting was also more frequent with trophozoite and schizont pRBCs of children with severe versus uncomplicated malaria (p<0.002; p<0.004). The associations suggest that rosetting enhances the ability of the parasite to multiply within the human host. PMID:23894537

  6. Diagnosis and management of the neurological complications of falciparum malaria

    PubMed Central

    Mishra, Saroj K.; Newton, Charles R. J. C.

    2010-01-01

    Malaria is a major public health problem in the developing world owing to its high rates of morbidity and mortality. Of all the malarial parasites that infect humans, Plasmodium falciparum is most commonly associated with neurological complications, which manifest as agitation, psychosis, seizures, impaired consciousness and coma (cerebral malaria). Cerebral malaria is the most severe neurological complication; the condition is associated with mortality of 15–20%, and a substantial proportion of individuals with this condition develop neurocognitive sequelae. In this Review, we describe the various neurological complications encountered in malaria, discuss the underlying pathogenesis, and outline current management strategies for these complications. Furthermore, we discuss the role of adjunctive therapies in improving outcome. PMID:19347024

  7. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  8. Dynamics of Plasmodium falciparum Parasitemia Regarding Combined Treatment Regimens for Acute Uncomplicated Malaria, Antioquia, Colombia

    PubMed Central

    Álvarez, Gonzalo; Tobón, Alberto; Piñeros, Juan-Gabriel; Ríos, Alexandra; Blair, Silvia

    2010-01-01

    Selecting suitable anti-malarial treatment represents one of the best tools for reducing morbidity and mortality caused by this disease. Sexual and asexual parasite dynamics were thus evaluated in patients involved in antimalarial drug efficacy studies by using combined treatment with and without artemisinin derivatives for treating uncomplicated acute Plasmodium falciparum malaria in Antioquia, Colombia. All treatment doses were supervised and administered according to patients' weight; sexual and asexual parasitemia were evaluated during 28- or 42-days follow-up in 468 patients. Artemisinin-based combination therapy showed greater parasiticidal ability, showing a mean asexual parasitemia survival rate of one day and mean gametocyte survival rate of 1–2 days. Sexual and asexual parasitemias were eliminated more quickly and effectively in the group receiving artemisinin-based combination therapy. Adding 45 mg of primaquine to treatment with artesunate and mefloquine reduced gametocyte and asexual parasite survival by one day. PMID:20595483

  9. Genetic architecture of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-03-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  10. Genetic architecture of artemisinin-resistant Plasmodium falciparum

    PubMed Central

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-01-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  11. Effects of parasites and antigenic challenge on metabolic rates and thermoregulation in northern red-backed voles (Myodes rutilus).

    PubMed

    Novikov, Eugene; Kondratyuk, Ekaterina; Petrovski, Dmitry; Krivopalov, Anton; Moshkin, Mikhail

    2015-12-01

    Perturbations in host energetics are considered to be an essential pathway for parasite impact on host fitness. However, direct estimations of parasite-induced variations in basal metabolic rates of vertebrate hosts have so far provided contradictory results. The energy requirements of immunity and other vital functions may be compromised in energy-demanding conditions in comparison to comfortable conditions; therefore, in our study performed on the wild red-backed vole, Myodes rutilus, we compared the values of indices that reflect metabolic and thermoregulatory responses to acute cooling in individuals that had been naturally infected by gut helminths or Ixodes persulcatus taiga ticks to individuals with no signs of infestation. To consider the possible effects of an acquired immune response on host energetics, we also injected some of the tested individuals with sheep red blood cells (SRBC). Red-backed voles infected by the nematode Heligmosomum mixtum injected with SRBC showed significantly lower cold-induced maximum oxygen consumption than the saline control. Additionally, individuals infected with H. mixtum showed significantly lower oxygen consumption during the final minute of the 15-min acute cooling period and a significantly greater decline in body temperature than individuals free from helminths. In individuals concurrently infected by H. mixtum and the cestodes Arostrilepis horrida, these indices did not differ from helminth-free individuals. The number of ticks simultaneously parasitizing the voles at the moment of capture correlated positively with their SMR. Our results suggest that even natural parasites produce deleterious effects on host aerobic capacity and thermoregulatory abilities, although the effects of different parasites might not be additive. PMID:26341798

  12. Resistance of Plasmodium falciparum to antimalarial drugs in Equatorial Guinea.

    PubMed

    Roche, J; Benito, A; Ayecaba, S; Amela, C; Molina, R; Alvar, J

    1993-10-01

    One hundred and sixty-six children from Equatorial Guinea, all under 10 years of age and with acute uncomplicated falciparum malaria, were randomly allocated to four groups and treated with one of the following regimens: chloroquine or amodiaquine (25 mg base/kg body weight over 3 days), quinine (8 mg/kg every 8 h for 3 or 5 days), and sulphadoxine-pyrimethamine (25-1.25 mg/kg, in one dose). The parasite clearance rates up to day 14 were 28% with chloroquine, 74% with amodiaquine, and 95% with quinine or sulphadoxine-pyrimethamine. The times required to clear asexual blood forms of Plasmodium falciparum in sensitive cases were 64, 70, 73 and 65 h, respectively. Although quinine and sulphadoxine-pyrimethamine are equally effective, quinine is recommended for treatment of multidrug-resistant malaria in paediatric patients, essentially because of the risk of serious reactions to sulpha drugs. Health providers are, however, encouraged to keep supplies of sulphadoxine-pyrimethamine as an option and to refer patients quickly, if required. PMID:8311568

  13. Vaccines 85: Molecular and chemical basis of resistance to parasitic, bacterial, and viral diseases

    SciTech Connect

    Lerner, R.A.; Chanock, R.M.; Brown, F.

    1985-01-01

    This book contains 70 selections. Some of the selection titles are: Structure of the Gene Encoding of Immunodominant Surface Antigen on the Sprozoite of the Human Malaria Parasite Plasmodium falciparum; Cloning and Expression in Bacteria of the Genes for Merozite-specific Antigens from the Malaria Parasite Plasmodium falciparum; A Major Surface Antigen of Plasmodium falciparum in Merozoites: Studies on the Protein and its Gene; Genetic Construction of Cholera Vaccine Prototypes; and Viral Genes, Cytotoxic T Lymphocytes and Immunity.

  14. Metabolic QTL Analysis Links Chloroquine Resistance in Plasmodium falciparum to Impaired Hemoglobin Catabolism

    PubMed Central

    Olszewski, Kellen L.; Cobbold, Simon A.; Baska, Katelynn S.; Tan, Asako; Ferdig, Michael T.; Llinás, Manuel

    2014-01-01

    Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations. PMID:24391526

  15. Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast

    PubMed Central

    Muturi, Ephantus J; Mbogo, Charles M; Mwangangi, Joseph M; Ng'ang'a, Zipporah W; Kabiru, Ephantus W; Mwandawiro, Charles; Beier, John C

    2006-01-01

    Background Anopheles gambiae s.l. and An. funestus are important vectors of malaria and bancroftian filariasis, which occur as co-endemic infections along the Kenyan Coast. However, little is known about the occurrence and prevalence of concomitant infections of the two diseases in mosquito and human populations in these areas. This study reports the prevalence of concomitant infections of Plasmodium falciparum and Wuchereria bancrofti in mosquito and human populations in Jilore and Shakahola villages in Malindi, Kenya. Methods Mosquitoes were sampled inside houses by pyrethrum spray sheet collection (PSC) while blood samples were collected by finger prick technique at the end of entomological survey. Results A total of 1,979 female Anopheles mosquitoes comprising of 1,919 Anopheles gambiae s.l and 60 An. funestus were collected. Concomitant infections of P. falciparum sporozoites and filarial worms occurred in 1.1% and 1.6% of An. gambiae s.l collected in Jilore and Shakahola villages respectively. Wuchereria-infected mosquitoes had higher sporozoite rates compared to non-infected mosquitoes, but multiple infections appeared to reduce mosquito survivorship making transmission of such infections rare. None of the persons examined in Shakahola (n = 107) had coinfections of the two parasites, whereas in Jilore (n = 94), out of the 4.3% of individuals harbouring both parasites, 1.2% had P. falciparum gametocytes and microfilariae and could potentially infect the mosquito with both parasites simultaneously. Conclusion Concerted efforts should be made to integrate the control of malaria and bancroftian filariasis in areas where they co-exist. PMID:16723020

  16. Squalestatin Is an Inhibitor of Carotenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Gabriel, Heloisa B.; Silva, Marcia F.; Kimura, Emília A.; Wunderlich, Gerhard

    2015-01-01

    The increasing resistance of malaria parasites to almost all available drugs calls for the characterization of novel targets and the identification of new compounds. Carotenoids are polyisoprenoids from plants, algae, and some bacteria, and they are biosynthesized by Plasmodium falciparum but not by mammalian cells. Biochemical and reverse genetics approaches were applied to demonstrate that phytoene synthase (PSY) is a key enzyme for carotenoid biosynthesis in P. falciparum and is essential for intraerythrocytic growth. The known PSY inhibitor squalestatin reduces biosynthesis of phytoene and kills parasites during the intraerythrocytic cycle. PSY-overexpressing parasites showed increased biosynthesis of phytoene and its derived product phytofluene and presented a squalestatin-resistant phenotype, suggesting that this enzyme is the primary target of action of this drug in the parasite. PMID:25779575

  17. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies

    PubMed Central

    Witkowski, Benoit; Amaratunga, Chanaki; Khim, Nimol; Sreng, Sokunthea; Chim, Pheaktra; Kim, Saorin; Lim, Pharath; Mao, Sivanna; Sopha, Chantha; Sam, Baramey; Anderson, Jennifer M; Duong, Socheat; Chuor, Char Meng; Taylor, Walter R J; Suon, Seila; Mercereau-Puijalon, Odile; Fairhurst, Rick M; Menard, Didier

    2016-01-01

    Summary Background Artemisinin resistance in Plasmodium falciparum lengthens parasite clearance half-life during artemisinin monotherapy or artemisinin-based combination therapy. Absence of in-vitro and ex-vivo correlates of artemisinin resistance hinders study of this phenotype. We aimed to assess whether an in-vitro ring-stage survival assay (RSA) can identify culture-adapted P falciparum isolates from patients with slow-clearing or fast-clearing infections, to investigate the stage-dependent susceptibility of parasites to dihydroartemisinin in the in-vitro RSA, and to assess whether an ex-vivo RSA can identify artemisinin-resistant P falciparum infections. Methods We culture-adapted parasites from patients with long and short parasite clearance half-lives from a study done in Pursat, Cambodia, in 2010 (registered with ClinicalTrials.gov, number NCT00341003) and used novel in-vitro survival assays to explore the stage-dependent susceptibility of slow-clearing and fast-clearing parasites to dihydroartemisinin. In 2012, we implemented the RSA in prospective parasite clearance studies in Pursat, Preah Vihear, and Ratanakiri, Cambodia (NCT01736319), to measure the ex-vivo responses of parasites from patients with malaria. Continuous variables were compared with the Mann-Whitney U test. Correlations were analysed with the Spearman correlation test. Findings In-vitro survival rates of culture-adapted parasites from 13 slow-clearing and 13 fast-clearing infections differed significantly when assays were done on 0–3 h ring-stage parasites (10·88% vs 0·23%; p=0·007). Ex-vivo survival rates significantly correlated with in-vivo parasite clearance half-lives (n=30, r=0·74, 95% CI 0·50–0·87; p<0·0001). Interpretation The in-vitro RSA of 0–3 h ring-stage parasites provides a platform for the molecular characterisation of artemisinin resistance. The ex-vivo RSA can be easily implemented where surveillance for artemisinin resistance is needed. Funding Institut

  18. Genetic Evidence of Importation of Drug-Resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo

    PubMed Central

    Taylor, Steve M.; Juliao, Patricia C.; Parobek, Christian M.; Janko, Mark; Gonzalez, Luis Demetrio; Ortiz, Lucia; Padilla, Norma; Tshefu, Antoinette K.; Emch, Michael; Udhayakumar, Venkatachalam; Lindblade, Kim; Meshnick, Steven R.

    2014-01-01

    Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations. PMID:24856348

  19. Genetic Evidence of Importation of Drug-Resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo.

    PubMed

    Patel, Jaymin C; Taylor, Steve M; Juliao, Patricia C; Parobek, Christian M; Janko, Mark; Gonzalez, Luis Demetrio; Ortiz, Lucia; Padilla, Norma; Tshefu, Antoinette K; Emch, Michael; Udhayakumar, Venkatachalam; Lindblade, Kim; Meshnick, Steven R

    2014-06-01

    Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations. PMID:24856348

  20. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion.

    PubMed

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-06-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were observed upon incubation of synchronous parasite cultures in the presence of the triterpenoids, and when the parasite cultures were grown in a triterpenoid-free medium with erythrocytes preloaded with the triterpenoids. PMID:16732511

  1. Induction of gene amplification in Plasmodium falciparum

    SciTech Connect

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  2. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  3. Clonal Variants of Plasmodium falciparum Exhibit a Narrow Range of Rolling Velocities to Host Receptor CD36 under Dynamic Flow Conditions

    PubMed Central

    Herricks, Thurston; Avril, Marion; Janes, Joel; Smith, Joseph D.

    2013-01-01

    Cytoadhesion of Plasmodium falciparum parasitized red blood cells (pRBCs) has been implicated in the virulence of malaria infection. Cytoadhesive interactions are mediated by the protein family of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). The PfEMP1 family is under strong antibody and binding selection, resulting in extensive sequence and size variation of the extracellular domains. Here, we investigated cytoadhesion of pRBCs to CD36, a common receptor of P. falciparum field isolates, under dynamic flow conditions. Isogeneic parasites, predominantly expressing single PfEMP1 variants, were evaluated for binding to recombinant CD36 under dynamic flow conditions using microfluidic devices. We tested if PfEMP1 size (number of extracellular domains) or sequence variation affected the pRBC-CD36 interaction. Our analysis showed that clonal parasite variants varied ∼5-fold in CD36 rolling velocity despite extensive PfEMP1 sequence polymorphism. In addition, adherent pRBCs exhibited a characteristic hysteresis in rolling velocity at microvascular flow rates, which was accompanied by changes in pRBC shape and may represent important adaptations that favor stable binding. PMID:24014767

  4. Identification of a Plasmodium falciparum Phospholipid Transfer Protein*

    PubMed Central

    van Ooij, Christiaan; Withers-Martinez, Chrislaine; Ringel, Alessa; Cockcroft, Shamshad; Haldar, Kasturi; Blackman, Michael J.

    2013-01-01

    Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte. PMID:24043620

  5. In Vitro Activity and Interaction of Clindamycin Combined with Dihydroartemisinin against Plasmodium falciparum

    PubMed Central

    Ramharter, M.; Noedl, H.; Winkler, H.; Graninger, W.; Wernsdorfer, W. H.; Kremsner, P. G.; Winkler, S.

    2003-01-01

    Combination regimens are considered a valuable tool for the fight against drug-resistant falciparum malaria. This study was conducted to evaluate the antimalarial potential of clindamycin in combination with dihydroartemisinin in continuously cultured and in freshly isolated Plasmodium falciparum parasites, measuring the inhibition of Plasmodium falciparum histidine-rich protein II synthesis. Interaction analysis revealed a synergistic or additive mode of interaction at various concentration ratios in all continuously cultured parasites at the 50% effective concentration (EC50) level. Antagonism was not found for any of the culture-adapted parasites. In fresh P. falciparum isolates, a fixed clindamycin-dihydroartemisinin combination exhibited additive activity at the EC50 and EC90 levels. The drug mixture showed no significant activity correlation to other commonly used antimalarials. The clindamycin-dihydroartemisinin combination appears to be a promising candidate for clinical investigation. PMID:14576107

  6. UvrD helicase of Plasmodium falciparum.

    PubMed

    Shankar, Jay; Tuteja, Renu

    2008-03-15

    Malaria caused by the mosquito-transmitted parasite Plasmodium is the cause of enormous number of deaths every year in the tropical and subtropical areas of the world. Among four species of Plasmodium, Plasmodium falciparum causes most fatal form of malaria. With time, the parasite has developed insecticide and drug resistance. Newer strategies and advent of novel drug targets are required so as to combat the deadly form of malaria. Helicases is one such class of enzymes which has previously been suggested as potential antiviral and anticancer targets. These enzymes play an essential role in nearly all the nucleic acid metabolic processes, catalyzing the transient opening of the duplex nucleic acids in an NTP-dependent manner. DNA helicases from the PcrA/UvrD/Rep subfamily are important for the survival of the various organisms. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. UvrD from this subfamily is the only member present in the P. falciparum genome, which shows no homology with UvrD from human and thus can be considered as a strong potential drug target. In this manuscript we provide an overview of UvrD family of helicases and bioinformatics analysis of UvrD from P. falciparum. PMID:18242886

  7. [Efficiency and specificity of the KAT-test for rapid diagnosis of falciparum malaria].

    PubMed

    Cong, Le Dinh; Sergiev, V P; Rabinovich, S A; Nhah, Doan Hanh; Huong, Nguyen Van; Morozov, E N; Kukina, I V; Thinh, Ta Thi; Maksakovskaia, E V; Dao, Le Minh; Chalyĭ, V F; To, Dang Thi; Fandeev, V A; Hoa, Ngo Viet; Due, Nguyen Thi

    2002-01-01

    A new rapid KAT Quick Malaria test for the diagnosis of falciparum malaria, which is based on the detection of a monoclonal antibody-antigen complex of malaria parasites, has been worked out by the KAT Medical CC in South Africa. The efficiency and specificity of the KAT test were compared with those of the microscopic method and with the ICT test for rapid diagnosis of P. falciparum and P. vivax. The polymerase chain reaction was used as a control test. Testing for malaria was performed on 98 blood samples from feverish patients in Vietnam and Tadjikistan and among the persons who had returned to Moscow from endemic regions. The efficiency of the KAT test for falciparum-malaria was found to be 100% versus 90.5% with ICT. The absence of cross-reactions with P. vivax and the presence of pseudopositive results of the KAT test for fever cases of non-malaria origin indicate its high specificity. There was no correlation between the rate of test line colouring and the level of parasitemia. The KAT test yielded positive results only when gametocytes were found in blood specimens. PMID:12214515

  8. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    SciTech Connect

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  9. High-Throughput Generation of P. falciparum Functional Molecules by Recombinational Cloning

    PubMed Central

    Aguiar, João Carlos; LaBaer, Joshua; Blair, Peter L.; Shamailova, Victoria Y.; Koundinya, Malvika; Russell, Joshua A.; Huang, Fengying; Mar, Wenhong; Anthony, Robert M.; Witney, Adam; Caruana, Sonia R.; Brizuela, Leonardo; Sacci, John B.; Hoffman, Stephen L.; Carucci, Daniel J.

    2004-01-01

    Large-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors. Target genes (n = 303) were selected using specific sets of criteria, including stage expression and secondary structure. Upon screening four colonies per capture reaction, we achieved 84% cloning efficiency. The genes were subcloned in parallel into three expression vectors: a DNA vaccine vector and two protein expression vectors. These transfers yielded a 100% success rate without any observed recombination based on single colony screening. The functional expression of 95 genes was evaluated in mice with DNA vaccine constructs to generate antibody against various stages of the parasite. From these, 19 induced antibody titers against the erythrocytic stages and three against sporozoite stages. We have overcome the potential limitation of producing large P. falciparum clone sets in multiple expression vectors. This approach represents a powerful technique for the production of molecular reagents for genome-wide functional analysis of the P. falciparum genome and will provide for a resource for the malaria resource community distributed through public repositories. PMID:15489329

  10. A cross strain Plasmodium falciparum microarray optimized for the transcriptome analysis of Plasmodium falciparum patient derived isolates.

    PubMed

    Subudhi, Amit Kumar; Boopathi, P A; Middha, Sheetal; Acharya, Jyoti; Rao, Sudha Narayana; Mugasimangalam, Raja C; Sirohi, Paramendra; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2016-09-01

    Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic's Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq. PMID:27489776

  11. The paradoxical population genetics of Plasmodium falciparum.

    PubMed

    Hartl, Daniel L; Volkman, Sarah K; Nielsen, Kaare M; Barry, Alyssa E; Day, Karen P; Wirth, Dyann F; Winzeler, Elizabeth A

    2002-06-01

    Among the leading causes of death in African children is cerebral malaria caused by the parasitic protozoan Plasmodium falciparum. Endemic forms of this disease are thought to have originated in central Africa 5000-10000 years ago, coincident with the innovation of slash-and-burn agriculture and the diversification of the Anopheles gambiae complex of mosquito vectors. Population genetic studies of P. falciparum have yielded conflicting results. Some evidence suggests that today's population includes multiple ancient lineages pre-dating human speciation. Other evidence suggests that today's population derives from only one, or a small number, of these ancient lineages. Resolution of this issue is important for the evaluation of the long-term efficacy of drug and immunological control strategies. PMID:12036741

  12. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  13. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  14. Therapeutic efficacy and safety of dihydroartemisinin-piperaquine versus artesunate-mefloquine in uncomplicated Plasmodium falciparum malaria in India

    PubMed Central

    2012-01-01

    Background Resistance in Plasmodium falciparum to commonly used anti-malarial drugs, especially chloroquine, is being increasingly documented in India. By 2007, the first-line treatment for uncomplicated malaria has been revised to recommend artemisinin-based combination therapy (ACT) for all confirmed P. falciparum cases. Objective The objective of this study was to compare the efficacy, safety and tolerability between dihydroartemisinin-piperaquine (DP) and artesunate plus mefloquine (A + M) drug combinations in the treatment of uncomplicated P. falciparum malaria in India. Methods Between 2006 and 2007, 150 patients with acute uncomplicated P. falciparum malaria were enrolled, randomized to DP (101) or A + M (49) and followed up for 63 days as part of an open-label, non-inferiority, randomized, phase III multicenter trial in Asia. Results The heterogeneity analysis showed no statistically significant difference between India and the other countries involved in the phase III study, for both the PCR-corrected and uncorrected cure rates. As shown at the whole study level, both forms of ACT were highly efficacious in India. In fact, in the per protocol population, the 63-day cure rates were 100% for A + M and 98.8% for DP. The DP combination exerted a significant post-treatment prophylactic effect, and compared with A + M a significant reduction in the incidence of new infections for DP was observed (respectively 17.1% versus 7.5% of patients experienced new infection within follow up). Parasite and fever clearance was rapid in both treatment arms (median time to parasite clearance of one day for both groups). Both DP and A + M were well tolerated, with the majority of adverse events of mild or moderate severity. The frequencies of individual adverse events were generally similar between treatments, although the incidence of post treatment adverse events was slightly higher in patients who received A + M with respect to those treated with

  15. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum.

    PubMed Central

    Crabb, B S; Cowman, A F

    1996-01-01

    Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest. Images Fig. 4 Fig. 5 PMID:8692985

  16. Plasmodium falciparum produces prostaglandins that are pyrogenic, somnogenic, and immunosuppressive substances in humans.

    PubMed

    Kilunga Kubata, B; Eguchi, N; Urade, Y; Yamashita, K; Mitamura, T; Tai, K; Hayaishi, O; Horii, T

    1998-09-21

    Plasmodium falciparum causes the most severe form of human malaria, which kills approximately 1.5-2.7 million people every year, but the molecular mechanisms underlying the clinical symptoms and the host-parasite interaction remain unclear. We show here that P. falciparum produces prostaglandins (PGs) D2, E2, and F2alpha. After incubation with 1 mM arachidonic acid (AA), cell homogenates of P. falciparum produced PGs as determined by enzyme immunoassay and gas chromatography-selected ion monitoring. PG production in the parasite homogenate was not affected by the nonsteroidal antiinflammatory drugs aspirin and indomethacin, and was partially heat resistant, whereas PG biosynthesis by mammalian cyclooxygenase was completely inhibited by these chemicals and by heat treatment. Addition of AA to the parasite cell culture markedly increased an ability of the parasite cell homogenate to produce PGs and of parasitized red blood cells to accumulate PGs in the culture medium. PGD2 and PGE2 accumulated in the culture medium at the stages of trophozoites and schizonts more actively than at the ring stage. These findings are the first evidence of the direct involvement of a malaria parasite in the generation of substances that are pyrogenic and injurious to the host defenses. We will discuss a possible contribution of the parasite-produced PGs to pathogenesis and host-parasite interaction of P. falciparum. PMID:9743538

  17. Plasmodium falciparum Serine/Threonine Phosphoprotein Phosphatases (PPP): From Housekeeper to 'Holy Grail'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Availability of complete genome sequence for Plasmodium falciparum has been useful in drawing a comprehensive metabolic map of the parasite. Distinct and unique metabolic characteristics of the parasite may be exploited as potential targets for new antimalarial drug discovery research. Reversible ph...

  18. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum

    PubMed Central

    Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

    2015-01-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  19. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Isozumi, Rie; Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H; Kaneko, Akira

    2015-03-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012-2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  20. Homology-Based Prediction of Potential Protein–Protein Interactions between Human Erythrocytes and Plasmodium falciparum

    PubMed Central

    Ramakrishnan, Gayatri; Srinivasan, Narayanaswamy; Padmapriya, Ponnan; Natarajan, Vasant

    2015-01-01

    Plasmodium falciparum, a causative agent of malaria, is a well-characterized obligate intracellular parasite known for its ability to remodel host cells, particularly erythrocytes, to successfully persist in the host environment. However, the current levels of understanding from the laboratory experiments on the host–parasite interactions and the strategies pursued by the parasite to remodel host erythrocytes are modest. Several computational means developed in the recent past to predict host–parasite/pathogen interactions have generated testable hypotheses on feasible protein–protein interactions. We demonstrate the utility of protein structure-based protocol in the recognition of potential interacting proteins across P. falciparum and host erythrocytes. In concert with the information on the expression and subcellular localization of host and parasite proteins, we have identified 208 biologically feasible interactions potentially brought about by 59 P. falciparum and 30 host erythrocyte proteins. For selected cases, we have evaluated the physicochemical viability of the predicted interactions in terms of surface complementarity, electrostatic complementarity, and interaction energies at protein interface regions. Such careful inspection of molecular and mechanistic details generates high confidence on the predicted host–parasite protein–protein interactions. The predicted host–parasite interactions generate many experimentally testable hypotheses that can contribute to the understanding of possible mechanisms undertaken by the parasite in host erythrocyte remodeling. Thus, the key protein players recognized in P. falciparum can be explored for their usefulness as targets for chemotherapeutic intervention. PMID:26740742

  1. Parasitism and survival rate of Diadegma fenestrale (Hymenoptera: Ichneumonidae) and DfIV gene expression patterns in two lepidopteran hosts.

    PubMed

    Kim, Ju Il; Kwon, Min; Lee, Si Hyeock; Kim, Yonggyun

    2015-04-17

    The genus Diadegma is a well-known parasitoid group and some are known to have symbiotic virus, polydnavirus (PDV). A novel IV was discovered from the calyx of Diadegma fenestrale female and sequenced its genome. D. fenestrale has more than two hosts, including potato tuber moth (PTM) and diamondback moth (DBM). D. fenestrale preferred PTM to DBM as hosts based on the oviposition and survival rate. Nevertheless, the developmental period and morphology of D. fenestrale were not significantly different between PTM and DBM. We compared DfIV gene expression patterns between PTM and DBM under various conditions to understand the phenomena. DfIV genes were more widely expressed in PTM with large numbers than in DBM after parasitized by D. fenestrale, particularly at the initial point. They showed differential expression patterns between two lepidopteran hosts. This DfIV gene expression plasticity showed a dependency on the lepidopteran host species and parasitization time, suggesting that it may contribute to increase the parasitoid survival rate. This might be one of the key elements that determine the symbiotic relationship between PDV and parasitoid. PMID:25769948

  2. Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties.

    PubMed

    Sanyal, Sohini; Egée, Stéphane; Bouyer, Guillaume; Perrot, Sylvie; Safeukui, Innocent; Bischoff, Emmanuel; Buffet, Pierre; Deitsch, Kirk W; Mercereau-Puijalon, Odile; David, Peter H; Templeton, Thomas J; Lavazec, Catherine

    2012-01-12

    Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature. PMID:22106347

  3. Extraction of Hydrophilic Metabolites from Plasmodium falciparum-Infected Erythrocytes for Metabolomic Analysis

    PubMed Central

    Olszewski, Kellen L.; Llinás, Manuel

    2012-01-01

    Metabolomics is an increasingly common analytical approach for investigating metabolic networks of pathogenic organisms. This may be of particular use in the study of parasitic infections due to the intrinsic metabolic connection between the parasite and its host. In vitro cultures of the malaria parasite Plasmodium falciparum present a valuable platform to elucidate the structure and dynamics of the parasite’s metabolic network and to determine the mechanisms of action of antimalarial drugs and drug resistance mutations. Accurately measuring metabolite levels requires a reproducible method for quantifying intracellular metabolites. Here we present a simple protocol for extracting hydrophilic metabolites from P. falciparum-infected erythrocyte cultures. PMID:22990783

  4. Studies on serum requirements for the cultivation of Plasmodium falciparum

    PubMed Central

    Divo, A. A.; Jensen, J. B.

    1982-01-01

    Previous experiments using RPMI 1640 medium have indicated that the dialysis of human serum removes components of low relative molecular mass (6000-8000 RMM) that are essential for continuous cultivation of Plasmodium falciparum. To determine which low-RMM components are important for parasite development, we compared growth in normal serum to that in dialysed serum using a number of other commercially available media, which we considered to be richer than RPMI 1640. Through these comparisons, we determined that hypoxanthine was the major dialysable nutrient required for parasite development. High quality bovine serum requires 3 - 12 × 10-5 mol/litre of hypoxanthine as a supplement to support continuous cultures of P. falciparum. Thus far we have been unable to attain parasite growth in medium containing supplemented bovine serum that is as good as growth in medium containing human serum. PMID:6754122

  5. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts.

    PubMed

    Silva, Joana C; Egan, Amy; Arze, Cesar; Spouge, John L; Harris, David G

    2015-05-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0-5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  6. A New Method for Estimating Species Age Supports the Coexistence of Malaria Parasites and Their Mammalian Hosts

    PubMed Central

    Silva, Joana C.; Egan, Amy; Arze, Cesar; Spouge, John L.; Harris, David G.

    2015-01-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0–5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  7. Spatial risk profiling of Plasmodium falciparum parasitaemia in a high endemicity area in Côte d'Ivoire

    PubMed Central

    2009-01-01

    Background The objective of this study was to identify demographic, environmental and socioeconomic risk factors and spatial patterns of Plasmodium falciparum parasitaemia in a high endemicity area of Africa, and to specify how this information can facilitate improved malaria control at the district level. Methods A questionnaire was administered to about 4,000 schoolchildren in 55 schools in western Côte d'Ivoire to determine children's socioeconomic status and their habit of sleeping under bed nets. Environmental data were obtained from satellite images, digitized ground maps and a second questionnaire addressed to school directors. Finger prick blood samples were collected and P. falciparum parasitaemia determined under a microscope using standardized, quality-controlled methods. Bayesian variogram models were utilized for spatial risk modelling and mapping of P. falciparum parasitaemia at non-sampled locations, assuming stationary and non-stationary underlying spatial dependence. Results Two-thirds of the schoolchildren were infected with P. falciparum and the mean parasitaemia among infected children was 959 parasites/μl of blood. Age, socioeconomic status, not sleeping under a bed net, coverage rate with bed nets and environmental factors (e.g., normalized difference vegetation index, rainfall, land surface temperature and living in close proximity to standing water) were significantly associated with the risk of P. falciparum parasitaemia. After accounting for spatial correlation, age, bed net coverage, rainfall during the main malaria transmission season and distance to rivers remained significant covariates. Conclusion It is argued that a massive increase in bed net coverage, particularly in villages in close proximity to rivers, in concert with other control measures, is necessary to bring malaria endemicity down to intermediate or low levels. PMID:19906295

  8. Human antisera detect a Plasmodium falciparum genomic clone encoding a nonapeptide repeat.

    PubMed

    Koenen, M; Scherf, A; Mercereau, O; Langsley, G; Sibilli, L; Dubois, P; Pereira da Silva, L; Müller-Hill, B

    Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer. PMID:6090935

  9. Short Report: Detection of the Dihydrofolate Reductase–164L Mutation in Plasmodium falciparum Infections from Malawi by Heteroduplex Tracking Assay

    PubMed Central

    Juliano, Jonathan J.; Trottman, Paul; Mwapasa, Victor; Meshnick, Steven R.

    2008-01-01

    Standard polymerase chain reaction methods often cannot detect drug-resistance mutations in Plasmodium falciparum infections if the mutation is present in ≤ 20% of the parasites. A heteroduplex tracking assay was developed that can detect dihydrofolate reductase 164-L mutations in variants representing 1% of the parasites in an individual host. Using this assay, we confirmed the presence of the mutation in P. falciparum infections in Malawi. PMID:18541765

  10. In Vitro Monitoring of Plasmodium falciparum Drug Resistance in French Guiana: a Synopsis of Continuous Assessment from 1994 to 2005▿

    PubMed Central

    Legrand, Eric; Volney, Béatrice; Meynard, Jean-Baptiste; Mercereau-Puijalon, Odile; Esterre, Philippe

    2008-01-01

    Implemented as one arm of the malaria control program in French Guiana in the early 1990s, our laboratory has since established in vitro profiles for parasite drug susceptibility to a panel of eight antimalarials for more than 1,000 Plasmodium falciparum isolates from infected patients. The quinine-doxycycline combination was introduced in 1995 as the first-line drug treatment against uncomplicated P. falciparum malaria, replacing chloroquine, and the first-line drug combination was changed to the artemether-lumefantrine combination in 2002. Resistance to chloroquine declined 5 years after it was dropped in 1995 as the first-line drug, but unlike similar situations in Africa, there was a rapid halt to this decline. Doxycycline susceptibility substantially decreased from 2002 to 2005, suggesting parasite selection under quinine-doxycycline drug pressure. Susceptibility to mefloquine decreased from 1997 onward. Throughout the period from 1994 to 2005, most isolates were sensitive in vitro to quinine, amodiaquine, and atovaquone. Susceptibility to amodiaquine was strongly correlated with that to chloroquine and to a lesser extent with that to mefloquine and halofantrine. Susceptibilities to mefloquine and to halofantrine were also strongly correlated. There were two alerts issued for in vitro artemether resistance in the period from 2002 to 2003 and again in 2005, both of which could be associated with the presence of an S769N polymorphism in the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)-type P. falciparum ATPase6 (PfATPase6) gene. Analysis of susceptibility to lumefantrine, conducted for the first time in 2005, indicates an alarming rate of elevated 50% inhibitory concentrations. In vitro monitoring of parasite drug susceptibility should be pursued to further document the consequences of specific drug policies on the local parasite population and, in particular, to establish profiles of susceptibility to individual components of drug combinations to

  11. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum

    PubMed Central

    Patzewitz, Eva-Maria; Wong, Eleanor H; Müller, Sylke

    2012-01-01

    Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. PMID:22151036

  12. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  13. Validation of an enzyme-linked immunosorbent assay for the quantification of human IgG directed against the repeat region of the circumsporozoite protein of the parasite Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. Methods The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. Results The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. Conclusions This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine. PMID:23173602

  14. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function

    PubMed Central

    Young, Nelson D; dePamphilis, Claude W

    2005-01-01

    Background The analysis of synonymous and nonsynonymous rates of DNA change can help in the choice among competing explanations for rate variation, such as differences in constraint, mutation rate, or the strength of genetic drift. Nonphotosynthetic plants of the Orobanchaceae have increased rates of DNA change. In this study 38 taxa of Orobanchaceae and relatives were used and 3 plastid genes were sequenced for each taxon. Results Phylogenetic reconstructions of relative rates of sequence evolution for three plastid genes (rbcL, matK and rps2) show significant rate heterogeneity among lineages and among genes. Many of the non-photosynthetic plants have increases in both synonymous and nonsynonymous rates, indicating that both (1) selection is relaxed, and (2) there has been a change in the rate at which mutations are entering the population in these species. However, rate increases are not always immediate upon loss of photosynthesis. Overall there is a poor correlation of synonymous and nonsynonymous rates. There is, however, a strong correlation of synonymous rates across the 3 genes studied and the lineage-speccific pattern for each gene is strikingly similar. This indicates that the causes of synonymous rate variation are affecting the whole plastid genome in a similar way. There is a weaker correlation across genes for nonsynonymous rates. Here the picture is more complex, as could be expected if there are many causes of variation, differing from taxon to taxon and gene to gene. Conclusions The distinctive pattern of rate increases in Orobanchaceae has at least two causes. It is clear that there is a relaxation of constraint in many (though not all) non-photosynthetic lineages. However, there is also some force affecting synonymous sites as well. At this point, it is not possible to tell whether it is generation time, speciation rate, mutation rate, DNA repair efficiency or some combination of these factors. PMID:15713237

  15. Combinations of Artemisinin and Quinine for Uncomplicated Falciparum Malaria: Efficacy and Pharmacodynamics

    PubMed Central

    de Vries, Peter J.; Bich, Nguyen Ngoc; Van Thien, Huynh; Hung, Le Ngoc; Anh, Trinh Kim; Kager, Piet A.; Heisterkamp, Siem H.

    2000-01-01

    Combinations of artemisinin and quinine for uncomplicated falciparum malaria were studied. A total of 268 patients were randomized to 7 days of quinine at 10 mg/kg of body weight three times a day (Q) or to artemisinin at 20 mg/kg of body weight followed by 3 (AQ3) or 5 (AQ5) days of quinine. Recrudescence rates were 16, 38, and 15% for the Q, AQ3, and AQ5 groups, respectively (P < 0.001). Recrudescence was associated with shorter parasite clearance time (PCT) and longer treatment after the blood smear had become negative (eradication time). However, classification of patients to outcome—recrudescence or radical cure—was correct in only 77% of patients. The population kinetics of the parasitemia was estimated with nonlinear mixed-effect models. Several models were tested, but the best model was a monoexponential decline of the parasitemia in which the mean parasite elimination half-life was shorter after artemisinin (5.1 h; 95% confidence interval [CI], 4.9 to 5.2 h) than after quinine (8.0 h [95% CI, 7.5 to 8.3 h]). Attempts to simulate the initial increase of the parasitemia did not result in better models with a biologically plausible interpretation. Recrudescence was associated with slower parasite clearance and a higher simulated terminal parasitemia (Pterm). The classification of patients to outcome groups based on Pterm was correct in 78% of patients. The data suggest that parasite strains with reduced sensitivity to quinine are prevalent in Vietnam, with slower parasite clearance and consequent recrudescence. A single dose of artemisinin induces rapid parasite reduction and lowers the value of Pterm, but to prevent recrudescence, this should be followed by quinine for at least 3 days after parasite clearance, or 5 days in total. PMID:10770766

  16. Combinations of artemisinin and quinine for uncomplicated falciparum malaria: efficacy and pharmacodynamics.

    PubMed

    de Vries, P J; Bich, N N; Van Thien, H; Hung, L N; Anh, T K; Kager, P A; Heisterkamp, S H

    2000-05-01

    Combinations of artemisinin and quinine for uncomplicated falciparum malaria were studied. A total of 268 patients were randomized to 7 days of quinine at 10 mg/kg of body weight three times a day (Q) or to artemisinin at 20 mg/kg of body weight followed by 3 (AQ3) or 5 (AQ5) days of quinine. Recrudescence rates were 16, 38, and 15% for the Q, AQ3, and AQ5 groups, respectively (P < 0.001). Recrudescence was associated with shorter parasite clearance time (PCT) and longer treatment after the blood smear had become negative (eradication time). However, classification of patients to outcome-recrudescence or radical cure-was correct in only 77% of patients. The population kinetics of the parasitemia was estimated with nonlinear mixed-effect models. Several models were tested, but the best model was a monoexponential decline of the parasitemia in which the mean parasite elimination half-life was shorter after artemisinin (5.1 h; 95% confidence interval [CI], 4.9 to 5.2 h) than after quinine (8.0 h [95% CI, 7.5 to 8.3 h]). Attempts to simulate the initial increase of the parasitemia did not result in better models with a biologically plausible interpretation. Recrudescence was associated with slower parasite clearance and a higher simulated terminal parasitemia (P(term)). The classification of patients to outcome groups based on P(term) was correct in 78% of patients. The data suggest that parasite strains with reduced sensitivity to quinine are prevalent in Vietnam, with slower parasite clearance and consequent recrudescence. A single dose of artemisinin induces rapid parasite reduction and lowers the value of P(term), but to prevent recrudescence, this should be followed by quinine for at least 3 days after parasite clearance, or 5 days in total. PMID:10770766

  17. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

    PubMed Central

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; del Portillo, Hernando; Janse, Chris J.; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  18. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites.

    PubMed

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; Del Portillo, Hernando; Janse, Chris J; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  19. Cultivation of Plasmodium falciparum using animal serum (horse, calf and bovine) as human serum substitute.

    PubMed

    Ramos, M I; Hermosura, M E; Nakabayashi, T

    1986-11-01

    Horse, calf and bovine serum were successfully used as human serum substitutes in the in vitro cultivation of Plasmodium falciparum. Positive results were obtained only after gradually adapting the parasites to the substitute serum. Adapted lines were established within 4-5 weeks. 10% horse serum was observed to be the best substitute with growth rates comparable or even surprising that obtained in human serum. Pure calf or bovine serum supported stable growths of 20-30% less which was enhanced to comparable levels after addition of 1% glucose-peptone to the medium. Direct transfers of adapted cultures to human serum showed enhanced growth rates. Lower growth rates of adapted cultures (i.e. horse serum-adapted cultures) in other substitute sera (i.e. calf or bovine sera) were improved in subsequent subcultures. Similarly, there were no adverse effects when they were returned back to the substitute serum they were originally adapted to. PMID:3541461

  20. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests

    PubMed Central

    2010-01-01

    Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation. PMID:20470441

  1. Refrigeration provides a simple means to synchronize in vitro cultures of Plasmodium falciparum.

    PubMed

    Yuan, Lili; Hao, Mingming; Wu, Lanou; Zhao, Zhen; Rosenthal, Benjamin M; Li, Xiaomei; He, Yongshu; Sun, Ling; Feng, Guohua; Xiang, Zheng; Cui, Liwang; Yang, Zhaoqing

    2014-05-01

    Plasmodium falciparum is usually asynchronous during in vitro culture. Highly synchronized cultures of P. falciparum are routinely used in malaria research. Here, we describe a simple synchronization procedure for P. falciparum asexual erythrocytic culture, which involves storage at 4°C for 8-24 h followed by routine culture. When cultures with 27-60% of ring stage were synchronized using this procedure, 70-93% ring stages were obtained after 48 h of culture and relative growth synchrony remained for at least two erythrocytic cycles. To test the suitability of this procedure for subsequent work, drug sensitivity assays were performed using four laboratory strains and four freshly adapted clinical P. falciparum isolates. Parasites synchronized by sorbitol treatment or refrigeration showed similar dose-response curves and comparable IC50 values to four antimalarial drugs. The refrigeration synchronization method is simple, inexpensive, time-saving, and should be especially useful when large numbers of P. falciparum culture are handled. PMID:24632190

  2. Efficacy of Chloroquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Honduras

    PubMed Central

    Torres, Rosa Elena Mejia; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A.; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-01-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization—World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras. PMID:23458957

  3. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate.

    PubMed

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  4. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    PubMed Central

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  5. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase possesses two functional catalytic domains and is inhibited by a CDP-choline analog selected from a virtual screening.

    PubMed

    Contet, Alicia; Pihan, Emilie; Lavigne, Marina; Wengelnik, Kai; Maheshwari, Sweta; Vial, Henri; Douguet, Dominique; Cerdan, Rachel

    2015-04-13

    Phosphatidylcholine is the major lipid component of the malaria parasite membranes and is required for parasite multiplication in human erythrocytes. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) is the rate-limiting enzyme of the phosphatidylcholine biosynthesis pathway and thus considered as a potential antimalarial target. In contrast to its mammalian orthologs, PfCCT contains a duplicated catalytic domain. Here, we show that both domains are catalytically active with similar kinetic parameters. A virtual screening strategy allowed the identification of a drug-size molecule competitively inhibiting the enzyme. This compound also prevented phosphatidylcholine biosynthesis in parasites and exerted an antimalarial effect. This study constitutes the first step towards a rationalized design of future new antimalarial agents targeting PfCCT. PMID:25771858

  6. Multiple independent introductions of Plasmodium falciparum in South America

    PubMed Central

    Yalcindag, Erhan; Elguero, Eric; Arnathau, Céline; Durand, Patrick; Akiana, Jean; Anderson, Timothy J.; Aubouy, Agnes; Balloux, François; Besnard, Patrick; Bogreau, Hervé; Carnevale, Pierre; D'Alessandro, Umberto; Fontenille, Didier; Gamboa, Dionicia; Jombart, Thibaut; Le Mire, Jacques; Leroy, Eric; Maestre, Amanda; Mayxay, Mayfong; Ménard, Didier; Musset, Lise; Newton, Paul N.; Nkoghé, Dieudonné; Noya, Oscar; Ollomo, Benjamin; Rogier, Christophe; Veron, Vincent; Wide, Albina; Zakeri, Sedigheh; Carme, Bernard; Legrand, Eric; Chevillon, Christine; Ayala, Francisco J.; Renaud, François; Prugnolle, Franck

    2012-01-01

    The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade. PMID:22203975

  7. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis

    PubMed Central

    Oppenheim, Rebecca D.; Soldati-Favre, Dominique; Hatzimanikatis, Vassily

    2013-01-01

    Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets. PMID:23793264

  8. Multiple independent introductions of Plasmodium falciparum in South America.

    PubMed

    Yalcindag, Erhan; Elguero, Eric; Arnathau, Céline; Durand, Patrick; Akiana, Jean; Anderson, Timothy J; Aubouy, Agnes; Balloux, François; Besnard, Patrick; Bogreau, Hervé; Carnevale, Pierre; D'Alessandro, Umberto; Fontenille, Didier; Gamboa, Dionicia; Jombart, Thibaut; Le Mire, Jacques; Leroy, Eric; Maestre, Amanda; Mayxay, Mayfong; Ménard, Didier; Musset, Lise; Newton, Paul N; Nkoghé, Dieudonné; Noya, Oscar; Ollomo, Benjamin; Rogier, Christophe; Veron, Vincent; Wide, Albina; Zakeri, Sedigheh; Carme, Bernard; Legrand, Eric; Chevillon, Christine; Ayala, Francisco J; Renaud, François; Prugnolle, Franck

    2012-01-10

    The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade. PMID:22203975

  9. [Research Progress on Artemisinin Resistance in Plasmodium falciparum].

    PubMed

    Zhang, Yi-long; Pan, Wei-qing

    2015-12-01

    Artemisinin (ART) is a novel and effective antimalarial drug discovered in China. As recommended by the World Health Organization, the ART-based combination therapies (ACTs) have become the first-line drugs for the treatment of falciparum malaria. ART and its derivatives have contributed greatly to the effective control of malaria globally, leading to yearly decrease of malaria morbidity and mortality. However, there have recently been several reports on the resistance of Plasmodium falciparum to ART in Southeast Asia. This is deemed a serious threat to the global malaria control programs. In this paper, we reviewed recent research progress on ART resistance to P. falciparum, including new tools for resistance measurement, resistance-associated molecular markers, and the origin and spread of the ART-resistant parasite strains. PMID:27089770

  10. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    PubMed Central

    van Gemert, Geert-Jan; Graumans, Wouter; van de Vegte-Bolmer, Marga; van Lieshout, Lisette; Haks, Mariëlle C.; Hermsen, Cornelus C.; Scholzen, Anja; Visser, Leo G.; Sauerwein, Robert W.

    2015-01-01

    Background Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization), requiring only 30–45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains. Methods In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa) in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia) at 14 months after the last immunization (NCT01660854). Results Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0–15.5) versus 8.5 days in 5 malaria-naïve controls (p = 0.0005). Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10. Conclusion This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines. Trial Registration Clinicaltrials.gov NCT01660854 PMID:25933168

  11. Plasmodium falciparum RuvB proteins

    PubMed Central

    Ahmad, Moaz; Tuteja, Renu

    2012-01-01

    The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite. PMID:23060959

  12. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  13. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  14. Honey Bee Colonies Headed by Hyperpolyandrous Queens Have Improved Brood Rearing Efficiency and Lower Infestation Rates of Parasitic Varroa Mites.

    PubMed

    Delaplane, Keith S; Pietravalle, Stéphane; Brown, Mike A; Budge, Giles E

    2015-01-01

    A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen's polyandry is positively associated with measures of her colony's fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry--15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor. PMID:26691845

  15. Honey Bee Colonies Headed by Hyperpolyandrous Queens Have Improved Brood Rearing Efficiency and Lower Infestation Rates of Parasitic Varroa Mites

    PubMed Central

    Delaplane, Keith S.; Pietravalle, Stéphane; Brown, Mike A.; Budge, Giles E.

    2015-01-01

    A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen’s polyandry is positively associated with measures of her colony’s fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry– 15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor. PMID:26691845

  16. Artemisinins target the SERCA of Plasmodium falciparum.

    PubMed

    Eckstein-Ludwig, U; Webb, R J; Van Goethem, I D A; East, J M; Lee, A G; Kimura, M; O'Neill, P M; Bray, P G; Ward, S A; Krishna, S

    2003-08-21

    Artemisinins are extracted from sweet wormwood (Artemisia annua) and are the most potent antimalarials available, rapidly killing all asexual stages of Plasmodium falciparum. Artemisinins are sesquiterpene lactones widely used to treat multidrug-resistant malaria, a disease that annually claims 1 million lives. Despite extensive clinical and laboratory experience their molecular target is not yet identified. Activated artemisinins form adducts with a variety of biological macromolecules, including haem, translationally controlled tumour protein (TCTP) and other higher-molecular-weight proteins. Here we show that artemisinins, but not quinine or chloroquine, inhibit the SERCA orthologue (PfATP6) of Plasmodium falciparum in Xenopus oocytes with similar potency to thapsigargin (another sesquiterpene lactone and highly specific SERCA inhibitor). As predicted, thapsigargin also antagonizes the parasiticidal activity of artemisinin. Desoxyartemisinin lacks an endoperoxide bridge and is ineffective both as an inhibitor of PfATP6 and as an antimalarial. Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins and correspondingly attenuates inhibition of PfATP6. Imaging of parasites with BODIPY-thapsigargin labels the cytosolic compartment and is competed by artemisinin. Fluorescent artemisinin labels parasites similarly and irreversibly in an Fe2+-dependent manner. These data provide compelling evidence that artemisinins act by inhibiting PfATP6 outside the food vacuole after activation by iron. PMID:12931192

  17. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  18. Protozoan Parasites.

    PubMed

    Custodio, Haidee

    2016-02-01

    • Stool antigen detection for Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica are now commercially available, have better sensitivity and specificity than the traditional stool microscopy, and are less dependent on personnel skill. Tests employing newer techniques with faster turnaround time are also available for diagnosing trichomoniasis.• Nitazoxanide, the only U.S. Food and Drug Administration-approved medication for therapy of cryptosporidiosis, is effective among immunocompetent patients. However, on the basis of strong evidence from multiple clinical trials, nitazoxanide is considered ineffective among immunocompromised patients. (14) • Giardiasis can be asymptomatic or have a chronic course leading to malabsorption and failure to thrive. It can be treated with metronidazole, tinidazole, or nitazoxanide. On the basis of growing observational studies, postinfectious and extraintestinal manifestations of giardiasis occur, but the mechanisms are unclear. Given the high prevalence of giardiasis, public health implications need to be defined. (16) • Eradicating E histolytica from the gastrointestinal tract requires only intraluminal agent therapy. Therapy for invasive illnesses requires use of imidazole followed by intraluminal agents to eliminate persistent intraluminal parasites. • Malaria is considered the most lethal parasitic infection, with Plasmodium falciparum as the predominant cause of mortality. P vivax and P ovale can be dormant in the liver, and primaquine is necessary to resolve infection by P vivax and P ovale. • Among immunocompetent patients, infection with Toxoplasma gondii may be asymptomatic, involve localized lymphadenopathy, or cause ocular infection. In immunocompromised patients, reactivation or severe infection is not uncommon. On the basis of limited observational studies (there are no well-controlled randomized trials), therapy is recommended for acute infection during pregnancy to prevent transmission to the

  19. Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein.

    PubMed Central

    Malik, A; Egan, J E; Houghten, R A; Sadoff, J C; Hoffman, S L

    1991-01-01

    Cytotoxic T lymphocytes (CTL) against the circumsporozoite (CS) protein of malaria sporozoites protect against malaria in rodents. Although there is interest in developing human vaccines that induce CTL against the Plasmodium falciparum CS protein, humans have never been shown to produce CTL against any Plasmodium species protein or other parasite protein. We report that when peripheral blood mononuclear cells (PBMC) from three of four volunteers immunized with irradiated P. falciparum sporozoites were stimulated in vitro with a recombinant vaccinia virus expressing the P. falciparum CS protein or a peptide including only amino acids 368-390 of the P. falciparum CS protein [CS-(368-390)], the PBMC lysed autologous Epstein-Barr virus-transformed B cells transfected with the P. falciparum CS protein gene or incubated with CS-(368-390) tricosapeptide. Activity was antigen specific, genetically restricted, and dependent on CD8+ T cells. In one volunteer, seven peptides reflecting amino acids 311-400 were tested, and, as in B10.BR mice, CTL activity was only associated with the CS-(368-390) peptide. Development of an assay for studying human CTL against the CS and other malaria proteins and a method for constructing target cells by direct gene transfection provide a foundation for studying the role of CTL in protection against malaria. PMID:1707538

  20. Correlation between 'H' blood group antigen and Plasmodium falciparum invasion.

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2016-06-01

    The ABO blood group system is the most important blood group system in clinical practice. The relationship between Plasmodium falciparum and ABO blood groups has been studied for many years. This study was undertaken to investigate the abilities of different blood group erythrocytes to support in vitro growth of P. falciparum parasites. P. falciparum parasites of four different strains (3D7, 7G8, Dd2 and RKL9) were co-cultured with erythrocytes of blood group 'A', 'B', 'O' (n = 10 for each) and 'O(h)' (Bombay group) (n = 7) for 5 days. Statistically significant differences were observed on the fourth day among the mean percent parasitemias of 'O', non-'O' ('A' and 'B') and 'O(h)' group cultures. The parasitemias of four strains ranged from 12.23 to 14.66, 11.68 to 13.24, 16.89 to 22.3, and 7.37 to 11.27 % in 'A', 'B', 'O' and Bombay group cultures, respectively. As the expression of H antigen decreased from 'O' blood group to 'A' and 'B' and then to Bombay blood group, parasite invasion (percent parasitemia) also decreased significantly (p < 0.01) and concomitantly, indicating the association of parasite invasion with the amount of H antigen present on the surface of erythrocyte. Thus, the question arises, could H antigen be involved in P. falciparum invasion? To evaluate erythrocyte invasion inhibition, 'O' group erythrocytes were virtually converted to Bombay group-like erythrocytes by the treatment of anti-H lectins extracted from Ulex europaeus seeds. Mean percent parasitemia of lectin-treated cultures on the fourth day was significantly lower (p < 0.05) than that of non-treated cultures and was found to be similar with the mean percent parasitemia demonstrated by the Bombay group erythrocyte cultures, thus further strengthening the hypothesis. PMID:27071756

  1. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  2. The relationship between handling time and cortisol release rates changes as a function of brain parasite densities in California killifish Fundulus parvipinnis.

    PubMed

    Weinersmith, K L; Hanninen, A F; Sih, A; McElreath, R; Earley, R L

    2016-03-01

    This study validated a technique for non-invasive hormone measurements in California killifish Fundulus parvipinnis, and looked for associations between cortisol (a stress hormone) and 11-ketotestosterone (KT, an androgen) release rates and the density or intensity of the trematode parasites Euhaplorchis californiensis (EUHA) and Renicola buchanani (RENB) in wild-caught, naturally infected F. parvipinnis. In experiment 1, F. parvipinnis were exposed to an acute stressor by lowering water levels to dorsal-fin height and repeatedly handling the fish over the course of an hour. Neither parasite was found to influence cortisol release rates in response to this acute stressor. In experiment 2, different F. parvipinnis were exposed on four consecutive days to the procedure for collecting water-borne hormone levels and release rates of 11-KT and cortisol were quantified. This design examined whether F. parvipinnis perceived the water-borne collection procedure to be a stressor, while also exploring how parasites influenced hormone release rates under conditions less stressful than those in experiment 1. No association was found between RENB and hormone release rates, or between EUHA and 11-KT release rates. The interaction between EUHA density and handling time, however, was an important predictor of cortisol release rates. The relationship between handling time and cortisol release rates was negative for F. parvipinnis harbouring low or intermediate density infections, and became positive for fish harbouring high densities of EUHA. PMID:26806153

  3. The loss of virulence of histone H1 overexpressing Leishmania donovani parasites is directly associated with a reduction of HSP83 rate of translation.

    PubMed

    Alexandratos, Alexandros; Clos, Joachim; Samiotaki, Martina; Efstathiou, Antonia; Panayotou, George; Soteriadou, Ketty; Smirlis, Despina

    2013-06-01

    Overexpression of Leishmania histone H1 (LeishH1) was previously found to cause a promastigote-to-amastigote differentiation handicap, deregulation of cell-cycle progression, and loss of parasite infectivity. The aim of this study was to identify changes in the proteome of LeishH1 overexpressing parasites associated with the avirulent phenotype observed. 2D-gel electrophoresis analysis revealed only a small protein subset of differentially expressed proteins in the LeishH1 overexpressing promastigotes. Among these was the chaperone HSP83, known for its protective role in Leishmania drug-induced apoptosis, which displayed lower translational rates. To investigate if the lower expression levels of HSP83 are associated with the differentiation handicap, we assayed the thermostability of parasites by subjecting them to heat-shock (25°C→37°C), a natural stress-factor occurring during stage differentiation. Heat-shock promoted apoptosis to a greater extent in the LeishH1 overexpressing parasites. Interestingly, these parasites were not only more sensitive to heat-shock but also to drug-induced [Sb(III)] cell-death. In addition, the restoration of HSP83 levels re-established drug resistance, and restored infectivity to LeishH1 overexpressing parasites in the murine J774 macrophage model. Overall, this study suggests that LeishH1 levels are critical for the parasite's stress-induced adaptation within the mammalian host, and highlights the cross-talk between pathways involved in drug resistance, apoptosis and virulence. PMID:23647017

  4. Efficacy of artemether-lumefantrine, the nationally-recommended artemisinin combination for the treatment of uncomplicated falciparum malaria, in southern Laos

    PubMed Central

    2012-01-01

    Background The Lao Government changed the national policy for uncomplicated Plasmodium falciparum malaria from chloroquine to artemether-lumefantrine (AL) in 2005. Since then, no information on AL efficacy has been reported. With evidence of resistance to artemisinin derivatives in adjacent Cambodia, there has been a concern as to AL efficacy. Monitoring of AL efficacy would help the Lao Government to make decisions on appropriate malaria treatment. Methods The efficacy of a three-day, twice daily oral artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Xepon District, Savannakhet Province, southern Laos was studied over 42 days follow-up. This was part of a trial of thiamin supplementation in falciparum malaria. Results Of 630 patients with P. falciparum enrolled in the trial of thiamin treatment, 549 (87%, 357 children ≤15 years and 192 adults) were included in this study. The per protocol 42-day cure rates were 97% (524/541) [96% (337/352) for children and 99% (187/189) for adults, p = 0.042]. By conventional intention-to-treat analysis, the 42-day cure rates adjusted for re-infection, were 97% (532/549) [96% (342/357) in children and 99% (190/192) in adults, p = 0.042]. The proportion of patients who remained parasitaemic at day 1 after treatment was significantly higher in children [33% (116/356)] compared to adults [15% (28/192)] (p < 0.001) and only one adult patient had detectable parasitaemia on day 2. There were no serious adverse events. Potential side effects after treatment were reported more commonly in adults (32%) compared to children (15%) (p < 0.001). Patients with recrudescent infections were significantly younger, had longer mean time to fever clearance, and had longer median time to parasite clearance compared to those who were cured. Conclusions The current nationally-recommended anti-malarial treatment (artemether-lumefantrine) remains highly efficacious for the treatment of uncomplicated

  5. A Lectin-Like Receptor is Involved in Invasion of Erythrocytes by Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jungery, M.; Pasvol, G.; Newbold, C. I.; Weatherall, D. J.

    1983-02-01

    Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.

  6. Identification of Potent and Selective Non-covalent Inhibitors of the Plasmodium falciparum Proteasome

    PubMed Central

    2015-01-01

    We have identified short N,C-capped peptides that selectively inhibit the proteasome of the malaria-causing pathogen Plasmodium falciparum. These compounds are highly potent in culture with no toxicity in host cells. One cyclic biphenyl ether compound inhibited intraerythrocytic growth of P. falciparum with an IC50 of 35 nM, and we show that even a pulse treatment with this cyclic peptide induced parasite death due to proteasome inhibition. These compounds represent promising new antimalarial agents that target the essential proteasomal machinery of the parasite without toxicity toward the host. PMID:25226494

  7. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands

    PubMed Central

    2013-01-01

    Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646

  8. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum

    PubMed Central

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E.M.; Mongan, Arthur E.; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef

    2014-01-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions. PMID:25091627

  9. The effects of ascorbate-induced free radicals on Plasmodium falciparum.

    PubMed

    Marva, E; Golenser, J; Cohen, A; Kitrossky, N; Har-el, R; Chevion, M

    1992-03-01

    Ascorbic acid has been shown to cause stage-dependent effects on the in vitro development of Plasmodium falciparum. While vitamin C marginally enhanced the development of young parasites, it proved highly destructive to the advanced forms. The present study evaluates the mechanisms by which vitamin C affects the parasite. The treatment of parasitized erythrocytes with ascorbate resulted in the conversion of added salicylate to dihydroxybenzoate products, indicating the involvement of hydroxyl radicals. There was a stage specific sensitivity, increasing conversion with progressing parasite development. This specificity could not be attributed to the altered uptake of salicylate by the parasitized erythrocyte, since salicylate uptake was similar in either parasitized or non-parasitized erythrocytes. In distinction, increased uptake of ascorbate by parasitized erythrocytes could account for an elevated oxidant stress. The treatment with ascorbate also caused the oxidation of hemoglobin to methemoglobin and the peroxidation of membrane lipids. Added catalase markedly inhibited the ascorbate-induced effects on parasite development. "Free" plasmodia were also vulnerable to treatment with ascorbate like the parasites within their host cells. These results are in accord with a free radical mechanism of damage to the infected erythrocytes. During the growth of P. falciparum the infected erythrocytes release increasing levels of iron-containing structures that are redox-active and can catalyze the formation of highly reactive oxygen derived species. The findings also indicate the multiplicity of the mode of action of ascorbate on the host-parasite system. PMID:1598503

  10. Parasites and supernormal manipulation.

    PubMed

    Holen, Ø H; Saetre, G P; Slagsvold, T; Stenseth, N C

    2001-12-22

    Social parasites may exploit their hosts by mimicking other organisms that the hosts normally benefit from investing in or responding to in some other way. Some parasites exaggerate key characters of the organisms they mimic, possibly in order to increase the response from the hosts. The huge gape and extreme begging intensity of the parasitic common cuckoo chick (Cuculus canorus) may be an example. In this paper, the evolutionary stability of manipulating hosts through exaggerated signals is analysed using game theory. Our model indicates that a parasite's signal intensity must be below a certain threshold in order to ensure acceptance and that this threshold depends directly on the rate of parasitism. The only evolutionarily stable strategy (ESS) combination is when hosts accept all signallers and parasites signal at their optimal signal intensity, which must be below the threshold. Supernormal manipulation by parasites is only evolutionarily stable under sufficiently low rates of parasitism. If the conditions for the ESS combination are not satisfied, rejector hosts can invade using signal intensity as a cue for identifying parasites. These qualitative predictions are discussed with respect to empirical evidence from parasitic mimicry systems that have been suggested to involve supernormal signalling, including evicting avian brood parasites and insect-mimicking Ophrys orchids. PMID:11749709

  11. Intrarectal quinine for treating Plasmodium falciparum malaria: a systematic review

    PubMed Central

    Eisenhut, Michael; Omari, Aika; MacLehose, Harriet G

    2005-01-01

    Background In children with malaria caused by Plasmodium falciparum, quinine administered rectally may be easier to use and less painful than intramuscular or intravenous administration. The objective of this review was to compare the effectiveness of intrarectal with intravenous or intramuscular quinine for treating falciparum malaria. Methods All randomized and quasi-randomized controlled trials comparing intrarectal with intramuscular or intravenous quinine for treating people with falciparum malaria located through the following sources were included: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and CINAHL. Trial quality was assessed and data, including adverse event data, were extracted. Dichotomous data were analysed using odds ratios and continuous data using weighted mean difference. Results Eight randomized controlled trials (1,247 children) fulfilled the inclusion criteria. The same principal investigator led seven of the trials. Five compared intrarectal with intravenous quinine, and six compared intrarectal with intramuscular treatment. No statistically significant difference was detected for death, parasite clearance by 48 hours and seven days, parasite and fever clearance time, coma recovery time, duration of hospitalization and time before drinking began. One trial (898 children) reported that intrarectal was less painful than intramuscular administration. Conclusion No difference in the effect on parasites and clinical illness was detected for the use of intrarectal quinine compared with other routes, but most trials were small. Pain during application may be less with intrarectal quinine. Further larger trials, in patients with severe malaria and in adults, are required before the intrarectal route could be recommended. PMID:15904520

  12. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    SciTech Connect

    Stanley, H.A.; Reese, R.T.

    1985-09-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using /sup 125/T-antibodies were done.

  13. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  14. Chloroquine Clinical Failures in P. falciparum Malaria Are Associated with Mutant Pfmdr-1, Not Pfcrt in Madagascar

    PubMed Central

    Andriantsoanirina, Valérie; Ratsimbasoa, Arsène; Bouchier, Christiane; Tichit, Magali; Jahevitra, Martial; Rabearimanana, Stéphane; Raherinjafy, Rogelin; Mercereau-Puijalon, Odile; Durand, Rémy; Ménard, Didier

    2010-01-01

    Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1) act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44%) appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites <5%) or Pfcrt mutant isolates (<1%), strongly contrasting with sub-Saharan African countries. Previous studies showed a high frequency of Pfmdr-1 mutant parasites (>60% of isolates), but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6). The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days) was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days). In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important

  15. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    PubMed

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching. PMID:25203297

  16. Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMARON2 pair

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the...

  17. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    PubMed Central

    Otto, Thomas D.; Rayner, Julian C.; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching. PMID:25203297

  18. Effects of temperature and host stage on the parasitization rate and offspring sex ratio of Aenasius bambawalei Hayat in Phenacoccus solenopsis Tinsley

    PubMed Central

    Zhang, Juan; Xia, Tianfeng

    2016-01-01

    Temperature and host stage are important factors that determine the successful development of parasitoids. Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) is a primary parasitoid of the newly invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). The effects of temperature on the parasitic characteristics of A. bambawalei have seldom been investigated. In the study, we explored the effects of temperature, exposure time, and host stage on the parasitization rate and offspring sex ratio (female to male) of A. bambawalei under laboratory conditions. The laboratory results showed that the successful parasitization rate of A. bambawalei increased with higher temperatures and older host stages. When the parasitoids were exposed to 36 °C for 24 h, the parasitization rate of female adults (52%) was nearly two times that of 3rd instar nymphs. Additionally, heat stress duration and host stage resulted in an increase in the offspring sex ratio of A. bambawalei. When A. bambawalei was exposed to 36 °C for 24 h, the offspring sex ratio increased dramatically to 81.78% compared with those exposed for 12 h, and it increased to 45.34% compared with those exposed for 16 h. The offspring sex ratio was clearly higher when the host stage was an adult female mealybug Our findings provide important guidance for the mass rearing and field releases of A. bambawalei for the management of P. solenopsis in the future. PMID:26788437

  19. Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites☆

    PubMed Central

    le Roux, Dina; Burger, Pieter B.; Niemand, Jandeli; Grobler, Anne; Urbán, Patricia; Fernàndez-Busquets, Xavier; Barker, Robert H.; Serrano, Adelfa E.; I. Louw, Abraham; Birkholtz, Lyn-Marie

    2013-01-01

    S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5′-{[(Z)-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5′-{[(Z)-4-aminobut-2-enyl]methylamino}-5′-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites. PMID:24596666

  20. Parasitic Diseases

    MedlinePlus

    ... a bug bite, or sexual contact. Some parasitic diseases are easily treated and some are not. Parasites ... be seen with the naked eye. Some parasitic diseases occur in the United States. Contaminated water supplies ...

  1. Parasitic Diseases

    MedlinePlus

    ... water, a bug bite, or sexual contact. Some parasitic diseases are easily treated and some are not. Parasites ... can be seen with the naked eye. Some parasitic diseases occur in the United States. Contaminated water supplies ...

  2. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

    PubMed

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C Y; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S W; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  3. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  4. Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach

    PubMed Central

    2011-01-01

    Background Over its life cycle, the Plasmodium falciparum parasite is exposed to different environmental conditions, particularly to variations in O2 pressure. For example, the parasite circulates in human venous blood at 5% O2 pressure and in arterial blood, particularly in the lungs, at 13% O2 pressure. Moreover, the parasite is exposed to 21% O2 levels in the salivary glands of mosquitoes. Methods To study the metabolic adaptation of P. falciparum to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken. Results Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response. Conclusions These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of P. falciparum to environmental changes and may lead to the development of novel therapeutic targets. PMID:21223545

  5. A rapid, simple and sensitive flow cytometric system for detection of Plasmodium falciparum.

    PubMed

    Saito-Ito, A; Akai, Y; He, S; Kimura, M; Kawabata, M

    2001-11-01

    We have established a rapid, simple and sensitive flow cytometric system for the detection of Plasmodium falciparum that involves lysing erythrocytes and staining parasites at the same time using a newly developed hemolysing and staining solution containing dodecyl methyl ammonium chloride and acridine orange. In this system, freed parasites of P. falciparum could be plotted separately from erythrocyte ghosts, white blood cells and platelets on the two-dimensional scattergram of forward-angle light scatter and green fluorescence by flow cytometry with an argon laser. It took only 2-3 min per sample to obtain the scattergram and analyze the data, including the time of sample preparation for flow cytometric analysis. Sample preparation with this method does not require any difficult handling procedures. The threshold of parasite detection was almost equal to that of microscopic examination for cultured P. falciparum. The results of drug-susceptibility assays using this system were also almost identical to those obtained using microscopic examination. In this system, parasites at different erythrocytic stages could be easily distinguished. This system must prove useful and practical for basic laboratory studies of P. falciparum including those requiring the differential measurement of parasites at specific erythrocytic stages. PMID:11719111

  6. Plasmodium falciparum Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes

    PubMed Central

    Morlais, Isabelle; Nsango, Sandrine E.; Toussile, Wilson; Abate, Luc; Annan, Zeinab; Tchioffo, Majoline T.; Cohuet, Anna; Awono-Ambene, Parfait H.; Fontenille, Didier; Rousset, François; Berry, Antoine

    2015-01-01

    Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers. For a subset of 49 carriers, the dynamics of co-infecting genotypes was followed until their development within salivary glands. Also, individual oocysts from midguts infected with blood from 9 donors were genotyped to assess mating patterns. Multiplicity of infection (MOI) was high both in gametocyte isolates and sporozoite populations, reaching up to 10 genotypes. Gametocyte isolates with multiple genotypes gave rise to lower infection prevalence and intensity. Fluctuations of genotype number occurred during the development within the mosquito and sub-patent genotypes, not detected in gametocyte isolates, were identified in the vector salivary glands. The inbreeding coefficient Fis was positively correlated to the oocyst loads, suggesting that P. falciparum parasites use different reproductive strategies according to the genotypes present in the gametocyte isolate. The number of parasite clones within an infection affects the transmission success and the mosquito has an important role in maintaining P. falciparum genetic diversity. Our results emphasize the crucial importance of discriminating between the different genotypes within an infection when studying the A. gambiae natural resistance to P. falciparum, and the need to monitor parasite diversity in areas where malaria control interventions are implemented. PMID:25875840

  7. Malaria Parasites Produce Volatile Mosquito Attractants

    PubMed Central

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. PMID:25805727

  8. Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago.

    PubMed

    Salgueiro, Patrícia; Vicente, José Luís; Figueiredo, Rita Carrilho; Pinto, João

    2016-09-01

    The archipelago of São Tomé and Principe (STP), West Africa, has suffered the heavy burden of malaria since the 16th century. Until the last decade, when after a successful control program STP has become a low transmission country and one of the few nations with decreases of more than 90% in malaria admission and death rates. We carried out a longitudinal study to determine the genetic structure of STP parasite populations over time and space. Twelve microsatellite loci were genotyped in Plasmodium falciparum samples from two islands collected in 1997, 2000 and 2004. Analysis was performed on proportions of mixed genotype infections, allelic diversity, population differentiation, effective population size and bottleneck effects. We have found high levels of genetic diversity and minimal inter-population genetic differentiation typical of African continental regions with intense and stable malaria transmission. We detected significant differences between the years, with special emphasis for 1997 that showed the highest proportion of samples infected with P. falciparum and the highest mean number of haplotypes per isolate. This study establishes a comprehensive genetic data baseline of a pre-intervention scenario for future studies; taking into account the most recent and successful control intervention on the territory. PMID:27262356

  9. Comparison of Plasmodium falciparum infections in Panamanian and Colombian owl monkeys.

    PubMed

    Rossan, R N; Harper, J S; Davidson, D E; Escajadillo, A; Christensen, H A

    1985-11-01

    Parameters of blood-induced infections of the Vietnam Oak Knoll, Vietnam Smith, and Uganda Palo Alto strains of Plasmodium falciparum studied in 395 Panamanian owl monkeys in this laboratory between 1976-1984 were compared with those reported from another laboratory for 665 Colombian owl monkeys, studied between 1968-1975, and, at the time, designated Aotus trivirgatus griseimembra. The virulence of these strains was less in Panamanian than in Colombian owl monkeys, as indicated by lower mortality rates of the Panamanian monkeys during the first 30 days of patency. Maximum parasitemias of the Vietnam Smith and Uganda Palo Alto strain, in Panamanian owl monkeys dying during the first 15 days of patent infection, were significantly higher than in Colombian owl monkeys. Panamanian owl monkeys that survived the primary attack had significantly higher maximum parasitemias than the surviving Colombian owl monkeys. Peak parasitemias were attained significantly earlier after patency in Panamanian than in Colombian owl monkeys, irrespective of the strain of P. falciparum. More Panamanian than Colombian owl monkeys evidenced self-limited infection after the primary attack of either the Vietnam Smith or Uganda Palo Alto strain. The duration of the primary attacks and recrudescences were significantly shorter in Panamanian than in Colombian owl monkeys. Mean peak parasitemias during recrudescence were usually higher in Panamanian owl monkeys than in Colombian monkeys. Differences of infection parameters were probably attributable, in part, to geographical origin of the two monkey hosts and parasite strains. PMID:3914842

  10. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte.

    PubMed

    Przyborski, Jude M; Nyboer, Britta; Lanzer, Michael

    2016-07-01

    The malaria parasite Plasmodium falciparum exports numerous proteins to its chosen host cell, the mature human erythrocyte. Many of these proteins are important for parasite survival. To reach the host cell, parasites must cross multiple membrane barriers and then furthermore be targeted to their correct sub-cellular localisation. This novel transport pathway has received much research attention in the past decades, especially as many of the mechanisms are expected to be parasite-specific and thus potential targets for drug development. In this article we summarize some of the most recent advances in this field, and highlight areas in which further research is needed. PMID:26996123

  11. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  12. Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum

    PubMed Central

    Wassmer, Samuel C.; Combes, Valéry; Candal, Francisco J.; Juhan-Vague, Irène; Grau, Georges E.

    2006-01-01

    Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin α (LT-α) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-α-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. PMID:16369021

  13. Typing of Plasmodium falciparum DNA from 2 years old Giemsa-stained dried blood spots using nested polymerase chain reaction assay.

    PubMed

    Kumar, D; Dhiman, S; Rabha, B; Goswami, D; Yadav, K; Deka, M; Veer, V; Baruah, I

    2016-01-01

    A panel of 129 Giemsa-stained thick blood spots (TBS) confirmed for Plasmodium falciparum infection having different levels of parasite density were collected from a malaria endemic area. DNA was extracted and nested polymerase chain reaction (PCR) assay was performed to amplify P. falciparum DNA. Nested PCR assay successfully amplified P. falciparum DNA at a very low parasitaemia of ~10 parasites/μl of blood. Current PCR assay is very simple and can be used retrospectively to monitor the invasion and prevalence of different Plasmodium species in endemic areas. PMID:27080775

  14. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis

    PubMed Central

    Pal, Priya; Daniels, Brian P.; Oskman, Anna; Diamond, Michael S.; Klein, Robyn S.

    2016-01-01

    ABSTRACT Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium falciparum. It is characterized by parasite sequestration, inflammatory cytokine production, and vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic marker for falciparum malaria. We demonstrate that disruption of a human cerebral microvascular endothelial barrier by P. falciparum-infected erythrocytes depends on expression of HRPII. Purified recombinant or native HRPII can recapitulate these effects. HRPII action occurs via activation of the inflammasome, resulting in decreased integrity of tight junctions and increased endothelial permeability. We propose that HRPII is a virulence factor that may contribute to cerebral malaria by compromising endothelial barrier integrity within the central nervous system. PMID:27273825

  15. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock.

    PubMed

    Botha, Melissa; Chiang, Annette N; Needham, Patrick G; Stephens, Linda L; Hoppe, Heinrich C; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus; Wipf, Peter; Brodsky, Jeffrey L; Shonhai, Addmore; Blatch, Gregory L

    2011-07-01

    Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) function as molecular chaperones during the folding and trafficking of proteins within most cell types. However, the Hsp70-Hsp40 chaperone partnerships within the malaria parasite, Plasmodium falciparum, have not been elucidated. Only one of the 43 P. falciparum Hsp40s is predicted to be a cytosolic, canonical Hsp40 (termed PfHsp40) capable of interacting with the major cytosolic P. falciparum-encoded Hsp70, PfHsp70. Consistent with this hypothesis, we found that PfHsp40 is upregulated under heat shock conditions in a similar pattern to PfHsp70. In addition, PfHsp70 and PfHsp40 reside mainly in the parasite cytosol, as assessed using indirect immunofluorescence microscopy. Recombinant PfHsp40 stimulated the ATP hydrolytic rates of both PfHsp70 and human Hsp70 similar to other canonical Hsp40s of yeast (Ydj1) and human (Hdj2) origin. In contrast, the Hsp40-stimulated plasmodial and human Hsp70 ATPase activities were differentially inhibited in the presence of pyrimidinone-based small molecule modulators. To further probe the chaperone properties of PfHsp40, protein aggregation suppression assays were conducted. PfHsp40 alone suppressed protein aggregation, and cooperated with PfHsp70 to suppress aggregation. Together, these data represent the first cellular and biochemical evidence for a PfHsp70-PfHsp40 partnership in the malaria parasite, and furthermore that the plasmodial and human Hsp70-Hsp40 chaperones possess unique attributes that are differentially modulated by small molecules. PMID:21191678

  16. Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors

    PubMed Central

    Ponder, Elizabeth L.; Albrow, Victoria E.; Leader, Brittany A.; Békés, Miklós; Mikolajczyk, Jowita; Fonović, Urša Pečar; Shen, Aimee; Drag, Marcin; Xiao, Junpeng; Deu, Edgar; Campbell, Amy J.; Powers, James C.; Salvesen, Guy S.; Bogyo, Matthew

    2011-01-01

    SUMMARY Small ubiquitin-related modifier (SUMO) is implicated in the regulation of numerous biological processes including transcription, protein localization, and cell cycle control. Protein modification by SUMO is found in Plasmodium falciparum; however, its role in the regulation of the parasite lifecycle is poorly understood. Here we describe functional studies of a SUMO-specific protease (SENP) of P. falciparum, PfSENP1 (PFL1635w). Expression of the catalytic domain of PfSENP1 and biochemical profiling using a positional scanning substrate library demonstrated that this protease has unique cleavage sequence preference relative to the human SENPs. In addition, we describe a novel class of small molecule inhibitors of this protease. The most potent lead compound inhibited both recombinant PfSENP1 activity and P. falciparum replication in infected human blood. These studies provide valuable new tools for the study of SUMOylation in P. falciparum. PMID:21700207

  17. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections

    PubMed Central

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A. M.; Li, Tao; Sim, B. Kim Lee; Hoffman, Stephen L.; Kremsner, Peter G.; Mordmüller, Benjamin; Duffy, Michael F.; Tannich, Egbert

    2016-01-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  18. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    PubMed Central

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K.

    2015-01-01

    The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions. PMID:25945715

  19. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    PubMed

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  20. The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research

    PubMed Central

    Smith, Joseph D.

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family has a key role in parasite survival, transmission, and virulence. PfEMP1 are exported to the erythrocyte membrane and mediate binding of infected erythrocytes to the endothelial lining of blood vessels. This process aids parasite survival by avoiding spleen-dependent killing mechanisms, but it is associated with adhesion-based disease complications. Switching between PfEMP1 proteins enables parasites to evade host immunity and modifies parasite tropism for different microvascular beds. The PfEMP1 protein family is one of the most diverse adhesion modules in nature. This review covers PfEMP1 adhesion domain classification and the significant role it is playing in deciphering and deconvoluting P. falciparum cytoadhesion and disease. PMID:25064606

  1. Parasite calcineurin regulates host cell recognition and attachment by apicomplexans

    PubMed Central

    Paul, Aditya S.; Saha, Sudeshna; Engelberg, Klemens; Jiang, Rays H.Y.; Coleman, Bradley I.; Kosber, Aziz L.; Chen, Chun-Ti; Ganter, Markus; Espy, Nicole; Gilberger, Tim W.; Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2015-01-01

    SUMMARY Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans. PMID:26118996

  2. Plasmodium falciparum Secretome in Erythrocyte and Beyond.

    PubMed

    Soni, Rani; Sharma, Drista; Bhatt, Tarun K

    2016-01-01

    Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies. PMID:26925057

  3. Plasmodium falciparum Secretome in Erythrocyte and Beyond

    PubMed Central

    Soni, Rani; Sharma, Drista; Bhatt, Tarun K.

    2016-01-01

    Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies. PMID:26925057

  4. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    PubMed

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds. PMID:27381078

  5. [Intestinal parasite infections in a semiarid area of Northeast Brazil: preliminary findings differ from expected prevalence rates].

    PubMed

    Alves, Jair Rodrigues; Macedo, Heloísa Werneck; Ramos, Alberto Novaes; Ferreira, Luiz Fernando; Gonçalves, Marcelo Luiz Carvalho; Araújo, Adauto

    2003-01-01

    We report on intestinal parasite infection prevalence in a population sample from S o Raimundo Nonato, Southeast Piau State, Brazil, aimed at comparison with previous studies on Trichuris trichiura and Ascaris lumbricoides infection. A total of 265 stool specimens were collected and examined by spontaneous sedimentation. Approximately 57% of specimens were infected with at least one parasite species. Entamoeba coli (35.8%), Endolimax nana (13.6%), Hymenolepis nana (9.4%), and hookworm (9.4%) were the most frequently observed parasites. Two cases of roundworm infection were detected, probably acquired outside the region. T. trichiura eggs were not found. Interestingly, neither A. lumbricoides nor T. trichiura has been found in local prehistoric human coprolites. Nevertheless, hookworm infection has been present in the region for at least 7,000 years. PMID:12764483

  6. Plasmodium vivax Populations Are More Genetically Diverse and Less Structured than Sympatric Plasmodium falciparum Populations

    PubMed Central

    Jennison, Charlie; Arnott, Alicia; Tessier, Natacha; Tavul, Livingstone; Koepfli, Cristian; Felger, Ingrid; Siba, Peter M.; Reeder, John C.; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2015-01-01

    Introduction The human malaria parasite, Plasmodium vivax, is proving more difficult to control and eliminate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic structure of sympatric parasite populations may provide insight into the mechanisms underlying the resilience of P. vivax and can help guide malaria control programs. Methodology/Principle findings P. vivax isolates representing the parasite populations of four areas on the north coast of Papua New Guinea (PNG) were genotyped using microsatellite markers and compared with previously published microsatellite data from sympatric P. falciparum isolates. The genetic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–0.77) in all four populations. Moderate levels of genetic differentiation were found between P. falciparum populations, even over relatively short distances (less than 50 km), with 21–28% private alleles and clear geospatial genetic clustering. Conversely, very low population differentiation was found between P. vivax catchments, with less than 5% private alleles and no genetic clustering observed. In addition, the effective population size of P. vivax (30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986). Conclusions/Significance Despite comparably high prevalence, P. vivax had higher diversity and a panmictic population structure compared to sympatric P. falciparum populations, which were fragmented into subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a long-term large effective population size, consistent with more intense and stable transmission, and limited impact of past control and elimination efforts. This underlines suggestions that more intensive and sustained interventions will be needed to control and eventually eliminate P. vivax. This research clearly demonstrates how population genetic analyses can reveal deeper insight into transmission

  7. Genetic structure of Plasmodium vivax and Plasmodium falciparum in the Bannu district of Pakistan

    PubMed Central

    2010-01-01

    Background Plasmodium vivax and Plasmodium falciparum are the major causative agents of malaria. While knowledge of the genetic structure of malaria parasites is useful for understanding the evolution of parasite virulence, designing anti-malarial vaccines and assessing the impact of malaria control measures, there is a paucity of information on genetic diversity of these two malaria parasites in Pakistan. This study sought to shed some light on the genetic structure of P. vivax and P. falciparum in this understudied region. Methods The genetic diversities of P. vivax and P. falciparum populations from the densely populated, malaria-endemic Bannu district of Pakistan were evaluated by analysis of their merozoite surface protein (msp) genes by PCR-RFLP. Specifically, the Pvmsp-3α and Pvmsp-3β genes of P. vivax and the Pfmsp-1 and Pfmsp-2 genes of P. falciparum were analysed. Results In P. vivax, genotyping of Pvmsp-3α and Pvmsp-3β genes showed a high level of diversity at these loci. Four distinct allele groups: A (1.9 kb), B (1.5 kb), C (1.2 kb), and D (0.3 kb) were detected for Pvmsp-3α, type A being the most prevalent (82%). Conversely, amplification of the P. vivax msp-3β locus produced two allele groups: A (1.7-2.2 kb, 62%) and B (1.4-1.5 kb, 33%), with 5% mixed-strain infections. Restriction analysis of Pvmsp-3α and Pvmsp-3β yielded 12 and 8 distinct alleles, respectively, with a combined mixed genotype prevalence of 20%. In P. falciparum, all three known genotypes of Pfmsp-1 and two of Pfmsp-2 were observed, with MAD20 occurring in 67% and 3D7/IC in 65% of the isolates, respectively. Overall, 24% P. falciparum samples exhibited mixed-strain infections. Conclusion These results indicate that both P. vivax and P. falciparum populations in Pakistan are highly diverse. PMID:20416089

  8. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum.

    PubMed

    Miles, Alistair; Iqbal, Zamin; Vauterin, Paul; Pearson, Richard; Campino, Susana; Theron, Michel; Gould, Kelda; Mead, Daniel; Drury, Eleanor; O'Brien, John; Ruano Rubio, Valentin; MacInnis, Bronwyn; Mwangi, Jonathan; Samarakoon, Upeka; Ranford-Cartwright, Lisa; Ferdig, Michael; Hayton, Karen; Su, Xin-Zhuan; Wellems, Thomas; Rayner, Julian; McVean, Gil; Kwiatkowski, Dominic

    2016-09-01

    The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired. PMID:27531718

  9. Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction

    PubMed Central

    Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.

    2014-01-01

    The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483

  10. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion **

    PubMed Central

    Egan, Elizabeth S.; Jiang, Rays H.Y.; Moechtar, Mischka A.; Barteneva, Natasha S.; Weekes, Michael P.; Nobre, Luis V.; Gygi, Steven P.; Paulo, Joao A.; Frantzreb, Charles; Tani, Yoshihiko; Takahashi, Junko; Watanabe, Seishi; Goldberg, Jonathan; Paul, Aditya S.; Brugnara, Carlo; Root, David E.; Wiegand, Roger C.; Doench, John G.; Duraisingh, Manoj T.

    2015-01-01

    Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, precluding genetic manipulation in the cell where the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis. PMID:25954012

  11. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities

    NASA Technical Reports Server (NTRS)

    Li, Tao; Glushakova, Svetlana; Zimmerberg, Joshua

    2003-01-01

    Plasmodium falciparum replicates poorly in erythrocyte densities greater than a hematocrit of 20%. A new method to culture the major malaria parasite was developed by using a hollow fiber bioreactor that preserves healthy erythrocytes at hematocrit up to 100%. P. falciparum replicated equally well at all densities studied. This method proved advantageous for large-scale preparation of parasitized erythrocytes (and potentially immunogens thereof), because high yields ( approximately 10(10) in 4 days) could be prepared with less cost and labor. Concomitantly, secreted proteins were concentrated by molecular sieving during culture, perhaps contributing to the parasitemic limit of 8%-12% with the 3D7 strain. The finding that P. falciparum can replicate at packed erythrocyte densities suggests that this system may be useful for study of the pathogenesis of fatal cerebral malaria, of which one feature is densely packed blood cells in brain microvasculature.

  12. Identification and initial characterisation of a Plasmodium falciparum Cox17 copper metallochaperone.

    PubMed

    Choveaux, David L; Krause, Robert G E; Przyborski, Jude M; Goldring, J P Dean

    2015-01-01

    Copper is an essential micronutrient for all living organisms as an important catalytic co-factor for key enzymes. In higher eukaryotes intracellular copper is distributed by copper metallochaperones. Copper chelators such as neocuproine and tetrathiomolybdate inhibit Plasmodium falciparum erythrocytic development, indicating a requirement for copper by the parasite. A screen of the P. falciparum genome database identified eight potential copper-requiring protein orthologs, including four candidate copper metallochaperones implicated in the delivery of copper to cytochrome-c oxidase. A P. falciparum Cox17 ortholog (PfCox17) was recombinantly expressed and the purified protein bound reduced copper in vitro. PfCox17 was localised to the parasite cytoplasm. Characterisation of plasmodial proteins involved in copper metabolism will help us understand the role of this essential microelement in plasmodial homeostasis. PMID:25447123

  13. Plasmodium falciparum var gene expression is modified by host immunity

    PubMed Central

    Warimwe, George M.; Keane, Thomas M.; Fegan, Gregory; Musyoki, Jennifer N.; Newton, Charles R. J. C.; Pain, Arnab; Berriman, Matthew; Marsh, Kevin; Bull, Peter C.

    2009-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host–parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are ≈60 copies in each parasite genome. In sub-Saharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes “cys2,” containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host–parasite relationship. PMID:20018734

  14. In vitro drug sensitivity of Plasmodium falciparum in Acre, Brazil.

    PubMed Central

    Kremsner, P. G.; Zotter, G. M.; Feldmeier, H.; Graninger, W.; Kollaritsch, M.; Wiedermann, G.; Rocha, R. M.; Wernsdorfer, W. H.

    1989-01-01

    In Acre, the westernmost state of Brazil in the Amazon region, the sensitivity of Plasmodium falciparum to chloroquine, amodiaquine, mefloquine, quinine and sulfadoxine/pyrimethamine was determined in vitro by the Rieckmann microtechnique. The study was performed between January and June 1987; the in vitro parasite responses to all antimalarial drugs were determined according to the recommendations of WHO. Of 83 isolates of P. falciparum, all were sensitive to mefloquine and of 87 isolates of P. falciparum, 84 (97%) were sensitive to quinine. The EC50 for mefloquine was 0.27 mumol/l and for quinine 4.60 mumol/l. In contrast, 65 of 89 (73%) and 70 of 83 (84%) isolates were resistant to amodiaquine and chloroquine, respectively; 11 isolates even grew at 6.4 mumol chloroquine/l. The EC50 for amodiaquine was 0.34 mumol/l and for chloroquine 0.73 mumol/l. Sulfadoxine/pyrimethamine resistance was seen in 23 of 25 (92%) cases. These data clearly indicate that in the western part of the Amazon region the 4-aminoquinolines, as well as sulfadoxine/pyrimethamine, can no longer be recommended for the treatment of P. falciparum infections. PMID:2670298

  15. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies.

    PubMed

    Slater, Hannah C; Ross, Amanda; Ouédraogo, André Lin; White, Lisa J; Nguon, Chea; Walker, Patrick G T; Ngor, Pengby; Aguas, Ricardo; Silal, Sheetal P; Dondorp, Arjen M; La Barre, Paul; Burton, Robert; Sauerwein, Robert W; Drakeley, Chris; Smith, Thomas A; Bousema, Teun; Ghani, Azra C

    2015-12-01

    Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using

  16. Malaria diseases and parasites.

    PubMed

    Ascenzi, A

    1999-09-01

    The milestones in the discovery of malaria parasites and their relationships with malaria diseases are presented and discussed with particular reference to the contribution of the Italian scientists. Laveran's discovery (1880) of the malaria parasite produced some schepticism among the Roman scientists who were under the influence of Tommasi-Crudeli, the discoverer of the supposed Bacillus malariae. However, Marchiafava and Celli confirmed soon Laveran's observations and, between 1883 and 1885, improved the description of the parasite adding important details. They described, then, the aestivo-autumnal tertian fever as a distinct disease from the 'primaverile' or benign tertian. This work influenced Golgi who went on to analyse the features that distinguish the benign tertian parasite from that of the quartan. The fact that in North Italy the aestivo-autumnal tertian fever was hardly ever found, whereas it was common in the Roman Campagna and the Pontin marshes, explains why it was Celli and Marchiafava and later Bignami and Bastianelli, and Marchiafava and Bignami--but not Golgi--who were committed to work on this pernicious form of malaria. By the early 1890s the Italian scientists came to define the three malaria parasites, presently known as Plasmodium vivax, P. malariae, and P. falciparum, and to associate them with precise anatomo-pathological and clinical features. By the middle 1890s the Italian school was prepared to contribute also to the discovery of the mosquito cycle in human malaria, clearly hypothesized by Bignami in 1896 and experimentally proved in 1898 by Bignami, Bastianelli and Grassi. PMID:10697831

  17. Unraveling the 'DEAD-box' helicases of Plasmodium falciparum.

    PubMed

    Tuteja, Renu; Pradhan, Arun

    2006-07-01

    The causative agent for the most fatal form of malaria, Plasmodium falciparum, has developed insecticide and drug resistance with time. Therefore combating this disease is becoming increasingly difficult and this calls for finding alternate ways to control malaria. One of the feasible ways could be to find out inhibitors/drugs specific for the indispensable enzymes of malaria parasite such as helicases. These helicases, which contain intrinsic nucleic acid-dependent ATPase activity, are capable of enzymatically unwinding energetically stable duplex nucleic acids into single-stranded templates and are required for all the nucleic acid transactions. Most of the helicases contain a set of nine extremely conserved amino acid sequences, which are called 'helicase motifs'. Due to the presence of the DEAD (Asp-Glu-Ala-Asp) in one of the conserved motifs, this family is also known as the 'DEAD-box' family. In this review, using bioinformatic approach, we describe the 'DEAD-box' helicases of malaria parasite P. falciparum. An in depth analysis shows that the parasite contains 22 full-length genes, some of which are homologues of well-characterized helicases of this family from other organisms. Recently we have cloned and characterized the first member of this family, which is a homologue of p68 and is expressed during the schizont stage of the development of the parasite [Pradhan, A., Chauhan, V.S., Tuteja, R., 2005a. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol. Biochem. Parasitol. 140, 55-60.; Pradhan A., Chauhan V.S., Tuteja R., 2005b. Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol. Biochem. Parasitol. 144, 133-141.]. It will be really interesting to clone and characterize other members of the 'DEAD-box' family and understand their role in the replication and transmission of the parasite. These detailed studies may help to identify a parasite

  18. Therapy of uncomplicated falciparum malaria in Europe: MALTHER – a prospective observational multicentre study

    PubMed Central

    2012-01-01

    Background Malaria continues to be amongst the most frequent infectious diseases imported to Europe. Whilst European treatment guidelines are based on data from studies carried out in endemic areas, there is a paucity of original prospective treatment data. The objective was to summarize data on treatments to harmonize and optimize treatment for uncomplicated malaria in Europe. Methods A prospective observational multicentre study was conducted, assessing tolerance and efficacy of treatment regimens for imported uncomplicated falciparum malaria in adults amongst European centres of tropical and travel medicine. Results Between December 2003 and 2009, 504 patients were included in 16 centres from five European countries. Eighteen treatment regimens were reported, the top three being atovaquone-proguanil, mefloquine, and artemether-lumefantrine. Treatments significantly differed with respect to the occurrence of treatment changes (p = 0.005) and adverse events (p = 0.001), parasite and fever clearance times (p < 0.001), and hospitalization rates (p = 0.0066) and durations (p = 0.001). Four recrudescences and two progressions to severe disease were observed. Compared to other regimens, quinine alone was associated with more frequent switches to second line treatment, more adverse events and longer inpatient stays. Parasite and fever clearance times were shortest with artemether-mefloquine combination treatment. Vomiting was the most frequent cause of treatment change, occurring in 5.5% of all patients but 9% of the atovaquone-proguanil group. Conclusions This study highlights the heterogeneity of standards of care within Europe. A consensus discussion at European level is desirable to foster a standardized management of imported falciparum malaria. PMID:22720832

  19. Plasmodium falciparum Merozoite Surface Protein-1 Polymorphisms among Asymptomatic Sickle Cell Anemia Patients in Nigeria.

    PubMed

    Bamidele Abiodun, Iwalokun; Oluwadun, Afolabi; Olugbenga Ayoola, Aina; Senapon Olusola, Iwalokun

    2016-01-01

    Asymptomatic malaria (ASM) has been implicated in the development of hemolytic crisis in infected sickle cell anemia (SCA) patients worldwide. This study surveyed steady state SCA Nigerian patients for ASM to investigate the influence of malaria prevention behaviors and age on parasitaemia and multiplicity of infection (MOI). A total of 78 steady SCA patients aged 5 - 27 years on routine care at three health facilities in Lagos were investigated for ASM by light microscopy and PCR with a multiplicity of infection determined by genotyping block 2 of merozoite surface protein 1 (msp1) gene of Plasmodium falciparum (P. falciparum). Use of malaria prevention measures was captured using a semi-structured questionnaire. The prevalence rates of ASM (due to Pf only) by microscopy and PCR were found to be 27.3% and 47.4% respectively (P < 0.05) with a Mean + SEM parasite density of 2238.4 + 464.3 parasites/uL. Five distinct msp1 genotypes [K1 (2), MAD20 (2), RO33 (1)] were detected and significant (P<0.05) disparity in allele frequencies (K1, 91.8%, MAD20, 32.4%; RO33, 18.9%) was found. The overall MOI was 1.43 and 37.8% of infections were polyclonal (P<0.05). ASM was associated with non-use of preventive measures and occurred in 62.1% of SCA patients aged < 10y with lower MOI of 1.3 compared to 38.1% in older patients with a higher MOI of 1.5 (P<0.05). We conclude that PCR improved the diagnosis of ASM among Nigerian SCA patients with infections being of low complexity and associated with non-use of preventive interventions and R033 msp1 allele selection. PMID:26853290

  20. How genomics is contributing to the fight against artemisinin-resistant malaria parasites.

    PubMed

    Cravo, Pedro; Napolitano, Hamilton; Culleton, Richard

    2015-08-01

    Plasmodium falciparum, the malignant malaria parasite, has developed resistance to artemisinin, the most important and widely used antimalarial drug at present. Currently confined to Southeast Asia, the spread of resistant parasites to Africa would constitute a public health catastrophe. In this review we highlight the recent contributions of genomics to our understanding how the parasite develops resistance to artemisinin and its derivatives, and how resistant parasites may be monitored and tracked in real-time, using molecular approaches. PMID:25910626

  1. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011-2013.

    PubMed

    Hawkes, Michael; Conroy, Andrea L; Opoka, Robert O; Namasopo, Sophie; Zhong, Kathleen; Liles, W Conrad; John, Chandy C; Kain, Kevin C

    2015-07-01

    Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance. PMID:26079933

  2. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011–2013

    PubMed Central

    Hawkes, Michael; Conroy, Andrea L.; Opoka, Robert O.; Namasopo, Sophie; Zhong, Kathleen; Liles, W. Conrad; John, Chandy C.

    2015-01-01

    Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance. PMID:26079933

  3. Chloroquine resistance of Plasmodium falciparum is associated with severity of disease in Nigerian children.

    PubMed

    Olumese, P E; Amodu, O K; Björkman, A; Adeyemo, A A; Gbadegesin, R A; Walker, O

    2002-01-01

    Chloroquine resistance of Plasmodium falciparum in vitro was significantly higher in isolates from patients with severe malaria than those with uncomplicated disease. This association may be due to either progression of uncomplicated to severe disease following chloroquine failure or increased virulence of chloroquine-resistant parasites. The implication of this for antimalarial treatment policy is discussed. PMID:12497979

  4. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum.

    PubMed

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-06-01

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions. PMID:23615908

  5. Biosynthesis of GDP-fucose and Other Sugar Nucleotides in the Blood Stages of Plasmodium falciparum*

    PubMed Central

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-01-01

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions. PMID:23615908

  6. Population structure and recent evolution of Plasmodium falciparum

    PubMed Central

    Rich, Stephen M.; Ayala, Francisco J.

    2000-01-01

    Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000–50,000 years. This inference derives from the virtual or complete absence of synonymous nucleotide polymorphisms at genes not involved in immune or drug responses. Seeking to conciliate this claim with extensive antigenic polymorphism, we first note that allele substitutions or polymorphisms can arise very rapidly, even in a single generation, in large populations subject to strong natural selection. Second, new alleles can arise not only by single-nucleotide mutations, but also by duplication/deletion of short simple-repeat DNA sequences, a process several orders of magnitude faster than single-nucleotide mutation. We analyze three antigenic genes known to be extremely polymorphic: Csp, Msp-1, and Msp-2. We identify regions consisting of tandem or proximally repetitive short DNA sequences, including some previously unnoticed. We conclude that the antigenic polymorphisms are consistent with the recent origin of the world populations of P. falciparum inferred from the analysis of nonantigenic genes. PMID:10860962

  7. Genetic polymorphisms associated with sulphadoxine-pyrimethamine drug resistance among Plasmodium falciparum field isolates in malaria endemic areas of Assam

    PubMed Central

    Sharma, J; Dutta, P; Khan, SA; Soni, M; Dey, D; Mahanta, J

    2015-01-01

    Background: The emergence of antimalarial drug resistance malaria parasite is widespread in North eastern region of India. During January 2012-December 2013, we conducted active surveillance for detection of antifolate resistance-associated genetic polymorphisms in Plasmodium falciparum malaria parasite from different malaria endemic areas of Assam. Materials and Methods: A total of 281 field samples were collected from suspected malaria patients of which 106 malaria P. falciparum positive cases were detected in microscopic slide examination. A nested PCR was done for amplification of a 648 bp portion of the dhfr gene and 710 bp portion of the dhps gene. Results: Mutation analysis revealed existence of three different haplotypes of the P. falciparum dhfr gene of which ANRNI was highly prevalent (90%). Triple mutant haplotypes AIRNI (N51I + C59R + S108N) of the dhfr gene associated with pyrimethamine resistance were prevalent in Chirang district of Assam. Whereas, dhps mutation study revealed that triple mutant haplotype AGEAA (S436A + A437G + K540E) associated with Sulphadoxine resistance was found among 26% of P. falciparum field isolates. However, P. falciparum dhfr-dhps two locus mutation analysis showed that there were a total of nine dhfr-dhps genotypes. Conclusion: It was noticed that 93.62% (88/94) isolates had mutations in the sequences of both enzymes, which is an indication of prevalence of high grade of Sulphadoxine — pyrimethamine resistance in P. falciparum malaria parasites in Assam. PMID:25511211

  8. Open-label trial of three dosage regimens of fixed-dose combination of artemisinin and naphthoquine for treating uncomplicated falciparum malaria in calabar, Nigeria

    PubMed Central

    2012-01-01

    Background The use of anti-malarial drug combinations with artemisinin, or with one of its derivatives, is now widely recommended to overcome drug resistance in falciparum malaria. Fixed-dose combination of artemisinin and naphthoquine is a new generation artemisinin combination therapy (ACT) offered as a single dose therapy. The aim of the study was to assess the therapeutic efficacy, safety and tolerability of three dosage schedules of fixed-dose combination of artemisinin (125 mg) and naphthoquine (50 mg) for treating uncomplicated Plasmodium falciparum malaria among adolescents and adults in Calabar, South-east Nigeria. Method A total of 121 patients aged ≥15 years with uncomplicated P. falciparum malaria were enrolled and randomly assigned to three dosage schedules: (A) 700 mg (four tablets) single dose; (B) 700 mg 12-hourly x two doses; and (C) 1,400 mg (eight tablets) single dose. Patients were observed for 28 days, with clinical, parasitological, and haematological assessments. Results A total of 108 patients completed the study. The overall 28-day cure rate was 88.9%. Day 28-cure rates of the three dosage schedules were 85.3%, 93.1% and 88.9% for Group A, B and C respectively. Adverse events were few and mild, the commonest being weakness and headache; there was no serious adverse event. Conclusion Concerns for emergence of parasite resistance due to the use of artemisinin-naphthoquine as single dose regimen is likely to compromise the usefulness of this potentially important combination treatment. A robust multi-centre trial is recommended to evaluate a three-day regimen with potentials to achieve high cure rates while minimizing the risk of emergence of resistant parasite strains. PMID:23232095

  9. Bemisia tabaci (Homoptera: Aleyrodidae) Instar Effects on Rate of Parasitism by Eretmocerus mundus and Encarsia pergandiella (Hymenoptera: Aphelinidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to compare preference among Bemisia tabaci Gennadius, Biotype B instars for parasitization by Encarsia pergandiella Howard and Eretmocerus mundus Mercet when provided one instar only, two different instars, and four different instars simultaneously. In the single instar-choic...

  10. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  11. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  12. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology

    PubMed Central

    2010-01-01

    Background Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. Methods The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. Results The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. Conclusion This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the

  13. Plasmodium falciparum Clearance Is Rapid and Pitting Independent in Immune Malian Children Treated With Artesunate for Malaria

    PubMed Central

    Ndour, Papa Alioune; Lopera-Mesa, Tatiana M.; Diakité, Seidina A. S.; Chiang, Serena; Mouri, Oussama; Roussel, Camille; Jauréguiberry, Stéphane; Biligui, Sylvestre; Kendjo, Eric; Claessens, Antoine; Ciceron, Liliane; Mazier, Dominique; Thellier, Marc; Diakité, Mahamadou; Fairhurst, Rick M.; Buffet, Pierre A.

    2015-01-01

    Background In Plasmodium falciparum–infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). Methods We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. Results In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5–4 years, O-iRBCs peaked at higher concentrations than in children aged 9–13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5–4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = −0.501; P = .0006) and peak O-iRBC concentration (r = −0.420; P = .0033). Conclusions Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa. PMID:25183768

  14. The comparative efficacy and tolerability of CGP 56697 (artemether + lumefantrine) versus halofantrine in the treatment of uncomplicated falciparum malaria in travellers returning from the Tropics to The Netherlands and France.

    PubMed

    van Agtmael, M; Bouchaud, O; Malvy, D; Delmont, J; Danis, M; Barette, S; Gras, C; Bernard, J; Touze, J E; Gathmann, I; Mull, R

    1999-07-01

    CGP 56697 (Riamet) is a new oral anti-malarial drug composed of artemether and lumefantrine (benflumetol) which combines the fast, short-acting artemether for rapid parasite clearance with the prolonged action of lumefantrine for intended radical cure. In this double-blind, comparative trial, the efficacy and tolerability of CGP 56697, given as a course of 4 x 4 tablets over 48 h, was compared to halofantrine, given as 3 x 2 tablets over 12 h with a second course 1 week later. Patients (mostly non-immune) with acute, uncomplicated Plasmodium falciparum infection were randomly assigned to either CGP 56697 (n = 51) or halofantrine (n = 52). CGP 56697 proved superior with respect to parasite clearance time (median 32 vs. 48 h, P < 0.001) and parasite reduction at 24 h (median 99.7 vs. 89.6%, P < 0.001) with a non-significant difference in resolution of fever (median 24 vs. 32 h, P = 0.835). However, a 28-day cure rate of 82% was observed for CGP 56697 and 100% for halofantrine. Significant QTc prolongations (> 30 ms) were seen 6-12 h after halofantrine intake but not after CGP 56697 intake. CGP 56697 is an effective, well-tolerated treatment for uncomplicated falciparum malaria but for this dosing regimen the recrudescence rate is unacceptablyhigh (18%). For travellers contracting malaria abroad, we propose a six-dose regimen of CGP 56697 over 3 days. PMID:10418762

  15. Parasite cultivation in relation to research on the chemotherapy of malaria

    PubMed Central

    Trigg, P. I.

    1976-01-01

    Attempts to develop techniques for the continuous in vitro cultivation of the malaria parasite have not yet proved successful. It has not been possible to obtain the complete sporogonic development of the parasite in vitro although some progress was made with Plasmodium relictum and P. berghei. Exoerythrocytic stages of P. gallinaceum have been successfully cultivated in vitro in tissue explants and those of P. fallax have been grown in turkey primary embryo tissue cells. With the recent development of mammalian liver cell lines, prospects for the in vitro cultivation of exoerythrocytic stages of mammalian plasmodia are greatly improved. While it is still not possible to cultivate erythrocytic stages of plasmodia serially in vitro some species have been successfully grown through one asexual cycle. This progress has led to a number of applications of parasite cultivation to chemotherapeutic studies, to the testing of new antimalarial drugs, and especially to the testing of the susceptibility of P. falciparum to chloroquine. Cultivation technique is greatly improved by an appropriate choice of culture media. The addition of fresh red cells to the subculture system permits relatively high rates of invasion and multiplication of the parasite to be obtained. As well as its application in the screening and evaluation of antimalarial compounds, the in vitro cultivation technique is also very suitable for studying the entry mechanism of the parasite into red blood cells. PMID:1086733

  16. Coinfection with Plasmodium falciparum and Schistosoma haematobium: additional evidence of the protective effect of Schistosomiasis on malaria in Senegalese children.

    PubMed

    Lemaitre, Magali; Watier, Laurence; Briand, Valérie; Garcia, André; Le Hesran, Jean Yves; Cot, Michel

    2014-02-01

    Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1-9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development. PMID:24323515

  17. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand.

    PubMed

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M

    2015-01-01

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak. PMID:26616851

  18. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014

    PubMed Central

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar

    2016-01-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  19. Erythrocyte invasion receptors for Plasmodium falciparum: new and old.

    PubMed

    Satchwell, T J

    2016-04-01

    Understanding the complex process by which the invasive form of the Plasmodium falciparum parasite, the merozoite, attaches to and invades erythrocytes as part of its blood stage life cycle represents a key area of research in the battle to combat malaria. Central to this are efforts to determine the identity of receptors on the host cell surface, their corresponding merozoite-binding proteins and the functional relevance of these binding events as part of the invasion process. This review will provide an updated summary of studies identifying receptor interactions essential for or implicated in P. falciparum merozoite invasion of human erythrocytes, highlighting the recent identification of new receptors using groundbreaking high throughput approaches and with particular focus on the properties and putative involvement of the erythrocyte proteins targeted by these invasion pathways. PMID:26862042

  20. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014.

    PubMed

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar; Pradines, Bruno

    2016-05-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August-December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  1. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand

    PubMed Central

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M.

    2015-01-01

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak. PMID:26616851

  2. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines.

    PubMed

    Walker, Andrew S; Lourenço, José; Hill, Adrian V S; Gupta, Sunetra

    2015-12-01

    Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals. PMID:26503278

  3. Open-label trial on efficacy of artemether/lumefantrine against the uncomplicated Plasmodium falciparum malaria in Metema district, Northwestern Ethiopia

    PubMed Central

    Wudneh, Feven; Assefa, Ashenafi; Nega, Desalegn; Mohammed, Hussien; Solomon, Hiwot; Kebede, Tadesse; Woyessa, Adugna; Assefa, Yibeltal; Kebede, Amha; Kassa, Moges

    2016-01-01

    Purpose Following the increased Plasmodium falciparum resistance to chloroquine and sulfadoxine/pyrimethamine, Ethiopia adopted artemether/lumefantrine (AL) as the first-line treatment for uncomplicated P. falciparum in 2004. According to the recommendation of the World Health Organization, this study was carried out for regular monitoring of the efficacy of AL in treating the uncomplicated P. falciparum malaria in Metema district, Gondar Zone, Northwest Ethiopia. Patients and methods This is a one-arm prospective 28-day in vivo therapeutic efficacy study among the uncomplicated P. falciparum malaria patients aged 6 months and older. The study was conducted from October 2014 to January 2015, based on the revised World Health Organization protocol of 2009 for surveillance of antimalarial drug therapeutic efficacy study. Standard six-dose regimen of AL was given twice daily for 3 days, and then the treatment outcomes were assessed on days 0, 1, 2, 3, 7, 14, 21, 28, and any other unscheduled day for emergency cases. Results There were 91 study subjects enrolled in this study, of whom 80 study subjects completed the full follow-up schedules and showed adequate clinical and parasitological responses on day 28, with no major adverse event. Per protocol analysis, the unadjusted cure rate of Coartem® was 98.8% (95% confidence interval: 93.3%–100%) in the study area. Recurrence of one P. falciparum case was detected on day 28, with a late parasitological failure rate of 1.2%. No early treatment failure occurred. Complete parasite and fever clearance was observed on day 3. Gametocyte carriage was 4.4% at enrollment that cleared on day 21. Although the difference is statistically not significant, a slight increase in the level of mean hemoglobin from baseline to day 28 was observed. Conclusion The study showed high efficacy and tolerability of Coartem® against uncomplicated P. falciparum malaria, suggesting the continuation as a first-line drug in the study district

  4. Parasites: Water

    MedlinePlus

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Water Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  5. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites.

    PubMed

    Absalon, Sabrina; Robbins, Jonathan A; Dvorin, Jeffrey D

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  6. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites

    PubMed Central

    Absalon, Sabrina; Robbins, Jonathan A.; Dvorin, Jeffrey D.

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  7. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells.

    PubMed

    Deponte, Marcel; Hoppe, Heinrich C; Lee, Marcus C S; Maier, Alexander G; Richard, Dave; Rug, Melanie; Spielmann, Tobias; Przyborski, Jude M

    2012-12-01

    Quite aside from its immense importance as a human pathogen, studies in recent years have brought to light the fact that the malaria parasite Plasmodium falciparum is an interesting eukaryotic model system to study protein trafficking. Studying parasite cell biology often reveals an overrepresentation of atypical cell biological features, possibly driven by the parasites' need to survive in an unusual biological niche. Malaria parasites possess uncommon cellular compartments to which protein traffic must be directed, including secretory organelles such as rhoptries and micronemes, a lysosome-like compartment referred to as the digestive vacuole and a complex (four membrane-bound) plastid, the apicoplast. In addition, the parasite must provide proteins to extracellular compartments and structures including the parasitophorous vacuole, the parasitophorous vacuolar membrane, the Maurer's clefts and both cytosol and plasma membrane of the host cell, the mature human red blood cell. Although some of these unusual destinations are possessed by other cell types, only Plasmodium parasites contain them all within one cell. Here we review what is known about protein and membrane transport in the P. falciparum-infected cell, highlighting novel features of these processes. A growing body of evidence suggests that this parasite is a real "box of tricks" with regards to protein traffic. Possibly, these tricks may be turned against the parasite by exploiting them as novel therapeutic targets. PMID:23043991

  8. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  9. Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay.

    PubMed

    Bairagi, N; Adak, D

    2016-07-01

    Parasites play a significant role in trophic interactions and can regulate both predator and prey populations. Mathematical models might be of great use in predicting different system dynamics because models have the potential to predict the system response due to different changes in system parameters. In this paper, we study a predator-prey-parasite (PPP) system where prey population is infected by some micro parasites and predator-prey interaction occurs following Leslie-Gower model with type II response function. Infection spreads following SI type epidemic model with standard incidence rate. The infection process is not instantaneous but mediated by a fixed incubation delay. We study the stability and instability of the endemic equilibrium point of the delay-induced PPP system with respect to two parameters, viz., the force of infection and the length of incubation delay under two cases: (i) the corresponding non-delayed system is stable and (ii) the corresponding non-delayed system is unstable. In the first case, the system populations coexist in stable state for all values of delay if the force of infection is low; or show oscillatory behavior when the force of infection is intermediate and the length of delay crosses some critical value. The system, however, exhibits very complicated dynamics if the force of infection is high, where the system is unstable in absence of delay. In this last case, the system shows oscillatory, stable or chaotic behavior depending on the length of delay. PMID:27091744

  10. Genetic profiling of the Plasmodium falciparum population using antigenic molecular markers.

    PubMed

    Gupta, Purva; Singh, Ruchi; Khan, Haris; Raza, Adil; Yadavendu, Veena; Bhatt, R M; Singh, Vineeta

    2014-01-01

    About 50% of malaria infections in India are attributed to Plasmodium falciparum but relatively little is known about the genetic structure of the parasite populations. The molecular genotyping of the parasite populations by merozoite surface protein (msp1 and msp2) and glutamate-rich protein (glurp) genes identifies the existing parasite population in the regions which help in understanding the molecular mechanisms involved in the parasite's drive for survival. This study reveals the genetic profile of the parasite population in selected regions across the country with varying degree of endemicity among them. We also report the prevalence of Pfcrt mutations in this parasite population to evaluate the pattern of drug resistance development in them. PMID:25405214

  11. Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum

    PubMed Central

    Laine, Larissa M.; Biddau, Marco; Byron, Olwyn; Müller, Sylke

    2014-01-01

    PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle. PMID:25387830

  12. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    SciTech Connect

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K.

    2015-04-21

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.

  13. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes

    PubMed Central

    Tham, Wai-Hong; Lim, Nicholas T. Y.; Weiss, Greta E.; Lopaticki, Sash; Ansell, Brendan R. E.; Bird, Megan; Lucet, Isabelle; Dorin-Semblat, Dominique; Doerig, Christian; Gilson, Paul R.; Crabb, Brendan S.; Cowman, Alan F.

    2015-01-01

    The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL) and reticulocyte binding-like (Rh) protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process. PMID:26694741

  14. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    PubMed Central

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  15. A Unique Plasmodium falciparum K13 Gene Mutation in Northwest Ethiopia.

    PubMed

    Bayih, Abebe Genetu; Getnet, Gebeyaw; Alemu, Abebe; Getie, Sisay; Mohon, Abu Naser; Pillai, Dylan R

    2016-01-01

    Artemisinin combination therapy (ACT) is the first line to treat uncomplicated Plasmodium falciparum malaria worldwide. Artemisinin treatment failures are on the rise in southeast Asia. Delayed parasite clearance after ACT is associated with mutations of the P. falciparum kelch 13 gene. Patients (N = 148) in five districts of northwest Ethiopia were enrolled in a 28-day ACT trial. We identified a unique kelch 13 mutation (R622I) in 3/125 (2.4%) samples. The three isolates with R622I were from Negade-Bahir and Aykel districts close to the Ethiopia-Sudan border. One of three patients with the mutant strain was parasitemic at day 3; however, all patients cleared parasites by day 28. Correlation between kelch 13 mutations and parasite clearance was not possible due to the low frequency of mutations in this study. PMID:26483118

  16. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    PubMed Central

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  17. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo

    PubMed Central

    Taylor, Steve M.; Antonia, Alejandro L.; Parobek, Christian M.; Juliano, Jonathan J.; Janko, Mark; Emch, Michael; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Tshefu, Antoinette K.; Meshnick, Steven R.

    2013-01-01

    Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains. PMID:23372922

  18. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    PubMed

    Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  19. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    PubMed Central

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.

    2013-01-01

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859

  20. Plasmodium falciparum: assessment of in vitro growth by (/sup 3/H)hypoxanthine incorporation

    SciTech Connect

    Chulay, J.D.; Haynes, J.D.; Diggs, C.L.

    1983-02-01

    To evaluate rapidly Plasmodium falciparum growth in Vitro, (/sup 3/H)hypoxanthine was added to parasite microcultures and radioisotope incorporation was measured. When culture parameters were carefully controlled, (/sup 3/H)hypoxanthine incorporation was proportional to the number of parasitized erythrocytes present. Factors affecting (/sup 3/H)hypoxanthine incorporation included initial parasitemia, duration of culture, duration of radioisotope pulse, parasite stage, concentration of uninfected erythrocytes, the use of serum or plasma to supplement growth, and the concentration of a variety of purines in the culture medium. The method described can be used to measure inhibition of P. falciparum growth by immune serum and has previously been used to study antimalarial drug activity in vitro.

  1. Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2015-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmful to those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In 2010, The World Health Organization (WHO) recommended a single dose of PQ at 0.75 mg/kg, alongside treatment for P. falciparum malaria to reduce transmission in areas approaching malaria elimination. In 2013 the WHO revised this to 0.25 mg/kg due to concerns about safety. Objectives To assess whether giving PQ or an alternative 8AQ alongside treatment for P. falciparum malaria reduces malaria transmission, and to estimate the frequency of severe or haematological adverse events when PQ is given for this purpose. Search methods We searched the following databases up to 10 Feb 2014 for trials: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT); and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and contacted researchers and organizations. Selection criteria Randomized controlled trials (RCTs) or quasi-RCTs comparing PQ (or alternative 8AQ) given as a single dose or short course alongside treatment for P. falciparum malaria with malaria treatment given without PQ/8AQ in adults or children. Data collection and analysis Two authors independently screened all abstracts, applied inclusion criteria, and extracted data. We sought evidence of an impact on

  2. Primaquine or other 8-aminoquinoline for reducing P. falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2014-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmfu