Science.gov

Sample records for fas signaling regulates

  1. Stimulation of Fas signaling down-regulates activity of neutrophils from major trauma patients with SIRS.

    PubMed

    Paunel-Görgülü, Adnana; Lögters, Tim; Flohé, Sascha; Cinatl, Jindrich; Altrichter, Jens; Windolf, Joachim; Scholz, Martin

    2011-03-01

    Posttrauma apoptosis resistance of neutrophils (PMN) is related to overshooting immune responses, systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF). Recently, we have shown that the apoptosis resistance in circulating PMN from severely injured patients which is known to be mediated by high serum levels of pro-inflammatory cytokines can be overcome by the activation of Fas death receptor. Here, we aimed to study whether stimulation of surface Fas leads to the inactivation of hyperactivated PMN from critically ill patients with SIRS. PMN from 23 multiple trauma patients (mean injury severity score (ISS) 34±1.9) were isolated at day 1 after admission to the trauma center. PMN from 17 volunteer blood donors served as controls. Neutrophil activity has been determined after ex vivo short (1 h) and long-term (4 h) stimulation of freshly isolated PMN with immobilized agonistic anti-Fas antibodies. We found neutrophil chemotactic migration in response to IL-8, phagocytosis and oxidative burst to be significantly inhibited in control cells already after short-term (1 h) Fas stimulation. In contrast, inactivation of trauma PMN by agonistic anti-Fas antibodies was found to be efficient only after long-term (4 h) incubation of cells with agonistic antibodies. Thus, in trauma PMN down-regulation of neutrophil activity seems to be delayed when compared to cells isolated from healthy controls, suggesting impaired susceptibility for Fas stimulation in these cells. Interestingly, whereas Fas-mediated inhibition of phagocytosis and oxidative burst could be prevented by the broad range caspase inhibitor t-butoxycarbonyl-aspartyl(O-methyl)-fluoromethyl ketone (BocD-fmk), the chemotactic activity in response to IL-8 was unaffected. In conclusion, we demonstrate that stimulation of neutrophil Fas does not only initiate apoptosis but also induces inhibition of neutrophil functions, partially by non-apoptotic signaling. PMID:20832139

  2. Fas-Associated Protein with Death Domain Regulates Notch Signaling during Muscle Regeneration.

    PubMed

    Zhang, Rong; Wang, Lu; He, Liangqiang; Yang, Bingya; Yao, Chun; Du, Pan; Xu, Qiang; Cheng, Wei; Hua, Zi-Chun

    2014-01-01

    Notch signaling plays critical roles during myogenesis by promoting the proliferation and inhibiting the differentiation of myogenic progenitors. However, the mechanism of the temporal regulation of Notch signaling during the myogenic lineage progression remains elusive. In the present study, we show that a constitutively phosphoryl-mimicking mutation of Fas-associated death domain (FADD-D) enhances Notch-1 signaling and compromises Wnt signaling in both cultured myoblasts and regenerating muscles, which results in inhibited myogenic differentiation and muscle regeneration. Inhibition of Notch signaling recovers the regeneration ability in injured FADD-D muscles through rescuing Wnt signaling. Furthermore, we found that protein kinase Cα mediates FADD-D-induced Notch-1 signaling by stabilizing Notch-1. Collectively, these data identify a novel mechanism for the temporal regulation of Notch signaling during myogenic lineage progression and muscle regeneration. PMID:26303234

  3. Fas signaling promotes chemoresistance in gastrointestinal cancer by up-regulating P-glycoprotein

    PubMed Central

    Wang, Yadong; Lin, Shiyong; Chen, Jinmin; Wang, Jing; Wang, Zhiqing; Jiang, Bo

    2014-01-01

    Fas signaling promotes metastasis of gastrointestinal (GI) cancer cells by inducing epithelial-mesenchymal transition (EMT), and EMT acquisition has been found to cause cancer chemoresistance. Here, we demonstrated that the response to chemotherapy of GI cancer patients with higher expression of FasL was significantly worse than patients with lower expression. Fas-induced activation of the ERK1/2-MAPK pathway decreased the sensitivity of GI cancer cells to chemotherapeutic agents and promoted the expression of P-glycoprotein (P-gp). FasL promoted chemoresistance of GI cancer cell via upregulation of P-gp by increasing β-catenin and decreasing miR-145. β-catenin promoted P-gp gene transcription by binding with P-gp promoter while miR-145 suppressed P-gp expression by interacting with the mRNA 3′UTR of P-gp. Immunostaining and qRT-PCR analysis of human GI cancer samples revealed a positive association among FasL, β-catenin, and P-gp, but a negative correlation between miR-145 and FasL or P-gp. Altogether, our results showed Fas signaling could promote chemoresistance in GI cancer through modulation of P-gp expression by β-catenin and miR-145. Our findings suggest that Fas signaling-based cancer therapies should be administered cautiously, as activation of this pathway may not only lead to apoptosis but also induce chemoresistance. PMID:25333257

  4. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers

    PubMed Central

    Chakrabandhu, Krittalak; Huault, Sébastien; Durivault, Jérôme; Lang, Kévin; Ta Ngoc, Ly; Bole, Angelique; Doma, Eszter; Dérijard, Benoit; Gérard, Jean-Pierre; Pierres, Michel; Hueber, Anne-Odile

    2016-01-01

    Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. PMID:26942442

  5. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice.

    PubMed

    Keller, Benjamin; García-Sevilla, Jesús A

    2015-12-01

    Kainic acid (KA)-induced brain neuronal cell death (especially in the hippocampus) was shown to be mainly mediated by the intrinsic (mitochondrial) apoptotic pathway. This study investigated the regulation of the extrinsic apoptotic pathway mediated by Fas ligand/Fas receptor and components of the indispensable death-inducing signaling complex (DISC) in the hippocampus (marked changes) and cerebral cortex (modest changes) of KA-treated mice. KA (45mg/kg) induced a severe behavioral syndrome with recurrent motor seizures (scores; maximal at 60-90min; minimal at 72h) with activation of hippocampal pro-apoptotic JNK (+2.5 fold) and increased GFAP (+57%) and nuclear PARP-1 fragmentation (+114%) 72h post-treatment (delayed neurotoxicity). In the extrinsic apoptotic pathway (hippocampus), KA (72h) reduced Fas ligand (-92%) and Fas receptor aggregates (-24%). KA (72h) also altered the contents of major DISC components: decreased FADD adaptor (-44%), reduced activation of initiator caspase-8 (-47%) and increased survival FLIP-S (+220%). Notably, KA (72h) upregulated the content of anti-apoptotic p-Ser191 FADD (+41%) and consequently the expression of p-FADD/FADD ratio (+1.9-fold), a neuroplastic index. Moreover, the p-FADD dependent transcription factor NF-κB was also increased (+61%) in the hippocampus after KA (72h). The convergent adaptation of the extrinsic apoptotic machinery 72h after KA in mice (with otherwise normal gross behavior) is a novel finding which suggests the induction of survival mechanisms to partly counteract the delayed neuronal death in the hippocampus. PMID:26044520

  6. A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection.

    PubMed

    Bień, K; Sobańska, Z; Sokołowska, J; Bąska, P; Nowak, Z; Winnicka, A; Krzyzowska, M

    2016-04-01

    Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response. PMID:26780774

  7. Evaluation of the Fas/FasL signaling pathway in diabetic rat testis.

    PubMed

    Bayram, S; Kizilay, G; Topcu-Tarladacalisir, Y

    2016-03-01

    We investigated the role of the Fas/Fas ligand (FasL) signaling pathway in diabetic male infertility. Male rats were divided into two groups: a control group and a streptozotocin induced diabetic group. Thirty days after induction of diabetes, samples of testes were harvested and fixed in 10% formalin for light microscopy. Germ cell apoptosis was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end-labeling (TUNEL) and immunostaining of caspase 8 and active caspase 3. We also investigated the expressions of Fas and FasL using immunohistochemistry. Streptozotocin-induced diabetes caused severe histopathological damage and increased apoptotic tubule and apoptotic cell indices, caspase 8 and caspase 3 expressions, and Fas and FasL-immunopositive cells in the rat testes. We suggest that the Fas/FasL signaling pathway may play a role in male infertility caused by diabetes. PMID:26960002

  8. Sp3 regulates fas expression in lung epithelial cells.

    PubMed Central

    Pang, H; Miranda, K; Fine, A

    1998-01-01

    By transducing an apoptotic signal in immune effector cells, Fas has been directly implicated in the control of immunological activity. Expression and functional results, however, have also suggested a role for Fas in regulating cell turnover in specific epithelial populations. To characterize factors responsible for Fas expression in epithelial cells, approximately 3 kb of the 5' flanking region of the mouse Fas gene was isolated. By rapid amplification of cDNA ends and primer extension, transcriptional start sites were identified within 50 bp upstream of the translation start site. Transient transfection of promoter-luciferase constructs in a mouse lung epithelial cell line, MLE-15, localized promoter activity to the first 77 bp of upstream sequence. By using a 60 bp DNA probe (-18 to -77) in electrophoretic mobility-shift assays, three shifted complexes were found. Incubation with excess cold Sp1 oligonucleotide or an anti-Sp3 antibody inhibited complex formation. Site-directed mutagenesis of the Sp1 site resulted in 60-70% loss of promoter activity. In Drosophila SL-2 cells, promoter activity was markedly increased by co-transfection of an Sp3 expression construct. These results show that the Sp3 protein is involved in regulating Fas gene expression in lung epithelial cells. PMID:9639581

  9. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  10. The signaling pathways by which the Fas/FasL system accelerates oocyte aging

    PubMed Central

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-01-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+ releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  11. Intestinal expression of Fas and Fas ligand is upregulated by bacterial signaling through TLR4 and TLR5, with activation of Fas modulating intestinal TLR-mediated inflammation.

    PubMed

    Fernandes, Philana; O'Donnell, Charlotte; Lyons, Caitriona; Keane, Jonathan; Regan, Tim; O'Brien, Stephen; Fallon, Padraic; Brint, Elizabeth; Houston, Aileen

    2014-12-15

    TLRs play an important role in mediating intestinal inflammation and homeostasis. Fas is best studied in terms of its function in apoptosis, but recent studies demonstrate that Fas signaling may mediate additional functions such as inflammation. The role of Fas, and the Fas ligand (FasL), in the intestine is poorly understood. The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal epithelial cells (IECs). IECs were stimulated with TLR ligands, and expression of Fas and FasL was investigated. Treatment with TLR4 and TLR5 ligands, but not TLR2 and 9 ligands, increased expression of Fas and FasL in IECs in vitro. Consistent with this finding, expression of intestinal Fas and FasL was reduced in vivo in the epithelium of TLR4 knockout (KO), 5KO, and germ-free mice, but not in TLR2KO mice. Modulating Fas signaling using agonistic anti-Fas augmented TLR4- and TLR5-mediated TNF-α and IL-8 production by IECs. In addition, suppression of Fas in IECs reduced the ability of TLR4 and TLR5 ligands and the intestinal pathogens Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8. In conclusion, this study demonstrates that extensive cross-talk in IECs occurs between the Fas and TLR signaling pathways, with the FasL/Fas system playing a role in TLR-mediated inflammatory responses in the intestine. PMID:25378591

  12. Fas/FasL pathway participates in regulation of antiviral and inflammatory response during mousepox infection of lungs.

    PubMed

    Bień, Karolina; Sokołowska, Justyna; Bąska, Piotr; Nowak, Zuzanna; Stankiewicz, Wanda; Krzyzowska, Malgorzata

    2015-01-01

    Fas receptor-Fas ligand (FasL) signalling is involved in apoptosis of immune cells as well as of the virus infected target cells but increasing evidence accumulates on Fas as a mediator of apoptosis-independent processes such as induction of activating and proinflammatory signals. In this study, we examined the role of Fas/FasL pathway in inflammatory and antiviral response in lungs using a mousepox model applied to C57BL6/J, B6. MRL-Faslpr/J, and B6Smn.C3-Faslgld/J mice. Ectromelia virus (ECTV) infection of Fas- and FasL-deficient mice led to increased virus titers in lungs and decreased migration of IFN-γ expressing NK cells, CD4+ T cells, CD8+ T cells, and decreased IL-15 expression. The lungs of ECTV-infected Fas- and FasL-deficient mice showed significant inflammation during later phases of infection accompanied by decreased expression of anti-inflammatory IL-10 and TGF-β1 cytokines and disturbances in CXCL1 and CXCL9 expression. Experiments in vitro demonstrated that ECTV-infected cultures of epithelial cells, but not macrophages, upregulate Fas and FasL and are susceptible to Fas-induced apoptosis. Our study demonstrates that Fas/FasL pathway during ECTV infection of the lungs plays an important role in controlling local inflammatory response and mounting of antiviral response. PMID:25873756

  13. Fas/FasL Pathway Participates in Regulation of Antiviral and Inflammatory Response during Mousepox Infection of Lungs

    PubMed Central

    Bień, Karolina; Sokołowska, Justyna; Bąska, Piotr; Nowak, Zuzanna; Stankiewicz, Wanda; Krzyzowska, Malgorzata

    2015-01-01

    Fas receptor-Fas ligand (FasL) signalling is involved in apoptosis of immune cells as well as of the virus infected target cells but increasing evidence accumulates on Fas as a mediator of apoptosis-independent processes such as induction of activating and proinflammatory signals. In this study, we examined the role of Fas/FasL pathway in inflammatory and antiviral response in lungs using a mousepox model applied to C57BL6/J, B6. MRL-Faslpr/J, and B6Smn.C3-Faslgld/J mice. Ectromelia virus (ECTV) infection of Fas- and FasL-deficient mice led to increased virus titers in lungs and decreased migration of IFN-γ expressing NK cells, CD4+ T cells, CD8+ T cells, and decreased IL-15 expression. The lungs of ECTV-infected Fas- and FasL-deficient mice showed significant inflammation during later phases of infection accompanied by decreased expression of anti-inflammatory IL-10 and TGF-β1 cytokines and disturbances in CXCL1 and CXCL9 expression. Experiments in vitro demonstrated that ECTV-infected cultures of epithelial cells, but not macrophages, upregulate Fas and FasL and are susceptible to Fas-induced apoptosis. Our study demonstrates that Fas/FasL pathway during ECTV infection of the lungs plays an important role in controlling local inflammatory response and mounting of antiviral response. PMID:25873756

  14. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    SciTech Connect

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  15. FLIP switches Fas-mediated glucose signaling in human pancreatic cells from apoptosis to cell replication

    NASA Astrophysics Data System (ADS)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-06-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of cell turnover. In human islets, elevated glucose concentrations impair cell proliferation and induce cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive cells; FLIP was no longer detectable in such TUNEL-positive cells. Up-regulation of FLIP, by incubation with transforming growth factor or by transfection with an expression vector coding for FLIP, protected cells from glucose-induced apoptosis, restored cell proliferation, and improved cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation.

  16. Uncouplers of Oxidative Phosphorylation Can Enhance a Fas Death Signal

    PubMed Central

    Linsinger, Georg; Wilhelm, Sabine; Wagner, Hermann; Häcker, Georg

    1999-01-01

    Recent work suggests a participation of mitochondria in apoptotic cell death. This role includes the release of apoptogenic molecules into the cytosol preceding or after a loss of mitochondrial membrane potential ΔΨm. The two uncouplers of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) reduce ΔΨm by direct attack of the proton gradient across the inner mitochondrial membrane. Here we show that both compounds enhance the apoptosis-inducing capacity of Fas/APO-1/CD95 signaling in Jurkat and CEM cells without causing apoptotic changes on their own account. This amplification occurred upstream or at the level of caspases and was not inhibited by Bcl-2. The effect could be blocked by the cowpox protein CrmA and is thus likely to require caspase 8 activity. Apoptosis induction by staurosporine in Jurkat cells as well as by Fas in SKW6 cells was unaffected by CCCP and DNP. The role of cytochrome c during Fas-DNP signaling was investigated. No early cytochrome c release from mitochondria was detected by Western blotting. Functional assays with cytoplasmic preparations from Fas-DNP-treated cells also indicated that there was no major contribution by cytochrome c or caspase 9 to the activation of effector caspases. Furthermore, an increase of rhodamine-123 uptake into intact cells, which has been explained by mitochondrial swelling, occurred considerably later than the caspase activation and was blocked by Z-VAD-fmk. These data show that uncouplers of oxidative phosphorylation can presensitize some but not all cells for a Fas death signal and provide information about the existence of separate pathways in the induction of apoptosis. PMID:10207055

  17. Uncouplers of oxidative phosphorylation can enhance a Fas death signal.

    PubMed

    Linsinger, G; Wilhelm, S; Wagner, H; Häcker, G

    1999-05-01

    Recent work suggests a participation of mitochondria in apoptotic cell death. This role includes the release of apoptogenic molecules into the cytosol preceding or after a loss of mitochondrial membrane potential DeltaPsim. The two uncouplers of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2, 4-dinitrophenol (DNP) reduce DeltaPsim by direct attack of the proton gradient across the inner mitochondrial membrane. Here we show that both compounds enhance the apoptosis-inducing capacity of Fas/APO-1/CD95 signaling in Jurkat and CEM cells without causing apoptotic changes on their own account. This amplification occurred upstream or at the level of caspases and was not inhibited by Bcl-2. The effect could be blocked by the cowpox protein CrmA and is thus likely to require caspase 8 activity. Apoptosis induction by staurosporine in Jurkat cells as well as by Fas in SKW6 cells was unaffected by CCCP and DNP. The role of cytochrome c during Fas-DNP signaling was investigated. No early cytochrome c release from mitochondria was detected by Western blotting. Functional assays with cytoplasmic preparations from Fas-DNP-treated cells also indicated that there was no major contribution by cytochrome c or caspase 9 to the activation of effector caspases. Furthermore, an increase of rhodamine-123 uptake into intact cells, which has been explained by mitochondrial swelling, occurred considerably later than the caspase activation and was blocked by Z-VAD-fmk. These data show that uncouplers of oxidative phosphorylation can presensitize some but not all cells for a Fas death signal and provide information about the existence of separate pathways in the induction of apoptosis. PMID:10207055

  18. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells.

    PubMed

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  19. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells

    PubMed Central

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  20. Flotillin-2 Modulates Fas Signaling Mediated Apoptosis after Hyperoxia in Lung Epithelial Cells

    PubMed Central

    Wei, Shuquan; Moon, Hyung-Geun; Zheng, Yijie; Liang, Xiaoliang; An, Chang Hyeok; Jin, Yang

    2013-01-01

    Lipid rafts are subdomains of the cell membrane with distinct protein composition and high concentrations of cholesterol and glycosphingolipids. Raft proteins are thought to mediate diverse cellular processes including signal transduction. However, its cellular mechanisms remain unclear. Caveolin-1 (cav-1, marker protein of caveolae) has been thought as a switchboard between extracellular matrix (ECM) stimuli and intracellular signals. Flotillin-2/reggie-1(Flot-2) is another ubiquitously expressed raft protein which defines non-caveolar raft microdomains (planar raft). Its cellular function is largely uncharacterized. Our novel studies demonstrated that Flot-2, in conjunction with cav-1, played important functions on controlling cell death via regulating Fas pathways. Using Beas2B epithelial cells, we found that in contrast to cav-1, Flot-2 conferred cytoprotection via preventing Fas mediated death-inducing signaling complex (DISC) formation, subsequently suppressed caspase-8 mediated extrinsic apoptosis. Moreover, Flot-2 reduced the mitochondria mediated intrinsic apoptosis by regulating the Bcl-2 family and suppressing cytochrome C release from mitochondria to cytosol. Flot-2 further modulated the common apoptosis pathway and inhibited caspase-3 activation via up-regulating the members in the inhibitor of apoptosis (IAP) family. Last, Flot-2 interacted with cav-1 and limited its expression. Taken together, we found that Flot-2 protected cells from Fas induced apoptosis and counterbalanced the pro-apoptotic effects of cav-1. Thus, Flot-2 played crucial functions in cellular homeostasis and cell survival, suggesting a differential role of individual raft proteins. PMID:24204853

  1. Advanced glycation end-product (AGE) induces apoptosis in human retinal ARPE-19 cells via promoting mitochondrial dysfunction and activating the Fas-FasL signaling.

    PubMed

    Wang, Pu; Xing, Yiqiao; Chen, Changzheng; Chen, Zhen; Qian, Zhimin

    2016-01-01

    Advanced glycation end-products (AGEs) are extremely accumulated in the retinal vascular and epithelial cells of diabetes mellitus (DM) patients, particularly with diabetic retinopathy (DR). To elucidate the pathogenesis of the AGE-induced toxicity to retinal epithelial cells, we investigated the role of Fas-Fas ligand (FasL) signaling and mitochondrial dysfunction in the AGE-induced apoptosis. Results demonstrated that the AGE-BSA- induced apoptosis of retinal ARPE-19 cells. And the AGE-BSA treatment caused mitochondrial dysfunction, via deregulating the B-cell lymphoma 2 (Bcl-2) signaling. Moreover, the Fas/FasL and its downstreamer Caspase 8 were promoted by the AGE-BSA treatment, and the exogenous α-Fas exacerbated the activation of Caspase 3/8. On the other side, the siRNA-mediated knockdown of Fas/FasL inhibited the AGE-BSA-induced apoptosis. Taken together, we confirmed the activation of Fas-FasL signaling and of mitochondrial dysfunction in the AGE-BSA-promoted apoptosis in retinal ARPE-19 cells, implying the important role of Fas-FasL signaling in the DR in DM. PMID:26479732

  2. The Fas-FADD Death Domain Complex Structure Unravels Signalling by Receptor Clustering

    SciTech Connect

    Scott, F.; Stec, B; Pop, C; Dobaczewska, M; Lee, J; Monosov, E; Robinson, H; Salvesen, G; Schwarzenbacher, R; Riedl, S

    2009-01-01

    The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis1, 2, 3. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation4, 5. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.

  3. Differential regulation of miR-146a/FAS and miR-21/FASLG axes in autoimmune lymphoproliferative syndrome due to FAS mutation (ALPS-FAS).

    PubMed

    Marega, Lia Furlaneto; Teocchi, Marcelo Ananias; Dos Santos Vilela, Maria Marluce

    2016-08-01

    Most cases of autoimmune lymphoproliferative syndrome (ALPS) have an inherited genetic defect involving apoptosis-related genes of the FAS pathway. MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs playing a role in the control of gene expression. This is the first report on miRNAs in ALPS patients. We studied a mother and son carrying the same FAS cell surface death receptor (FAS) mutation, but with only the son manifesting the signs and symptoms of ALPS-FAS. The aim was to analyse, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the peripheral blood mononuclear cells (PBMC) relative expression of miR-146a and miR-21, including their passenger strands and respective targets (FAS and FASLG). In comparison with healthy matched control individuals, miR-21-3p was over-expressed significantly (P = 0·0313) in the son, with no significant change in the expression of miR-146a, miR-146a-3p and miR-21. In contrast, the mother had a slight under-expression of the miR-146a pair and miR-21-3p (P = 0·0625). Regarding the miRNA targets, FAS was up-regulated markedly for the mother (P = 0·0078), but down-regulated for the son (P = 0·0625), while FASLG did not have any significant alteration. Taken together, our finding clearly suggests a role of the miR-146a/FAS axis in ALPS-FAS variable expressivity in which FAS haploinsufficiency seems to be compensated only in the mother who had the miR-146a pair down-regulated. As only the son had the major clinical manifestations of ALPS-FAS, miR-21-3p should be investigated as playing a critical role in ALPS physiopathology, including the development of lymphoma. PMID:27060458

  4. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases.

    PubMed Central

    Juo, P; Kuo, C J; Reynolds, S E; Konz, R F; Raingeaud, J; Davis, R J; Biemann, H P; Blenis, J

    1997-01-01

    The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades. PMID:8972182

  5. High glucose induces mitochondrial dysfunction and apoptosis in human retinal pigment epithelium cells via promoting SOCS1 and Fas/FasL signaling.

    PubMed

    Chen, Min; Wang, Wei; Ma, Jian; Ye, Panpan; Wang, Kaijun

    2016-02-01

    Diabetic retinopathy (DR) is one of the most serious complications of diabetes mellitus (DM), however, the contribution of high glucose (HG) or hyperglycemia to DR is far from fully understanding. In the present study, we examined the expression of Fas/FasL signaling and suppressors of cytokine signaling (SOCS)1 and 3 in HG-induced human retinal pigment epithelium cells (ARPE-19 cells). And then we investigated the regulatory role of both Fas and SOCS1 in HG-induced mitochondrial dysfunction and apoptosis. Results demonstrated that HG with more than 40mM induced mitochondrial dysfunction via reducing mitochondrial membrane potential (MMP) and via inhibiting the Bcl-2 level, which is the upstream signaling of mitochondria in ARPE-19 cells. HG also upreuglated the Fas signaling and SOCS levels probably via promoting JAK/STAT signaling in ARPE-19 cells. Moreover, the exogenous Fas or entogenous overexpressed SOCS1 accentuated the HG-induced mitochondrial dysfunction and apoptosis, whereas the knockdown of either Fas or SOCS1 reduced the HG-induced mitochondria dysfunction and apoptosis. Thus, the present study confirmed that both Fas/FasL signaling and SOCS1 promoted the HG-induced mitochondrial dysfunction and apoptosis. These results implies the key regulatory role of Fas signaling and SOCS in DR. PMID:26700587

  6. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex.

    PubMed

    Wise, Jillian F; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K; Tao, Rong-Hua; Sabichi, Anita L; Ao, Xue; Maeng, Hoyoung; Samaniego, Felipe

    2013-06-01

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target. PMID:23599269

  7. Activated T cell exosomes promote tumor invasion via Fas signaling pathway.

    PubMed

    Cai, Zhijian; Yang, Fei; Yu, Lei; Yu, Zhou; Jiang, Lingling; Wang, Qingqing; Yang, Yunshan; Wang, Lie; Cao, Xuetao; Wang, Jianli

    2012-06-15

    Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape. PMID:22573809

  8. Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling

    PubMed Central

    Akimzhanov, Askar M.; Boehning, Darren

    2015-01-01

    Palmitoylation is the posttranslational modification of proteins with a 16-carbon fatty acid chain through a labile thioester bond. The reversibility of protein palmitoylation and its profound effect on protein function suggest that this modification could play an important role as an intracellular signaling mechanism. Evidence that palmitoylation of proteins occurs with the kinetics required for signal transduction is not clear, however. Here we show that engagement of the Fas receptor by its ligand leads to an extremely rapid and transient increase in palmitoylation levels of the tyrosine kinase Lck. Lck palmitoylation kinetics are consistent with the activation of downstream signaling proteins, such as Zap70 and PLC-γ1. Inhibiting Lck palmitoylation not only disrupts proximal Fas signaling events, but also renders cells resistant to Fas-mediated apoptosis. Knockdown of the palmitoyl acyl transferase DHHC21 eliminates activation of Lck and downstream signaling after Fas receptor stimulation. Our findings demonstrate highly dynamic Lck palmitoylation kinetics that are essential for signaling downstream of the Fas receptor. PMID:26351666

  9. Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling.

    PubMed

    Akimzhanov, Askar M; Boehning, Darren

    2015-09-22

    Palmitoylation is the posttranslational modification of proteins with a 16-carbon fatty acid chain through a labile thioester bond. The reversibility of protein palmitoylation and its profound effect on protein function suggest that this modification could play an important role as an intracellular signaling mechanism. Evidence that palmitoylation of proteins occurs with the kinetics required for signal transduction is not clear, however. Here we show that engagement of the Fas receptor by its ligand leads to an extremely rapid and transient increase in palmitoylation levels of the tyrosine kinase Lck. Lck palmitoylation kinetics are consistent with the activation of downstream signaling proteins, such as Zap70 and PLC-γ1. Inhibiting Lck palmitoylation not only disrupts proximal Fas signaling events, but also renders cells resistant to Fas-mediated apoptosis. Knockdown of the palmitoyl acyl transferase DHHC21 eliminates activation of Lck and downstream signaling after Fas receptor stimulation. Our findings demonstrate highly dynamic Lck palmitoylation kinetics that are essential for signaling downstream of the Fas receptor. PMID:26351666

  10. ATM kinase activity modulates Fas sensitivity through the regulation of FLIP in lymphoid cells.

    PubMed

    Stagni, Venturina; di Bari, Maria Giovanna; Cursi, Silvia; Condò, Ivano; Cencioni, Maria Teresa; Testi, Roberto; Lerenthal, Yaniv; Cundari, Enrico; Barilà, Daniela

    2008-01-15

    Ataxia telangiectasia (A-T) is a rare cancer-predisposing genetic disease, caused by the lack of functional ATM kinase, a major actor of the double strand brakes (DSB) DNA-damage response. A-T patients show a broad and diverse phenotype, which includes an increased rate of lymphoma and leukemia development. Fas-induced apoptosis plays a fundamental role in the homeostasis of the immune system and its defects have been associated with autoimmunity and lymphoma development. We therefore investigated the role of ATM kinase in Fas-induced apoptosis. Using A-T lymphoid cells, we could show that ATM deficiency causes resistance to Fas-induced apoptosis. A-T cells up-regulate FLIP protein levels, a well-known inhibitor of Fas-induced apoptosis. Reconstitution of ATM kinase activity was sufficient to decrease FLIP levels and to restore Fas sensitivity. Conversely, genetic and pharmacologic ATM kinase inactivation resulted in FLIP protein up-regulation and Fas resistance. Both ATM and FLIP are aberrantly regulated in Hodgkin lymphoma. Importantly, we found that reconstitution of ATM kinase activity decreases FLIP protein levels and restores Fas sensitivity in Hodgkin lymphoma-derived cells. Overall, these data identify a novel molecular mechanism through which ATM kinase may regulate the immune system homeostasis and impair lymphoma development. PMID:17932249

  11. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice. PMID:14967896

  12. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2.

    PubMed

    Zhang, Yongliang; Liu, Qiuyan; Zhang, Minggang; Yu, Yizhi; Liu, Xia; Cao, Xuetao

    2009-03-15

    Fas/FasL system has been extensively investigated with respect to its capacity to induce cellular apoptosis. However, accumulated evidences show that Fas signaling also exhibits nonapoptotic functions, such as induction of cell proliferation and differentiation. Lung cancer is one of cancer's refractory to the immunotherapy, however, the underlying mechanisms remain to be fully understood. In this study, we show that Fas overexpression does not affect in vitro growth of 3LL cells, but promotes lung cancer growth in vivo. However, such tumor-promoting effect is not observed in FasL-deficient (gld) mice, and also not observed in the immune competent mice once inoculation with domain-negative Fas-overexpressing 3LL cells, suggesting the critical role of Fas signal in the promotion of lung cancer growth in vivo. More accumulation of myeloid-derived suppressor cells (MDSC) and Foxp3(+) regulatory T cells is found in tumors formed by inoculation with Fas-overexpressing 3LL cells, but not domain-negative Fas-overexpressing 3LL cells. Accordingly, Fas-ligated 3LL lung cancer cells can chemoattract more MDSC but not regulatory T cells in vitro. Furthermore, Fas ligation induces 3LL lung cancer cells to produce proinflammatory factor PGE(2) by activating p38 pathway, and in turn, 3LL cells-derived PGE(2) contribute to the Fas ligation-induced MDSC chemoattraction. Furthermore, in vivo administration of cyclooxygenase-2 inhibitor can significantly reduce MDSC accumulation in the Fas-overexpressing tumor. Therefore, our results demonstrate that Fas signal can promote lung cancer growth by recruiting MDSC via cancer cell-derived PGE(2), thus providing new mechanistic explanation for the role of inflammation in cancer progression and immune escape. PMID:19265159

  13. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery.

    PubMed

    Ma, Chi-Jiao; Liu, Xu; Che, Lu; Liu, Zhi-Heng; Samartzis, Dino; Wang, Hai-Qiang

    2015-01-01

    As a main contributing factor to low back pain, intervertebral disc degeneration (IDD) is the fundamental basis for various debilitating spinal diseases. The pros and cons of current treatment modalities necessitate biological treatment strategies targeting for reversing or altering the degeneration process in terms of molecules or genes. The advances in stem cell research facilitate the studies aiming for possible clinical application of stem cell therapies for IDD. Human NP cells are versatile with cell morphology full of variety, capable of synthesizing extracellular matrix components, engulfing substances by autophagy and phagocytosis, mitochondrial vacuolization indicating dysfunction, expressing Fas and FasL as significant omens of immune privileged sites. Human discs belong to immune privilege organs with functional FasL expression, which can interact with invasive immune cells by Fas-FasL regulatory machinery. IDD is characterized by decreased expression level of FasL with dysfunctional FasL, which in turn unbalances the interaction between NP cells and immune cells. Certain modulation factors might play a role in the process, such as miR-155. Accumulating evidence indicates that Fas-FasL network expresses in a variety of stem cells. Given the expression of functional FasL and insensitive Fas in stem cells (we term as FasL privilege), transplantation of stem cells into the disc may regenerate the degenerative disc by not only differentiating into NP-like cells, increasing extracellular matrix, but also reinforce immune privilege via interaction with immune cells by Fas-FasL network. PMID:25381758

  14. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule.

    PubMed

    Kreikemeyer, B; Boyle, M D; Buttaro, B A; Heinemann, M; Podbielski, A

    2001-01-01

    A novel growth phase-associated two-component-type regulator, Fas (fibronectin/fibrinogen binding/haemolytic activity/streptokinase regulator), of Streptococcus pyogenes was identified in the M1 genome sequence, based on homologies to the histidine protein kinase (HPK) and response regulator (RR) part of the Staphylococcus aureus Agr and Streptococcus pneumoniae Com quorum-sensing systems. The fas operon, present in all 12 tested M serotypes, was transcribed as polycystronic message (fasBCA) and contained genes encoding two potential HPKs (FasB and FasC) and one RR (FasA). Downstream of fasBCA, we identified a small 300 nucleotide monocistronic transcript, designated fasX, that did not appear to encode true peptide sequences. Measurements of luciferase promoter fusions revealed a growth phase-associated transcription of fasBCA and fasX, with peak activities during the late exponential phase. Insertional mutagenesis disrupting fasBCA and fasA led to a phenotype similar to agr-null mutations in S. aureus, with prolonged expression of extracellular matrix protein-binding adhesins and reduced expression of secreted virulence factors such as streptokinase and streptolysin S. In addition, fasX transcription was dependent on the RR FasA; however, deletion mutagenesis of fasX resulted in a similar phenotype to that of the fasBCA or fasA mutants. Complementation of the fasX deletion mutant, with the fasX gene expressed in trans from a plasmid, restored the wild-type fasBCA regulation pattern. This strongly suggested that fasX, a putative non-translated RNA, is the main effector molecule of the fas regulon. However, using spent culture supernatants from wild-type and fas mutant strains, we were not able to show an influence on the logarithmic growth phase expression of fas and dependent genes. Thus, despite structural and functional similarities between fas and agr, to date the fas operon appears not to be involved in group A streptococcal (GAS) quorum-sensing regulation

  15. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways

    PubMed Central

    Soni, Hitesh; Adebiyi, Adebowale

    2016-01-01

    Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis. PMID:27383564

  16. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL

    PubMed Central

    Huang, David C. S.; Hahne, Michael; Schroeter, Michael; Frei, Karl; Fontana, Adriano; Villunger, Andreas; Newton, Kim; Tschopp, Juerg; Strasser, Andreas

    1999-01-01

    Fas activation triggers apoptosis in many cell types. Studies with anti-Fas antibodies have produced conflicting results on Fas signaling, particularly the role of the Bcl-2 family in this process. Comparison between physiological ligand and anti-Fas antibodies revealed that only extensive Fas aggregation, by membrane bound FasL or aggregated soluble FasL consistently triggered apoptosis, whereas antibodies could act as death agonists or antagonists. Studies on Fas signaling in cell lines and primary cells from transgenic mice revealed that FADD/MORT1 and caspase-8 were required for apoptosis. In contrast, Bcl-2 or Bcl-xL did not block FasL-induced apoptosis in lymphocytes or hepatocytes, demonstrating that signaling for cell death induced by Fas and the pathways to apoptosis regulated by the Bcl-2 family are distinct. PMID:10611305

  17. MicroRNA-25 Negatively Regulates Cerebral Ischemia/Reperfusion Injury-Induced Cell Apoptosis Through Fas/FasL Pathway.

    PubMed

    Zhang, Jun-Feng; Shi, Li-Li; Zhang, Li; Zhao, Zhao-Hua; Liang, Fei; Xu, Xi; Zhao, Ling-Yu; Yang, Peng-Bo; Zhang, Jian-Shui; Tian, Ying-Fang

    2016-04-01

    MicroRNA-25 (miR-25) has been reported to be a major miRNA marker in neural cells and is strongly expressed in ischemic brain tissues. However, the precise mechanism and effect of miR-25 in cerebral ischemia/reperfusion (I/R) injury needs further investigations. In the present study, the oxygen-glucose deprivation (OGD) model was constructed in human SH-SY5Y and IMR-32 cells to mimic I/R injury and to evaluate the role of miR-25 in regulating OGD/reperfusion (OGDR)-induced cell apoptosis. We found that miR-25 was downregulated in the OGDR model. Overexpression of miR-25 via miRNA-mimics transfection remarkably inhibited OGDR-induced cell apoptosis. Moreover, Fas was predicted as a target gene of miR-25 through bioinformatic analysis. The interaction between miR-25 and 3'-untranslated region (UTR) of Fas mRNA was confirmed by dual-luciferase reporter assay. Fas protein expression was downregulated by miR-25 overexpression in OGDR model. Subsequently, the small interfering RNA (siRNA)-mediated knockdown of Fas expression also inhibited cell apoptosis induced by OGDR model; in contrast, Fas overexpression abrogated the protective effects of miR-25 on OGDR-induced cells. Taken together, our results indicate that the upregulation of miR-25 inhibits cerebral I/R injury-induced apoptosis through downregulating Fas/FasL, which will provide a promising therapeutic target. PMID:26768135

  18. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway

    PubMed Central

    Liu, Yang; Wang, Yue-ru; Ding, Guang-hui; Yang, Ting-song; Yao, Le; Hua, Jie; He, Zhi-gang; Qian, Ming-ping

    2016-01-01

    Objective Combination therapy for cancer is more effective than using only standard chemo- or radiotherapy. Our previous results showed that dendritic cell-activated α-fetoprotein (AFP)-specific T-cells inhibit tumor in vitro and in vivo. In this study, we focused on antitumor function of CD8+ T-cells combined with or without JAK2 inhibitor. Methods Proliferation and cell cycle were analyzed by CCK-8 and flow cytometry. Western blot was used to analyze the expression level of related protein and signaling pathway. Results We demonstrated reduced viability and induction of apoptosis of tumor cells with combination treatment. Intriguingly, cell cycle was blocked at the G1 phase by using AFP-specific CD8+ T-cells combined with JAK2 inhibitor (AG490). Furthermore, an enhanced expression of BAX but no influence on Fas/FasL was detected from the tumor cells. Conclusion These results indicate a Fas/FasL-independent pathway for cellular apoptosis in cancer therapies with the treatment of AFP-specific CD8+ T-cells combined with JAK2 inhibitor. PMID:27499636

  19. Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis

    PubMed Central

    Riberdy, Janice M.; Persons, Derek A.; Wilber, Andrew

    2016-01-01

    In multicellular organisms, cell growth and differentiation is controlled in part by programmed cell death or apoptosis. One major apoptotic pathway is triggered by Fas receptor (Fas)-Fas ligand (FasL) interaction. Neoplastic cells are frequently resistant to Fas-mediated apoptosis, evade Fas signals through down regulation of Fas and produce soluble Fas proteins that bind FasL thereby blocking apoptosis. Soluble Fas (sFas) is an alternative splice product of Fas pre-mRNA, commonly created by exclusion of transmembrane spanning sequences encoded within exon 6 (FasΔEx6). Long non-coding RNAs (lncRNAs) interact with other RNAs, DNA, and proteins to regulate gene expression. One lncRNA, Fas-antisense or Saf, was shown to participate in alternative splicing of Fas pre-mRNA through unknown mechanisms. We show that Saf is localized in the nucleus where it interacts with Fas receptor pre-mRNA and human splicing factor 45 (SPF45) to facilitate alternative splicing and exclusion of exon 6. The product is a soluble Fas protein that protects cells against FasL-induced apoptosis. Collectively, these studies reveal a novel mechanism to modulate this critical cell death program by an lncRNA and its protein partner. PMID:26885613

  20. Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis.

    PubMed

    Villamizar, Olga; Chambers, Christopher B; Riberdy, Janice M; Persons, Derek A; Wilber, Andrew

    2016-03-22

    In multicellular organisms, cell growth and differentiation is controlled in part by programmed cell death or apoptosis. One major apoptotic pathway is triggered by Fas receptor (Fas)-Fas ligand (FasL) interaction. Neoplastic cells are frequently resistant to Fas-mediated apoptosis, evade Fas signals through down regulation of Fas and produce soluble Fas proteins that bind FasL thereby blocking apoptosis. Soluble Fas (sFas) is an alternative splice product of Fas pre-mRNA, commonly created by exclusion of transmembrane spanning sequences encoded within exon 6 (FasΔEx6). Long non-coding RNAs (lncRNAs) interact with other RNAs, DNA, and proteins to regulate gene expression. One lncRNA, Fas-antisense or Saf, was shown to participate in alternative splicing of Fas pre-mRNA through unknown mechanisms. We show that Saf is localized in the nucleus where it interacts with Fas receptor pre-mRNA and human splicing factor 45 (SPF45) to facilitate alternative splicing and exclusion of exon 6. The product is a soluble Fas protein that protects cells against FasL-induced apoptosis. Collectively, these studies reveal a novel mechanism to modulate this critical cell death program by an lncRNA and its protein partner. PMID:26885613

  1. Fas-associated factor 1 as a regulator of olfactory axon guidance.

    PubMed

    Cheng, Kai; Bai, Li; Belluscio, Leonardo

    2011-08-17

    Axon guidance is a crucial part of neural circuit formation. While precise axonal targeting forms the basis of accurate information delivery, the mechanisms that regulate this process are still unclear. Apoptotic signaling molecules have been identified in the axon terminal, but their specific role in axon guidance is not well understood. Here we use the mouse olfactory system as an in vivo model to demonstrate that by modulating Fas-associated factor 1 (FAF1), an apoptosis regulatory molecule, we can rewire axonal projections. Interestingly, FAF1 is highly expressed in the developing mouse olfactory system, but its expression is downregulated postnatally. Using a tetracycline-inducible promoter Tet-Off system, we generated transgenic mice in which FAF1 is specifically expressed in immature olfactory sensory neurons (OSNs) and show that overexpression of FAF1 not only misroutes OSN axons to deep layers of the olfactory bulb but also leads to widespread disruption of the glomerular layer. In addition, we also demonstrate that the specific convergence of P2 receptor OSN axons is completely distorted in the FAF1 mice. Strikingly, all of the mutant phenotypes can be recovered by shutting down FAF1 expression through the administration of doxycycline. Together, our study provides clear in vivo evidence that an apoptotic molecule can indeed regulate axon targeting and that OSNs can restore their organization even after broad disruption. PMID:21849551

  2. Fas Regulates Macrophage Polarization and Fibrogenic Phenotype in a Model of Chronic Ethanol-Induced Hepatocellular Injury.

    PubMed

    Isayama, Fuyumi; Moore, Sherri; Hines, Ian N; Wheeler, Michael D

    2016-06-01

    The role of Fas-mediated apoptosis and its effect on proinflammatory cytokine production in early alcoholic liver disease has not been addressed. Wild-type mice (C57Bl/6) or mice with a functional mutation in the Fas ligand (B6.gld) were given either high-fat control diet or ethanol diet by intragastric cannulation for 2 or 4 weeks. Liver injury, hepatic lipid accumulation, and proinflammatory cytokine production associated with chronic ethanol consumption were largely prevented in B6.gld mice compared with wild-type mice. Conversely, B6.gld mice given ethanol exhibited increases in collagen deposition, hepatic collagen gene expression, and profibrogenic cytokines (eg, transforming growth factor-β and IL-13) and alterations in matrix remodeling proteins (eg, matrix metalloproteinases and tissue inhibitor of metalloproteinases) compared with wild-type mice. Hepatic F4/80(+) macrophage populations were increased significantly in B6.gld mice compared with wild-type mice; hepatic CD3(+) cell populations were not significantly different. Importantly, a shift toward the expression of M2/Th2 cytokines (eg, IL-4 and IL-13) after ethanol exposure was observed in B6.gld mice compared with classical M1 cytokine expression in wild-type mice under similar conditions. In isolated macrophages, stimulation of Fas receptor minimally enhances lipopolysaccharide-induced M1 cytokine production and significantly limits M2 cytokine production. These data support the hypothesis that Fas-mediated signaling is important for an early ethanol-induced proinflammatory response but limits the profibrogenic response, regulating collagen production in response to chronic ethanol. PMID:27102767

  3. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system.

    PubMed

    Rubinchik, S; Ding, R; Qiu, A J; Zhang, F; Dong, J

    2000-05-01

    Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel 'double recombinant' Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege. PMID:10845726

  4. Up-regulation of Fas (CD95) and induction of apoptosis in intestinal epithelial cells by nematode-derived molecules.

    PubMed

    Kuroda, Akio; Uchikawa, Ryuichi; Matsuda, Shinji; Yamada, Minoru; Tegoshi, Tatsuya; Arizono, Naoki

    2002-08-01

    Infection by the intestinal nematode Nippostrongylus brasiliensis induces acceleration of apoptosis in the small intestinal villus epithelial cells in vivo. In the present study, we examined whether worm extract or excretory-secretory product induces apoptosis in the rat intestinal epithelial cell line IEC-6 in vitro. In the presence of worm extract or excretory-secretory product (> or =6 microg/ml), IEC-6 cell growth was significantly suppressed, and there was a concomitant increase in the number of detached cells in culture dishes. Detached cells showed nuclear fragmentation, activation of caspase-3, and specific cleavage of poly(ADP-ribose) polymerase, suggesting that apoptosis was induced in these cells. Semiquantitative reverse transcription-PCR showed that expression of Fas (CD95) mRNA was up-regulated as early as 6 h after addition of excretory-secretory product, while Fas ligand expression and p53 expression were not up-regulated. Fluorescence-activated cell sorter analyses revealed a significant increase in Fas expression and a slight increase in FasL expression in IEC-6 cells cultured in the presence of excretory-secretory product, while control IEC-6 cells expressed neither Fas or FasL. These results indicated that N. brasiliensis worms produce and secrete biologically active molecules that trigger apoptosis in intestinal epithelial cells together with up-regulation of Fas expression, although the mechanism of induction of apoptosis remains to be elucidated. PMID:12117905

  5. Activated cytotoxic lymphocytes promote tumor progression by increasing the ability of 3LL tumor cells to mediate MDSC chemoattraction via Fas signaling.

    PubMed

    Yang, Fei; Wei, Yinxiang; Cai, Zhijian; Yu, Lei; Jiang, Lingling; Zhang, Chengyan; Yan, Huanmiao; Wang, Qingqing; Cao, Xuetao; Liang, Tingbo; Wang, Jianli

    2015-01-01

    The Fas/FasL system transmits intracellular apoptotic signaling, inducing cell apoptosis. However, Fas signaling also exerts non-apoptotic functions in addition to inducing tumor cell apoptosis. For example, Fas signaling induces lung cancer tumor cells to produce prostaglandin E2 (PGE2) and recruit myeloid-derived suppressor cells (MDSCs). Activated cytotoxic T lymphocytes (CTLs) induce and express high levels of FasL, but the effects of Fas activation initiated by FasL in CTLs on apoptosis-resistant tumor cells remain largely unclear. We purified activated CD8(+) T cells from OT-1 mice, evaluated the regulatory effects of Fas activation on tumor cell escape and investigated the relevant mechanisms. We found that CTLs induced tumor cells to secrete PGE2 and increase tumor cell-mediated chemoattraction of MDSCs via Fas signaling, which was favorable to tumor growth. Our results indicate that CTLs may participate in the tumor immune evasion process. To the best of our knowledge, this is a novel mechanism by which CTLs play a role in tumor escape. Our findings implicate a strategy to enhance the antitumor immune response via reduction of negative immune responses to tumors promoted by CTLs through Fas signaling. PMID:24769795

  6. Activated cytotoxic lymphocytes promote tumor progression by increasing the ability of 3LL tumor cells to mediate MDSC chemoattraction via Fas signaling

    PubMed Central

    Yang, Fei; Wei, Yinxiang; Cai, Zhijian; Yu, Lei; Jiang, Lingling; Zhang, Chengyan; Yan, Huanmiao; Wang, Qingqing; Cao, Xuetao; Liang, Tingbo; Wang, Jianli

    2015-01-01

    The Fas/FasL system transmits intracellular apoptotic signaling, inducing cell apoptosis. However, Fas signaling also exerts non-apoptotic functions in addition to inducing tumor cell apoptosis. For example, Fas signaling induces lung cancer tumor cells to produce prostaglandin E2 (PGE2) and recruit myeloid-derived suppressor cells (MDSCs). Activated cytotoxic T lymphocytes (CTLs) induce and express high levels of FasL, but the effects of Fas activation initiated by FasL in CTLs on apoptosis-resistant tumor cells remain largely unclear. We purified activated CD8+ T cells from OT-1 mice, evaluated the regulatory effects of Fas activation on tumor cell escape and investigated the relevant mechanisms. We found that CTLs induced tumor cells to secrete PGE2 and increase tumor cell-mediated chemoattraction of MDSCs via Fas signaling, which was favorable to tumor growth. Our results indicate that CTLs may participate in the tumor immune evasion process. To the best of our knowledge, this is a novel mechanism by which CTLs play a role in tumor escape. Our findings implicate a strategy to enhance the antitumor immune response via reduction of negative immune responses to tumors promoted by CTLs through Fas signaling. PMID:24769795

  7. Identifying Fragilities in Biochemical Networks: Robust Performance Analysis of Fas Signaling-Induced Apoptosis

    PubMed Central

    Shoemaker, Jason E.; Doyle, Francis J.

    2008-01-01

    Proper control of apoptotic signaling is critical to immune response and development in multicellular organisms. Two tools from control engineering are applied to a mathematical model of Fas ligand signaling-induced apoptosis. Structured singular value analysis determines the volume in parameter space within which the system parameters may exist and still maintain efficacious signaling, but is limited to linear behaviors. Sensitivity analysis can be applied to nonlinear systems but is difficult to relate to performance criteria. Thus, structured singular value analysis is used to quantify performance during apoptosis rejection, ensuring that the system remains sensitive but not overly so to apoptotic stimuli. Sensitivity analysis is applied when the system has switched to the death-inducing, apoptotic steady state to determine parameters significant to maintaining the bistability. The analyses reveal that the magnitude of the death signal is fragile to perturbations in degradation parameters (failures in the ubiquitin/proteasome mechanism) while the timing of signal expression can be tuned by manipulating local parameters. Simultaneous parameter uncertainty highlights apoptotic fragility to disturbances in the ubiquitin/proteasome system. Sensitivity analysis reveals that the robust signaling characteristics of the apoptotic network is due to network architecture, and the apoptotic signaling threshold is best manipulated by interactions upstream of the apoptosome. PMID:18539637

  8. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  9. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    SciTech Connect

    Chen, Shiwei; Dong, Yushu; Xu, Chun; Jiang, Liming; Chen, Yongjie; Jiang, Cheng; Hou, Wugang; Li, Wei

    2013-11-01

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury.

  10. Extra Cellular Matrix Derived Metabolite Regulates Angiogenesis by FasL Mediated Apoptosis

    PubMed Central

    Verma, Raj K.; Gunda, Venugopal; Pawar, Smita C.; Sudhakar, Yakkanti Akul

    2013-01-01

    Object Antiangiogenic treatments are beginning to give promising outcomes in many vascular diseases including tumor angiogenesis. In this current study the antiangiogenic and pro-apoptotic actions of α1(IV)NC1 and its N- and C- peptides α1S1(IV)NC1, α1S2(IV)NC1 were investigated in-vitro and in-vivo. Study Method Endothelial cells (ECs) were treated with α1(IV)NC1, α1S1(IV)NC1, α1S2(IV)NC1 and in-vitro proliferation, migration, tube formation and apoptotic assays were executed. FasL, Fas, Caspase-8, -3 and PARP activations were studied using immunoblotting analysis using specific antibodies. Also the in-vivo antiangiogenic and pro-apoptotic effects were tested using α1(IV)NC1 in a mice model. Results Like α1(IV)NC1, its N- and C- terminal α1S2(IV)NC1 and α1S1(IV)NC1 domains posses anti-proliferative, pro-apoptotic activity and inhibit ECs migration and tube formation in-vitro. Both α1S1(IV)NC1 and α1S2(IV)NC1 domains promote apoptosis by activating FasL and down stream apoptotic events including activation of caspase-8, -3 and PARP cleavage in a dose dependent manner in-vitro in ECs. Tumors in mice showed apoptotic TUNEL positive microvasculature upon α1(IV)NC1 treatment, indicating inhibition of tumor angiogenesis and tumor growth. Further, the antitumor activity of α1(IV)NC1 was abrogated when caspase-3 inhibitor was used. These results conform additional properties of α1(IV)NC1 as an endogenous angioinhibitor that induces apoptosis in-vitro and in-vivo by activating FasL mediated caspase-3. Significance α1(IV)NC1 and its N- and C- terminal α1S1(IV)NC1 and α1S2(IV)NC1 domains also posses pro-apoptotic and angioinhibitory activity in-vitro and in-vivo. α1(IV)NC1 regulates tumor angiogenesis by activating FasL mediated apoptosis in-vitro and in-vivo. These results demonstrate that α1(IV)NC1 and its peptides inhibit neo-vascular diseases. PMID:24324608

  11. Alkaloids from beach spider lily (Hymenocallis littoralis) induce apoptosis of HepG-2 cells by the fas-signaling pathway.

    PubMed

    Ji, Yu-Bin; Chen, Ning; Zhu, Hong-Wei; Ling, Na; Li, Wen-Lan; Song, Dong-Xue; Gao, Shi-Yong; Zhang, Wang-Cheng; Ma, Nan-Nan

    2014-01-01

    Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose (0.8μg/ml) significantly inhibiting proliferation . The non- tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells. PMID:25422219

  12. The organization of RNA contacts by PTB for regulation of FAS splicing

    PubMed Central

    Mickleburgh, Ian; Kafasla, Panagiota; Cherny, Dmitry; Llorian, Miriam; Curry, Stephen; Jackson, Richard J.; Smith, Christopher W.J.

    2014-01-01

    Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained. PMID:24957602

  13. Roles of Fas and Fas ligand during mammary gland remodeling

    PubMed Central

    Song, Joon; Sapi, Eva; Brown, Wendi; Nilsen, Jon; Tartaro, Karrie; Kacinski, Barry M.; Craft, Joseph; Naftolin, Frederick; Mor, Gil

    2000-01-01

    Mammary involution is associated with degeneration of the alveolar structure and programmed cell death of mammary epithelial cells. In this study, we evaluated the expression of Fas and Fas ligand (FasL) in the mammary gland tissue and their possible role in the induction of apoptosis of mammary cells. FasL-positive cells were observed in normal mammary epithelium from pregnant and lactating mice, but not in nonpregnant/virgin mouse mammary tissue. Fas expression was observed in epithelial and stromal cells in nonpregnant mice but was absent during pregnancy. At day 1 after weaning, high levels of both Fas and FasL proteins and caspase 3 were observed and coincided with the appearance of apoptotic cells in ducts and glands. During the same period, no apoptotic cells were found in the Fas-deficient (MRL/lpr) and FasL-deficient (C3H/gld) mice. Increase in Fas and FasL protein was demonstrated in human (MCF10A) and mouse (HC-11) mammary epithelial cells after incubation in hormone-deprived media, before apoptosis was detected. These results suggest that the Fas-FasL interaction plays an important role in the normal remodeling of mammary tissue. Furthermore, this autocrine induction of apoptosis may prevent accumulation of cells with mutations and subsequent neoplastic development. Failure of the Fas/FasL signal could contribute to tumor development. PMID:11086022

  14. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells.

    PubMed

    Renna, María Sol; Figueredo, Carlos Mauricio; Rodríguez-Galán, María Cecilia; Icely, Paula Alejandra; Cejas, Hugo; Cano, Roxana; Correa, Silvia Graciela; Sotomayor, Claudia Elena

    2015-11-01

    After Candida albicans arrival to the liver, the local production of proinflammatory cytokines and the expanded intrahepatic lymphocytes (IHL) can be either beneficial or detrimental to the host. Herein we explored the balance between protective inflammatory reaction and liver damage, focusing our study on the contribution of TNF-α and Fas-Fas-L pathways in the hepatocellular apoptosis associated to C. albicans infection. A robust tissue reaction and a progressive increase of IL-1β, IL-6 and TNF-α were observed in infected animals. Blocking the biological activity of TNF-α did not modify the number of apoptotic cells observed in C. albicans infected animals. Fas-L molecule was up regulated on purified hepatic mononuclear cells and its expression progressed with the infection. In the IHL compartment, the absolute number of Fas-L+ NK and NKT cells increased on days 1 and 3 of the infection. C. albicans was also able to up regulate Fas-L expression in normal liver NK and NKT cells after in vitro contact. The innate receptor TLR2 was involved in this phenomenon. In the interplay between host factors and evasion strategies exploited by pathogens, the mechanism supported here could represent an additional way that allows this fungus to circumvent protective immune responses in the liver. PMID:26101139

  15. Deletion of Mir155 Prevents Fas-Induced Liver Injury through Up-Regulation of Mcl-1

    PubMed Central

    Chen, Weina; Han, Chang; Zhang, Jinqiang; Song, Kyoungsub; Wang, Ying; Wu, Tong

    2016-01-01

    Fas-induced apoptosis is involved in diverse liver diseases. Herein, we investigated the effect of Mir155 deletion on Fas-induced liver injury. Wild-type (WT) mice and Mir155 knockout (KO) mice were i.p. administered with the anti-Fas antibody (Jo2) to determine animal survival and the extent of liver injury. After Jo2 injection, the Mir155 KO mice exhibited prolonged survival versus the WT mice (P < 0.01). The Mir155 KO mice showed lower alanine aminotransferase and aspartate aminotransferase levels, less liver tissue damage, fewer apoptotic hepatocytes, and lower liver tissue caspase 3/7, 8, and 9 activities compared with the WT mice, indicating that Mir155 deletion prevents Fas-induced hepatocyte apoptosis and liver injury. Hepatocytes isolated from Mir155 KO mice also showed resistance to Fas-induced apoptosis, in vitro. Higher protein level of myeloid cell leukemia-1 (Mcl-1) was also observed in Mir155 KO hepatocytes compared to WT hepatocytes. A miR-155 binding site was identified in the 3′-untranslated region of Mcl-1 mRNA; Mcl1 was identified as a direct target of miR-155 in hepatocytes. Consistently, pretreatment with a siRNA specific for Mcl1 reversed Mir155 deletion–mediated protection against Jo2-induced liver tissue damage. Finally, restoration of Mir155 expression in Mir155 KO mice abolished the protection against Fas-induced hepatocyte apoptosis. Taken together, these findings demonstrate that deletion of Mir155 prevents Fas-induced hepatocyte apoptosis and liver injury through the up-regulation of Mcl1. PMID:25794705

  16. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis

    PubMed Central

    Villamizar, Olga; Chambers, Christopher B.; Mo, Yin-Yuan; Torry, Donald S.; Hofstrand, Reese; Riberdy, Janice M.; Persons, Derek A.; Wilber, Andrew

    2016-01-01

    This paper describes data related to a research article titled, “Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death” [1]. Long noncoding RNAs (lncRNAs) are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis). Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf) described in the research article. Also included are 5′ untranslated sequences (UTR) for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34+ cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT)18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34+ cells transduced using mock conditions or with lentivirus particles encoding for Saf. PMID:27141526

  17. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis.

    PubMed

    Villamizar, Olga; Chambers, Christopher B; Mo, Yin-Yuan; Torry, Donald S; Hofstrand, Reese; Riberdy, Janice M; Persons, Derek A; Wilber, Andrew

    2016-06-01

    This paper describes data related to a research article titled, "Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death" [1]. Long noncoding RNAs (lncRNAs) are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis). Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf) described in the research article. Also included are 5' untranslated sequences (UTR) for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34(+) cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT)18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34(+) cells transduced using mock conditions or with lentivirus particles encoding for Saf. PMID:27141526

  18. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    SciTech Connect

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  19. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain

    PubMed Central

    Boronat, M Assumpció; García-Fuster, M Julia; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the influence of activation and blockade of the endogenous opioid system in the brain on two key proteins involved in the regulation of programmed cell death: the pro-apoptotic Fas receptor and the anti-apoptotic Bcl-2 oncoprotein. The acute treatment of rats with the μ-opioid receptor agonist morphine (3 – 30 mg kg−1, i.p., 2 h) did not modify the immunodensity of Fas or Bcl-2 proteins in the cerebral cortex. Similarly, the acute treatment with low and high doses of the antagonist naloxone (1 and 100 mg kg−1, i.p., 2 h) did not alter Fas or Bcl-2 protein expression in brain cortex. These results discounted a tonic regulation through opioid receptors on Fas and Bcl-2 proteins in rat brain. Chronic morphine (10 – 100 mg kg−1, 5 days, and 10 mg kg−1, 13 days) induced marked increases (47 – 123%) in the immunodensity of Fas receptor in the cerebral cortex. In contrast, chronic morphine (5 and 13 days) decreased the immunodensity of Bcl-2 protein (15 – 30%) in brain cortex. Chronic naloxone (10 mg kg−1, 13 days) did not alter the immunodensities of Fas and Bcl-2 proteins in the cerebral cortex. The concurrent chronic treatment (13 days) of naloxone (10 mg kg−1) and morphine (10 mg kg−1) completely prevented the morphine-induced increase in Fas receptor and decrease in Bcl-2 protein immunoreactivities in the cerebral cortex. The results indicate that morphine, through the sustained activation of opioid receptors, can promote abnormal programmed cell death by enhancing the expression of pro-apoptotic Fas receptor protein and damping the expression of anti-apoptotic Bcl-2 oncoprotein. PMID:11704646

  20. Influence of Fas on the regulation of the response of an anti-nuclear antigen B cell clonotype to foreign antigen.

    PubMed

    Alabyev, Boris; Vuyyuru, Raja; Manser, Tim

    2008-10-01

    A peripheral B cell tolerance checkpoint appears to be operative during the germinal center (GC) reaction. We previously showed that a transgenic BCR clonotype that is 'dual reactive' for the hapten arsonate (Ars) and nuclear auto-antigens is stimulated to enter the GC response via Ars immunization. However, the participation of this clonotype in this response wanes with time and it gives rise to few memory B cells capable of mounting a secondary anti-Ars IgG response. Enforced expression of Bcl-2 partially rescues the GC and memory B cell responses of this clonotype, suggesting that apoptotic pathways are involved in the action of the GC tolerance checkpoint. Since GC B cells substantially up-regulate levels of expression of the Fas apoptotic death receptor, we determined whether an intrinsic Fas deficient could rescue the participation of this clonotype in the GC response. It could not, strongly indicating that Fas expression by autoreactive GC B cells is not necessary for their elimination. In addition, experiments in which Fas-sufficient dual reactive clonotype B cells were transferred to Fas-deficient hosts revealed an absence of participation of these B cells in the GC and IgG anti-Ars responses. We present data consistent with the idea that T cells in Fas-deficient hosts are primed to express elevated levels of FasL and eliminate antigen-activated B cells that up-regulate Fas. PMID:18689725

  1. A Fail-safe Mechanism for Negative Selection of Isotype-switched B Cell Precursors Is Regulated by the Fas/FasL Pathway

    PubMed Central

    Seagal, Jane; Edry, Efrat; Keren, Zohar; Leider, Nira; Benny, Ofra; Machluf, Marcelle; Melamed, Doron

    2003-01-01

    In B lymphocytes, immunoglobulin (Ig)M receptors drive development and construction of naive repertoire, whereas IgG receptors promote formation of the memory B cell compartment. This isotype switching process requires appropriate B cell activation and T cell help. In the absence of T cell help, activated B cells undergo Fas-mediated apoptosis, a peripheral mechanism contributing to the establishment of self-tolerance. Using Igμ-deficient μMT mouse model, where B cell development is blocked at pro-B stage, here we show an alternative developmental pathway used by isotype-switched B cell precursors. We find that isotype switching occurs normally in B cell precursors and is T independent. Ongoing isotype switching was found in both normal and μMT B cell development as reflected by detection of IgG1 germline and postswitch transcripts as well as activation-induced cytidine deaminase expression, resulting in the generation of IgG-expressing cells. These isotype-switched B cells are negatively selected by Fas pathway, as blocking the Fas/FasL interaction rescues the development of isotype-switched B cells in vivo and in vitro. Similar to memory B cells, isotype-switched B cells have a marginal zone phenotype. We suggest a novel developmental pathway used by isotype-switched B cell precursors that effectively circumvents peripheral tolerance requirements. This developmental pathway, however, is strictly controlled by Fas/FasL interaction to prevent B cell autoimmunity. PMID:14623914

  2. Characterization of Calmodulin–Fas Death Domain Interaction: An Integrated Experimental and Computational Study

    PubMed Central

    2015-01-01

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM–Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM–Fas DD binding from (1.79 ± 0.20) × 106 to (0.88 ± 0.14) × 106 M–1 and slightly increased a standard state Gibbs free energy (ΔG°) for CaM–Fas DD binding from −8.87 ± 0.07 to −8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby

  3. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    PubMed

    Chang, Bliss J; Samal, Alexandra B; Vlach, Jiri; Fernandez, Timothy F; Brooke, Dewey; Prevelige, Peter E; Saad, Jamil S

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway

  4. miR-150 Deficiency Protects against FAS-Induced Acute Liver Injury in Mice through Regulation of AKT

    PubMed Central

    Chen, Weina; Han, Chang; Zhang, Jinqiang; Song, Kyoungsub; Wang, Ying; Wu, Tong

    2015-01-01

    Although miR-150 is implicated in the regulation of immune cell differentiation and activation, it remains unknown whether miR-150 is involved in liver biology and disease. This study was performed to explore the potential role of miR-150 in LPS/D-GalN and Fas-induced liver injuries by using wild type and miR-150 knockout (KO) mice. Whereas knockout of miR-150 did not significantly alter LPS/D-GalN-induced animal death and liver injury, it protected against Fas-induced liver injury and mortality. The Jo2-induced increase in serum transaminases, apoptotic hepatocytes, PARP cleavage, as well as caspase-3/7, caspase-8, and caspase-9 activities were significantly attenuated in miR-150 KO mice. The liver tissues from Jo2-treated miR-150 KO mice expressed higher levels of Akt1, Akt2, total Akt, as well as p-Akt(Ser473) compared to the wild type livers. Pretreatment with the Akt inhibitor V reversed Jo2-induced liver injury in miR-150 KO mice. The primary hepatocytes isolated from miR-150 KO mice also showed protection against Fas-induced apoptosis in vitro (characterized by less prominent PARP cleavage, less nuclear fragmentation and less caspase activation) in comparison to hepatocytes from wild type mice. Luciferase reporter assays in hepatocytes transfected with the Akt1 or Akt2 3’-UTR reporter constructs (with or without mutation of miR-150 binding site) established Akt1 and Akt2 as direct targets of miR-150. Tail vein injection of lentiviral particles containing pre-miR-150 enhanced Jo2-induced liver injury in miR-150 KO mice. These findings demonstrate that miR-150 deficiency prevents Fas-induced hepatocyte apoptosis and liver injury through regulation of the Akt pathway. PMID:26196694

  5. Identification of the Calmodulin-Binding Domains of Fas Death Receptor

    PubMed Central

    Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  6. The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus

    PubMed Central

    Danger, Jessica L.; Makthal, Nishanth; Kumaraswami, Muthiah

    2015-01-01

    ABSTRACT The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5′ untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. IMPORTANCE More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory

  7. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis.

    PubMed

    Francavilla, S; D'Abrizio, P; Rucci, N; Silvano, G; Properzi, G; Straface, E; Cordeschi, G; Necozione, S; Gnessi, L; Arizzi, M; Ulisse, S

    2000-08-01

    In mice, the Fas/Fas ligand (FasL) system has been shown to be involved in germ cell apoptosis. In the present study we evaluated the expression of Fas and Fas ligand (FasL) in fetal and adult human testis. Semiquantitative RT-PCR demonstrated the expression of Fas and FasL messenger ribonucleic acids in adult testis, but not in fetal testis (20-22 weeks gestation). In situ RT-PCR and immunohistochemistry experiments on adult human testis demonstrated the expression of FasL messenger ribonucleic acid and protein in Sertoli and Leydig cells, whereas the expression of Fas was confined to the Leydig cells and sporadic degenerating spermatocytes. The number of Fas-positive germ cells per 100 Sertoli cell nuclei was increased in 10 biopsies with postmeiotic germ cell arrest compared to 10 normal testis biopsies (mean, 3.82 +/- 0.45 vs. 2.02 +/- 0.29; P = 0.0001), but not in 10 biopsies with meiotic germ cell arrest (mean, 1.56 +/- 1.07). Fas and FasL proteins were not expressed in cases of idiopathic hypogonadotropic hypogonadism. Together, these findings may suggest that Fas/FasL expression in the human testis is developmentally regulated and under gonadotropin control. The increased germ cell expression of Fas in patients with postmeiotic germ cell arrest suggests that the Fas/FasL system may be involved in the quality control mechanism of the produced gametes. PMID:10946867

  8. Regulation of inflammasome signaling

    PubMed Central

    Rathinam, Vijay A K; Vanaja, Sivapriya Kailasan; Fitzgerald, Katherine A

    2012-01-01

    Innate immune responses have the ability to both combat infectious microbes and drive pathological inflammation. Inflammasome complexes are a central component of these processes through their regulation of interleukin 1β (IL-1β), IL-18 and pyroptosis. Inflammasomes recognize microbial products or endogenous molecules released from damaged or dying cells both through direct binding of ligands and indirect mechanisms. The potential of the IL-1 family of cytokines to cause tissue damage and chronic inflammation emphasizes the importance of regulating inflammasomes. Many regulatory mechanisms have been identified that act as checkpoints for attenuating inflammasome signaling at multiple steps. Here we discuss the various regulatory mechanisms that have evolved to keep inflammasome signaling in check to maintain immunological balance. PMID:22430786

  9. Dual control of streptokinase and streptolysin S production by the covRS and fasCAX two-component regulators in Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Steiner, Kerstin; Malke, Horst

    2002-07-01

    Synthesis of the plasminogen activator streptokinase (SK) by group A streptococci (GAS) has recently been shown to be subject to control by two two-component regulators, covRS (or csrRS) and fasBCA. In independent studies, response regulator CovR proved to act as the repressor, whereas FasA was found to act indirectly as the activator by controlling the expression of a stimulatory RNA, fasX. In an attempt at understanding the regulation of SK production in the human group C streptococcal (GCS) strain H46A, the strongest SK producer known yet, we provide here physical and functional evidence for the presence of the cov and fas systems in GCS as well and, using a mutational approach, compare the balance between their opposing actions in H46A and GAS strain NZ131. Sequence analysis combined with Southern hybridization revealed that the covRS and fasCAX operons are preserved at high levels of primary structure identity between the corresponding GAS and GCS genes, with the exception of fasB, encoding a second sensor kinase that is not a member of the GCS fas operon. This analysis also showed that wild-type H46A is actually a derepressed mutant for SK and streptolysin S (SLS) synthesis, carrying a K102 amber mutation in covR. Using cov and fas mutations in various combinations together with strain constructs allowing complementation in trans, we found that, in H46A, cov and fas contribute to approximately equal negative and positive extents, respectively, to constitutive SK and SLS activity. The amounts of SK paralleled the level of skc(H46A) transcription. The most profound difference between H46A and NZ131 regarding the relative activities of the cov and fas systems consisted in significantly higher activity of a functional CovR repressor in NZ131 than in H46A. In NZ131, CovR decreased SK activity in a Fas(+) background about sevenfold, compared to a 1.9-fold reduction of SK activity in H46A. Combined with the very short-lived nature of covR mRNA (decay rate, 1.39/min

  10. Regulation of TNFRSF6 (Fas) expression in ataxia telangiectasia cells by ionizing radiation.

    PubMed

    Albanese, J; Dainiak, N

    2000-12-01

    Several studies have shown that ionizing radiation induces transcription of the TNFRSF6 (Fas) gene, leading to augmented TNFRSF6 protein levels at the surface of irradiated cells. We have examined TNFRSF6 expression in an apparently normal lymphocyte line and in a lymphocyte cell line derived from a patient with ataxia telangiectasia (AT) before and after exposure to radiation (0-10 Gy). Plasma membranes were isolated from normal lymphocytes and AT cells and subjected to Western blot analysis, using a TNFRSF6-specific monoclonal antibody to probe resolved proteins transferred onto nitrocellulose membranes. In both cell types, the presence of a 48-kDa band corresponding to the molecular mass of TNFRSF6 was revealed. Analysis of FITC-conjugated anti-TNFRSF6 antibody-stained normal lymphocytes and AT cells confirmed TNFRSF6 expression in both cell types. In MTT assays, AT cells treated with agonistic anti-TNFRSF6 Ab (CH.11) displayed a 25.9% decrease in cell viability, relative to cells treated with isotype-matched IgM Ab, suggesting the presence of a biologically active TNFRSF6 receptor at the AT cell surface. Exposure to cycloheximide (0-5 microg/ml), a metabolic inhibitor, enhanced sensitivity of AT cells to CH.11. Normal lymphocytes exhibited increased levels of apoptosis (approximately 34% cell death relative to cells treated with isotype-matched IgM Ab) when exposed to CH.11; however, the degree of cell death was not altered significantly with increasing concentrations of cycloheximide. When AT cells were exposed to 0.1, 0.5, 2 and 10 Gy, the activities of caspases 3 and 8 increased in a dose-dependent manner at 24 h postirradiation and reached a plateau by 72 h. A similar trend for activation of caspase 3 and 8 was observed in normal lymphocytes after irradiation. To assess the roles of TNFRSF6 and/or caspase 8 in radiation-induced cell death of AT and normal lymphocytes, and to determine whether hyper-radiosensitivity in AT cells is correlated with increased

  11. Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses.

    PubMed

    Droin, Nathalie M; Pinkoski, Michael J; Dejardin, Emmanuel; Green, Douglas R

    2003-11-01

    The Fas ligand (FasL)/Fas pathway is crucial for homeostasis of the immune system and peripheral tolerance. Peripheral lymphocyte deletion involves FasL/Fas in at least two ways: coexpression of both Fas and its ligand on T cells, leading to activation-induced cell death, and expression of FasL by nonlymphoid cells, such as intestinal epithelial cells (IEC), that kill Fas-positive T cells. We demonstrate here that superantigen Staphylococcus enterotoxin B (SEB) induced a dramatic upregulation of FasL, TRAIL, and TNF mRNA expression and function in IEC from BALB/c and C57BL/6 mice. Using adoptive transfer in which CD4(+) T cells from OT-2 T-cell receptor transgenic mice were transferred into recipients, we observed an induction in IEC of FasL, TRAIL, and TNF mRNA after administration of antigen. Specific Egr-binding sites have been identified in the 5' promoter region of the FasL gene, and Egr-1, Egr-2, and Egr-3 mRNA in IEC from mice treated with SEB and from transgenic OT-2 mice after administration of antigen was upregulated. Overexpression of Egr-2 and Egr-3 induced endogenous ligand upregulation that was inhibited by overexpression of Egr-specific inhibitor Nab1. These results support a role for Egr family members in nonlymphoid expression of FasL, TRAIL, and TNF. PMID:14560009

  12. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    PubMed Central

    Venkatarame Gowda Saralamma, Venu; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-01-01

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer. PMID:26393583

  13. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway

    PubMed Central

    KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN

    2014-01-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492

  14. Effect of insoluble extracellular matrix molecules on Fas expression in epithelial cells.

    PubMed

    Fine, A; Miranda, K; Farmer, S R; Anderson, N L

    1998-03-01

    Fas, which functions to initiate a signal causing apoptosis, is expressed in epithelia, thus, suggesting a role in controlling cell number during states of cell and matrix turnover. In view of this, we hypothesized that cell-matrix interactions may be an important determinant of Fas expression in epithelial cells. To investigate this, we examined the effect of insoluble extracellular matrix molecules on Fas expression in murine lung epithelial (MLE) cells, a transformed mouse lung epithelial cell line. We report that 1) insoluble extracellular matrices increased Fas mRNA in a time and concentration-dependent manner; 2) induced increases in Fas mRNA were associated with concomitantly increased Fas protein; and 3) nonspecific adherence to a polylysine substrate did not induce Fas mRNA. Consistent with these findings, Fas-induced apoptosis was significantly enhanced in cultures plated on type IV collagen. Employing rat hepatocytes, we confirmed that the insoluble extracellular matrix also increases Fas expression in primary epithelial cells. By amplifying Fas-mediated apoptosis, these data suggest a mechanism whereby the extracellular matrix regulates the fate of specific epithelial cell populations. PMID:9462690

  15. Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo.

    PubMed

    Ram, Daniel R; Ilyukha, Vladimir; Volkova, Tatyana; Buzdin, Anton; Tai, Albert; Smirnova, Irina; Poltorak, Alexander

    2016-02-01

    cFLIP, an inhibitor of apoptosis, is a crucial regulator of cellular death by apoptosis and necroptosis; its importance in development is exemplified by the embryonic lethality in cFLIP-deficient animals. A homolog of caspase 8 (CASP8), cFLIP exists in two main isoforms: cFLIPL (long) and cFLIPR (short). Although both splice variants regulate death receptor (DR)-induced apoptosis by CASP8, the specific role of each isoform is poorly understood. Here, we report a previously unidentified model of resistance to Fas receptor-mediated liver failure in the wild-derived MSM strain, compared with susceptibility in C57BL/6 (B6) mice. Linkage analysis in F2 intercross (B6 x MSM) progeny identified several MSM loci controlling resistance to Fas-mediated death, including the caspase 8- and FADD-like apoptosis regulator (Cflar) locus encoding cFLIP. Furthermore, we identified a 21-bp insertion in the 3' UTR of the fifth exon of Cflar in MSM that influences differential splicing of cFLIP mRNA. Intriguingly, we observed that MSM liver cells predominantly express the FLIPL variant, in contrast to B6 liver cells, which have higher levels of cFLIPR. In keeping with this finding, genome-wide RNA sequencing revealed a relative abundance of FLIPL transcripts in MSM hepatocytes whereas B6 liver cells had significantly more FLIPR mRNA. Importantly, we show that, in the MSM liver, CASP8 is present exclusively as its cleaved p43 product, bound to cFLIPL. Because of partial enzymatic activity of the heterodimer, it might prevent necroptosis. On the other hand, it prevents cleavage of CASP8 to p10/20 necessary for cleavage of caspase 3 and, thus, apoptosis induction. Therefore, MSM hepatocytes are predisposed for protection from DR-mediated cell death. PMID:26798068

  16. Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus

    PubMed Central

    Song, Soonhwa; Lee, Jae-Jin; Kim, Hee-Jung; Lee, Jeong Yoon; Chang, Jun

    2016-01-01

    This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus. PMID:26811330

  17. Liposomal ET-18-OCH(3) induces cytochrome c-mediated apoptosis independently of CD95 (APO-1/Fas) signaling.

    PubMed

    Cuvillier, O; Mayhew, E; Janoff, A S; Spiegel, S

    1999-11-15

    ELL-12, a liposome formulation of the ether-lipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET-18-OCH(3)), is a nonmyelosuppressive antiproliferative agent that is more effective and less toxic than the ether lipid itself in tumor model systems. We found that ELL-12 induced apoptosis in Jurkat, H9, and U-937 cells that was preceded by activation of executioner caspases. In addition, ELL-12 triggered release of cytochrome c from mitochondria to the cytoplasm before caspase-9 activation. Apoptosis, activation of caspases, and cytochrome c release were blocked by Bcl-x(L) overexpression in Jurkat T cells, suggesting a critical role for mitochondria in ELL-12-triggered cell death. Furthermore, ELL-12 had no effect on expression of CD95 ligand, and inhibition of the Fas signaling pathway with antagonistic anti-CD95 antibody did not affect apoptosis induced by ELL-12. Hence, ELL-12 could be a promising adjunct for the treatment of tumors in addition to myelosuppressive chemotherapeutic drugs and/or those that use the CD95-ligand/receptor system to trigger apoptosis. PMID:10552970

  18. Tumor Necrosis Factor Alpha and Interleukin 1β Up-Regulate Gastric Mucosal Fas Antigen Expression in Helicobacter pylori Infection

    PubMed Central

    Houghton, JeanMarie; Macera-Bloch, Lisa S.; Harrison, Lawrence; Kim, Kyung H.; Korah, Reju M.

    2000-01-01

    Fas-mediated gastric mucosal apoptosis is gaining attention as a cause of tissue damage due to Helicobacter pylori infection. We explored the effects of H. pylori directly, and the effects of the inflammatory environment established subsequent to H. pylori infection, on Fas-mediated apoptosis in a nontransformed gastric mucosal cell line (RGM-1). Exposure to H. pylori-activated peripheral blood mononuclear cells (PBMCs), but not H. pylori itself, induced Fas antigen (Fas Ag) expression, indicating a Fas-regulatory role for inflammatory cytokines in this system. Of various inflammatory cytokines tested, only interleukin 1β and tumor necrosis factor alpha induced Fas Ag expression, and removal of either of these from the conditioned medium abrogated the response. When exposed to Fas ligand, RGM-1 cells treated with PBMC-conditioned medium underwent massive and rapid cell death, interestingly, with a minimal effect on total cell numbers early on. Cell cycle analysis revealed a substantial increase in S phase cells among cells exposed to Fas ligand, suggesting an increase in their proliferative response. Taken together, these data indicate that the immune environment secondary to H. pylori infection plays a critical role in priming gastric mucosal cells to undergo apoptosis or to proliferate based upon their Fas Ag status. PMID:10678925

  19. Oncoprotein HBXIP Modulates Abnormal Lipid Metabolism and Growth of Breast Cancer Cells by Activating the LXRs/SREBP-1c/FAS Signaling Cascade.

    PubMed

    Zhao, Yu; Li, Hang; Zhang, Yingyi; Li, Leilei; Fang, Runping; Li, Yinghui; Liu, Qian; Zhang, Weiying; Qiu, Liyan; Liu, Fabao; Zhang, Xiaodong; Ye, Lihong

    2016-08-15

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Accumulating evidence demonstrates that fatty acid synthase (FAS, FASN) is a metabolic oncogene that supports the growth and survival of tumor cells and is highly expressed in many cancers. Here, we report that the oncoprotein, hepatitis B X-interacting protein (HBXIP, LAMTOR5) contributes to abnormal lipid metabolism. We show that high expression of HBXIP in 236 breast cancer patients was significantly associated with decreased overall survival and progression-free survival. Interestingly, the expression of HBXIP was positively related to that of FAS in clinical breast cancer tissues, and HBXIP overexpression in breast cancer cells resulted in FAS upregulation. Mechanistically, HBXIP upregulated SREBP-1c (SREBF1), which activates the transcription of FAS, by directly interacting with and coactivating nuclear receptor (NR) liver X receptors (LXR). Physiologically, LXRs are activated via a coactivator containing NR motif in a ligand-dependent manner. However, in breast cancer cells, HBXIP containing the corepressor/nuclear receptor motif with special flanking sequence could coactivate LXRs independent of ligand. Moreover, overexpressed SREBP-1c was able to activate the transcription of HBXIP, forming a positive-feedback loop. Functionally, HBXIP enhanced lipogenesis, resulting in the growth of breast cancer cells in vitro and in vivo Thus, we conclude that the oncoprotein HBXIP contributes to the abnormal lipid metabolism in breast cancer through LXRs/SREBP-1c/FAS signaling, providing new insights into the mechanisms by which cancer cells reprogram lipid metabolism in their favor. Cancer Res; 76(16); 4696-707. ©2016 AACR. PMID:26980761

  20. Negative regulation of erythroblast maturation by Fas-L(+)/TRAIL(+) highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma.

    PubMed

    Silvestris, Franco; Cafforio, Paola; Tucci, Marco; Dammacco, Franco

    2002-02-15

    Multiple myeloma (MM) is associated with severe normochromic/normocytic anemia. This study demonstrates that the abnormal up-regulation of apoptogenic receptors, including both Fas ligand (L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), by highly malignant myeloma cells is involved in the pathogenesis of the ineffective erythropoiesis and chronic exhaustion of the erythroid matrix. By measuring Fas-L and TRAIL in plasma cells and the content of glycophorin A (GpA) in erythroblasts from a cohort of 28 untreated, newly diagnosed patients with MM and 7 with monoclonal gammopathy of undetermined significance (MGUS), selected in relation to their peripheral hemoglobin values, results showed that both receptors occurred at high levels in 15 severely anemic MM patients. Their marrow erythropoietic component was low and included predominantly immature GpA(+dim) erythroblasts, in contrast with the higher relative numbers of mature GpA(+bright) erythroid cells observed in the nonanemic patients and those with MGUS. In cocultures with autologous Fas-L(+)/TRAIL(+) myeloma cells, the expanded GpA(+dim) erythroid population underwent prompt apoptosis after direct exposure to malignant plasma cells, whereas erythroblasts from nonanemic patients were scarcely affected. The evidence that Fas-L(+)/TRAIL(+) malignant plasma cells prime erythroblast apoptosis by direct cytotoxicity was also supported by the increase of FLICE in fresh immature GpA(+dim) erythroid cells, whereas ICE and caspase-10 increased in subsequent maturative forms. In addition, GATA-1, a survival factor for erythroid precursors, was remarkably down-regulated in fresh erythroblasts from the severely anemic patients. These results indicate that progressive destruction of the erythroid matrix in aggressive MM is due to cytotoxic mechanisms based on the up-regulation in myeloma cells of Fas-L, TRAIL, or both. It is conceivable that the altered regulation of these receptors defines a peculiar

  1. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways.

    PubMed

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen; Yayi, Xia

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. PMID:27060196

  2. Piperlongumine alleviates lupus nephritis in MRL-Fas(lpr) mice by regulating the frequency of Th17 and regulatory T cells.

    PubMed

    Yao, Lan; Chen, Hai-ping; Ma, Qing

    2014-09-01

    Recent data have shown that piperlongumine (PL), an important component of Piper longum fruits, is known to possess anti-inflammatory and vascular-protective activities. This study aimed to examine the therapeutic effects and underlying mechanisms of PL on lupus-prone MRL-Fas(lpr) mice. Female MRL-Fas(lpr) mice were intraperitoneally treated with PL (2.4 mg kg(-1) d(-1)) for 10 weeks, and the proteinuria level was biweekly monitored. After the mice were euthanized, serum biochemical parameters and renal damage were determined. Splenocytes of MRL-Fas(lpr) mice were isolated for in vitro study. Treatment of the mice with PL significantly attenuated the progression of proteinuria and glomerulonephritis. The improvement was accompanied by decreased serum levels of nephritogenic anti-dsDNA antibodies, IL-6, IL-17, IL-23 and TNF-α. Treatment of the mice with PL suppressed the frequency of Th17 cells and increased the regulatory T cells (Tregs). In vitro, the levels of IL-6, IL-17, IL-23 and TNF-α were significantly decreased in the cultures of splenocytes from PL-treated mice compared with those from vehicle-treated mice. In addition, PL treatment impeded activation of the JAK/STAT3 signaling in splenocytes. Of great important, the survival of MRL-Fas(lpr) mice were improved by PL treatment. In summary, PL effectively ameliorates lupus syndrome in MRL-Fas(lpr) mice by suppressing the pathogenic Th17 cells and increasing the Tregs as well as inhibiting activation of the JAK/STAT3 signaling pathway. This study sheds new light on the immune-modulatory role of PL. PMID:24837470

  3. Protein Regulation in Signal Transduction.

    PubMed

    Lee, Michael J; Yaffe, Michael B

    2016-01-01

    SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues. PMID:27252361

  4. Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14-3-3σ

    PubMed Central

    Bersani, C; Xu, L-D; Vilborg, A; Lui, W-O; Wiman, K G

    2014-01-01

    Wig-1, also known as ZMAT3, is a p53 target gene that encodes an RNA-binding zinc-finger protein involved in the regulation of mRNA stability through binding to AU-rich elements (AREs). We have used microarray analysis to identify novel Wig-1 target mRNAs. We identified 2447 transcripts with >fourfold differential expression between Wig-1 and control small interfering (si)RNA-treated HCT116 cells. Several p53 target genes were among the deregulated transcripts. We found that Wig-1 regulates FAS and 14-3-3σ mRNA independently of p53. We show that Wig-1 binds to FAS mRNA 3′-UTR and decreases its stability through an ARE in the 3′-UTR. Depletion of Wig-1 was associated with increased cell death and reduced cell cycle arrest upon DNA damage. Our results suggest a role of Wig-1 as a survival factor that directs the p53 stress response toward cell cycle arrest rather than apoptosis through the regulation of FAS and 14-3-3σ mRNA levels. PMID:24469038

  5. Modulation of the Fas signaling pathway by IFN-gamma in therapy of colon cancer: phase I trial and correlative studies of IFN-gamma, 5-fluorouracil, and leucovorin.

    PubMed

    Schwartzberg, Lee S; Petak, Istvan; Stewart, Clinton; Turner, P Kellie; Ashley, Jeri; Tillman, David M; Douglas, Leslie; Tan, Ming; Billups, Catherine; Mihalik, Rudolf; Weir, Alva; Tauer, Kurt; Shope, Steve; Houghton, Janet A

    2002-08-01

    Potentiation of 5-fluorouracil/leucovorin (FUra/LV) cytotoxicity by IFN-gamma in colon carcinoma cells is dependent on FUra-induced DNA damage, the Fas death receptor, and independent of p53 and RNA-mediated FUra toxicity, which occurs in normal gastrointestinal tissues. This provides a rationale for enhancing the selective action of FUra/LV by IFN-gamma in the treatment of colorectal carcinoma. Based on results from our preclinical studies we designed a Phase I trial combining FUra (370 mg/m2) and LV (200 mg/m2), i.v. bolus daily x 5 days, with escalating doses of IFN-gamma (10-100 micro g/m2) s.c. on days 1, 3, and 5, every 28 days. Twenty-five patients with carcinomas were enrolled; 6 patients received IFN-gamma on days 1 and 3 only. The dose-limiting toxicity, stomatitis, occurred most frequently at 100 micro g/m2 IFN-gamma. Minor response or SD was observed in 2 of 9 patients and in 4 of 12 patients at dose levels of < or =50 micro g/m2 and > or =75 micro g/m2 IFN-gamma, respectively. Three evaluable chemonaive patients demonstrated partial response (2) or complete response (1). Serial plasma samples revealed peak FUra concentrations of >100 micro M; at 100 micro g/m2 IFN-gamma plasma concentrations >5 units/ml persisted for 6.5 h and >1 unit/ml for 28.5 h. The pharmacokinetic parameters of IFN-gamma correlated with a 2-3-fold up-regulation of Fas expression at 24 h in CD15+ cells in peripheral blood samples. Furthermore, clinically relevant IFN-gamma concentrations up-regulated Fas expression and sensitized HT29 colon carcinoma cells in vitro to FUra/LV cytotoxicity. On the basis of the modulation of Fas signaling, FUra/LV combined with IFN-gamma has shown activity in a Phase I trial in colorectal carcinoma and warrants additional evaluation in Phase II. PMID:12171874

  6. MiR-467a is Upregulated in Radiation-Induced Mouse Thymic Lymphomas and Regulates Apoptosis by Targeting Fas and Bax

    PubMed Central

    Gao, Fu; Chen, Song; Sun, Mingjuan; Mitchel, Ronald E.J.; Li, Bailong; Chu, Zhiyong; Cai, Jianming; Liu, Cong

    2015-01-01

    It has been reported dysregulation of certain microRNAs (miRNAs / miRs) is involved in tumorigenesis. However, the miRNAs associated with radiocarcinogenesis remain undefined. In this study, we validated the upregulation of miR-467a in radiation-induced mouse thymic lymphoma tissues. Then, we investigated whether miR-467a functions as an oncogenic miRNA in thymic lymphoma cells. For this purpose, we assessed the biological effect of miR-467a on thymic lymphoma cells. Using miRNA microarray, we found four miRNAs (miR-467a, miR-762, miR-455 and miR-714) were among the most upregulated (>4-fold) miRNAs in tumor tissues. Bioinformatics prediction suggests miR-467a may potentially regulate apoptosis pathway via targeting Fas and Bax. Consistently, in miR-467a-transfected cells, both proliferation and colony formation ability were significantly increased with decrease of apoptosis rate, while, in miR-467a-knockdown cells, proliferation was suppressed with increase of apoptosis rate, indicating that miR-467a may be involved in the regulation of apoptosis. Furthermore, miR-467a-knockdown resulted in smaller tumors and better prognosis in an in vivo tumor-transplanted model. To explain the mechanism of apoptosis suppression by miR-467a, we explore the expression of candidate target genes (Fas and Bax) in miR-467a-transfected relative to negative control transfected cells using flow cytometry and immunoblotting. Fas and Bax were commonly downregulated in miR-467a-transfected EL4 and NIH3T3 cells, and all of the genes harbored miR-467a target sequences in the 3'UTR of their mRNA. Fas and Bax were actually downregulated in radiation-induced thymic lymphoma tissues, and therefore both were identified as possible targets of miR-467a in thymic lymphoma. To ascertain whether downregulation of Fas and / or Bax is involved in apoptosis suppression by miR-467a, we transfected vectors expressing Fas and Bax into miR-467a-upregulated EL4 cells. Then we found that both Fas- and Bax

  7. Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing

    PubMed Central

    Montes, Marta; Coiras, Mayte; Becerra, Soraya; Moreno-Castro, Cristina; Mateos, Elena; Majuelos, Jara; Oliver, F. Javier; Hernández-Munain, Cristina; Alcamí, José; Suñé, Carlos

    2015-01-01

    Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis. PMID:26462236

  8. Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling

    SciTech Connect

    Chiang, Jo-Hua; Yang, Jai-Sing; Lu, Chi-Cheng; Hour, Mann-Jen; Chang, Shu-Jen; Lee, Tsung-Han; Chung, Jing-Gung

    2013-06-01

    The current study aims to investigate the antiangiogenic responses and apoptotic death of human umbilical vein endothelial cells (HUVECs) by a newly synthesized compound named 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38). This work attempted to not only explore the effects of angiogenesis on in vivo and ex vivo studies but also hypothesize the implications for HUVECs (an ideal cell model for angiogenesis in vitro) and further undermined apoptotic experiments to verify the underlying molecular signaling by HMJ-38. Our results demonstrated that HMJ-38 significantly inhibited blood vessel growth and microvessel formation by the mouse Matrigel plug assay of angiogenesis, and the suppression of microsprouting from the rat aortic ring assay was observed after HMJ-38 exposure. In addition, HMJ-38 disrupted the tube formation and blocked the ability of HUVECs to migrate in response to VEGF. We also found that HMJ-38 triggered cell apoptosis of HUVECs in vitro. HMJ-38 concentration-dependently suppressed viability and induced apoptotic damage in HUVECs. HMJ-38-influenced HUVECs were performed by determining the oxidative stress (ROS production) and ATM/p53-modulated Fas and DR4/DR5 signals that were examined by flow cytometry, Western blotting, siRNA and real-time RT-PCR analyses, respectively. Our findings demonstrate that p53-regulated extrinsic pathway might fully contribute to HMJ-38-provoked apoptotic death in HUVECs. In view of these observations, we conclude that HMJ-38 reduces angiogenesis in vivo and ex vivo as well as induces apoptosis of HUVECs in vitro. Overall, HMJ-38 has a potent anti-neovascularization effect and could warrant being a vascular targeting agent in the future. - Highlights: • HMJ-38 suppresses angiogenic actions in vivo and ex vivo. • Inhibitions of blood vessel and microvessel formation by HMJ-38 are acted. • Cytotoxic effects of HUVECs occur by HMJ-38 challenge. • p53-modulated extrinsic pathway contributes to HMJ-38

  9. Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and Fas-antibody-induced liver injury.

    PubMed

    Lawson, J A; Fisher, M A; Simmons, C A; Farhood, A; Jaeschke, H

    1998-09-01

    Endotoxin (ET) induces neutrophil sequestration in hepatic sinusoids, the activation of proinflammatory transcription factors (nuclear factor KB [NF-kappaB]) with up-regulation of adhesion molecules on sinusoidal endothelial cells and hepatocytes. However, if galactosamine (Gal) is co-administered with ET, neutrophils transmigrate and attack parenchymal cells. This suggests that a signal from parenchymal cells triggers neutrophil transmigration. In this study, we tested the hypothesis that parenchymal cell apoptosis may induce neutrophil transendothelial migration in the Gal/ET model. Treatment of C3Heb/FeJ mice with 700 mg/kg Gal and 100 microg/kg ET induced tumor necrosis factor alpha (TNF-alpha) formation (13.25 +/- 0.75 ng/mL) and hepatic NF-kappaB activation at 90 minutes; the generation of the C-X-C chemokine KC (2.86 +/- 0.30 ng/mL at 5 hours); sinusoidal neutrophil sequestration (380 +/- 21 polymorphonuclear leukocytes/50 high-power fields) and apoptosis (925% +/- 29% increase of DNA fragmentation; and a 45-fold increase of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells) at 6 hours, followed by transmigration of neutrophils and development of substantial necrosis (38% +/- 3% of hepatocytes; alanine transaminase [ALT]: 1,500 +/- 300 U/L) at 7 hours. Administration of uridine (1,000 mg/kg) did not reduce plasma levels of TNF-alpha and KC, NF-kappaB activation, or polymorphonuclear leukocyte sequestration, but attenuated apoptosis by 90% to 94%. In these livers, neutrophils did not transmigrate and liver injury was prevented (necrosis: < 5%; ALT: 40 +/- 3 U/L). However, massive apoptosis and liver injury initiated by the anti-Fas antibody, Jo2, did not recruit neutrophils into the liver. We conclude that excessive parenchymal cell apoptosis represents an important signal for transmigration of primed neutrophils sequestered in sinusoids during endotoxemia in vivo. However, apoptosis per se does not cause neutrophil

  10. Kupffer Cells Protect Liver Sinusoidal Endothelial Cells from Fas-Dependent Apoptosis in Sepsis by Down-Regulating gp130

    PubMed Central

    Hutchins, Noelle A.; Chung, Chun-Shiang; Borgerding, Joshua N.; Ayala, Carol A.; Ayala, Alfred

    2014-01-01

    Endothelial cell (EC) dysfunction is a key feature of multiple organ injury, the primary cause of fatality seen in critically ill patients. Although the development of EC dysfunction in the heart and lung is well studied in sepsis, it remains unclear in the liver. Herein, we report that liver sinusoidal ECs (LSECs; defined as CD146+CD45−) exhibit increased intercellular adhesion molecule-1 (CD54) and Fas in response to sepsis induced by cecal ligation and puncture (CLP). By using magnetically enriched LSEC (CD146+) populations, we show evidence of marked apoptosis, with a twofold decline in viable LSECs in CLP animals compared with sham controls. These changes and increased serum alanine aminotransferase levels were all mitigated in septic Fas−/− and Fas ligand−/− animals. Although we previously reported increased numbers of Fas ligand expressing CD8+ T lymphocytes in the septic liver, CD8+ T-cell deficiency did not reverse the onset of LSEC apoptosis/damage. However, Kupffer cell depletion with clodronate liposomes resulted in greater apoptosis and Fas expression after CLP and a decrease in glycoprotein 130 expression on LSECs, suggesting that STAT3 activation may protect these cells from injury. Our results document a critical role for death receptor–mediated LSEC injury and show the first evidence that Kupffer cells are essential to the viability of LSECs, which appears to be mediated through glycoprotein 130 expression in sepsis. PMID:23306157

  11. FAS — EDRN Public Portal

    Cancer.gov

    FAS is a member of the TNF-receptor superfamily. The FAS protein is a receptor for TNFSF6/FASLG and has been shown to play a central role in the physiological regulation of programmed cell death, and has been implicated in the pathogenesis of various malignancies and diseases of the immune system. Several alternatively spliced transcript variants have been described, some of which are candidates for nonsense-mediated mRNA decay (NMD). The isoforms lacking the transmembrane domain may negatively regulate the apoptosis mediated by the full length isoform.

  12. Cucurbitacin E Induces G(2)/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells.

    PubMed

    Huang, Wen-Wen; Yang, Jai-Sing; Lin, Meng-Wei; Chen, Po-Yuan; Chiou, Shang-Ming; Chueh, Fu-Shin; Lan, Yu-Hsuan; Pai, Shu-Jen; Tsuzuki, Minoru; Ho, Wai-Jane; Chung, Jing-Gung

    2012-01-01

    Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨ(m)) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G(2)/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨ(m), resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G(2)/M phase arrest and apoptosis of T24 cells. PMID:22272214

  13. Cucurbitacin E Induces G2/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells

    PubMed Central

    Huang, Wen-Wen; Yang, Jai-Sing; Lin, Meng-Wei; Chen, Po-Yuan; Chiou, Shang-Ming; Chueh, Fu-Shin; Lan, Yu-Hsuan; Pai, Shu-Jen; Tsuzuki, Minoru; Ho, Wai-Jane; Chung, Jing-Gung

    2012-01-01

    Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells. PMID:22272214

  14. FAS system deregulation in T-cell lymphoblastic lymphoma

    PubMed Central

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  15. FAS system deregulation in T-cell lymphoblastic lymphoma.

    PubMed

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  16. Association of promoter polymorphisms of Fas -FasL genes with development of Chronic Myeloid Leukemia.

    PubMed

    Edathara, Prajitha Mohandas; Gorre, Manjula; Kagita, Sailaja; Vuree, Sugunakar; Cingeetham, Anuradha; Nanchari, Santhoshi Rani; Meka, Phanni Bhushann; Annamaneni, Sandhya; Digumarthi, Raghunadha Rao; Satti, Vishnupriya

    2016-04-01

    Chronic myeloid leukemia (CML) is a monoclonal myeloproliferative disorder of hematopoietic stem cells (HSCs), characterized by reciprocal translocation, leading to the formation of BCR-ABL oncogene with constitutive tyrosine kinase (TK) activity. This oncogene is known to deregulate different downstream pathways which ultimately lead to cell proliferation, defective DNA repair, and inhibition of apoptosis. Fas (Fas cell surface death receptor) is a member of tumor necrosis factor (TNF) superfamily which interacts with its ligand, FasL, to initiate apoptosis. Promoter polymorphisms in Fas-FasL genes are known to influence the apoptotic signaling. Hence, the present study has been aimed to find out the association of the promoter polymorphisms in Fas and FasL genes with the development and progression of CML. Blood samples from 772 subjects (386 controls and 386 cases) were collected and genotyped for Fas-FasL gene polymorphisms through PCR-RFLP method. The association between SNPs and clinical outcome was analyzed using statistical softwares like SPSS version 20, SNPSTATs, and Haploview 2.1. The study revealed a significant association of Fas -670 G>A and FasL -844 T>C polymorphisms with the development of CML while Fas -670 AG was associated with accelerated phase. Combined risk analysis by taking the risk genotypes in cases and controls revealed a significant increase in CML risk with increase in number of risk genotypes (one risk genotype-OR 1.99 (1.44-2.76), p < 0.0001; two risk genotypes-OR 3.33 (1.91-5.81), p < 0.0001). Kaplan-Meier survival analysis of Fas -670 A>G and FasL -844 T>C showed reduced event-free survival in patients carrying the variant genotypes, Fas -670 GG, 32.363 ± 6.33, and FasL -844 CC, 33.489 ± 5.83, respectively. Our findings revealed a significant association of Fas -670 GG, FasL -844 TC, and CC genotypes with increased risk of CML. PMID:26563376

  17. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL.

    PubMed

    Zhang, Hao; Wei, Tengteng; Jiang, Xia; Li, Zhimin; Cui, Huazhu; Pan, Jiajun; Zhuang, Wei; Sun, Teng; Liu, Zhiwei; Zhang, Zhongming; Dong, Hongyan

    2016-01-01

    Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor whose effects are partially mediated through the induction of endothelial cell apoptosis. However, the underlying mechanism for PEDF and the functional PEDF peptides 34-mer and 44-mer to inhibit angiogenesis in the heart has not been fully established. In the present study, by constructing adult Sprague-Dawley rat models of acute myocardial infarction (AMI) and in vitro myocardial angiogenesis, we showed that PEDF and 34-mer markedly inhibits angiogenesis by selectively inducing tip cells apoptosis rather than quiescent cells. Peptide 44-mer on the other hand exhibits no such effects. Next, we identified Fas death pathway as essential downstream regulators of PEDF and 34-mer activities in inhibiting angiogenesis. By using peroxisome proliferator-activated receptor γ (PPAR-γ) siRNA and PPAR-γ inhibitor, GW9662, we found the effects of PEDF and 34-mer were extensively blocked. These data suggest that PEDF and 34-mer inhibit angiogenesis via inducing tip cells apoptosis at least by means of up-regulating PPAR-γ to increase surface FasL in the ischemic heart, which might be a novel mechanism to understanding cardiac angiogenesis after AMI. PMID:26519036

  18. Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Mennigen, Jan A; Plagnes-Juan, Elisabeth; Figueredo-Silva, Claudia A; Seiliez, Iban; Panserat, Stéphane; Skiba-Cassy, Sandrine

    2014-03-01

    Hepatic lipogenesis represents a crucial part of intermediary metabolism and is acutely regulated by endocrine factors and nutrients. The liver-specific and highly abundant microRNA-122 has emerged as a powerful regulator of lipogenesis in higher vertebrates, but little is known about its endocrine and nutritional regulation. In this study, we investigated the hypothesis that insulin regulates hepatic expression of omy-miRNA-122 isomiRNAs (omy-miRNA-122a and omy-miRNA-122b) by using in vivo and in vitro approaches. Since the hepatic insulin pathway and lipogenesis are acutely regulated by dietary macronutrient ratios in rainbow trout, we further investigated the effect of single meals with altered carbohydrate/protein ratio and lipid/protein ratio on the postprandial expression of omy-miRNA-122 isomiRNAs. Insulin acutely induced omy-miRNA-122b expression in vivo and in vitro. Conversely, a single meal with increased lipid to protein ratio acutely decreased expression of both omy-miRNA-122 isomiRNAs. As a direct proof of lipogenic effects of miRNA-122 is currently still lacking in fish, we investigated the correlated expression between omy-miRNA-122 isomiRNAs and the rate-limiting lipogenic gene fas, an indirect target gene of miRNA-122 in mammals. Our results show a significant positive correlation of omy-miRNA-122b and fas, consistent with a potential evolutionary conserved role for miRNA-122 in the regulation of postprandial lipogenesis in trout. PMID:24333236

  19. Possible modulation of FAS and PTP-1B signaling in ameliorative potential of Bombax ceiba against high fat diet induced obesity

    PubMed Central

    2013-01-01

    Background Bombax ceiba Linn., commonly called as Semal, is used in various gastro-intestinal disturbances. It contains Lupeol which inhibits PTP-1B, adipogenesis, TG synthesis and accumulation of lipids in adipocytes and adipokines whereas the flavonoids isolated from B. ceiba has FAS inhibitory activity. The present study was aimed to investigate ameliorative potential of Bombax ceiba to experimental obesity in Wistar rats, and its possible mechanism of action. Methods Male Wistar albino rats weighing 180-220 g were employed in present study. Experimental obesity was induced by feeding high fat diet for 10 weeks. Methanolic extract of B. ceiba extract 100, 200 and 400 mg/kg and Gemfibrozil 50 mg/kg as standard drug were given orally from 7th to 10th week. Results Induction with HFD for 10 weeks caused significant (p < 0.05) increase in % body wt, BMI, LEE indices; serum glucose, triglyceride, LDL, VLDL, cholesterol, free fatty acid, ALT, AST; tissue TBARS, nitrate/nitrite levels; different fat pads and relative liver weight; and significant decrease in food intake (g and kcal), serum HDL and tissue glutathione levels in HFD control rats. Treatment with B. ceiba extract and Gemfibrozil significantly attenuated these HFD induced changes, as compared to HFD control. The effect of B. ceiba 200 and 400 mg/kg was more pronounced in comparison to Gemfibrozil. Conclusion On the basis of results obtained, it may be concluded that the methanolic extract of stem bark of Bombax ceiba has significant ameliorative potential against HFD induced obesity in rats, possibly through modulation of FAS and PTP-1B signaling due to the presence of flavonoids and lupeol. PMID:24160453

  20. dFasArt: dynamic neural processing in FasArt model.

    PubMed

    Cano-Izquierdo, Jose-Manuel; Almonacid, Miguel; Pinzolas, Miguel; Ibarrola, Julio

    2009-05-01

    The temporal character of the input is, generally, not taken into account in the neural models. This paper presents an extension of the FasArt model focused on the treatment of temporal signals. FasArt model is proposed as an integration of the characteristic elements of the Fuzzy System Theory in an ART architecture. A duality between the activation concept and membership function is established. FasArt maintains the structure of the Fuzzy ARTMAP architecture, implying a static character since the dynamic response of the input is not considered. The proposed novel model, dynamic FasArt (dFasArt), uses dynamic equations for the processing stages of FasArt: activation, matching and learning. The new formulation of dFasArt includes time as another characteristic of the input. This allows the activation of the units to have a history-dependent character instead of being only a function of the last input value. Therefore, dFasArt model is robust to spurious values and noisy inputs. As experimental work, some cases have been used to check the robustness of dFasArt. A possible application has been proposed for the detection of variations in the system dynamics. PMID:19128936

  1. Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis

    PubMed Central

    Yao, San-qiao; Rojanasakul, Liying Wang; Chen, Zhi-yuan; Xu, Ying-jun; Bai, Yu-ping; Chen, Gang; Zhang, Xi-ying; Zhang, Chun-min; Yu, Yan-qin; Shen, Fu-hai; Yuan, Ju-xiang; Chen, Jie

    2016-01-01

    In vitro and in vivo studies have demonstrated that lung cell apoptosis is associated with lung fibrosis; however the relationship between apoptosis of alveolar macrophages (AMs) and human silicosis has not been addressed. In the present study, AM apoptosis was determined in whole-lung lavage fluid from 48 male silicosis patients, 13 male observers, and 13 male healthy volunteers. The relationships between apoptosis index (AI) and silica exposure history, soluble Fas (sFas)/membrane-bound Fas (mFas), and caspase-3/caspase-8 were analyzed. AI, mFas, and caspase-3 were significantly higher in lung lavage fluids from silicosis patients than those of observers or healthy volunteers, but the level of sFas demonstrated a decreasing trend. AI was related to silica exposure, upregulation of mFas, and activation of caspase-3 and -8, as well as influenced by smoking status after adjusting for confounding factors. These results indicate that AM apoptosis could be used as a potential biomarker for human silicosis, and the Fas/FasL pathway may regulate this process. The present data from human lung lavage samples may help to understand the mechanism of silicosis and in turn lead to strategies for preventing or treating this disease. PMID:21910009

  2. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome-like disease

    PubMed Central

    Nabhani, Schafiq; Ginzel, Sebastian; Miskin, Hagit; Revel-Vilk, Shoshana; Harlev, Dan; Fleckenstein, Bernhard; Hönscheid, Andrea; Oommen, Prasad T.; Kuhlen, Michaela; Thiele, Ralf; Laws, Hans-Jürgen; Borkhardt, Arndt; Stepensky, Polina; Fischer, Ute

    2015-01-01

    Autoimmune lymphoproliferative syndrome is frequently caused by mutations in genes involved in the Fas death receptor pathway, but for 20–30% of patients the genetic defect is unknown. We observed that treatment of healthy T cells with interleukin-12 induces upregulation of Fas ligand and Fas ligand-dependent apoptosis. Consistently, interleukin-12 could not induce apoptosis in Fas ligand-deficient T cells from patients with autoimmune lymphoproliferative syndrome. We hypothesized that defects in the interleukin-12 signaling pathway may cause a similar phenotype as that caused by mutations of the Fas ligand gene. To test this, we analyzed 20 patients with autoimmune lymphoproliferative syndrome of unknown cause by whole-exome sequencing. We identified a homozygous nonsense mutation (c.698G>A, p.R212*) in the interleukin-12/interleukin-23 receptor-component IL12RB1 in one of these patients. The mutation led to IL12RB1 protein truncation and loss of cell surface expression. Interleukin-12 and -23 signaling was completely abrogated as demonstrated by deficient STAT4 phosphorylation and interferon γ production. Interleukin-12-mediated expression of membrane-bound and soluble Fas ligand was lacking and basal expression was much lower than in healthy controls. The patient presented with the classical symptoms of autoimmune lymphoproliferative syndrome: chronic non-malignant, non-infectious lymphadenopathy, splenomegaly, hepatomegaly, elevated numbers of double-negative T cells, autoimmune cytopenias, and increased levels of vitamin B12 and interleukin-10. Sanger sequencing and whole-exome sequencing excluded the presence of germline or somatic mutations in genes known to be associated with the autoimmune lymphoproliferative syndrome. Our data suggest that deficient regulation of Fas ligand expression by regulators such as the interleukin-12 signaling pathway may be an alternative cause of autoimmune lymphoproliferative syndrome-like disease. PMID:26113417

  3. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK

    SciTech Connect

    Lueschen, Silke; Falk, Markus; Scherer, Gudrun; Ussat, Sandra; Paulsen, Maren; Adam-Klages, Sabine . E-mail: sadam@email.uni-kiel.de

    2005-10-15

    The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF.

  4. Fas activation in alveolar epithelial cells induces KC (CXCL1) release by a MyD88-dependent mechanism.

    PubMed

    Farnand, Alex W; Eastman, Alison J; Herrero, Raquel; Hanson, Josiah F; Mongovin, Steve; Altemeier, William A; Matute-Bello, Gustavo

    2011-09-01

    Activation of the Fas/Fas ligand (FasL) system is associated with activation of apoptotic and proinflammatory pathways that lead to the development of acute lung injury. Previous studies in chimeric mice and macrophage-depleted mice suggested that the main effector cell in Fas-mediated lung injury is not a myeloid cell, but likely an epithelial cell. The goal of this study was to determine whether epithelial cells release proinflammatory cytokines after Fas activation, and to identify the relevant pathways. Incubation of the murine alveolar epithelial cell line, MLE-12, with the Fas-activating monoclonal antibody, Jo2, resulted in release of the CXC chemokine, KC, in a dose-dependent manner. KC release was not prevented by the pan-caspase inhibitor, zVAD.fmk. Silencing of the adaptor protein, MyD88, with small interfering (si)RNA resulted in attenuation of KC release in response to Jo2. Fas activation resulted in phosphorylation of the mitogen-activated kinases extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK), and pharmacologic inhibition of ERK and JNK attenuated KC release in a dose-response manner. Similarly, primary human small airways epithelial cells released IL-8 in response to soluble FasL, and this was abrogated by inhibition of JNK and ERK. In vivo confirmatory studies showed that MyD88-null mice are protected from Fas-induced acute lung injury. In summary, we conclude that Fas induces KC release in MLE-12 cells by a mechanism requiring MyD88, mitogen-activated protein kinases, and likely activator protein-1. PMID:21257927

  5. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    PubMed

    Daburon, Sophie; Devaud, Christel; Costet, Pierre; Morello, Aurore; Garrigue-Antar, Laure; Maillasson, Mike; Hargous, Nathalie; Lapaillerie, Delphine; Bonneu, Marc; Dechanet-Merville, Julie; Legembre, Patrick; Capone, Myriam; Moreau, Jean-François; Taupin, Jean-Luc

    2013-01-01

    Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas. PMID:23326557

  6. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway.

    PubMed

    Yin, Xiao-Hui; Yan, Jing-Zhi; Yang, Guo; Chen, Li; Xu, Xiao-Feng; Hong, Xi-Ping; Wu, Shi-Liang; Hou, Xiao-Yu; Zhang, GuangYi

    2016-04-15

    Respecting the selective inhibition of peptides on protein-protein interactions, they might become potent methods in ischemic stroke therapy. In this study, we investigated the effect of PDZ1 inhibitor peptide on ischemic neuron apoptosis and the relative mechanism. Results showed that PDZ1 inhibitor peptide, which significantly disrupted GluK2-PSD-95 interaction, efficiently protected neuron from ischemia/reperfusion-induced apoptosis. Further, PDZ1 inhibited FasL expression, DISC assembly and activation of Caspase 8, Bid, Caspase 9 and Caspase 3 after global brain ischemia. Based on our previous report that GluK2-PSD-95 pathway increased FasL expression after global brain ischemia, the neuron protection effect of PDZ1 inhibitor peptide was considered to be achieved by disrupting GluK2-PSD-95 interaction and subsequently inhibiting FasL expression and Fas apoptosis pathway. PMID:26892027

  7. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  8. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  9. Keratins Modulate c-Flip/Extracellular Signal-Regulated Kinase 1 and 2 Antiapoptotic Signaling in Simple Epithelial Cells

    PubMed Central

    Gilbert, Stéphane; Loranger, Anne; Marceau, Normand

    2004-01-01

    Among the large family of intermediate filament proteins, the keratin 8 and 18 (K8/K18) pair constitutes a hallmark for all simple epithelial cells, such as hepatocytes and mammary cells. Functional studies with different cell models have suggested that K8/K18 are involved in simple epithelial cell resistance to several forms of stress that may lead to cell death. We have reported recently that K8/K18-deprived hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis. Here we show that upon Fas, tumor necrosis factor alpha receptor, or tumor necrosis factor alpha-related apoptosis-inducing ligand receptor stimulation, an inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation sensitizes wild-type but not K8-null mouse hepatocytes to apoptosis and that a much weaker ERK1/2 activation occurs in K8-null hepatocytes. In turn, this impaired ERK1/2 activation in K8-null hepatocytes is associated with a drastic reduction in c-Flip protein, an event that also holds in a K8-null mouse mammary cell line. c-Flip, along with Raf-1, is part of a K8/K18-immunoisolated complex from wild-type hepatocytes, and Fas stimulation leads to further c-Flip and Raf-1 recruitment in the complex. This points to a new regulatory role of simple epithelium keratins in the c-Flip/ERK1/2 antiapoptotic signaling pathway. PMID:15282307

  10. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  11. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines and miR-187.

    PubMed

    Wang, Yi; Zhang, Jiao-Jiao; Yang, Wei-Rong; Luo, Hong-Yan; Zhang, Jia-Hua; Wang, Xian-Zhong

    2015-11-01

    Lipopolysaccharide (LPS) induces germ cell apoptosis, but its mechanism of action is not clear. One possibility is that LPS regulates the expression of FAS ligand (FASLG) in Sertoli cells, which will then influence germ cell apoptosis. In this study, LPS reduced the viability of cultured, immature boar Sertoli cells in a time- and dose-dependent manner; enhanced the production of pro-inflammatory cytokines including tumor necrosis factor α (TNFA), interleukin-1β (IL1B), nitric oxide (NO), and transforming growth factor-β (TGFB); and increased the expression of FASLG in a dose-dependent manner. While 10 μg/ml LPS enhanced the expression of FASLG, reduced cell cycle progression, and impaired the ultrastructure of Sertoli cells, this dose did not induce apoptosis. LPS also had no effect on the activity or expression of matrix metalloproteinases 2 or 9 (MMP2 or MMP9). In contrast, the expression of ssc-miR-187 increased following LPS challenge, and inhibition of ssc-miR-187 blocked LPS-induced expression of FASLG. Our results therefore suggest that LPS reduces the viability of and enhances FASLG expression in cultured, immature boar Sertoli cells through elevated secretion of TNFA, IL1B, NO, and TGFB as well as through the regulation of ssc-miR-187 potency. PMID:26256020

  12. Regulation of Calcium signaling through spatial Organization

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Ullah, Ghanim; Machaca, Khalid; Jung, Peter

    2010-03-01

    Calcium waves and signals in oocytes are produced and sustained by the release of Ca^2+ from the Endoplasmic Reticulum (ER) through clustered release channels. Changes in the spatial organization of calcium signaling effectors regulate the spatiotemporal features of the calcium signal as is e.g. observed during oocyte maturation. We report here how specific changes in the clustering of the calcium release channels in conjunction with physiologic alterations of other signaling effectors can affect a) the sensitivity of the signaling machinery to external factors, b) the time course of global intracellular signals and c), the speed and propagation range of intracellular calcium waves.

  13. Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death.

    PubMed

    Villamizar, Olga; Chambers, Christopher B; Mo, Yin-Yuan; Torry, Donald S; Hofstrand, Reese; Riberdy, Janice M; Persons, Derek A; Wilber, Andrew

    2016-05-01

    Long noncoding RNAs (lncRNAs) interact with other RNAs, DNA and/or proteins to regulate gene expression during development. Erythropoiesis is one developmental process that is tightly controlled throughout life to ensure accurate red blood cell production and oxygen transport to tissues. Thus, homeostasis is critical and maintained by competitive outcomes of pro- and anti-apoptotic pathways. LncRNAs are expressed during blood development; however, specific functions are largely undefined. Here, a culture model of human erythropoiesis revealed that lncRNA Fas-antisense 1 (Fas-AS1 or Saf) was induced during differentiation through the activity of essential erythroid transcription factors GATA-1 and KLF1. Saf was also negatively regulated by NF-κB, where decreasing NF-κB activity levels tracked with increasing transcription of Saf. Furthermore, Saf over-expression in erythroblasts derived from CD34(+) hematopoietic stem/progenitor cells of healthy donors reduced surface levels of Fas and conferred protection against Fas-mediated cell death signals. These studies reveal a novel lncRNA-regulated mechanism that modulates a critical cell death program during human erythropoiesis. PMID:27067490

  14. Regulation of Hedgehog signaling by ubiquitination

    PubMed Central

    Hsia, Elaine Y. C.; Gui, Yirui; Zheng, Xiaoyan

    2015-01-01

    The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components. PMID:26366162

  15. 48 CFR 52.247-36 - F.a.s. Vessel, Port of Shipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipment. 52.247-36 Section 52.247-36 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION....247-36 F.a.s. Vessel, Port of Shipment. As prescribed in 47.303-8(c), insert the following clause in solicitations and contracts when the delivery term is f.a.s. vessel, port of shipment: F.a.s. Vessel, Port...

  16. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    SciTech Connect

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L. . E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2005-08-26

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.

  17. Signals regulating dormancy in vegetative buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dormancy in plants involves a temporary suspension of meristem growth, thus insuring bud survival and maintenance of proper shoot system architecture. Dormancy regulation is a complex process involving interactions of various signals through specific and/or overlapping signal transduction pathways. ...

  18. Master Regulators in Plant Glucose Signaling Networks

    PubMed Central

    Sheen, Jen

    2014-01-01

    The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks. PMID:25530701

  19. Role of Fas-mediated apoptosis and follicle-stimulating hormone on the developmental capacity of bovine cumulus oocyte complexes in vitro.

    PubMed

    Rubio Pomar, Francisco J; Roelen, Bernard A J; Slot, Karin A; van Tol, Helena T A; Colenbrander, Ben; Teerds, Katja J

    2004-09-01

    Follicular atresia is believed to be largely regulated by apoptosis. To further understand how apoptosis can affect cumulus cells and oocytes we have evaluated the incidence and regulation of apoptosis affecting bovine cumulus oocyte complexes in vitro. Expression of components of the Fas signaling pathway was studied in both oocytes and cumulus cells by polymerase chain reaction after reverse transcription, immunoblotting, and indirect immunofluorescence. Furthermore, the Fas signaling pathway was activated in cumulus oocyte complexes with an agonistic anti-Fas antibody during in vitro maturation in the presence or absence of FSH. Viability and incidence of apoptosis in cumulus cells were evaluated by assessing membrane integrity and nuclear morphology. Oocyte nuclear maturation was also analyzed, as well as cleavage rates, blastocyst formation rates, and blastocyst quality, following in vitro fertilization. Fas mRNA and protein were expressed both in oocytes and cumulus cells. FasL protein was found in cumulus cells but could not be detected in oocytes, despite its mRNA expression. Both activation of the Fas pathway and presence of FSH during in vitro maturation increased the incidence of apoptosis in cumulus cells, affecting predominantly the middle and peripheral regions of the cumulus. The observed increase, however, had no effect on the developmental competence of the oocytes. PMID:15128594

  20. 48 CFR 47.303-8 - F.a.s. vessel, port of shipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.a.s. vessel, port of... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-8 F.a.s. vessel, port of shipment. (a) Explanation of delivery term. F.a.s. vessel, port of shipment means free of expense to...

  1. Transcriptional Regulation of Graded Hedgehog Signaling

    PubMed Central

    Falkenstein, Kristin N.; Vokes, Steven A.

    2014-01-01

    The Hedgehog (Hh) pathway plays conserved roles in regulating a diverse spectrum of developmental processes. In some developmental contexts, a gradient of Hh protein specifies multiple cell types in a dose-dependent fashion, thereby acting as a morphogen. Hh signaling ultimately acts on the transcriptional level through GLI proteins. In the presence of Hh signaling full length GLI proteins act as transcriptional activators of target genes. Conversely, in the absence of Hh, GLI proteins act as transcriptional repressors. This review will highlight mechanisms contributing to how graded Hh signaling might translate to differential GLI activity and be interpreted into distinct transcriptional responses. PMID:24862856

  2. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival. PMID:11529497

  3. Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via surface-initiated photopolymerizations

    PubMed Central

    Hume, Patrick S.; Anseth, Kristi S.

    2010-01-01

    Cell encapsulation has long been investigated as a means to achieve transplant immunoprotection as it creates a physical barrier between allograft tissue and host immune cells. Encapsulation with passive barrier materials alone, however, is generally insufficient to protect donor tissue from rejection, because small cytotoxic molecules produced by activated T cells can diffuse readily into the capsule and mediate allograft death. As a means to provide bioactive protection for polymeric encapsulation devices, we investigated a functionalized polymeric coating that mimics a natural T cell regulation pathway. T cells are regulated in vivo via Fas, a well-known ‘death receptor,’ whereby effector cells express Fas ligand and elicit T cell apoptosis upon binding the Fas receptor on a T cell surface. Anti-Fas antibodies are capable of replicating this effect and induce T cell apoptosis in solution. Here, an iniferter-based living radical polymerization was utilized to fabricate surface-anchored polymer chains containing poly(ethylene glycol) with covalently-incorporated pendant anti-Fas antibody. Using this reaction mechanism, we demonstrate fabrication conditions that yield surface densities in excess of 1.5 ng/cm2 of incorporated therapeutic, as detected by ELISA. Additionally, we show that coatings containing anti-Fas antibody induced significant T cell apoptosis, 21±2 % of cells, after 24 hours. Finally, the incorporation of a T cell adhesion ligand, intracellular adhesion molecule-1, along with anti-Fas antibody, yielded even higher levels of apoptosis, 34±1% of T cells, compared to either signal alone. PMID:20138358

  4. METABOLISM Wnt Signaling Regulates Hepatic Metabolism

    PubMed Central

    Liu, Hongjun; Fergusson, Maria M.; Wu, J. Julie; Rovira, Ilsa I.; Liu, Jie; Gavrilova, Oksana; Lu, Teng; Bao, Jianjun; Han, Donghe; Sack, Michael N.; Finkel, Toren

    2011-01-01

    The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, β-Catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. β-catenin also modulated hepatic insulin signaling. Furthermore, β-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with β-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of β-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of β-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues. PMID:21285411

  5. Signaling hierarchy regulating human endothelial cell development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  6. Mechanical Regulation of Signaling Pathways in Bone

    PubMed Central

    Thompson, William R.; Rubin, Clinton T.; Rubin, Janet

    2012-01-01

    A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength. PMID:22575727

  7. Dynamic Redox Regulation of IL-4 Signaling

    PubMed Central

    Dwivedi, Gaurav; Gran, Margaret A.; Bagchi, Pritha; Kemp, Melissa L.

    2015-01-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  8. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  9. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders.

    PubMed

    Chen, Fang; Jiang, Zongyong; Jiang, Shouqun; Li, Long; Lin, Xiajing; Gou, Zongyong; Fan, Qiuli

    2016-01-01

    The effects of dietary vitamin A (VA) supplementation on reproductive performance, VA deposition, and potential mechanisms of action were studied in Chinese yellow-feathered broiler breeders. A total of 528 yellow-feathered broiler breeders that were 46 wk old were fed a corn-soybean meal basal diet supplemented with 0; 5,400; 10,800; or 21,600 IU/kg VA for 9 wk. Each dietary treatment had 6 replicates with 22 birds per replicate. After 7 wk of treatment, 60 settable eggs per replicate were collected for hatching. The results showed that dietary VA improved the laying rate, egg-to-feed ratio, and hatch weight of offspring (P < 0.05). Hepatic retinyl palmitate in broiler breeders and hatchlings (within 12 h) increased with increasing VA (P < 0.05). VA supplementation increased insulin-like growth factor 1 (IGF-I) receptor transcripts in the ovarian stroma and the walls of yellow follicles, follicle stimulating hormone (FSH) receptor expression in the walls of white and yellow follicles, and luteinizing hormone (LH) receptor and growth hormone (GH) receptor transcripts in the walls of yellow follicles (P < 0.05). Caspase-3 and Fas mRNA levels in the ovarian stroma and the walls of white and yellow follicles decreased with VA supplementation (P < 0.05). The relative expression of retinol dehydrogenase 10 (RDH10) transcripts in the walls of white follicles increased with 5,400 IU/kg VA supplementation (P < 0.05). Supplemental 21,600 IU/kg VA increased cytochrome P450 26A1 (CYP26A1) transcripts in the ovarian stroma and the walls of white follicles (P < 0.05). Dietary VA elevated retinoic acid receptor α (RARα) expression in the ovarian stroma and the walls of yellow follicles and retinoid X receptor α (RXRα) expression in the walls of yellow follicles. It was concluded that VA supplementation improved reproductive performance and hepatic storage of VA, and this was associated with the regulation of ovarian hormone receptor expression and suppression of apoptosis

  10. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    SciTech Connect

    Feng Gong; Li Ying; Bai Yansheng

    2011-03-15

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularin induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.

  11. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells

    PubMed Central

    Iessi, Elisabetta; Zischler, Luciana; Etringer, Aurélie; Bergeret, Marion; Morlé, Aymeric; Jacquemin, Guillaume; Morizot, Alexandre; Shirley, Sarah; Lalaoui, Najoua; Elifio-Esposito, Selene L.; Fais, Stefano; Garrido, Carmen; Solary, Eric; Micheau, Olivier

    2015-01-01

    Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells. PMID:26010871

  12. Auxin signaling modules regulate maize inflorescence architecture

    PubMed Central

    Galli, Mary; Liu, Qiujie; Moss, Britney L.; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L.; Gallavotti, Andrea

    2015-01-01

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species. PMID:26464512

  13. 25-Hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway.

    PubMed

    Ma, Yongjie; Xu, Leyuan; Rodriguez-Agudo, Daniel; Li, Xiaobo; Heuman, Douglas M; Hylemon, Phillip B; Pandak, William M; Ren, Shunlin

    2008-12-01

    The oxysterol receptor LXR is a key transcriptional regulator of lipid metabolism. LXR increases expression of SREBP-1, which in turn regulates at least 32 genes involved in lipid synthesis and transport. We recently identified 25-hydroxycholesterol-3-sulfate (25HC3S) as an important regulatory molecule in the liver. We have now studied the effects of 25HC3S and its precursor, 25-hydroxycholesterol (25HC), on lipid metabolism as mediated by the LXR/SREBP-1 signaling in macrophages. Addition of 25HC3S to human THP-1-derived macrophages markedly decreased nuclear LXR protein levels. 25HC3S administration was followed by dose- and time-dependent decreases in SREBP-1 mature protein and mRNA levels. 25HC3S decreased the expression of SREBP-1-responsive genes, acetyl-CoA carboxylase-1, and fatty acid synthase (FAS) as well as HMGR and LDLR, which are key proteins involved in lipid metabolism. Subsequently, 25HC3S decreased intracellular lipids and increased cell proliferation. In contrast to 25HC3S, 25HC acted as an LXR ligand, increasing ABCA1, ABCG1, SREBP-1, and FAS mRNA levels. In the presence of 25HC3S, 25HC, and LXR agonist T0901317, stimulation of LXR targeting gene expression was repressed. We conclude that 25HC3S acts in macrophages as a cholesterol satiety signal, downregulating cholesterol and fatty acid synthetic pathways via inhibition of LXR/SREBP signaling. A possible role of oxysterol sulfation is proposed. PMID:18854425

  14. 25-Hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway

    PubMed Central

    Ma, Yongjie; Xu, Leyuan; Rodriguez-Agudo, Daniel; Li, Xiaobo; Heuman, Douglas M.; Hylemon, Phillip B.; Pandak, William M.; Ren, Shunlin

    2008-01-01

    The oxysterol receptor LXR is a key transcriptional regulator of lipid metabolism. LXR increases expression of SREBP-1, which in turn regulates at least 32 genes involved in lipid synthesis and transport. We recently identified 25-hydroxycholesterol-3-sulfate (25HC3S) as an important regulatory molecule in the liver. We have now studied the effects of 25HC3S and its precursor, 25-hydroxycholesterol (25HC), on lipid metabolism as mediated by the LXR/SREBP-1 signaling in macrophages. Addition of 25HC3S to human THP-1-derived macrophages markedly decreased nuclear LXR protein levels. 25HC3S administration was followed by dose- and time-dependent decreases in SREBP-1 mature protein and mRNA levels. 25HC3S decreased the expression of SREBP-1-responsive genes, acetyl-CoA carboxylase-1, and fatty acid synthase (FAS) as well as HMGR and LDLR, which are key proteins involved in lipid metabolism. Subsequently, 25HC3S decreased intracellular lipids and increased cell proliferation. In contrast to 25HC3S, 25HC acted as an LXR ligand, increasing ABCA1, ABCG1, SREBP-1, and FAS mRNA levels. In the presence of 25HC3S, 25HC, and LXR agonist T0901317, stimulation of LXR targeting gene expression was repressed. We conclude that 25HC3S acts in macrophages as a cholesterol satiety signal, downregulating cholesterol and fatty acid synthetic pathways via inhibition of LXR/SREBP signaling. A possible role of oxysterol sulfation is proposed. PMID:18854425

  15. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  16. Metabolic signals in sleep regulation: recent insights

    PubMed Central

    Shukla, Charu; Basheer, Radhika

    2016-01-01

    Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. PMID:26793010

  17. Localized signals that regulate transendothelial migration.

    PubMed

    Muller, William A

    2016-02-01

    Transendothelial migration (TEM) of leukocytes is the step in leukocyte emigration in which the leukocyte actually leaves the blood vessel to carry out its role in the inflammatory response. It is therefore, arguably the most critical step in emigration. This review focuses on two of the many aspects of this process that have seen important recent developments. The adhesion molecules, PECAM (CD31) and CD99 that regulate two major steps in TEM, do so by regulating specific signals. PECAM initiates the signaling pathway responsible for the calcium flux that is required for TEM. Calcium enters through the cation channel TRPC6 and recruits the first wave of trafficking of membrane from the lateral border recycling compartment (LBRC). CD99 signals through soluble adenylate cyclase to activate protein kinase A to recruit a second wave of LBRC trafficking. Another process that is critical for TEM is transient removal of VE-cadherin from the site of TEM. However, the local signaling pathways that are responsible for this appear to be different from those that open the junctions to increase vascular permeability. PMID:26584476

  18. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer

    PubMed Central

    Zhang, Guodong; Kodani, Sean; Hammock, Bruce D.

    2014-01-01

    Epoxygenated fatty acids (EpFAs), which are lipid mediators produced by cytochrome P450 epoxygenases from polyunsaturated fatty acids, are important signaling molecules known to regulate various biological processes including inflammation, pain and angiogenesis. The EpFAs are further metabolized by soluble epoxide hydrolase (sEH) to form fatty acid diols which are usually less-active. Pharmacological inhibitors of sEH that stabilize endogenous EpFAs are being considered for human clinical uses. Here we review the biology of ω-3 and ω-6 EpFAs on inflammation, pain, angiogenesis and tumorigenesis. PMID:24345640

  19. Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction

    SciTech Connect

    Peng, C.-H.; Tseng, T.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-01-15

    In our previous study, penta-acetyl geniposide ((AC){sub 5}GP) is suggested to induce tumor cell apoptosis through the specific activation of PKC{delta}. However, the downstream signal pathway of PKC{delta} has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKC{delta} isoforms. In the present study, we investigate whether JNK is involved in (AC){sub 5}GP induced apoptosis. The result reveals that (AC){sub 5}GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation shows that (AC){sub 5}GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC){sub 5}GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKC{delta}, since rottlerin impedes (AC){sub 5}GP-induced JNK activation. Therefore, (AC){sub 5}GP mediates cell death via activation of PKC{delta}/JNK/FasL cascade signaling.

  20. The aryl hydrocarbon receptor predisposes hepatocytes to Fas-mediated apoptosis.

    PubMed

    Park, Kyung-Tae; Mitchell, Kristen A; Huang, Gengming; Elferink, Cornelis J

    2005-03-01

    Liver homeostasis is achieved by the removal of diseased and damaged hepatocytes and their coordinated replacement to maintain a constant liver cell mass. Cirrhosis, viral hepatitis, and toxic drug effects can all trigger apoptosis in the liver as a means of removing the unwanted cells, and the Fas "death receptor" pathway comprises a major physiological mechanism by which this occurs. The susceptibility to Fas-mediated apoptosis is, in part, a function of the hepatocyte's proteome. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to influence apoptosis, conceivably by regulating the expression of genes involved in apoptotic signaling. In this article, we present evidence demonstrating that AhR expression and function promote apoptosis in liver cells in response to Fas stimulation. Reintroduction of the AhR into the AhR-negative BP8 hepatoma cells as well as into primary hepatocytes from AhR knockout mice increases the magnitude of cell death in response to Fas ligand. Enhanced apoptosis correlates with increased caspase activity and mitochondrial cytochrome c release but not with the expression of several Bcl-2 family proteins. In vivo studies showed that in contrast to wild-type mice, AhR knockout mice are protected from the lethal effects of the anti-Fas Jo2 antibody. Moreover, down-regulation of the aryl hydrocarbon receptor nuclear translocator protein in vivo by adenovirus-mediated RNA interference to suppress AhR activity provided wild-type mice partial protection from Jo2-induced lethality. PMID:15550680

  1. Ex vivo pediatric brain tumors express Fas (CD95) and FasL (CD95L) and are resistant to apoptosis induction.

    PubMed Central

    Riffkin, C. D.; Gray, A. Z.; Hawkins, C. J.; Chow, C. W.; Ashley, D. M.

    2001-01-01

    Fas (APO-1/CD95/TNFRSF6) is a member of the tumor necrosis/nerve growth factor receptor family that signals apoptotic cell death in sensitive cells.Expression of Fas and its agonistic ligand (FasL/TNFSF6) was investigated in ex vivo pediatric brain tumor specimens of various histologic types. Fas expression was identified in all of the 18 tumors analyzed by flow cytometry and immunohistochemistry. FasL expression was identified in most of the 13 tumors analyzed by both Western analysis and immunohistochemistry. Nine of these tumor specimens were treated with either the agonistic anti-Fas antibody (APO-1) in combination with protein A or FasL in short-term cytotoxicity assays. Sensitivity to apoptosis induced by the topoisomerase II inhibitor, etoposide, was also assessed. Despite the presence of Fas, all the specimens analyzed demonstrated a high degree of resistance to Fas-mediated apoptosis. These 9 specimens also showed a high degree of resistance to etoposide. Only 2 of the 9 specimens were susceptible to etoposide-induced cell death, whereas only 3 were sensitive to Fas-mediated apoptosis. One brain tumor was sensitive to both Fas ligation and etoposide treatment. This contrasted with the high degree of susceptibility to both etoposide- and Fas-induced apoptosis observed in the reference Jurkat cell line. The results suggest that Fas expression may be a general feature of tumors of the CNS and that a significant degree of resistance to Fas-mediated apoptosis may exist in ex vivo pediatric brain tumor specimens. PMID:11584892

  2. Regulation of redox signaling by selenoproteins.

    PubMed

    Hawkes, Wayne Chris; Alkan, Zeynep

    2010-06-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of

  3. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes

    PubMed Central

    Coe, Genevieve L.; Redd, Priscilla S.; Paschall, Amy V.; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O.; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  4. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes.

    PubMed

    Coe, Genevieve L; Redd, Priscilla S; Paschall, Amy V; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  5. Loss of c-REL but not NF-κB2 prevents autoimmune disease driven by FasL mutation.

    PubMed

    O'Reilly, L A; Hughes, P; Lin, A; Waring, P; Siebenlist, U; Jain, R; Gray, D H D; Gerondakis, S; Strasser, A

    2015-05-01

    FASL/FAS signaling imposes a critical barrier against autoimmune disease and lymphadenopathy. Mutant mice unable to produce membrane-bound FASL (FasL(Δm/Δm)), a prerequisite for FAS-induced apoptosis, develop lymphadenopathy and systemic autoimmune disease with immune complex-mediated glomerulonephritis. Prior to disease onset, FasL(Δm/Δm) mice contain abnormally high numbers of leukocytes displaying activated and elevated NF-κB-regulated cytokine levels, indicating that NF-κB-dependent inflammation may be a key pathological driver in this multifaceted autoimmune disease. We tested this hypothesis by genetically impairing canonical or non-canonical NF-κB signaling in FasL(Δm/Δm) mice by deleting the c-Rel or NF-κB2 genes, respectively. Although the loss of NF-κB2 reduced the levels of inflammatory cytokines and autoantibodies, the impact on animal survival was minor due to substantially accelerated and exacerbated lymphoproliferative disease. In contrast, a marked increase in lifespan resulting from the loss of c-REL coincided with a striking reduction in classical parameters of autoimmune pathology, including the levels of cytokines and antinuclear autoantibodies. Notably, the decrease in regulatory T-cell numbers associated with loss of c-REL did not exacerbate autoimmunity in FasL(Δm/Δm)c-rel(-/-) mice. These findings indicate that selective inhibition of c-REL may be an attractive strategy for the treatment of autoimmune pathologies driven by defects in FASL/FAS signaling that would be expected to circumvent many of the complications caused by pan-NF-κB inhibition. PMID:25361085

  6. Fas/FasL, Bcl2 and Caspase-8 gene polymorphisms in Chinese patients with rheumatoid arthritis.

    PubMed

    Zhu, Aiping; Wang, Mingjie; Zhou, Guoxin; Zhang, Hui; Liu, Ruiping; Wang, Yong

    2016-06-01

    Apoptosis signals are necessary for maintaining homeostasis and an adequate immune response. Dysregulation of apoptosis-related genes in the immune system has an important impact on autoimmune diseases such as rheumatoid arthritis (RA). Thus, we investigated the association between Fas rs2234767 G/A, FasL rs763110 C/T, Bcl2 rs12454712 T/C, Bcl2 rs17757541 C/G, and Caspase-8 rs1035142 G/T polymorphisms and RA susceptibility in a Chinese population. These five single-nucleotide polymorphisms (SNPs) were studied in a Chinese population consisting of 615 patients with RA and 839 controls. Genotyping was performed using a custom-by-design 48-Plex SNP scan TM kit. Furthermore, we undertook a meta-analysis between FasL rs763110 C/T and RA. This study indicated that Fas rs2234767 and Bcl2 rs17757541 polymorphisms were risk factors for RA. No association was observed between FasL rs763110 C/T, Bcl2 rs12454712 T/C, and Caspase-8 rs1035142 G/T polymorphisms and RA in this study. The results of this meta-analysis suggested no significant association between FasL rs763110 C/T and RA. However, stratification analysis of this meta-analysis indicated that FasL rs763110 C/T increased the risk of Caucasian RA patients. In conclusion, this study demonstrated that Fas rs2234767 G/A and Bcl2 rs17757541 T/C polymorphisms might be associated with an increased risk of RA. This meta-analysis revealed that FasL rs763110 C/T was associated with an increased risk of Caucasian RA patients. PMID:26905515

  7. Autoantigen-Specific B Cell Activation in FAS-Deficient Rheumatoid Factor Immunoglobulin Transgenic Mice

    PubMed Central

    Wang, Haowei; Shlomchik, Mark J.

    1999-01-01

    In systemic autoimmune disease, self-tolerance fails, leading to autoantibody production. A central issue in immunology is to understand the origins of activated self-reactive B cells. We have used immunoglobulin (Ig) transgenic mice to investigate the regulation of autoreactive B cells with specificity for self-IgG2a (the rheumatoid factor [RF] specificity) to understand how normal mice regulate RF autoantibodies and how this fails in autoimmune mice. We previously showed that normal mice do not tolerize the AM14 RF clone, nor do they appear to activate it. Here we show that in Fas-deficient autoimmune mice, the picture is quite different. RF B cells are activated to divide and secrete, but only when the autoantigen is present. Thus, B cells that are ignored rather than anergized in normal mice can be stimulated to produce autoantibody in Fas-deficient mice. This demonstrates a novel developmental step at which intact Fas–Fas ligand signaling is required to regulate B cells in order to prevent autoimmunity. These data also establish the relevance of ignorant self-specific B cells to autoantibody production in disease and prove that in the case of the RF specificity, the nominal autoantigen IgG2a is the driving autoantigen in vivo. PMID:10477549

  8. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes. PMID:26595272

  9. Bioelectric Signaling Regulates Size in Zebrafish Fins

    PubMed Central

    Perathoner, Simon; Daane, Jacob M.; Henrion, Ulrike; Seebohm, Guiscard; Higdon, Charles W.; Johnson, Stephen L.; Nüsslein-Volhard, Christiane; Harris, Matthew P.

    2014-01-01

    The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K+) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish. PMID:24453984

  10. Selective role of mevalonate pathway in regulating perforin but not FasL and TNFalpha release in human Natural Killer cells.

    PubMed

    Poggi, Alessandro; Boero, Silvia; Musso, Alessandra; Zocchi, Maria Raffaella

    2013-01-01

    We have analyzed the effects of fluvastatin, an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase involved in mevalonate synthesis, on human NK cell-mediated anti-tumor cytolysis. Fluvastatin inhibited the activation of the small guanosin triphosphate binding protein (GTP) RhoA and the consequent actin redistribution induced by ligation of LFA1 involved in NK-tumor target cell adhesion. Also, fluvastatin reduced ganglioside M1 rafts formation triggered through the engagement of NK cell activating receptors as FcγRIIIA (CD16), NKG2D and DNAM1. Cytolysis of tumor targets was inhibited up to 90% when NK cells were cultured with fluvastatin by affecting i) receptor-mediated increase of the intracellular free calcium concentration, ii) activation of akt1/PKB and iii) perforin and granzyme release. Fluvastatin displayed a stronger inhibiting effect on NKG2D, DNAM1, 2B4, NKp30, NKp44 and NKp46 than on CD16-mediated NK cell triggering. This was in line with the impairment of surface expression of all these receptors but not of CD16. Remarkably, fluvastatin did not affect the expression of the inhibiting receptors CD94, KIR2D and LAIR1. FasL release elicited by either NK-tumor cell interaction or CD16 or NKG2D engagement, as well as FasL-mediated killing, were not sensitive to fluvastatin. Moreover, TNFα secretion triggered in NK cells upon incubation with tumor target cells or engagement of NKG2D receptor was not impaired in fluvastatin-treated NK cells. Likewise, antibody dependent cellular cytotoxicity (ADCC) triggered through FcγRIIIA engagement with the humanized monoclonal antibody rituximab or trastuzumab was only marginally affected in fluvastatin-treated NK cells. Altogether these findings suggest that interference with mevalonate synthesis impairs activation and assembly of cytoskeleton, degranulation and cytotoxic effect of perforins and granzyme but not FasL- and TNFα-mediated cytotoxicity. PMID:23667543

  11. FasL expression in cardiomyocytes activates the ERK1/2 pathway, leading to dilated cardiomyopathy and advanced heart failure.

    PubMed

    Huby, Anne-Cecile; Turdi, Subat; James, Jeanne; Towbin, Jeffrey A; Purevjav, Enkhsaikhan

    2016-02-01

    Increase in the apoptotic molecule Fas ligand (FasL) in serum and cardiomyocytes has been shown to be associated with progressive dilated cardiomyopathy (DCM) and congestive heart failure (CHF) in humans. However, the underlying mechanism(s) of FasL-related deterioration of heart function remain obscure. The aim of the present study is to determine roles of myocardial FasL in the activation of alternative pathways such as extracellular-signal-regulated kinase 1/2 (ERK1/2), inflammation or fibrosis and to identify effective treatments of progressive DCM and advanced CHF. Transgenic mice with cardiomyocyte-specific overexpression of FasL were investigated and treated with an ERK1/2 inhibitor (U-0126), losartan (los), prednisolone (pred) or placebo. Morpho-histological and molecular studies were subsequently performed. FasL mice showed significantly higher mortality compared with wild-type (WT) littermates due to DCM and advanced CHF. Prominent perivascular and interstitial fibrosis, increased interleukin secretion and diffuse CD3-positive cell infiltration were evident in FasL hearts. Up-regulation of the short form of Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (s-FLIP), RIP (receptor-interacting protein) and ERK1/2 and down-regulation of transforming growth factor beta 1 (TGFβ1) and nuclear factor-κB (NF-κB) was determined in the myocardium, whereas expression of ERK1/2, periostin (Postn) and osteopontin increased in cardiac fibroblasts. U-0126 and los increased CHF survival by 75% compared with pred and placebo groups. U-0126 had both anti-fibrotic and anti-apoptotic effects, whereas los reduced fibrosis only. Myocardial FasL expression in mice activates differential robust fibrotic, apoptotic and inflammatory responses via ERK1/2 in cardiomyocytes and cardiac fibroblasts inducing DCM and CHF. Blocking the ERK1/2 pathway prevented progression of FasL-induced DCM and CHF by reducing fibrosis, inflammation

  12. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  13. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    PubMed

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis. PMID:26869716

  14. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. PMID:22806078

  15. The Multiple DSF-family QS Signals are Synthesized from Carbohydrate and Branched-chain Amino Acids via the FAS Elongation Cycle

    PubMed Central

    Zhou, Lian; Yu, Yonghong; Chen, Xiping; Diab, Abdelgader Abdeen; Ruan, Lifang; He, Jin; Wang, Haihong; He, Ya-Wen

    2015-01-01

    Members of the diffusible signal factor (DSF) family are a novel class of quorum sensing (QS) signals in diverse Gram-negative bacteria. Although previous studies have identified RpfF as a key enzyme for the biosynthesis of DSF family signals, many questions in their biosynthesis remain to be addressed. In this study with the phytopathogen Xanthomonas campestris pv. campestris (Xcc), we show that Xcc produces four DSF-family signals (DSF, BDSF, CDSF and IDSF) during cell culture, and that IDSF is a new functional signal characterized as cis-10-methyl-2-dodecenoic acid. Using a range of defined media, we further demonstrate that Xcc mainly produces BDSF in the presence of carbohydrates; leucine and valine are the primary precursor for DSF biosynthesis; isoleucine is the primary precursor for IDSF biosynthesis. Furthermore, our biochemical analyses show that the key DSF synthase RpfF has both thioesterase and dehydratase activities, and uses 3-hydroxydedecanoyl-ACP as a substrate to produce BDSF. Finally, our results show that the classic fatty acid synthesis elongation cycle is required for the biosynthesis of DSF-family signals. Taken all together, these findings establish a general biosynthetic pathway for the DSF-family quorum sensing signals. PMID:26289160

  16. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    PubMed

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM. PMID

  17. Endothelial Fas-Ligand in Inflammatory Bowel Diseases and in Acute Appendicitis.

    PubMed

    Kokkonen, Tuomo S; Karttunen, Tuomo J

    2015-12-01

    Fas-mediated induction of apoptosis is a major factor in the selection of lymphocytes and downregulation of immunological processes. In the present study, we have assessed endothelial Fas-ligand (FasL) expression in normal human ileum, appendix, and colon, and compared the expression levels with that in inflammatory bowel disease and in acute appendicitis. In a normal appendix, endothelial FasL levels were constant in almost half of the mucosal vessels; but, in the normal ileum and colon, endothelial FasL was practically restricted to areas in close proximity to lymphatic follicles, and was expressed mainly in the submucosal aspect of the follicles in the vessels with high endothelium. In samples from subjects with either Crohn's disease or ulcerative colitis, the extent of endothelial FasL expression was elevated in the submucosa and associated with an elevated number of lymphoid follicles. In inflammatory bowel disease, ulcers and areas with a high density of mononuclear cells expressing FasL also showed an elevated density of blood vessels with endothelial FasL expression. Although the function of endothelial FasL remains unclear, such a specific expression pattern suggests that endothelial FasL expression has a role in the regulation of lymphocyte access to the peripheral lymphoid tissues, including the intestinal mucosa. PMID:26374830

  18. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    PubMed Central

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  19. Signal Transduction Cascades Regulating Fungal Development and Virulence

    PubMed Central

    Lengeler, Klaus B.; Davidson, Robert C.; D'souza, Cletus; Harashima, Toshiaki; Shen, Wei-Chiang; Wang, Ping; Pan, Xuewen; Waugh, Michael; Heitman, Joseph

    2000-01-01

    Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms. PMID:11104818

  20. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    PubMed Central

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  1. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas.

    PubMed

    Shukuwa, Tetsuo; Katayama, Ichiro; Koji, Takehiko

    2002-04-01

    In a rodent system, melanoma cells expressing Fas ligand (FasL) could kill Fas-positive lymphocytes, suggesting that FasL expression was an essential factor for melanoma cell survival in vivo. These findings led us to investigate apoptosis, and to histochemically analyze involvement of Fas and FasL in the induction of apoptosis, in human malignant melanoma tissues. The percentages of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labeling (TUNEL)-positive melanoma cells and of proliferating cell nuclear antigen (PCNA)-positive melanoma cells in melanoma tissues (n = 22) were greater than those in melanocytes in uninvolved skin (n = 6) and nevus cells in nevi tissues (n = 9). The infiltrating lymphocytes around melanomas were also TUNEL positive. Immunohistochemistry revealed expression of Fas and FasL in melanoma cells and lymphocytes, whereas no Fas or FasL expression was detected in normal skin melanocytes and nevus cells. There was significant correlation between Fas-positive indices and TUNEL indices in melanoma tissues. Moreover, TUNEL-, Fas-, and FasL-positive indices of melanoma cells from patients with Stage 3 melanomas were significantly lower than those with Stage 2 melanomas. The PCNA index of Stage 1 melanoma was significantly lower than that of the other stages, although the difference of PCNA index was insignificant among Stages 2 to 4. Among Stages 1 to 4, there was no difference in the PCNA, TUNEL-, and Fas-positive indices of lymphocytes, although the FasL-positive index of lymphocytes from Stage 3 melanomas was significantly lower than in that from Stage 2. These data reveal that melanoma cells and infiltrating lymphocytes have the potential to induce their own apoptosis regulated by Fas and FasL in an autocrine and/or paracrine fashion and that the decline of Fas-mediated apoptosis of melanoma cells, rather than the apoptosis of infiltrating lymphocytes, may affect the prognosis of melanoma patients, possibly through the

  2. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling

    SciTech Connect

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.; Lin, J.-K. . E-mail: jklin@ha.mc.ntu.edu.tw

    2007-01-15

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1 was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.

  3. Brown adipocyte differentiation is regulated by hedgehog signaling during development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During development, brown fat tissue arises from mesenchymal precursor cells under the control of signaling networks that are not yet well understood. The Hedgehog (Hh) signaling pathway is one of the major signaling pathways that regulate mesenchymal cell fate. However, whether the Hh pathway contr...

  4. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    PubMed Central

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  5. Expression of soluble Fas and soluble FasL in human nucleus pulposus cells.

    PubMed

    Sun, Zhen; Wan, Zhong-Yuan; Liu, Zhi-Heng; Guo, Yun-Shan; Yin, Jun-Bin; Duan, Chun-Guang; Gao, Yang; Li, Tao; Wang, Hai-Qiang; Luo, Zhuo-Jing

    2013-01-01

    The study aimed for addressing the expression of soluble Fas (sFas) and soluble Fas Ligand (sFasL) in human nucleus pulposus (NP) and its attendant relationship with disc degeneration. Human NP samples were collected from patients with disc degeneration and cadavers as degenerate and normal groups, respectively. Subsequently, NP cells were cultured in monolayer. ELISA was performed to identify the expression levels of sFas and sFasL in the supernatant of NP cell cultures in vitro. Quantitative real-time PCR was used to detect the expression of sFas and sFasL in human NP cells in mRNA solution. The study comprised 12 degenerate and 8 normal cadaveric NP samples. The concentration value of sFas in the supernatant was significantly higher from degenerate NP than that from normal NP at each time point. In contrast, sFasL was significantly lower at each time point. Moreover, the expression of sFas and sFasL reached the peak at various early stages of cell cultures and decreased thereafter. Furthermore, the mRNA level of Fas in degenerate NP cells was significantly higher than that in normal cells; whereas FasL showed an opposite pattern. The study is the first addressing the expression of sFas and sFasL in human NP cell cultures. Moreover, the expression of sFas and sFasL varies with culture time in vitro with different levels in degenerate and normal settings. These findings indicate that sFas and sFasL might play a role in intervertebral disc degeneration. PMID:23923075

  6. Function and Regulation in MAPK Signaling Pathways

    PubMed Central

    Chen, Raymond E.; Thorner, Jeremy

    2007-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells. PMID:17604854

  7. Proinflammatory signaling regulates hematopoietic stem cell emergence.

    PubMed

    Espín-Palazón, Raquel; Stachura, David L; Campbell, Clyde A; García-Moreno, Diana; Del Cid, Natasha; Kim, Albert D; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-11-20

    Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  8. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  9. Regulation of cholesterol biosynthesis and cancer signaling

    PubMed Central

    Gorin, Andrey; Gabitova, Linara; Astsaturov, Igor

    2012-01-01

    Cellular growth is highly dependent on sustained production of lipids. Sterol composition of cellular membranes determines multiple biochemical and biophysical properties of membrane-based processes including vesicle traffic, receptor signaling and assembly of protein complexes. Lipid biogenesis has become an attractive biochemical target in cancer given the high level of dependency on sterols and lipids in a cancer cell. This review summarized the current knowledge of mechanisms of interaction between the metabolism of sterols and receptor signaling. PMID:22824431

  10. Regulation of neurogenesis by calcium signaling.

    PubMed

    Toth, Anna B; Shum, Andrew K; Prakriya, Murali

    2016-03-01

    Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes. PMID:27020657

  11. Redox-dependent regulation of epidermal growth factor receptor signaling.

    PubMed

    Heppner, David E; van der Vliet, Albert

    2016-08-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. PMID:26722841

  12. Redox-dependent regulation of epidermal growth factor receptor signaling

    PubMed Central

    Heppner, David E.; van der Vliet, Albert

    2015-01-01

    Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. PMID:26722841

  13. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.

    PubMed

    Davière, Jean-Michel; Achard, Patrick

    2016-01-01

    Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. PMID:26415696

  14. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  15. Neurotrophin signaling endosomes: biogenesis, regulation, and functions.

    PubMed

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-08-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  16. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  17. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  18. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  19. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    PubMed

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  20. Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes

    SciTech Connect

    Ziemba, Stamatina E.; McCabe, Michael J.; Rosenspire, Allen J. . E-mail: arosensp@sun.science.wayne.edu

    2005-08-15

    Genetically susceptible rodents exposed to low burdens of inorganic mercury (Hg{sup 2+}) develop autoimmune disease. Previous studies have shown that low, noncytotoxic levels of Hg{sup 2+} inhibit Fas-mediated apoptosis in T cells. These results suggest that inhibition of the Fas death receptor pathway potentially contributes to autoimmune disease after Hg{sup 2+} exposure, as a consequence of disruption of peripheral tolerance. The formation of active death inducing signaling complexes (DISC) following CD95/Fas receptor oligomerization is a primary step in the Fas-mediated apoptotic pathway. Other recent studies have shown that Hg{sup 2+} at concentrations that inhibit apoptosis also inhibit formation of active DISC, suggesting that inhibition of DISC is the mechanism responsible for Hg{sup 2+}-mediated inhibition of apotosis. Preassociated Fas receptors have been implicated as key elements necessary for the production of functional DISC. We present evidence in this study showing that low and nontoxic concentrations of Hg{sup 2+} induce the dissociation of preassembled Fas receptor complexes in Jurkat T cells. Thus, this Hg{sup 2+}-induced event should subsequently decrease the amount of preassembled Fas available for DISC formation, potentially resulting in the attenuation of Fas-mediated apoptosis in T lymphocytes.

  1. Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer.

    PubMed

    Sathaiah, M; Thirunavukkarasu, P; O'Malley, M E; Kavanagh, M A; Ravindranathan, R; Austin, F; Guo, Z S; Bartlett, D L

    2012-03-01

    Tumor necrosis factor superfamily members, including Fas ligand and TRAIL, have been studied extensively for cancer therapy, including as components of gene therapy. We examined the use of FasL expression to achieve tumor-selective replication of an oncolytic poxvirus (vFasL), and explored its biology and therapeutic efficacy for FasR- and FasR+ cancers. Infection of FasR+ normal and MC38 cancer cells by vFasL led to abortive viral replication owing to acute apoptosis and subsequently showed both reduced pathogenicity in non-tumor-bearing mice and reduced efficacy in FasR+ tumor-bearing mice. Infection of FasR- B16 cancer cells by vFasL led to efficient viral replication, followed by late induction of FasR and subsequent apoptosis. Treatment with vFasL as compared with its parental virus (vJS6) led to increased tumor regression and prolonged survival of mice with FasR- cancer (B16) but not with FasR+ cancer (MC38). The delayed induction of FasR by viral infection in FasR- cells provides for potential increased efficacy beyond the limit of the direct oncolytic effect. FasR induction provides one mechanism for tumor-selective replication of oncolytic poxviruses in FasR- cancers with enhanced safety. The overall result is both a safer and more effective oncolytic virus for FasR- cancer. PMID:22116377

  2. Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Dai, Weiwei; Panserat, Stéphane; Mennigen, Jan A; Terrier, Frédéric; Dias, Karine; Seiliez, Iban; Skiba-Cassy, Sandrine

    2013-12-01

    To assess the potential involvement of TORC1 (target of rapamycin complex 1) signalling in the regulation of post-prandial hepatic lipid and glucose metabolism-related gene expression in trout, we employed intraperitoneal administration of rapamycin to achieve an acute inhibition of the TOR pathway. Our results reveal that rapamycin inhibits the phosphorylation of TORC1 and its downstream effectors (S6K1, S6 and 4E-BP1), without affecting Akt and the Akt substrates Forkhead-box Class O1 (FoxO1) and glycogen synthase kinase 3α/β (GSK 3α/β). These results indicate that acute administration of rapamycin in trout leads to the inhibition of TORC1 activation. No effect is observed on the expression of genes involved in gluconeogenesis, glycolysis and fatty acid oxidation, but hepatic TORC1 inhibition results in decreased sterol regulatory element binding protein 1c (SREBP1c) gene expression and suppressed fatty acid synthase (FAS) and glucokinase (GK) at gene expression and activity levels, indicating that FAS and GK activity is controlled at a transcriptional level in a TORC1-dependent manner. This study demonstrates for the first time in fish that post-prandial regulation of hepatic lipogenesis and glucokinase in rainbow trout requires the activation of TORC1 signalling. PMID:24031053

  3. Redox Regulation of Interleukin-4 Signaling

    PubMed Central

    Sharma, Pankaj; Chakraborty, Rikhia; Wang, Lu; Min, Booki; Tremblay, Michel L.; Kawahara, Tsukasa; Lambeth, J. David; Haque, S. Jaharul

    2008-01-01

    SUMMARY The physiologic control of cytokine receptor activation is primarily mediated by reciprocal activation of receptor-associated protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Here, we show that immediately following ligand-dependent activation, IL-4 receptor induces an intracellular calcium flux via IRS-PI3K-PLC-γ pathway which, in turn, induces PKC-dependent activation of NAD(P)H oxidase (NOX)5 that generates reactive oxygen species (ROS). IL-4 also induces NOX1-mediated ROS production via IRS-PI3K-RAC1 pathway. ROS, in turn, promote IL-4 receptor activation by oxidatively inactivating PTP1B that physically associates with and deactivates IL-4 receptor. However, ROS are not required for the initiation of IL-4 receptor activation. ROS generated by activated EPO-, TNF-α- or IL-3 receptor also promote IL-4 signaling. These data reveal that inactivation of receptor-associated PTP-activity by cytokine-generated ROS is a physiologic mechanism for the amplification of cytokine receptor activation in both cis and trans, unfolding a novel means of cytokine signaling cross-talk. PMID:18957266

  4. SOCS Regulation of the JAK/STAT Signalling Pathway

    PubMed Central

    Croker, Ben A.; Kiu, Hiu; Nicholson, Sandra E.

    2008-01-01

    The Suppressor Of Cytokine Signalling (SOCS) proteins were, as their name suggests, first described as inhibitors of cytokine signalling. While their actions clearly now extend to other intracellular pathways, they remain key negative regulators of cytokine and growth factor signalling. In this review we focus on the mechanics of SOCS action and the complexities of the mouse models that have underpinned our current understanding of SOCS biology. PMID:18708154

  5. Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling

    PubMed Central

    Jerde, Travis J.

    2015-01-01

    Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration. PMID:26339505

  6. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia.

    PubMed

    Fathi, Mina; Amirghofran, Zahra; Shahriari, Mehdi

    2012-09-01

    The soluble forms of Fas and its ligand (sFas and sFasL) correlate with disease progression in various malignancies. We compared serum levels of sFas and sFasL in children with acute lymphoblastic leukemia and healthy children to determine the prognostic significance of these molecules. Serum levels of sFas and sFasL were measured with an enzyme-linked immunosorbent assay in 48 patients with newly diagnosed childhood acute lymphoblastic leukemia and 38 healthy children. Cut-off values of sFas and sFasL levels were based on their levels in controls. Clinical and laboratory characteristics were recorded on admission. The mean serum concentration of sFas was 243 ± 40 pg/mL in patients and 238 ± 29 pg/mL in controls. Serum levels of sFasL were 4.33 ± 0.25 ng/mL in patients and 4.27 ± 0.11 ng/mL in controls. Neither difference was significant. Based on the cut-off value, 12.5% of the patients were positive for sFas, and 16.6% were positive for sFasL. Survival was significantly longer in sFasL-positive patients (394 ± 69.6 vs. 254 ± 24.3 days) and the duration of complete remission was also longer (380 ± 65.0 vs. 246 ± 26.0 days) than in sFasL-negative patients (P < 0.02), indicating the important role of this molecule in the response to therapy. Higher sFas levels were associated with hepatosplenomegaly (P < 0.047). In conclusion, sFasL positivity was associated with a favorable outcome in ALL patients. PMID:21528407

  7. Expression of apoptotic regulatory molecules in renal cell carcinoma: elevated expression of Fas ligand.

    PubMed

    Olive, C; Cheung, C; Nicol, D; Falk, M C

    1999-02-01

    Renal cell carcinoma (RCC) is the most common renal neoplasm. Despite being infiltrated by tumour infiltrating lymphocytes (TIL), these TIL are unable to control tumour growth in vivo, suggesting that the cytotoxic capacity of TIL against RCC is impaired, or that the tumour cells are resistant to killing and therefore escape detection by the immune system. It is postulated that the expression of apoptotic regulatory molecules in RCC favours tumour cell survival. The present study has therefore determined the expression of Fas (APO-1/CD95), Fas ligand (Fas L) and bcl-2 in these tumours. The expression of Fas, Fas L and bcl-2 mRNA transcripts was determined in RCC, normal kidney and peripheral blood by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), following RNA extraction and cDNA synthesis from tissues and cell samples. Transcript levels were measured by densitometry after Southern blot hybridization of PCR products with internal radio-labelled oligonucleotide probes; a densitometry score was assigned to each hybridizing DNA band and expressed as a ratio of the glyceraldehyde-3-phosphate dehydrogenase content. In peripheral blood, the expression of Fas L and bcl-2 transcripts was similar between patients and normal healthy individuals; however, Fas transcript expression was significantly down-regulated in the patients' versus normal peripheral blood (P = 0.026). Most interestingly, significantly up-regulated Fas L expression was observed in RCC compared to normal kidney (P = 0.041). In contrast, bcl-2 transcripts were well represented in normal kidney but markedly decreased in RCC (P = 0.021). The expression of Fas transcripts in normal kidney and RCC was variable. These data demonstrate elevated expression of Fas L transcripts in RCC, but the functional relevance of this remains to be investigated. PMID:10101681

  8. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  9. Hippocampal Wnt Signaling: Memory Regulation and Hormone Interactions.

    PubMed

    Fortress, Ashley M; Frick, Karyn M

    2016-06-01

    Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury. PMID:25717070

  10. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    PubMed

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  11. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  12. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    PubMed Central

    Vlasova-St. Louis, Irina; Bohjanen, Paul R.

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  13. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  14. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs.

    PubMed

    Vlasova-St Louis, Irina; Bohjanen, Paul R

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  15. Fas-mediated elimination of antigen-presenting cells and autoreactive T cells contribute to prevention of autoimmunity

    PubMed Central

    Stranges, Peter. B.; Watson, Jessica; Cooper, Cristie J.; Choisy-Rossi, Caroline-Morgane; Stonebraker, Austin C.; Beighton, Ryan A.; Hartig, Heather; Sundberg, John P.; Servick, Stein; Kaufmann, Gunnar; Fink, Pamela J.; Chervonsky, Alexander V.

    2008-01-01

    Summary Fas (Apo-1, CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen presenting cells (APC) was sufficient to cause systemic autoimmunity, implying that normally APC are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APC was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APC is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells. PMID:17509906

  16. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  17. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  18. Systemic FasL and TRAIL neutralisation reduce leishmaniasis induced skin ulceration.

    PubMed

    Tasew, Geremew; Nylén, Susanne; Lieke, Thorsten; Lemu, Befekadu; Meless, Hailu; Ruffin, Nicolas; Wolday, Dawit; Asseffa, Abraham; Yagita, Hideo; Britton, Sven; Akuffo, Hannah; Chiodi, Francesca; Eidsmo, Liv

    2010-01-01

    Cutaneous leishmaniasis (CL) is caused by Leishmania infection of dermal macrophages and is associated with chronic inflammation of the skin. L. aethiopica infection displays two clinical manifestations, firstly ulcerative disease, correlated to a relatively low parasite load in the skin, and secondly non-ulcerative disease in which massive parasite infiltration of the dermis occurs in the absence of ulceration of epidermis. Skin ulceration is linked to a vigorous local inflammatory response within the skin towards infected macrophages. Fas ligand (FasL) and Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expressing cells are present in dermis in ulcerative CL and both death ligands cause apoptosis of keratinocytes in the context of Leishmania infection. In the present report we show a differential expression of FasL and TRAIL in ulcerative and non-ulcerative disease caused by L. aethiopica. In vitro experiments confirmed direct FasL- and TRAIL-induced killing of human keratinocytes in the context of Leishmania-induced inflammatory microenvironment. Systemic neutralisation of FasL and TRAIL reduced ulceration in a model of murine Leishmania infection with no effect on parasitic loads or dissemination. Interestingly, FasL neutralisation reduced neutrophil infiltration into the skin during established infection, suggesting an additional proinflammatory role of FasL in addition to direct keratinocyte killing in the context of parasite-induced skin inflammation. FasL signalling resulting in recruitment of activated neutrophils into dermis may lead to destruction of the basal membrane and thus allow direct FasL mediated killing of exposed keratinocytes in vivo. Based on our results we suggest that therapeutic inhibition of FasL and TRAIL could limit skin pathology during CL. PMID:20967287

  19. Soluble Fas and the −670 Polymorphism of Fas in Lupus Nephritis

    PubMed Central

    Bollain-y-Goytia, Juan José; Arellano-Rodríguez, Mariela; Torres-Del-Muro, Felipe de Jesús; Daza-Benítez, Leonel; Francisco Muñoz-Valle, José; Avalos-Díaz, Esperanza; Herrera-Esparza, Rafael

    2014-01-01

    This study was performed to clarify the role of soluble Fas (sFas) in lupus nephritis (LN) and establish a potential relationship between LN and the −670 polymorphism of Fas in 67 patients with systemic lupus erythematosus (SLE), including a subset of 24 LN patients with proteinuria. Additionally, a group of 54 healthy subjects (HS) was included. The allelic frequency of the −670 polymorphism of Fas was determined using PCR-RFLP analysis, and sFas levels were assessed by ELISA. Additionally, the WT-1 protein level in urine was measured. The Fas receptor was determined in biopsies by immunohistochemistry (IHC) and in situ hybridization (FISH) and apoptotic features by TUNEL. Results. The −670 Fas polymorphism showed that the G allele was associated with increased SLE susceptibility, with an odds ratio (OR) of 1.86. The sFas was significantly higher in LN patients with the G/G genotype, and this subgroup exhibited correlations between the sFas level and proteinuria and increased urinary WT-1 levels. LN group shows increased expression of Fas and apoptotic features. In conclusion, our results indicate that the G allele of the −670 polymorphism of Fas is associated with genetic susceptibility in SLE patients with elevated levels of sFas in LN with proteinuria. PMID:25505993

  20. Silencing of fas, fas-associated via death domain, or caspase 3 differentially affects lung inflammation, apoptosis, and development of trauma-induced septic acute lung injury.

    PubMed

    Messer, Mirko Philipp; Kellermann, Philipp; Weber, Sascha Jörn; Hohmann, Christoph; Denk, Stephanie; Klohs, Bettina; Schultze, Anke; Braumüller, Sonja; Huber-Lang, Markus Stefan; Perl, Mario

    2013-01-01

    Activation of Fas signaling is a potentially important pathophysiological mechanism in the development of septic acute lung injury (ALI). However, so far the optimal targets within this signaling cascade remain elusive. Thus, we tested the hypothesis that in vivo gene silencing of Fas, Fas-associated via death domain (FADD), or caspase 3 by intratracheal administration of small interfering RNA would ameliorate ALI in a clinically relevant double-hit mouse model of trauma induced septic lung injury. Male C57Bl/6 mice received small interfering (Fas, FADD, caspase 3) or control RNA 24 h before and 12 h after blunt chest trauma or sham procedures. Polymicrobial sepsis was induced by cecal ligation and puncture 24 h after chest trauma. Twelve or 24 h later, lung tissue, plasma, and bronchoalveolar lavage fluid were harvested. During ALI, lung apoptosis (active caspase 3 Western blotting, TUNEL staining) was substantially increased when compared with sham. Silencing of caspase 3 or FADD both markedly reduced pulmonary apoptosis. Fas- and FADD-small interfering RNA administration substantially decreased lung cytokine concentration, whereas caspase 3 silencing did not reduce lung inflammation. In addition, Fas silencing markedly decreased lung neutrophil infiltration. Interestingly, only in response to caspase 3 silencing, ALI-induced lung epithelial barrier dysfunction was substantially improved, and histological appearance was beneficially affected. Taken together, downstream inhibition of lung apoptosis via caspase 3 silencing proved to be superior in mitigating ALI when compared with upstream inhibition of apoptosis via Fas or FADD silencing, even in the presence of additional anti-inflammatory effects. This indicates a major pathophysiological role of lung apoptosis and suggests the importance of other than Fas-driven apoptotic pathways in trauma-induced septic ALI. PMID:23247118

  1. Neuropilins are positive regulators of Hedgehog signal transduction.

    PubMed

    Hillman, R Tyler; Feng, Brian Y; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G; Teruel, Mary N; Oro, Anthony E; Chen, James K; Scott, Matthew P

    2011-11-15

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  2. Signaling and transcriptional regulation in osteoblast commitment and differentiation

    PubMed Central

    Huang, Wei; Yang, Shuying; Shao, Jianzhong; Li, Yi-Ping

    2013-01-01

    The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases. PMID:17485283

  3. Corruption of the Fas Pathway Delays the Pulmonary Clearance of Murine Osteosarcoma Cells, Enhances Their Metastatic Potential, and Reduces the Effect of Aerosol Gemcitabine

    PubMed Central

    Gordon, Nancy; Koshkina, Nadezhda V.; Jia, Shu-Fang; Khanna, Chand; Mendoza, Arnulfo; Worth, Laura L.; Kleinerman, Eugenie S.

    2015-01-01

    Purpose Pulmonary metastases continue to be a significant problem in osteosarcoma. Apoptosis dysfunction is known to influence tumor development. Fas (CD95, APO-1)/FasL is one of the most extensively studied apoptotic pathways. Because FasL is constitutively expressed in the lung, cells that express Fas should be eliminated by lung endothelium. Cells with low or no cell surface Fas expression may be able to evade this innate defense mechanism. The purpose of these studies was to evaluate Fas expression in osteosarcoma lung metastases and the effect of gemcitabine on Fas expression and tumor growth. Experimental Design and Results Using the K7M2 murine osteosarcoma model, Fas expression was quantified using immunohistochemistry. High levels of Fas were present in primary tumors, but no Fas expression was present in actively growing lung metastases. Blocking the Fas pathway using Fas-associated death domain dominant-negative delayed tumor cell clearance from the lung and increased metastatic potential. Treatment of mice with aerosol gemcitabine resulted in increased Fas expression and subsequent tum or regression. Conclusions We conclude that corruption of the Fas pathway is critical to the ability of osteosarcoma cells to grow in the lung. Agents such as gemcitabine that up-regulate cell surface Fas expression may therefore be effective in treating osteosarcoma lung metastases. These data also suggest that an additional mechanism by which gemcitabine induces regression of osteosarcoma lung metastases is mediated by enhancing the sensitivity of the tumor cells to the constitutive FasL in the lung. PMID:17671136

  4. New Insights into How Trafficking Regulates T Cell Receptor Signaling

    PubMed Central

    Lou, Jieqiong; Rossy, Jérémie; Deng, Qiji; Pageon, Sophie V.; Gaus, Katharina

    2016-01-01

    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions. PMID:27508206

  5. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  6. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling.

    PubMed

    Straub, Adam C; Lohman, Alexander W; Billaud, Marie; Johnstone, Scott R; Dwyer, Scott T; Lee, Monica Y; Bortz, Pamela Schoppee; Best, Angela K; Columbus, Linda; Gaston, Benjamin; Isakson, Brant E

    2012-11-15

    Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) α (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb α and is abrogated by its genetic depletion. Mechanistically, endothelial Hb α haem iron in the Fe(3+) state permits NO signalling, and this signalling is shut off when Hb α is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb α oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells. PMID:23123858

  7. Regulation from within: the cytoskeleton in transmembrane signaling

    PubMed Central

    Jaqaman, Khuloud; Grinstein, Sergio

    2013-01-01

    There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the non-uniform distribution of immunoreceptors and their self-association may affect activation and signaling. PMID:22917551

  8. A chloroplast retrograde signal regulates nuclear alternative splicing

    PubMed Central

    Petrillo, Ezequiel; Herz, Micaela A. Godoy; Fuchs, Armin; Reifer, Dominik; Fuller, John; Yanovsky, Marcelo J.; Simpson, Craig; Brown, John W. S.; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R.

    2015-01-01

    Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions. PMID:24763593

  9. Caveolin-3 regulates myostatin signaling. Mini-review.

    PubMed

    Ohsawa, Y; Okada, T; Kuga, A; Hayashi, S; Murakami, T; Tsuchida, K; Noji, S; Sunada, Y

    2008-07-01

    Caveolins, components of the uncoated invaginations of plasma membrane, regulate signal transduction and vesicular trafflicking. Loss of caveolin-3, resulting from dominant negative mutations of caveolin-3 causes autosomal dominant limb-girdle muscular dystrophy (LGMD) 1C and autosomal dominant rippling muscle disease (AD-RMD). Myostatin, a member of the muscle-specific transforming growth factor (TGF)-beta superfamily, negatively regulates skeletal muscle volume. Herein we review caveolin-3 suppressing of activation of type I myostatin receptor, thereby inhibiting subsequent intracellular signaling. In addition, a mouse model of LGMD1C has shown atrophic myopathy with enhanced myostatin signaling. Myostatin inhibition ameliorates muscular phenotype in the model mouse, accompanied by normalized myostatin signaling. Enhanced myostatin signaling by caveolin-3 mutation in human may contribute to the pathogenesis of LGMD1C. Therefore, myostatin inhibition therapy may be a promising treatment for patients with LGMD1C. More recent studies concerning regulation of TGF-beta superfamily signaling by caveolins have provided new insights into the pathogenesis of several human diseases. PMID:19108573

  10. Caveolin-3 regulates myostatin signaling. Mini-review

    PubMed Central

    Ohsawa, Y; Okada, T; Kuga, A; Hayashi, S; Murakami, T; Tsuchida, K; Noji, S; Sunada, Y

    2008-01-01

    Summary Caveolins, components of the uncoated invaginations of plasma membrane, regulate signal transduction and vesicular trafficking. Loss of caveolin-3, resulting from dominant negative mutations of caveolin-3 causes autosomal dominant limb-girdle muscular dystrophy (LGMD) 1C and autosomal dominant rippling muscle disease (AD-RMD). Myostatin, a member of the muscle-specific transforming growth factor (TGF)-β superfamily, negatively regulates skeletal muscle volume. Herein we review caveolin-3 suppressing of activation of type I myostatin receptor, thereby inhibiting subsequent intracellular signaling. In addition, a mouse model of LGMD1C has shown atrophic myopathy with enhanced myostatin signaling. Myostatin inhibition ameliorates muscular phenotype in the model mouse, accompanied by normalized myostatin signaling. Enhanced myostatin signaling by caveolin-3 mutation in human may contribute to the pathogenesis of LGMD1C. Therefore, myostatin inhibition therapy may be a promising treatment for patients with LGMD1C. More recent studies concerning regulation of TGF-β superfamily signaling by caveolins have provided new insights into the pathogenesis of several human diseases. PMID:19108573

  11. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages.

    PubMed

    Rui, Yuxiang; Liu, Xingguang; Li, Nan; Jiang, Yingming; Chen, Guoyou; Cao, Xuetao; Wang, Jianli

    2007-12-01

    Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases. PMID:18025177

  12. Rnd3 regulates lung cancer cell proliferation through notch signaling.

    PubMed

    Tang, Yongjun; Hu, Chengping; Yang, Huaping; Cao, Liming; Li, Yuanyuan; Deng, Pengbo; Huang, Li

    2014-01-01

    Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase. PMID:25372032

  13. Rnd3 Regulates Lung Cancer Cell Proliferation through Notch Signaling

    PubMed Central

    Tang, Yongjun; Hu, Chengping; Yang, Huaping; Cao, Liming; Li, Yuanyuan; Deng, Pengbo; Huang, Li

    2014-01-01

    Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase. PMID:25372032

  14. The FasFADD death domain complex structure reveals the basis of DISC assembly and disease mutations

    SciTech Connect

    Wang, Liwei; Yang, Jin Kuk; Kabaleeswaran, Venkataraman; Rice, Amanda J.; Cruz, Anthony C.; Park, Ah Young; Yin, Qian; Damko, Ermelinda; Jang, Se Bok; Raunser, Stefan; Robinson, Carol V.; Siegel, Richard M.; Walz, Thomas; Wu, Hao

    2010-10-10

    The death-inducing signaling complex (DISC) formed by the death receptor Fas, the adaptor protein FADD and caspase-8 mediates the extrinsic apoptotic program. Mutations in Fas that disrupt the DISC cause autoimmune lymphoproliferative syndrome (ALPS). Here we show that the Fas-FADD death domain (DD) complex forms an asymmetric oligomeric structure composed of 5-7 Fas DD and 5 FADD DD, whose interfaces harbor ALPS-associated mutations. Structure-based mutations disrupt the Fas-FADD interaction in vitro and in living cells; the severity of a mutation correlates with the number of occurrences of a particular interaction in the structure. The highly oligomeric structure explains the requirement for hexameric or membrane-bound FasL in Fas signaling. It also predicts strong dominant negative effects from Fas mutations, which are confirmed by signaling assays. The structure optimally positions the FADD death effector domain (DED) to interact with the caspase-8 DED for caspase recruitment and higher-order aggregation.

  15. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    PubMed

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation. PMID:26378473

  16. Regulation of Xenopus gastrulation by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2016-01-01

    During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell–cell and cell–matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation. PMID:17134691

  17. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  18. Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems

    PubMed Central

    Schweizer, Eckhart; Hofmann, Jörg

    2004-01-01

    The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits α and β are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell. PMID:15353567

  19. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling.

    PubMed

    Mahoney, William M; Gunaje, Jagadambika; Daum, Guenter; Dong, Xiu Rong; Majesky, Mark W

    2013-01-01

    Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases. PMID:23637832

  20. Altered expression of Fas receptor on alveolar macrophages and inflammatory effects of soluble Fas ligand following blunt chest trauma.

    PubMed

    Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Braumüller, Sonja T; Bauknecht, Simon; Gebhard, Florian; Knöferl, Markus W

    2011-06-01

    Blunt chest trauma impairs the outcome of multiply-injured patients. Lung contusion induces inflammatory alterations and Fas-dependent apoptosis of alveolar type 2 epithelial (AT2) cells has been described. The Fas/Fas ligand (FasL) system seems to exhibit a proinflammatory potential. We aimed to elucidate the involvement of the Fas/FasL system in the inflammatory response after lung contusion. Chest trauma was induced in male rats by a pressure wave. Soluble FasL concentrations were determined in bronchoalveolar lavage fluids and alveolar macrophage (AMΦ) supernatants. Alveolar macrophages and AT2 cells were isolated to determine the surface expression (FACS) of Fas/FasL, the mRNA expression (reverse transcriptase-polymerase chain reaction) of Fas, FasL, TNF-α, IL-6, and IL-10 and to measure the release of IL-6 and IL-10 after culture with or without stimulation with FasL. After chest trauma, FasL concentration was increased in bronchoalveolar lavage fluid, and AMΦ supernatants and Fas and FasL protein were downregulated on AMΦs and unchanged on AT2 cells. The mRNA expression of Fas was increased in AMΦs and AT2 cells and that of FasL only in AMΦs isolated after lung contusion. Fas ligand stimulation further enhanced IL-6 and suppressed IL-10 release in AMΦs after trauma.The results indicate that the Fas/FasL system is activated after chest trauma, and FasL is associated with the inflammatory response after lung contusion. The proinflammatory response of AMΦs is enhanced by FasL stimulation. Both AMΦs and AT2 cells seem to contribute to the mediator release after lung contusion. These results confirm the importance of the Fas/FasL system in the inflammatory response after chest trauma. PMID:21330946

  1. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  2. Calcineurin Signaling Regulates Neural Induction Through Antagonizing the BMP Pathway

    PubMed Central

    Cho, Ahryon; Deng, Suhua; Chen, Lei; Miller, Erik; Wernig, Marius; Graef, Isabella A

    2014-01-01

    Summary Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca2+-activated phosphatase calcineurin (CaN). FGF-regulated Ca2+ entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures. PMID:24698271

  3. Chemokines and the Signaling Modules Regulating Integrin Affinity

    PubMed Central

    Montresor, Alessio; Toffali, Lara; Constantin, Gabriela; Laudanna, Carlo

    2012-01-01

    Integrin-mediated adhesion is a general concept referring to a series of adhesive phenomena including tethering–rolling, affinity, valency, and binding stabilization altogether controlling cell avidity (adhesiveness) for the substrate. Arrest chemokines modulate each aspect of integrin activation, although integrin affinity regulation has been recognized as the prominent event in rapid leukocyte arrest induced by chemokines. A variety of inside-out and outside-in signaling mechanisms have been related to the process of integrin-mediated adhesion in different cellular models, but only few of them have been clearly contextualized to rapid integrin affinity modulation by arrest chemokines in primary leukocytes. Complex signaling processes triggered by arrest chemokines and controlling leukocyte integrin activation have been described for ras-related rap and for rho-related small GTPases. We summarize the role of rap and rho small GTPases in the regulation of rapid integrin affinity in primary leukocytes and provide a modular view of these pro-adhesive signaling events. A potential, albeit still speculative, mechanism of rho-mediated regulation of cytoskeletal proteins controlling the last step of integrin activation is also discussed. We also discuss data suggesting a functional integration between the rho- and rap-modules of integrin activation. Finally we examine the universality of signaling mechanisms regulating integrin triggering by arrest chemokines. PMID:22654882

  4. Signalling mechanisms regulating phenotypic changes in breast cancer cells

    PubMed Central

    Volinsky, Natalia; McCarthy, Cormac J.; von Kriegsheim, Alex; Saban, Nina; Okada-Hatakeyama, Mariko; Kolch, Walter; Kholodenko, Boris N.

    2015-01-01

    In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways. PMID:25643809

  5. Distribution of apoptosis-mediating Fas antigen in human skin and effects of anti-Fas monoclonal antibody on human epidermal keratinocyte and squamous cell carcinoma cell lines.

    PubMed

    Oishi, M; Maeda, K; Sugiyama, S

    1994-01-01

    Fast antigen is a cell surface protein that mediates apoptosis. Using immunohistological, flow cytometry and electron microscopic analyses, we investigated the expression of Fas antigen on various skin tissues, and on cultured SV40-transformed human epidermal keratinocyte cell line KJD and human skin squamous cell carcinoma cell line HSC. The Fas antigen was widely distributed in skin components such as the keratinocytes in the lower portion of the epidermis, epidermal dendritic cells, endothelial cells, fibroblasts, apocrine glands, eccrine sweat glands, sebaceous glands, some normal melanocytes and infiltrating lymphoid cells. It was also strongly expressed on the keratinocytes of lichenoid eruptions seen in lupus erythematosus and lichen planus, and on the spongiotic or acanthotic epidermis seen in chronic eczema, adult T-cell leukaemia/lymphoma (ATLL) and atopic dermatitis. Its expression was closely correlated with lymphoid infiltrating cells and it was strongly expressed in lymphoid neoplastic cells, particularly ATLL cells, and fibroblasts seen in dermatofibroma. However, the antigen was not detected on basal cell epithelioma cells, some malignant melanomas or any junctional naevi. The cell lines KJD and HSC strongly expressed the Fas antigen, and crosslinking of the Fas antigen by an anti-Fas monoclonal antibody induced apoptosis of these cell lines. These results indicate that the apoptosis-mediating Fas antigen may play an important role in normal skin turnover and cell differentiation, in immune regulation of skin tumours, and in the pathogenesis of various skin diseases. PMID:7529480

  6. Lipid rafts as major platforms for signaling regulation in cancer.

    PubMed

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  7. Signaling networks regulating leukocyte podosome dynamics and function

    PubMed Central

    Dovas, Athanassios; Cox, Dianne

    2011-01-01

    Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and are required to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes. PMID:21342664

  8. PPAR Regulation of Inflammatory Signaling in CNS Diseases

    PubMed Central

    Bright, John J.; Kanakasabai, Saravanan; Chearwae, Wanida; Chakraborty, Sharmistha

    2008-01-01

    Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases. PMID:18670616

  9. Prostaglandin signaling regulates ciliogenesis by modulating intraflagellar transport

    PubMed Central

    Jin, Daqing; Ni, Terri T.; Sun, Jianjian; Wan, Haiyan; Amack, Jeffrey D.; Yu, Guangju; Fleming, Jonathan; Chiang, Chin; Li, Wenyan; Papierniak, Anna; Cheepala, Satish; Conseil, Gwenaëlle; Cole, Susan P.C.; Zhou, Bin; Drummond, Iain A.; Schuetz, John D.; Malicki, Jarema; Zhong, Tao P.

    2014-01-01

    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signaling cascades that regulate cilia formation remain incompletely understood. Here we report that prostaglandin signaling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants display ciliogenesis defects, and lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme Cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates cAMP-mediated signaling cascade, are required for cilia formation and elongation. Importantly, PGE2 signaling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signaling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis. PMID:25173977

  10. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  11. Retinoid signaling regulates breast cancer stem cell differentiation

    PubMed Central

    Ginestier, Christophe; Wicinski, Julien; Cervera, Nathalie; Monville, Florence; Finetti, Pascal; Bertucci, François; Wicha, Max S.; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle

    2010-01-01

    The cancer stem cell (CSC) hypothesis implicates the development of new therapeutic approaches to target the CSC population. Characterization of the pathways that regulate CSCs activity will facilitate the development of targeted therapies. We recently reported that the enzymatic activity of ALDH1, as measured by the ALDELFUOR assay, can be utilized to isolate normal and malignant breast stem cells in both primary tumors and cell lines. In this study, utilizing a tumorsphere assay, we have demonstrated the role of retinoid signaling in the regulation of breast CSCs self-renewal and differentiation. Utilizing the gene set enrichment analysis (GSEA) algorithm we identified gene sets and pathways associated with retinoid signaling. These pathways regulate breast CSCs biology and their inhibition may provide novel therapeutic approaches to target breast CSCs. PMID:19806016

  12. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ.

    PubMed

    Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C; Falck, John R; Schwartzman, Michal L; Abraham, Nader G

    2010-12-01

    Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome. PMID:20412023

  13. Epoxyeicosatrienoic Acid Agonist Regulates Human Mesenchymal Stem Cell–Derived Adipocytes Through Activation of HO-1-pAKT Signaling and a Decrease in PPARγ

    PubMed Central

    Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C.; Falck, John R.; Schwartzman, Michal L.

    2010-01-01

    Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome. PMID:20412023

  14. Cytotoxicity Mediated by the Fas Ligand (FasL)-activated Apoptotic Pathway in Stem Cells*

    PubMed Central

    Mazar, Julia; Thomas, Molly; Bezrukov, Ludmila; Chanturia, Alexander; Pekkurnaz, Gulcin; Yin, Shurong; Kuznetsov, Sergei A.; Robey, Pamela G.; Zimmerberg, Joshua

    2009-01-01

    Whereas it is now clear that human bone marrow stromal cells (BMSCs) can be immunosuppressive and escape cytotoxic lymphocytes (CTLs) in vitro and in vivo, the mechanisms of this phenomenon remain controversial. Here, we test the hypothesis that BMSCs suppress immune responses by Fas-mediated apoptosis of activated lymphocytes and find both Fas and FasL expression by primary BMSCs. Jurkat cells or activated lymphocytes were each killed by BMSCs after 72 h of co-incubation. In comparison, the cytotoxic effect of BMSCs on non-activated lymphocytes and on caspase-8(−/−) Jurkat cells was extremely low. Fas/Fc fusion protein strongly inhibited BMSC-induced lymphocyte apoptosis. Although we detected a high level of Fas expression in BMSCs, stimulation of Fas with anti-Fas antibody did not result in the expected BMSC apoptosis, regardless of concentration, suggesting a disruption of the Fas activation pathway. Thus BMSCs may have an endogenous mechanism to evade Fas-mediated apoptosis. Cumulatively, these data provide a parallel between adult stem/progenitor cells and cancer cells, consistent with the idea that stem/progenitor cells can use FasL to prevent lymphocyte attack by inducing lymphocyte apoptosis during the regeneration of injured tissues. PMID:19531476

  15. Association of FAS and FAS Ligand Genes Polymorphism and Risk of Systemic Lupus Erythematosus

    PubMed Central

    Moudi, Bita; Salimi, Saeedeh; Farajian Mashhadi, Farzaneh; Sandoughi, Mahnaz; Zakeri, Zahra

    2013-01-01

    FAS/FASL pathway plays a critical role in maintaining peripheral immune tolerance; therefore, the apoptosis genes, Fas and Fas ligand (FasL), could be suitable candidate genes in human SLE susceptibility. Materials and Methods. In this case-control study, 106 SLE patients and 149 sex, age, and ethnicity matched healthy controls were genotyped for the Fas A-670G and FasLC-844T polymorphisms by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Results. The frequency of -670AA genotype was significantly higher in SLE patients than control group and the risk of SLE was 2.1-fold greater in subjects with AA genotype (P = 0.03). The frequency of -670A allele was significantly higher in SLE patients than in controls too (58% versus 49%, P = 0.03). The -844CC genotype frequency was significantly higher in SLE patients than in healthy controls and the risk of SLE was 2.8-fold greater in these subjects (P = 0.01). The C allele frequency was significantly higher in patients than in controls (69% versus 49%, P = 0.001). Increased SLE risk was observed in individuals with combined effect of Fas-670AA and FasL-844CC genotypes (P = 0.001). Conclusion. Fas-670AA and FasL-844CC genotypes were associated with SLE risk, and combined effect of -670AA and -844CC genotypes might increase SLE susceptibility. PMID:24348139

  16. Killer B Lymphocytes and Their Fas Ligand Positive Exosomes as Inducers of Immune Tolerance

    PubMed Central

    Klinker, Matthew W.; Fox, David A.

    2015-01-01

    Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL), and their ability to kill T helper (TH) lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV) consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed major histocompatibility complex (MHC) class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes. PMID:25852690

  17. Mechanosensitive β-catenin signaling regulates lymphatic vascular development.

    PubMed

    Cha, Boksik; Srinivasan, R Sathish

    2016-08-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404]. PMID:27418286

  18. Major Histocompatibility Complex Class II Inhibits Fas Antigen-Mediated Gastric Mucosal Cell Apoptosis through Actin-Dependent Inhibition of Receptor Aggregation

    PubMed Central

    Stoicov, Calin; Cai, Xun; Li, Hanchen; Klucevsek, Kristine; Carlson, Jane; Saffari, Reza; Houghton, JeanMarie

    2005-01-01

    Escape from normal apoptotic controls is thought to be essential for the development of cancer. During Helicobacter pylori infection, the leading cause of gastric cancer, activation of the Fas antigen (Fas Ag) apoptotic pathway is responsible for early atrophy and tissue loss. As disease progresses, metaplastic and dysplastic glands arise which express Fas Ag but are resistant to apoptosis and are believed to be the precursor cells for adenocarcinoma. In this report, we show that one mechanism of acquired Fas resistance is inhibition of receptor aggregation via a major histocompatibility complex class II (MHCII)-mediated, actin-dependent mechanism. For these studies we used the well-described C57BL/6 mouse model of Helicobacter pylori and Helicobacter felis infection. Under normal conditions, Fas Ag is expressed at low levels, and MHCII expression on gastric mucosal cells is negligible. With infection and inflammation, both receptors are upregulated, and 6.1% of gastric mucosal cells express MHCII in combination with Fas Ag. Using the rat gastric mucosal cell line RGM-1 transfected with murine Fas Ag and MHCIIαβ chains, we demonstrate that MHCII prevents Fas receptor aggregation and inhibits Fas-mediated signaling through its effects on the actin cytoskeleton. Depolymerization of actin with cytochalasin D allows receptors to aggregate and restores Fas sensitivity. These findings offer one mechanism by which gastric mucosal cells acquire Fas resistance. PMID:16177302

  19. Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth?

    PubMed

    Modiano, Jaime F; Bellgrau, Donald

    2016-02-01

    Fas ligand (FasL, CD95L) is a 40-kDa type II transmembrane protein that binds to Fas (CD95) receptors and promotes programmed cell death. Fas receptors are expressed at higher levels in many tumors than in normal cells; however, systemic administration of FasL or agonistic anti-Fas antibodies to mice with tumors caused lethal hepatitis. Somewhat paradoxically, elimination of Fas or FasL from tumors also leads to death induced by CD95 receptor/ligand elimination (DICE). At face value, this suggests that Fas signaling not only kills normal cells, but that it also is essential for tumor cell survival. Targeting this pathway may not only fail to kill tumors, but instead may even enhance their growth, leading some to report the demise of Fas ligand in cancer immunotherapy. But, to paraphrase Mark Twain, is this death an exaggeration? Here, we provide a careful examination of the literature exploring the merits of FasL as a novel form of cancer immunotherapy. With local administration using delivery vectors that achieve high levels of expression in the tumor environment, our results indicate that the potential for systemic toxicity is eliminated in higher mammals, and that a systemic anti-tumor response ensues, which delays or prevents progression and simultaneously attacks distant metastases. PMID:27011046

  20. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  1. Control of Striatal Signaling by G Protein Regulators

    PubMed Central

    Xie, Keqiang; Martemyanov, Kirill A.

    2011-01-01

    Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control. PMID:21852966

  2. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling

    PubMed Central

    Roberson, Elle C.; Garcia, Galo; Abedin, Monika; Schurmans, Stéphane; Inoue, Takanari; Reiter, Jeremy F.

    2015-01-01

    SUMMARY Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling. PMID:26305592

  3. Stress Regulates Endocannabinoid-CB1 Receptor Signaling

    PubMed Central

    Hillard, Cecilia J.

    2014-01-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies. PMID:24882055

  4. TGF-β Signaling Regulates Cementum Formation through Osterix Expression

    PubMed Central

    Choi, Hwajung; Ahn, Yu-Hyun; Kim, Tak-Heun; Bae, Cheol-Hyeon; Lee, Jeong-Chae; You, Hyung-Keun; Cho, Eui-Sic

    2016-01-01

    TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OCCreTgfbr2fl/fl) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OCCreTgfbr2fl/fl mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation. PMID:27180803

  5. Hedgehog signaling in prostate epithelial-mesenchymal growth regulation

    PubMed Central

    Peng, Yu-Ching; Joyner, Alexandra L.

    2015-01-01

    The prostate gland plays an important role in male reproduction, and is also an organ prone to diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. The prostate consists of ducts with an inner layer of epithelium surrounded by stroma. Reciprocal signaling between these two cell compartments is instrumental to normal prostatic development, homeostasis, regeneration, as well as tumor formation. Hedgehog (HH) signaling is a master regulator in numerous developmental processes. In many organs, HH plays a key role in epithelial-mesenchymal signaling that regulates organ growth and tissue differentiation, and abnormal HH signaling has been implicated in the progression of various epithelial carcinomas. In this review, we focus on recent studies exploring the multipotency of endogenous postnatal and adult epithelial and stromal stem cells and studies addressing the role of HH in prostate development and cancer. We discuss the implications of the results for a new understanding of prostate development and disease. Insight into the cellular and molecular mechanisms underlying epithelial-mesenchymal growth regulation should provide a basis for devising innovative therapies to combat diseases of the prostate. PMID:25641695

  6. TGF-β Signaling Regulates Cementum Formation through Osterix Expression.

    PubMed

    Choi, Hwajung; Ahn, Yu-Hyun; Kim, Tak-Heun; Bae, Cheol-Hyeon; Lee, Jeong-Chae; You, Hyung-Keun; Cho, Eui-Sic

    2016-01-01

    TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OC(Cre)Tgfbr2(fl/fl)) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OC(Cre)Tgfbr2(fl/fl) mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation. PMID:27180803

  7. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  8. Trithorax regulates systemic signaling during Drosophila imaginal disc regeneration.

    PubMed

    Skinner, Andrea; Khan, Sumbul Jawed; Smith-Bolton, Rachel K

    2015-10-15

    Although tissue regeneration has been studied in a variety of organisms, from Hydra to humans, many of the genes that regulate the ability of each animal to regenerate remain unknown. The larval imaginal discs of the genetically tractable model organism Drosophila melanogaster have complex patterning, well-characterized development and a high regenerative capacity, and are thus an excellent model system for studying mechanisms that regulate regeneration. To identify genes that are important for wound healing and tissue repair, we have carried out a genetic screen for mutations that impair regeneration in the wing imaginal disc. Through this screen we identified the chromatin-modification gene trithorax as a key regeneration gene. Here we show that animals heterozygous for trithorax are unable to maintain activation of a developmental checkpoint that allows regeneration to occur. This defect is likely to be caused by abnormally high expression of puckered, a negative regulator of Jun N-terminal kinase (JNK) signaling, at the wound site. Insufficient JNK signaling leads to insufficient expression of an insulin-like peptide, dILP8, which is required for the developmental checkpoint. Thus, trithorax regulates regeneration signaling and capacity. PMID:26487779

  9. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression. PMID:25639875

  10. Fgf9 signaling regulates small intestinal elongation and mesenchymal development.

    PubMed

    Geske, Michael J; Zhang, Xiuqin; Patel, Khushbu K; Ornitz, David M; Stappenbeck, Thaddeus S

    2008-09-01

    Short bowel syndrome is an acquired condition in which the length of the small intestine is insufficient to perform its normal absorptive function. Current therapies are limited as the developmental mechanisms that normally regulate elongation of the small intestine are poorly understood. Here, we identify Fgf9 as an important epithelial-to-mesenchymal signal required for proper small intestinal morphogenesis. Mouse embryos that lack either Fgf9 or the mesenchymal receptors for Fgf9 contained a disproportionately shortened small intestine, decreased mesenchymal proliferation, premature differentiation of fibroblasts into myofibroblasts and significantly elevated Tgfbeta signaling. These findings suggest that Fgf9 normally functions to repress Tgfbeta signaling in these cells. In vivo, a small subset of mesenchymal cells expressed phospho-Erk and the secreted Tgfbeta inhibitors Fst and Fstl1 in an Fgf9-dependent fashion. The p-Erk/Fst/Fstl1-expressing cells were most consistent with intestinal mesenchymal stem cells (iMSCs). We found that isolated iMSCs expressed p-Erk, Fst and Fstl1, and could repress the differentiation of intestinal myofibroblasts in co-culture. These data suggest a model in which epithelial-derived Fgf9 stimulates iMSCs that in turn regulate underlying mesenchymal fibroblast proliferation and differentiation at least in part through inhibition of Tgfbeta signaling in the mesenchyme. Taken together, the interaction of FGF and TGFbeta signaling pathways in the intestinal mesenchyme could represent novel targets for future short bowel syndrome therapies. PMID:18653563

  11. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.

    PubMed

    Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K

    2016-06-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  12. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  13. Regulation of Vascular Endothelium Inflammatory Signalling by Shear Stress.

    PubMed

    Zakkar, Mustafa; Angelini, Gianni D; Emanueli, Costanza

    2016-01-01

    The vascular endothelium plays a pivotal role in regulating vascular homeostasis. Blood flow exerts several mechanical forces on the luminal surface of the Endothelial Cell (EC) including pressure, circumferential stretch, and shear stress. It is widely believed that shear stress plays a central role in regulating EC inflammatory responses and the pathogenesis of atherosclerosis. High shear stress can induce an antiinflammatory status in EC, which is partially mediated by the production of proteins and transcription factors able to suppress different proinflammatory signalling pathways. In this review, we summarise the available evidence regarding the effect of shear stress on vascular EC and smooth muscle cells, the regulation of MAPK and NF-κB including the production of different negative regulators of inflammation such as MKP-1 and NRF2, and the production of microRNAs. We also discuss the possible links between shear stress and the development of atherosclerosis. PMID:26638798

  14. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development.

    PubMed

    Liu, Liqing; Suzuki, Kentaro; Nakagata, Naomi; Mihara, Kenichiro; Matsumaru, Daisuke; Ogino, Yukiko; Yashiro, Kenta; Hamada, Hiroshi; Liu, Zhonghua; Evans, Sylvia M; Mendelsohn, Cathy; Yamada, Gen

    2012-02-01

    Retinoic acid (RA) plays pivotal roles in organogenesis, and both excessive and reduced amounts of RA cause developmental abnormalities. Reproductive organs are susceptible to teratogen toxigenicity, and the genital tubercle (GT) is one such representative organ. The physiological function of endogenous RA signaling and the mechanisms of RA-induced teratogenicity are poorly understood during the GT development. The objective of this study is to understand the developmental and teratogenic roles of RA during GT development by analyzing genetically modified mouse models. We found dynamic patterns of gene expression for the RA-synthesizing enzyme, Raldh2, and for the RA-catabolizing enzyme, Cyp26b1, during GT development. Rarb, an indicator gene for RA signaling, starts its expression in the prospective corpus cavernosum penis and in the urethral plate epithelium (UE), which plays central roles during GT development. Excessive RA signaling in Cyp26b1(-/-) mutants leads to abnormal extents of cell proliferation and differentiation during GT development, and also upregulates expression of growth factor signalings. They include Sonic hedgehog (Shh) signaling and Bone morphogenetic protein (Bmp) signaling, which are expressed in the UE and its bilateral mesenchyme. RA signaling positively regulatesShh and Bmp4 expression during GT development as testified also by the experiment of RA administration and analyses of loss-of-function of RA signaling mutants. Thus, RA signaling is involved in the developmental cascade necessary for UE formation and GT development. PMID:22127979

  15. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  16. Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

    PubMed Central

    Gillers, Benjamin S; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R; Boukens, Bastiaan J; Rentschler, Stacey

    2014-01-01

    Rationale Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results We utilized a novel allele of β-catenin that preserves β-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricular preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue. PMID:25599332

  17. Redox signaling regulated by electrophiles and reactive sulfur species.

    PubMed

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-03-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  18. Redox signaling regulated by electrophiles and reactive sulfur species

    PubMed Central

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-01-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  19. The regulation of stem cell aging by Wnt signaling.

    PubMed

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-12-01

    Aging is an inevitable physiological process that leads to the dysfunction of various tissues, and these changes may contribute to certain diseases, and ultimately death. Recent research has discovered biological pathways that promote aging. This review focuses on Wnt signaling, Wnt is a highly conserved secreted signaling molecule that plays an essential role in the development and function of various tissues, and is a notable factor that regulates aging. Although Wnt signaling influences aging in various tissues, its effects are particularly prominent in neuronal tissue and skeletal muscle. In neuronal tissue, neurogenesis is attenuated by the downregulation of Wnt signaling with aging. Skeletal muscle can also become weaker with aging, in a process known as sarcopenia. A notable cause of sarcopenia is the myogenic-to-fibrogenic trans-differentiation of satellite cells by excessive upregulation of Wnt signaling with aging, resulting in the impaired regenerative capacity of aged skeletal muscle. However, exercise is very useful for preventing the age-related alterations in neuronal tissue and skeletal muscle. Upregulation of Wnt signaling is implicated in the positive effects of exercise, resulting in the activation of neurogenesis in adult neuronal tissue and myogenesis in mature skeletal muscle. Although more investigations are required to thoroughly understand age-related changes and their biological mechanisms in a variety of tissues, this review proposes exercise as a useful therapy for the elderly, to prevent the negative effects of aging and maintain their quality of life. PMID:26322973

  20. Critical regulation of TGFbeta signaling by Hsp90.

    PubMed

    Wrighton, Katharine H; Lin, Xia; Feng, Xin-Hua

    2008-07-01

    Transforming growth factor beta (TGFbeta) controls a diverse set of cellular processes by activating TGFbeta type I (TbetaRI) and type II (TbetaRII) serine-threonine receptor kinases. Canonical TGFbeta signaling is mediated by Smad2 and Smad3, which are phosphorylated in their SXS motif by activated TbetaRI. The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone facilitating the folding and stabilization of many protein kinases and intracellular signaling molecules. Here, we present evidence identifying a critical role for Hsp90 in TGFbeta signaling. Inhibition of Hsp90 function by using small-molecule inhibitors such as 17-allylamino-17-demethoxygeldanamycin (17AAG), and also at the genetic level, blocks TGFbeta-induced signaling and transcriptional responses. Furthermore, we identify TbetaRI and TbetaRII as Hsp90-interacting proteins in vitro and in vivo and demonstrate that inhibition of Hsp90 function increases TbetaR ubiquitination and degradation dependent on the Smurf2 ubiquitin E3 ligase. Our data reveal an essential level of TGFbeta signaling regulation mediated by Hsp90 by its ability to chaperone TbetaRs and also implicate the use of Hsp90 inhibitors in blocking undesired activation of TGFbeta signaling in diseases. PMID:18591668

  1. Circadian regulation of hormone signaling and plant physiology.

    PubMed

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways. PMID:27061301

  2. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling

    PubMed Central

    Zhou, Xu; Qi, Ying

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, PLGF secreted by LC cells triggered macrophage polarization to a TAM subtype that releases MMP9. Moreover, MMP9 was found to be activated in the PLGF-polarized TAM via transforming growth factor β (TGFβ) receptor signaling activation. Furthermore, PLGF in LC cells induced macrophage polarization in vivo, and significantly promoted the growth of LC. Thus, together with our previous work, our study highlights a pivotal role of cross-talk between TAM and LC in regulating the metastasis of LC. PMID:25961789

  3. Chemical regulation of signaling pathways to programmed necrosis.

    PubMed

    Bae, Ji Hyun; Shim, Jung-Hyun; Cho, Young Sik

    2014-06-01

    Necroptosis is an active and well-orchestrated necrosis, distinctive from apoptosis in microscopic structure, and biochemical and molecular features. Unlike apoptosis-undergoing cells, which are removed by macrophage or neighboring cells, necrotic cell death releases danger signals and provokes inflammation, and further a severe damage to neighbor tissue. A regulated necrosis, termed as necroptosis or programmed necrosis, is emerging as a new paradigm of cell death that can be activated when apoptotic machinery is genetically or pathogenically defective. It plays biological significances in pathogenesis of a variety of inflammatory diseases as well as in a beneficial innate immune defense mechanism. This review highlights the identification of hits against necroptosis, and comprehensive approaches to discovery of small molecules that regulate necroptotic cell death. Also, the signaling molecular mechanism of necroptosis and future clinical uses of necroptosis inhibitor will be described in brief. PMID:24715577

  4. ASK1 signalling regulates brown and beige adipocyte function.

    PubMed

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  5. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling.

    PubMed

    Zhou, Xu; Qi, Ying

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, PLGF secreted by LC cells triggered macrophage polarization to a TAM subtype that releases MMP9. Moreover, MMP9 was found to be activated in the PLGF-polarized TAM via transforming growth factor β (TGFβ) receptor signaling activation. Furthermore, PLGF in LC cells induced macrophage polarization in vivo, and significantly promoted the growth of LC. Thus, together with our previous work, our study highlights a pivotal role of cross-talk between TAM and LC in regulating the metastasis of LC. PMID:25961789

  6. ASK1 signalling regulates brown and beige adipocyte function

    PubMed Central

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  7. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation.

    PubMed

    Di Zazzo, Erika; De Rosa, Caterina; Abbondanza, Ciro; Moncharmont, Bruno

    2013-01-01

    PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation. PMID:24832654

  8. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation

    PubMed Central

    Di Zazzo, Erika; De Rosa, Caterina; Abbondanza, Ciro; Moncharmont, Bruno

    2013-01-01

    PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation. PMID:24832654

  9. FAS 116 and 117: the implementation process.

    PubMed

    Bigalke, J T

    1993-10-01

    The Financial Accounting Standards Board finalized and issued two new statements in June 1993: "Financial Statements of Not-for-Profit Organizations" (FAS 117) and "Accounting for Contributions Received and Contributions Made" (FAS 116). The statements will become effective for fiscal years beginning after December 15, 1994. Until a revised audit guide is issued, however, several factors will need to be carefully considered when implementing the two standards. PMID:10145884

  10. In Scarcity and Abundance: Metabolic Signals Regulating Cell Growth

    PubMed Central

    Saad, Shady; Peter, Matthias

    2013-01-01

    Although nutrient availability is a major driver of cell growth, and continuous adaptation to nutrient supply is critical for the development and survival of all organisms, the molecular mechanisms of nutrient sensing are only beginning to emerge. Here, we highlight recent advances in the field of nutrient sensing and discuss arising principles governing how metabolism might regulate growth-promoting pathways. In addition, we discuss signaling functions of metabolic enzymes not directly related to their metabolic activity. PMID:23997189

  11. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals.

    PubMed

    Saber, Rana; Zadeh, Mojgan; Pakanati, Krishna C; Bere, Praveen; Klaenhammer, Todd; Mohamadzadeh, Mansour

    2011-03-01

    The trillions of microbes residing within the intestine induce critical signals that either regulate or stimulate host immunity via their bacterial products. To better understand the immune regulation elicited by lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus NCFM in steady state and induced inflammation, we deleted phosphoglycerol transferase gene, which synthesizes LTA in L. acidophilus NCFM. In vitro and in vivo experiments were conducted in order to compare the immune regulatory properties of the L. acidophilus strain deficient in LTA (NCK2025) with its wild-type parent (NCK56) in C57BL/6, C57BL/6 recombination-activation gene 1-deficient (Rag1 (-/-)) and C57BL/6 Rag1(-/-)IL-10(-/-) mice. We demonstrate that NCK2025 significantly activates the phosphorylation of Erk1/2 but downregulates the phosphorylation of Akt1, cytosolic group IV PLA2 and p38 in mouse dendritic cells. Similarly, mice treated orally with NCK2025 exhibit decreased phosphorylation of inflammatory signals (Akt1, cytosolic group IV PLA2 or P38) but upregulate Erk1/2-phosphorylation in colonic epithelial cells in comparison with mice treated with NCK56. In addition, regulation of pathogenic CD4+ T cell induced colitis by NCK2025 was observed in Rag1 (-/-) but not Rag1(-/-)IL-10 (-/-) mice suggests a critical role of IL-10 that may be tightly regulated by Erk1/2 signaling. These data highlight the immunosuppressive properties of NCK2025 to deliver regulatory signals in innate cells, which results in the mitigation of T-cell-induced colitis in vivo. PMID:21395377

  12. B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency

    PubMed Central

    Gupta, Vikas A.; Hermiston, Michelle L.; Cassafer, Gail; Daikh, David I.; Weiss, Arthur

    2008-01-01

    CD45 and Fas regulate tyrosine phosphorylation and apoptotic signaling pathways, respectively. Mutation of an inhibitory wedge motif in CD45 (E613R) results in hyperresponsive thymocytes and B cells on the C57BL/6 background, but no overt autoimmunity, whereas Fas deletion results in a mild autoimmune disease on the same genetic background. In this study, we show that these two mutations cooperate in mice, causing early lethality, autoantibody production, and substantial lymphoproliferation. In double-mutant mice, this phenotype was dependent on both T and B cells. T cell activation required signaling in response to endogenous or commensal antigens, demonstrated by the introduction of a transgenic T cell receptor. Genetic deletion of B cells also prevented T cell activation. Similarly, T cells were necessary for B cell autoantibody production. However, B cells appeared to be intrinsically activated even in the absence of T cells, suggesting that they may drive the phenotype of these mice. These results reveal a requirement for careful control of B cell signaling and cell death in preventing inappropriate lymphocyte activation and autoimmunity. PMID:19001138

  13. Nodal and Lefty signaling regulates the growth of pancreatic cells

    PubMed Central

    Zhang, You-Qing; Sterling, Lori; Stotland, Aleksandr; Hua, Hong; Kritzik, Marcie; Sarvetnick, Nora

    2014-01-01

    Nodal and its antagonist, Lefty, are important mediators specifying the laterality of the organs during embryogenesis. Nodal signals through activin receptors in the presence of its co-receptor, Cripto. In the present study, we investigated the possible roles of Nodal and Lefty signaling during islet development and regeneration. We found that both Nodal and Lefty are expressed in the pancreas during embryogenesis and islet regeneration. In vitro studies demonstrated that Nodal inhibits, whereas Lefty enhances, the proliferation of a pancreatic cell line. In addition, we showed that Lefty-1 activates MAPK and Akt phosphorylation in these cells. In vivo blockade of endogenous Lefty using neutralizing Lefty-1 monoclonal antibody results in a significantly decreased proliferation of duct epithelial cells during islet regeneration. This is the first study to decipher the expression and function of Nodal and Lefty in pancreatic growth. Importantly, our results highlight a novel function of Nodal-Lefty signaling in the regulation of expansion of pancreatic cells. PMID:18393305

  14. Signal transduction regulating meristem development in Arabidopsis. Final report

    SciTech Connect

    Cark, Steven E.

    2003-09-10

    Research support by DE-FG02-96ER20227 focused on the CLV loci and their regulation of organ formation at the Arabidopsis shoot meristem. Shoot meristem function is central to plant development as all of the above-ground organs and tissues of the plant are derived post-embryonically from the shoot meristem. At the shoot meristem, stem cells are maintained, and progeny cells undergo a switch toward differentiation and organ formation. The CLV loci, represented by three genes CLV1, CLV2 and CLV3 are key regulators of meristem development. Each of the CLV loci encode a putative receptor-mediated signaling component. When this work began, virtually nothing was known about receptor-mediated signaling in plants. Thus, our goal was to both characterize these genes and the proteins they encode as regulators of meristem development, and to investigate how receptor-mediated signaling might function in plants. Our work lead to several major publications that were significant contributions to understanding this system.

  15. Hippo Signaling Regulates Pancreas Development through Inactivation of Yap

    PubMed Central

    Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.

    2012-01-01

    The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096

  16. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling

    PubMed Central

    Chen, Yu; Liang, Zhuoyi; Fei, Erkang; Chen, Yuewen; Zhou, Xiaopu; Fang, Weiqun; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization. PMID:26204446

  17. Cannabinoid receptor signaling regulates liver development and metabolism.

    PubMed

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function. PMID:26884397

  18. [Sonic Hedgehog signaling pathway and regulation of inner ear development].

    PubMed

    Chen, Zhi-Qiang; Han, Xin-Huan; Cao, Xin

    2013-09-01

    During inner ear development, Sonic Hedgehog (Shh) signaling pathway is involved in the ventral otic identity, cell fate determination of statoacoustic ganglion neurons and hair cell development. Shh protein, secreted from floor plate, antagonizes Wnt protein from roof plate, which refines and maintains dorsoventral axial patterning in the ear. Shh, served as a mitogen during neurogenesis, directly promotes the development of spiral ganglion neuron. After Shh signaling pathway is activated, Ngn1 is freed from Tbx1 repression. As a result, Shh indirectly upregulates the expression of Ngn1, thus regulating neurogenic patterning of inner ear. In addition, Shh regulates the differentiation of hair cells by influencing cell cycle of the progenitor cells located in the cochlea. The basal-to-apical wave of Shh decline ensures the normal devel- opment pattern of hair cells. It is confirmed by a quantity of researches conducted in both animals and patients with hereditary hearing impairment that abnormal Shh signaling results in aberrant transcription of target genes, disturbance of the proper development of inner ear, and human hearing impairment. In humans, diseases accompanied by hearing disorders caused by abnormal Shh signaling include Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS), Waardenburg syndrome (WS) and medulloblastoma, etc. This review would provide a theoretical basis for further study of molecular mechanisms and clinical use of inner ear development. PMID:24400478

  19. Semaphorin 6A regulates angiogenesis by modulating VEGF signaling

    PubMed Central

    Segarra, Marta; Maric, Dragan; Salvucci, Ombretta; Hou, Xu; Kumar, Anil; Li, Xuri; Tosato, Giovanna

    2012-01-01

    Formation of new vessels during development and in the mature mammal generally proceeds through angiogenesis. Although a variety of molecules and signaling pathways are known to underlie endothelial cell sprouting and remodeling during angiogenesis, many aspects of this complex process remain unexplained. Here we show that the transmembrane semaphorin6A (Sema6A) is expressed in endothelial cells, and regulates endothelial cell survival and growth by modulating the expression and signaling of VEGFR2, which is known to maintain endothelial cell viability by autocrine VEGFR signaling. The silencing of Sema6A in primary endothelial cells promotes cell death that is not rescued by exogenous VEGF-A or FGF2, attributable to the loss of prosurvival signaling from endogenous VEGF. Analyses of mouse tissues demonstrate that Sema6A is expressed in angiogenic and remodeling vessels. Mice with null mutations of Sema6A exhibit significant defects in hyaloid vessels complexity associated with increased endothelial cell death, and in retinal vessels development that is abnormally reduced. Adult Sema6A-null mice exhibit reduced tumor, matrigel, and choroidal angiogenesis compared with controls. Sema6A plays important roles in development of the nervous system. Here we show that it also regulates vascular development and adult angiogenesis. PMID:23007403

  20. Platelet adhesion signalling and the regulation of thrombus formation.

    PubMed

    Gibbins, Jonathan M

    2004-07-15

    Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis. PMID:15252124

  1. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

    PubMed Central

    Ashton, Randolph S.; Conway, Anthony; Pangarkar, Chinmay; Bergen, Jamie; Lim, Kwang-Il; Shah, Priya; Bissell, Mina; Schaffer, David V.

    2012-01-01

    Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications. PMID:22983209

  2. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling

    PubMed Central

    Ray, Poulomi; Chapman, Susan C.

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  3. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  4. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway by a genome wide siRNA screen

    PubMed Central

    Hitomi, Junichi; Christofferson, Dana E.; Ng, Aylwin; Yao, Jianhua; Degterev, Alexei; Xavier, Ramnik J.; Yuan, Junying

    2009-01-01

    Stimulation of death receptors by agonists such as FasL and TNFα activates apoptotic cell death in apoptotic competent conditions or a type of necrotic cell death dependent on RIP1 kinase, termed necroptosis, in apoptotic deficient conditions. In a genome-wide siRNA screen for regulators of necroptosis, we identify a set of 432 genes that regulate necroptosis, a subset of 32 genes that act downstream and/or as regulators of RIP1 kinase, 32 genes required for death receptor mediated apoptosis, and 7 genes involved in both necroptosis and apoptosis. We show that the expression of subsets of the 432 genes are enriched in the immune and nervous systems, and cellular sensitivity to necroptosis is regulated by an extensive signaling network mediating innate immunity. Interestingly, Bmf, a BH3-only Bcl-2 family member, is required for death receptor-induced necroptosis. Our study defines a cellular signaling network that regulates necroptosis and the molecular bifurcation that controls apoptosis and necroptosis. PMID:19109899

  5. Signal integration by Ca2+ regulates intestinal stem cell activity

    PubMed Central

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  6. Toxin Synthesis by Clostridium difficile Is Regulated through Quorum Signaling

    PubMed Central

    DuPont, Herbert L.; Norris, Steven J.; Kaplan, Heidi B.

    2015-01-01

    ABSTRACT Clostridium difficile infection (CDI) is dramatically increasing as a cause of antibiotic- and hospital-associated diarrhea worldwide. C. difficile, a multidrug-resistant pathogen, flourishes in the colon after the gut microbiota has been altered by antibiotic therapy. Consequently, it produces toxins A and B that directly cause disease. Despite the enormous public health problem posed by this pathogen, the molecular mechanisms that regulate production of the toxins, which are directly responsible for disease, remained largely unknown until now. Here, we show that C. difficile toxin synthesis is regulated by an accessory gene regulator quorum-signaling system, which is mediated through a small (<1,000-Da) thiolactone that can be detected directly in stools of CDI patients. These findings provide direct evidence of the mechanism of regulation of C. difficile toxin synthesis and offer exciting new avenues both for rapid detection of C. difficile infection and development of quorum-signaling-based non-antibiotic therapies to combat this life-threatening emerging pathogen. PMID:25714717

  7. CD23 can negatively regulate B-cell receptor signaling

    PubMed Central

    Liu, Chaohong; Richard, Katharina; Wiggins, Melvin; Zhu, Xiaoping; Conrad, Daniel H.; Song, Wenxia

    2016-01-01

    CD23 has been implicated as a negative regulator of IgE and IgG antibody responses. However, whether CD23 has any role in B-cell activation remains unclear. We examined the expression of CD23 in different subsets of peripheral B cells and the impact of CD23 expression on the early events of B-cell receptor (BCR) activation using CD23 knockout (KO) mice. We found that in addition to marginal zone B cells, mature follicular B cells significantly down regulate the surface expression level of CD23 after undergoing isotype switch and memory B-cell differentiation. Upon stimulation with membrane-associated antigen, CD23 KO causes significant increases in the area of B cells contacting the antigen-presenting membrane and the magnitude of BCR clustering. This enhanced cell spreading and BCR clustering is concurrent with increases in the levels of phosphorylation of tyrosine and Btk, as well as the levels of F-actin and phosphorylated Wiskott Aldrich syndrome protein, an actin nucleation promoting factor, in the contract zone of CD23 KO B cells. These results reveal a role of CD23 in the negative regulation of BCR signaling in the absence of IgE immune complex and suggest that CD23 down-regulates BCR signaling by influencing actin-mediated BCR clustering and B-cell morphological changes. PMID:27181049

  8. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABAAR Signaling

    PubMed Central

    Cesetti, Tiziana; Ciccolini, Francesca; Li, Yuting

    2012-01-01

    Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered. PMID:22319472

  9. CD23 can negatively regulate B-cell receptor signaling.

    PubMed

    Liu, Chaohong; Richard, Katharina; Wiggins, Melvin; Zhu, Xiaoping; Conrad, Daniel H; Song, Wenxia

    2016-01-01

    CD23 has been implicated as a negative regulator of IgE and IgG antibody responses. However, whether CD23 has any role in B-cell activation remains unclear. We examined the expression of CD23 in different subsets of peripheral B cells and the impact of CD23 expression on the early events of B-cell receptor (BCR) activation using CD23 knockout (KO) mice. We found that in addition to marginal zone B cells, mature follicular B cells significantly down regulate the surface expression level of CD23 after undergoing isotype switch and memory B-cell differentiation. Upon stimulation with membrane-associated antigen, CD23 KO causes significant increases in the area of B cells contacting the antigen-presenting membrane and the magnitude of BCR clustering. This enhanced cell spreading and BCR clustering is concurrent with increases in the levels of phosphorylation of tyrosine and Btk, as well as the levels of F-actin and phosphorylated Wiskott Aldrich syndrome protein, an actin nucleation promoting factor, in the contract zone of CD23 KO B cells. These results reveal a role of CD23 in the negative regulation of BCR signaling in the absence of IgE immune complex and suggest that CD23 down-regulates BCR signaling by influencing actin-mediated BCR clustering and B-cell morphological changes. PMID:27181049

  10. Regulator of G Protein Signaling 2: A Versatile Regulator of Vascular Function

    PubMed Central

    Osei-Owusu, Patrick; Blumer, Kendall J.

    2016-01-01

    Regulators of G protein signaling (RGS) proteins of the B/R4 family are widely expressed in the cardiovascular system where their role in fine tuning G protein signaling is critical to maintaining homeostasis. Among members of this family, RGS2 and RGS5 have been shown to play key roles in cardiac and smooth muscle function by tightly regulating signaling pathways that are activated through Gq/11 and Gi/o classes of heterotrimeric G proteins. This chapter reviews accumulating evidence supporting a key role for RGS2 in vascular function and the implication of changes in RGS2 function and/or expression in the pathogenesis of blood pressure disorders, particularly hypertension. With such understanding, RGS2 and the signaling pathways it controls may emerge as novel targets for developing next-generation anti-hypertensive drugs/agents. PMID:26123303

  11. Insulin/IGF signaling and its regulation in Drosophila.

    PubMed

    Nässel, Dick R; Liu, Yiting; Luo, Jiangnan

    2015-09-15

    Taking advantage of Drosophila as a genetically tractable experimental animal much progress has been made in our understanding of how the insulin/IGF signaling (IIS) pathway regulates development, growth, metabolism, stress responses and lifespan. The role of IIS in regulation of neuronal activity and behavior has also become apparent from experiments in Drosophila. This review briefly summarizes these functional roles of IIS, and also how the insulin producing cells (IPCs) are regulated in the fly. Furthermore, we discuss functional aspects of the spatio-temporal production of eight different insulin-like peptides (DILP1-8) that are thought to act on one known receptor (dInR) in Drosophila. PMID:25616197

  12. Regulation of cold signaling by sumoylation of ICE1.

    PubMed

    Miura, Kenji; Hasegawa, Paul M

    2008-01-01

    The small ubiquitin-related modifier (SUMO) E3 ligase SIZ1 is an ortholog of yeast and animal SIZ (SAP and Miz)/PIAS (protein inhibition of activated STAT) proteins, which function as transcriptional coregulators either by facilitating SUMO conjugation to substrate proteins (sumoylation) or through other mechanisms that are sumoylation independent. SIZ/PIAS-type E3 ligases function in numerous eukaryotic biological processes, including regulation of organismal responses to environmental changes. This addendum summarizes our recent paper in which it is established that the Arabidopsis E3 ligase SIZ1 mediates sumoylation of ICE1. SUMO conjugation to ICE1 facilitates ICE1 activity and stability that positively regulates CBF3/DREB1A-dependent cold signaling and freezing tolerance. Furthermore, sumoylated ICE1 represses MYB15, which is a negative regulator of CBF3/DREB1A and freezing tolerance. PMID:19704769

  13. NF-κB signaling regulates myelination in the CNS

    PubMed Central

    Blank, Thomas; Prinz, Marco

    2014-01-01

    Besides myelination of neuronal axons by oligodendrocytes to facilitate propagation of action potentials, oligodendrocytes also support axon survival and function. A key transcription factor involved in these processes is nuclear factor-κB (NF-κB), a hetero or homodimer of the Rel family of proteins, including p65, c-Rel, RelB, p50, and p52. Under unstimulated, NF-κB remains inactive in the cytoplasm through interaction with NF-κB inhibitors (IκBs). Upon activation of NF-κB the cytoplasmic IκBs gets degradated, allowing the translocation of NF-κB into the nucleus where the dimer binds to the κB consensus DNA sequence and regulates gene transcription. In this review we describe how oligodendrocytes are, directly or indirectly via neighboring cells, regulated by NF-κB signaling with consequences for innate and adaptive immunity and for regulation of cell apoptosis and survival. PMID:24904273

  14. Localized JNK signaling regulates organ size during development

    PubMed Central

    Willsey, Helen Rankin; Zheng, Xiaoyan; Carlos Pastor-Pareja, José; Willsey, A Jeremy; Beachy, Philip A; Xu, Tian

    2016-01-01

    A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI: http://dx.doi.org/10.7554/eLife.11491.001 PMID:26974344

  15. Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development

    PubMed Central

    Gong, Jianfeng; Yu, Mingyan; Zhang, Fangxiong; Sha, Haibo; Gao, Xiang

    2012-01-01

    Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling. PMID:22485132

  16. Paradoxical Signaling Regulates Structural Plasticity in Dendritic Spines

    NASA Astrophysics Data System (ADS)

    Rangamani, Padmini; Levy, Michael; Khan, Shahid; Oster, George

    2016-02-01

    Transient spine enlargement (3-5 min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium-influx due to NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks and their role is to control both the activation and inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion including CaMKII, RhoA, and Cdc42 and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics.

  17. An Nfic-hedgehog signaling cascade regulates tooth root development.

    PubMed

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  18. Paradoxical signaling regulates structural plasticity in dendritic spines.

    PubMed

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  19. Fstl1 antagonizes BMP signaling and regulates ureter development.

    PubMed

    Xu, Jingyue; Qi, Xin; Gong, Jianfeng; Yu, Mingyan; Zhang, Fangxiong; Sha, Haibo; Gao, Xiang

    2012-01-01

    Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/-) ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling. PMID:22485132

  20. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

    PubMed

    Grimes, William N; Zhang, Jun; Tian, Hua; Graydon, Cole W; Hoon, Mrinalini; Rieke, Fred; Diamond, Jeffrey S

    2015-07-01

    Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night. PMID:25972578

  1. Light signaling and the phytohormonal regulation of shoot growth.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P

    2014-12-01

    Shoot growth of dicot plants is rigorously controlled by the interactions of environmental cues with several groups of phytohormones. The signaling effects of light on shoot growth are of special interest, as both light irradiance and light quality change rapidly throughout the day, causing profound changes in stem elongation and leaf area growth. Among the several dicot species examined, we have focused on sunflower (Helianthus annuus L.) because its shoots are robust and their growth is highly plastic. Sunflower shoots thus constitute an ideal tissue for assessing responses to both light irradiance and light quality signals. Herein, we discuss the possible roles of gibberellins, auxin, ethylene, cytokinins and brassinosteroids in mediating the stem elongation and leaf area growth that is induced by shade light. To do this we uncoupled the plant's responses to changes in the red to far-red [R/FR] light ratio from its responses to changes in irradiance of photosynthetically active radiation [PAR]. Reducing each of R/FR light ratio and PAR irradiance results in increased sunflower stem elongation. However, the plant's response for leaf area growth differs considerably, with a low R/FR ratio generally promoting leaf area growth, whereas low irradiance PAR inhibits it. The increased stem elongation that occurs in response to lowering R/FR ratio and PAR irradiance is accomplished at the expense of leaf area growth. In effect, the low PAR irradiance signal overrides the low R/FR ratio signal in shade light's control of leaf growth and development. Three hormone groups, gibberellins, auxin and ethylene are directly involved in regulating these light-mediated shoot growth changes. Gibberellins and auxin function as growth promoters, with auxin likely acting as an up-regulator of gibberellin biosynthesis. Ethylene functions as a growth-inhibitor and probably interacts with gibberellins in regulating both stem and leaf growth of the sunflower shoot. PMID:25443853

  2. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    PubMed Central

    Tarayrah, Lama; Li, Yuping; Gan, Qiang; Chen, Xin

    2015-01-01

    ABSTRACT Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. PMID:26490676

  3. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

    PubMed Central

    Shang, Xifu; Wang, Jinwu; Luo, Zhengliang; Wang, Yongjun; Morandi, Massimo M.; Marymont, John V.; Hilton, Matthew J.; Dong, Yufeng

    2016-01-01

    Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real-time RT-PCR data showed that over-expression of the Notch Intracellular Domain (NICD) significantly induced the expression of p57, a cell cycle inhibitor, in chondrocytes. Flow cytometric analyses further confirmed that over-expression of NICD in chondrocytes enhances the G0/G1 cell cycle transition and cell cycle arrest. In contrast, treatment of chondrocytes with the Notch inhibitor, DAPT, decreased both endogenous and BMP2-induced SMAD 1/5/8 phosphorylation and knockdown of SMAD 1/5/8 impaired NICD-induced chondrocyte differentiation and p57 expression. Co-immunoprecipitation using p-SMAD 1/5/8 and NICD antibodies further showed a strong interaction of these proteins during chondrocyte maturation. Finally, RT-PCR and Western blot results revealed a significant reduction in the expression of the SMAD-related phosphatase, PPM1A, following NICD over-expression. Taken together, our results demonstrate that Notch signaling induces cell cycle arrest and thereby initiates chondrocyte hypertrophy via BMP/SMAD-mediated up-regulation of p57. PMID:27146698

  4. PKCθ-regulated signalling in health and disease.

    PubMed

    Nath, Pulak R; Isakov, Noah

    2014-12-01

    Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease. PMID:25399558

  5. The Spectrin cytoskeleton regulates the Hippo signalling pathway

    PubMed Central

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-01-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. PMID:25712476

  6. Regulation of Endothelial Permeability by Src Kinase Signaling

    PubMed Central

    Hu, Guochang; Place, Aaron T.; Minshall, Richard D.

    2010-01-01

    An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become “leaky” during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery. PMID:17897637

  7. Spatial Regulation and the Rate of Signal Transduction Activation

    PubMed Central

    Batada, Nizar N; Shepp, Larry A; Siegmund, David O; Levitt, Michael

    2006-01-01

    Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement. PMID:16699596

  8. Hipk proteins dually regulate Wnt/Wingless signal transduction.

    PubMed

    Verheyen, Esther M; Swarup, Sharan; Lee, Wendy

    2012-01-01

    The Wnt/Wingless (Wg) pathway is an evolutionarily conserved signaling system that is used reiteratively, both spatially and temporally, to control the development of multicellular animals. The stability of cytoplasmic β-catenin/Armadillo, the transcriptional effector of the pathway, is controlled by sequential N-terminal phosphorylation and ubiquitination that targets it for proteasome-mediated degradation. Orthologous members of the Homeodomain-interacting protein kinase family from Drosophila to vertebrates have been implicated in the regulation of Wnt/Wingless signaling. In Drosophila, as a consequence of Hipk activity, cells accumulate stabilized Armadillo that directs the expression of Wg-specific target genes. Hipk promotes the stabilization of Armadillo by inhibiting its ubiquitination (and hence subsequent degradation) by the SCF(Slimb) E3 ubiquitin ligase complex. Vertebrate Hipk2 impedes β-catenin ubiquitination to promote its stability and the Wnt signal in a mechanism that is functionally conserved. Moreover, we describe here that Hipk proteins have a role independent of their effect on β-catenin/Armadillo stability to enhance Wnt/Wingless signaling. PMID:22634475

  9. Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes

    PubMed Central

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-01

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  10. Emerging EPO and EPO receptor regulators and signal transducers.

    PubMed

    Kuhrt, David; Wojchowski, Don M

    2015-06-01

    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia. PMID:25887776

  11. Regulation of tissue morphogenesis by endothelial cell-derived signals

    PubMed Central

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Adams, Ralf H.

    2016-01-01

    Summary Endothelial cells form an extensive network of blood vessels that has numerous essential functions in the vertebrate body. In addition to their well-established role as a versatile transport network, blood vessels can induce organ formation or direct growth and differentiation processes by providing signals in a paracrine (angiocrine) fashion. Tissue repair also requires the local restoration of vasculature. Endothelial cells are emerging as important signaling centers that coordinate regeneration and help to prevent deregulated, disease-promoting processes. Vascular cells are also part of stem cell niches and play key roles in hematopoiesis, bone formation and neurogenesis. Here, we will review these newly identified roles of endothelial cells in the regulation of organ morphogenesis, maintenance and regeneration. PMID:25529933

  12. Systematic identification of signal-activated stochastic gene regulation.

    PubMed

    Neuert, Gregor; Munsky, Brian; Tan, Rui Zhen; Teytelman, Leonid; Khammash, Mustafa; van Oudenaarden, Alexander

    2013-02-01

    Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms. PMID:23372015

  13. Toll-like receptor signaling and regulation of intestinal immunity.

    PubMed

    Kamdar, Karishma; Nguyen, Vivien; DePaolo, R William

    2013-04-01

    The intestine is a complex organ that must maintain tolerance to innocuous food antigens and commensal microbiota while being also able to mount inflammatory responses against invading pathogenic microorganisms. The ability to restrain tolerogenic responses while permitting inflammatory responses requires communication between commensal bacteria, intestinal epithelial cells and immune cells. Disruption or improper signaling between any of these factors may lead to uncontrolled inflammation and the development of inflammatory diseases. Toll-like receptors (TLR) recognize conserved molecular motifs of microorganisms and, not surprisingly, are important for maintaining tolerance to commensal microbiota, as well as inducing inflammation against pathogens. Perturbations in individual TLR signaling can lead to a number of different outcomes and illustrate a system of regulation within the intestine in which each TLR plays a largely non-redundant role in mucosal immunity. This review will discuss recent findings on the roles of individual TLRs and intestinal homeostasis. PMID:23334153

  14. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative Gene Identification-58 (CGI-58) is an alpha/beta hydrolase-type protein that regulates lipid homeostasis and signaling in eukaryotes by interacting with and stimulating the activity of several different types of proteins, including a lipase in mammalian cells and a peroxisomal ABC transp...

  15. Identification of a neurovascular signaling pathway regulating seizures in mice

    PubMed Central

    Fredriksson, Linda; Stevenson, Tamara K; Su, Enming J; Ragsdale, Margaret; Moore, Shannon; Craciun, Stefan; Schielke, Gerald P; Murphy, Geoffrey G; Lawrence, Daniel A

    2015-01-01

    Objective A growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures. Methods An experimental model of kainate-induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA−/−), its inhibitor neuroserpin (Nsp−/−), or both (Nsp:tPA−/−), and in mice conditionally deficient in the platelet-derived growth factor receptor alpha (PDGFRα). Results Compared to wild-type (WT) mice, Nsp−/− mice have significantly reduced latency to seizure onset and generalization; whereas tPA−/− mice have the opposite phenotype, as do Nsp:tPA−/− mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure-resistant tPA−/− mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA−/−, and Nsp−/− mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes. Interpretation Together, these data identify a specific molecular pathway involving tPA-mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures. PMID:26273685

  16. PR65A Phosphorylation Regulates PP2A Complex Signaling

    PubMed Central

    Kotlo, Kumar; Xing, Yongna; Lather, Sonia; Grillon, Jean Michel; Johnson, Keven; Skidgel, Randal A.; Solaro, R. John; Danziger, Robert S.

    2014-01-01

    Serine-threonine Protein phosphatase 2 A (PP2A), a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac); a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa); and one of at least 18 associated variable regulatory proteins (B subunits) classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314). Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A) and non-phosphorylated (N-PR65A) amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A), elongation factor 2, heat shock protein 60 (HSP60), NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure. PMID:24465463

  17. sFas and sFas ligand and pediatric sepsis-induced multiple organ failure syndrome.

    PubMed

    Doughty, Lesley; Clark, Robert S B; Kaplan, Sandra S; Sasser, Howell; Carcillo, Joseph

    2002-12-01

    The Fas-Fas ligand system is important for apoptosis of activated immune cells. Perturbation of this system occurs in diseases with dysregulated inflammation. Increased soluble Fas (sFas) occurs in systemic inflammatory response syndrome (SIRS) and can block apoptosis. Increased shedding of FasL (sFasL) occurs in viral infection and hepatitis. Although dysregulated inflammation is associated with sepsis-induced multiple organ failure (MOF) in children, a role for Fas has not been established. We hypothesize that 1) sFas will be increased in children with severe and persistent sepsis-induced MOF and will correlate with inflammatory markers suggesting a role for sFas in inflammatory dysregulation in severe sepsis, and 2) sFasL will be increased when viral sepsis or sepsis-induced liver failure-associated MOF is present in children. Plasma sFas, sFasL, IL-6, IL-10, nitrite + nitrates, and organ failure scores were measured on d 1 and d 3 in 92 children with severe sepsis and 12 critically ill control children. sFas levels were increased in severe sepsis, continued to increase in persistent MOF and nonsurvivors, and were correlated with serum inflammatory markers (IL-6, IL-10, nitrite + nitrate levels). In contrast, sFasL was not increased in severe sepsis and did not correlate with inflammation. sFasL was, however, increased in liver failure-associated MOF and in nonsurvivors, and was associated with viral infection. At autopsy, hepatocyte destruction and lymphocyte infiltration were associated with increased sFas and sFasL levels. sFas may interfere with activated immune cell death and contribute to dysregulation of inflammation, worsening outcome from severe sepsis. sFasL may contribute to hepatic injury and the development of liver failure-associated MOF. PMID:12438671

  18. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity.

    PubMed

    Schneider, P; Holler, N; Bodmer, J L; Hahne, M; Frei, K; Fontana, A; Tschopp, J

    1998-04-20

    Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high. PMID:9547332

  19. Prostaglandin F2α receptor (FP) signaling regulates Bmp signaling and promotes chondrocyte differentiation

    PubMed Central

    Kim, Joohwee; Shim, Minsub

    2015-01-01

    Prostaglandins are a group of lipid signaling molecules involved in various physiological processes. In addition, prostaglandins have been implicated in the development and progression of diseases including cancer, cardiovascular disease, and arthritis. Prostaglandins exert their effects through the activation of specific G protein-coupled receptors (GPCRs). In this report, we examined the role of prostaglandin F2α receptor (FP) signaling as a regulator of chondrocyte differentiation. We found that FP expression was dramatically induced during the differentiation of chondrocytes and was up-regulated in cartilages. Forced expression of FP in ATDC5 chondrogenic cell line resulted in the increased expression of differentiation-related genes and increased synthesis of the extracellular matrix (ECM) regardless of the presence of insulin. Similarly, PGF2α treatment induced the expression of chondrogenic marker genes. In contrast, knockdown of endogenous FP expression suppressed the expression of chondrocyte marker genes and ECM synthesis. Organ culture of cartilage rudiments revealed that PGF2α induces chondrocyte hypertrophy. Additionally, FP overexpression increased the levels of Bmp-6, phospho-Smad1/5, and Bmpr1a, while knockdown of FP reduced expression of those genes. These results demonstrate that up-regulation of FP expression plays an important role in chondrocyte differentiation and modulates Bmp signaling. PMID:25499765

  20. Regulation of connexin signaling by the epigenetic machinery

    PubMed Central

    Vinken, Mathieu

    2015-01-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  1. Regulation of connexin signaling by the epigenetic machinery.

    PubMed

    Vinken, Mathieu

    2016-02-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  2. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection.

    PubMed

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  3. RNF4 negatively regulates NF-κB signaling by down-regulating TAB2.

    PubMed

    Tan, Bo; Mu, Rui; Chang, Yan; Wang, Yu-Bo; Wu, Min; Tu, Hai-Qing; Zhang, Yu-Cheng; Guo, Sai-Sai; Qin, Xuan-He; Li, Tao; Li, Wei-Hua; Zhang, Xue-Min; Li, Ai-Ling; Li, Hui-Yan

    2015-09-14

    Most of NF-κB (nuclear factor kappa B) signaling molecules have various types of post-translational modifications. In this study, we focused on ubiquitination and designed a siRNA library including most ubiquitin-binding domains. With this library, we identified several candidate regulators of canonical NF-κB pathway, including RNF4. Overexpression of RNF4 impaired NF-κB activation in a dose-dependent manner, whereas RNF4 knockdown potentiated NF-κB activation. We showed that RNF4 interacts with the TAK1-TAB2-TAB3 complex, but not TAB1. Further, we found that RNF4 specifically down-regulated TAB2 through a lysosomal pathway, and knockdown of RNF4 impaired endogenous TAB2 degradation. Therefore, our findings will provide new insights into the negative regulation of NF-κB signaling. PMID:26299341

  4. Phytochemical regulation of Fyn and AMPK signaling circuitry.

    PubMed

    Lee, Chan Gyu; Koo, Ja Hyun; Kim, Sang Geon

    2015-12-01

    During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries. PMID:25951818

  5. A microfluidic platform for regulating signal transduction in single cells

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Yu, Fuqu; Sun, Ren; Ho, Chih-Ming

    2004-11-01

    Recent progress in micro cell culture systems has lead to new approaches in cell biology studies. Using micro devices for cell culturing possesses distinctive advantages over traditional methods. Length scale matching facilitates manipulation and detection at the single cell level. Previously, we have demonstrated generation of various stimulations such as spatial chemical gradient, electric field, and shear stress to study the dynamic responses of individual cells. Dynamic stimulations and continuous monitoring in a microfluidic system can be useful in studying different aspects of cellular process. In this work, we present a microfluidic platform for regulating nuclear factor kappa B (NF-kB) signal transduction in human embryonic kidney 293T cells. Time-varying bio-chemical stimulants, such as interleukin 1 and tumor necrosis factor, are introduced into the microchannel to activate the NF-kB signaling pathway. The dynamic responses of individual cells are monitored with the expression of reporter gene, green fluorescent protein. Regulation of the NF-kB activity is successfully demonstrated. This work is supported by CMISE through NASA URETI program.

  6. Promoter nucleosome dynamics regulated by signalling through the CTD code.

    PubMed

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. PMID:26098123

  7. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  8. Impaired Fas-Fas Ligand Interactions Result in Greater Recurrent Herpetic Stromal Keratitis in Mice

    PubMed Central

    Yin, Xiao-Tang; Keadle, Tammie L.; Hard, Jessicah; Herndon, John; Potter, Chloe A.; Del Rosso, Chelsea R.; Ferguson, Thomas A.; Stuart, Patrick M.

    2015-01-01

    Herpes simplex virus-1 (HSV-1) infection of the cornea leads to a potentially blinding condition termed herpetic stromal keratitis (HSK). Clinical studies have indicated that disease is primarily associated with recurrent HSK following reactivation of a latent viral infection of the trigeminal ganglia. One of the key factors that limit inflammation of the cornea is the expression of Fas ligand (FasL). We demonstrate that infection of the cornea with HSV-1 results in increased functional expression of FasL and that mice expressing mutations in Fas (lpr) and FasL (gld) display increased recurrent HSK following reactivation compared to wild-type mice. Furthermore, both gld and lpr mice took longer to clear their corneas of infectious virus and the reactivation rate for these strains was significantly greater than that seen with wild-type mice. Collectively, these findings indicate that the interaction of Fas with FasL in the cornea restricts the development of recurrent HSK. PMID:26504854

  9. Targeting the Fas/FasL system in Rheumatoid Arthritis therapy: Promising or risky?

    PubMed

    Calmon-Hamaty, Flavia; Audo, Rachel; Combe, Bernard; Morel, Jacques; Hahne, Michael

    2015-10-01

    Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA. PMID:25481649

  10. Novel Nuclear Localization Signal Regulated by Ambient Tonicity in Vertebrates*

    PubMed Central

    Kwon, Min Seong; Lee, Sang Do; Kim, Jeong-Ah; Colla, Emanuela; Choi, Yu Jeong; Suh, Pann-Ghil; Kwon, H. Moo

    2008-01-01

    TonEBP is a Rel domain-containing transcription factor implicated in adaptive immunity, viral replication, and cancer. In the mammalian kidney, TonEBP is a central regulator of water homeostasis. Animals deficient in TonEBP suffer from life-threatening dehydration due to renal water loss. Ambient tonicity (effective osmolality) is the prominent signal for TonEBP in a bidirectional manner; TonEBP activity decreases in hypotonicity, whereas it increases in hypertonicity. Here we found that TonEBP displayed nuclear export in response to hypotonicity and nuclear import in response to hypertonicity. The nuclear export of TonEBP was not mediated by the nuclear export receptor CRM1 or discrete nuclear export signal. In contrast, a dominant nuclear localization signal (NLS) was found in a small region of 16 amino acid residues. When short peptides containing the NLS were fused to constitutively cytoplasmic proteins, the fusion proteins displayed tonicity-dependent nucleocytoplasmic trafficking like TonEBP. Thus, tonicity-dependent activation of the NLS is crucial in the nucleocytoplasmic trafficking of TonEBP. The novel NLS is present only in the vertebrates, indicating that it developed late in evolution. PMID:18579527

  11. Insulin signaling and the regulation of insect diapause.

    PubMed

    Sim, Cheolho; Denlinger, David L

    2013-01-01

    A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans. PMID:23885240

  12. praja2 regulates KSR1 stability and mitogenic signaling.

    PubMed

    Rinaldi, L; Delle Donne, R; Sepe, M; Porpora, M; Garbi, C; Chiuso, F; Gallo, A; Parisi, S; Russo, L; Bachmann, V; Huber, R G; Stefan, E; Russo, T; Feliciello, A

    2016-01-01

    The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency. PMID:27195677

  13. praja2 regulates KSR1 stability and mitogenic signaling

    PubMed Central

    Rinaldi, L; Delle Donne, R; Sepe, M; Porpora, M; Garbi, C; Chiuso, F; Gallo, A; Parisi, S; Russo, L; Bachmann, V; Huber, R G; Stefan, E; Russo, T; Feliciello, A

    2016-01-01

    The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency. PMID:27195677

  14. Regulation of EphB1 expression by dopamine signaling.

    PubMed

    Halladay, A K; Yue, Y; Michna, L; Widmer, D A; Wagner, G C; Zhou, R

    2000-12-28

    The Eph family tyrosine kinase receptors and their ligands have been implicated in axon guidance and neuronal migration during development of the nervous system. In the current study, we aim to characterize the nature of changes in EphB1 receptor expression following increases or decreases in dopamine activity. Neonatal mice (P3) were injected with 6-hydroxydopamine and allowed 13 days to recover. These animals show a profound depletion of dopamine in all areas assayed, with a corresponding dose-dependent decrease in EphB1 expression. Day 3 pups were also injected either chronically (P3-P16) or acutely (P3 only) with cocaine to determine how enhancing dopamine signaling would affect EphB1 signal density. It was found that both treatments significantly increased expression of EphB1 in the cortex, striatum and substantia nigra. Finally, animals were treated prenatally (E15-E17) with cocaine and sacrificed on P7. These animals also showed an increase in EphB1 signal density, but only in the dopaminergic terminal areas in the cortex and striatum. These studies indicate that dopamine activity regulates developmental expression of the tyrosine kinase receptor EphB1. PMID:11146119

  15. Nitrite as regulator of hypoxic signaling in mammalian physiology

    PubMed Central

    van Faassen, Ernst E.; Bahrami, Soheyl; Feelisch, Martin; Hogg, Neil; Kelm, Malte; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Li, Haitao; Lundberg, Jon O.; Mason, Ron; Nohl, Hans; Rassaf, Tienush; Samouilov, Alexandre; Slama-Schwok, Anny; Shiva, Sruti; Vanin, Anatoly F.; Weitzberg, Eddie; Zweier, Jay; Gladwin, Mark T.

    2009-01-01

    In this review we consider the physiological effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and non-enzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. PMID:19219851

  16. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  17. [RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response].

    PubMed

    Lewandowicz, Anna M; Kowalski, Marek L; Pawliczak, Rafał

    2004-01-01

    RGS proteins (Regulators of G-protein Signaling) comprise a protein family responsible for regulating G proteins. By enhancing the GTPase activity of the a subunit, they speed up the reconstruction of the heterotrimeric structure of G protein, thus inhibiting its signal transduction. Sst2 protein in yeast Saccharomyces cervisiae, FlbA in fungus Aspergillus nidulans, and Egl-10 in the nematode Caenorhabditis elegans are the first native G regulators with GTPase activity (GAPs:--GTPase-activating proteins). The existence of over 30 RGS human proteins has been confirmed thus far, and they have been grouped and classified into six subfamilies. In immunocompetent cells, RGS proteins are entangled in a complicate net of different interrelating signal pathways. They are connected with B- and T-cell chemokine susceptibility, efficient T cell proliferation, and the regulation of B cell maturation. They also take an essential part in inflammation. High hopes are held for drugs, which handle would be RGS proteins and which would further provide the possibility of modifying the pharmacokinetics of drugs acting through G protein- coupled receptors. The aim of this review is to discuss the new RGS protein family and explain the potential involvement of RGS proteins in the modulation of the immune response PMID:15459549

  18. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  19. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    PubMed Central

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  20. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    PubMed

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  1. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism.

    PubMed

    Heier, Christoph; Haemmerle, Guenter

    2016-10-01

    The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26924251

  2. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus

    PubMed Central

    Liu, Zhuyun; Treviño, Jeanette; Ramirez-Peña, Esmeralda; Sumby, Paul

    2012-01-01

    Summary Bacterial pathogens use cell-surface-associated adhesion molecules to promote host attachment and colonization, and the ability to modulate adhesion expression is critical to pathogen success. Here, we show that the human-specific pathogen the group A Streptococcus (GAS) uses a small regulatory RNA (sRNA) to regulate the expression of adhesive pili. The fibronectin / fibrinogen-binding / haemolytic-activity / streptokinase-regulator-X (FasX) sRNA, previously shown to positively regulate expression of the secreted virulence factor streptokinase (SKA), negatively regulates the production of pili on the GAS cell surface. FasX base-pairs to the extreme 5’ end of mRNA from the pilus biosynthesis operon, and this RNA:RNA interaction reduces the stability of the mRNA, while also inhibiting translation of at least the first gene in the pilus biosynthesis operon (cpa, which encodes a minor pilin protein). The negative regulation of pilus expression by FasX reduces the ability of GAS to adhere to human keratinocytes. Our findings cement FasX sRNA as an important regulator of virulence factor production in GAS and identify that FasX uses at least three distinct mechanisms, positive (ska mRNA) and negative (pilus operon mRNA) regulation of mRNA stability, and negative regulation of mRNA translation (cpa mRNA), to post-transcriptionally regulate target mRNAs during infection. PMID:22882718

  3. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  4. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  5. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  6. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    PubMed

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  7. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress.

    PubMed

    Iñiguez, Sergio D; Vialou, Vincent; Warren, Brandon L; Cao, Jun-Li; Alcantara, Lyonna F; Davis, Lindsey C; Manojlovic, Zarko; Neve, Rachael L; Russo, Scott J; Han, Ming-Hu; Nestler, Eric J; Bolaños-Guzmán, Carlos A

    2010-06-01

    Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors. PMID:20519540

  8. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  9. Regulation of organismal proteostasis by trans-cellular chaperone signaling

    PubMed Central

    van Oosten-Hawle, Patricija; Porter, Robert S.; Morimoto, Richard I.

    2013-01-01

    Summary A major challenge for metazoans is to ensure that different tissues each expressing distinctive proteomes are, nevertheless, well protected at an organismal level from proteotoxic stress. We have examined this and show that expression of endogenous metastable protein sensors in muscle cells induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells, but as effective by elevated expression of HSP90 in intestine or neuronal cells. This cell-non-autonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This trans-cellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for a novel form of organismal stress sensing surveillance. PMID:23746847

  10. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  11. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa.

    PubMed

    Luconi, M; Barni, T; Vannelli, G B; Krausz, C; Marra, F; Benedetti, P A; Evangelista, V; Francavilla, S; Properzi, G; Forti, G; Baldi, E

    1998-06-01

    Recent evidence indicates the presence of p21 Ras and of a protein with characteristics similar to mitogen-activated protein kinases (MAPKs), also known as extracellular signal-regulated kinases (ERKs), in mammalian spermatozoa, suggesting the occurrence of the Ras/ERK cascade in these cells. In the present study we investigated the subcellular localization of ERKs and their biological functions in human spermatozoa. Immunohistochemistry, immunofluorescence, confocal microscopy, and immunoelectron microscopy demonstrated localization of ERKs in the postacrosomal region of spermatozoa. After stimulation of acrosome reaction with the calcium ionophore A23187 and progesterone, ERKs were mostly localized at the level of the equatorial region, indicating redistribution of these proteins in acrosome-reacted spermatozoa. Two proteins of 42 and 44 kDa that are tyrosine phosphorylated in a time-dependent manner during in vitro capacitation were identified as p42 (ERK-2) and p44 (ERK-1) by means of specific antibodies. The increase in tyrosine phosphorylation of these proteins during capacitation was accompanied by increased kinase activity, as determined by the ability of ERK-1 and ERK-2 to phosphorylate the substrate myelin basic protein. The role of this activity in the occurrence of sperm capacitation was also investigated by using PD098059, an inhibitor of the MAPK cascade. The presence of this compound during in vitro capacitation inhibits ERK activation and significantly reduces the ability of spermatozoa to undergo the acrosome reaction in response to progesterone. Since only capacitated spermatozoa are able to respond to progesterone, these data strongly indicate that ERKs are involved in the regulation of capacitation. In summary, our data demonstrate the presence of functional ERKs in human spermatozoa and indicate that these enzymes are involved in activation of these cells during capacitation, providing new insight in clarifying the molecular mechanisms and the

  12. Role of oxytocin signaling in the regulation of body weight

    PubMed Central

    Blevins, James E.; Ho, Jacqueline M.

    2014-01-01

    Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models. PMID:24065622

  13. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation

    PubMed Central

    Libera, Laura; Boari, Nicola; Mortini, Pietro; Bellipanni, Gianfranco; Giordano, Antonio; Cotelli, Franco; Riva, Paola

    2014-01-01

    Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset. PMID:25071022

  14. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury.

    PubMed

    Yao, Lu; Chen, Weina; Han, Chang; Wu, Tong

    2016-06-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries. PMID:27102561

  15. Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis.

    PubMed

    Milhas, Delphine; Cuvillier, Olivier; Therville, Nicole; Clavé, Patricia; Thomsen, Mogens; Levade, Thierry; Benoist, Hervé; Ségui, Bruno

    2005-05-20

    In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis. PMID:15772077

  16. Hematopoietic Fas Deficiency Does Not Affect Experimental Atherosclerotic Lesion Formation despite Inducing a Proatherogenic State

    PubMed Central

    de Claro, R. Angelo; Zhu, Xiaodong; Tang, Jingjing; Morgan-Stevenson, Vicki; Schwartz, Barbara R.; Iwata, Akiko; Liles, W. Conrad; Raines, Elaine W.; Harlan, John M.

    2011-01-01

    The Fas death receptor (CD95) is expressed on macrophages, smooth muscle cells, and T cells within atherosclerotic lesions. Given the dual roles of Fas in both apoptotic and nonapoptotic signaling, the aim of the present study was to test the effect of hematopoietic Fas deficiency on experimental atherosclerosis in low-density lipoprotein receptor-null mice (Ldlr−/−). Bone marrow from Fas−/− mice was used to reconstitute irradiated Ldlr−/− mice as a model for atherosclerosis. After 16 weeks on an 0.5% cholesterol diet, no differences were noted in brachiocephalic artery lesion size, cellularity, or vessel wall apoptosis. However, Ldlr−/− mice reconstituted with Fas−/− hematopoietic cells had elevated hyperlipidemia [80% increase, relative to wild-type (WT) controls; P < 0.001] and showed marked elevation of plasma levels of CXCL1/KC, CCL2/MCP-1, IL-6, IL-10, IL-12 subunit p70, and soluble Fas ligand (P < 0.01), as well as systemic microvascular inflammation. It was not possible to assess later stages of atherosclerosis because of increased mortality in Fas−/− bone marrow recipients. Our data indicate that hematopoietic Fas deficiency does not affect early atherosclerotic lesion development in Ldlr−/− mice. PMID:21550016

  17. Basic amino-acid side chains regulate transmembrane integrin signalling.

    PubMed

    Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung; Ye, Feng; Ulmer, Tobias S; Ginsberg, Mark H

    2012-01-12

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling. PMID:22178926

  18. Integrin signalling regulates YAP and TAZ to control skin homeostasis.

    PubMed

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Spencer-Dene, Bradley; Stone, Richard K; Boeing, Stefan; Wculek, Stefanie K; Cordero, Julia; Tan, Ee H; Ridgway, Rachel; Brunton, Val G; Sahai, Erik; Gerhardt, Holger; Behrens, Axel; Malanchi, Ilaria; Sansom, Owen J; Thompson, Barry J

    2016-05-15

    The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib. PMID:26989177

  19. Hypothalamic eIF2α signaling regulates food intake.

    PubMed

    Maurin, Anne-Catherine; Benani, Alexandre; Lorsignol, Anne; Brenachot, Xavier; Parry, Laurent; Carraro, Valérie; Guissard, Christophe; Averous, Julien; Jousse, Céline; Bruhat, Alain; Chaveroux, Cédric; B'chir, Wafa; Muranishi, Yuki; Ron, David; Pénicaud, Luc; Fafournoux, Pierre

    2014-02-13

    The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases. PMID:24485657

  20. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    SciTech Connect

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  1. Extracellular signal-regulated kinases in pain of peripheral origin.

    PubMed

    White, John P M; Cibelli, Mario; Fidalgo, Antonio Rei; Nagy, Istvan

    2011-01-10

    Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin. PMID:20950608

  2. Integrin signalling regulates YAP and TAZ to control skin homeostasis

    PubMed Central

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I.; Spencer-Dene, Bradley; Stone, Richard K.; Boeing, Stefan; Wculek, Stefanie K.; Cordero, Julia; Tan, Ee H.; Ridgway, Rachel; Brunton, Val G.; Sahai, Erik; Gerhardt, Holger; Behrens, Axel; Malanchi, Ilaria; Sansom, Owen J.; Thompson, Barry J.

    2016-01-01

    ABSTRACT The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib. PMID:26989177

  3. Hypothalamic eIF2α Signaling Regulates Food Intake

    PubMed Central

    Maurin, Anne-Catherine; Benani, Alexandre; Lorsignol, Anne; Brenachot, Xavier; Parry, Laurent; Carraro, Valérie; Guissard, Christophe; Averous, Julien; Jousse, Céline; Bruhat, Alain; Chaveroux, Cédric; B’chir, Wafa; Muranishi, Yuki; Ron, David; Pénicaud, Luc; Fafournoux, Pierre

    2016-01-01

    Summary The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases. PMID:24485657

  4. Neuropeptide Regulation of Signaling and Behavior in the BNST

    PubMed Central

    Kash, Thomas L.; Pleil, Kristen E.; Marcinkiewcz, Catherine A.; Lowery-Gionta, Emily G.; Crowley, Nicole; Mazzone, Christopher; Sugam, Jonathan; Hardaway, J. Andrew; McElligott, Zoe A.

    2015-01-01

    Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action. PMID:25475545

  5. Mannotriose regulates learning and memory signal transduction in the hippocampus

    PubMed Central

    Zhang, Lina; Dai, Weiwei; Zhang, Xueli; Gong, Zhangbin; Jin, Guoqin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10−4 mol/L) cor-ticosterone, and treated with 1 × 10−4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were all dramatically decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor. PMID:25206622

  6. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  7. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin.

    PubMed

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3' UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  8. Multiple Signals Regulate PLC beta 3 in Human Myometrial Cells

    PubMed Central

    Zhong, Miao; Murtazina, Dilyara A.; Phillips, Jennifer; Ku, Chun-Ying; Sanborn, Barbara M.

    2008-01-01

    Summary The regulation of PLCB3-Serine1105 phosphorylation by both negative feedback and negative crosstalk facilitates the integration of multiple signaling pathways in myometrial cells. Phospholipase CB3 (PLCB3) Serine1105, a substrate for multiple protein kinases, represents a potential point of convergence of several signaling pathways in the myometrium. To explore this hypothesis, the regulation of PLCB3-Serine1105 phosphorylation (P-S1105) was studied in immortalized and primary human myometrial cells. CPT-cAMP and calcitonin gene-related peptide (CALCA) transiently increased P-S1105. Relaxin also stimulated P-S1105; this effect was partially blocked by the protein kinase A (PRKA) inhibitor Rp-8-CPT-cAMPS. Oxytocin, which stimulates Gαq-mediated pathways, also rapidly increased P-S1105, as did PGF2α and ATP. Oxytocin-stimulated phosphorylation was blocked by the protein kinase C (PRKC) inhibitor Go6976 and by pretreatment overnight with a phorbol ester. Cypermethrin, a PP2B phosphatase inhibitor, but not okadaic acid, a PP1/PP2A inhibitor, prolonged the effect of CALCA on P-S1105, whereas the reverse was the case for the oxytocin-stimulated increase in P-S1105. PLCB3 was the predominant PLC isoform expressed in the myometrial cells and PLCB3 shRNA constructs significantly attenuated oxytocin-stimulated increases in intracellular calcium. Oxytocin-induced phosphatidylinositol (PI) turnover was inhibited by CPT-cAMP and okadaic acid but enhanced by pretreatment with Go6976. CPT-cAMP inhibited oxytocin-stimulated PI turnover in the presence of overexpressed PLCB3, but not overexpressed PLCB3-S1105A. These data demonstrate that both negative crosstalk from the cAMP/PRKA pathway and a negative feedback loop in the oxytocin/G protein/PLCB pathway involving PRKC operate in myometrial cells and suggest that different protein phosphatases predominate in mediating P-S1105 dephosphorylation in these pathways. The integration of multiple signal components at the level

  9. TIM-1 signaling in B cells regulates antibody production

    SciTech Connect

    Ma, Juan; Usui, Yoshihiko; Takeda, Kazuyoshi; Harada, Norihiro; Yagita, Hideo; Okumura, Ko; Akiba, Hisaya

    2011-03-11

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  10. Fas receptor is expressed in human lung squamous cell carcinomas, whereas bcl-2 and apoptosis are not pronounced: a preliminary report.

    PubMed Central

    Hellquist, H. B.; Olejnicka, B.; Jadner, M.; Andersson, T.; Sederholm, C.

    1997-01-01

    We report a pilot study on the Fas receptor (APO-1, CD95) in vivo in 15 human squamous cell (non-small) carcinomas and ten normal bronchial specimens. The principal aim was to investigate whether the so-called death receptor, Fas, is present in these tumours. Ligation of Fas promptly induces apoptosis, particularly in T Jurkat cells in vitro, and expression of Fas on human cancer would thus theoretically be of great interest. The immunoreactivity for the anti-apoptotic protein Bcl-2 was also investigated, and the degree of apoptosis was evaluated by TdT dUTP nick end labelling (TUNEL) and conventional morphological criteria. Fas was present in all initial tumours but absent in control tissue, that is in the potential precursor cells of bronchial epithelium (P = 0.001). Fas was not detectable after radiotherapy (P = 0.03). We propose that radiotherapy induces an early selection of tumour cells rather than a down-regulation of Fas. Both Bcl-2 and apoptosis (TUNEL) were generally expressed at a modest level. In agreement with other studies, we did not find any significant correlation between Bcl-2 and prognosis, or between Bcl-2 and TUNEL. Hence, in this preliminary report, we have demonstrated Fas receptor in human squamous cell carcinomas in vivo. This is a novel finding, and the apparent absence of Fas after radiotherapy may have important therapeutic implications. Images Figure 1 PMID:9231916

  11. Sensor-response regulator interactions in a cross-regulated signal transduction network.

    PubMed

    Huynh, TuAnh Ngoc; Chen, Li-Ling; Stewart, Valley

    2015-07-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface. PMID:25873583

  12. Lifeguard inhibition of Fas-mediated apoptosis: A possible mechanism for explaining the cisplatin resistance of triple-negative breast cancer cells.

    PubMed

    Radin, Daniel; Lippa, Arnold; Patel, Parth; Leonardi, Donna

    2016-02-01

    Triple-negative breast cancer does not express estrogen receptor-α, progesterone or the HER2 receptor making hormone or antibody therapy ineffective. Cisplatin may initiate p73-dependent apoptosis in p53 mutant cell lines through Fas trimerization and Caspase-8 activation and Bax up regulation and subsequent Caspase-9 activation. The triple-negative breast cancer, MDA-MB-231, overexpresses the protein Lifeguard, which inhibits Fas-mediated apoptosis by inhibiting Caspase-8 activation after Fas trimerization. The relationship between Fas, Lifeguard and cisplatin is investigated by down regulating Lifeguard via shRNA. Results demonstrate that cisplatin's efficacy increases when Lifeguard is down regulated. Lifeguard Knockdown MDA-MB-231 continue to decrease in cell viability from 24 to 48h after cisplatin treatment while no additional decrease in viability is observed in the Wild-Type MDA over the same period. Higher Caspase-8 activity in the Lifeguard knockdown MDA after cisplatin administration could explain the significant decrease in cell viability from 24 to 48h. This cell type is also more sensitive to Fas ligand-mediated reductions in cell viability, confirming Lifeguard's anti-apoptotic function through the Fas receptor. This research suggests that the efficacy of chemotherapy acting through the Fas pathway would increase if Lifeguard were not overexpressed to inhibit Fas-mediated apoptosis. PMID:26796280

  13. 7 CFR 1580.203 - Determination of eligibility and certification by the Administrator (FAS).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Determination of eligibility and certification by the Administrator (FAS). 1580.203 Section 1580.203 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE TRADE ADJUSTMENT ASSISTANCE FOR FARMERS § 1580.203 Determination...

  14. 7 CFR 1580.203 - Determination of eligibility and certification by the Administrator (FAS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Determination of eligibility and certification by the Administrator (FAS). 1580.203 Section 1580.203 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE TRADE ADJUSTMENT ASSISTANCE FOR...

  15. 7 CFR 1484.30 - How does FAS formalize its working relationship with approved Cooperators?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false How does FAS formalize its working relationship with approved Cooperators? 1484.30 Section 1484.30 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP...

  16. 7 CFR 1484.21 - How does FAS determine which Cooperator program applications are approved?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false How does FAS determine which Cooperator program applications are approved? 1484.21 Section 1484.21 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP...

  17. 7 CFR 1484.30 - How does FAS formalize its working relationship with approved Cooperators?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false How does FAS formalize its working relationship with approved Cooperators? 1484.30 Section 1484.30 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP...

  18. 7 CFR 1484.30 - How does FAS formalize its working relationship with approved Cooperators?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false How does FAS formalize its working relationship with approved Cooperators? 1484.30 Section 1484.30 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP...

  19. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  20. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  1. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  2. Apoptosis signal-regulating kinase 1 mediates striatal degeneration via the regulation of C1q

    PubMed Central

    Cho, Kyoung Joo; Cheon, So Young; Kim, Gyung Whan

    2016-01-01

    Apoptosis signal-regulating kinase-1 (ASK1), an early signaling element in the cell death pathway, has been hypothesized to participate in the pathology of neurodegenerative diseases. The systemic administration of 3-nitropropionic acid (3-NP) facilitates the development of selective striatal lesions. However, it remains unclear whether specific neurons are selectively targeted in 3-NP-infused striatal degeneration. Recently, it has been proposed that complement-mediated synapse elimination may be reactivated aberrantly in the pathology of neurodegenerative diseases. We hypothesized that ASK1 is involved in striatal astrocyte reactivation; reactive astrocyte secretes molecules detrimental to neuron; and striatal neurons are more susceptible to these factors. Our results indicate that striatal astrocyte is reactivated and ASK1 level increases after 3-NP general and chronic infusion. Reactive striatal astrocyte increases TGF-beta differentially to cortex and striatum. ASK1 may be involved in regulation of astrocyte TGF-beta and it is linked to the C1q level in spatial and temporal, and moreover in the earlier stage of progressing striatal neuronal loss. Conclusively the present study suggests that ASK1 mediates 3-NP toxicity and regulates C1q level through the astrocyte TGF-beta. And also it may suggest that C1q level may be a surrogate of prediction marker representing neurodegenerative disease progress before developing behavioral impairment. PMID:26728245

  3. Inflammatory Signals Regulate IL-15 in Response to Lymphodepletion.

    PubMed

    Anthony, Scott M; Rivas, Sarai C; Colpitts, Sara L; Howard, Megan E; Stonier, Spencer W; Schluns, Kimberly S

    2016-06-01

    Induction of lymphopenia has been exploited therapeutically to improve immune responses to cancer therapies and vaccinations. Whereas IL-15 has well-established roles in stimulating lymphocyte responses after lymphodepletion, the mechanisms regulating these IL-15 responses are unclear. We report that cell surface IL-15 expression is upregulated during lymphopenia induced by total body irradiation (TBI), cyclophosphamide, or Thy1 Ab-mediated T cell depletion, as well as in RAG(-/-) mice; interestingly, the cellular profile of surface IL-15 expression is distinct in each model. In contrast, soluble IL-15 (sIL-15) complexes are upregulated only after TBI or αThy1 Ab. Analysis of cell-specific IL-15Rα conditional knockout mice revealed that macrophages and dendritic cells are important sources of sIL-15 complexes after TBI but provide minimal contribution in response to Thy1 Ab treatment. Unlike with TBI, induction of sIL-15 complexes by αThy1 Ab is sustained and only partially dependent on type I IFNs. The stimulator of IFN genes pathway was discovered to be a potent inducer of sIL-15 complexes and was required for optimal production of sIL-15 complexes in response to Ab-mediated T cell depletion and TBI, suggesting products of cell death drive production of sIL-15 complexes after lymphodepletion. Lastly, we provide evidence that IL-15 induced by inflammatory signals in response to lymphodepletion drives lymphocyte responses, as memory CD8 T cells proliferated in an IL-15-dependent manner. Overall, these studies demonstrate that the form in which IL-15 is expressed, its kinetics and cellular sources, and the inflammatory signals involved are differentially dictated by the manner in which lymphopenia is induced. PMID:27183627

  4. Anti-cancer drugs targeting fatty acid synthase (FAS).

    PubMed

    Pandey, Puspa R; Liu, Wen; Xing, Fei; Fukuda, Koji; Watabe, Kounosuke

    2012-05-01

    Fatty acid synthase (FAS) is a key enzyme of the fatty acid biosynthetic pathway which catalyzes de novo lipid synthesis. FAS expression in normal adult tissues is generally very low or undetectable as majority of fatty acids obtained are from dietary sources, whereas it is significantly upregulated in cancer cells despite adequate nutritional lipid supply. Activation of FAS provides rapidly proliferating tumor cells sufficient amount of lipids for membrane biogenesis and confers growth and survival advantage possibly acting as a metabolic oncogene. Importantly, inhibition of FAS in cancer cells using the pharmacological FAS inhibitors results in tumor cell death by apoptosis whereas normal cells are resistant. Due to this differential expression of FAS, the inhibitors of this enzyme are selectively toxic to tumor cells and therefore FAS is considered an attractive therapeutic target for cancer. Several FAS inhibitors are already patented and commercially available; however, the potential toxicity of these FAS inhibitors remains to be tested in clinical trials. In this review, we discuss some of the potent FAS inhibitors along with their patent information, the mechanism of anti-cancer effects and the development of more specific and potent FAS inhibitors with lower side effects that are expected to emerge as anti-cancer treatment in the near future. PMID:22338595

  5. Helicobacter pylori Modulates Lymphoepithelial Cell Interactions Leading to Epithelial Cell Damage through Fas/Fas Ligand Interactions

    PubMed Central

    Wang, Jide; Fan, Xuejun; Lindholm, Catharina; Bennett, Michael; O'Connoll, Joe; Shanahan, Fergus; Brooks, Edward G.; Reyes, Victor E.; Ernst, Peter B.

    2000-01-01

    Helicobacter pylori causes a common chronic infection of humans that leads to epithelial cell damage. Studies have shown that apoptosis of the gastric epithelium is increased during infection and this response is associated with an expansion of gastric T-helper type 1 (Th1) cells. We report that gastric T cells contribute to apoptosis of the epithelium by a Fas/Fas ligand (FasL) interaction. Fas receptor expression was detected on freshly isolated gastric epithelial cells by flow cytometry and immunohistochemistry, and this level of expression was increased during infection with H. pylori. The expression of Fas receptor on three gastric epithelial cell lines was increased by H. pylori, either alone or in combination with gamma interferon or tumor necrosis factor alpha. The role of Fas in apoptosis of gastric epithelial cell lines was evidenced by DNA fragmentation after cross-linking of Fas with specific antibodies. FasL expression was detected by immunohistochemistry on mononuclear cells in gastric biopsy specimens of infected but not uninfected subjects. Gastric T-cell lines were also shown to express FasL, as evidenced by reverse transcription-PCR and killing of target cells expressing Fas receptor. Moreover, these T-cell lines were capable of killing cultured gastric epithelial target cells and antibodies that block the interaction between Fas receptor and FasL inhibited this cytotoxic activity. These observations demonstrate that local Th1 cells may contribute to the pathogenesis of gastric disease during H. pylori infection by increasing the expression of Fas on gastric epithelial cells and inducing apoptosis through Fas/FasL interactions. PMID:10858249

  6. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.

    PubMed

    Rzepka, Zuzanna; Buszman, Ewa; Beberok, Artur; Wrześniok, Dorota

    2016-01-01

    Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones). Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells. PMID:27356601

  7. Glatiramer acetate treatment negatively regulates type I interferon signaling

    PubMed Central

    Molnarfi, Nicolas; Prod'homme, Thomas; Schulze-Topphoff, Ulf; Spencer, Collin M.; Weber, Martin S.; Patarroyo, Juan C.; Lalive, Patrice H.

    2015-01-01

    Objective: Glatiramer acetate (GA; Copaxone), a disease-modifying therapy for multiple sclerosis (MS), promotes development of anti-inflammatory (M2, type II) monocytes that can direct differentiation of regulatory T cells. We investigated the innate immune signaling pathways that participate in GA-mediated M2 monocyte polarization. Methods: Monocytes were isolated from myeloid differentiation primary response gene 88 (MyD88)–deficient, Toll-IL-1 receptor domain–containing adaptor inducing interferon (IFN)–β (TRIF)–deficient, IFN-α/β receptor subunit 1 (IFNAR1)–deficient, and wild-type (WT) mice and human peripheral blood. GA-treated monocytes were stimulated with Toll-like receptor ligands, then evaluated for activation of kinases and transcription factors involved in innate immunity, and secretion of proinflammatory cytokines. GA-treated mice were evaluated for cytokine secretion and susceptibility to experimental autoimmune encephalomyelitis. Results: GA-mediated inhibition of proinflammatory cytokine production by monocytes occurred independently of MyD88 and nuclear factor–κB, but was blocked by TRIF deficiency. Furthermore, GA did not provide clinical benefit in TRIF-deficient mice. GA inhibited activation of p38 mitogen-activated protein kinase, an upstream regulator of activating transcription factor (ATF)–2, and c-Jun N-terminal kinase 1, which regulates IFN regulatory factor 3 (IRF3). Consequently, nuclear translocation of ATF-2 and IRF3, components of the IFN-β enhanceosome, was impaired. Consistent with these observations, GA inhibited production of IFN-β in vivo in WT mice, but did not modulate proinflammatory cytokine production by monocytes from IFNAR1-deficient mice. Conclusion: Our results demonstrate that GA inhibits the type I IFN pathway in M2 polarization of monocytes independently of MyD88, providing an important mechanism connecting innate and adaptive immune modulation in GA therapy and valuable insight regarding its

  8. CB1 receptor signaling regulates social anxiety and memory.

    PubMed

    Litvin, Y; Phan, A; Hill, M N; Pfaff, D W; McEwen, B S

    2013-07-01

    The endocannabinoid (eCB) system regulates emotion, stress, memory and cognition through the cannabinoid type 1 (CB1 ) receptor. To test the role of CB1 signaling in social anxiety and memory, we utilized a genetic knockout (KO) and a pharmacological approach. Specifically, we assessed the effects of a constitutive KO of CB1 receptors (CB1 KOs) and systemic administration of a CB1 antagonist (AM251; 5 mg/kg) on social anxiety in a social investigation paradigm and social memory in a social discrimination test. Results showed that when compared with wild-type (WT) and vehicle-treated animals, CB1 KOs and WT animals that received an acute dose of AM251 displayed anxiety-like behaviors toward a novel male conspecific. When compared with WT animals, KOs showed both active and passive defensive coping behaviors, i.e. elevated avoidance, freezing and risk-assessment behaviors, all consistent with an anxiety-like profile. Animals that received acute doses of AM251 also showed an anxiety-like profile when compared with vehicle-treated animals, yet did not show an active coping strategy, i.e. changes in risk-assessment behaviors. In the social discrimination test, CB1 KOs and animals that received the CB1 antagonist showed enhanced levels of social memory relative to their respective controls. These results clearly implicate CB1 receptors in the regulation of social anxiety, memory and arousal. The elevated arousal/anxiety resulting from either total CB1 deletion or an acute CB1 blockade may promote enhanced social discrimination/memory. These findings may emphasize the role of the eCB system in anxiety and memory to affect social behavior. PMID:23647582

  9. p38 and Extracellular Signal-Regulated Kinases Regulate the Myogenic Program at Multiple Steps

    PubMed Central

    Wu, Zhenguo; Woodring, Pamela J.; Bhakta, Kunjan S.; Tamura, Kumiko; Wen, Fang; Feramisco, James R.; Karin, Michael; Wang, Jean Y. J.; Puri, Pier Lorenzo

    2000-01-01

    The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogen-activated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs from those triggered by stress and cytokines, because it is not linked to Jun–N-terminal kinase stimulation and is maintained during the whole process of myotube formation. Moreover, p38 activation is independent of a parallel promyogenic pathway stimulated by insulin-like growth factor 1. Inhibition of p38 prevents the differentiation program in myogenic cell lines and human primary myocytes. Conversely, deliberate activation of endogenous p38 stimulates muscle differentiation even in the presence of antimyogenic cues. Much evidence indicates that p38 is an activator of MyoD: (i) p38 kinase activity is required for the expression of MyoD-responsive genes, (ii) enforced induction of p38 stimulates the transcriptional activity of a Gal4-MyoD fusion protein and allows efficient activation of chromatin-integrated reporters by MyoD, and (iii) MyoD-dependent myogenic conversion is reduced in mouse embryonic fibroblasts derived from p38α−/− embryos. Activation of p38 also enhances the transcriptional activities of myocyte enhancer binding factor 2A (MEF2A) and MEF2C by direct phosphorylation. With MEF2C, selective phosphorylation of one residue (Thr293) is a tissue-specific activating signal in differentiating myocytes. Finally, ERK shows a biphasic activation profile, with peaks of activity in undifferentiated myoblasts and postmitotic myotubes. Importantly, activation of ERK is inhibitory toward myogenic transcription in myoblasts but contributes to the activation of myogenic transcription and regulates postmitotic responses (i.e., hypertrophic growth) in myotubes. PMID

  10. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis.

    PubMed

    Choi, Eunhee; Zhang, Xiangli; Xing, Chao; Yu, Hongtao

    2016-07-28

    Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism. PMID:27374329

  11. Regulation of PKC Mediated Signaling by Calcium during Visceral Leishmaniasis

    PubMed Central

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C.

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  12. mTOR signaling in autophagy regulation in the kidney

    PubMed Central

    Inoki, Ken

    2016-01-01

    Cells possess adaptive biosynthetic systems to maintain cellular energy levels for survival under adverse environmental conditions. Autophagy is an evolutionarily conserved cellular catabolic process that breaks down and recycles cytosolic material including macromolecules and organelles through lysosomal degradation. This catabolic process, represented by macroautophagy, is induced by a variety of cellular stresses such as nutrient starvation, which causes a shortage of cellular energy for cells to maintain cellular homeostasis and essential biological activities. In contrast, upon nutrient availability, cells stimulate anabolic processes. The mechanistic/mammalian target rapamycin (mTOR), a serine/threonine protein kinase, is a key player in stimulating cellular anabolism in response to nutrients and growth factors, and plays a crucial role in suppressing autophagy activity. Growing evidence has suggested that autophagy activity is required for the maintenance and physiological functions of renal cells including proximal tubular cells and podocytes. In this section, we will discuss recent progresses in the regulation of autophagy by the mTOR signaling. PMID:24485024

  13. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  14. Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma.

    PubMed

    Bullen, Hayley E; Jia, Yonggen; Yamaryo-Botté, Yoshiki; Bisio, Hugo; Zhang, Ou; Jemelin, Natacha Klages; Marq, Jean-Baptiste; Carruthers, Vern; Botté, Cyrille Y; Soldati-Favre, Dominique

    2016-03-01

    The obligate intracellular lifestyle of apicomplexan parasites necessitates an invasive phase underpinned by timely and spatially controlled secretion of apical organelles termed micronemes. In Toxoplasma gondii, extracellular potassium levels and other stimuli trigger a signaling cascade culminating in phosphoinositide-phospholipase C (PLC) activation, which generates the second messengers diacylglycerol (DAG) and IP3 and ultimately results in microneme secretion. Here we show that a delicate balance between DAG and its downstream product, phosphatidic acid (PA), is essential for controlling microneme release. Governing this balance is the apicomplexan-specific DAG-kinase-1, which interconverts PA and DAG, and whose depletion impairs egress and causes parasite death. Additionally, we identify an acylated pleckstrin-homology (PH) domain-containing protein (APH) on the microneme surface that senses PA during microneme secretion and is necessary for microneme exocytosis. As APH is conserved in Apicomplexa, these findings highlight a potentially widely used mechanism in which key lipid mediators regulate microneme exocytosis. PMID:26962945

  15. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    PubMed

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James

    2014-12-01

    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis. PMID:25324401

  16. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  17. Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells

    SciTech Connect

    Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming; Wang, Zhenxin; Chen, Xiaochen; Zhou, Jian

    2015-08-07

    Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26  ±  2.67%) was significantly higher than that of DcR3 negative specimens (43.58  ±  7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients

  18. The human immunodeficiency virus type 1 tat protein enhances Cryptosporidium parvum-induced apoptosis in cholangiocytes via a Fas ligand-dependent mechanism.

    PubMed

    O'Hara, Steven P; Small, Aaron J; Nelson, Jeremy B; Badley, Andrew D; Chen, Xian-Ming; Gores, Gregory J; Larusso, Nicholas F

    2007-02-01

    While Cryptosporidium parvum infection of the intestine has been reported in both immunocompetent and immunocompromised individuals, biliary infection is seen primarily in adult AIDS patients and is associated with development of AIDS cholangiopathy. However, the mechanisms of pathogen-induced AIDS cholangiopathy remain unclear. Since we previously demonstrated that the Fas/Fas ligand (FasL) system is involved in paracrine-mediated C. parvum cytopathicity in cholangiocytes, we also tested the potential synergistic effects of human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat)-mediated FasL regulation on C. parvum-induced apoptosis in cholangiocytes by semiquantitative reverse transcription-PCR, immunoblotting, immunofluorescence analysis, and immunogold electron microscopy. H69 cells do not express CXCR4 and CCR5, which are receptors required for direct HIV-1 viral infection. However, recombinant biologically active HIV-1-associated Tat protein increased FasL expression in the cytoplasm of cholangiocytes without a significant increase in apoptosis. We found that C. parvum-induced apoptosis was associated with translocation of intracellular FasL to the cell membrane surface and release of full-length FasL from infected H69 cells. Tat significantly (P < 0.05) increased C. parvum-induced apoptosis in bystander cells in a dose-dependent manner. Moreover, Tat enhanced both C. parvum-induced FasL membrane translocation and release of full-length FasL. In addition, the FasL neutralizing antibody NOK-1 and the caspase-8 inhibitor Z-IETD-fmk both blocked C. parvum-induced apoptosis in cholangiocytes. The data demonstrated that HIV-1 Tat enhances C. parvum-induced cholangiocyte apoptosis via a paracrine-mediated, FasL-dependent mechanism. Our results suggest that concurrent active HIV replication, with associated production of Tat protein, and C. parvum infection synergistically increase cholangiocyte apoptosis and thus jointly contribute to

  19. Fas Ligand DNA Enhances a Vaccination Effect by Coadministered DNA Encoding a Tumor Antigen through Augmenting Production of Antibody against the Tumor Antigen

    PubMed Central

    Zhong, Boya; Ma, Guangyu; Sato, Ayako; Shimozato, Osamu; Liu, Hongdan; Shingyoji, Masato; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi

    2015-01-01

    Interaction of Fas and Fas ligand (FasL) plays an important role in the regulation of immune responses by inducing apoptosis of activated cells; however, a possible role of FasL in DNA vaccination has not been well understood. We examined whether administration of DNA encoding FasL gene enhanced antitumor effects in mice that were vaccinated with DNA expressing a putative tumor antigen gene, β-galactosidase (β-gal). Growth of β-gal-positive Colon 26 tumors was retarded in the syngeneic mice immunized with β-gal and FasL DNA compared with those vaccinated with β-gal or FasL DNA. We did not detect increased numbers of β-gal-specific CD8+ T cells in lymph node of mice that received combination of β-gal and FasL DNA, but amounts of anti-β-gal antibody increased with the combination but not with β-gal or FasL DNA injection alone. Subtype analysis of anti-β-gal antibody produced by the combination of β-gal and FasL DNA or β-gal DNA injection showed that IgG2a amounts were greater in mice injected with both DNA than those with β-gal DNA alone, but IgG2b amounts were lower in both DNA-injected than β-gal DNA-injected mice. These data suggest that FasL is involved in boosting humoral immunity against a gene product encoded by coinjected DNA and enhances the vaccination effects. PMID:25759847

  20. Astrocyte reactivity to Fas activation is attenuated in TIMP-1 deficient mice, an in vitro study

    PubMed Central

    Ogier, Crystel; Creidy, Rita; Boucraut, José; Soloway, Paul D; Khrestchatisky, Michel; Rivera, Santiago

    2005-01-01

    Background Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional secreted protein with pleiotropic actions, including the inhibition of matrix metalloproteinases (MMPs), cell death/survival and growth promoting activities. After inflammatory challenge, the levels of TIMP-1 are highly and selectively upregulated in astrocytes among glial cells, but little is know about its role in these neural cells. We investigated the influence of TIMP-1 null mutation in the reactivity of cultured astrocytes to pro-inflammatory stimuli with TNF-α and anti-Fas antibody. Results When compared to WT, mutant astrocytes displayed an overall increased constitutive gelatinase expression and were less responsive to Fas-mediated upregulation of MMP-9, of monocyte chemoattractant protein-1 (MCP-1) and of intercellular cell adhesion molecule-1 (ICAM-1), all markers of astrocyte inflammatory response. In contrast, TNF-α treatment induced all these factors similarly regardless of the astrocyte genotype. The incorporation of 3H-thymidin, a marker of cell proliferation, increased in wild-type (WT) astrocytes after treatment with anti-Fas antibody or recombinant TIMP-1 but not in mutant astrocytes. Finally, lymphocyte chemotaxis was differentially regulated by TNF-α in WT and TIMP-1 deficient astrocytes. Conclusion We provide evidence that the alteration of the MMP/TIMP balance in astrocytes influences their reactivity to pro-inflammatory stimuli and that Fas activation modulates the expression of members of the MMP/TIMP axis. We hypothesise that the Fas/FasL transduction pathway and the MMP/TIMP system interact in astrocytes to modulate their inflammatory response to environmental stimuli. PMID:16316466

  1. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  2. Fas (CD95) Induces Macrophage Pro-Inflammatory Chemokine Production via a MyD88-dependent, Caspase-independent Pathway

    PubMed Central

    Altemeier, William A.; Zhu, Xiaodong; Berrington, William R.; Harlan, John M.; Liles, W. Conrad

    2015-01-01

    Activation of the prototypical death receptor, Fas (CD95), can induce both caspase-dependent cell death and production of pro-inflammatory chemokines, leading to neutrophil recruitment and end-organ injury. The precise mechanism(s), by which Fas upregulates chemokine production and release, is currently unclear. We hypothesized that Fas-induced chemokine release by macrophages is dependent on the MyD88 adapter molecule and independent of caspase activity. To test this hypothesis, we measured chemokine response to Fas activation both in RAW 264.7 cells with RNAi-attenuated MyD88 expression and in MyD88-deficient primary macrophages. We found that Fas-induced chemokine release was abrogated in the absence of MyD88. In vivo, MyD88−/− mice had impaired CXCL1/KC release and polymorphonuclear cell recruitment in response to intratracheal treatment with the Fas-activating monoclonal antibody, Jo-2. Furthermore, Fas-induced chemokine release was not dependent on either IL-1 receptor signaling or on caspase activity. We conclude that MyD88 plays an integral role in Fas-induced macrophage-mediated inflammation. PMID:17576821

  3. Mouse interleukin-12/FasTI: A novel bi-functional fusion protein for cancer immuno/gene therapy.

    PubMed

    Yang, Xi; Tietje, Ashlee H; Yu, Xianzhong; Wei, Yanzhang

    2016-06-01

    Whereas cancer immunotherapy with cytokines in recent research was demonstrated effective in activating immune response against tumor cells, one major obstacle with the use of these cytokines is their severe side effects when delivered systemically at high doses. Another challenge is that advanced tumor cells often evade immunosurveillance of the immune system as well as of the Fas-mediated apoptosis by various mechanisms. We report the design and preliminary evaluation of the antitumor activity of a novel fusion protein-mIL-12/FasTI, consisting of mouse interleukin-12 and the transmembrane and intracellular domains of mouse Fas. The fusion construct (pmIL-12/FasTI) was transfected into mouse lung carcinoma cell line TC-1. Stable cell clones expressing the fusion protein were established as assayed by RT-PCR and immunohistochemistry. ELISA and cell proliferation analyses demonstrated that NK cells were effectively activated by the fusion protein with increased IFN-γ production and cytotoxicity. Enhanced caspase-3 activity of the clones when co-cultured with NK cells indicated that apoptosis was induced through Fas/FasL signaling pathway. The preliminary results suggest a synergized anticancer activity of the fusion protein. It may represent a promising therapeutic agent for cancer treatment. PMID:27081758

  4. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  5. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    PubMed

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. PMID:27306109

  6. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL induced apoptosis

    PubMed Central

    Rodrigues, Melanie; Blair, Harry; Stockdale, Linda; Griffith, Linda; Wells, Alan

    2012-01-01

    Multipotential stromal cells, or mesenchymal stem cells, (MSC) have ben proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells post-implantation. This cell death in part, is due to ubiquitous non-specific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Further, tethering EGF onto a two-dimensional surface (tEGF) altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived pre-osteoblasts showed increased Fas levels and became more susceptible to FasL induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function. PMID:22948863

  7. The role of MAPK and FAS death receptor pathways in testicular germ cell apoptosis induced by lead.

    PubMed

    Dong, Shuying; Liang, Duoping; An, Na; Jia, Li; Shan, Yujuan; Chen, Chao; Sun, Kuo; Niu, Fei; Li, Huiyan; Fu, Songbin

    2009-09-01

    The aim of the present study is to investigate gene expression involved in the signal pathway of MAPK and death signal receptor pathway of FAS in lead-induced apoptosis of testicular germ cells. First, cell viabilities were determined by MTT assay. Second, using single cell gel-electrophoresis test (comet assay) and TUNEL staining technique, apoptotic rate and cell apoptosis localization of testicular germ cells were measured in mice treated with 0.15%, 0.3%, and 0.6% lead, respectively. Third, the immunolocalization of K-ras, c-fos, Fas, and active caspase-3 proteins was determined by immunohistochemistry. Finally, changes in the translational levels of K-ras, c-fos, Fas, and active caspase-3 were further detected by western blot analysis. Our results showed that lead could significantly induce testicular germ cell apoptosis in a dose-dependent manner (P<0.01). The mechanisms were closely related to the increased expressions of K-ras, c-fos, Fas, and active caspase-3 in apoptotic germ cells. In conclusion, K-ras/c-fos and Fas/caspase-3 death signaling receptor pathways were involved in the lead-induced apoptosis of the testicular germ cells in mice. PMID:19727529

  8. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  9. Fas/Fas ligand-mediated apoptosis in different cell lineages and functional compartments of human lymph nodes.

    PubMed

    Kokkonen, Tuomo S; Karttunen, Tuomo J

    2010-02-01

    We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL-mediated apoptosis in lymph node homeostasis. PMID:19826071

  10. Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis

    SciTech Connect

    Zou, Chengcheng; Chen, Juan; Chen, Ke; Wang, Sen; Cao, Yiyi; Zhang, Jinnan; Sheng, Yanrui; Huang, Ailong; Tang, Hua

    2015-02-15

    The hepatitis B virus (HBV) is responsible for most of hepatocellular carcinoma (HCC). However, whether HBV plays an important role during hepatocarcinogenesis through effecting miRNAs remains unknown. Here, we reported that HBV up-regulated microRNA-181a (miR-181a) by enhancing its promoter activity. Simultaneously, we found that miR-181a inhibited apoptosis in vitro and promoted tumor cell growth in vivo. TNF receptor superfamily member 6 (Fas) was further identified as a target of miR-181a. We also found that Fas could reverse the apoptosis-inhibition effect induced by miR-181a. Moreover, HBV could inhibit cell apoptosis by down-regulating Fas expression, which could be reversed by miR-181a inhibitor. Our data demonstrated that HBV suppressed apoptosis of hepatoma cells by up-regulating miR-181a expression and down-regulating Fas expression, which may provide a new understanding of the mechanism in HBV-related HCC pathogenesis. - Highlights: • HBV could up-regulate miR-181a expression by interacting with nt−800 to +240 in its promoter region in HCC cell lines. • HBV could down-regulate Fas expression and suppress apoptosis of hepatoma cells, which could be reversed by miR-181a inhibitor. • Up-regulation of miR-181a promoted proliferation of hepatoma cells and repressed apoptosis, which could be reversed by Fas. • Our study provides a new understanding of the mechanism in HBV-related HCC pathogenesis.

  11. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript

    PubMed Central

    Ramirez-Peña, Esmeralda; Treviño, Jeanette; Liu, Zhuyun; Perez, Nataly; Sumby, Paul

    2010-01-01

    Summary Small RNA molecules play key regulatory roles in many bacterial species. However, little mechanistic data exists for the action of small regulatory RNAs (sRNAs) in the human pathogen group A Streptococcus (GAS). Here, we analyzed the relationship between a putative GAS sRNA and production of the secreted virulence factor streptokinase (SKA). SKA promotes GAS dissemination by activating conversion of host plasminogen into the fibrin-degrading protease plasmin. Homologues of the putative sRNA-encoding gene fibronectin/fibrinogen-binding/hemolytic-activity/streptokinase-regulator-X (fasX) were identified in four different pyogenic streptococcal species. However, despite 79% fasX nucleotide identity, a fasX allele from the animal pathogen Streptococcus zooepidemicus failed to complement a GAS fasX mutant. Using a series of precisely-constructed fasX alleles we discovered that FasX is a bona-fide sRNA that post-transcriptionally regulates SKA production in GAS. By base-pairing to the 5’ end of ska mRNA, FasX enhances ska transcript stability, resulting in a ~10-fold increase in SKA activity. Our data provide new insights into the mechanisms used by sRNAs to activate target mRNAs, and enhances our understanding of the regulation of a key GAS virulence factor. PMID:21143309

  12. Two R7 regulator of G-protein signaling proteins shape retinal bipolar cell signaling.

    PubMed

    Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G

    2009-06-17

    RGS7, RGS11, and their binding partner Gbeta5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Galphao. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587

  13. Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis

    PubMed Central

    Huo, J; Ma, Y; Liu, J-J; Ho, Y S; Liu, S; Soh, L Y; Chen, S; Xu, S; Han, W; Hong, A; Lim, S C; Lam, K-P

    2016-01-01

    Altered hepatic lipogenesis is associated with metabolic diseases such as obesity and hepatosteatosis. Insulin resistance and compensatory hyperinsulinaemia are key drivers of these metabolic imbalances. Fas apoptosis inhibitory molecule (FAIM), a ubiquitously expressed antiapoptotic protein, functions as a mediator of Akt signalling. Since Akt acts at a nodal point in insulin signalling, we hypothesize that FAIM may be involved in energy metabolism. In the current study, C57BL/6 wild-type (WT) and FAIM-knockout (FAIM-KO) male mice were fed with normal chow diet and body weight changes were monitored. Energy expenditure, substrate utilization and physical activities were analysed using a metabolic cage. Liver, pancreas and adipose tissue were subjected to histological examination. Serum glucose and insulin levels and lipid profiles were determined by biochemical assays. Changes in components of the insulin signalling pathway in FAIM-KO mice were examined by immunoblots. We found that FAIM-KO mice developed spontaneous non-hyperphagic obesity accompanied by hepatosteatosis, adipocyte hypertrophy, dyslipidaemia, hyperglycaemia and hyperinsulinaemia. In FAIM-KO liver, lipogenesis was elevated as indicated by increased fatty acid synthesis and SREBP-1 and SREBP-2 activation. Notably, protein expression of insulin receptor beta was markedly reduced in insulin target organs of FAIM-KO mice. Akt phosphorylation was also lower in FAIM-KO liver and adipose tissue as compared with WT controls. In addition, phosphorylation of insulin receptor substrate-1 and Akt2 in response to insulin treatment in isolated FAIM-KO hepatocytes was also markedly attenuated. Altogether, our data indicate that FAIM is a novel regulator of insulin signalling and plays an essential role in energy homoeostasis. These findings may shed light on the pathogenesis of obesity and hepatosteatosis. PMID:26866272

  14. Regulator of G-Protein Signaling – 5 (RGS5) Is a Novel Repressor of Hedgehog Signaling

    PubMed Central

    Mahoney, William M.; Gunaje, Jagadambika; Daum, Guenter; Dong, Xiu Rong; Majesky, Mark W.

    2013-01-01

    Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases. PMID:23637832

  15. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  16. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  17. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis

    PubMed Central

    Guo, Zheng; Driver, Ian

    2013-01-01

    Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers. PMID:23733344

  18. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity. PMID:25670795

  19. Regulation of FGF signaling: Recent insights from studying positive and negative modulators.

    PubMed

    Korsensky, Lina; Ron, Dina

    2016-05-01

    Fibroblast growth factor (FGF) signaling is involved in a multitude of biological processes, while impairment of FGF signaling is implicated in a variety of human diseases including developmental disorders and cancer. Therefore, it is not surprising that FGF activity is regulated at multiple and distinct levels. This review focuses on positive and negative modulation of the FGF signal exemplified by recently identified protein modulators anosmin-1, fibronectin-leucine-rich transmembrane protein 3 (FLRT3) and similar expression to FGF (Sef). We examine how these proteins regulate FGF signaling at multiple levels and across species. Finally, we describe the role of these regulators in human disease. PMID:26903404

  20. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells.

    PubMed

    Hyun, Hwang-Bo; Lee, Won Sup; Go, Se-Il; Nagappan, Arulkumar; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Gonsup; Kim, Gi Young; Cheong, Jaehun; Ryu, Chung Ho; Shin, Sung Chul; Choi, Yung Hyun

    2015-01-01

    It is evident based on literature that flavonoids from fruit can safely modulate cancer cell biology and induce apoptosis. Therefore, we investigated the anticancer activity of morin, a flavonoid which is plentiful in twigs of mulberry focusing on apoptosis, and its mechanisms. Morin upregulated the Fas receptor, and activates caspase-8, -9 and -3 in HCT-116 cells. Morin also activates Bid, and induced the loss of mitochondrial membrane potential (MMP, ∆Ψm) with Bax protein activation and cytochrome c release. In addition, morin induced ROS generation which was not blocked by N-acetylcysteine. Morin also suppressed Bcl-2 and cIAP-1, anti-apoptotic proteins, which may contribute to augmentation of morin-triggered apoptosis. As an upstream signaling pathway, suppressed Akt activity by morin was associated to apoptosis. This study suggests that morin induces caspase-dependent apoptosis through extrinsic pathway by upregulating Fas receptor as well as through the intrinsic pathway by modulating Bcl-2 and IAP family members, and ROS generation, and that Akt is the critical upstream signaling that regulates the apoptotic effect of morin in human colon cancer HCT-116 cells. PMID:25892545

  1. Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes

    PubMed Central

    Li, Xinran; Garrity, Abigail G; Xu, Haoxing

    2013-01-01

    Endosomal and lysosomal membrane trafficking requires the coordination of multiple signalling events to control cargo sorting and processing, and endosome maturation. The initiation and termination of signalling events in endosomes and lysosomes is not well understood, but several key regulators have been identified, which include small GTPases, phosphoinositides, and Ca2+. Small GTPases act as master regulators and molecular switches in a GTP-dependent manner, initiating signalling cascades to regulate the direction and specificity of endosomal trafficking. Phosphoinositides are membrane-bound lipids that indicate vesicular identities for recruiting specific cytoplasmic proteins to endosomal membranes, thus allowing specificity of membrane fusion, fission, and cargo sorting to occur within and between specific vesicle compartments. In addition, phosphoinositides regulate the function of membrane proteins such as ion channels and transporters in a compartment-specific manner to mediate transport and signalling. Finally, Ca2+, a locally acting second messenger released from intracellular ion channels, may provide precise spatiotemporal regulation of endosomal signalling and trafficking events. Small GTPase signalling can regulate phosphoinositide conversion during endosome maturation, and electrophysiological studies on isolated endosomes have shown that endosomal and lysosomal Ca2+ channels are directly modulated by endosomal lipids. Thus trafficking and maturation of endosomes and lysosomes can be precisely regulated by dynamic changes in GTPases and membrane lipids, as well as Ca2+ signalling. Importantly, impaired phosphoinositide and Ca2+ signalling can cause endosomal and lysosomal trafficking defects at the cellular level, and a spectrum of lysosome storage diseases. PMID:23878375

  2. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis

    PubMed Central

    Suvannavejh, Graig C.; Dal Canto, Mauro C.; Matis, Louis A.; Miller, Stephen D.

    2000-01-01

    PLP139-51–induced experimental autoimmune encephalomyelitis (R-EAE) displays a relapsing-remitting paralytic course in female SJL mice. We investigated the role of apoptosis/activation-induced cell death (AICD) in the spontaneous recovery from acute disease. Clinical EAE was significantly enhanced in Fas (CD95/APO-1)–deficient SJL lpr/lpr mice, which displayed significantly increased mean peak clinical scores, reduced remission rates, and increased mortality when compared with their SJL +/lpr littermates. PLP139-151–specific proliferative responses were fairly equivalent in the 2 groups, but draining lymph node T cells from SJL lpr/lpr mice produced dramatically increased levels of IFN-γ. Central nervous system (CNS) Fas and FasL mRNA levels in wild-type SJL (H-2s) mice peaked just before spontaneous disease remission and gradually declined as disease remitted. We applied the terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL) assay to detect apoptosis in situ in spinal cords of mice at various clinical stages of EAE. Most TUNEL+ cells were found during active periods of inflammation: the acute, peak, and relapse time points. Significantly fewer apoptotic cells were observed at preclinical and remission time points. Collectively, these findings indicate that Fas-mediated apoptosis/AICD plays a major role in the spontaneous remission after the initial acute inflammatory episode and represents an important intrinsic mechanism in regulation of autoimmune responses. PMID:10642601

  3. SP8 regulates signaling centers during craniofacial development.

    PubMed

    Kasberg, Abigail D; Brunskill, Eric W; Steven Potter, S

    2013-09-15

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  4. SP8 regulates signaling centers during craniofacial development

    PubMed Central

    Kasberg, Abigail D.; Brunskill, Eric W.; Potter, S. Steven

    2014-01-01

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  5. DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4.

    PubMed

    Chi, Wei; Li, Jing; He, Baoye; Chai, Xin; Xu, Xiumei; Sun, Xuwu; Jiang, Jingjing; Feng, Peiqiang; Zuo, Jianru; Lin, Rongcheng; Rochaix, Jean-David; Zhang, Lixin

    2016-06-21

    Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components. PMID:27274065

  6. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis

    SciTech Connect

    Moosavi, Mohammad Amin; Yazdanparast, Razieh

    2008-07-01

    Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathways involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.

  7. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton.

    PubMed

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-06-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  8. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling

    PubMed Central

    Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870

  9. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans.

    PubMed

    Folick, Andrew; Oakley, Holly D; Yu, Yong; Armstrong, Eric H; Kumari, Manju; Sanor, Lucas; Moore, David D; Ortlund, Eric A; Zechner, Rudolf; Wang, Meng C

    2015-01-01

    Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans. PMID:25554789

  10. Post-Transcriptional Regulation of Interferons and Their Signaling Pathways

    PubMed Central

    2014-01-01

    Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3′ untranslated regions (3′ UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ∼22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3′ UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3′ UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses. PMID:24702117

  11. Light-regulated translocation of signaling proteins in Drosophila photoreceptors

    PubMed Central

    Frechter, Shahar; Minke, Baruch

    2007-01-01

    Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependant translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the α subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGqα in wild-type flies and specific visual mutants indicated that DGqα is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells. PMID:16458490

  12. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  13. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  14. Synbindin in Extracellular Signal-Regulated Protein Kinase Spatial Regulation and Gastric Cancer Aggressiveness

    PubMed Central

    2013-01-01

    Background The molecular mechanisms that control the aggressiveness of gastric cancer (GC) remain poorly defined. Here we show that synbindin contributes to the aggressiveness of GC by activating extracellular signal-regulated protein kinase (ERK) signaling on the Golgi apparatus. Methods Expression of synbindin was examined in normal gastric mucosa (n = 44), intestinal metaplastic gastric mucosa (n = 66), and GC tissues (n=52), and the biological effects of synbindin on tumor growth and ERK signaling were detected in cultured cells, nude mice, and human tissue samples. The interaction between synbindin and mitogen-activated protein kinase kinase (MEK1)/ERK was determined by immunofluorescence and fluorescence resonance energy transfer assays. The transactivation of synbindin by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was detected using luciferase reporter assay and chromatin immunoprecipitation. Results High expression of synbindin was associated with larger tumor size (120.8 vs 44.8cm3; P = .01), advanced tumor node metastasis (TNM) stage (P = .003), and shorter patient survival (hazard ratio = 1.51; 95% confidence interval [CI] = 1.01 to 2.27; P = .046). Synbindin promotes cell proliferation and invasion by activating ERK2 on the Golgi apparatus, and synbindin is directly transactivated by NF-κB. Synbindin expression level was statistically significantly higher in human GCs with activated ERK2 than those with low ERK2 activity (intensity score of 11.5, 95% CI = 10.4 to 12.4 vs intensity score of 4.6, 95% CI 3.9 to 5.3; P < .001). Targeting synbindin in xenograft tumors decreased ERK2 phosphorylation and statistically significantly reduced tumor volume (451.2mm3, 95% CI = 328.3 to 574.1 vs 726.1mm3, 95% CI = 544.2 to 908.2; P = .01). Conclusions Synbindin contributes to malignant phenotypes of GC by activating ERK on the Golgi, and synbindin is a potential biomarker and therapeutic target for GC. PMID:24104608

  15. Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster.

    PubMed

    Qian, Yue; Dominado, Nicole; Zoller, Richard; Ng, Chun; Kudyba, Karl; Siddall, Nicole A; Hime, Gary R; Schulz, Cordula

    2014-10-15

    The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells. PMID:25169192

  16. Glycosylated Synaptomatrix Regulation of Trans-Synaptic Signaling

    PubMed Central

    Dani, Neil; Broadie, Kendal

    2011-01-01

    Synapse formation is driven by precisely orchestrated intercellular communication between the presynaptic and the postsynaptic cell, involving a cascade of anterograde and retrograde signals. At the neuromuscular junction (NMJ), both neuron and muscle secrete signals into the heavily glycosylated synaptic cleft matrix sandwiched between the two synapsing cells. These signals must necessarily traverse and interact with the extracellular environment, for the ligand-receptor interactions mediating communication to occur. This complex synaptomatrix, rich in glycoproteins and proteoglycans, comprises heterogeneous, compartmentalized domains where specialized glycans modulate trans-synaptic signaling during synaptogenesis and subsequent synapse modulation. The general importance of glycans during development, homeostasis and disease is well established, but this important molecular class has received less study in the nervous system. Glycan modifications are now understood to play functional and modulatory roles as ligands and co-receptors in numerous model systems; however roles in synapse formation and modulation are less well understood. We highlight here properties of synaptomatrix glycans and glycan-interacting proteins with key roles in synaptogenesis, with a particular focus on recent advances made in the Drosophila NMJ genetic system. We discuss open questions and interesting new findings driving the current investigations of the complex, diverse and largely understudied glycan mechanisms. Keywords: Extracellular Matrix, Glycan, Synaptic Cleft, Neuromuscular Junction, Drosophila PMID:21509945

  17. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility

    PubMed Central

    Hoying, James B.; Deymier, Pierre A.; Zhang, Donna D.; Wong, Pak Kin

    2016-01-01

    A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling. PMID:27196735

  18. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages.

    PubMed

    Tampella, Giacomo; Kerns, Hannah M; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A; Garrett, Meghan E; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A; Rawlings, David J; James, Richard G

    2015-07-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K. PMID:26026062

  19. The Tec kinase-regulated phosphoproteome reveals a mechanism for the regulation of inhibitory signals in murine macrophages

    PubMed Central

    Tampella, Giacomo; Kerns, Hannah M.; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A.; Garrett, Meghan E.; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A.; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A.; Rawlings, David J.; James, Richard G.

    2015-01-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of Toll-like receptor (TLR)-dependent signalling in myeloid cells. In the present study, we performed a detailed investigation of the role of Btk and Tec kinases in regulating TLR signalling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less pro-inflammatory cytokines in response to TLR stimulation than wild type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more pro-inflammatory cytokines than wild type cells. We then compared the phosphoproteome regulated by Tec kinases and lipopolysaccharide in primary peritoneal and bone marrow derived macrophages. From this analysis we determined that Tec kinases regulate different signalling programs in these cell types. In additional studies using bone marrow-derived macrophages, we find that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signalling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signalling in many types of myeloid cells. However, our data also support a cell type-specific TLR-inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signalling via PI3K. PMID:26026062

  20. Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila

    PubMed Central

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate.

  1. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  2. Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Breast Cancer MCF-7 Cells by Promoting Caspase Activation and Fas/FasL Expression

    PubMed Central

    Han, Zhe; Li, Xiao-Xia; Li, Mei; Han, Han; Chen, Jun; Zang, Sitao

    2015-01-01

    Abstract Virotherapy represents a promising new approach for treating cancer. Here the authors have analyzed the effect of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MCF-7 cells in vitro and in vivo. In vitro, UV-Tianjin inhibited the proliferation of MCF-7, MDA-MB-231, and T47D breast cancer cell lines, although MCF-7 cells were most susceptible to UV-Tianjin treatment. Hoechst staining and flow cytometric analysis of UV-Tianjin-treated MCF-7 cells revealed that UV-Tianjin induced apoptosis in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reductions in the mitochondria membrane potential of MCF-7 cells and regulated the levels and activities of Bcl-2, Bax, cyt c, caspases, Fas, and Fas ligand (FasL). In vivo, UV-Tianjin inhibited the growth of MCF-7 tumors in nude mice and increased tumor cell apoptosis compared with saline-treated controls. In addition, the percentage of tumor cells positive for cleaved versions of caspase-7, caspase-8, and caspase-9 was higher in UV-Tianjin-treated tumors than in saline-treated controls. In summary, UV-Tianjin exhibited the antitumor activity in human breast cancer MCF-7 cells both in vitro and in vivo. The UV-Tianjin treatment seemed to induce apoptosis by activating both the mitochondrial and death receptor apoptotic pathways. PMID:25517620

  3. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

    PubMed Central

    Choi, Hyunmo; Oh, Eunkyoo

    2016-01-01

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  4. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.

    PubMed

    Choi, Hyunmo; Oh, Eunkyoo

    2016-08-31

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  5. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    PubMed Central

    Li, Chen-Shuang; Zheng, Zhong; Su, Xiao-Xia; Wang, Fei; Ling, Michelle; Zou, Min; Zhou, Hong

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs) signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK) and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK) signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP) activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering. PMID:26989682

  6. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  7. ROP GTPase Signaling in The Hormonal Regulation of Plant Growth

    SciTech Connect

    Yang, Zhenbiao

    2013-05-24

    I secured funding from the DOE to investigate the effect of auxin signaling on ROP9. This was based on our preliminary data showing that ROP9 is activated by auxin. However, we were unable to show that rop9 knockout mutants have altered sensitivity to auxin. Instead, we found that auxin activates both ROP2 and ROP6, and relevant mutants exhibit reduced sensitivity to auxin. Therefore we used the fund to strengthen our research on ROP2 and ROP6. My laboratory made major advancements in the recent years in the understanding of the effect of auxin signaling on ROP2 and ROP6. This is clearly exemplified by the numerous publications acknowledging fund DE-FG0204ER15555 as the source of funding.

  8. Endogenous signals regulating herbivore-associated volatile emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induced volatiles are a well-characterized response of maize plants to herbivory and contribute to defense through recruitment of natural enemies. Despite the importance of these volatiles, many questions remain regarding plant regulation of this response. While elicitor-induced production of jasm...

  9. A self-regulating biomolecular comparator for processing oscillatory signals.

    PubMed

    Agrawal, Deepak K; Franco, Elisa; Schulman, Rebecca

    2015-10-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  10. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  11. Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program

    PubMed Central

    Miyagawa, Shinichi; Moon, Anne; Haraguchi, Ryuma; Inoue, Chie; Harada, Masayo; Nakahara, Chiaki; Suzuki, Kentaro; Matsumaru, Daisuke; Kaneko, Takehito; Matsuo, Isao; Yang, Lei; Taketo, Makoto M.; Iguchi, Taisen; Evans, Sylvia M.; Yamada, Gen

    2009-01-01

    Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/β-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/β-catenin signaling activity are downregulated. β-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/β-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/β-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3′ conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development. PMID:19906864

  12. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

    PubMed

    Hornberger, Troy A

    2011-09-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling. PMID:21621634

  13. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment. PMID:25578863

  14. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding.

    PubMed

    Kim, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesús; Liu, Zhong-Wu; Zimmer, Marcelo R; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H; Horvath, Tamas L

    2014-07-01

    We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin. PMID:24880214

  15. Crim1 regulates integrin signaling in murine lens development

    PubMed Central

    Zhang, Ying; Fan, Jieqing; Ho, Joshua W. K.; Hu, Tommy; Kneeland, Stephen C.; Fan, Xueping; Xi, Qiongchao; Sellarole, Michael A.; de Vries, Wilhelmine N.; Lu, Weining; Lachke, Salil A.; Lang, Richard A.; John, Simon W. M.; Maas, Richard L.

    2016-01-01

    The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1glcr11, which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1null and Crim1cko, we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development. PMID:26681494

  16. Spatiotemporal regulation of early lipolytic signaling in adipocytes.

    PubMed

    Martin, Sally; Okano, Satomi; Kistler, Carol; Fernandez-Rojo, Manuel A; Hill, Michelle M; Parton, Robert G

    2009-11-13

    Hormone-sensitive lipase (HSL) is a key enzyme regulating the acute activation of lipolysis. HSL functionality is controlled by multiple phosphorylation events, which regulate its association with the surface of lipid droplets (LDs). We determined the progression and stability of HSL phosphorylation on individual serine residues both spatially and temporally in adipocytes using phospho-specific antibodies. Within seconds of beta-adrenergic receptor activation, HSL was phosphorylated on Ser-660, the phosphorylated form appearing in the peripheral cytosol prior to rapid translocation to, and stable association with, LDs. In contrast, phosphorylation of HSL on Ser-563 was delayed, the phosphorylated protein was predominantly detected on LDs, and mutation of the Ser-659/Ser-660 site to Ala significantly reduced subsequent phosphorylation on Ser-563. Phosphorylation of HSL on Ser-565 was observed in control cells; the phosphorylated protein was translocated to LDs with similar kinetics to total HSL, and the degree of phosphorylation was inversely related to phospho-HSL(Ser-563). These results describe the remarkably rapid, sequential phosphorylation of specific serine residues in HSL at spatially distinct intracellular locales, providing new insight into the complex regulation of lipolysis. PMID:19755426

  17. PGC-1α Integrates Insulin Signaling, Mitochondrial Regulation, and Bioenergetic Function in Skeletal Muscle*S⃞

    PubMed Central

    Pagel-Langenickel, Ines; Bao, Jianjun; Joseph, Joshua J.; Schwartz, Daniel R.; Mantell, Benjamin S.; Xu, Xiuli; Raghavachari, Nalini; Sack, Michael N.

    2008-01-01

    The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1α. Overexpression of PGC-1α rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1α expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1α in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1α and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1α. Moreover, PGC-1α is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle. PMID:18579525

  18. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    PubMed Central

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of ext