Science.gov

Sample records for falls-hagerman area idaho

  1. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    USGS Publications Warehouse

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (Idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989; the minimum detectable concentration was smaller in March 1989 owing to a longer counting time in the liquid scintillation system. The maximum contaminant level of tritium in drinking water as established by the U.S. Environmental Protection Agency is 20 pCi/mL. U.S. Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 +/-0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contained less than 0.3 +/-0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. (USGS)

  2. Tritium, stable isotopes, and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93

    USGS Publications Warehouse

    Mann, L.J.; Low, W.H.

    1994-01-01

    In 1990-93, water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman contained from 9.2+0.6 to 78.4+5.1 picocuries per liter (pCi/L) of tritium. The springs were placed into three categories based on their locations and tritium concentrations: Category I was the upstream most and contained from 52.8+3.2 to 78.4+5.1 pCi/L of tritium; Category 11 was downstream from those in Category I and contained from 9.2+0.6 to 18.6+1.2 pCi/L; and Category III was the farthest downstream and contained from 28.3+1.9 to 47.7+3.2 pCi/L. Differences in tritium concentrations in the Category I, II, and III springs are a function of the ground-water flow regime, land use, and irrigation practices in and hydraulically upgradient from each category of springs. A comparatively large part of the water from the Category I springs is derived from recharge in heavily irrigated areas in which the irrigation water largely is diverted from the Snake River. A large part of the recharge for Category II springs occurs as much as 140 miles upgradient. Tritium concentrations in Category III springs indicate an intermediate proportion of the recharge is from excess applied-irrigation water. The concept that recharge from excess applied- irrigation water from the Snake River has affected tritium in the aquifer is supported by isotopic and nitrogen data. Deuterium and oxygen-18 isotopic values, and nitrite plus nitrate as nitrogen concentrations in the flow of some springs has been impacted by irrigation.

  3. Tritium, stable isotopes and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93

    SciTech Connect

    Mann, L.J.; Low, W.H.

    1994-12-01

    In 1990-93, tritium concentrations in water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman ranged from 9.2{+-}0.6 to 78.4{+-}5.1 picocuries per liter (pCi/L). The springs were placed into three categories on the basis of their locations and tritium concentrations: Category I springs are the farthest upstream and contained from 52.8{+-}3.2 to 78.4{+-}5.1 pCi/L of tritium; Category It springs are downstream from those in Category I and contained from 9.2{+-}0.6 to 18.5{+-}1.2 pCi/L; and Category III springs are the farthest downstream and contained from 28.3{+-}1.9 to 47.7{+-}3.2 pCi/L. Tritium concentrations in precipitation and in the Snake River were relatively large in the 1950`s and 1960`s owing to atmospheric testing of nuclear weapons. Conversely, tritium concentrations in ground water with a residence time of several tens to a few hundred years, as occurs in the Snake River Plain aquifer hydraulically upgradient from the Category II springs, are comparatively small because of the 12.4-year half-life of tritium. The conclusion that recharge from excess applied-irrigation water from the Snake River has affected tritium in the Snake River Plain aquifer is supported by differences in the deuterium (2H) and oxygen-18 (180) ratios of water. These ratios indicate that water discharged by the springs is recharged by waters of different origins. Irrigation recharge is more enriched in 2H and 180 than the regional ground water. Water from Category I springs is more enriched in 2H and 180 than is water from Category II or III springs because a large proportion of irrigation recharge mixes with the regional ground water in Category I springs. Nitrite plus nitrate as nitrogen concentrations also are greater in water from Category I springs than in water from Category II springs.

  4. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    USGS Publications Warehouse

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  5. Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study

    USGS Publications Warehouse

    Bartholomay, Roy C.

    1998-01-01

    Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

  6. HELLS CANYON STUDY AREA, OREGON AND IDAHO.

    USGS Publications Warehouse

    Simmons, George C.; Close, Terry J.

    1984-01-01

    The Hells Canyon study area occupies nearly 950 sq mi along and near Hells Canyon of the Snake River in northeast Oregon and west-central Idaho. Geologic, geochemical, aeromagnetic, and mine and prospect investigations to determine the mineral-resource potential of the area were carried out. As a result, 42 sq mi or about 4 percent of the lands, in 21 separate areas, were classified as having probable or substantiated resource potential for base and precious metals, molybdenum, and tungsten. No energy resource potential was identified in this study.

  7. 36 CFR 294.22 - Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) General Forest, Rangeland, and Grassland. (c) Maps. The Chief shall maintain and make available to the public a map of each Idaho Roadless Area, including records regarding any corrections or modifications of such maps pursuant to § 294.27. (d) Activities in Idaho Roadless Areas shall be consistent with...

  8. CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  10. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  11. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  12. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  13. 36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral activities in Idaho... AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.25 Mineral activities in Idaho Roadless Areas. (a) Nothing in this subpart shall be construed as restricting mineral leases, contracts, permits,...

  14. SALMON RIVER BREAKS PRIMITIVE AREA AND VICINITY, IDAHO.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Tuchek, Ernest T.

    1984-01-01

    A mineral survey of the Salmon River Breaks Primitive Area and vicinity in Idaho confirmed a substantiated gold resource potential in placer deposits along the Salmon River but determined that large-scale mining of the deposits probably would not be feasible. Except for demonstrated fluorspar resources at the Big Squaw Creek deposit, no other mineral resources were found in the area. The geologic environment, geochemical findings, and geophysical data all suggest little likelihood for the occurrence of additional mineral resources in the area. No energy resources were identified in this study.

  15. Multi crop area estimation in Idaho using EDITOR

    NASA Technical Reports Server (NTRS)

    Sheffner, E. J.

    1984-01-01

    The use of LANDSAT multispectral scanner digital data for multi-crop acreage estimation in the central Snake River Plain of Idaho was examined. Two acquisitions of LANDSAT data covering ground sample units selected from a U.S. Department of Agriculture sampling frame in a four country study site were used to train a maximum likelihood classifier which, subsequently, classified all picture elements in the study site. Acreage estimates for six major crops, by county and for the four counties combined, were generated from the classification using the Battesse-Fuller model for estimation by regression in small areas. Results from the regression analysis were compared to those obtained by direct expansion of the ground data. Using the LANDSAT data significantly decreased the errors associated with the estimates for the three largest acreage crops. The late date of the second LANDSAT acquisition may have contributed to the poor results for three summer crops.

  16. Depth to water, 1991, in the Rathdrum Prairie, Idaho; Spokane River valley, Washington; Moscow-Lewiston-Grangeville area, Idaho; and selected intermontane valleys, east-central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles E.; Bassick, M.D.; Rogers, T.L.; Garcia, S.P.

    1995-01-01

    This map report illustrates digitally generated depth-to-water zones for the Rathdrum Prairie in Idaho; part of the Spokane River Valley in eastern Washington; and the intermontane valleys of the upper Big Wood, Big Lost, Pahsimeroi, Little Lost, and Lemhi Rivers and Birch Creek in Idaho. Depth to water is 400 to 500 feet below land surface in the northern part of Rathdrum Prairie, 100 to 200 feet below land surface at the Idaho-Washington State line, and 0 to 250 feet below land surface in the Spokane area. Depth to water in the intermontane valleys in east-central Idaho is least (usually less than 50 feet) near streams and increases toward valley margins where mountain-front alluvial fans have formed. Depths to water shown in the Moscow-Lewiston-Grangeville area in Idaho are limited to point data at individual wells because most of the water levels measured were not representative of levels in the uppermost aquifer but of levels in deeper aquifers.

  17. An assessment of Idaho's wildlife management areas for the protection of wildlife

    USGS Publications Warehouse

    Karl, J.W.; Scott, J.M.; Strand, Espen

    2005-01-01

    Since 1940, Idaho Department of Fish and Game has developed a network of 31 Wildlife Management Areas (WMAs) across the state. This program has been focused mostly on conservation of game species and their habitats. We assessed the contribution of Idaho's WMAs to conservation of all Idaho's wildlife and other aspects of ecological diversity. Predicted occurrences of species' breeding habitats and other data were used to evaluate the representation of wildlife habitat and other ecological conditions. We found 33 of 39 natural land cover types were mapped as occurring in WMAs. WMAs occurred in 10 of 15 of Bailey's ecoregion sections, absent only from two sections that occupy greater than 1% of Idaho. Percent area of WMAs by elevation followed a pattern similar to percent area of Idaho; however, mean elevation for WMAs was lower than for the state and other protected areas in Idaho. We predicted breeding habitat for 98.4% of Idaho's wildlife and all federal and state listed threatened, endangered, or candidate terrestrial vertebrates to occur in at least one WMA. We predicted habitat for 39 species to occur on five or fewer WMAs, and predicted no habitat on WMAs for five species. We found that a system of WMAs established mainly to protect game species potentially conserves many other aspects of Idaho's ecological diversity, may provide habitat for more than 98% of Idaho's wildlife, and complements other protected areas in the state.

  18. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless...

  19. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless...

  20. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless...

  1. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless...

  2. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless...

  3. 36 CFR 294.26 - Other activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Roadless Areas. Decisions concerning the future management of existing roads or trails in Idaho Roadless... subpart shall be construed as affecting existing grazing permits in Idaho Roadless Areas. Future road... mechanical transport. Nothing in this subpart shall be construed as affecting the use of motorized...

  4. A Survey of Demand in Selected Metalworking Occupations for Major Areas of Idaho.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Employment, Boise.

    To determine the state and area impact of occupational shortages in the metal working skills in Idaho and to provide a basis for planning effective vocational education programs, the Idaho Department of Employment conducted a sample survey of 68 employers in the metal working occupations. The occupations were selected from a national list of…

  5. Hydrology of the Oakley Fan Area, south-central Idaho

    USGS Publications Warehouse

    Young, H.W.; Newton, G.D.

    1989-01-01

    The Oakley Fan area is a broad, crescent-shaped lowland along the southern margin of the Snake River Plain in south-central Idaho. Intensive groundwater development for irrigation has resulted in rapid water-level declines and, as a consequence, designation by the State of four Critical Groundwater Areas. Principal aquifers are in limestone, rhyolite, basalt, and alluvium. Annual water-level declines range from 3 ft to about 5 ft. Recharge to the groundwater system is from infiltration of surface water used for irrigation, precipitation on the surrounding mountains, infiltration of localized runoff, and upward movement of thermal water. Groundwater pumpage during the period 1979-84 averaged 173,000 acre-ft/yr. Surface and groundwater is predominantly a calcium bicarbonate type with variable concentrations of dissolved solids. Comparisons of silica and chloride concentrations and isotopic composition of groundwater were useful in determining areal extent of aquifers and movement of groundwater. A three-dimensional mathematical model of the Oakley Fan area was developed. The aquifer system was simulated in three phases: (1) Average 1979-84 hydrologic conditions, (2) 1910 hydrologic conditions, and (3) 1910-84 hydrologic conditions. Model simulation indicated that, for the period 1945-79, subsurface outflow declined from 327,000 acre-ft/yr to 215,000 acre-ft/yr. Simulated groundwater pumpage during the period 1945-79 was 3,000,000 acre-ft; simulated change in storage was 250,000 acre-ft. Simulations with the model approximate natural conditions and probably can be used to evaluate future changes in the hydrologic system.

  6. BLUE JOINT WILDERNESS STUDY AREA, MONTANA, AND BLUE JOINT ROADLESS AREA, IDAHO.

    USGS Publications Warehouse

    Lund, Karen; Benham, John R.

    1984-01-01

    During field studies of the Blue Joint Wilderness Study Area, Montana, and the Blue Joint Roadless Area, Idaho, areas of substantiated resource potential for epithermal precious-metal vein deposits were identified in areas of hydrothermal alteration and fossil hot springs activity in the Eocene volcanic rocks. Areas with substantiated resource potential for cobalt, copper, silver, and barite resources of the sediment-hosted type were identified in the Proterozoic quartz schist of the eastern part of the area. Probable potential exists for molybdenum in a prophyry system; anomalously high molybdenum values are coincident with high values for precious and base metals and uranium in some places. The geologic terrane precludes the occurrence of fossil fuel resources.

  7. Mineral Resources of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho

    USGS Publications Warehouse

    Simmons, George C.; Gualtieri, James L.; Close, Terry J.; Federspiel, Francis E.; Leszcykowski, Andrew M.

    2007-01-01

    Field studies supporting the evaluation of the mineral potential of the Hells Canyon study area were carried out by the U.S. Geological Survey and the U.S. Bureau of Mines in 1974-76 and 1979. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. The survey is one of a series of studies to appraise the suitability of the area for inclusion in the National Wilderness Preservation System as required by the Wilderness Act of 1964. The spectacular and mineralized area covers nearly 950 mi2 (2,460 km2) in northeast Oregon and west-central Idaho at the junction of the Northern Rocky Mountains and the Columbia Plateau.

  8. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    SciTech Connect

    Not Available

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact.

  9. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  10. SOURCE APPORTIONMENT OF SECONDARY SULFATE IN PORTNEUF VALLEY, IDAHO PM-10 NONATTAINMENT AREA

    EPA Science Inventory

    Region 10 will use Chemical Mass Balance (CMB) modeling in a effort to apportion secondary sulfate that significantly contributes to the total PM-10 mass observed on ambient filters in the Pocatello, Idaho area. This study will investigate whether it is reasonable to apportion ...

  11. ANTELOPE-PINE CREEK AREA, IDAHO - WATER QUALITY STATUS REPORT. 1988-1989

    EPA Science Inventory

    The Antelope-Pine Creek study area consists of the drainage which flows into the portion of the South Fork, Snake River between Heise and the Palisades Dam, Idaho (17040104). The South Fork of the Snake River was identified in the Agricultural Nonpoint Pollution Abatement Plan a...

  12. SOLE SOURCE AQUIFERS AND SOURCE AREAS IN WASHINGTON, OREGON, AND IDAHO

    EPA Science Inventory

    The map shows sole source aquifers and their source areas in Washington, Oregon, and Idaho. Aquifers that have been designated are shown along with those that have been petitioned for designation. County outlines, and the Columbia river system are also shown. The aquifers.tar.g...

  13. REPORT ON WASTE SOURCE MONITORING IN THE BURLEY, IDAHO AREA, 1974

    EPA Science Inventory

    At the request of EPA Region 10, NFIC-D conducted waste source monitoring in the Burley, Idaho area (17040209) from October 21-28, 1974 to provide an input to the water quality predictive mathematical model which covers the Milner Reservoir reach of the Snake River. Each waste s...

  14. Mineral resources of the Henry's Lake Wilderness Study Area, Fremont County, Idaho

    SciTech Connect

    Tysdal, R.G. ); Peters, T.J. )

    1988-01-01

    The authors report on the 350-acre Henry's Lake Wilderness Study Area in the southern part of the Madison Range. Fremont County, Idaho, and is about 17 miles north of the hamlet of Islan Park. The southwestern part of the wilderness study area, along the Madison Range Fault, is rated as having a moderate energy resource potential for geothermal water, and the remainder of the study area has a low potential for this resource.

  15. THE CHANNELS AND WATERS OF THE UPPER SALMON RIVER AREA, IDAHO. (HYDROLOGIC EVALUATION OF THE UPPER SALMON RIVER AREA)

    EPA Science Inventory

    The upper 1,800 square miles of the Salmon River drainage basin (17060201) in south-central Idaho is an area of great scenic beauty and little-disturbed natural environment. Proper development and use of this land and its natural resources are contingent on a multifaceted and de...

  16. EASTERN PART OF THE SAWTOOTH NATIONAL RECREATION AREA, IDAHO.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Van Noy, Ronald M.

    1984-01-01

    The eastern part of the Sawtooth National Recreation Area contains several hundred prospects and mines, some of which have produced substantial quantities of ore. An intensive investigation indicated that much of the area has a probable or substantiated mineral-resource potential for many metallic minerals. Because of recorded past production, known deposits, and the likelihood of finding additional deposits, much of the area, particularly that part underlain by structurally contorted, undifferentiated metasedimentary rocks, has a probable or substantiated mineral-resource potential. The geologic terrane precludes the occurrence of fossil fuel resources.

  17. 75 FR 26898 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...EPA is proposing under the Clean Air Act (CAA) to determine that the Fort Hall PM-10 nonattainment area on the Fort Hall Indian Reservation in Idaho has attained the National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10). EPA's proposed finding that the Fort Hall PM-10 nonattainment area has attained the......

  18. Mineral resources of the Borah Peak Wilderness Study Area, Custer county, Idaho

    SciTech Connect

    Wilson, A.B.; Janecke, S.U.; Skipp, B.; Kleinkopf, M.D.; McCafferty, A.E.; Barton, H.N.; Miller, M.S.

    1990-01-01

    This paper reports on the Borah Peak (ID-047-004) Wilderness Study Area and an adjacent tract recommended as suitable for wilderness on the western flank of the Lost River Range in east-central Idaho. An investigation of these areas indicates that they have no known economic mineral resources. They do have occurrences of sand and gravel, dolostone (a source of magnesium metal), limestone, and silica. The areas have low mineral resource potential for barite, all metals, geothermal energy, and oil and gas.

  19. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    SciTech Connect

    Mitchell, J.C.

    1981-12-01

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  20. Safety Analyses at the Idaho National Engineering and Environmental Laboratory Test Reactor Area - Past to Present

    SciTech Connect

    Ambrosek, Richard Garry; Ingram, Frederick William

    1999-11-01

    Test reactors are unique in that the core configuration may change with each operating interval. The process of safety analyses for test reactors at the Idaho National Engineering and Environmental Test Reactor Area has evolved as the computing capabilities, software, and regulatory requirements have changed. The evaluations for experiments and the reactor have moved from measurements in a set configuration and then application to other configurations with a relatively large error to modeling in three-dimensions and explicit analyses for each experiment and operating interval. This evolution is briefly discussed for the Test Reactor Area.

  1. ITALIAN PEAK AND ITALIAN PEAK MIDDLE ROADLESS AREAS, IDAHO AND MONTANA.

    USGS Publications Warehouse

    Skipp, Betty; Lambeth, Robert H.

    1984-01-01

    The Italian Peak and Italian Peak Middle Roadless Areas, in southwestern Montana and east-central Idaho, contain areas of probable mineral-resource potential based on combined geologic, geophysical, and geochemical studies and prospect examination. Small areas along the western, southern, and northeastern boundaries of the roadless areas have probable mineral resource potential for zinc, lead, silver, and uranium. An area of probable resource potential just east of and including a part of the Birch Creek mining district, may contain stratabound and fault-controlled silver and base metals, even though geochemical anomalies are low, and extensive prospecting has not identified any significant mineralization. The roadless areas are a part of the overthrust belt, and oil and gas possibilities must be assessed.

  2. Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho

    SciTech Connect

    Arney, B.H.; Goff, F.

    1982-05-01

    Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

  3. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  4. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  5. Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George Winfred

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Early Cretaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, Idaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  6. Completion summary for boreholes TAN-2271 and TAN‑2272 at Test Area North, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2016-01-01

    In 2015, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes TAN-2271 and TAN-2272 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole TAN-2271 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole TAN-2272 was partially cored between 210 and 282 feet (ft) below land surface (BLS) then drilled and constructed as a monitor well. Boreholes TAN-2271 and TAN-2272 are separated by about 63 ft and have similar geologic layers and hydrologic characteristics based on geologic, geophysical, and aquifer test data collected. The final construction for boreholes TAN-2271 and TAN-2272 required 10-inch (in.) diameter carbon-steel well casing and 9.9-in. diameter open-hole completion below the casing to total depths of 282 and 287 ft BLS, respectively. Depth to water is measured near 228 ft BLS in both boreholes. Following construction and data collection, temporary submersible pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels.Borehole TAN-2271 was cored continuously, starting at the first basalt contact (about 33 ft BLS) to a depth of 284 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole TAN-2271 was better than 98 percent. Based on visual inspection of core and geophysical data, material examined from 33 to 211ft BLS primarily consists of two massive basalt flows that are about 78 and 50 ft in thickness and three sediment layers near 122, 197, and 201 ft BLS. Between 211 and 284 ft BLS, geophysical data and core material suggest a high occurrence of fractured and vesicular basalt. For the section of aquifer tested, there are two primary fractured aquifer intervals: the first between 235 and

  7. Geothermal investigations in Idaho, Part IV, Isotopic and geochemical analyses of water from the Bruneau-Grand View and Weiser areas, Southwest Idaho

    USGS Publications Warehouse

    Rightmire, Craig T.; Young, H.W.; Whitehead, R.L.

    1976-01-01

    Variations of deuterium and oxygen-18 concentrations in thermal ground waters and local nonthermal springs have been used to aid in describing the source of recharge in the Bruneau-Grand View and Weiser areas, southwest Idaho. Isotope and geochemical data for the Bruneau-Grand View area suggest that recharge to the area may not be entirely from sources within the local surface-drainage area, but possibly from the areas of higher altitude of the Bruneau River drainage to the southeast; or that the hot water that wells and springs are discharging is water that was recharged at a time when the regional climate was much colder than the present climate. Recharge to the Weiser area is probably from areas of higher altitude to the north and northeast of the local drainage area However, local precipitation does influence both the chemical and isotopic compositions of the waters in each area.

  8. GIS INTERNET MAP SERVICE FOR DISPLAYING SELENIUM CONTAMINATION DATA IN THE SOUTHEASTERN IDAHO PHOSPHATE MINING RESOURCE AREA

    SciTech Connect

    Roger Mayes; Sera White; Randy Lee

    2005-04-01

    Selenium is present in waste rock/overburden that is removed during phosphate mining in southeastern Idaho. Waste rock piles or rock used during reclamation can be a source of selenium (and other metals) to streams and vegetation. Some instances (in 1996) of selenium toxicity in grazing sheep and horses caused public health and environmental concerns, leading to Idaho Department of Environmental Quality (DEQ) involvement. The Selenium Information System Project is a collaboration among the DEQ, the United States Forest Service (USFS), the Bureau of Land Management (BLM), the Idaho Mining Association (IMA), Idaho State University (ISU), and the Idaho National Laboratory (INL)2. The Selenium Information System is a centralized data repository for southeastern Idaho selenium data. The data repository combines information that was previously in numerous agency, mining company, and consultants’ databases and web sites. These data include selenium concentrations in soil, water, sediment, vegetation and other environmental media, as well as comprehensive mine information. The Idaho DEQ spearheaded a selenium area-wide investigation through voluntary agreements with the mining companies and interagency participants. The Selenium Information System contains the results of that area-wide investigation, and many other background documents. As studies are conducted and remedial action decisions are made the resulting data and documentation will be stored within the information system. Potential users of the information system are agency officials, students, lawmakers, mining company personnel, teachers, researchers, and the general public. The system, available from a central website, consists of a database that contains the area-wide sampling information and an ESRI ArcIMS map server. The user can easily acquire information pertaining to the area-wide study as well as the final area-wide report. Future work on this project includes creating custom tools to increase the

  9. Geology of the Vienna Mineralized Area, Blaine and Camas Counties, Idaho

    USGS Publications Warehouse

    Mahoney, J. Brian; Horn, Michael C.

    2005-01-01

    The Vienna mineralized area of south-central Idaho was an important silver-lead-producing district in the late 1800s and has intermittently produced lead, silver, zinc, copper, and gold since that time. The district is underlain by biotite granodiorite of the Cretaceous Idaho batholith, and all mineral deposits are hosted by the biotite granodiorite. The granodiorite intrudes Paleozoic sedimentary rocks of the Sun Valley Group, is overlain by rocks of the Eocene Challis Volcanic Group, and is cut by numerous northeast-trending Eocene faults and dikes. Two mineralogically and texturally distinct vein types are present in a northwest- and east-trending conjugate shear-zone system. The shear zones postdate granodiorite emplacement and joint formation, but predate Eocene fault and dike formation. Ribbon veins consist of alternating bands of massive vein quartz and silver-sulfide (proustite and pyrargyrite) mineral stringers. The ribbon veins were sheared and brecciated during multiple phases of injection of mineralizing fluids. A quartz-sericite-pyrite-galena vein system was subsequently emplaced in the brecciated shear zones. Both vein systems are believed to be the product of mesothermal, multiphase mineralization. K-Ar dating of shear-zone sericite indicates that sericitization occurred at 80.7?2.8 Ma; thus mineralization in the Vienna mineralized area probably is Late Cretaceous in age.

  10. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  11. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  12. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  13. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  14. Chemical analyses of ground water related to geothermal investigations in the Teton River area, eastern Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1979-01-01

    Water samples from 31 wells and springs in eastern Idaho and western Wyoming were collected to help evaluate the potential geothermal resources in the Teton River area. Water analyses included anions and cations, oxygen-18, deuterium, and several minor elements. Actual temperature of the thermal waters ranged from 23 to 49C. Estimated aquifer temperatures, as derived from geochemical thermometers, ranged from 45 to 145C based on sodium-potassium-calcium ratios. Using the cation thermometer, two analyses indicated aquifer temperatures lower than actual measured temperatures. Using a mixing model method, estimated temperatures ranged from 205 to 320C, the higher being of questionable value. The different methods used showed little correlation. Based on isotope data, the warm waters may be of local meteoric origin and not heated enough to react significantly with aquifer rocks; or, they originated as precipitation at high altitude and great distance from the area. (Woodard-USGS)

  15. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    USGS Publications Warehouse

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  16. Role of replacement in the genesis of anorthosite in the Boehls Butte area, Idaho.

    USGS Publications Warehouse

    Hietanen, A.

    1986-01-01

    In this area in N Idaho, three large and numerous small lenses of layered to massive anorthosite consisting of two, and locally three, types of plagioclase with minor hornblende and mica occur in aluminium silicate-rich garnet mica schist. In most of this anorthosite, megacrysts of andesine with bytownite inclusions are embedded in a fine-grained groundmass of bytownite or anorthite; locally, labradorite occurs rather than andesine. Some labradorite laths show Carlsbad twinning and rims of andesine around anorthite inclusions. Along the contacts, lenses of fine-grained bytownite anorthosite with some hornblende or garnet and quartz are common. These lenses could represent calcic parent rocks converted to two-plagioclase rocks by partial replacement of bytownite by andesine. -R.A.H.

  17. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  18. 76 FR 10944 - Open Meeting of the Area 6 Taxpayer Advocacy Panel (Including the States of Idaho, Iowa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... comment, ideas, and suggestions on improving customer service at the Internal Revenue Service. DATES: The... Internal Revenue Service Open Meeting of the Area 6 Taxpayer Advocacy Panel (Including the States of Idaho...) AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting...

  19. Ground-water conditions in the Cottonwood-West Oakley Fan area, south-central Idaho

    USGS Publications Warehouse

    Edwards, T.K.; Young, H.W.

    1984-01-01

    Intensive groundwater development in the Cottonwood-West Oakley Fan area, Cassia County, Idaho, has resulted in rapid water-level declines and establishment of two critical groundwater areas. A northwest-trending fault in nearly coincident with the boundary between the two critical groundwater areas. Southwest of the fault, water levels in limestone are as much as 200 feet higher than those in silicic volcanics northeast of the fault, which indicates the fault is an effective barrier to groundwater movement. Results of an aquifer test in limestone southwest of the fault further indicate no hydraulic connection with the silicic volcanics aquifer northeast of the fault. Water levels in wells completed in limestone and silicic volcanics aquifers have declined 5 and 5.5 feet per year since 1977. Groundwater withdrawals in 1980 were about 60,000 acre-free from the silicic volcanics aquifer and, between 1977 and 1982, averaged about 5,300 acre-feet per year from the limestone aquifer. Annual recharge to the silicic volcanics aquifer is between about 10,000 and 26,000 acre-feet; recharge to the limestone aquifer is near 4,000 acre-feet. Limited water-quality data indicate the groundwater is chemically suitable for irrigation and domestic use. (USGS)

  20. Hydrologic and Meteorological Data for an Unsaturdated-Zone Study Area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990-96

    SciTech Connect

    K. S. Perkins, J. R. Nimmo, J. R. Pittman

    1998-01-01

    Trenches and pits at the Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (formerly known as the Idaho National Engineering Laboratory) have been used for burial of radioactive waste since 1952. In 1985, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study provides hydrologic and meteorological data collected at a designated test trench area adjacent to the northern boundary of the RWMC SDA from 1990 through 1996. The test trench area was constructed by the USGS in 1985. Hydrologic data presented in this report were collected during 1990-96 in the USGS test trench area. Soil-moisture content measurement from disturbed and undisturbed soil were collected approximately monthly during 1990-96 from 11 neutron-probe access holes with a neutron moisture gage. In 1994, three additional neutron access holes were completed for monitoring. A meteorological station inside the test trench area provided data for determination of evapotranspiration rates. The soil-moisture and meteorological data are contained in files on 3-1/2 inch diskettes (disks 1 and 2) included with this report. The data are presented in simple American Standard Code for Information Interchange (ASCII) format with tab-delimited fields. The files occupy a total of 1.5 megabytes of disk space.

  1. 75 FR 54542 - Special Areas; Roadless Area Conservation; Applicability to the National Forests in Idaho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Register October 16, 2008 (73 FR 61456) and associated maps. These corrections were discussed with the... proposing to make administrative corrections affecting Big Creek Fringe, French Creek, Placer Creek, Secesh... errors regarding regulatory classification and mapping that concern Forest Plan Special Areas (Big...

  2. Geochemical results of a hydrothermally altered area at Baker Creek, Blaine County, Idaho

    USGS Publications Warehouse

    Erdman, James A.; Moye, Falma J.; Theobald, Paul K.; McCafferty, Anne E.; Larsen, Richard K.

    2001-01-01

    The area immediately east of Baker Creek, Blaine County, Idaho, is underlain by a thick section of mafic to intermediate lava flows of the Eocene Challis Volcanic Group. Widespread propylitic alteration surrounds a zone of argillic alteration and an inner core of phyllic alteration. Silicified breccia is present along an east-trending fault within the zone of phyllic alteration. As part of a reconnaissance geochemical survey, soils and plants were sampled. Several species of plants (Douglas-fir [ Pseudotsuga menziesii ], mountain big sagebrush [ Artemisia tridentata ssp. vaseyana ], and elk sedge [ Carex geyerii ]) were collected from 10 upland localities and stream sediments, panned concentrates, and aquatic mosses were collected from 16 drainage basin localities all of which were generally within the area of alteration. Geochemical results yielded anomalous concentrations of molybenum, zinc, silver, and lead in at least half of the seven different sample media and of gold, thallium, arsenic, antimony, manganese, boron, cadmium, bismuth, copper, and beryllium in from one to four of the various media. Part of this suite of elements? silver, gold, arsenic, antimony, thallium, and manganese? suggests that the mineralization in the area is epithermal. Barite and pyrite (commonly botryoidal-framboidal) are widespread throughout the area sampled. Visible gold and pyromorphite (a secondary lead mineral) were identified in only one small drainage basin, but high levels of gold were detected in aquatic mosses over a larger area. Data from the upland and stream sampling indicate two possible mineralized areas. The first mineralized area was identified by a grab sample from an outcrop of quartz stockwork that contained 50 ppb Au, 1.5 ppm Ag, and 50 ppm Mo. Although the soil and plant species that were sampled in the area indicated mineralized bedrock, the Douglas-fir samples were the best indicators of the silver anomaly. The second possible mineralized area centers on the

  3. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  4. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system

  5. Ground-water reconnaissance of the Sailor Creek area, Owyhee, Elmore, and Twin Falls Counties, Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1962-01-01

    This reports evaluates the ground-water resources of about 1,000 square miles in the semiarid uplands south of the Snake River between Bruneau River and Salmon Falls Creek. The outcropping rocks are the Idavada Volcanics of Pliocene age, and the Idaho Group of Pliocene and Plieistocene age, consisting of the Banbury Basalt of middle Pliocene age and overlying predominantly sedimentary deposits of middle Pliocene through middle Pleistocene age. These rocks dip gently northward. The volcanic rocks are the best aquifers, but the yield of water from the sedimentary deposits is adequate for domestic and stock use. About 6,000 acre-feet of water is withdrawn annually from the Idavada Volcanics by 9 irrigation wells to irrigate about 3,000 acres. Only a few tends of acre-feet of water withdrawn from the other formations. The regional dip of the rocks induces weak artesian conditions in the volcanic rocks and somewhat higher artesian head in the sedimentary rocks. Estimated depth to water ranges from less than 250 feet to more than 750 feet, as shown in an accompanying map. The eastern part of the area appears to be more favorable for the development of ground water for irrigation than the western part because of better aquifers at shallower depth.

  6. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G., (compiler)

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  7. Habitat restoration across large areas: Assessing wildlife responses in the Clearwater basin, Idaho

    USGS Publications Warehouse

    Scanvara, L.K.; Servheen, G.; Melquist, W.; Davis, D.; Scott, J.M.

    2004-01-01

    Over the past century, fire suppression and prevention have altered disturbance regimes across the Pacific Northwest, resulting in a significant divergence of historical and current conditions in forested habitats. To address this continuing trend in habitat changes and begin restoring historical patterns of disturbance, the Clearwater Basin Elk Habitat Initiative (CEI) proposes relatively extensive management actions in the Clearwater basin of north-central Idaho. We attempted to evaluate potential effects of such management actions on selected wildlife species using extant data sets and suggest ways to improve such projects with respect to a multispecies and adaptive management approach. Although there is increased interest in ecosystem management over large areas, the increased scale of analysis and implementation require a substantial increase in the level of species information beyond what currently exists. We conclude that baseline information required for an effective multispecies land-management policy in the Clearwater basin does not exist for many terrestrial wildlife species. To implement a true multispecies or ecosystem approach, wildlife and land managers should cooperate to increase existing population data and modeling efforts for wildlife species in the basin and develop a sustainable monitoring program to evaluate habitat management changes and their influence on wildlife populations within the context of adaptive management theory. Management actions to restore disturbance patterns should attempt spatial and temporal scales that are biologically relevant to the population ecology of species being affected. ?? 2004 by the Society of American Foresters.

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  9. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    2016-01-01

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing the designated 10 million acres of Federal lands to mineral entry.

  10. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  11. Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at test area north, Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Anderson, S.R.; Bowers, B.

    1995-06-01

    A complex sequence of basalt flows and sedimentary interbeds underlies Test Area North (TAN) at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to depths of at least 500 feet penetrate 10 basalt-flow groups and 5 to 10 sedimentary interbeds that range in age from about 940,000 to 1.4 million years. Each basalt-flow group consists of one or more basalt flows from a brief, single or compound eruption. All basalt flows of each group erupted from the same vent, and have similar ages, paleomagnetic properties, potassium contents, and natural-gamma emissions. Sedimentary interbeds consist of fluvial, lacustrine, and eolian deposits of clay, silt, sand, and gravel that accumulated for hundreds to hundreds of thousands of years during periods of volcanic quiescence. Basalt and sediment are elevated by hundreds of feet with respect to rocks of equivalent age south and cast of the area, a relation that is attributed to past uplift at TAN. Basalt and sediment are unsaturated to a depth of about 200 feet below land surface. Rocks below this depth are saturated and make up the Snake River Plain aquifer. The effective base of the aquifer is at a depth of 885 feet below land surface. Detailed stratigraphic relations for the lowermost part of the aquifer in the depth interval from 500 to 885 feet were not determined because of insufficient data. The stratigraphy of basalt-flow groups and sedimentary interbeds in the upper 500 feet of the unsaturated zone and aquifer was determined from natural-gamma logs, lithologic logs, and well cores. Basalt cores were evaluated for potassium-argon ages, paleomagnetic properties, petrographic characteristics, and chemical composition. Stratigraphic control was provided by differences in ages, paleomagnetic properties, potassium content, and natural-gamma emissions of basalt-flow groups and sedimentary interbeds.

  12. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram. Volume 1

    SciTech Connect

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory`s 10 waste area groups. Contaminated sites at the laboratory`s Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram.

  13. 2014 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. During the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.

  14. Assessment of soil and water contaminants from selected locations in and near the Idaho Army National Guard Orchard Training Area, Ada County, Idaho, 2001-2003

    USGS Publications Warehouse

    Parliman, D.J.

    2004-01-01

    In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were

  15. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho

    SciTech Connect

    Erickson, M.S.; King, H.D.; Bradley, L.; Gent, C.

    1989-01-01

    A U.S. Geological report is presented detailing analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho.

  16. Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site

    SciTech Connect

    B. G. Meagher

    2007-07-17

    This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public’s information needs are met and that the Agencies can use the public’s input for decisions regarding remediation activities.

  17. The results of an ecological risk assessment screening at the Idaho National Engineering`s waste area group 2

    SciTech Connect

    VanHorn, R.

    1995-11-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho and occupies approximately 890 square miles on the northwestern portion of the eastern Snake River Plain. INEL has been devoted to nuclear energy research and related activities since its establishment in 1949. In the process of fulfilling this mission, wastes were generated, including radioactive and hazardous materials. Most materials were effectively stored or disposed of, however, some release of contaminants to the environment has occurred. For this reason, the INEL was listed by the US environmental Protection Agency on the National Priorities List (NPL), in November, 1989. This report describes the results of an ecological risk assessment performed for the Waste Area Groups 2 (WAG 2) at the INEL. It also summarizes the performance of screening level ecological risk assessments (SLERA).

  18. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  19. Vein deposits hosted by plutonic rocks in the Croesus Stock and Hailey gold belt mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Worl, Ronald G.; Lewis, Reed S.

    2001-01-01

    Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.

  20. Additions and corrections to the bibliography of geologic studies, Columbia Plateau (Columbia River Besalt) and adjacent Areas, in Idaho, 1980

    SciTech Connect

    Strowd, W.

    1980-01-01

    This bibliography is an update to Idaho Bureau of Mines and Geology Open-File Report 78-6, Bibliography of Geological Studies, Columbia Plateau (Columbia River Basalt Group) and adjacent areas in Idaho (also known as Rockwell Hanford Operations' contractor report RHO-BWI-C-44). To keep the original document current, this additions and corrections report was prepared for the Basalt Waste Isolation Project of Rockwell Hanford Operations. This update is supplementary; therefore, references cited in the original document have not been included here. What is included are materials that have become available since the original publication and pertinent literature that had originally been overlooked. Accompany this updated bubliography are index maps that show locations of geologic studies and geochemical petrographic, remanent paleomagnetic, and radiometric age-dated sites within the Columbia River Basalt Group field within Idaho; also identified are archeological sites, test wells, mines, quarries, and other types of excavations. References on the index maps are keyed to the bibliography and cover the Spokane, Pullman, Hamilton, Grangeville, Elk City, Baker, Boise, and Jordan Valley Army Map Service two-degree quadrangles.

  1. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    SciTech Connect

    B. R. Orr

    1999-11-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

  2. Occurrence of uranium-bearing coal, carbonaceous shale, and carbonaceous limestone in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George W.

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Upper Crestaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, IDaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of the Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  3. Subsurface Pathway Flow and Transport Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    SciTech Connect

    Magnuson, Swen O

    2002-08-01

    Migration of contaminants through the complex subsurface at the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area was simulated for an ongoing Comprehensive Environmental Response, Compensation, and Liability (CERCLA) assessment. A previously existing model for simulating flow and transport through the vadose zone for this site was updated to incorporate information obtained from recent characterization activities. Given the complexity of the subsurface at this site, the simulation results were acknowledged to be uncertain. Rather than attempt parametric approaches to quantify uncertainty, it was recognized that conceptual uncertainty involving the controlling processes was likely dominant. So, the effort focused on modeling different scenarios to evaluate the impact of the conceptual uncertainty.

  4. Subsurface Pathway Flow and Transport Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    SciTech Connect

    Magnuson, S.O.

    2002-05-10

    Migration of contaminants through the complex subsurface at the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area was simulated for an ongoing Comprehensive Environmental Response, Compensation, and Liability (CERCLA) assessment. A previously existing model for simulating flow and transport through the vadose zone for this site was updated to incorporate information obtained from recent characterization activities. Given the complexity of the subsurface at this site, the simulation results were acknowledged to be uncertain. Rather than attempt parametric approaches to quantify uncertainty, it was recognized that conceptual uncertainty involving the controlling processes was likely dominant. So, the effort focused on modeling different scenarios to evaluate the impact of the conceptual uncertainty.

  5. Chemical and hydrologic data for selected thermal-water wells and nonthermal springs in the Boise Area, southwesten Idaho

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Mariner, R.H.

    1988-01-01

    Data were collected during January to July 1988 from 37 thermal-water wells and 3 nonthermal springs in the Boise area, southwestern Idaho. Included are well and spring locations; well-construction, water-level, and water-use information; hydrographs of water levels in 3 wells; chemical and isotopic analyses of water from 18 thermal-water wells and 3 nonthermal springs; and drillers ' logs from 23 wells. The purpose of the report is to make these data conveniently available to the public. (USGS)

  6. Burn severity and areas of daily fire growth for 42 forest fires in Idaho and Montana, 2005 - 2011

    NASA Astrophysics Data System (ADS)

    Birch, Donovan Shayne

    This work consisted of two studies of burn severity using infrared perimeter maps and satellite-inferred burn severity data, differenced Normalized Burn Ratio, from 42 wildland fires from central Idaho and western Montana from 2005 to 2007, and 2011. Study 1 examined the proportion of burn severity categories for individual daily areas burned. We defined 2,697 areas, from which we calculated the proportion of three burn severity classes. The proportion of high severity was weakly correlated with size of area burned. Large areas burned do not consistently produced larger proportions of high severity. Study 2 analyzed burn severity relative to 20 environmental variables using the Random Forest machine learning algorithm. We used ten daily weather observations, eight 34-yr climate percentiles, seven topographical index measurements, and four vegetation characteristics from 10,819 randomly located points. We found that higher percentage existing vegetation cover had larger influences on changes in burn severity.

  7. Coexisting cummingtonite and aluminous hornblende from garnet amphibolite, Boehls Butte area, Idaho, USA

    USGS Publications Warehouse

    Hietanen, A.

    1973-01-01

    Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher. ?? 1973.

  8. Analytical determinations from samples taken in the Ten Mile West Roadless Area, Boise and Elmore counties, Idaho

    USGS Publications Warehouse

    Kiilsgaard, Thor H.

    1982-01-01

    A total of 584 stream-sediment and rock samples were collected from within or near the Ten Mile West Roadless Area, Boise and Elmore Counties, Idaho, as part of a geologic study aimed at appraising the mineral resource potential of the area. Emphasis was placed on stream-sediment samples because stream sediments represent the erosional products of a drainage system and offer a rapid means of locating anomalous concentrations of ore-forming elements. An unusually high proportion of the stream-sediment samples contained concentrations of silver and molybdenum. Unaltered rocks of the area contain normal quantities of the common rock-forming elements. Some exposures of altered or mineralized rocks and some quartz veins contain significant quantities of gold and silver.

  9. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  10. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    SciTech Connect

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  11. Records of wells and water-level fluctuations in the Aberdeen-Springfield area, Bingham and Power counties, Idaho in 1954

    USGS Publications Warehouse

    Sisco, Harold G.

    1955-01-01

    This report contains records of observation wells and water-level fluctuations for the calendar year 1954 in the Aberdeen-Springfield area, Bingham and Power Counties, Idaho.  Systematic observations in the Aberdeen-Springfield area were begun by the Geological Survey in 1952. Each year a progress report is issued and this report is number 3 in the series.

  12. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Brenda R. Pace

    2003-07-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  13. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Hans, Ackerman; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  14. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  15. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  16. Geothermal investigations in Idaho. Part 12. Stable isotopic evaluation of thermal water occurrences in the Weiser and Little Salmon River drainage basins and adjacent areas, west-central Idaho with attendant gravity and magnetic data on the Weiser area

    SciTech Connect

    Mitchell, J.C.; Bideganeta, K.; Palmer, M.A.

    1984-12-01

    Fifteen thermal springs, two thermal wells, and eight cold springs in the Weiser and Little Salmon river drainages were sampled for deuterium and oxygen-18 analysis during the fall of 1981. The straight-line fit of delta D and delta /sup 18/O versus latitude and longitude observed in the data is what would be expected if the recharge areas for the thermal and non-thermal waters were in close proximity to their respective discharge points. The discrete values of delta D and delta /sup 18/O for each thermal discharge suggest that none of the sampled thermal systems have common sources. The depleted deuterium and oxygen-18 contents of most thermal relative to non-thermal waters sampled suggests that the thermal waters might be Pleistocene age precipitation. The isotopic data suggest little or no evidence for mixing of thermal and non-thermal water for the sampled discharges. Thermal waters from Weiser, Crane Creek, Cove Creek, and White Licks hot springs show enrichment in oxygen-18 suggesting that these waters have been at elevated temperatures relative to other sampled thermal discharges in the area. Gravity and magnetic data gathered by the Idaho State University Geology Department in the Weiser Hot Springs area suggest that southeastward plunging synclinal-anticlinal couples, which underlie the hot springs, are cut south of the springs by a northeast trending boundary fault.

  17. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    SciTech Connect

    R. C. Bartholomay; B. V. Twining; L. J. Campbell

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

  18. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.

  19. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

  20. Geological Studies of the Salmon River Suture Zone and Adjoining Areas, West-Central Idaho and Eastern Oregon

    USGS Publications Warehouse

    Kuntz, Mel A., (Edited By); Snee, Lawrence W.

    2007-01-01

    The papers in this volume describe petrologic, structural, and geochemical studies related to geographic areas adjacent to and including the Salmon River suture zone. We therefore start this volume by defining and giving a general description of that suture zone. The western margin of the North American continent was the setting for complex terrane accretion and large-scale terrane translation during Late Cretaceous and Eocene time. In western Idaho, the boundary that separates the Paleozoic-Mesozoic accreted oceanic, island-arc rocks on the west from Precambrian continental metamorphic and sedimentary rocks on the east is called the Salmon River suture zone (SRSZ). Readers will note that the term 'Salmon River suture zone' is used in the title of this volume and in the text of several of the papers and the term 'western Idaho suture zone' is used in several other papers in this volume. Both terms refer to the same geologic feature and reflect historical usage and custom; thus no attempt has been made by the editors to impose or demand a single term by the various authors of this volume. The suture zone is marked by strong lithologic and chemical differences. Rocks adjacent to the suture zone are characterized by high-grade metamorphism and much structural deformation. In addition, the zone was the locus of emplacement of plutons ranging in composition from tonalite to monzogranite during and after the final stages of accretion of the oceanic terrane to the North American continent. The contents of this paper consists of seven chapters.

  1. Petrography, age, and paleomagnetism of basaltic lava flows in coreholes at Test Area North (TAN), Idaho National Engineering Laboratory

    SciTech Connect

    Lanphere, M.A.; Champion, D.E.; Kuntz, M.A.

    1994-12-31

    The petrography, age, and paleomagnetism were determined on basalt from 21 lava flows comprising about 1,700 feet of core from two coreholes (TAN CH No. 1 and TAN CH No. 2) in the Test Area North (TAN) area of the Idaho National Engineering Laboratory (INEL). Paleomagnetic studies were made on two additional cores from shallow coreholes in the TAN area. K-Ar ages and paleomagnetism also were determined on nearby surface outcrops of Circular Butte. Paleomagnetic measurements were made on 416 samples from four coreholes and on a single site in surface lava flows of Circular Butte. K-Ar ages were measured on 9 basalt samples from TAN CH No. 1 and TAN CH No. 2 and one sample from Circular Butte. K-Ar ages ranged from 1.044 Ma to 2.56 Ma. All of the samples have reversed magnetic polarity and were erupted during the Matuyama Reversed Polarity Epoch. The purpose of investigations was to develop a three-dimensional stratigraphic framework for geologic and hydrologic studies including potential volcanic hazards to facilities at the INEL and movement of radionuclides in the Snake River Plain aquifer.

  2. Mineral resources of the Henry's Lake Wilderness Study Area, Fremont County, Idaho

    SciTech Connect

    Tysdal, R.G.; Kulik, D.M.; Peters, T.J.

    1988-06-10

    A mineral-resource survey of the 350-acre Henry's Lake Wilderness Study Area (ID-035-077) was made in 1986-87. No identified resources (known) or currently active claims exist within or adjacent to the wilderness study area. There is potential for several types of undiscovered mineral resources within the study area. The southwestern part of the wilderness study area, along the Madison Range fault, is rated as having a moderate energy-resource potential for geothermal water; the remainder of the study area has a low potential for resources of this commodity. A small outcrop of marble in the southernmost part of the study area has a low mineral-resource potential for talc; for talc in marble possibly concealed beneath the study area the mineral-resource potential is rated as unknown. The study area has a low mineral-resource potential for iron in hematite-mineralized amphibolite gneiss, and for gold, silver, and uranium. The area has no mineral-resource potential for phosphate, because the host strata have been eroded; and no resource potential for oil and gas.

  3. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 2002

    USGS Publications Warehouse

    Rattray, Gordon W.; Campbell, Linford J.

    2004-01-01

    The U.S. Geological Survey, Idaho Department of Water Resources, and the State of Idaho INEEL Oversight Program, in cooperation with the U.S. Department of Energy, sampled water from 17 sites as part of the sixth round of a long-term project to monitor water quality of the eastern Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were collected from eight irrigation wells, three domestic wells, one stock well, one dairy well, one commercial well, one observation well, and two springs and analyzed for selected radiochemical and chemical constituents. One quality-assurance sample, a sequential replicate, also was collected and analyzed. Many of the radionuclide and inorganic-constituent concentrations were greater than the reporting levels and most of the organic-constituent concentrations were less than the reporting levels. However, none of the reported radiochemical- or chemical-constituent concentrations exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Statistical evaluation of the replicate sample pair indicated that, with 95 percent confidence, 132 of the 135 constituent concentrations of the replicate pair were equivalent.

  4. Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995

    SciTech Connect

    Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.

    1998-10-01

    The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samples were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering

  5. Ecological characteristics of small mammals on a radioactive waste disposal area in southeastern Idaho

    SciTech Connect

    Groves, C.R.; Keller, B.L.

    1983-01-01

    Species composition, diversity, biomass and densities of small mammal populations were examined in crested wheatgrass (Agropyron cristatum) and Russian thistle (Salsola kali) habitats on a solid radioactive waste disposal area and in native sagebrush (Artemisia tridentala) habitat surrounding the disposal area. The 15-month live-trapping study resulted in the marketing of 2384 individuals representing 10 species of small mammals. The deer mouse (Peromyscus maniculatus) was the most common rodent in both disposal area habitats and the adjacent sagebrush habitat; Ord's kangaroo rat (Dipodomys ordii) was also an abundant rodent in all vegetation types. The montane vole (Microtus montanus) was common only in crested wheatgrass stands on the disposal area. Although the adjacent native sagebrush habitat had the highest species diversity and the Russian thistle habitat on the disposal area had the lowest, the total rodent density was not significantly different among the three vegetation types. Crested wheatgrass within the disposal area contained the largest rodent biomass throughout the study, in part due to an increasing M. montanus population. The peak small mammal biomass of 5000 g/ha in creasted wheatgrass and sagebrush habitats was considerably higher than previously reported for similar habitats. Differences in diversity and biomass between the disposal area and surrounding native habitat are most likely related to differences in soil compaction and vegetation between these two areas.

  6. Preliminary report on ground water in the Salmon Falls area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Fowler, Kenneth H.

    1960-01-01

    The Salmon Falls area contains about 80,000 acres of irrigable land, of which about 30,000 acres receives some water from the distribution system of Salmon River Canal Co., Ltd. This system utilizes virtually all the available surface water. A substantial amount of surface water, estimated to be about 70,000 acre-feet annually, is lost by leakage from the reservoir and the distribution system. Some of this water could be salvaged by lining sections of the canal where excessive losses occur. Ground water has not been extensively developed in the area, but some successful irrigation wells furnished supplemental irrigation water. Recharge to the area is from precipitation on the area, seepage from peripheral streams, seepage losses from the reservoir and canal system, irrigation seepage, and ground-water underflow. Ground water leaves the area by undertow to the north and northwest, and eventually reaches the Snake River. The total mount of underflow from the area was estimated by three different methods to be 17,000, 100,000, and 170,000 acre-feet per year. The preliminary estimate of 100,000 acre-feet was derived by the inventory of recharge and is probably more accurate than the other two methods. Calculations, based on estimates of transmissibility computed from specific capacities of wells, suggest that there may be some channels or conduits of higher than average transmissibility through which a large part of the undertow leaves the area, Possibly 25 percent of the ground-water outflow could be intercepted by wells. However, in part of the area the depth to water may be excessive for economic development. Chemical analyses of 25 samples of ground water indicate that most of the water sampled is suitable for irrigation. The samples found least suitable were of water occurring at shallow depth, south and east of Hollister.

  7. 78 FR 23522 - Idaho Roadless Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...Pursuant to 36 CFR 294.27 the Forest Service, U.S. Department of Agriculture (USDA), is proposing to modify Idaho Roadless Area boundaries for the Big Creek, Grandmother Mountain, Pinchot Butte, Roland Point, Wonderful Peak Idaho Roadless Areas on the Idaho Panhandle National Forests to reflect lands acquired within and/or adjacent to these roadless areas. In addition, modifications to correct......

  8. Relationships between deformation and mesothermal veins in the Sunshine Mine area, Coeur d'Alene district, Idaho

    NASA Astrophysics Data System (ADS)

    Ferraro, Jaclyn Marie

    The Coeur d'Alene district in northern Idaho is a world class Pb-Ag mesothermal vein system that has produced about 360 million ounces of silver, lead, and zinc since the 1880s. Despite the long history of exploration and production, the district does not have a predictive model for exploration based on a sound understanding of structural controls on the silver ore deposits; this is certainly the case for the Sunshine Mine and surrounding area. Fault kinematic history in the district shows a regional scale fault system reactivated over time with dextral, sinistral, and dip-slip displacement. The fault system is superimposed on regional deformation fabrics that were examined for this study in the Sunshine Mine area. Cleavage sets observed in the Sunshine mine area, distinguished by orientation and superposition relationships, are consistent with the findings of Smith (2004) which defined cleavage sets referred to as S1, S2, and S3. Two additional deformation fabrics that appear spatially tied to fault zones formed between development of cleavages S2 and S3. The multiple cleavages, fault zones, and their intersections are interpreted to act as pathways for hydrothermal fluids associated with vein formation and silver ore deposition. Thin section kinematic analysis of vein and shear zone samples defined a dip-slip sense of shear associated with the Sterling vein. Electron Backscatter Diffraction (EBSD) analysis of vein and shear zone samples failed to define a lattice preferred crystallographic orientation that defined shear sense. Similarly, cathodoluminescence (CL) analysis of thin section textures failed to define a dominant shear sense and fault kinematics. Nevertheless, additional study using these techniques is warranted. Both field observation and thin section analysis demonstrate a direct relationship between shear zones, veins, and mineralization potential, clarifying the need for detailed fault maps for the Sunshine Mine area and Coeur d'Alene district.

  9. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  10. 78 FR 7340 - Approval and Promulgation of Implementation Plans; Idaho: Sandpoint PM10 Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... for PM 10 (52 FR 24634). The EPA established a 24-hour standard of 150 g/m\\3\\ and an annual standard... retained the 24-hour PM 10 standard but revoked the annual PM 10 standard (71 FR 61144, effective December... nonattainment area due to measured violations of the 24-hour PM 10 standard (52 FR 29383). The notice...

  11. Anderson Canyon--A Classic Area in South-Central Idaho for Teaching Alpine Glacial Geology.

    ERIC Educational Resources Information Center

    Paull, Rachel Krebs

    1988-01-01

    Describes a source of diversity and enrichment for summer field experiences. Presents information on the geographic and geologic setting, glacial history and record, relative dating of deposits, and use for student experience. Tables include a generalized location of the area, summary of moraine morphology, and pictures. (RT)

  12. Using a distribution and conservation status weighted hotspot approach to identify areas in need of conservation action to benefit Idaho bird species

    USGS Publications Warehouse

    Haines, Aaron M.; Leu, Matthias; Svancara, Leona K.; Wilson, Gina; Scott, J. Michael

    2010-01-01

    Identification of biodiversity hotspots (hereafter, hotspots) has become a common strategy to delineate important areas for wildlife conservation. However, the use of hotspots has not often incorporated important habitat types, ecosystem services, anthropogenic activity, or consistency in identifying important conservation areas. The purpose of this study was to identify hotspots to improve avian conservation efforts for Species of Greatest Conservation Need (SGCN) in the state of Idaho, United States. We evaluated multiple approaches to define hotspots and used a unique approach based on weighting species by their distribution size and conservation status to identify hotspot areas. All hotspot approaches identified bodies of water (Bear Lake, Grays Lake, and American Falls Reservoir) as important hotspots for Idaho avian SGCN, but we found that the weighted approach produced more congruent hotspot areas when compared to other hotspot approaches. To incorporate anthropogenic activity into hotspot analysis, we grouped species based on their sensitivity to specific human threats (i.e., urban development, agriculture, fire suppression, grazing, roads, and logging) and identified ecological sections within Idaho that may require specific conservation actions to address these human threats using the weighted approach. The Snake River Basalts and Overthrust Mountains ecological sections were important areas for potential implementation of conservation actions to conserve biodiversity. Our approach to identifying hotspots may be useful as part of a larger conservation strategy to aid land managers or local governments in applying conservation actions on the ground.

  13. Late quaternary vegetation and climatic history of the Long Valley area, west-central Idaho, U.S.A.

    USGS Publications Warehouse

    Doerner, J.P.; Carrara, P.E.

    2001-01-01

    Paleoenvironmental data, including pollen and sediment analyses, radiocarbon ages, and tephra identifications of a core recovered from a fen, provide a ca. 16,500 14C yr B.P. record of late Quaternary vegetation and climate change in the Long Valley area of west-central Idaho. The fen was deglaciated prior to ca. 16,500 14C yr B.P., after which the pollen rain was dominated by Artemisia, suggesting that a cold, dry climate prevailed until ca. 12,200 14C yr B.P. From ca. 12,200 to 9750 14C yr B.P. temperatures gradually increased and a cool, moist climate similar to the present prevailed. During this period a closed spruce-pine forest surrounded the fen. This cool, moist climate was briefly interrupted by a dry and/or cold interval between ca. 10,800 and 10,400 14C yr B.P. that may be related to the Younger Dryas climatic oscillation. From ca. 9750 to 3200 14C yr B.P. the regional climate was significantly warmer and drier than at present and an open pine forest dominated the area around the fen. Maximum aridity occurred after the deposition of the Mazama tephra (ca. 6730 14C yr B.P). After 3200 14C yr B.P. regional cooling brought cool, moist conditions to the area; the establishment of the modern montane forest around the fen and present-day cool and moist climate began at ca. 2000 14C yr B.P. ?? 2001 University of Washington.

  14. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  15. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  16. A simulation study of infiltration into surficial sediments at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    SciTech Connect

    Martian, P.; Magnuson, S.O.

    1994-04-01

    Soil moisture monitoring data in the surficial sediments at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory were used to calibrate two numerical infiltration models. The calibration was performed with the ultimate goal of providing a reliable estimate of hydraulic properties and infiltration amounts to be used in other modeling efforts. Two neutron probe access tubes and a tensiometer nest were monitored from 1986 to 1990 and again during 1993. The field measurements of moisture content and matrix potential inside the SDA were used as calibration data for the two locations. The two locations showed vastly different behavior, which was well captured in the models. The average root mean square error between simulated and measured moisture contents over the simulation period was 0.03 and 0.06 for the two locations. The hydraulic parameters resulting from the calibration compared favorably with laboratory and field scale estimates. The simulation results also provided the opportunity to partially explain infiltration and redistribution processes occurring at the SDA. The underlying fractured basalt appears to behave similar to a capillary barrier. This behavior inhibits moisture movement into the underlying basalts until moisture contents in the overlying silts approach saturation. As a result, a large proportion of recharge occurring at the SDA may be due to spring snowmelt, when the surficial sediments become nearly saturated. The results also indicated that a unit gradient boundary condition (free drainage due to gravity) at the bottom of the silts is not appropriate because of the very low relative hydraulic conductivity of the basalts. Finally, the amount of water moving into the SDA subsurface from spring snowmelt appears larger than cumulative snowfall, indicating that snow drifting due to local topography as well as current snow management practices may have a substantial influence on local infiltration.

  17. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  18. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1991

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1993-11-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from six irrigation wells, seven domestic wells, two springs, one stock well, one dairy well, and one observation well. Quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All the samples analyzed for dissolved organic carbon had concentrations that exceeded their reporting level. Concentrations of 1,1,1 -trichloroethane exceeded the reporting level in two water samples. Two samples and a quality assurance replicate contained reportable concentrations of 2, 4-D. One sample contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  19. Radionuclides, inorganic constitutents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1992

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-11-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. The samples were collected from 13 irrigation wells, 1 domestic well, 1 spring, 2 stock wells, and 1 public supply well. Quality assurance samples also were collected and analyzed. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. Most of the samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting levels. None of the samples contained reportable concentrations of purgeable organic compounds or pesticides. Total coliform bacteria was present in nine samples.

  20. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  1. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.

  2. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    USGS Publications Warehouse

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  3. Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho: an initial assessment

    USGS Publications Warehouse

    Burnham, W.L.; Harder, A.H.; Dion, N.P.

    1969-01-01

    Five areas within the Bear River drainage of southeastern Idaho offer potential for further development of ground water--the valley north of Bear Lake, north of Soda Springs, Gem Valley, Cache Valley in Idaho, and Malad Valley in Idaho. Saturated deposits north of Bear Lake are too fine-textured to yield large quantities to wells; the areas north of Soda Springs and in Gem Valley would provide large yields, but at the expense of current beneficial discharge. Northern Cache Valley has small areas of high yield in the northwestern part, but total annual yield would be only about 20,000 acre-feet and seasonal water-level fluctuation would be large. Malad Valley contains a large aquifer system within valley fill underlying about 75 square miles. The aquifer system is several hundred feet thick, and contains about 1.8 million acre-feet of water in storage in the top 300 feet of saturated thickness. Average annual recharge to the valley-fill aquifer is about 64,000 acre-feet. Lowering of the water level 100 feet uniformly over the valley area would theoretically yield about 300,000 acre-feet from storage and salvage a present-day large nonbeneficial discharge. Sufficient water to irrigate all lands in a planned project near Samaria could be pumped with a maximum 200-foot pumping lift and then delivered by gravity flow. Such pumping would cause water-level lowering of a few feet to a few tens of feet in present artesian areas, and would cause many present-day artesian wells to cease flowing at land surface. Chemical-quality problems in Malad Valley seem not to be sufficient to prohibit development and use of the ground-water resource.

  4. Fire protection review, Westinghouse Idaho Nuclear Company, Idaho Falls, Idaho

    SciTech Connect

    Dobson, P.H.

    1990-10-01

    A fire protection survey was conducted for the Department of Energy at the Westinghouse Idaho Nuclear Company, INC., Idaho Falls, Idaho, on April 24--27, April 30--May 4, June 4--8, and June 11--15, 1990. The purpose of the survey was to review the facility's fire protection program and to make recommendations according to the following criteria established by the Department of Energy: (1) Recommendations which would be made as the result of an improved risk or Highly Protected Risk (HPR) fire inspection of an industrial insured facility. (2) Identification of areas which are presently not protected or are inadequately protected where provision of automatic protection would reduce a fire or explosion loss to less than $1 million. (3) Identification of areas where loss potentials exceed $50 million assuming a failure of automatic protection systems and subsequent reliance only on separation and fire walls. (4) Evaluation of adequacy of compliance with recommendations made in prior surveys. Findings and recommendations in this report reflect to some degree the relative importance of the operation and the time to restore it to useful condition in the event that a loss were to occur.

  5. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    USGS Publications Warehouse

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  6. Compilation of well and ground-water quality data, Groveland-Collins and surrounding areas near Blackfoot, Bingham County, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1986-01-01

    Well-construction, geologic, and water level data from 1978 to 1985 were compiled for 163 sites near Blackfoot, Idaho. Groundwater quality data were compiled for 51 sites for the period 1961-83 and for 54 sites for the period 1984-85. Data were collected in support of the hydrologic and water quality components of the U.S. Geological Survey 's groundwater contamination investigation near Blackfoot. Result of the investigation are presented in an interpretive report, published separately.

  7. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  8. Idaho Fires

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle Imaging SpectroRadiometer (MISR) image of smoke plumes ... Idaho was acquired on August 5, 2000 (Terra orbit 3370). The body of water to the left of image center is the Cascade Reservoir, located ...

  9. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1992

    USGS Publications Warehouse

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-01-01

    Dissolved concentrations of radon-222, a naturally occurring radioactive gas, are found in water in Idaho. The U.S. Geological Survey collected water samples for radon-222 analyses from 339 Idaho wells and springs during 1989-91. These water samples were collected as part of ongoing monitoring programs with the Idaho Department of Water Resources and the U.S. Department of Energy. Concentrations of dissolved radon-222 ranged from -58+30 to 5,715+66 picocuries per liter; the mean and median concentrations were 446+35 and 242+25 picocuries per liter, respectively.

  10. Remote sensing research for agricultural applications. [San Joaquin County, California and Snake River Plain and Twin Falls area, Idaho

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Wall, S. L.; Beck, L. H.; Degloria, S. D.; Ritter, P. R.; Thomas, R. W.; Travlos, A. J.; Fakhoury, E.

    1984-01-01

    Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems.

  11. Geothermal investigations in Idaho, Part 2, An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho - with a section on a reconnaissance audio-magnetotelluric survey

    USGS Publications Warehouse

    Young, H.W.; Whitehead, R.L.; Hoover, Donald B.; Tippens, C.L.

    1974-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho and is on the southern flank of the large depression (possibly a graben) in which lies the western Snake River Plain. The igneous and sedimentary rocks in the area range in age from Late Cretaceous to Holocene. They are transected by a prominent system of northwest-trending faults. For discussion purposes, the aquifers in the area have been separated into two broad units: (1) the volcanic-rock aquifers, and (2) the overlying sedimentary-rock aquifers. The Idavada Volcanics or underlying rock units probably constitute the reservoir that contains thermal water. An audio-magnetotelluric survey indicates that a large conductive zone having apparent resistivities approaching 2 ohm-metres underlies a part of the area at a relatively shallow depth. Chemical analysis of 94 water samples collected in 1973 show that the thermal waters in the area are of a sodium bicarbonate type. Although dissolved-solids concentrations of water ranged from 181 to 1,100 milligrams per litre (mg/l) in the volcanic-rock aquifers, they were generally less than 500 mg/l. Measured chloride concentrations of water in the volcanic-rock aquifers were less than 20 mg/l. Temperatures of water from wells and springs ranged from 9.5 to 83.0 degrees C. Temperatures of water from the volcanic-rock aquifers ranged from 40.0 to 83.0 degrees C, whereas temperatures of water from the sedimentary-rock aquifers seldom exceeded 35 degrees C. Aquifer temperatures at depth, as estimated by silica and sodium-potassium-calcium geochemical thermometers, probably do not exceed 150 degrees C. However, a mixed-water geochemical thermometer indicates that temperatures at depth may exceed 180 degrees C. The gas in water from the volcanic-rock aquifers is composed chiefly of atmospheric oxygen and nitrogen. Methane gas (probably derived from organic material) was also found in some water from the sedimentary-rock aquifers. The thermal waters

  12. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Idaho. 81.313 Section 81.313 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho—SO2 Designated area Does not meet...

  13. Lead and strontium isotope data for thermal waters of the regional geothermal system in the Twin Falls and Oakley areas, South-Central Idaho

    SciTech Connect

    Mariner, R.H.; Young, H.W.

    1995-12-31

    Thermal fluids obviously related to aquifers in both rhyolite and limestone occur in the Twin Falls-Oakley area of south-central Idaho. Limestone-related waters (high calcium with low silica and fluoride) occur in the middle and upper (southern) parts of the area. Rhyolite-related waters (low calcium but high in silica and fluoride) occur in the lower (northern) part of the area. The relation of thermal fluids in Paleozoic limestone to thermal fluids in Tertiary rhyolite is unknown. Thermal fluids from limestone are dilute, so water-rock reaction in rhyolite could obliterate chemical evidence of fluid residence in a limestone. However, isotopic tracers such as {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb, and {sup 87}Sr/{sup 86}Sr might preserve evidence of fluid residence in limestone. Systematic relations between these isotopes and dissolved constituents in the water demonstrate the presence of limestone beneath most if not all of the study area and that aquifers in the limestone and rhyolite are hydrologically connected.

  14. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Bradley, L.A.; Gent, C.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho.

  15. Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area

    SciTech Connect

    Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

    1985-04-01

    Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

  16. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    SciTech Connect

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    1995-03-01

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

  17. A comparison of U.S. Geological Survey three-dimensional model estimates of groundwater source areas and velocities to independently derived estimates, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Fisher, Jason C.; Rousseau, Joseph P.; Bartholomay, Roy C.; Rattray, Gordon W.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, evaluated a three-dimensional model of groundwater flow in the fractured basalts and interbedded sediments of the eastern Snake River Plain aquifer at and near the Idaho National Laboratory to determine if model-derived estimates of groundwater movement are consistent with (1) results from previous studies on water chemistry type, (2) the geochemical mixing at an example well, and (3) independently derived estimates of the average linear groundwater velocity. Simulated steady-state flow fields were analyzed using backward particle-tracking simulations that were based on a modified version of the particle tracking program MODPATH. Model results were compared to the 5-microgram-per-liter lithium contour interpreted to represent the transition from a water type that is primarily composed of tributary valley underflow and streamflow-infiltration recharge to a water type primarily composed of regional aquifer water. This comparison indicates several shortcomings in the way the model represents flow in the aquifer. The eastward movement of tributary valley underflow and streamflow-infiltration recharge is overestimated in the north-central part of the model area and underestimated in the central part of the model area. Model inconsistencies can be attributed to large contrasts in hydraulic conductivity between hydrogeologic zones. Sources of water at well NPR-W01 were identified using backward particle tracking, and they were compared to the relative percentages of source water chemistry determined using geochemical mass balance and mixing models. The particle tracking results compare reasonably well with the chemistry results for groundwater derived from surface-water sources (-28 percent error), but overpredict the proportion of groundwater derived from regional aquifer water (108 percent error) and underpredict the proportion of groundwater derived from tributary valley underflow

  18. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR Sections Affected which appears in the Finding Aids section of the printed volume and on GPO... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho... Nonattainment 1/20/94 Moderate. City of Pinehurst 11/15/90 Nonattainment 11/15/90 Moderate. Silver...

  19. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Editorial Note: For Federal Register citations affecting § 81.313 see the List of CFR Sections Affected... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho... Nonattainment 1/20/94 Moderate. City of Pinehurst 11/15/90 Nonattainment 11/15/90 Moderate. Silver...

  20. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Editorial Note: For Federal Register citations affecting § 81.313 see the List of CFR Sections Affected... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho.../20/94 Moderate. City of Pinehurst 11/15/90 Nonattainment 11/15/90 Moderate. Silver Valley...

  1. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR Sections Affected which appears in the Finding Aids section of the printed volume and at www.fdsys... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho... Nonattainment 1/20/94 Moderate. City of Pinehurst 11/15/90 Nonattainment 11/15/90 Moderate. Silver...

  2. Planning Study for North Idaho College.

    ERIC Educational Resources Information Center

    Young, Raymond J.

    This three-part, long-range planning study was undertaken to assist North Idaho College (NIC) to more effectively meet the educational needs and interests of youth and adults residing in the five county Panhandle Area of Northern Idaho. Part I discusses NIC and its community; presents the results of a study of the educational plans and attitudes…

  3. Composition of the Rex Chert and associated rocks of the Permian Phosphoria Formation: Soda Springs area, SE Idaho

    USGS Publications Warehouse

    Hein, James R.; McIntyre, Brandie; Perkins, Robert B.; Piper, David Z.; Evans, James

    2002-01-01

    This study, one in a series, reports bulk chemical and mineralogical compositions, as well as petrographic and outcrop descriptions of rocks collected from three measured outcrop sections of the Rex Chert member of the Phosphoria Formation in SE Idaho. The three measured sections were chosen from ten outcrops of Rex Chert that were described in the field. The Rex Chert overlies the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, the source of phosphate ore in the region. Rex Chert removed as overburden comprises part of the material disposed in waste-rock piles during phosphate mining. It has been proposed that the chert be used to cap and isolate waste piles, thereby inhibiting the leaching of potentially toxic elements into the environment. It is also used to surface roads in the mining district. The rock samples studied here constitute a set of individual chert beds that are representative of each stratigraphic section sampled. The informally named cherty shale member that overlies the Rex Chert in measured section 1 was also described and sampled. The upper Meade Peak and the transition zone to the Rex Chert were described and sampled in section 7. The cherts are predominantly spicularite composed of granular and mosaic quartz, and sponge spicules, with various but minor amounts of other fossils and detrital grains. The cherty shale member and transition rocks between the Meade Peak and Rex Chert are siliceous siltstones and argillaceous cherts with ghosts of sponge spicules and somewhat more detrital grains than the chert. The overwhelmingly dominant mineral is quartz, although carbonate beds are rare in each section and are composed predominantly of calcite and dolomite in addition to quartz. Feldspar, mica, clay minerals, calcite, dolomite, and carbonate fluorapatite are minor to trace minerals in the chert. The mean concentrations of oxides and elements in the Rex Chert and the cherty shale member are dominated by SiO2, which averages 94

  4. Monitoring recharge in areas of seasonally frozen ground in the Columbia Plateau and Snake River Plain, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Mastin, Mark; Josberger, Edward

    2014-01-01

    Seasonally frozen ground occurs over approximately one‑third of the contiguous United States, causing increased winter runoff. Frozen ground generally rejects potential groundwater recharge. Nearly all recharge from precipitation in semi-arid regions such as the Columbia Plateau and the Snake River Plain in Idaho, Oregon, and Washington, occurs between October and March, when precipitation is most abundant and seasonally frozen ground is commonplace. The temporal and spatial distribution of frozen ground is expected to change as the climate warms. It is difficult to predict the distribution of frozen ground, however, because of the complex ways ground freezes and the way that snow cover thermally insulates soil, by keeping it frozen longer than it would be if it was not snow covered or, more commonly, keeping the soil thawed during freezing weather. A combination of satellite remote sensing and ground truth measurements was used with some success to investigate seasonally frozen ground at local to regional scales. The frozen-ground/snow-cover algorithm from the National Snow and Ice Data Center, combined with the 21-year record of passive microwave observations from the Special Sensor Microwave Imager onboard a Defense Meteorological Satellite Program satellite, provided a unique time series of frozen ground. Periodically repeating this methodology and analyzing for trends can be a means to monitor possible regional changes to frozen ground that could occur with a warming climate. The Precipitation-Runoff Modeling System watershed model constructed for the upper Crab Creek Basin in the Columbia Plateau and Reynolds Creek basin on the eastern side of the Snake River Plain simulated recharge and frozen ground for several future climate scenarios. Frozen ground was simulated with the Continuous Frozen Ground Index, which is influenced by air temperature and snow cover. Model simulation results showed a decreased occurrence of frozen ground that coincided with

  5. Mineral resource potential map of the Great Rift Instant Study Area, Blaine, Butte, Minidoka, and Power counties, Idaho

    USGS Publications Warehouse

    Ridenour, James; Stotelmeyer, Ronald B.; Kuntz, Mel A.; Mabey, Don R.; Champion, Duane E.; Lefebvre, Richard H.; Stanley, W.D.

    1983-01-01

    Locating speculative resources (uraniferous sediment, auriferous gravel, and geothermal reservoirs) and hypothetical resources (oil and gas) that may underlie the geologically young lava flows of the study area would require extensive geophysical exploration and drilling.

  6. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    SciTech Connect

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  7. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down

  8. DETERMINATION OF NATURE AND EXTENT OF GROUND WATER CONTAMINATION IN BOISE CITY AND BOISE URBAN PLANNING AREAS, ADA COUNTY, IDAHO

    EPA Science Inventory

    From Jun 93 through Sep 94, a total of 818 ground water samples were collected from 515 wells throughout the Boise area (17050114) to analyze the ground water quality in the shallow (<150 feet below land surface - 317 wells), intermediate (150-250 feet below land surface - 63 wel...

  9. Preliminary Safety Analysis Report for the Transuranic Storage Area Retrieval Enclosure at the Idaho National Engineering Laboratory. Revision 8

    SciTech Connect

    Not Available

    1993-03-01

    This Transuranic Storage Area Retrieval Enclosure Preliminary Safety Analysis Report was completed as required by DOE Order 5480.23. The purpose of this document is to construct a safety basis that supports the design and permits construction of the facility. The facility has been designed to the requirements of a Radioactive Solid Waste Facility presented in DOE Order 6430.1A.

  10. Assessment of the sand and gravel resources of the Lower Boise River Valley area, Idaho: part one: geological framework of the sand and gravel deposits

    USGS Publications Warehouse

    Bliss, James D.; Moyle, Phillip R.

    2001-01-01

    The USGS has undertaken a first order evaluation of sand & gravel resources in the Lower Boise River Valley in response to rapid urban expansion in the Boise-Nampa-Caldwell corridor in southwest Idaho. The study is intended to provide land-use planners and managers, particularly in the Bureau of Land Management, with a foundation of knowledge that will allow them to anticipate and plan for demand for and development of sand and gravel resources on public lands in response to the urban growth. Attributes under study include: regional geology of both alluvial source areas as well as deposits; fluvial processes that led to deposition of the sand and gravel deposits; spatial distribution of the deposits; quantity and quality of materials in the deposits; and the suitability of the deposits for a range of applications. The study will also examine and attempt to model the association between fluvial processes, deposit characteristics, and physical specifications for various applications of sand and gravel. The results will be presented in a series of sand and gravel assessment reports of which this is the first.

  11. Correlation of Upper Cretaceous strata from Lima Peaks area to Madison Range, southwestern Montana and southeastern Idaho, USA

    USGS Publications Warehouse

    Dyman, T.S.; Tysdal, R.G.; Perry, W.J., Jr.; Obradovich, J.D.; Haley, J.C.; Nichols, D.J.

    1997-01-01

    An 40Ar/39Ar age of 85.81 Ma ?? 0.22 my was obtained on sanidine from a volcanic procellanite bed near the top of the 2135 + m-thick Upper Cretaceous Frontier Formation in the Lima Peaks area of southwestern Montana. This early Santonian age, combined with previously determined age data including a palynological age of Cenomanian for the lower Frontier at Lima Peaks, and a U-Pb isotopic date of about 95 Ma for the base of the Frontier Formation in the eastern Pioneer Mountains north of the Lima Peaks area, provides an age range for this nonmarine formation. In the Madison Range, farther east in southwestern Montana, this age range corresponds to marine strata of not only the Frontier Formation, but also the overlying Cody Shale and Telegraph Creek Formation, a sequence that totals less than 760 m thick. The Upper Cretaceous marine formations of the Madison Range are closely zoned by molluscan faunas that are well constrained with radiometric dates. The 40Ar/39Ar age of 85.81 Ma ?? 0.22 my at Lima Peaks is bracketed by radiometric dates for the Scaphites depressus - Protexanites bourgeoisianus biozone and the overlying Clioscaphites saxitonianus - Inoceramus undulatoplicatus biozone of the Western Interior. Fossils of both of these biozones are present in the Cody Shale and the Telegraph Creek Formation in the Madison Range. The Telegraph Creek contains two units of volcanic ash that are approximate time equivalents of the volcanic procellanite of the Lima Peaks area. Clasts in the conglomerate of the upper part of the Frontier in the Lima Peaks area were shed during the initial stages of uplift of the Blacktail-Snowcrest highlands which rose to the north. The dated porcellanite lies above the conglomerates and indicates that the uplift was initiated by middle or late Coniacian, 87-88 Ma. ?? 1997 Academic Press Limited.

  12. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  13. Trends in lake chemistry in response to atmospheric deposition and climate in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming, 1993-2009

    USGS Publications Warehouse

    Mast, M. Alisa; Ingersoll, George P.

    2011-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation

  14. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    SciTech Connect

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  15. Geothermal resources of southern Idaho

    SciTech Connect

    Mabey, D.R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

  16. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  17. Retrofitting the Streetlights in Boise, Idaho

    SciTech Connect

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2011-01-01

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  18. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range

  19. Idaho GPW Fact Sheet

    SciTech Connect

    2001-10-01

    Idaho holds enormous resources - among the largest in theUnited States - of this clean, reliable form of energy that to date have barely been tapped. According to U.S. Geological Survey estimates, Idaho ranks seventh among the 50 states in developable geothermal energy. These resources could provide up to 20% of Idaho's heat and power needs. W h y G e o t h e r m a l ?Homegrown Energy It's here, right beneath our feet! No need to import! Current Development Idaho already boasts 70 direct-use g..

  20. In-Situ Grouting Treatability Study for the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area-Transuranic Pits and Trenches

    SciTech Connect

    Loomis, G. G.; Jessmore, J. J.; Sehn, A. L.; Miller, C. M.

    2002-02-27

    At the Idaho National Engineering and Environmental Laboratory (INEEL), a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability study is being performed to examine the technology of in situ grouting for final in situ disposal of buried mixed transuranic (TRU) waste. At the INEEL, there is over 56,000 cubic meters of waste commingled with a similar amount of soil in a shallow (3-5 m) land burial referred to as Waste Area Group 7-13/14. Since this buried waste has been declared on the National Priorities List under CERCLA, it is being managed as a superfund site. Under CERCLA, options for this waste include capping and continued monitoring, retrieval and ex situ management of the retrieved waste, in situ stabilization by vitrification or grouting, in situ thermal dissorption, or some combination of these options. In situ grouting involves injecting grout at high pressures (400 bars) directly into the waste to create a solid monolith. The in situ grouting process is expected to both stabilize the waste against subsidence and provide containment against migration of waste to the Snake River Plain Aquifer lying 150-200 m below the waste. The treatability study involves bench testing, implementability testing, and field testing. The bench testing was designed to pick three grouts from six candidate grouts for the implementability field testing in full scale which were designed to down-select from those three grouts to one grout for use in a full-scale field demonstration of the technology in a simulated test pit. During the bench testing, grouts were evaluated for durability using American Nuclear Society 16.1 Leach Protocol as well as evaluating the effect on physical parameters such as hydraulic conductivity and compressive strength due to the presence of interferences such as soil, organic sludge, and nitrate salts. During full-scale implementability testing, three grouts were evaluated for groutability and monolith formation

  1. Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls area, south-central Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Bullen, T.D.; Janik, C.J.

    1997-01-01

    Sulfate-water isotope geothermometry for the geothermal system at Twin Falls, Idaho indicates aquifer-temperatures of 90?? to 106 ??C; most sites are between 90?? and 93 ??C. 206Pb/204pb and 280Pb/204Pb of individual thermal waters are principally a function of how much lead has been dissolved from the carbonate and silicate fractions of the Paleozoic limestone collected west of Grand View Peak. Although most thermal waters are recovered from Tertiary rhyolite, very little of the dissolved lead is from the rhyolite. Recharge to this system occurs in northern Nevada and the fluid moves northward in the Paleozoic limestones. The occurrence of thermal fluid in the Idavada Volcanics near and south of Twin Falls, Idaho is the result of upward movement of this fluid from the Paleozoic limestone.

  2. Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls Area, South-Central Idaho

    SciTech Connect

    Mariner, R.H.; Bullen, T.D.; Janik, C.J.; Young, H.W.

    1997-12-31

    Sulfate-water isotope geothermometry for the geothermal system at Twin Falls, Idaho indicates aquifer-temperatures of 90{degrees} to 106{degrees}C; most sites are between 90{degrees} and 93{degrees}C. {sup 206}Pb/{sup 204}Pb and {sup 208}Pb/{sup 204}Pb of individual thermal waters are principally a function of how much lead has been dissolved from the carbonate and silicate fractions of the Paleozoic limestone collected west of Grand View Peak. Although most thermal waters are recovered from Tertiary rhyolite, very little of the dissolved lead is from the rhyolite. Recharge to this system occurs in northern Nevada and the fluid moves northward in the Paleozoic limestones. The occurrence of thermal fluid in the Idavada Volcanics near and south of Twin Falls, Idaho is the result of upward movement of this fluid from the Paleozoic limestone.

  3. Idaho National Engineering Laboratory Sewer System Upgrade Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment for a proposed Sewer System Upgrade Project at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. The proposed action would consist of replacing or remodeling the existing sewage treatment plants at the Central Facilities Area, Test Reactor Area, and Containment Test Facility. Also, a new sewage testing laboratory would be constructed at the Central Facilities Area. Finally, the proposed action would include replacing, repairing, and/or adding sewer lines in areas where needed.

  4. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Four - Appendix G

    SciTech Connect

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix G. Appendix G is a presentation of VOC chromatography data collected during the study. Information on the calibration curves and calibration checks used as well as the sample GC reports themselves are included here. The concentration values presented on the GC reports are calculation using the data from the applicable calibration curve and any necessary dilutions which were made.

  5. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  6. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...On December 14, 2012, the Idaho Department of Environmental Quality (IDEQ) submitted a revision to the State Implementation Plan (SIP) to address Clean Air Act (CAA) requirements for the Idaho portion (hereafter referred to as ``Franklin County'') of the cross border Logan, Utah-Idaho fine particulate matter (PM2.5) nonattainment area (Logan UT-ID). The EPA is proposing a limited......

  7. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    SciTech Connect

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  8. Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1 degree x 2 degrees quadrangle and part of the southern part of the Challis 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Link, P.K.; Mahoney, J.B.; Bruner, D.J.; Batatian, L.D.; Wilson, Eric; Williams, F.J.C.

    1995-01-01

    The paper version of the Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1x2 Quadrangle and part of the southern part of the Challis 1x2 Quadrangle, south-central Idaho was compiled by Paul Link and others in 1995. The plate was compiled on a 1:100,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  9. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  10. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume One - Main Text and Appendices A and B

    SciTech Connect

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    The laboratory investigation was performed to evaluate the feasibility of utilizing in situ chemical oxidation for remediating the secondary source of groundwater contaminants at the Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) Site. The study involved trichloroethene (TCE) contaminated media (groundwater, soil, and sludge) from TAN. The effectiveness of the selected oxidant, potassium permanganate (KMn0(sub4)), was evaluated at multiple oxidant and contaminant concentrations. Experiments were performed to determine the oxidant demand of each medium and the rate of TCE oxidation. The experiments were performed under highly controlled conditions (gas-tight reactors, constant 12C temperature). Multiple parameter were monitored over time including MN0(sub 4) and TCE concentrations and pH.

  11. 76 FR 17341 - Idaho Roadless Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... administrative corrections affecting Big Creek Fringe, French Creek, Placer Creek, Secesh, and Smith Creek Idaho... regulatory classifications involving two Forest Plan Special Areas (Big Creek and French Creek) and a mapping... Chief provided a 30-day public notice and opportunity to comment (75 FR 54542). A total of 13...

  12. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    SciTech Connect

    Allen, Todd Randall; Wright, Virginia Latta

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  13. WATER QUALITY IN ISLAND PARK RESERVOIR, IDAHO 1981

    EPA Science Inventory

    Idahos Island Park Reservoir area (17040202) offers recreational opportunities, although water quality is impaired by nuisance algal blooms and occasional high fecal coliform bacteria counts. The fecal coliform bacteria observed in Island Park Reservoir probably originate from i...

  14. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  15. Idaho's Energy Options

    SciTech Connect

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  16. Idaho's Library Future.

    ERIC Educational Resources Information Center

    Idaho State Library, Boise.

    In l998, Idahoans gathered in a series of six Regional Futures Conferences to identify what they thought was probable during the next ten years, what was possible for libraries to do and be, and what a preferred future of Idaho libraries might be. Participants from the regional conferences then convened to refine and focus descriptions of the…

  17. Idaho Safety Manual.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  18. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

  19. The Idaho Consortium.

    ERIC Educational Resources Information Center

    Beaird, James H.

    The Idaho Consortium was established by the state board of education to remedy perceived needs involving insufficient certificated teachers, excessive teacher mobility, shortage of teacher candidates, inadequate inservice training, a low level of administrative leadership, and a lack of programs in special education, early childhood education,…

  20. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  1. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; Larry G. Blackwood; Andrew J. Edwards; J. Keith Jewell; Kenneth W. Rohde; Edward H. Seabury; Jeffery B. Klinger

    2005-12-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  2. Idaho Higher Education: 1994 Fact Book.

    ERIC Educational Resources Information Center

    Idaho State Board of Education, Boise.

    This fact book presents information about Idaho's public four-year college, Lewis-Clark State College, and the three universities: Boise State University, Idaho State University, and the University of Idaho. The book also provides selected data on vocational education and Idaho's two community colleges: North Idaho College and the College of…

  3. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89. Water Resources Investigation

    SciTech Connect

    Low, W.H.; Mullins, W.H.

    1990-01-01

    The report presents results of a reconnaissance investigation to determine whether potentially toxic concentrations of selected trace elements or organochlorine compounds associated with irrigation drainage exist in surface and ground water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds in the American Falls Reservoir area. American Falls Reservoir was selected for investigation in part because several previous investigations of fish in the reservoir indicated that mercury and cadmium concentrations exceeded human health standards and periodic botulism-related die-offs of waterbirds have been known to occur. Also, rocks south and southeast of the reservoir contain naturally occurring selenium concentrations many times greater than those in the continental crust. Samples of water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds were collected from nine sites in the American Falls Reservoir area. The samples were analyzed for selected inorganic and organic constituents to determine whether concentrations exceeded known standards or criteria.

  4. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  5. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  6. Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, cassia county, idaho; box elder county, Utah

    USGS Publications Warehouse

    Nathenson, M.; Nehring, N.L.; Crosthwaite, E.G.; Harmon, R.S.; Janik, C.; Borthwick, J.

    1982-01-01

    Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. The non-mixed waters have essentially a constant value of light-stable isotopes but show a large variation in chloride content. The variation of chloride composition is not the usual pattern for deep geothermal waters, where it is normally assumed that the deep water has a single chloride composition. Different mixed waters also have hot-water sources of varying chloride composition. Plots of chloride values on cross-sections show that water circulation patterns are confused, with non-mixed waters having different chloride concentrations located in close proximity. Three models can explain the characteristics of the deep geothermal water: (1) in addition to near-surface mixing of cold and hot water, there is deep mixing of two hot waters with the same enthalpy and isotopic composition but differing chloride concentrations to produce the range of chloride concentrations found in the deep geothermal water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in the sedimentary section above the basement) in which waters have different residence times or slightly different circulation paths; (3) the varying chloride concentrations in space have been caused by varying chloride concentrations in the deep feed water through time. Some of this older water has not been flushed from the system by the natural discharge. Although one model may seem more plausible than the others, the available data do not rule out any of them. Data for water samples from the Raft River and Jim Sage Mountains show that water from

  7. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 3: Lake Walcott-Bonanza Lake area

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1974-01-01

    Direct-current resistivity soundings and exploratory drilling suggest that the basalt of the Snake River Group is relatively thin in the area along the Snake River that is topographically suitable for pumping large quantities of ground water in exchange for surface water. The formations underlying the Snake River Group appear to have low permeability and probably would not yield large amounts of water. Previous studies have indicated that the southern edge of the Snake Plain aquifer extended to the Snake River. Data presented in this report implies that, in general, the southern boundary should, in fact, be several miles north of the river.

  8. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INEL Oversight Committee

    SciTech Connect

    King, B.; Bloomsburg, G.; Horn, D.; Liou, J.; Finnie, J.

    1992-01-01

    During the early years of the INEL, the USGS conducted extensive studies (sitewide drilling program) of the geology and hydrology of the area collecting varied data over the years. The unsaturated zone has not received much attention until recently. The studies that have been done are a result of problems or concerns arising from liquid radioactive waste disposal. The TRA facility has the most information published about its waste disposal activities. The ICPP has less data about the unsaturated zone due to the fact that most waste water disposal has been to a well. Little is known about the effect of waste water disposal at the NRF on the unsaturated zone. Essentially no information was found about waste disposal activities at other facilities, primarily because there does not appear to be any reported problems associated with waste water disposal at these locations. The RWMC has received much attention in the last few years as the result of being priority No. 1 in the superfund clean up of the INEL. A considerable amount of data are available describing the unsaturated zone at the RWMC. These data have been collected to field calibrate a radionuclide migration model for the RWMC.

  9. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INEL Oversight Committee

    SciTech Connect

    King, B.; Bloomsburg, G.; Horn, D.; Liou, J.; Finnie, J.

    1992-12-31

    During the early years of the INEL, the USGS conducted extensive studies (sitewide drilling program) of the geology and hydrology of the area collecting varied data over the years. The unsaturated zone has not received much attention until recently. The studies that have been done are a result of problems or concerns arising from liquid radioactive waste disposal. The TRA facility has the most information published about its waste disposal activities. The ICPP has less data about the unsaturated zone due to the fact that most waste water disposal has been to a well. Little is known about the effect of waste water disposal at the NRF on the unsaturated zone. Essentially no information was found about waste disposal activities at other facilities, primarily because there does not appear to be any reported problems associated with waste water disposal at these locations. The RWMC has received much attention in the last few years as the result of being priority No. 1 in the superfund clean up of the INEL. A considerable amount of data are available describing the unsaturated zone at the RWMC. These data have been collected to field calibrate a radionuclide migration model for the RWMC.

  10. Pocatello 1/sup 0/ x 2/sup 0/ NTMS area Idaho. Data report: National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    SciTech Connect

    Cook, J.R.

    1980-07-01

    This data report presents results of groundwater and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Pocatello 1/sup 0/ x 2/sup 0/ quadrangle. Surface samples (sediment) were collected from 1701 sites. The target sampling density was one site per 16 square kilometers (six square miles). Ground water samples were collected at 381 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from sediment sites include: (1) stream water chemistry measurements where applicable (pH, conductivity, and alkalinity); and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements; U/Th, U/Hf, and U/La ratios; and scintillometer readings for sediment sample sites are included on the microfiche. Data from groundwater sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, and scintillometer reading); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from stream water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); and (2) elemental analyses (U, Al, Br, Cl, F, Mg, Mn, Na, and V).

  11. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INLEL Oversight COmmittee. Draft

    SciTech Connect

    Horn, D.; Liou, J.; Finnie, J.

    1993-03-01

    This project, begun in March 1991, was originally structured as two separate research efforts: An investigation of the recharge phenomenon and surface water-ground water interactions at the INEL; and a study of water and contaminant movement through the unsaturated zone, including a review of computer models used to described this process. During the initial months of work, it became obvious to those involved in these studies that the two topic areas were intimately related, and work since that time has proceeded with no firm boundaries between the two efforts. Much of the Phase I work (March 1991--March 1992) consisted of a detailed review of available literature pertinent to the two research topics and to the INEL site. This Annual Report summarizes the other project activities during Phase III, and is organized into three sections: Section I -- an overview of the ongoing efforts related to computer model algorithms and data requirements for modeling the transport process in the unsaturated zone (Dr. Jim Liou). Section H -- a review of ongoing work to predict the growth and decay of the ground water mound beneath the INEL spreading basins, using the computer model UNSAT-2 (Dr. John Finnie). Section M -- a final report of the completed study effort examining the recharge rates associated with stream flow in the Big Lost River, and the effects of this recharge on ground water levels at the INEL site (Dr. Dennis Horn). Phase M of the project has now begun, and will conclude in December 1993 with two final reports documenting the work that has been briefly described in Sections I and H of this report.

  12. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INLEL Oversight COmmittee

    SciTech Connect

    Horn, D.; Liou, J.; Finnie, J.

    1993-03-01

    This project, begun in March 1991, was originally structured as two separate research efforts: An investigation of the recharge phenomenon and surface water-ground water interactions at the INEL; and a study of water and contaminant movement through the unsaturated zone, including a review of computer models used to described this process. During the initial months of work, it became obvious to those involved in these studies that the two topic areas were intimately related, and work since that time has proceeded with no firm boundaries between the two efforts. Much of the Phase I work (March 1991--March 1992) consisted of a detailed review of available literature pertinent to the two research topics and to the INEL site. This Annual Report summarizes the other project activities during Phase III, and is organized into three sections: Section I -- an overview of the ongoing efforts related to computer model algorithms and data requirements for modeling the transport process in the unsaturated zone (Dr. Jim Liou). Section H -- a review of ongoing work to predict the growth and decay of the ground water mound beneath the INEL spreading basins, using the computer model UNSAT-2 (Dr. John Finnie). Section M -- a final report of the completed study effort examining the recharge rates associated with stream flow in the Big Lost River, and the effects of this recharge on ground water levels at the INEL site (Dr. Dennis Horn). Phase M of the project has now begun, and will conclude in December 1993 with two final reports documenting the work that has been briefly described in Sections I and H of this report.

  13. Teton Dam flood of June 1976, Idaho Falls North quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls North quadrangle. (Woodard-USGS)

  14. Teton Dam flood of June 1976, Idaho Falls South quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls South quadrangle. (Woodard-USGS)

  15. WATER QUALITY STATUS REPORT, CROOKED RIVER, IDAHO COUNTY IDAHO, 1987

    EPA Science Inventory

    Crooked River (17060305), a primary anadromous fisheries resource, is located approximately 120 miles southeast of Lewiston, Idaho. Dredging operations between 1936 and 1948 left large piles of gravel in the natural watercourse, causing the river to meander. Impoundments of wat...

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  17. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect

    Not Available

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  18. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  19. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Johnson, Kathryn; Haynes, Todd; Seifert, Gary

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  20. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-07-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  1. 75 FR 49944 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... meet in Idaho Falls, Idaho on September 21-22, 2010 for a two day meeting at the Upper Snake Field..., tours will be conducted throughout the Upper Snake Field Office area to discuss policy issues affecting... retaining critical habitat along the South Fork of the Snake River. All meetings are open to the public....

  2. First report of blackleg caused by Leptosphaeria maculans on canola in Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola (Brassica napus L.) is produced in the dryland agriculture areas of eastern Washington State and northern Idaho, often in rotation with cereal cropping systems. Canola is also used as a rotation crop in irrigated circles in the Columbia Basin of Washington State and southern Idaho, where pota...

  3. Raptor ecology of Raft River Valley, Idaho

    SciTech Connect

    Thurow, T.L.; White, C.M.; Howard, R.P.; Sullivan, J.F.

    1980-09-01

    Raptor data were gathered in the 988-km/sup 2/ Raft River Valley in southcentral Idaho while conducting a tolerance study on the nesting Ferruginous Hawk (Buteo regalis) near the Department of Energy's Raft River Geothermal Site. Prior research from 1972 to 1977 on the nesting activity of the Ferruginous Hawk population provided a historical information base. These data are combined with new Ferruginous Hawk data collected between 1978 and 1980 to give a continuous 9-year breeding survey. Information on the distribution, density, and production of the other raptor species found in the study area during 1978 and 1979 is also provided.

  4. Additional mineral resources assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River, Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas, Owyhee County, Idaho

    USGS Publications Warehouse

    Diggles, Michael F.; Berger, Byron R.; Vander Meulen, Dean B.; Minor, Scott A.; Ach, Jay A.; Sawlan, Michael G.

    1989-01-01

    From 1984 to 1986, studies were conducted to assess the potential for undiscovered mineral resources in wilderness study areas on the Owyhee Plateau. The results of these studies have been published in a series of U.S. Geological Survey Bulletins. Since that time, low-grade, high-tonnage epithermal hot-spring gold-silver deposits have been recognized in the region north of the wilderness study areas. The recognition that this mineral-deposit model is applicable in the region, coupled with new data that has become available to the U.S. Geological Survey, reinterpretation of existing geochemical data, and known-deposit data suggest that similar deposits may be present elsewhere on the Owyhee Plateau. This report is an additional assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River (ID-016-053), Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas in Idaho Wilderness Study Areas in Idaho in light of those new data.

  5. National Environmental/Energy Workforce Assessment for Idaho.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents existing workforce levels, training programs and career potentials and develops staffing level projections (1976-1982) based on available information for the State of Idaho. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater, and…

  6. Improving and Extending Rural Library Services in Idaho.

    ERIC Educational Resources Information Center

    Weatherby, James B.; And Others

    This study of rural libraries in Idaho was designed to identify appropriate alternative local revenue sources to support library services as well as ways of improving the coordination and delivery of library services in the state and extending library access to unserved areas. Data were gathered from U.S. Bureau of the Census reports and special…

  7. WOODRAT MOUNTAIN STUDY, CLEARWATER COUNTY IDAHO, 1972-1977

    EPA Science Inventory

    From 1972 through 1977, 8 streams in the Woodrat Mountain area of Clearwater County, Idaho (17060306) were monitored to collect water quality data. The purpose of the study was to obtain baseline data on the drainages prior to the development of a Kyanite mining and milling oper...

  8. Idaho Cooperative Demonstration Grant in Construction and Mining. Final Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    A project was conducted in Idaho to develop, implement, evaluate, and disseminate a cooperative construction and mining training program to provide preapprenticeship training in construction trades, equipment operation and construction truck driving, apprenticeship-related instruction, and classes in more technical areas for journeyworker…

  9. WATER QUALITY STUDY OF THE ISLAND PARK WATERWAYS, IDAHO 1970

    EPA Science Inventory

    This study was initiated to examine some chemical, physical, and bacteriological aspects of the waterways of the Island Park recreational area, Idaho (17040202) in an effort to initiate local water quality standards, to identify sources of river abuse, and where possible, to lear...

  10. PRIEST LAKE, BONNER COUNTY, IDAHO - DIAGNOSTIC ANALYSIS, 1993-1995

    EPA Science Inventory

    This document reports the findings of the baseline water quality studies conducted from March 1993 to September 1995 at Priest Lake in Bonner County, Idaho (17010215). The following conclusions were developed. Open water areas of Upper and Lower Priest Lakes can be classified a...

  11. Libraries in Idaho: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/idaho.html Libraries in Idaho To use the sharing features on ... JavaScript. Boise Saint Alphonsus Health System - Boise Kissler Library and Research Center 1055 North Curtis Road Boise, ...

  12. Geothermometric evaluation of geothermal resources in southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Mattson, E. D.; McLing, T. L.; Palmer, C. D.; Smith, R. W.; Wood, T. R.; Podgorney, R. K.

    2016-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water from oil and gas test wells that indicate a potential for geothermal development in the area. We have estimated reservoir temperatures from chemical composition of thermal waters in southeastern Idaho using an inverse geochemical modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. The temperature estimates in the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho, resulted in the highest reservoir temperature estimates in the region.

  13. Field Review of Fish Habitat Improvement Projects in Central Idaho.

    SciTech Connect

    Beschta, Robert L.; Griffith, Jack; Wesche, Thomas A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho.

  14. Overview with methods and procedures of the U.S. Geological Survey mineral-resource assessment of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming: Chapter A in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    2016-01-01

    This report, chapter A of Scientific Investigations Report 2016–5089, provides an overview of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The report also describes the methods, procedures, and voluminous fundamental reference information used throughout the assessment. Data from several major publicly available databases and other published sources were used to develop an understanding of the locatable, leaseable, and salable mineral resources of this vast area. This report describes the geologic, mineral-occurrence, geochemical, geophysical, remote-sensing, and Bureau of Land Management mineral-case-status data used for the assessment, along with the methods for evaluating locatable mineral-resource potential. The report also discusses energy-resource data (oil and gas, coal, and geothermal) used in the assessment. Appendixes include summary descriptive mineral-deposit models that provide the criteria necessary to assess for the pertinent locatable minerals and market-demand commodity profiles for locatable mineral commodities relevant to the project. Datasets used in the assessment are available as USGS data releases.

  15. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  16. 40 CFR 81.190 - Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... outermost boundaries of the area so delimited): In the State of Idaho: Bannock County, Bear Lake County, Bingham County, Bonneville County, Butte County, Caribou County, Clark County, Franklin County, Fremont County, Jefferson County, Madison County, Oneida County, Power County, Teton......

  17. 40 CFR 81.190 - Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... outermost boundaries of the area so delimited): In the State of Idaho: Bannock County, Bear Lake County, Bingham County, Bonneville County, Butte County, Caribou County, Clark County, Franklin County, Fremont County, Jefferson County, Madison County, Oneida County, Power County, Teton......

  18. 40 CFR 81.190 - Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... outermost boundaries of the area so delimited): In the State of Idaho: Bannock County, Bear Lake County, Bingham County, Bonneville County, Butte County, Caribou County, Clark County, Franklin County, Fremont County, Jefferson County, Madison County, Oneida County, Power County, Teton......

  19. 40 CFR 81.190 - Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outermost boundaries of the area so delimited): In the State of Idaho: Bannock County, Bear Lake County, Bingham County, Bonneville County, Butte County, Caribou County, Clark County, Franklin County, Fremont County, Jefferson County, Madison County, Oneida County, Power County, Teton......

  20. 40 CFR 81.190 - Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outermost boundaries of the area so delimited): In the State of Idaho: Bannock County, Bear Lake County, Bingham County, Bonneville County, Butte County, Caribou County, Clark County, Franklin County, Fremont County, Jefferson County, Madison County, Oneida County, Power County, Teton......

  1. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    SciTech Connect

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a

  2. Learning through Experience in Idaho.

    ERIC Educational Resources Information Center

    Reynolds, Kirstin K.

    2001-01-01

    Describes the development of Atta-Touch, the school-based business run by students at Clark Fork Junior/Senior High School in Idaho, that grew out of an entrepreneurship class and that currently designs and creates technology-based, multimedia products. Discusses community building; real-world experience; project-based learning; and products…

  3. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect

    W. L. Jolley

    2006-07-27

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  4. Geophysical Investigations of Archaeological Resources in Southern Idaho

    SciTech Connect

    Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

    2005-10-01

    At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

  5. Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16

    SciTech Connect

    Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

  6. Seasonal foods of coyotes in southeastern Idaho: a multivariate analysis

    SciTech Connect

    MacCracken, J.G.; Hansen, R.M.

    1982-03-01

    Seasonal foods of coyotes (Canis latrans) inhabiting the Idaho National Engineering Laboratory site were examined using step-wise discriminant analysis. Significant differences (P<0.01) were detected among seasons in food consumption by coyotes, where univariate statistical analysis failed to recognize differences. Recognition of seasonal changes in foods consumed by coyotes is essential to understanding coyote feeding strategies. The role opportunistic behavior plays in coyote food selection on the study area is questioned.

  7. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  8. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  9. IMPACTS OF GEOTHERMAL WATERS ON SELECTED STREAMS IN SOUTHERN IDAHO, 1984-1985

    EPA Science Inventory

    Four drainage areas were studies in Southern Idaho (17040212, 17040213) to determine the impact of geothermal discharges on area streams. Areas studied included Big Wood River near Ketchum, Mud Creek near Buhl, Salmon Falls Creek near Castleford, and the Snake River from Twin Fa...

  10. Weed hosts Globodera pallida from Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato cyst nematode, Globodera pallida (PCN), a restricted pest in the USA, was first reported in Bingham and Bonneville counties of Idaho in 2006. The US government and Idaho State Department of Agriculture hope to eradicate it from infested fields. Eradicating PCN will require depriving the n...

  11. Subgroup Achievement and Gap Trends: Idaho, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Idaho for 2010. Idaho showed improvement in reading and math in grade 8 at the basic, proficient, and advanced levels for Latino and white students, low income students, and boys and girls. The state has also made progress in narrowing achievement gaps between Latino and white…

  12. Minerals yearbook, 1990: Idaho. Annual report

    SciTech Connect

    Minarik, R.J.; Gillerman, V.S.

    1992-09-01

    The 1990 Annual Report is on the Mineral Industry of Idaho. Idaho ranked 26th nationally for total mineral production value compared with 28th in 1989. The State was first in the Nation in antimony and garnet production; second in silver and vandaium production; and third in output of lead, molybdenum, and marketable phosphate rock.

  13. Idaho Higher Education 1995 Fact Book.

    ERIC Educational Resources Information Center

    Idaho State Board of Education, Boise.

    This book reports on finances, students, faculty/staff, and intercollegiate athletics at Idaho's institutions of higher education. Most information concerns the state's public four-year colleges and its three universities with selected data on institutions providing vocational education and Idaho's two community colleges. Most of the data come…

  14. Idaho Science, Technology, Engineering and Mathematics Overview

    SciTech Connect

    2011-01-01

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. 40 CFR 131.33 - Idaho.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Idaho. 131.33 Section 131.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.33 Idaho. (a) Temperature criteria for bull trout. (1) Except for those streams or portions...

  16. 40 CFR 131.33 - Idaho.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Idaho. 131.33 Section 131.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.33 Idaho. (a) Temperature criteria for bull trout. (1) Except for those streams or portions...

  17. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2013-05-28

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  18. Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho, emphasis; 1974-1978

    USGS Publications Warehouse

    Barraclough, Jack T.; Lewis, Barney D.; Jensen, Rodger G.

    1981-01-01

    Aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 and has affected the quality of the ground water in the underlying Snake River Plain aquifer. Ongoing studies conducted from 1974 through 1978 have shown the perpetuation of a perched ground-water zone in the basalt underlying the waste disposal ponds at the INEL 's Test Reactor Area and of several waste plumes in the regional aquifer created by deep well disposal at the Idaho Chemical Processing Plant (ICPP). The perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive chemicals. Tritium has formed the largest waste plume south of the ICPP, and accounts for 95 percent of the total radioacticity disposed of through the ICPP disposal well. Waste plumes with similar configurations and flowpaths contain sodium, chloride, and nitrate. Strontium-90, iodine-129, and cesium-137 are also discharged through the well but they are sorbed from solution as they move through the aquifer or are discharged in very small quantities. Strontium-90 and iodine-129 have formed small waste plumes and cesium-137 is not detectable in ground-water samples. Radionuclide plume size and concentrations therein are controlled by aquifer flow conditions, the quantity discharged, radioactive decay, sorption, dilution by dispersion, and perhaps other chemical reactions. Chemical wastes are subject to the same processes except for radioactive decay. (USGS)

  19. Fires in Idaho and Montana

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2000 continues to be the worst fire season in the United States in decades. By August 8, 2000, fires in Montana and Idaho had burned more than 250,000 acres. Resources were stretched so thin that Army and Marine soldiers were recruited to help fight the fires. President Clinton visited Payette National Forest to lend moral support to the firefighters. Dense smoke from Idaho and western Montana is visible stretching all the way to North and South Dakota in this image from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The image was taken on August 7, 2000. Although the primary mission of SeaWiFS is to measure the biology of the ocean, it also provides stunning color imagery of the Earth's surface. For more information about fires in the U.S., visit the National Interagency Fire Center. To learn more about using satellites to monitor fires, visit Global Fire Monitoring and New Technology for Monitoring Fires from Space in the Earth Observatory. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  20. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  1. Late Ordovician paleogeography of central Idaho and its tectonic implications

    SciTech Connect

    Measures, E.A. )

    1991-02-01

    The Late Ordovician (Cincinnatian, Ashgill) paleogeography of central Idaho has been weakly constrained in the past. Previously, this area was treated as a simple extension of the miogeocline-eugeocline paleogeography defined from units in the Great Basin (Nevada and Utah). Detailed analysis of the Upper Ordovician Fish Haven Dolomite enables a more refined paleogeographic interpretation to be made at this time. The Fish Haven Dolomite (260 m or 800 ft, average thickness) of central Idaho is composed of 16 different carbonate facies which can be grouped into three sequences; facies within each sequence are depositionally related. Overall, the facies and sequences indicate that a carbonate ramp formed in central Idaho outboard of the craton and a hinge zone, within a subsiding area of the miogeocline. Shallow subtidal ramp deposits were probably deposited in approximately 30 m (100 ft.), or less, of water depth. During this time interval, open ocean, anoxic bottom waters extended up into deep ;subtidal regions (60 m or 200 ft). This information indicates that the Late Ordovician carbonate ramp underwent backstepping at its outermost portion resulting n drowning of the western ramp and eventual migration of transitional facies deposits (Roberts Mountains Formation) over miogeoclinal deposits. Tectonics played an active part in the deposition of the Fish Haven Dolomite in the miogeocline of central Idaho. The ultimate cause of the tectonism is not known at this time, but could be related to changes in the rate of sea-floor spreading, active structures within the continental margin, proximity of the Ordovician Klamath Mountains island arc Terrane, or unknown processes.

  2. Idaho Library Laws, 1999-2000. Full Edition.

    ERIC Educational Resources Information Center

    Idaho State Library, Boise.

    This new edition of the Idaho Library Laws contains changes through the 1998 legislative session and includes Idaho Code sections that legally affect city, school-community or district libraries, or the Idaho State Library. These sections include the basic library laws in Idaho Code Title 33, Chapters 25, 26, and 27, additional sections of the law…

  3. 30 CFR 912.700 - Idaho Federal program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.700 Idaho Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Idaho... Federal program. (c) The rules in this part apply to all surface coal mining operations in Idaho...

  4. 30 CFR 912.700 - Idaho Federal program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.700 Idaho Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Idaho... Federal program. (c) The rules in this part apply to all surface coal mining operations in Idaho...

  5. 30 CFR 912.700 - Idaho Federal program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.700 Idaho Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Idaho... Federal program. (c) The rules in this part apply to all surface coal mining operations in Idaho...

  6. Idaho Library Laws, 1996-1997. Full Edition.

    ERIC Educational Resources Information Center

    Idaho State Library, Boise.

    This new edition of the "Idaho Library Laws" contains changes through the 1996 legislative session and includes "Idaho Code" sections that legally affect city, school-community or district libraries, or the Idaho State Library. These sections include the basic library laws in "Idaho Code" Title 33, Chapters 25, 26, and 27, additional sections of…

  7. 75 FR 8645 - South Central Idaho Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ..., USDA. ACTION: Notice of meeting. SUMMARY: The South Central Idaho RAC will meet in Twin Falls, Idaho... meeting will be held at The Red Lion Canyon Springs Hotel, 1357 Blue Lakes Blvd. North, Twin Falls, Idaho... Road East, Twin Falls, Idaho 83301. Comments may also be sent via e-mail to jathomas@fs.fed.us , or...

  8. Southern Idaho`s forest land outside national forests, 1991. Forest Service resource bulletin

    SciTech Connect

    Chojnacky, D.C.

    1995-05-01

    The report presents 59 summary tables of forest statistics for land in southern Idaho outside National Forests. The tables show forest land area, tree numbers, wood volume and growth, and tree mortality organized by ownership, stand, and tree classification variables. These stimates are derived from summarization of 292 field plots and over 100,000 photo points using a two-phase sample design. Of the 292 field plots, 91 were remeasurements of plots established in 1981. The sampling was done in 1991 by the U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Forest Inventory and Analysis (FIA) unit located in Ogden, UT. Besides presenting detailed tables, the report briefly explains key FIA terminology, overviews the table formats, highlights some results, and discusses inventory design and data reliability.

  9. Characterization of the geothermal resources of southeastern Idaho

    SciTech Connect

    Sherman, F.B.; Ruscetta, C.A.

    1982-07-01

    Much of southeastern Idaho displays the complex geology of the overthrust belt and the Basin and Range geomorphic province. Thrust and normal faults are important in controlling groundwater movement, however, the thrust faults do not appear to create layers of either significantly higher or lower permeability. The hottest thermal discharges in the region are associated with deep normal faults. The hottest waters in the area have Na and Cl as the dominant ions, while lower temperature hydrothermal waters are characteristically Ca/Mg and HCO/sub 3/ waters. Limited data from deep drill holes in the area do not indicate a high geothermal gradient.

  10. Assessment of aircraft impact probabilities at the Idaho Chemical Processing Plant. Revision 1

    SciTech Connect

    Lee, L.G.; Mines, J.M.; Webb, B.B.

    1994-06-01

    The purpose of this study is to evaluate the possibility of an aircraft crash into a facility at the Idaho Chemical Processing Plant (ICPP). The ICPP is part of the Idaho National Engineering Laboratory (INEL). Based on the data used in this study, an air crash into any single facility at the ICPP is incredible. An air crash into aggregate areas incorporating the following is extremely unlikely: (1) ICPP radiological materials storage facilities, (2) ICPP major processing facilities, and (3) the ICPP land surface area, which excludes buildings. According to Westinghouse Idaho Nuclear Company safety analysis procedures, if the probability of a radiological release event is determined to be incredible, no further review is required. Therefore, an aircraft crash scenario is not required in the safety analysis for a single facility but should be discussed relative to the ICPP aggregate areas.