Science.gov

Sample records for fast high resolution

  1. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  2. High Resolution Full Wave Modeling of Fast Waves in NSTX

    NASA Astrophysics Data System (ADS)

    Phillips, C. K.; Berk, L.; Hosea, J. C.; Leblanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.

    2010-11-01

    High Harmonic Fast Waves (HHFW) are being used in NSTX for plasma heating and noninductive current profile control. Numerical solutions for the wave fields obtained with the full wave TORIC and AORSA codes with ultrafine spatial resolution reveal the presence of a short wavelength feature that is predominantly polarized in the direction parallel to the equilibrium magnetic field and which is predicted by the codes to damp on electrons. A similar short wavelength mode also appears in simulations of the rf fields in C-Mod in the ICRF regime. Preliminary analysis indicates that the mode may be related to a slow mode that can propagate above the fundamental ion cyclotron frequency. The predicted power deposition profiles will be compared to those inferred from experimental measurements to see if the mode has a significant effect on the wave propagation and absorption. Possibilities for detecting the mode in NSTX and C-Mod will be discussed.

  3. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  4. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  5. Fast and high resolution single-cell BRET imaging.

    PubMed

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  6. Fast and high resolution single-cell BRET imaging

    PubMed Central

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  7. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  8. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  9. Fast high resolution reconstruction in multi-slice and multi-view cMRI

    NASA Astrophysics Data System (ADS)

    Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Cardiac magnetic resonance imaging (cMRI) is an useful tool in diagnosis, prognosis and research since it functionally tracks the heart structure. Although useful, this imaging technique is limited in spatial resolution because heart is a constant moving organ, also there are other non controled conditions such as patient movements and volumetric changes during apnea periods when data is acquired, those conditions limit the time to capture high quality information. This paper presents a very fast and simple strategy to reconstruct high resolution 3D images from a set of low resolution series of 2D images. The strategy is based on an information reallocation algorithm which uses the DICOM header to relocate voxel intensities in a regular grid. An interpolation method is applied to fill empty places with estimated data, the interpolation resamples the low resolution information to estimate the missing information. As a final step a gaussian filter that denoises the final result. A reconstructed image evaluation is performed using as a reference a super-resolution reconstructed image. The evaluation reveals that the method maintains the general heart structure with a small loss in detailed information (edge sharpening and blurring), some artifacts related with input information quality are detected. The proposed method requires low time and computational resources.

  10. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  11. A fast and high resolution x-ray imaging sensor for tape substrate inspection

    NASA Astrophysics Data System (ADS)

    Yeom, Jung-Yeol; Roh, Young-Jun; Jung, Chang-Ook; Jeong, Dae-Hwa

    2008-11-01

    In automated Tape substrate (TS) inspection, machine vision is widely adopted for their high throughput and cost advantages. However, conventional methods are overly sensitive to foreign particles or have limitations in detecting three dimensional defects such as top over-etching. In an attempt to complement vision inspection systems, we proposed utilizing x-ray inspection. To implement x-ray inspection in TS application, we developed a prototype fast and high spatial resolution x-ray imaging sensor which functions at frame rate in excess of 30 fps and has a spatial resolution of 20 µm. In this paper, the development of the sensor and its performance is addressed and the efficiency of the x-ray inspection in detecting top over-etching defects will be shown with experimental studies.

  12. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  13. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  14. High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lalmi, B.; Khemliche, H.; Momeni, A.; Soulisse, P.; Roncin, P.

    2012-11-01

    A new table top technique is used to simultaneously analyze the local morphology of crystalline surfaces as well as the misalignment of large scale domains at the topmost surface layer. The approach is based on fast atom diffraction at grazing incidence (GIFAD); the diffraction pattern yields the structural characteristics and the topology of the surface electronic density with atomic resolution. If superficial mosaicity is present, diffraction patterns arising from each mosaic domain can be distinguished, providing high sensitivity to the properties of each of the domains. Taking NaCl(001) as an example, we observe a discrete tilt angle distribution of the mosaic domains following an arithmetic progression with a 0.025° ± 0.005° difference; a twist mosaic angle of 0.09° ± 0.01° is also observed.

  15. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  16. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed Central

    Jones, Peter D.; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology—rather than microfluidic—will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  17. Towards Fast Morphological Mosaicking of High-Resolution Multi-Spectral Products - on Improvements of Seamlines

    NASA Astrophysics Data System (ADS)

    Storch, Tobias; Fischer, Peter; Fast, Sebastian; Serr, Philipp; Krauß, Thomas; Müller, Rupert

    2016-06-01

    The complex process of fully automatically establishing seamlines for the fast production of high-quality mosaics with high-amount of high-resolution multi-spectral images is detailed and improved in this paper. The algorithm is analyzed and a quasi-linear runtime in the number of considered pixels is proven for all situations. For typical situations the storage is even essentially smaller from a complexity theoretical perspective. Improvements from algorithm practical perspective are specified, too. The influence of different methods for the determination of seamlines based on gradients is investigated in detail for three Sentinel-2 products. The studied techniques cover well-known ones normally based on a single band. But also more sophisticated techniques based on multiple bands or even taking additional external geo-information data are taken into account. Based on the results a larger area covered by Image2006 orthorectified products with data of the Resourcesat-1 mission is regarded. The feasibility of applying advanced subordinated methods for improving the mosaic such as radiometric harmonization is examined. This also illustrates the robustness of the improved seamline determination approaches.

  18. Fast Mean-Shift Based Classification of Very High Resolution Images: Application to Forest Cover Mapping

    NASA Astrophysics Data System (ADS)

    Boukir, S.; Jones, S.; Reinke, K.

    2012-07-01

    This paper presents a new unsupervised classification method which aims to effectively and efficiently map remote sensing data. The Mean-Shift (MS) algorithm, a non parametric density-based clustering technique, is at the core of our method. This powerful clustering algorithm has been successfully used for both the classification and the segmentation of gray scale and color images during the last decade. However, very little work has been reported regarding the performance of this technique on remotely sensed images. The main disadvantage of the MS algorithm lies on its high computational costs. Indeed, it is based on an optimization procedure to determine the modes of the pixels density. To investigate the MS algorithm in the difficult context of very high resolution remote sensing imagery, we use a fast version of this algorithm which has been recently proposed, namely the Path-Assigned Mean Shift (PAMS). This algorithm is up to 5 times faster than other fast MS algorithms while inducing a low loss in quality compared to the original MS version. To compensate for this loss, we propose to use the K modes (cluster centroids) obtained after convergence of the PAMS algorithm as an initialization of a K-means clustering algorithm. The latter converges very quickly to a refined solution to the underlying clustering problem. Furthermore, it does not suffer the main drawback of the classic K-means algorithm (the number of clusters K needs to be specified) as K is automatically determined via the MS mode-seeking procedure. We demonstrate the effectiveness of this two-stage clustering method in performing automatic classification of aerial forest images. Both individual bands and band combination trails are presented. When compared to the classical PAMS algorithm, our technique is better in terms of classification quality. The improvement in classification is significant both visually and statistically. The whole classification process is performed in a few seconds on

  19. Fast repurposing of high-resolution stereo video content for mobile use

    NASA Astrophysics Data System (ADS)

    Karaoglu, Ali; Lee, Bong Ho; Boev, Atanas; Cheong, Won-Sik; Gotchev, Atanas

    2012-06-01

    3D video content is captured and created mainly in high resolution targeting big cinema or home TV screens. For 3D mobile devices, equipped with small-size auto-stereoscopic displays, such content has to be properly repurposed, preferably in real-time. The repurposing requires not only spatial resizing but also properly maintaining the output stereo disparity, as it should deliver realistic, pleasant and harmless 3D perception. In this paper, we propose an approach to adapt the disparity range of the source video to the comfort disparity zone of the target display. To achieve this, we adapt the scale and the aspect ratio of the source video. We aim at maximizing the disparity range of the retargeted content within the comfort zone, and minimizing the letterboxing of the cropped content. The proposed algorithm consists of five stages. First, we analyse the display profile, which characterises what 3D content can be comfortably observed in the target display. Then, we perform fast disparity analysis of the input stereoscopic content. Instead of returning the dense disparity map, it returns an estimate of the disparity statistics (min, max, meanand variance) per frame. Additionally, we detect scene cuts, where sharp transitions in disparities occur. Based on the estimated input, and desired output disparity ranges, we derive the optimal cropping parameters and scale of the cropping window, which would yield the targeted disparity range and minimize the area of cropped and letterboxed content. Once the rescaling and cropping parameters are known, we perform resampling procedure using spline-based and perceptually optimized resampling (anti-aliasing) kernels, which have also a very efficient computational structure. Perceptual optimization is achieved through adjusting the cut-off frequency of the anti-aliasing filter with the throughput of the target display.

  20. Fast high-resolution prediction of multi-phase flow in fractured formations

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Finsterle, Stefan; Zhang, Yingqi

    2016-02-01

    The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high- and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model.

  1. Miniaturized high-resolution NUV-VIS-NIR imaging spectrometer array for FAST SAT applications

    NASA Astrophysics Data System (ADS)

    Torr, Douglas G.; Zukic, Muamer; Feng, Chen; Ahmad, Anees; Swift, Wesley R.

    1994-09-01

    We report the design of a miniature imaging spectrometer array (ISA) for observations of the daytime and nighttime mesosphere, capable of operating in a spectral range extending from the near-ultraviolet (NUV) to the near-infrared (NIR) -- 260 to 870 nm. The instrument comprises an array of f/2 all-reflective imaging spectrometers with a 6 degree(s) field of view. The design comprises an offset single aspheric toroidal telescope mirror, a slit, an offset aspheric toroidal collimator, a plane reflective grating and a camera with three offset decentered aspheric mirrors. The optical system has a 75 mm effective focal length and approximately 7.5 micrometers spot size. The slit image curvature distortion for the system is less than 7.5 micrometers . Sampling of the image plane is provided by a 1317 X 1035 spatial x spectral pixel CCD array with 6.8 micrometers X 6.8 micrometers pixel size. Three modules of the array cover the wavelength range 260 to 400 and 550 to 870 nm at 0.3 nm spectral resolution. One high resolution module covers the range 306 to 310 at 0.05 nm resolution. This channel is used for the measurement of the hydroxyl radical. The sensitivity in the mid visible is approximately 0.1 counts/R-s/spatial bin, dropping to approximately 0.05 count/R-s/bin in the NUV. The readout electronics software allows the 1317 spatial pixels to be summed into any number of selectable bin sizes incurring a single read per bin. Since much of the full slit sensitivity is attributable to the large (6 degree(s)) field of view, the slit could be slanted with respect to the vertical, in order to enhance the sensitivity per vertical spatial bin, at the cost of some horizontal smearing. The instrument offers a powerful means for conducting comprehensive spectroscopic studies of the lower thermosphere and mesosphere, since the overall performance is better than that of the Imaging Spectrometric Observatory (ISO) flown on the ATLAS 1 shuttle mission in 1992. The weight and size

  2. High Resolution Plasma Measurements From The Fast Plasma Investigation On Magnetospheric Multiscale

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.

    2015-12-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March 2015, targets understanding of the fundamental physics of magnetic reconnection using Earth's magnetosphere as a laboratory within which to study this naturally occurring process. The first mission phase, currently in progress, focuses on reconnection occurring at Earth's dayside magnetopause. The relevant electron and ion scale processes have never before been fully resolved and differentiated, owing to limitations in the time (thus spatial) resolution available. The Fast Plasma Investigation (FPI) was developed for flight on MMS in order to fully resolve 3D plasma distribution functions on both the ion scale and the substantially smaller electron scale. MMS is designed to provide multi-point measurements of fast plasma, electric and magnetic fields, ion composition and energetic particles at the four points of a variably sized tetrahedron. Thus, MMS enables specification of all relevant plasma parameters and their spatial derivatives in order to understand the roles of the various terms in the Generalized Ohm's Law that governs the plasma behavior at reconnection sites. In this talk, we provide a brief description of FPI and show a sampling of early results, including MMS crossings of the magnetopause.

  3. High-resolution, high-sensitivity, ground-based solar spectropolarimetry with a new fast imaging polarimeter. I. Prototype characterization

    NASA Astrophysics Data System (ADS)

    Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.

    2016-05-01

    Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high

  4. High resolution fast wave reflectometry: JET design and implications for ITER.

    PubMed

    Cupido, L; Cardinali, A; Igreja, R; Serra, F; Manso, M E; Murari, A

    2008-10-01

    The measurement of the fuel mixture remains a very difficult task in thermonuclear plasmas, where the hydrogen isotopes are fully stripped and do not emit line radiation. On the other hand, direct determination of the ion species mix will be essential in the reactor to keep the mixture close to 50/50 and maximize the fusion output. In this paper, the design of fast wave reflectometry for JET is reviewed to show the potential of such a method in the perspective of ITER. The main design elements of the antenna and the detection system, based on vectorial measurements, are reported. The main challenges to such a diagnostic, mainly the intrinsic ion cyclotron emission from the plasma and the extensive use of ion cyclotron radiofrequencies as additional heating, are addressed in detail. The overall design indicates that the proposed system would be able to provide a measurement of the fuel ratio with spatial resolution in the range of few centimeters and temporal resolution in the range of 1 ms in the vast majority of JET scenarios. PMID:19068526

  5. High resolution fast wave reflectometry: JET design and implications for ITER

    SciTech Connect

    Cupido, L.; Igreja, R.; Serra, F.; Manso, M. E.; Cardinali, A.; Murari, A.

    2008-10-15

    The measurement of the fuel mixture remains a very difficult task in thermonuclear plasmas, where the hydrogen isotopes are fully stripped and do not emit line radiation. On the other hand, direct determination of the ion species mix will be essential in the reactor to keep the mixture close to 50/50 and maximize the fusion output. In this paper, the design of fast wave reflectometry for JET is reviewed to show the potential of such a method in the perspective of ITER. The main design elements of the antenna and the detection system, based on vectorial measurements, are reported. The main challenges to such a diagnostic, mainly the intrinsic ion cyclotron emission from the plasma and the extensive use of ion cyclotron radiofrequencies as additional heating, are addressed in detail. The overall design indicates that the proposed system would be able to provide a measurement of the fuel ratio with spatial resolution in the range of few centimeters and temporal resolution in the range of 1 ms in the vast majority of JET scenarios.

  6. Fast two-dimensional super-resolution image reconstruction algorithm for ultra-high emitter density.

    PubMed

    Huang, Jiaqing; Gumpper, Kristyn; Chi, Yuejie; Sun, Mingzhai; Ma, Jianjie

    2015-07-01

    Single-molecule localization microscopy achieves sub-diffraction-limit resolution by localizing a sparse subset of stochastically activated emitters in each frame. Its temporal resolution is limited by the maximal emitter density that can be handled by the image reconstruction algorithms. Multiple algorithms have been developed to accurately locate the emitters even when they have significant overlaps. Currently, compressive-sensing-based algorithm (CSSTORM) achieves the highest emitter density. However, CSSTORM is extremely computationally expensive, which limits its practical application. Here, we develop a new algorithm (MempSTORM) based on two-dimensional spectrum analysis. With the same localization accuracy and recall rate, MempSTORM is 100 times faster than CSSTORM with ℓ(1)-homotopy. In addition, MempSTORM can be implemented on a GPU for parallelism, which can further increase its computational speed and make it possible for online super-resolution reconstruction of high-density emitters. PMID:26125349

  7. Development of a fast solid-state high-resolution density profile reflectometer system on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Kim, K. W.; Doyle, E. J.; Rhodes, T. L.; Peebles, W. A.; Rettig, C. L.; Luhmann, N. C., Jr.

    1997-01-01

    A new fast-sweep, broadband frequency-modulated reflectometer on the DIII-D tokamak has produced routine, reliable density profiles with high spatial (⩽1 cm) and temporal resolution (˜100 μs). The system utilizes a solid-state microwave source and an active quadrupler, covering the full Q-band (33-50 GHz) and providing high output power (20-60 mW). The rf source frequency is linearized using an arbitrary function generator and the temperature of the source is actively controlled to reduce rf frequency drifts. The system hardware allows the rf frequency to be swept fullband in 10 μs, but, due to digitization limits, the sweep time used currently is 75-100 μs. The reliability of the reconstructed profiles was improved by a combination of fast frequency sweep, which reduces density fluctuation effects on the measurements, and advanced signal analysis based on digital complex demodulation, which improves phase accuracy. The fast-sweep system has resolved fast-changing edge density profiles during edge localized modes with unprecedented resolution.

  8. [Fast segmentation algorithm of high resolution remote sensing image based on multiscale mean shift].

    PubMed

    Wang, Lei-Guang; Zheng, Chen; Lin, Li-Yu; Chen, Rong-Yuan; Mei, Tian-Can

    2011-01-01

    Mean Shift algorithm is a robust approach toward feature space analysis and it has been used wildly for natural scene image and medical image segmentation. However, high computational complexity of the algorithm has constrained its application in remote sensing images with massive information. A fast image segmentation algorithm is presented by extending traditional mean shift method to wavelet domain. In order to evaluate the effectiveness of the proposed algorithm, multispectral remote sensing image and synthetic image are utilized. The results show that the proposed algorithm can improve the speed 5-7 times compared to the traditional MS method in the premise of segmentation quality assurance. PMID:21428083

  9. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  10. High resolution nanomechanical characterization of multi-domain model membranes by fast Force Volume.

    PubMed

    Seghezza, Silvia; Dante, Silvia; Diaspro, Alberto; Canale, Claudio

    2015-12-01

    Plasma membrane is a complex structure, mainly composed by lipids and proteins, which plays a pivotal role in cell metabolism by regulating its selective permeability to ions and molecules. According to the "raft hypothesis", lipids in the bilayer are not forming a structurally passive solvent, but are rather organized in specific domains, which present different structural and functional characteristics. The mechanical properties of the lipid part of plasma membrane have been recently characterized through Atomic Force Microscopy, by analyzing the features of force vs distance curves collected on supported lipid bilayers (SLBs). In case of lipid domains sizing from tens to hundreds of nanometers, which mimic in a good way the lateral organization of real membranes, a high lateral resolution and a large number of curves are often required for properly expressing the complexity of the system, with a consequent exponential growth of acquisition and processing time. In this paper we propose a method, based on a recently developed high speed Force Volume technique and on home-built data processing software, for the mechanical characterization of nanostructured SLBs. With our software we have been able to process data set composed by tens of thousands of curves, collected with a spatial resolution ranging from 8 to 40 nm/pixel. Multiparametric maps and distribution histograms produced by our analysis allowed identifying a specific behavior for each lipid phase in the investigated model membranes, even in presence of nanosized features. PMID:26224416

  11. Development of a high-resolution interstellar dust engineering model - technical implementation for fast simulations

    NASA Astrophysics Data System (ADS)

    Strub, P.; Sterken, V. J.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.

    2013-09-01

    nterstellar dust (ISD) is one of the constituents of the dust population observed in the solar system. Beyond 3 AU heliocentric distance, it represents the dominant component of the total dust population (cf. Abstract V.J. Sterken). Due to the modulation by the solar magnetic field, the ISD exhibits a pronounced spatial and temporal variability. A high-resolution model of the Interstellar Dust (ISD) component has been developed to predict the densities and velocity field for a range of sizes and optical properties (radiation pressure factor β) of dust particles. To achieve the required resolution of 0.25 AU at a sufficient S/N ratio, a high number of trajectories had to be integrated numerically. Therefore the simulation has been adapted to make full use of the available computing cluster hardware. Here we discuss the details of the model, the influence of different solar magnetic field prescriptions and of the physical properties used, the numerical approach, and the model's limitations. We also demonstrate the predictions of dust impact rates and velocities for present and future space missions, including heliocentric distances from ≤1AU to˜10AU.

  12. HIGH RESOLUTION AND FAST SCANNING SQUID BASED NON-DESTRUCTIVE INSPECTION SYSTEM OF NIOBIUM SHEETS FOR SRF CAVITIES

    SciTech Connect

    SHU, QUAN-SHENG

    2008-06-08

    Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF

  13. Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory

    NASA Astrophysics Data System (ADS)

    Jazaeri, S.; Amiri-Simkooei, A. R.; Sharifi, M. A.

    2012-02-01

    GNSS ambiguity resolution is the key issue in the high-precision relative geodetic positioning and navigation applications. It is a problem of integer programming plus integer quality evaluation. Different integer search estimation methods have been proposed for the integer solution of ambiguity resolution. Slow rate of convergence is the main obstacle to the existing methods where tens of ambiguities are involved. Herein, integer search estimation for the GNSS ambiguity resolution based on the lattice theory is proposed. It is mathematically shown that the closest lattice point problem is the same as the integer least-squares (ILS) estimation problem and that the lattice reduction speeds up searching process. We have implemented three integer search strategies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification of Schnorr-Euchner enumeration (M-SE) and modification of Viterbo-Boutros enumeration (M-VB). The methods have been numerically implemented in several simulated examples under different scenarios and over 100 independent runs. The decorrelation process (or unimodular transformations) has been first used to transform the original ILS problem to a new one in all simulations. We have then applied different search algorithms to the transformed ILS problem. The numerical simulations have shown that AEVZ, M-SE, and M-VB are about 320, 120 and 50 times faster than LAMBDA, respectively, for a search space of dimension 40. This number could change to about 350, 160 and 60 for dimension 45. The AEVZ is shown to be faster than MLAMBDA by a factor of 5. Similar conclusions could be made using the application of the proposed algorithms to the real GPS data.

  14. Damage detection in a cantilever beam under dynamic conditions using a distributed, fast, and high spatial resolution Brillouin interrogator

    NASA Astrophysics Data System (ADS)

    Motil, A.; Davidi, R.; Bergman, A.; Botsev, Y.; Hahami, M.; Tur, M.

    2016-05-01

    The ability of Brillouin-based fiber-optic sensing to detect damage in a moving cantilever beam is demonstrated. A fully computerized, distributed and high spatial resolution (10cm) Fast-BOTDA interrogator (50 full-beam Brillouin-gain-spectra per second) successfully directly detected an abnormally stiffened (i.e., `damaged') 20cm long segment in a 6m Aluminum beam, while the beam was in motion. Damage detection was based on monitoring deviations of the measured strain distribution along the beam from that expected in the undamaged case.

  15. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments.

    PubMed

    Kiryutin, Alexey S; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Grishin, Yuri A; Vieth, Hans-Martin; Yurkovskaya, Alexandra V

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100μT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined. PMID:26773525

  16. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  17. Fast Solutions of Maxwell's Equation for High Resolution Electromagnetic Imaging of Transport Pathways

    SciTech Connect

    DAY,DAVID M.; NEWMAN,GREGORY A.

    1999-10-01

    A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.

  18. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  19. Fast Updating National Geo-Spatial Databases with High Resolution Imagery: China's Methodology and Experience

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wang, D.; Zhao, R. L.; Zhang, H.; Liao, A.; Jiu, J.

    2014-04-01

    Geospatial databases are irreplaceable national treasure of immense importance. Their up-to-dateness referring to its consistency with respect to the real world plays a critical role in its value and applications. The continuous updating of map databases at 1:50,000 scales is a massive and difficult task for larger countries of the size of more than several million's kilometer squares. This paper presents the research and technological development to support the national map updating at 1:50,000 scales in China, including the development of updating models and methods, production tools and systems for large-scale and rapid updating, as well as the design and implementation of the continuous updating workflow. The use of many data sources and the integration of these data to form a high accuracy, quality checked product were required. It had in turn required up to date techniques of image matching, semantic integration, generalization, data base management and conflict resolution. Design and develop specific software tools and packages to support the large-scale updating production with high resolution imagery and large-scale data generalization, such as map generalization, GIS-supported change interpretation from imagery, DEM interpolation, image matching-based orthophoto generation, data control at different levels. A national 1:50,000 databases updating strategy and its production workflow were designed, including a full coverage updating pattern characterized by all element topographic data modeling, change detection in all related areas, and whole process data quality controlling, a series of technical production specifications, and a network of updating production units in different geographic places in the country.

  20. Development of a Fast and High Resolution X-Ray Imaging Sensor for In-Line Inspection of Tape Substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Jung-Yeol; Roh, Young-Jun; Jung, Chang-Ook; Jeong, Dae-Hwa

    2010-03-01

    In an automated tape substrate inspections, machine vision is widely adopted for high throughput and cost advantages. However, conventional methods are overly sensitive to foreign particles or have limitations in detecting three-dimensional defects such as top over-etched defect. Foreign particles such as dustsdo not affect the integrity of the final product and are often detected as defects during inspection. To complement vision inspection systems, a prototype fast and fine spatial resolution X-ray imaging sensor has been developed. This image sensor, based on an optoelectronic device - the microchannel plate (MCP), has a spatial resolution of 20 μm and functions at frame rate of 30 fps. X-ray imaging is appropriate as it is virtually transparent to dust particles and provides information regarding the thickness of the copper wire patterns.

  1. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  2. Fast history matching of time-lapse seismic and production data for high resolution models

    NASA Astrophysics Data System (ADS)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used

  3. Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy

    2014-09-01

    A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.

  4. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising. PMID:26979686

  6. Fast time resolution measurements of high concentrations of iodine above a Laminaria Digitata seaweed bed

    NASA Astrophysics Data System (ADS)

    Ball, Stephen; Adams, Thomas; Leblanc, Catherine; Potin, Philippe

    2013-04-01

    -distant seaweeds whose emissions are better-mixed into the atmosphere. The peak I2 concentrations observed here are three to five times greater than the maximum amounts recorded above/closeby laminaria beds in previous studies: 350 pptv max in O Grove, Galicia, Spain (Mahajan et al., ACP, 11, 2545, 2011), and 302 and 547 pptv max at Mweenish Bay, near Mace Head, County Galway, Ireland (Huang et al., GRL, 37, L03803, 2010; ACPD, 12, 25915, 2012). In part, the larger peak concentrations seen here are a consequence of deploying a fast response instrument very close to the source, enabling the emission's high temporal variability to be captured with fewer averaging effects. Nevertheless, the I2 concentrations averaged over the 30 minute period around the tidal minimum were still typically 750 pptv, suggesting laminaria beds are even stronger emitters of I2 into coastal atmospheres than previously thought. Some implications for such high concentrations of iodine for the local atmospheric chemistry are considered. We acknowledge support from the European Community FP7 project "ASSEMBLE", grant 227799.

  7. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  8. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy.

    PubMed

    Garrett, Joseph L; Munday, Jeremy N

    2016-06-17

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths. PMID:27159082

  9. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    SciTech Connect

    Chen, J.; Zhuang, G. Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J.; Brower, D. L.; Ding, W. X.

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  10. Fizeau interferometer system for fast high resolution studies of spectral line shapes

    SciTech Connect

    Novak, O.; Falconer, I. S.; Sangines, R.; Tarrant, R. N.; McKenzie, D. R.; Bilek, M. M. M.; Lattemann, M.

    2011-02-15

    A monochromator/Fizeau interferometer/intensified CCD camera system is described that was developed for the measurement of the shape of spectral lines that are rapidly time varying. The most important operating parameter that determines the performance of the instrument is the size of the entrance aperture as this determines both the light throughput and the effective interferometer wavelength resolution. This paper discusses, both theoretically and experimentally, the effect of the finite source area on the instrumental resolution to assist in optimizing the choice of this parameter. A second effect that often produces a practical limit to the quality of the spectra is drift of the interferometer plates. Measurements of the shapes of spectral lines of ions and atoms ejected from the cathode spot of continuous and pulsed cathodic arcs are presented to demonstrate the utility of this instrument.

  11. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  12. FastSPECT II: A Second-Generation High-Resolution Dynamic SPECT Imager

    PubMed Central

    Furenlid, Lars R.; Wilson, Donald W.; Chen, Yi-chun; Kim, Hyunki; Pietraski, Philip J.; Crawford, Michael J.; Barrett, Harrison H.

    2010-01-01

    FastSPECT II is a recently commissioned 16-camera small-animal SPECT imager built with modular scintillation cameras and list-mode data-acquisition electronics. The instrument is housed in a lead-shielded enclosure and has exchangeable aperture assemblies and adjustable camera positions for selection of magnification, pinhole size, and field of view. The calibration of individual cameras and measurement of an overall system imaging matrix (1 mm3 voxels) are supported via a five-axis motion-control system. Details of the system integration and results of characterization and performance measurements are presented along with first tomographic images. The dynamic imaging capabilities of the instrument are explored and discussed. PMID:20877439

  13. Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution.

    PubMed

    Bogdal, Christian; Alsberg, Tomas; Diefenbacher, Pascal S; MacLeod, Matthew; Berger, Urs

    2015-03-01

    Chlorinated paraffins (CPs) are high production volume chemicals, but data about their environmental fate are scarce. CP mixtures composed of thousands of isomers represent a major challenge for quantification at low levels in environmental samples. Here, we present a novel analytical method for analysis of short-chain, medium-chain, and long-chain CPs in a single injection, that also yields information about congener group pattern. Our detection method is based on direct injection into an atmospheric pressure chemical ionization source operated in negative ion mode under chlorine-enhanced conditions, followed by quadrupole time-of-flight high-resolution mass spectrometry (APCI-qTOF-HRMS) operated in full-scan mode. A mathematical algorithm is applied to deconvolute the CP patterns in the analyzed samples into a linear combination of patterns of technical CP mixtures and to quantify CPs using technical mixtures as external calibration standards. For CP mixtures with known composition, the new method provided concentrations that were within a factor of 1.2 of the target value. Accuracies for CPs spiked to sediment and fish extracts were between 91% and 123%. Concentrations determined in unspiked field samples were within a factor of 5 for short-chain CPs and a factor of 16 for medium-chain CPs of results obtained with an independent method based on gas chromatography/electron capture negative ionization high-resolution mass spectrometry (GC/ECNI-HRMS). The presented APCI-qTOF-HRMS pattern deconvolution method is an interesting alternative for CP analysis in environmental samples. It is particularly sensitive for medium- and long-chain CPs and has the advantage of being extremely fast (instrumental analysis time, less than 1 min). PMID:25668073

  14. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  15. Correction to ``Extracting Man-Made Objects From High Spatial Resolution Remote Sensing Images via Fast Level Set Evolutions''

    NASA Astrophysics Data System (ADS)

    Li, Zhongbin; Shi, Wenzhong; Wang, Qunming; Miao, Zelang

    2015-10-01

    Object extraction from remote sensing images has long been an intensive research topic in the field of surveying and mapping. Most existing methods are devoted to handling just one type of object and little attention has been paid to improving the computational efficiency. In recent years, level set evolution (LSE) has been shown to be very promising for object extraction in the community of image processing and computer vision because it can handle topological changes automatically while achieving high accuracy. However, the application of state-of-the-art LSEs is compromised by laborious parameter tuning and expensive computation. In this paper, we proposed two fast LSEs for man-made object extraction from high spatial resolution remote sensing images. The traditional mean curvature-based regularization term is replaced by a Gaussian kernel and it is mathematically sound to do that. Thus a larger time step can be used in the numerical scheme to expedite the proposed LSEs. In contrast to existing methods, the proposed LSEs are significantly faster. Most importantly, they involve much fewer parameters while achieving better performance. The advantages of the proposed LSEs over other state-of-the-art approaches have been verified by a range of experiments.

  16. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species

    PubMed Central

    Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria

    2016-01-01

    Background Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Methods/Principal Findings Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. Conclusions/Significance HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA. PMID:26928050

  17. Survey of the high resolution frequency structure of the fast magnetosonic mode and proton energy diffusion associated with these waves

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Hospodarsky, G. B.; Kletzing, C.; Santolik, O.; Wygant, J. R.; MacDonald, E.; Pfaff, R. F., Jr.; Kurth, W. S.; Khazanov, G. V.

    2015-12-01

    The fast magnetosonic mode, also referred to as equatorial noise, occurs at frequencies mainly between the proton cyclotron frequency (fcp) and the lower hybrid frequency. The wave properties of this mode are characterized by a strong magnetic compressional component. These waves are observed around the magnetic equator in the Earth's inner magnetosphere. Case studies of the spectra of these waves have found the emissions to be composed of 1) harmonics, usually with spacing near the local fcp, 2) broad band hiss-like structure, or 3) a superposition of the two spectral types. No statistical studies of the frequency structure of these waves have been made. Using ~600,000 burst mode wave captures from the EMFISIS Wave Form Receiver and the EFW instrument on the Van Allen Probes spacecraft this mode will be identified in the high resolution frequency spectra and its frequency structure will be characterized. The variation of the frequency structure will be investigated as a function of normalized frequency, location, and geomagnetic conditions, and with spacecraft separation. The frequency structure will be compared with path integrated gain using proton ring distributions as the wave source. Recently the modulation of the fast magnetosonic mode has been reported, with modulation periods in the range of 30s to 240s. It has been proposed that frequency drift observed during each modulation is due to strong inward diffusion in energy of the proton ring distributions that generate these waves. As the inner edge of the ring distribution diffuses towards lower energies the band of unstable harmonics increases in frequency. If in the source region, for modulations with periods greater than say 100s, the inward energy diffusion should be observable in the HOPE proton data which has a cycle time of 24s.

  18. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element. PMID:23046152

  19. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  20. Using high-resolution mantle circulation models to understand the origin of fast seismic anomalies in the Tethyan mantle.

    NASA Astrophysics Data System (ADS)

    Webb, P. J.; Davies, J. H.; Davies, D. R.

    2012-04-01

    Study of the closure of the Tethys oceans throughout the Mesozoic era has revealed a complex tectonic history involving the closure of two major oceans, accretion of terranes and formation of arcs and back-arcs. As a result subduction history in the region is complex. Recent interpretations of high-resolution tomography studies begin to see evidence of this complexity in the mid-mantle. Seismically fast anomalies between 700 and 2000 km depth are though to be cold and dense material associated with Tethyan subduction in the Indian region. Interpretations of tomography suggest there are three mid-mantle anomalies and a fourth shallower anomaly arising from the subduction of Tethys ocean crust. Here we model global mantle convection with assimilated plate motions. The tectonic reconstructions assimilated contain 300 million years of geological information as the surface velocity boundary condition. We focus on the Tethys regions where the reconstructions contain a wealth of detail, including Palaeotethys and Neotethys subduction at the Eurasian margin, and a second, intra-ocean Neotethys subduction behind a series of back-arc oceans. Such a history generates mantle circulation models that accurately reproduce robust features observed across a variety of seismic tomography models including both P and S wave data. To understand which mid-mantle anomalies arise from which subduction zone we use plate tracking marker particles. This method shows that deeper (1200-1500 km) anomalies beneath India arise from intra-ocean subduction in the Neotethys, whilst shallower (700-950 km) anomalies are mostly from subduction at the Eurasian margin. Between 950 and 1200 km depth material from both subduction zones exist, with northern anomalies arising from subduction at the Eurasian margin, and the more southern anomalies from subduction at the intra-ocean subduction zone. Suggesting that both subduction zones are active at the same time. Slight mismatches between slab like features

  1. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  2. A Search for Fast Radio Bursts at Low Frequencies with Murchison Widefield Array High Time Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Trott, C. M.; Wayth, R. B.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Feng, L.; Gaensler, B. M.; Greenhill, L. J.; Hancock, P. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Murphy, T.; Oberoi, D.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-12-01

    We present the results of a pilot study search for fast radio bursts (FRBs) using the Murchison Widefield Array (MWA) at low frequencies (139-170 MHz). We utilized MWA data obtained in a routine imaging mode from observations where the primary target was a field being studied for Epoch of Reionization detection. We formed images with 2 s time resolution and 1.28 MHz frequency resolution for 10.5 hr of observations, over 400 square degrees of the sky. We de-dispersed the dynamic spectrum in each of 372,100 resolution elements of 2 × 2 arcmin2, between dispersion measures of 170 and 675 pc cm-3. Based on the event rate calculations in Trott et al., which assume a standard candle luminosity of 8 × 1037 Js-1, we predict that with this choice of observational parameters, the MWA should detect (˜10, ˜2, ˜0) FRBs with spectral indices corresponding to (-2, -1, 0), based on a 7σ detection threshold. We find no FRB candidates above this threshold from our search, placing an event rate limit of \\lt 700 above 700 Jy ms per day per sky and providing evidence against spectral indices α \\lt -1.2 (S\\propto {ν }α ). We compare our event rate and spectral index limits with others from the literature. We briefly discuss these limits in light of recent suggestions that supergiant pulses from young neutron stars could explain FRBs. We find that such supergiant pulses would have to have much flatter spectra between 150 and 1400 MHz than have been observed from Crab giant pulses to be consistent with the FRB spectral index limit we derive.

  3. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity.

    PubMed

    Liu, Guigen; Han, Ming; Hou, Weilin

    2015-03-23

    We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C. The excellent transparency and large refractive index of silicon over the infrared wavelength range result in a visibility of 33 dB for the reflection spectrum. A novel average wavelength tracking method has been proposed and demonstrated for sensor demodulation with improved signal-to-noise ratio, which leads to a temperature resolution of 6 × 10⁻⁴ °C. Due to the high thermal diffusivity of silicon, a response time as short as 0.51 ms for a sensor with an 80-µm-diameter and 200-µm-long silicon pillar has been experimentally achieved, suggesting a maximum frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean. PMID:25837068

  4. Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry.

    PubMed

    Hong, Youngmin; Sharma, Virender K; Chiang, Pen-Chi; Kim, Hyunook

    2015-11-01

    A fast and sensitive monitoring method for trace pharmaceuticals in the environment is vital because many of these compounds are ubiquitous, persistent, and biologically active with recognized endocrine-disruption and pharmacological functions. A rapid and reliable ultra high-performance liquid chromatography combined with tandem mass spectrometry was developed in the present study to simultaneously identify, confirm, and quantify 60 target pharmaceuticals in wastewater samples. The method uses a sub-2 µm particle column for separating target compounds, which were subsequently quantified with the mass spectrometer. Using this high-throughput analysis method, a single injection could provide results within 5 min for the pharmaceuticals. All of the target compounds were analyzed by the multiple-reaction monitoring with 15-ms fast polarity switching. Both intraday and interday precision analyses indicate excellent coefficient of variability. To evaluate the performance of the method, a standard solution (100 and 1000 ng L(-1)) was spiked into complex wastewater samples. The tailing factor and peak width were also monitored and adjusted for optimizing peaks from the ultra high-performance liquid chromatograph. Of the target pharmaceuticals in wastewater of a sewage-treatment plant analyzed on an hourly basis, only 17 compounds were detected, and others were lower than the method detection limits. Acetaminophen, cimetidine, and iopromide were all detected at >1 μg L(-1), and their concentration profiles were similar to that of a nonsteroidal anti-inflammatory drug detected in wastewater. Other noticeable pharmaceuticals were sulfamethoxazole and trimethoprim. Sources of pharmaceuticals in wastewater are briefly discussed. PMID:26289813

  5. Relativistic electron flux comparisons at low and high altitudes with fast time resolution and broad spatial coverage

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Gaines, E. E.; Mcglennon, J. P.; Baker, D. N.; Reeves, G. D.; Belian, R. D.

    1994-01-01

    Analyses are presented for the first high-time resolution multisatellite study of the spatial and temporal characteristics of a relativistic electron enhancement event with a rapid onset. Measurements of MeV electrons were made from two low-altitude polar orbiting satellites and three spacecraft at synchronous altitude. The electron fluxes observed by the low-altitude satellites include precipitating electrons in both the bounce and drift loss cones as well as electrons that are stably trapped, whereas the observations at geosynchronous altitude are dominated by the trapped population. The fluxes of greater than 1 MeV electrons at low-satellite altitude over a wide range of L shells tracked very well the fluxes greater than 0.93 MeV at synchronous altitude.

  6. Development of a fast, simple profiling method for sample screening using high resolution melting (HRM) of STRs.

    PubMed

    Nicklas, Janice A; Noreault-Conti, Trisha; Buel, Eric

    2012-03-01

    A screening assay has been developed to provide preliminary individualization of crime scene samples thus eliminating expensive, time-consuming short tandem repeat (STR) profiling of nonprobative samples. High resolution melting performed in a real-time PCR instrument is used to detect the slight melting differences between the length and sequence variations of 22 forensic STRs. Three STRs (vWA, D18S51, THO1) were chosen to develop an assay which was optimized for Mg++ concentration, annealing/extension time/temperature, assay volume, and bovine serum albumin addition. The assay was tested for reproducibility, uniformity for genotype, melting profile consistency, effects of inhibitors, and mixture effects. The assay could be used to determine DNA concentration when a standard curve is run simultaneously. Calculations of costs show that the assay can save significant time and money for a crime with many samples or suspects. PMID:22150300

  7. High resolution magnetic resonance imaging of the anterior visual pathway in patients with optic neuropathies using fast spin echo and phased array local coils.

    PubMed Central

    Gass, A; Barker, G J; MacManus, D; Sanders, M; Riordan-Eva, P; Tofts, P S; Thorpe, J; McDonald, W I; Moseley, I F; Miller, D H

    1995-01-01

    High resolution MRI of the anterior visual pathways was evaluated using frequency selective fat suppressed fast spin echo (FSE) sequences in conjunction with phased array local coils in patients with optic neuropathies. Fifteen normal controls and 57 patients were examined. Coronal T2 weighted fat suppressed FSE images were obtained in 11 minutes with an in plane resolution of 0.39 x 0.39 mm. The optic nerve and its sheath containing CSF were clearly differentiated. Central retinal vessels were often visible. In demyelinating optic neuritis and in anterior ischaemic optic neuropathy high signal within the nerve was readily delineated. Meningiomas and gliomas involving the optic nerve were precisely visualised both in the orbit and intracranially. Extrinsic compression of the optic nerves was readily visualised in carotid artery ectasia and dysthyroid eye disease. Enlarged subarachnoid spaces around the optic nerves were demonstrated in benign intracranial hypertension. High resolution MRI of the anterior visual pathway represents an advance in the diagnosis and management of patients presenting with optic neuropathy. Images PMID:7745403

  8. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences

    PubMed Central

    Chen, Zhong; Cai, Shuhui; Chen, Zhiwei; Zhong, Jianhui

    2009-01-01

    A pulse sequence, IDEAL-II, is proposed based on the concept of intermolecular dipolar-interaction enhanced all lines [Z. Chen et al., J. Am. Chem. Soc. 126, 446 (2004)] for obtaining one-dimensional (1D) high-resolution liquid NMR spectra in inhomogeneous fields via two-dimensional acquisitions. With the new acquisition scheme, the range of magnetic field inhomogeneity rather than chemical shift is sampled in the indirect dimension. This enables a great reduction in acquisition time and amount of data, much improved over the original IDEAL implementation. It is applicable to both isolated and J-coupled spin systems in liquid. For the latter, apparent J coupling constants are magnified threefold in spectra obtained with this sequence. This allows a more accurate measurement of J coupling constants in the cases of small J coupling constants or large inhomogeneous fields. Analytical expression was derived based on intermolecular multiple-quantum coherence treatments. Solution samples that were purposely deshimmed and biological samples with intrinsic field inhomogeneities were tested. Experimental results demonstrate that this sequence retains useful structural information including chemical shifts, relative peak areas, and multiplet patterns of J coupling even when the field inhomogeneity is severe enough to almost erase all spectroscopic information with conventional 1D single-quantum coherence techniques. This sequence is more applicable to weakly coupled and uncoupled spin systems, potentially useful for studying metabolites in in vivo NMR spectroscopy and for characterizing technologically important new materials in combinatorial chemistry. PMID:19256612

  9. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  10. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  11. Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects.

    PubMed

    Matson, Charles L; Borelli, Kathy; Jefferies, Stuart; Beckner, Charles C; Hege, E Keith; Lloyd-Hart, Michael

    2009-01-01

    We report a multiframe blind deconvolution algorithm that we have developed for imaging through the atmosphere. The algorithm has been parallelized to a significant degree for execution on high-performance computers, with an emphasis on distributed-memory systems so that it can be hosted on commodity clusters. As a result, image restorations can be obtained in seconds to minutes. We have compared and quantified the quality of its image restorations relative to the associated Cramér-Rao lower bounds (when they can be calculated). We describe the algorithm and its parallelization in detail, demonstrate the scalability of its parallelization across distributed-memory computer nodes, discuss the results of comparing sample variances of its output to the associated Cramér-Rao lower bounds, and present image restorations obtained by using data collected with ground-based telescopes. PMID:19107159

  12. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla.

    PubMed

    Magland, Jeremy F; Rajapakse, Chamith S; Wright, Alexander C; Acciavatti, Raymond; Wehrli, Felix W

    2010-03-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. PMID:20187181

  13. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-01

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. PMID:25479863

  14. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  15. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  16. [Fast screening ninety-six pesticides in six kinds of agricultural products by high performance liquid chromatography-quadrupole/electrostatic field orbit trap high-resolution mass spectrometry].

    PubMed

    Wu, Bin; Ding, Tao; Liu, Han; Chen, Huilan; Zhao, Zengyun; Zhang, Rui; Shen, Chongyu

    2012-12-01

    A high-throughput method for the determination of 96 pesticides in six kinds of agricultural products by liquid chromatography-quadrupole/electrostatic field orbit trap high-resolution mass spectrometry was developed. After extraction with 0.1% acetic acid in acetonitrile solution and concentration, dispersive solid-phase extraction was further utilized to reduce the matrix interference. The chromatographic analysis was performed on a C18 column with methanol and 5 mmol/L ammonium acetate solution as the mobile phases with a gradient elution program. The 96 pesticide residues were analyzed in switching positive and negative modes at the same time. With the optimized mass resolution, accurate mass-to-charge ratio extraction of the target pesticide compounds in full scan mode could eliminate matrix interference effectively. Two-stage threshold-triggered full mass scan mode was utilized to further improve the accuracy of qualitative analysis. The linear ranges of all the 96 pesticides were from 1 microg/L to 200 microg/L with correlation coefficients greater than 0.99. By detecting spiked samples, the detection limits were 5 microg/kg for all the residues and the recoveries were in the range of 58% - 105% with the relative standard deviations (RSDs) between 8.8% and 18.3%. PMID:23593881

  17. High resolution MR microscopy

    NASA Astrophysics Data System (ADS)

    Ciobanu, Luisa

    images on phantoms [11, 12] and biological samples (paramecia, algae, brain tissue, lipidic mesophases) obtained using using magnetic field gradients as large as 50 Tesla/meter (5000 G/cm) [13] and micro-coils [14]. Images have voxel resolution as high as (3.7 mum by 3.3 mum by 3.3 mum), or 41 mu m3 (41 femtoliters, containing 2.7 x 10 12 proton spins) [12], marginally the highest voxel resolution reported to date. They are also fully three dimensional, with wide fields of view.

  18. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  19. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  20. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  1. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  2. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  3. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. High resolution analysis

    NASA Technical Reports Server (NTRS)

    Robinove, C. J.

    1982-01-01

    The possibilities for the use of high spectral resolution analysis in the field of hydrology and water resources are examined. Critical gaps in scientific knowledge that must be filled before technology can be evaluated involve the spectral response of water, substances dissolved and suspended in water, and substances floating on water. The most complete mapping of oil slicks can be done in the ultraviolet region. A mean of measuring the ultraviolet reflection at the surface from satellite altitudes needs to be determined. The use of high spectral resolution sensors in a reasonable number of narrow bands may be able to sense the reflectance or emission characteristics of water and its contained materials that can be correlated with commonly used water quality variables. Technological alternative available to experiment with problems of sensing water quality are to use existing remote sensing instrumentation in an empirical mode and to develop instruments for either testing hypoteses or conducting empirical experiments.

  5. Geometric and dosimetric verification of step-and-shoot modulated fields with a new fast and high resolution beam imaging system

    SciTech Connect

    Bindoni, Luca . E-mail: lucabindoni@inwind.it

    2005-06-15

    A technique for geometric and dosimetric pretreatment verification of step-and-shoot intensity modulated radiotherapy treatments (IMRT) using a beam imaging system (BIS) made up of a charge-coupled device (CCD) digital camera optically coupled with a metal-plate/phosphor screen is described. Some physical properties of BIS were investigated in order to demonstrate its capability to perform measurements with a high spatial resolution and a high sampling rate. High-speed imaging, with a minimum charge integration time on the CCD of 120 ms, can be performed. The study of the signal-to-noise ratio as a function of sampling time is presented. In-plane and cross-line pixel size was measured to be 0.368{+-}0.004 mm/pixel, which agrees within 0.5% of the manufacturer value of 0.366 mm. Spatial linearity results are very good and there are no detectable image distortions on whole 30x30 cm{sup 2} detector area. A software routine was written to automatically extract positions of the collimator leaves from the images of the field shaped by the multileaf collimator (MLC) and also to compare them with the coordinates from the treatment planning system (TPS), thus directly testing both the MLC positioning and the treatment parameters transfer from TPS to the linear accelerator in a fast and precise way. The dosimetric capabilities (characteristics) of the imaging device for photon beams with energies of 6 and 15 MV were studied. Additional plexiglass buildup layers, depending on x-ray energy, were needed to reach maximum efficiency. The energy dependence of the BIS response versus dose and dose rate was found to be linear over a wide range. Relative output factors of BIS as a function of field size, compared with values measured with an ionization chamber, were in good accord for smaller field sizes {<=}10x10 cm{sup 2} but showed differences up to 4% for all the energies at the respective buildup depth for bigger fields. Square field profiles at water-equivalent buildup depths

  6. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  7. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  8. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  9. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  10. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  11. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  12. R2OBBIE-3D, a Fast Robotic High-Resolution System for Quantitative Phenotyping of Surface Geometry and Colour-Texture

    PubMed Central

    Manukyan, Liana; Milinkovitch, Michel C.

    2015-01-01

    While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R2OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R2OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R2OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509

  13. R(2)OBBIE-3D, a Fast Robotic High-Resolution System for Quantitative Phenotyping of Surface Geometry and Colour-Texture.

    PubMed

    Martins, António F; Bessant, Michel; Manukyan, Liana; Milinkovitch, Michel C

    2015-01-01

    While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R(2)OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R(2)OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R(2)OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509

  14. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  15. High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry.

    PubMed

    Rosenthal, Martin; Doblas, David; Hernandez, Jaime J; Odarchenko, Yaroslav I; Burghammer, Manfred; Di Cola, Emanuela; Spitzer, Denis; Antipov, A E; Aldoshin, L S; Ivanov, Dimitri A

    2014-01-01

    A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography. PMID:24365940

  16. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  17. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  18. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-12-31

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  19. A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; da Silva, Ricardo Moutinho; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500-5000 mg L- 1 N (r = 0.9994), 100-2000 mg L- 1 P (r = 0.9946), and 100-2500 mg L- 1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97-105% (NO3--N), 95-103% (NH4+-N), 93-103% (urea-N), 99-108% (P), and 99-102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively.

  20. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  1. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  2. NH{sub 3} adsorption and decomposition on Ir(110): A combined temperature programmed desorption and high resolution fast x-ray photoelectron spectroscopy study

    SciTech Connect

    Weststrate, C.J.; Bakker, J.W.; Rienks, E.D.L.; Lizzit, S.; Petaccia, L.; Baraldi, A.; Vinod, C.P.; Nieuwenhuys, B.E.

    2005-05-08

    The adsorption and decomposition of NH{sub 3} on Ir(110) has been studied in the temperature range from 80 K to 700 K. By using high-energy resolution x-ray photoelectron spectroscopy it is possible to distinguish chemically different surface species. At low temperature a NH{sub 3} multilayer, which desorbs at {approx}110 K, was observed. The second layer of NH{sub 3} molecules desorbs around 140 K, in a separate desorption peak. Chemisorbed NH{sub 3} desorbs in steps from the surface and several desorption peaks are observed between 200 and 400 K. A part of the NH{sub 3ad} decomposes into NH{sub ad} between 225 and 300 K. NH{sub ad} decomposes into N{sub ad} between 400 K and 500 K and the hydrogen released in this process immediately desorbs. N{sub 2} desorption takes place between 500 and 700 K via N{sub ad} combination. The steady state decomposition reaction of NH{sub 3} starts at 500 K. The maximum reaction rate is observed between 540 K and 610 K. A model is presented to explain the occurrence of a maximum in the reaction rate. Hydrogenation of N{sub ad} below 400 K results in NH{sub ad}. No NH{sub 2ad} or NH{sub 3ad}/NH{sub 3} were observed. The hydrogenation of NH{sub ad} only takes place above 400 K. On the basis of the experimental findings an energy scheme is presented to account for the observations.

  3. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  4. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  5. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  6. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  7. Fast and direct screening of copper in micro-volumes of distilled alcoholic beverages by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László

    2016-12-15

    HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses. PMID:27451250

  8. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  9. High-Resolution 3-T Endorectal Prostate MRI: A Multireader Study of Radiologist Preference and Perceived Interpretive Quality of 2D and 3D T2-Weighted Fast Spin-Echo MR Images

    PubMed Central

    Westphalen, Antonio C.; Noworolski, Susan M.; Harisinghani, Mukesh; Jhaveri, Kartik S.; Raman, Steve S.; Rosenkrantz, Andrew B.; Wang, Zhen J.; Zagoria, Ronald J.; Kurhanewicz, John

    2016-01-01

    OBJECTIVE The goal of this study was to compare the perceived quality of 3-T axial T2-weighted high-resolution 2D and high-resolution 3D fast spin-echo (FSE) endorectal MR images of the prostate. MATERIALS AND METHODS Six radiologists independently reviewed paired 3-T axial T2-weighted high-resolution 2D and 3D FSE endorectal MR images of the prostates of 85 men in two sessions. In the first session (n = 85), each reader selected his or her preferred images; in the second session (n = 28), they determined their confidence in tumor identification and compared the depiction of the prostatic anatomy, tumor conspicuity, and subjective intrinsic image quality of images. A meta-analysis using a random-effects model, logistic regression, and the paired Wilcoxon rank-sum test were used for statistical analyses. RESULTS Three readers preferred the 2D acquisition (67–89%), and the other three preferred the 3D images (70–80%). The option for one of the techniques was not associated with any of the predictor variables. The 2D FSE images were significantly sharper than 3D FSE (p < 0.001) and significantly more likely to exhibit other (nonmotion) artifacts (p = 0.002). No other statistically significant differences were found. CONCLUSION Our results suggest that there are strong individual preferences for the 2D or 3D FSE MR images, but there was a wide variability among radiologists. There were differences in image quality (image sharpness and presence of artifacts not related to motion) but not in the sequences’ ability to delineate the glandular anatomy and depict a cancerous tumor. PMID:26491891

  10. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Gorini, G.; Jacobsen, A. S.; Kiptily, V. G.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2016-04-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magnetized fusion plasmas. The weight functions suggest that GRS resolves the energies of fast ions directly without the need for tomographic inversion for selected one-step reactions at moderate plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy resolution. We illustrate our general formalism using reactions with and without intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

  11. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  12. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  13. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  14. Fast Sampling and Analysis of Offgas Dioxins/Furans Using a Thermal Desorption-Gas Chromatography-High Resolution Mass Spectrometry Method

    SciTech Connect

    Whitworth, C. G.; Rees, R. T.; Reick, K. G.; Montgomery, J. L.; Battleson, D. M.; LeFever, J.; Sears, L. J.

    2002-02-26

    The United States Department of Energy is using or evaluating several Alternatives-to- Incineration (ATI) technologies for treating hazardous wastes and low-level mixed wastes. ATI treatment technologies may have the potential for generating gaseous or other emissions of polychlorinated dioxins/furans, a class of highly toxic compounds which are regulated to very low levels. At present, the emission limit for dioxins/furans from hazardous waste incinerators is 0.2 ng TEQ/dscm (0.4 ng TEQ/dscm w/TC). Emissions from ATI technologies are expected to be subject to similar restrictions.

  15. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  16. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  18. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. Pseudomonas aeruginosa Outbreak Linked to Mineral Water Bottles in a Neonatal Intensive Care Unit: Fast Typing by Use of High-Resolution Melting Analysis of a Variable-Number Tandem-Repeat Locus▿ †

    PubMed Central

    Naze, F.; Jouen, E.; Randriamahazo, R. T.; Simac, C.; Laurent, P.; Blériot, A.; Chiroleu, F.; Gagnevin, L.; Pruvost, O.; Michault, A.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections in intensive care units. Determining a system of typing that is discriminatory is essential for epidemiological surveillance of P. aeruginosa. We developed a method for the typing of Pseudomonas aeruginosa, namely, multiple-locus variable-number tandem-repeat (VNTR) typing with high-resolution melting analysis (HRMA). The technology was used to genotype a collection of 43 environmental and clinical strains isolated during an outbreak in a neonatal intensive care unit (NICU) that we report. Nineteen strains isolated in other departments or outside the hospital were also tested. The genetic diversity of this collection was determined using VNTR-HRMA, with amplified fragment length polymorphism (AFLP) analysis as a reference. Twenty-five and 28 genotypes were identified, respectively, and both techniques produced congruent data. VNTR-HRMA established clonal relationships between the strains of P. aeruginosa isolated during the outbreak in the NICU and proved, for the first time, the role of mineral water as the inoculum source. VNTR typing with one primer pair in association with HRMA is highly reproducible and discriminative, easily portable among laboratories, fast, and inexpensive, and it demonstrated excellent typeability in this study. VNTR-HRMA represents a promising tool for the molecular surveillance of P. aeruginosa and perhaps for molecular epidemiologic analysis of other hospital infections. PMID:20573865

  20. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference

  1. High-resolution display system for mammograms

    NASA Astrophysics Data System (ADS)

    Moskowitz, Michael J.; Huang, H. K.; Wang, Jun; Allen, Jeffrey; Sickles, Edward A.; Giles, Anthony

    1995-04-01

    A high resolution mammographic display station is implemented for clinical diagnosis and for a digital teaching file. The display consists of a specially designed, high resolution mammographic station which contains a connection to a 50 micron (variable spot size) laser film digitizer, two 2 K X 2.5 K display monitors, an image processor, a host computer, and a disk array for high speed image transfer to the display monitors. After digitization on a separate host computer, the files are immediately transferred to the display station and post- processed for viewing. The algorithm for post-processing of the digitized image applies a non- linear LUT to mimic the original film characteristics while taking into account the luminosity of the display monitors in an attempt to produce the highest digital image quality possible. Image processing functions for enhancing calcification and soft tissue are also available to assist the human observer in classification of objects within the image. Windowing and level controls are seamlessly integrated for each monitor, as well as magnification capabilities. For an image display at its full resolution (e.g., digitized at 100 microns), the magnification is accomplished with a roaming window utilizing simple 2X pixel replication. This has been found to be acceptable in preliminary tests with clinicians. Measurements of features on the 2 k displays are possible, as well. The display format accurately simulates mammographic viewing arrangements with automatic side-by-side historical, current, left and right craniocaudal, mediolateral, etc., view comparisons. This high resolution mammographic display is found to be essential for fast and accurate display of high resolution digitized mammograms. A digital mammographic teaching file has been designed and tested using this display architecture. The teaching file presents the case questions on the host display monitor, and the related images for each question are presented on the high

  2. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  3. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  4. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  5. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  6. Global high resolution climate reconstructions

    NASA Astrophysics Data System (ADS)

    Schubert-Frisius, Martina; Feser, Frauke; Zahn, Matthias; von Storch, Hans; Rast, Sebastian

    2014-05-01

    Long-term reanalysis products represent an important data source for numerous climate studies. However, their coarse spatial resolution for data sets spanning the last more than 50 years and well known inhomogeneities in space and time make it difficult to derive changes in meteorological variables over time. We therefore use spectral nudging technique to down-scale the global reanalysis data to a finer resolution with a general global circulation model. With this technique the new calculated higher resolved global model fields are attracted to the large-scale state of the coarse resolution reanalysis. Besides the conservation of large-scale atmospheric information and the resulting finer topography, a surplus in contents of information in meteorological phenomena of small spatial extensions is expected. Following this strategy a simulation with the global high-resolution atmospheric model ECHAM6 (T255L95), developed by MPI-M Hamburg, will be started by spectrally nudging NCEP1 reanalysis for the time period from 1948 until 2013. Selected wavelengths of more than 1000 km of vorticity, divergence, temperature and the logarithm of the surface pressure will be imposed onto the simulated GCM counterparts at levels above 750 hPa. SST and sea ice distribution are taken from the NCEP1 data set. These simulations enable the investigation of long-term changes in meteorological phenomena; the focus is put here on intense storms. Various horizontal wavelength selections and associated vertical profiles in the strength of nudging were tested. The temporarily best configuration resulted in large time correlations for 2m-temperature and 10m wind speed at several selected locations in Germany in comparison to observations. Correlations were highest for extra-tropical regions, while over the western part of the Pacific and Indian Ocean relative low time correlations were found. In a continuing study meteorological quantities at different levels and the influences of the nudging

  7. A fast multi-resolution approach to tomographic PIV

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Astarita, Tommaso

    2012-03-01

    Tomographic particle image velocimetry (Tomo-PIV) is a recently developed three-component, three-dimensional anemometric non-intrusive measurement technique, based on an optical tomographic reconstruction applied to simultaneously recorded images of the distribution of light intensity scattered by seeding particles immersed into the flow. Nowadays, the reconstruction process is carried out mainly by iterative algebraic reconstruction techniques, well suited to handle the problem of limited number of views, but computationally intensive and memory demanding. The adoption of the multiplicative algebraic reconstruction technique (MART) has become more and more accepted. In the present work, a novel multi-resolution approach is proposed, relying on the adoption of a coarser grid in the first step of the reconstruction to obtain a fast estimation of a reliable and accurate first guess. A performance assessment, carried out on three-dimensional computer-generated distributions of particles, shows a substantial acceleration of the reconstruction process for all the tested seeding densities with respect to the standard method based on 5 MART iterations; a relevant reduction in the memory storage is also achieved. Furthermore, a slight accuracy improvement is noticed. A modified version, improved by a multiplicative line of sight estimation of the first guess on the compressed configuration, is also tested, exhibiting a further remarkable decrease in both memory storage and computational effort, mostly at the lowest tested seeding densities, while retaining the same performances in terms of accuracy.

  8. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  9. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  10. Clinical applications of high-resolution ocular magnetic resonance imaging.

    PubMed

    Tanitame, Keizo; Sone, Takashi; Kiuchi, Yoshiaki; Awai, Kazuo

    2012-11-01

    Magnetic resonance imaging (MRI) using fast sequences with subjects staring at a target can provide motion-free ocular images, and small receiver surface coils make it possible to produce ocular images with high spatial resolution. MRI using half-Fourier single-shot rapid acquisition with a relaxation enhancement sequence as a fast T2-weighted imaging yields useful images for the morphologic diagnosis of ocular diseases, and MRI using a fast spoiled gradient-recalled-echo sequence as a T1-weighted imaging yields additional information by the administration of gadolinium-based contrast material for assessing the vascularity of intraocular tumors. These ocular imaging techniques are useful for the evaluation of patients with angle closure glaucoma, congenital abnormality of ocular globes, intraocular tumors and several types of detachments, as well as patients after ocular surgery. In this pictorial essay, we demonstrate the clinical applications of fast high-resolution ocular MRI with fixation of the subjects' visual foci. PMID:22923185

  11. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  12. The High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Roesler, F. L.; Sroga, J. T.

    1983-01-01

    The High Spectral Resolution Lidar (HSRL) system was developed for the remote measurement of atmospheric optical properties. Measurements are obtained by the separation of the backscattered signal into aerosol and molecular channels using a high spectral resolution Fabry-Perot optical interferometer to separate the aerosol contributions to backscatter near the laser wavelength from the Doppler-shifted molecular component of the backscatter. The transmitter consists of an optically pumped pulsed dye laser of the oscillator-amplifier design which emits at 467.88 nm, with a bandwidth of less than 0.3 pm. The transmitter and receiver share a common Schmidt-Cassegrain telescope, although they do not share the same field stop, but rather two conjugate stops. The HSRL system uses a computer-controlled dual-channel photon-counting data acquisition system providing for stable measurements at very low power levels and an excellent dynamic range. The system has been used to obtain airborne measurements of height profiles of aerosol and molecular backscatter cross sections.

  13. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  14. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  15. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  16. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  17. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  18. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases. PMID:15819943

  19. The High Time Resolution Universe

    NASA Astrophysics Data System (ADS)

    Bailes, Matthew; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel

    2008-04-01

    The Parkes multibeam surveys heralded a new era in pulsar surveys, more than doubling the number of pulsars known. However, at high time resolution, they were severely limited by the analogue backend system, which limited the volume of sky they could effectively survey to just the local 2-3 kpc. Here we propose to use a new digital backend coupled with Australia's most powerful (16 Tflop) supercomputing cluster to conduct three ambitious surveys for millisecond and relativistic pulsars with the Parkes telescope. We hope to discover over 200 new millisecond and relativistic pulsars that will define the recycled pulsar period distribution, supply pulsars for the timing array and aid in our understanding of binary evolution.

  20. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques.

    PubMed

    Gleisner, Heike; Einax, Jürgen W; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo

    2011-04-01

    A fast and reliable method has been developed for the determination of total and soluble fluorine in toothpaste, important quality control parameters in dentifrices. The method is based on the molecular absorption of gallium mono-fluoride, GaF, using a commercially available high-resolution continuum source atomic absorption spectrometer. Transversely heated platform tubes with zirconium as permanent chemical modifier were used throughout. Before each sample injection, a palladium and zirconium modifier solution and a gallium reagent were deposited onto the graphite platform and thermally pretreated to transform them into their active forms. The samples were only diluted and introduced directly into the graphite tube together with additional gallium reagent. Under these conditions the fluoride was stable up to a pyrolysis temperature of 550 °C, and the optimum vaporization (molecule formation) temperature was 1550 °C. The GaF molecular absorption was measured at 211.248 nm, and the limits of detection and quantification were 5.2 pg and 17 pg, respectively, corresponding to a limit of quantification of about 30 μg g(-1) (ppm) F in the original toothpaste. The proposed method was used for the determination of total and soluble fluorine content in toothpaste samples from different manufactures. The samples contained different ionic fluoride species and sodium monofluorophosphate (MFP) with covalently bonded fluorine. The results for total fluorine were compared with those obtained with a modified conventional headspace gas chromatographic procedure. Accuracy and precision of the two procedures were comparable, but the proposed procedure was much less labor-intensive, and about five times faster than the latter one. PMID:21215545

  1. High-resolution radiography by means of a hodoscope

    DOEpatents

    De Volpi, Alexander

    1978-01-01

    The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.

  2. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  3. Practising high-resolution anoscopy.

    PubMed

    Palefsky, Joel M

    2012-12-01

    The incidence of anal cancer is increasing in the general population among both men and women. The incidence is particularly high among men who have sex with men and HIV-infected men and women. Anal cancer is similar to cervical cancer and is associated with human papillomavirus (HPV). Anal cancer is potentially preventable through primary prevention with HPV vaccination or secondary prevention. Secondary prevention is modelled after cervical cancer, where cytology is used as a screening tool to identify women who need colposcopy. Colposcopy includes magnification of the cervix, which, along with acetic acid and Lugol's solution, is used to visualise and biopsy potentially precancerous lesions, enabling treatment before progression to cervical cancer. Anal cancer is likely preceded by high-grade anal intraepithelial neoplasia (HGAIN), and a colposcope with acetic acid and Lugol's solution may similarly be used to visualise HGAIN to permit biopsy and treatment in an effort to prevent anal cancer. To distinguish it from cervical colposcopy, this technique is called high-resolution anoscopy (HRA). Many of the features that distinguish low-grade AIN from HGAIN are similar to those of the cervix, but HRA poses several additional challenges compared with cervical colposcopy. These include uneven topography; obscuring of lesions due to haemorrhoids, folds, stool or mucus; or lesions being located at the base of folds and anal glands. Consequently, a long learning curve is typically required before becoming fully competent in this technique. The technique of HRA, its uses and challenges in prevention of anal cancer are described in this article. PMID:23380236

  4. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  5. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  6. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  7. Planetary Atmospheres at High Resolution

    NASA Astrophysics Data System (ADS)

    Gurwell, M.; Butler, B.; Moullet, A.

    2013-10-01

    The long millimeter through submillimeter bands are particularly well suited for studying the wide variety of planetary atmospheres in our solar system. Temperatures ranging from a few 10s to hundreds of degrees, coupled with typically high densities (relative to the ISM) mean that thermal ‘continuum’ emission can be strong and molecular rotational transitions can be well-populated. Large bodies (Jovian and terrestrial planets) can be reasonably well studied by current interferometers such as the Submillimeter Array, IRAM Plateau de Bure Interferometer, and Combined Array for Research in Millimeter-wave Astronomy, yet many smaller bodies with atmospheres can only be crudely studied, primarily due to lack of sensitivity on baselines long enough to well resolve the object. Newly powerful interferometers such as the Atacama Large Millimeter/Submillimeter Array will usher in a new era of planetary atmospheric exploration. The vast sensitivity and spatial resolution of these arrays will increase our ability to image all bodies with extremely fine fidelity (due to the large number of antennas), and for study of smaller objects by resolving their disks into many pixels while providing the sensitivity necessary to detect narrow and/or weak line emission. New science topics will range from detailed mapping of HDO, ClO, and sulfur species in the mesosphere of Venus and PH3 and H2S in the upper tropospheres of the gas and ice giants, high SNR mapping of winds on Mars, Neptune and Titan, down to spectroscopic imaging of volcanic eruptions within the tenuous atmosphere on Io, resolved imaging of CO and other species in the atmosphere of Pluto, and even potentially detection of gases within the plumes of Enceladus.

  8. Improving Resolution in Fast Rotating-Frame Experiments

    NASA Astrophysics Data System (ADS)

    Casanova, F.; Robert, H.; Pusiol, D.

    2001-07-01

    The rapid rotating-frame technique allows significant reduction in data-acquisition time compared with the two-dimensional method by stroboscopic observation of the nuclear magnetization during its evolution in the rotating frame. A onefold reduction in the dimensionality of the original rotating-frame experiment is achieved by using a train of strong radiofrequency pulses separated by short acquisition windows. The penalty for shortening experimental time is a reduction in spectral resolution compared with the two-dimensional method due to relaxation of transverse magnetization components during the observation windows. A variant of the rapid-rotating frame technique for improving spectral resolution based on undersampling and self-phase encoding is presented. An M-fold resolution improvement requires M experiments, thus, making possible a tradeoff between spectral resolution and experimental time. The technique was applied for spatial localization of quadrupole nuclei in powder solids, and resolution improvement is demonstrated on one- and two-dimensional NQR images.

  9. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner

    PubMed Central

    Kim, Jin Young; Lee, Changho; Park, Kyungjin; Lim, Geunbae; Kim, Chulhong

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm2 in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm3. More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications. PMID:25604654

  10. High resolution laser imaging system

    NASA Astrophysics Data System (ADS)

    Kyle, Thomas G.

    1989-07-01

    Computations indicate that a synthetic aperture laser imaging system can provide images with 10-cm resolution at satellite ranges using a 10-W CW laser. When imaging satellites from the ground, the synthetic aperture system reduces atmospheric degradations. The system uses 20-cm diam receiver optics. The low laser power is made possible by using separate transmitter and receiver optics and coded pulses with a 50 percent transmitter duty cycle. The coded pulses are derived from Hadamard matrices for which there is an efficient algorithm to transform the received data into images. The synthetic aperture yields spatial resolutions independent of range, and the coded pulses result in an effective range dependence of r exp-2 instead of r exp-4.

  11. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  12. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  13. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  14. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  15. Fast full resolution saliency detection based on incoherent imaging system

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Zhao, Jufeng; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2016-05-01

    Image saliency detection is widely applied in many tasks in the field of the computer vision. In this paper, we combine the saliency detection with the Fourier optics to achieve acceleration of saliency detection algorithm. An actual optical saliency detection system is constructed within the framework of incoherent imaging system. Additionally, the application of our system to implement the bottom-up rapid pre-saliency process of primate visual saliency is discussed with dual-resolution camera. A set of experiments over our system are conducted and discussed. We also demonstrate the comparisons between our method and pure computer methods. The results show our system can produce full resolution saliency maps faster and more effective.

  16. Fast full resolution saliency detection based on incoherent imaging system

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Zhao, Jufeng; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2016-08-01

    Image saliency detection is widely applied in many tasks in the field of the computer vision. In this paper, we combine the saliency detection with the Fourier optics to achieve acceleration of saliency detection algorithm. An actual optical saliency detection system is constructed within the framework of incoherent imaging system. Additionally, the application of our system to implement the bottom-up rapid pre-saliency process of primate visual saliency is discussed with dual-resolution camera. A set of experiments over our system are conducted and discussed. We also demonstrate the comparisons between our method and pure computer methods. The results show our system can produce full resolution saliency maps faster and more effective.

  17. High spectral resolution in the solar spectrum

    NASA Technical Reports Server (NTRS)

    Baret, F.; Green, R. O.

    1994-01-01

    A session dedicated to high spectral resolution in the solar spectrum, covering topics of calibration, atmospheric correction, geology/pedology, inland water, and vegetation, is reported. The session showed a high degree of diversity in the topics and the approaches used. It was highlighted that high spectral resolution data could provide atmospherically corrected ground level calibrated reflectance values. Important advances were shown in the use of radiative transfer models applied either on water bodies or vegetation. Several studies highlighted the high degree of redundancy contained in high spectral resolution data.

  18. Sparse deconvolution of high-density super-resolution images

    PubMed Central

    Hugelier, Siewert; de Rooi, Johan J.; Bernex, Romain; Duwé, Sam; Devos, Olivier; Sliwa, Michel; Dedecker, Peter; Eilers, Paul H. C.; Ruckebusch, Cyril

    2016-01-01

    In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L1-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L0-norm penalty – on the number of fluorophores rather than on their overall brightness – we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm-2 and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling. PMID:26912448

  19. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  20. Progress on LAMOST High Resolution Spectrograph Project

    NASA Astrophysics Data System (ADS)

    Zhang, KaI

    2015-08-01

    To explore more science case, LAMOST doesn't only has strong power on celestial spectral survey but also reserves an access to high resolution spectrograph with a few optional fibers. This commissioned spectrograph gets high resolution of R=30,000 - 60,000 at a broad visible band from 370nm to 760nm. With the consideration about site seeing variation in future, single science fiber covers wider field on sky of 4.5arcsec instead of the present 3.3arcsec. An oversize Echelle R4 grating and a pre-slit image slicer are adopted to relieve the spectrograph resolution pressure. High resolution observation will parallel to the low resolution spectral survey at a small cost of losing a few fibers (10 - 20) on telescope focal plane. These science fibers will locate at the different sky areas for more approciate choice. The presentation will give the detailed design introduction and the current project status.

  1. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    NASA Astrophysics Data System (ADS)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  2. High Resolution Local Structure-Constrained Image Upsampling.

    PubMed

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  3. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  4. High-Resolution Plots of Trigonometric Functions.

    ERIC Educational Resources Information Center

    Stick, Marvin E.; Stick, Michael J.

    1985-01-01

    Provides computer programs (for Apple microcomputers) for drawing (in high resolution graphics) a three-leaved rose, concentric circles, circumscribed and inscribed astroids. Sample output and discussions of the mathematics involved in the programs are included. (JN)

  5. High range resolution micro-Doppler analysis

    NASA Astrophysics Data System (ADS)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  6. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  7. A strategy for fast screening and identification of sulfur derivatives in medicinal Pueraria species based on the fine isotopic pattern filtering method using ultra-high-resolution mass spectrometry.

    PubMed

    Yang, Min; Zhou, Zhe; Guo, De-an

    2015-09-24

    Sulfurous compounds are commonly present in plants, fungi, and animals. Most of them were reported to possess various bioactivities. Isotopic pattern filter (IPF) is a powerful tool for screening compounds with distinct isotope pattern. Over the past decades, the IPF was used mainly to study Cl- and Br-containing compounds. To our knowledge, the algorithm was scarcely used to screen S-containing compounds, especially when combined with chromatography analyses, because the (34)S isotopic ion is drastically affected by (13)C2 and (18)O. Thus, we present a new method for a fine isotopic pattern filter (FIPF) based on the separated M + 2 ions ((12)C(x)(1)H(y)(16)O(z)(32)S(13)C2(18)O, (12)C(x+2)(1)H(y)(16)O(z+1)(34)S, tentatively named M + 2OC and M + 2S) with an ultra-high-resolution mass (100,000 FWHM @ 400 m/z) to screen sulfur derivatives in traditional Chinese medicines (TCM).This finer algorithm operates through convenient filters, including an accurate mass shift of M + 2OC and M + 2S from M and their relative intensity compared to M. The method was validated at various mass resolutions, mass accuracies, and screening thresholds of flexible elemental compositions. Using the established FIPF method, twelve S-derivatives were found in the popular medicinal used Pueraria species, and 9 of them were tentatively identified by high-resolution multiple stage mass spectrometry (HRMS(n)). The compounds were used to evaluate the sulfurous compounds' situation in commercially purchased Pueraria products. The strategy presented here provides a promising application of the IPF method in a new field. PMID:26423627

  8. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  9. High resolution quantum metrology via quantum interpolation

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  10. Escaping ion measurement with high time resolution on CHS

    SciTech Connect

    Shinohara, K.; Isobe, M.; Darrow, D. S.

    2006-10-15

    A scintillator-based lost ion probe can measure the temporal evolution of both the gyroradius and the pitch angle of energetic ions escaping a magnetically confined plasma. For the probe on the Compact Helical System, the time resolution of this detailed two-dimensional measurement is determined by a framing rate of the video camera that records the luminous images produced by the ions striking the scintillator plate. The framing rate of the old camera was 30 Hz, thus the time resolution was about 33 ms. Our interest is to understand the energetic ion transport in fast events such as a bursting energetic ion driven mode. The typical time scale of these events is less than 1 ms, meaning that the old camera was too slow. By replacing it with an image-intensified high-speed video camera system, the temporal resolution was improved from 33 to 0.07 ms. We have successfully installed the fast camera and captured some fast events caused by magnetohydrodynamics, which were unobservable using the original camera.

  11. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  12. Invariant high resolution optical skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-02-01

    Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.

  13. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    PubMed

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. PMID:24986422

  14. High spectral resolution reflectance spectroscopy of minerals

    USGS Publications Warehouse

    Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N.

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 ??m. Selected absorption bands were studied at resolving powers (??/????) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 ??m. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. The study shows that high-resolution reflectance spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces. -from Authors

  15. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  16. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  17. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  18. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    OHara, David

    2009-05-08

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  19. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  20. Turbulence Scattering of High Harmonic Fast Waves

    SciTech Connect

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-05-31

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX).

  1. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  2. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, Clifford; Luan, Lan; Hendrik Bluhm, J.; Moler, Kathryn; Guikema, Janice; Zeldov, Eli; Shtrikman, Hadas

    2006-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability over a broad temperature range, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures containing 2D electron gases 40, 39 and 140nm beneath the surface. The sensitive areas of our probes range from microns to 85nm on a side. We report on the field sensitivities of probes of various sizes and their spatial resolution in a scanning configuration.

  3. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  4. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations

    PubMed Central

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M.; Pereira, Pedro Matos; Henriques, Ricardo

    2016-01-01

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours. PMID:27514992

  5. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations.

    PubMed

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M; Pereira, Pedro Matos; Henriques, Ricardo

    2016-01-01

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours. PMID:27514992

  6. Assessment of high resolution melt analysis feasibility for evaluation of beta-globin gene mutations as a reproducible, cost-efficient and fast alternative to the present conventional method

    PubMed Central

    Ramezanzadeh, Mahboubeh; Salehi, Mansour; Salehi, Rasoul

    2016-01-01

    Background: Beta-thalassemia is the most prevalent monogenic disease throughout the world. It was the first genetic disorder nominated for nation-wide prevention programs involving population screening for heterozygotes and prenatal diagnosis (PND) in Iran. Due to the high prevalence of beta-thalassemia, the shift from conventional mutation detection methods to more recently developed techniques based on novel innovative technologies are essential. We aimed to develop a real-time polymerase chain reaction (PCR) based protocol using high resolution melting (HRM) analysis for diagnosis of common beta-thalassemia mutations. Materials and Methods: Forty DNA samples extracted from peripheral blood of suspected beta-thalassemia carriers participated in this study were subjected to amplification refractory mutation system (ARMS). We then used 20 of these samples for HRM optimization. When 100% sensitivity and specificity was obtained with HRM procedure, we applied the technique for mutation detection on another remaining 20 samples as thalassemia cases with unknown mutations (detected mutations with ARMS-PCR kept confidential). Finally, the HRM procedure applied on 2 chorionic villous sample (CVS) biopsied from 12 weeks gestational age pregnant women for routine PND analysis. Results: In the first step of study, Fr 8/9 (+G), IVSI-1 (G > A), IVSI-5 (G > C), IVSI-110 (G > A), and CD44 (−C) mutations were diagnosed in samples under study using ARMS-PCR technique. Finally, the HRM procedure applied on 20 unknown samples and 2 CVS The results of HRM were in complete concordance with ARMS and confirmed by sequencing. Conclusions: The advantages of HRM analysis over conventional methods is high throughput, rapid, accurate, cost-effective, and reproducible. PMID:27169102

  7. Customized MFM probes with high lateral resolution

    PubMed Central

    Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Summary Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  8. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  9. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  10. High-resolution x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Brissenden, Roger J.; Davis, William N.; Elsner, Ronald F.; Elvis, Martin S.; Freeman, Mark D.; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhail V.; Jerius, Diab; Juda, Michael; Kolodziejczak, Jeffery J.; Murray, Stephen S.; Petre, Robert; Podgorski, William; Ramsey, Brian D.; Reid, Paul B.; Saha, Timo; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Wolk, Scott; Zhang, William W.

    2010-08-01

    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellarmass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  11. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  12. High Resolution Sapphire Bragg Backscattering Monochromator

    SciTech Connect

    Linden, P. van der; Wille, H.-C.; Shvyd'ko, Yu. V.

    2007-01-19

    We present a temperature stabilised high resolution sapphire backscattering monochromator. The device consists of a sapphire crystal inside a cold nitrogen gas cooled, temperature stabilised chamber with a passively temperature stabilised screen. The achieved temperature stability of {+-}2mK allows for an energy resolution of {delta}E/E {<=} 10-7 at energies in the range of 30-70 keV. The device was developed for nuclear resonant scattering above 30 keV, where appropriate solutions did not exist until now.

  13. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  14. On Point Designs for High Gain Fast Ignition

    SciTech Connect

    Key, M; Akli, K; Beg, F; Betti, R; Clark, D S; Chen, S N; Freeman, R R; Hansen, S; Hatchett, S P; Hey, D; King, J A; Kemp, A J; Lasinski, B F; Langdon, B; Ma, T; MacKinnon, A J; Meyerhofer, D; Patel, P K; Pasley, J; Phillips, T; Stephens, R B; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Town, R J; Wilks, S C; VanWoerkom, L; Wei, M S; Weber, R; Zhang, B

    2007-09-27

    Fast ignition research has reached the stage where point designs are becoming crucial to the identification of key issues and the development of projects to demonstrate high gain fast ignition. The status of point designs for cone coupled electron fast ignition and some of the issues they highlight are discussed.

  15. Fast and robust generation of high-resolution genetic maps in grapevine interspecific hybrid half-sib families using the HetMappS pipeline and R/qtl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping-by-sequencing (GBS) provides an opportunity for fast and inexpensive generation of unbiased SNPs. However, due to its low coverage, GBS SNPs have a higher proportion of missing data and genotyping error associated with heterozygote undercalling than traditional genotyping platforms. These...

  16. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  17. High resolution imaging of boron carbide microstructures

    SciTech Connect

    Mackinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1985-08-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  18. High resolution imaging of boron carbide microstructures

    SciTech Connect

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-04-15

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  19. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  20. High resolution electron crystallography of protein molecules

    SciTech Connect

    Glaeser, R.M. |; Downing, K.H.

    1993-06-01

    Electron diffraction data and high resolution images can now be used to obtain accurate, three-dimensional density maps of biological macromolecules. These density maps can be interpreted by building an atomic-resolution model of the structure into the experimental density. The Cowley-Moodie formalism of dynamical diffraction theory has been used to validate the use of kinematic diffraction theory, strictly the weak phase object approximation, in producing such 3-D density maps. Further improvements in the preparation of very flat specimens and in the retention of diffraction to a resolution of 0.2 nm or better could result in electron crystallography becoming as important a technique as x-ray crystallography currently is for the field of structural molecular biology.

  1. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  2. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  3. High resolution frequency analysis techniques with application to the redshift experiment

    NASA Technical Reports Server (NTRS)

    Decher, R.; Teuber, D.

    1975-01-01

    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.

  4. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution.

    PubMed

    Karatay, Durmus U; Harrison, Jeffrey S; Glaz, Micah S; Giridharagopal, Rajiv; Ginger, David S

    2016-05-01

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times. PMID:27250430

  5. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    NASA Astrophysics Data System (ADS)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S.

    2016-05-01

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  6. Sensitivity and resolution enhanced solid-state NMR for paramagnetic systems and biomolecules under very fast magic angle spinning.

    PubMed

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  7. Precise reconstruction of fast moving cardiac valve in high frame rate synthetic transmit aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Suzuki, Mayumi; Ikeda, Teiichiro; Ishihara, Chizue; Takano, Shinta; Masuzawa, Hiroshi

    2016-04-01

    To diagnose heart valve incompetence, i.e., one of the most serious cardiac dysfunctions, it is essential to obtain images of fast-moving valves at high spatial and temporal resolution. Ultrasound synthetic transmit aperture (STA) imaging has the potential to achieve high spatial resolution by synthesizing multiple pre-beamformed images obtained with corresponding multiple transmissions. However, applying STA to fast-moving targets is difficult due to serious target deformation. We propose a high-frame-rate STA (fast STA) imaging method that uses a reduced number of transmission events needed for each image. Fast STA is expected to suppress deformation of moving targets; however, it may result in deteriorated spatial resolution. In this study, we conducted a simulation study to evaluate fast STA. We quantitatively evaluated the reduction in deformation and deterioration of spatial resolution with a model involving a radially moving valve at the maximum speed of 0.5 m/s. The simulated raw channel data of the valve phantom was processed with offline beamforming programs. We compared B-mode images obtained through single received-line in a transmission (SRT) method, STA, and fast STA. The results show that fast STA with four-times-reduced events is superior in reconstructing the original shape of the moving valve to other methods. The accuracy of valve location is 97 and 100% better than those with SRT and STA, respectively. The resolution deterioration was found to be below the annoyance threshold considering the improved performance of the shape reconstruction. The obtained results are promising for providing more precise diagnostic information on cardiovascular diseases.

  8. DKIST: Observing the Sun at High Resolution

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Craig, S. C.; Elmore, D. F.; Hubbard, R. P.; Kuhn, J. R.; Lin, H.; McMullin, J. P.; Reardon, K. P.; Schmidt, W.; Warner, M.; Woger, F.

    2015-01-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) and currently under construction on Haleakalā (Maui, Hawai'i) will be the largest solar ground-based telescope and leading resource for studying the dynamic Sun and its phenomena at high spatial, spectral and temporal resolution. Accurate and sensitive polarimetric observations at high-spatial resolution throughout the solar atmosphere including the corona is a high priority and a major science driver. As such the DKIST will offer a combination of state-of-the-art instruments with imaging and/or spectropolarimetric capabilities covering a broad wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a double Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed 2D Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of e.g. the CO lines at 4.7 microns. We will provide a brief overview of the DKIST's unique capabilities to perform spectroscopic and spectropolarimetric measurements of the solar atmosphere using its first-light instrumentation suite, the status of the construction project, and how facility and data access is provided to the US and international community.

  9. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis. PMID:26562235

  10. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  11. High-resolution Visible Spectra of Titan

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, S.

    2006-09-01

    We have obtained high-resolution (R 30,000) spectra of Titan between 4,000 and 10,000 A on Feb. 23, 2005 (UT) using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, Korea. The raw Titan spectra contain telluric and solar absorption/emission lines. We used Kitt Peak solar atlases to remove the solar lines effectively. We also constructed synthetic spectra for the atmosphere of Titan including haze layers and utilizing laboratory spectra of CH4 available in literature. Preliminary results on the identifications of weak CH4 lines and on the derived opacities of the haze layers will be presented. Since the observations were carried out near the activities of Cassini observations of Titan, these high-resolution visible spectra are complementary to Cassini/VIMS imagery.

  12. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  13. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, C. W.; Guikema, J. W.; Zeldov, E.

    2005-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability from cryogenic to room temperature, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures, one containing a 2D electron gas 40 nanometers below the surface and another 140nm below the surface, as well as an In0.5Al0.5As / GaSb / AlSb / InAs heterostructure containing a 2DEG 21nm below the surface. The sensitive areas of our probes range from microns to 60nm on a side. We report on the field sensitivities of the probes and their spatial resolution in a scanning configuration.

  14. Information extraction from high resolution satellite images

    NASA Astrophysics Data System (ADS)

    Yang, Haiping; Luo, Jiancheng; Shen, Zhanfeng; Xia, Liegang

    2014-11-01

    Information extracted from high resolution satellite images, such as roads, buildings, water and vegetation, has a wide range of applications in disaster assessment and environmental monitoring. At present, object oriented supervised learning is usually used in the objects identification from the high spatial resolution satellite images. In classical ways, we have to label some regions of interests from every image to be classified at first, which is labor intensive. In this paper, we build a feature base for information extraction in order to reduce the labeling efforts. The features stored are regulated and labeled. The labeled samples for a new coming image can be selected from the feature base. And the experiments are taken on GF-1 and ZY-3 images. The results show the feasibility of the feature base for image interpretation.

  15. Optimized generation of high resolution breast anthropomorphic software phantoms

    PubMed Central

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-01-01

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper’s ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25–1000 μm)3/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms. PMID:22482649

  16. HEUVAC: A new high resolution solar EUV proxy model

    NASA Astrophysics Data System (ADS)

    Richards, Philip G.; Woods, Thomas N.; Peterson, William K.

    This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2 3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.

  17. Optimized generation of high resolution breast anthropomorphic software phantoms

    SciTech Connect

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-04-15

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper's ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper's ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25-1000 {mu}m){sup 3}/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms.

  18. Petrous apex mucocele: high resolution CT.

    PubMed

    Memis, A; Memis, A; Alper, H; Calli, C; Ozer, H; Ozdamar, N

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. PMID:7862284

  19. Star formation seen with high resolution spectroscopy.

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.

    1990-03-01

    More than 90 anorganic and organic molecules have been detected by high resolution spectroscopy in interstellar molecular clouds or in the envelopes of stars. The detected wavelengths of the lines - predominantly located in the millimeter- and submillimeter wavelength region - unequivocally identify the molecules and give precise knowledge of the physical and chemical conditions of molecular clouds from which the radiation emanates. The line intensities and line profiles contain information about the densities, temperatures and dynamics prevailing in molecular clouds.

  20. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  1. Conversational high resolution mass spectrographic data reduction

    NASA Technical Reports Server (NTRS)

    Romiez, M. P.

    1973-01-01

    A FORTRAN 4 program is described which reduces the data obtained from a high resolution mass spectrograph. The program (1) calculates an accurate mass for each line on the photoplate, and (2) assigns elemental compositions to each accurate mass. The program is intended for use in a time-shared computing environment and makes use of the conversational aspects of time-sharing operating systems.

  2. High resolution spectrograph for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Boggess, A.; Heap, S. R.; Maran, S. P.; Smith, A. M.; Beaver, E. A.; Bottema, M.; Hutchings, J. B.; Jura, M. A.; Linsky, J. L.

    1979-01-01

    The high resolution spectrograph (HRS) for ultraviolet astronomy with the Space Telescope will provide a spectral resolution of approximately 120,000 over a nominal wavelength range of 110-320 nm, together with a spatial resolution of about 0.25 arc seconds. The two detectors will consist of 512-element Digicons with cesium telluride and cesium iodide photocathodes, respectively. Photoelectrons in transit between the photocathodes and the diodes within the Digicons can be deflected in two axes with 12-bit resolution. This feature facilitates a design that emphasizes reliability since (once a hermetic seal is opened in orbit), only two moving parts, a grating carrousel and a shutter, are required for regular operation of the HRS. The instrument will be controlled by a computer in the spacecraft. The scientific objectives of the HRS investigation relate to interstellar matter in our own and nearby galaxies, physical processes of stellar mass loss and mass transfer, chemical abundances, bright quasars and Seyfert galaxy nuclei, and solar system phenomena.

  3. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  4. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  5. Updating Maps Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  6. High-resolution phylogenetic microbial community profiling.

    PubMed

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-08-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  7. Gamma ray spectroscopy at high energy and high time resolution at JET.

    PubMed

    Tardocchi, M; Proverbio, L I; Gorini, G; Grosso, G; Locatelli, M; Chugonov, I N; Gin, D B; Shevelev, A E; Murari, A; Kiptily, V G; Syme, B; Fernandes, A M; Pereira, R C; Sousa, J

    2008-10-01

    In fusion plasmas gamma ray emission is caused by reactions of fast particles, such as fusion alpha particles, with impurities. Gamma ray spectroscopy at JET has provided valuable diagnostic information on fast fuel as well as fusion product ions. Improvements of these measurements are needed to fully exploit the flux increase provided by future high power experiments at JET and ITER. Limiting aspects are, for instance, the count rate capability due to a high neutron/gamma background combined with slow detector response and a modest energy resolution due to the low light yield of the scintillators. This paper describes the solutions developed for achieving higher energy resolution, signal to background, and time resolution. The detector design is described based on the new BrLa3 scintillator crystal. The paper will focus on hardware development, including a photomultiplier tube capable of stable operation at counting rate as high as 1 MHz, the magnetic shielding, and the fast digital data acquisition system. PMID:19068513

  8. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  9. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor. PMID:19473919

  10. Orbiter glow observations at high spectral resolution

    NASA Technical Reports Server (NTRS)

    Kendall, D. J. W.; Mende, S. B.; Yn, E. J. ADMCDADE, I. C. AEMENDE, S. B.

    1985-01-01

    An experiment flow on mission STS 41-G as part of the Canadian complement of experiments was designed to obtain relatively high resolution spectra of the Orbiter glow phenomenon over limited spectral regions centered on prominent upper atmospheric emissions. Observations were carried out successfully at altitudes of 360 km and 230 km although those at the lower altitude were limited by degradation of the image intensifier. Definitive glow results were obtained at the end of a thruster firing which showed the spectrum to be a continuum at a resolution of approximately 0.4 nm centered at a wavelength of 360 nm. Results at other wavelengths in the absence of any firings strongly suggest that the Orbiter glow is a continuum throughout the spectral region 550 nm to 760 nm. A discussion is presented that considers the reaction NO + O2 as being a possible candidate for the mechanism producing the shuttle glow.

  11. High resolution patterning of silica aerogels

    SciTech Connect

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J.

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  12. Stellar population models at high spectral resolution

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Strömbäck, G.

    2011-12-01

    We present new, high-to-intermediate spectral resolution stellar population models, based on four popular libraries of empirical stellar spectra, namely Pickles, ELODIE, STELIB and MILES. These new models are the same as our previous models, but with higher resolution and based on empirical stellar spectra, while keeping other ingredients the same including the stellar energetics, the atmospheric parameters and the treatment of the thermally pulsating asymptotic giant branch and the horizontal branch morphology. We further compute very high resolution (R= 20 000) models based on the theoretical stellar library MARCS which extends to the near-infrared. We therefore provide merged high-resolution stellar population models, extending from ˜1000 to 25 000 Å, using our previously published high-resolution theoretical models which extended to the ultraviolet. We compare how these libraries perform in stellar population models and highlight spectral regions where discrepancies are found. We confirm our previous findings that the flux around the V band is lower (in a normalized sense) in models based on empirical libraries than in those based on the BaSeL-Kurucz library, which results in a bluer B-V colour. Most noticeably the theoretical library MARCS gives results fully consistent with the empirical libraries. This same effect is also found in other models using MILES, namely Vazdekis et al. and Conroy & Gunn, even though the latter authors reach the opposite conclusion. The bluer predicted B-V colour (by 0.05 mag in our models) is in better agreement with both the colours of luminous red galaxies and globular cluster data. We test the models on their ability to reproduce, through full spectral fitting, the ages and metallicities of Galactic globular clusters as derived from colour-magnitude diagram (CMD) fitting and find overall good agreement. We also discuss extensively the Lick indices calculated directly on the integrated MILES-based spectral energy distributions

  13. High-resolution simulation of field emission

    SciTech Connect

    Herrmannsfeldt, W.B. ); Becker, R. ); Brodie, I.; Rosengreen, A.; Spindt, C.A. )

    1990-03-01

    High-resolution simulations of field emission electron sources have been made using the electron optics program EGN2. Electron emission distributions are made using the Fowler-Nordheim equation. Mesh resolution in the range of 1-5 {angstrom} is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about 1{mu}. To achieve high resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary preprocessor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequate resolution is obtained to simulate surface details, such as microprotusion, that could sufficiently enhance the surface electric fields and cause field emission. When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields. 8 refs., 14 figs., 1 tab.

  14. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  15. High power fast ramping power supplies

    SciTech Connect

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  16. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  17. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  18. Fast and precise iris localization for low-resolution facial images

    NASA Astrophysics Data System (ADS)

    Meng, Chun-Ning; Zhang, Tai-Ning; Zhang, Pin; Chang, Sheng-Jiang

    2012-07-01

    Fast and precise iris localization is a vital technique for face recognition, eye tracking, and gaze estimation. Low-resolution images bring about great difficulties for locating the iris precisely by traditional methods. In this paper, a fast and robust method to precisely detect the position and contour of the irises in low-resolution facial images is presented. A three-step coarse-to-fine strategy is employed. First, a gradient integral projection function is proposed to roughly detect the eye region, and the vertical integral projection function is adopted to select several possible vertical boundaries of the irises. Second, we have proposed a novel rectangular integro-variance operator to precisely locate both of the irises. Finally, the localization results are verified by two simple heuristic rules. A novel and more rigorous criterion is also proposed to evaluate the performance of the algorithm. Comparison experiments on images from the FERET and the Extended YaleB databases demonstrate that our method is more robust than traditional methods to scale variation, illumination changes, part occlusion, and limited changes of head poses in low-resolution facial images.

  19. A high resolution Timing Counter for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    De Gerone, M.; Bevilacqua, A.; Biasotti, M.; Boca, G.; Cattaneo, P. W.; Gatti, F.; Nishimura, M.; Ootani, W.; Pizzigoni, G.; Rossella, M.; Shibata, N.; Siccardi, F.; Simonetta, M.; Uchiyama, Y.; Yoshida, K.

    2016-07-01

    The development of a Timing Counter detector designed for the MEGII upgrade of the MEG experiment, which strives to improve the sensitivity on the μ+ →e+ γ decay of an order of magnitude, is presented. It is based on two sets of counters (sectors) arranged on a semi-cylindrical structure; each sector consists of 256 counters. Each counter consists of tile of fast scintillator with a dual-side read-out based on SiPM arrays in series connection. The high granularity has two advantages: optimized size for achieving high resolution (75 ps) for the single counter, and a signal e+ crosses several counters, so that resolution improves by averaging multiple time measurements. A prototype has been built and tested both in BTF and PSI facilities in order to prove the multi-hit scheme in MEG-like beam conditions. A 35 ps resolution with eight hits has been obtained with a e+ beam at 100 kHz. The first sector will be tested in the MEG II pre-engineering run planned at the end of 2015.

  20. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  1. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  2. Development of a high resolution and high dispersion Thomson parabola

    NASA Astrophysics Data System (ADS)

    Jung, D.; Hörlein, R.; Kiefer, D.; Letzring, S.; Gautier, D. C.; Schramm, U.; Hübsch, C.; Öhm, R.; Albright, B. J.; Fernandez, J. C.; Habs, D.; Hegelich, B. M.

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE/E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

  3. Development of a high resolution and high dispersion Thomson parabola.

    PubMed

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon. PMID:21280824

  4. A fast algorithm for reconstruction of spectrally sparse signals in super-resolution

    NASA Astrophysics Data System (ADS)

    Cai, Jian-Feng; Liu, Suhui; Xu, Weiyu

    2015-08-01

    We propose a fast algorithm to reconstruct spectrally sparse signals from a small number of randomly observed time domain samples. Different from conventional compressed sensing where frequencies are discretized, we consider the super-resolution case where the frequencies can be any values in the normalized continuous frequency domain [0; 1). We first convert our signal recovery problem into a low rank Hankel matrix completion problem, for which we then propose an efficient feasible point algorithm named projected Wirtinger gradient algorithm(PWGA). The algorithm can be further accelerated by a scheme inspired by the fast iterative shrinkage-thresholding algorithm (FISTA). Numerical experiments are provided to illustrate the effectiveness of our proposed algorithm. Different from earlier approaches, our algorithm can solve problems of large scale efficiently.

  5. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  6. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  7. High-Resolution Manometry in Clinical Practice

    PubMed Central

    Pandolfino, John E.

    2015-01-01

    High-resolution manometry (HRM) is the primary method used to evaluate esophageal motor function. Displayed and interpreted by esophageal pressure topography (EPT), HRM/ EPT provides a detailed assessment of esophageal function that is useful in the evaluation of patients with nonobstructive dysphagia and before foregut surgery. Esophageal motility diagnoses are determined systematically by applying objective metrics of esophageal sphincter and peristaltic function to the Chicago Classification of esophageal motility disorders. This article discusses HRM study, EPT interpretation, and the translation of EPT findings into clinical practice. Examples are provided to illustrate several clinical challenges. PMID:27118931

  8. High resolution interferometry of cool stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1974-01-01

    A description is given of results obtained in a program of infrared high resolution spectroscopy of cool stars. The nature of infrared stellar spectra is considered along with questions regarding astrophysics and stellar infrared spectroscopy. An abundance analysis for alpha Ori (Betelgeuse) is conducted. The C-12/C-13 abundance ratio is examined and attention is given to the O-16/O-18 and O-16/O-17 abundance ratios. M stars and SiO vibration-rotation bands are discussed and questions regarding the characteristics of the molecular hydrogen quadrupole vibration-rotation lines are explored.

  9. High-resolution color photographic reproductions

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1997-04-01

    This paper will describe a fine-art reproduction process that: captures painting information with high-resolution color photographs; scans the information into a 300 megabyte digital file; performs a 3D color calibration in a dedicated hardware color-transform circuit; makes a master positive color transparency and makes a reproduction on polaroid color print film. The master transparency can be used to expose a large number of images. This combines the efficiency of instant photography with the color fidelity of digital color transforms.

  10. High Resolution Acoustoelastic Measurements of Materials

    NASA Astrophysics Data System (ADS)

    McKenna, Mark; Guy, Samuel; Heyman, Joseph

    2006-11-01

    As materials become more complex, there is an increasing need for high resolution measurements to characterize strength and damage in the materials. Typically, the criterion for rejecting a part is based on the detection of a flaw of a specific size in a critical location. Interestingly, if a low stress field exists at the flaw site, the flaw may not grow over time. Similarly, in a part that shows no unacceptable indications, a high stress state may cause the flaw to quickly grow through the part leading to failure. In other cases, a controlled amount of stress (in a specific direction or type) is purposely added to the material to prevent flaw growth. Inspection time intervals are based knowing and controlling the stress environment to predict the flaw growth. Luna Innovations Incorporated has developed a high resolution ultrasonic instrument that can enhance the integrity of critical hardware by measuring changes in the stress state in a material. Knowledge of the stress state plus knowledge of crack sizes greatly improves structural engineers' capability of life prediction. System data will be shown for tests to stresses near holes in laboratory fabricated aircraft metal samples. Scans of the spatial distribution of stresses will be compared with finite element models of the structure.

  11. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  12. High-resolution breath-hold cardiac magnetic resonance imaging

    SciTech Connect

    Liu, Yu.

    1993-01-01

    This dissertation work is composed of investigations of three methods for fast cardiac magnetic resonance imaging (MRI). These methods include (1) 2D breath-hold magnetization prepared gradient echo and fast spin-echo (FSE) cardiac imaging, (2) 3D breath-hold magnetization prepared gradient echo cardiac imaging, and (3) real-time monitoring, feedback, and triggering for breath-hold MRI. The hypothesis of this work is that high resolution 2D and 3D magnetic resonance data sets for the heart can be acquired with the combination of magnetization prepared blood suppression for gradient echo techniques and accurate breath-holding methods. The 2D method included development of magnetic resonance data acquisition for cardiac imaging. The acquisition time is within a single breath-hold of 16 seconds (assuming heart 60/min). The data acquisition is synchronized with the electrocardiogram signal. Based on consistent observations of specific small cardiac structures like the papillary muscle, trabeculae, moderator band, and coronary vessels in studies of normal volunteers, the image quality represents a significant improvement over that obtained with fast imaging methods previously. To further improve the image quality provided by the 2D method, the first 3D cardiac MRI technique was developed. This method provides even better spatial resolution for cardiac images, with a voxel size of 1.09 [times] 2.19 [times] 4 mm[sup 3]. A 3D acquisition is completed in 8 breath-holds. The data acquisition for 3D cardiac imaging requires a consistent breath-hold position to avoid respiratory artifacts. To improve the reliability of the 3DFT acquisition, a new technique called MR breath-hold feedback was developed to provide reproducible breathholding. The diaphragm location is used as the index for breath-hold reproducibility measurement. The range of the diaphragm displacement in different breath-hold is reduced from 8.3 mm without the technique, to 1.3 mm with the technique.

  13. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  14. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  15. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  16. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  18. High resolution multimodal clinical ophthalmic imaging system

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes. PMID:20589021

  19. High Resolution BPM for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Baboi, N.; Noelle, D.; Mildner, N.; Zapfe, K.; Rouvière, N.

    2006-11-01

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 μm and the damping time down to 10 ns.

  20. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  1. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  2. High Resolution Spectroscopy of Rocket Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Christian, H. J.

    2012-12-01

    In the Summer of 2012, optical spectra of rocket triggered lightning return strokes were recorded at the International Center for Lightning Research and Testing in north-central Florida. The spectra were recorded with a Phantom v710 high speed CMOS camera running at 670 kfps (kiloframes per second) with a 1 microsecond exposure time and a Princeton ProEM high speed CCD camera running at over 1,000 kfps with a 0.5 microsecond exposure time. Three separate volume phase holographic grisms were used during the study and were sensitive in the spectral ranges of 3800-6200 Angstroms, 6400-6700 Angstroms, 7600-7900 Angstroms. The first had a spectral resolution of 5 Angstroms, allowing the separation of singly ionized nitrogen multiplets. These spectra were recorded 50m above the ground with 0.65 m vertical field of view. The second and third spectrometers were recorded with the Princeton ProEM camera and had a resolution of 0.5 Angstroms. These spectra were recorded 50m above ground with 0.06 m vertical field of view. The evolution of important lines in the spectral ranges such as singly ionized nitrogen lines (including spatially resolved 4630 Angstrom multiplet), H-alpha, and a resolved 7774 Angstrom Neutral oxygen triplet will all be presented. The opacity of the lightning channel as well as number density, temperature, and conductivity, will be discussed along with channel base current.

  3. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  4. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  5. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  6. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  7. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  8. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  9. High-Resolution NMR Probe for Experiments at High Pressures

    NASA Astrophysics Data System (ADS)

    Ballard, L.; Reiner, C.; Jonas, J.

    A 300 MHz high-resolution, high-pressure NMR probe which operates in the pressure range of 1 bar to 9 kbar at temperatures of -30 to 100°C is described. Specialized novel design features of the probe are discussed and test spectra showing resolution better than 1 Hz (<3.0 × 10 -9) for 8 mm samples are presented. Potential biochemical applications of this probe are illustrated by experiments dealing with the pressure-induced unfolding of hen egg white lysozyme.

  10. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  11. High-resolution spectrometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  12. Characterization of a high resolution transmission grating

    NASA Astrophysics Data System (ADS)

    Desauté, P.; Merdji, H.; Greiner, V.; Missalla, T.; Chenais-Popovics, C.; Troussel, P.

    2000-01-01

    Three 5000 lines/mm gold transmission gratings have been tested with the radiation from the Super-ACO synchrotron in the range 250 eV< E<850 eV. Typical results for the spectral dependence of the grating efficiency at different diffraction orders are presented. This grating theoretically built to have no second order exhibits second order as high as 15-20% of first order. The very thin 5000 L/mm gratings are supported by a larger grid which perturbs the recorded data by separating each order in three peaks. Fraunhofer diffraction of the support grid has been modelled and can explain this effect. The high resolution gratings were used to measure the harmonics of the beamline monochromator grating (550 L/mm) and to measure the emission and absorption of laser-produced plasmas in the XUV range.

  13. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  14. Hydrogen depth profiling with sub-nm resolution in high-resolution ERD

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Nakajima, Kaoru; Imura, Hideki

    1998-05-01

    A depth resolution of 0.28 nm is obtained in a depth profile of hydrogen in silicon using a newly developed high-resolution elastic recoil detection (ERD) system. The system consists of a standard 90° sector magnetic spectrometer (energy resolution ˜0.1%) for high-resolution measurement and an electrostatic deflector for blocking scattered incident ions without disturbing the energy resolution. The system is very simple as compared with other high-resolution ERD systems and the data acquisition time is reasonably short.

  15. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  16. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  17. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  18. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  19. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  20. NOTE: Ring artifact correction for high-resolution micro CT

    NASA Astrophysics Data System (ADS)

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A.; Gleich, B.; Borgert, J.; Buzug, T. M.

    2009-09-01

    Recently a new imaging technique called magnetic particle imaging was proposed. The method uses the nonlinear response of magnetic nanoparticles when a time varying magnetic field is applied. Spatial encoding is achieved by moving a field-free point through an object of interest while the field strength in the vicinity of the point is high. A resolution in the submillimeter range is provided even for fast data acquisition sequences. In this paper, a simulation study is performed on different trajectories moving the field-free point through the field of view. The purpose is to provide mandatory information for the design of a magnetic particle imaging scanner. Trajectories are compared with respect to density, speed and image quality when applied in data acquisition. Since simulation of the involved physics is a time demanding task, moreover, an efficient implementation is presented utilizing caching techniques.

  1. High-resolution workstations for primary and secondary radiology readings

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Simons, Margaret A.; Razavi, Mahmood; Kangarloo, Hooshang; Boechat, Maria I.; Hall, Theodore R.; Chuang, Keh-Shih; Huang, H. K.; Eldredge, Sandra L.

    1990-08-01

    We have implemented two high resolution workstations within our pediatric radiology PACS module: a two-monitor 2K x 2K station and a six-monitor 1K x 1K station. The 2K x 2K workstation is under evaluation for primary reading of pediatric radiographs from a computed radiography unit. System implementation and evaluation methods are described. Operational efficiency measures of both film and digital systems are reported. This study is our first attempt to integrate a primary viewing station into a busy clinical environment. The 1K x 1K workstation is available 24-hours a day, 7 days a week for fast reviews by referring physicians. Images from a compated radiography system are available at the workstation in about 8 minutes. A digital voice reporting system is being developed to communicate radiology reports from the 2K x 2K workstation to the 1K x 1K secondary review station.

  2. Ellerman bombs: Advances driven by high-resolution observations

    NASA Astrophysics Data System (ADS)

    Vissers, Gregal

    Ellerman bombs, transient brightenings that have traditionally been observed in the wings of the Balmer Halpha line, are a ubiquitous phenomenon in the lower atmosphere of active regions with considerable flux emergence. These explosive events display sub-arcsecond fine structure, fast dynamical evolution and their energies tend to fall in the nanoflare ballpark. Over the past decade and a half, several high-resolution ground-based and space-based telescopes have contributed greatly to further characterising Ellerman bombs, offering a view in spectral diagnostics ranging from the UV to the infrared. I will highlight some of the recent advances that have been made - both observationally and from a theoretical point of view - in determining their properties (quantitative morphology, energies, flows and proper motion, driving mechanism, etc.), and discuss the potential of observations from relatively new space-based telescopes, such as SDO and IRIS, to add to our understanding of this phenomenon.

  3. Mobile sensor for high resolution NMR spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Danieli, Ernesto; Mauler, Jörg; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2009-05-01

    In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22 T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from ˜20 kHz to less than 0.1 kHz was achieved, that is by more than two orders of magnitude, in a volume of 21 cm 3. Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1 cm 3, sub ppm resolution is obtained in 1H NMR spectra.

  4. High-resolution turbulent simulations using the Connection Machine-2

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Shan, Xiaowen

    1992-01-01

    The spectral method provides an efficient algorithm for solving the 3D incompressible Navier-Stokes equations in periodic boundaries. Most people, so far, have used vectorized machines, such as the CRAY-2, to implement fast Fourier transformations and time integrations in the spectral calculations. In this paper, new results are presented using the spectral calculations on the Connection Machine-2 with a parallel algorithm. The large memory of the Connection Machine-2 and the parallel algorithm allows, of the first time, to implement a 512-cubed mesh resolution for high Reynolds number flows. The computational speed of the present code is about 30 percent faster than the fastest CRAY-2 simulations with four processors. Parallel machines, such as the Connection Machine-2, will possibly provide new computational power for understanding the intermittency and cascade mechanism in fluid turbulence.

  5. Observations of the solar wind with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zastenker, G. N.; Yermolaev, Yu. I.; Pinter, S.; Nemechek, Z.; Shafrankova, Ia.; Belikova, A. B.; Leibov, A. V.; Prokhorenko, V. I.; Stefanovich, A. E.; Bedrikov, A. G.

    1982-11-01

    During 1980-1981, the joint Soviet-Czechoslovakian plasma spectrometer ('Monitor') aboard the Prognoz-8 satellite was used to carry out high-temporal-resolution observations of processes in the solar wind and earth's magnetosphere. The objective of the experiment was to obtain continuous data on basic parameters of the solar wind, i.e., velocity, ion temperature and density, and arrival angles of the flow; as well as to investigate fast variations of the energy spectrum of the ion component of the solar wind in the interplanetary medium and at characteristic boundaries of the earth's magnetosphere. This paper describes the method of the experiment, and discusses first results relating to ion spectra and magnetospheric boundaries.

  6. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  7. Fast Single Image Super-Resolution Using a New Analytical Solution for l2 - l2 Problems.

    PubMed

    Zhao, Ningning; Wei, Qi; Basarab, Adrian; Dobigeon, Nicolas; Kouame, Denis; Tourneret, Jean-Yves

    2016-08-01

    This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high-resolution image from its blurred, decimated, and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based methods dividing the SR problem into up-sampling and deconvolution steps that can be easily solved. Instead of following this splitting strategy, we propose to deal with the decimation and blurring operators simultaneously by taking advantage of their particular properties in the frequency domain, leading to a new fast SR approach. Specifically, an analytical solution is derived and implemented efficiently for the Gaussian prior or any other regularization that can be formulated into an l2 -regularized quadratic model, i.e., an l2 - l2 optimization problem. The flexibility of the proposed SR scheme is shown through the use of various priors/regularizations, ranging from generic image priors to learning-based approaches. In the case of non-Gaussian priors, we show how the analytical solution derived from the Gaussian case can be embedded into traditional splitting frameworks, allowing the computation cost of existing algorithms to be decreased significantly. Simulation results conducted on several images with different priors illustrate the effectiveness of our fast SR approach compared with existing techniques. PMID:27187960

  8. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  9. High-resolution Martian atmosphere modeling

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Fischbein, W. L.; Smith, L. L.; Hilgeman, T.

    1980-01-01

    A multilayer radiative transfer, high-spectral-resolution infrared model of the lower atmosphere of Mars has been constructed to assess the effect of scattering on line profiles. The model takes into accout aerosol scattering and absorption and includes a line-by-line treatment of scattering and absorption by CO2 and H2O. The aerosol complex indices of refraction used were those measured on montmorillonite and basalt chosen on the basis of Mars ir data from the NASA Lear Airborne Observatory. The particle sizes and distribution were estimated using Viking data. The molecular line treatment employs the AFGL line parameters and Voigt profiles. The modeling results indicate that the line profiles are only slightly affected by normal aerosol scattering and absorption, but the effect could be appreciable for heavy loading. The technique described permits a quantitative approach to assessing and correcting for the effect of aerosols on lineshapes in planetary atmospheres.

  10. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  11. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  12. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  13. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  14. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  15. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  16. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  17. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  18. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  19. A high resolution solar atlas for fluorescence calculations

    NASA Technical Reports Server (NTRS)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  20. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  1. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    SciTech Connect

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000 ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.

  2. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    SciTech Connect

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  3. A multi-channel high time resolution detector for high content imaging

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-10-01

    Medical imaging has long benefited from advances in photon counting detectors arising from space and particle physics. We describe a microchannel plate-based detector system for high content (multi-parametric) analysis, specifically designed to provide a step change in performance and throughput for measurements in imaged live cells and tissue for the 'omics'. The detector system integrates multi-channel, high time resolution, photon counting capability into a single miniaturized detector with integrated ASIC electronics, comprising a fast, low power amplifier discriminator and TDC for every channel of the discrete pixel electronic readout, and achieving a pixel density improvement of order two magnitudes compared with current comparable devices. The device combines high performance, easy reconfigurability, and economy within a compact footprint. We present simulations and preliminary measurements in the context of our ultimate goals of 20 ps time resolution with multi-channel parallel analysis (1024 channels).

  4. Fast-Recovery, High-Voltage Power Diode

    NASA Technical Reports Server (NTRS)

    Sundberg, G.; Berman, A.; Balodis, V.; Gaugh, C.; Duffin, J.; Karatnicki, H.; Larson, E.

    1985-01-01

    New family of fast-recovery high-voltage power diodes compatible with D60T and D7ST transistors developed. Have wide range of applications in spacecraft and aircraft electrical distribution equipment, dc/dc inverters, and ac motor controllers for high-horsepower electric motors operating from 480-volt ac lines. Fast-Recovery 1,200-V Power Diodes use chip of hexagonal geometry to maximize effective silicon area.

  5. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  6. A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces.

    PubMed

    Bajaj, Chandrajit L; Xu, Guoliang; Zhang, Qin

    2009-05-01

    We present a variational approach to smooth molecular (proteins, nucleic acids) surface constructions, starting from atomic coordinates, as available from the protein and nucleic-acid data banks. Molecular dynamics (MD) simulations traditionally used in understanding protein and nucleic-acid folding processes, are based on molecular force fields, and require smooth models of these molecular surfaces. To accelerate MD simulations, a popular methodology is to employ coarse grained molecular models, which represent clusters of atoms with similar physical properties by psuedo- atoms, resulting in coarser resolution molecular surfaces. We consider generation of these mixed-resolution or adaptive molecular surfaces. Our approach starts from deriving a general form second order geometric partial differential equation in the level-set formulation, by minimizing a first order energy functional which additionally includes a regularization term to minimize the occurrence of chemically infeasible molecular surface pockets or tunnel-like artifacts. To achieve even higher computational efficiency, a fast cubic B-spline C(2) interpolation algorithm is also utilized. A narrow band, tri-cubic B-spline level-set method is then used to provide C(2) smooth and resolution adaptive molecular surfaces. PMID:19802355

  7. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  8. High-resolution microbiota flow cytometry reveals dynamic colitis-associated changes in fecal bacterial composition.

    PubMed

    Zimmermann, Jakob; Hübschmann, Thomas; Schattenberg, Florian; Schumann, Joachim; Durek, Pawel; Riedel, René; Friedrich, Marie; Glauben, Rainer; Siegmund, Britta; Radbruch, Andreas; Müller, Susann; Chang, Hyun-Dong

    2016-05-01

    Using high-resolution flow cytometry of bacterial shape (forward scatter) and DNA content (DAPI staining), we detected dramatic differences in the fecal microbiota composition during murine colitis that were validated using 16S rDNA sequencing. This innovative method provides a fast and inexpensive tool to interrogate the microbiota on the single-cell level. PMID:26909672

  9. High resolution electron attachment to CO₂ clusters.

    PubMed

    Denifl, Stephan; Vizcaino, Violaine; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2010-01-01

    Electron attachment to CO₂ clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO₂ clusters, non-dissociated complexes of the form (CO₂)(n)(-) including the monomer CO₂(-) are generated as well as solvated fragment ions of the form (CO₂)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO₂)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO₂ in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO₂)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO₂)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance. PMID:21491691

  10. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  11. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  12. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7

  13. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  14. Future trends in high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Lawes, R. A.

    2000-02-01

    A perennial question is "what is the future of high-resolution lithography, a key technology that drives the semiconductor industry"? The dominant technology over the last 30 years has been optical lithography, which by lowering wavelengths to 193 nm (ArF) and 157 nm (F 2) and by using optical "tricks" such as phase shift masks, off-axis illumination and phase filters, should be capable of 100 nm CMOS technology. So where does this leave the competition? The 100-nm lithography used to be the domain of electron beam lithography but only in research laboratories. Significant efforts are being made to increase throughput by electron projection (scattering with angular limitation projection electron beam lithography or SCALPEL). X-ray lithography remains a demonstrated R&D tool waiting to be commercially exploited but the initial expenditure to do so is very high. Ion beam lithography and extreme ultraviolet (EUV) ( λ<12 nm) have also received attention in recent years. This paper will concentrate on some of the key issues and speculate on how and when an alternative to optical lithography will be embraced by industry.

  15. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  16. High resolution rainfall measurements around a high rise building

    NASA Astrophysics Data System (ADS)

    de Jong, Stijn; van de Giesen, Nick; Hut, Rolf

    2010-05-01

    A number of disdrometers (acoustic rain gauge) has been placed around a high rise building on a place where variation in spatial distribution of precipitation is expected, to show the advantage of high resolution rainfall measurements in a urban area. The standard recommendation for the placement of a rain gauge is that the gauge is positioned at a distance corresponding to two to four times the height of any nearby obstruction to obtain a measurement that is representative for the surrounding area. In an urban area it is almost impossible to find a location that suits this recommendation. Rain measurements in urban area with a high spatial resolution are desired, to obtain a better understanding of urban hydrology, but costs may be prohibitive. A low cost disdrometer has been developed to make it affordable to perform rain measurements with a very high spatial and temporal resolution. The disdrometer is tested around a high rise building on the Delft University of Technology campus. The faculty of Electrical Engineering, Mathematics and Computer Science (EWI) on the campus of Delft University of Technology consists of a high rise building of 90 meters and a low rise building of 15 meters. Sensors are placed on the low rise building to measure the impact of the high rise building on the spatial distribution of precipitation. In addition to the disdrometer, two other methods are used to measure precipitation differences around the high rise building. Tipping bucket rain gauges have been placed on two elevator shaft housings on the low rise building, of which one is situated in the shadow of the high rise building. Simultaneously, runoff from the elevator shafts is measured. A comparison of the different methods will be presented.

  17. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  18. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  19. High-speed segmentation-driven high-resolution matching

    NASA Astrophysics Data System (ADS)

    Ekstrand, Fredrik; Ahlberg, Carl; Ekström, Mikael; Spampinato, Giacomo

    2015-02-01

    This paper proposes a segmentation-based approach for matching of high-resolution stereo images in real time. The approach employs direct region matching in a raster scan fashion influenced by scanline approaches, but with pixel decoupling. To enable real-time performance it is implemented as a heterogeneous system of an FPGA and a sequential processor. Additionally, the approach is designed for low resource usage in order to qualify as part of unified image processing in an embedded system.

  20. COMPU-EYE: a high resolution computational compound eye.

    PubMed

    Lee, Woong-Bi; Jang, Hwanchol; Park, Sangjun; Song, Young Min; Lee, Heung-No

    2016-02-01

    In nature, the compound eyes of arthropods have evolved towards a wide field of view (FOV), infinite depth of field and fast motion detection. However, compound eyes have inferior resolution when compared with the camera-type eyes of vertebrates, owing to inherent structural constraints such as the optical performance and the number of ommatidia. For resolution improvements, in this paper, we propose COMPUtational compound EYE (COMPU-EYE), a new design that increases acceptance angles and uses a modern digital signal processing (DSP) technique. We demonstrate that the proposed COMPU-EYE provides at least a four-fold improvement in resolution. PMID:26906778

  1. Intracellular membrane traffic at high resolution

    PubMed Central

    van Weering, Jan R.T.; Brown, Edward; Sharp, Thomas H.; Mantell, Judith; Cullen, Peter J.

    2014-01-01

    I. Abstract Membrane traffic between organelles is essential for a multitude of processes that maintain cell homeostasis. Many steps in these tightly regulated trafficking pathways take place in microdomains on the membranes of organelles, which require analysis at nanometer resolution. Electron Microscopy (EM) can visualize these processes in detail and is mainly responsible for our current view of morphology on the subcellular level. This review discusses how EM can be applied to solve many questions of intracellular membrane traffic, with a focus on the endosomal system. We describe the expansion of the technique from purely morphological analysis to cryo-immuno-EM, Correlative Light Electron Microscopy (CLEM) and 3D electron tomography. In this review we go into some technical details of these various techniques. Furthermore, we provide a full protocol for immunolabeling on Lowicryl sections of high-pressure frozen cells as well as a detailed description of a simple CLEM method that can be applied to answer many membrane trafficking questions. We believe that these EM-based techniques are important tools to expand our understanding of the molecular details of endosomal sorting and intracellular membrane traffic in general. PMID:20869541

  2. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process. PMID:17747882

  3. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  4. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  5. High resolution gas volume change sensor

    SciTech Connect

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.

  6. Europa Ice Cliffs-High Resolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa shows cliffs along the edges of high-standing ice plates. The washboard texture of the older terrain has been broken into plates which are separated by material with a jumbled texture. The cliffs themselves are rough and broadly scalloped, and smooth debris shed from the cliff faces is piled along the base. For scale, the height of the cliffs and size of the scalloped indentations are comparable to the famous cliff face of Mount Rushmore in South Dakota.

    This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system (camera) on NASA's Galileo spacecraft. North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 273 degrees west longitude, covers an area approximately 1.5 kilometers by 4 kilometers (0.9 miles by 2.4 miles). The resolution is 9 meters (30 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  7. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  8. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  9. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  10. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  11. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  12. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  13. Statistical Performance Analysis of a Fast Super-Resolution Technique Using Noisy Translations.

    PubMed

    Chainais, Pierre; Leray, Aymeric

    2016-04-01

    The registration process is a key step for super-resolution (SR) reconstruction. More and more devices permit to overcome this bottleneck using a controlled positioning system, e.g., sensor shifting using a piezoelectric stage. This makes possible to acquire multiple images of the same scene at different controlled positions. Then, a fast SR algorithm can be used for efficient SR reconstruction. In this case, the optimal use of r(2) images for a resolution enhancement factor r is generally not enough to obtain satisfying results due to the random inaccuracy of the positioning system. Thus, we propose to take several images around each reference position. We study the error produced by the SR algorithm due to spatial uncertainty as a function of the number of images per position. We obtain a lower bound on the number of images that is necessary to ensure a given error upper bound with probability higher than some desired confidence level. Such results give precious hints to the design of SR systems. PMID:26886988

  14. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  15. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  16. The Chirp - High Resolution, Quantitative Subbottom Profiler.

    NASA Astrophysics Data System (ADS)

    Schock, Steven Gregory

    The chirp sonar is a quantitative subbottom profiler that can generate wide dynamic range, artifact-free seismograms in real time. These high quality seismograms, can be used for quantitative analyses, such as reflectivity and attenuation measurements, and sediment classification. Key features of the chirp sonar include (1) a computer-generated FM pilot signal with a large time-bandwidth product that contains amplitude and phase compensation providing exact control of the transmitted acoustic pulse (2) directional arrays with low backlobe levels and (3) a towed vehicle designed to scatter bottom multiples. Subbottom profiles, acquired in Narragansett Bay, R.I., demonstrated 20 cm vertical resolution, 62 meter subbottom penetration and significant bottom multiple reduction. A new time domain technique for estimating acoustic attenuation, called the autocorrelation method, is described and compared to well known attenuation measurement techniques. The spectral ratio method is most accurate, followed by the autocorrelation and wavelet matching methods for estimating the acoustic attenuation coefficient of sediments from reflection profiles. However, the autocorrelation method is the only technique efficient enough to provide an attenuation measurement for every depth increment in each acoustic return in real time. Multiple reflections, gradual impedance changes and windowing sidelobes degrade the attenuation estimates. Chirp sonar remote measurements off Hope Island were used to estimate the attenuation coefficient for clayey silts (0.091 dB/m/kHz by spectral ratio and 0.125 dB/m/kHz by autocorrelation), values which agree with in situ measurements made by Hamilton, but are significantly higher than the attenuation coefficient (0.019 dB/m/kHz, n = 1.50) calculated from laboratory measurements (250-750 kHz) on a core from the Hope Island site. More ground truth measurements are required to establish the accuracy of remote attenuation measurements using the chirp sonar.

  17. The NASA High Resolution Microwave Survey

    NASA Astrophysics Data System (ADS)

    Tarter, J. C.; Gulkis, S.

    1993-05-01

    The NASA High Resolution Microwave Survey (HRMS) began a decade of planned observations to search for signals of extraterrestrial intelligent origin with inaugural ceremonies at two sites on October 12, 1992. At Goldstone, California the Sky Survey began executing precisely controlled scanning patterns on the celestial sphere using a new beam waveguide 34m antenna operating at a frequency near 8500 MHz (X-band). At Arecibo, Puerto Rico the Targeted Search began tracking GL615.1A, one of 24 solar-type stars selected for these inaugural observations, using the NAIC 300m radio telescope operating in a band of frequencies centered at 1406 MHz. Since the initiation of the search, the Sky Survey has completed X-band observations of several dozen sky-frames measuring 30(deg) times 1.5(deg) . In addition, observations of selected areas of the galactic plane have been observed in several frequency bands (1400 MHz and 1600 MHz) using a 26m antenna located near the 34m antenna. The Targeted Search has completed the first 200 hours of observations at Arecibo covering some 300 MHz of bandwidth. This paper summarizes the results of the observations to date, including a synopsis of the interference observed at the Goldstone and Arecibo sites, and a discussion of techniques that will be used to improve future observations. The HRMS program is managed by the Ames Research Center in collaboration with the Jet Propulsion Laboratory. The results presented in this paper represent the efforts of a team of scientists and engineers at these two institutions as well as the SETI Institute, Silicon Engines Inc., John C. Reykjalin Inc., Sverdrup Technology, Sterling Federal Systems, Cornell University, the Harvard-Smithsonian Center for Astrophysics, the American Astronomical Society, Arecibo Observatory, UC Santa Cruz, the University of Washington, UC Berkeley, California Institute of Technology, Georgia Institute of Technology, Innovative Systems, and the Space Telescope Science Institute.

  18. Structure recognition from high resolution images of ceramic composites

    SciTech Connect

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  19. Proteogenomic Analysis of Mycobacterium smegmatis Using High Resolution Mass Spectrometry

    PubMed Central

    Potgieter, Matthys G.; Nakedi, Kehilwe C.; Ambler, Jon M.; Nel, Andrew J. M.; Garnett, Shaun; Soares, Nelson C.; Mulder, Nicola; Blackburn, Jonathan M.

    2016-01-01

    Biochemical evidence is vital for accurate genome annotation. The integration of experimental data collected at the proteome level using high resolution mass spectrometry allows for improvements in genome annotation by providing evidence for novel gene models, while validating or modifying others. Here, we report the results of a proteogenomic analysis of a reference strain of Mycobacterium smegmatis (mc2155), a fast growing model organism for the pathogenic Mycobacterium tuberculosis—the causative agent for Tuberculosis. By integrating high throughput LC/MS/MS proteomic data with genomic six frame translation and ab initio gene prediction databases, a total of 2887 ORFs were identified, including 2810 ORFs annotated to a Reference protein, and 63 ORFs not previously annotated to a Reference protein. Further, the translational start site (TSS) was validated for 558 Reference proteome gene models, while upstream translational evidence was identified for 81. In addition, N-terminus derived peptide identifications allowed for downstream TSS modification of a further 24 gene models. We validated the existence of six previously described interrupted coding sequences at the peptide level, and provide evidence for four novel frameshift positions. Analysis of peptide posterior error probability (PEP) scores indicates high-confidence novel peptide identifications and shows that the genome of M. smegmatis mc2155 is not yet fully annotated. Data are available via ProteomeXchange with identifier PXD003500. PMID:27092112

  20. Fast timing study of a CeBr3 crystal: Time resolution below 120 ps at 60Co energies

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Mach, H.; Vedia, V.; Olaizola, B.; Paziy, V.; Picado, E.; Udías, J. M.

    2013-02-01

    We report on the time response of a novel inorganic scintillator, CeBr3. The measurements were performed using a cylindrical crystal of 1-in. in height and 1-in. in diameter at 22Na and 60Co photon energies. The time response was measured against a fast reference BaF2 detector. Hamamatsu R9779 and Photonis XP20D0 fast photomultipliers (PMTs) were used. The PMT bias voltages and Constant Fraction Discriminator settings were optimized with respect to the timing resolution. The Full Width at Half Maximum (FWHM) time resolution for an individual CeBr3 crystal coupled to Hamamatsu PMT is found here to be as low as 119 ps at 60Co energies, which is comparable to the resolution of 107 ps reported for LaBr3(Ce). For 511 keV photons the measured FWHM time resolution for CeBr3 coupled to the Hamamatsu PMT is 164 ps.

  1. Digital Light Processing for high-brightness high-resolution applications

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1997-05-01

    Electronic projection display technology for high-brightness applications had its origins in the Gretag Eidophor, an oil film-based projection system developed in the early 1940s. A number of solid state technologies have challenged the Eidophor, including CRT-addressed LCD light valves and active-matrix-addressed LCD panels. More recently, in response to various limitations of the LCD technologies, high-brightness systems have been developed based on Digital Light Processing technology. At the heart of the DLP projection display is the Digital Micromirror Device, a semiconductor-based array of fast, reflective digital light switches that precisely control a light source using a binary pulsewidth modulation technique. This paper describes the design, operation, performance, and advantages of DLP- based projection systems for high-brightness, high- resolution applications. It also presents the current status of high-brightness products that will soon be on the market.

  2. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  3. High Resolution Simulation in the Eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Sa, L.; Nogueira, D.; Gandu, A.

    2006-05-01

    produced by the BRAMS model shows that the numerical simulation reproduced both LLJs of November 13 and 14 at, 06 UTC. However, their magnitude was about 2 and 3 m/s lower and their height was higher than what was observed. In order to verify the origin of the LLJ, the variability of the wind at the jet level, during the numerical simulation in grid 1, was analyzed. In the afternoon, it was observed the increase in wind speed at the Atlantic Coast associated to sea breeze circulation. Nonetheless, at 00 UTC, this maximum speed center penetrated the continent and reached the region of Caxiuanã. Indeed, this circulation was under a canalization effect due to the rivers distribution. On November 13, the sea breeze formed again. However, the circulation on this day was relatively weak. The numerical simulations with this high resolution model indicated the occurrence of low level jets. Nevertheless, it did not reproduce in detail some of the observed characteristics of the flow. An important aspect revealed by the simulations with BRAMS was the origin of the jets, which is associated to a phenomenon of canalization of the flow above zones where there are some of the great rivers in the Northeast of Para.

  4. Fast response temperature and humidity sensors for measurements in high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus

    2013-11-01

    Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  5. High resolution non-iterative aperture synthesis.

    PubMed

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  6. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  7. High spatial resolution restoration of IRAS images

    NASA Technical Reports Server (NTRS)

    Grasdalen, Gary L.; Inguva, R.; Dyck, H. Melvin; Canterna, R.; Hackwell, John A.

    1990-01-01

    A general technique to improve the spatial resolution of the IRAS AO data was developed at The Aerospace Corporation using the Maximum Entropy algorithm of Skilling and Gull. The technique has been applied to a variety of fields and several individual AO MACROS. With this general technique, resolutions of 15 arcsec were achieved in 12 and 25 micron images and 30 arcsec in 60 and 100 micron images. Results on galactic plane fields show that both photometric and positional accuracy achieved in the general IRAS survey are also achieved in the reconstructed images.

  8. High-energy resolution, high-angular acceptance crystal monochromator

    SciTech Connect

    Toellner, T.S.; Mooney, T.; Alp, E.E.; Shastri, S.

    1992-06-01

    The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with {mu}eV{minus}neV resolution in the hard x-ray regime.

  9. High-energy resolution, high-angular acceptance crystal monochromator

    SciTech Connect

    Toellner, T.S.; Mooney, T.; Alp, E.E. ); Shastri, S. . Dept. of Applied Physics)

    1992-06-01

    The design principles, construction and characterization of a 4- bounce dispersive crystal monochromator is discussed. This monochromator is designed to reduce the bandpass of synchrotron radiation to 10--50 meV level, without sacrificing angular acceptance. This is achieved by combining an asymmetrically-cut, low order reflection with a symmetrically-cut, high order reflection in a nested configuration. This monochromator is being used as a beam conditioner for nuclear resonant scattering of synchrotron radiation to produce x-rays with [mu]eV[minus]neV resolution in the hard x-ray regime.

  10. High-resolution fluorescence microscopy of myelin without exogenous probes.

    PubMed

    Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K

    2014-02-15

    Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. PMID:24188810

  11. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  12. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  13. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution

    PubMed Central

    Lillis, Kyle P.; Eng, Alfred; White, John A.; Mertz, Jerome

    2008-01-01

    We describe a simple two-photon fluorescence imaging strategy, called targeted path scanning (TPS), to monitor the dynamics of spatially extended neuronal networks with high spatiotemporal resolution. Our strategy combines the advantages of mirror-based scanning, minimized dead time, ease of implementation, and compatibility with high-resolution low-magnification objectives. To demonstrate the performance of TPS, we monitor the calcium dynamics distributed across an entire juvenile rat hippocampus (>1.5mm), at scan rates of 100Hz, with single cell resolution and single action potential sensitivity. Our strategy for fast, efficient two-photon microscopy over spatially extended regions provides a particularly attractive solution for monitoring neuronal population activity in thick tissue, without sacrificing the signal to noise ratio or high spatial resolution associated with standard two-photon microscopy. Finally, we provide the code to make our technique generally available. PMID:18539336

  14. High power l-band fast phase shifter

    SciTech Connect

    Terechkine, I.; Khabiboulline, T.; Solyak, N.; /Fermilab

    2008-10-01

    Following successful testing of a concept prototype of a waveguide-based high power phase shifter, a design of a fast, high power device has been developed. The shifter uses two magnetically biased blocks of Yttrium Iron Garnet (YIG) positioned along the side walls of a rectangular waveguide. The cross-section of the waveguide is chosen to suppress unwanted RF modes that could otherwise compromise performance of the phase shifter. Static bias field in the YIG blocks is created by employing permanent magnets. Low inductance coils in the same magnetic circuit excite fast component of the bias field. Design of the device ensures effective heat extraction from the YIG blocks and penetration of the fast magnetic field inside the waveguide with minimum delay. This paper summarizes main steps in this development and gives brief description of the system.

  15. A multi-DSP system for the neutron high resolution Fourier diffractometer

    SciTech Connect

    Drozdov, V.A.; Butenko, V.A.; Prikhodko, V.I.

    1998-08-01

    The multi-DSP data acquisition system for neutron time-of-flight spectrum measurements requiring fast real-time data processing is designed and is operated at the neutron High Resolution Fourier Diffractometer (HRFD). The use of high performance DSPs and front-end electronics based on flexible PLDs allows increasing of the efficiency of neutron diffractometers with a Fourier chopper and a multi-element detector system by the method of electronic time-focusing.

  16. High resolution bragg focusing optics for synchrotron monochromators and analyzers

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Gofron, K.J.

    1997-07-01

    A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

  17. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  18. A high time resolution x-ray diagnostic on the Madison Symmetric Torus.

    PubMed

    DuBois, Ami M; Lee, John David; Almagri, Abdulgadar F

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared. PMID:26233388

  19. Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.

    2015-09-01

    Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.

  20. High resolution x-ray microscope

    SciTech Connect

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-04-30

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

  1. High resolution mapping with the FST

    NASA Astrophysics Data System (ADS)

    Bunton, J. D.; Jones, I. G.; Brown, D. R.

    Recent modifications to the Fleurs digital receiver enable the additional correlations between the six 13.7 m dishes to be measured. Previously, only those correlations formed between the four east-west 13.7 m dishes and the thirty-two 5.7 m dishes were measured. This enables the production of three type of maps; each with full 20 arc second resolution but with properties which suit differing astronomical applications.

  2. High resolution alpha particle spectrometry through collimation

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Kwak, Sung-Woo; Kang, Han-Byeol

    2015-06-01

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides.

  3. High resolution laser mass spectrometry bioimaging.

    PubMed

    Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman

    2016-07-15

    Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. PMID:26972785

  4. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Jarrott, L. C.; Wei, M. S.; McGuffey, C.; Solodov, A. A.; Theobald, W.; Qiao, B.; Stoeckl, C.; Betti, R.; Chen, H.; Delettrez, J.; Döppner, T.; Giraldez, E. M.; Glebov, V. Y.; Habara, H.; Iwawaki, T.; Key, M. H.; Luo, R. W.; Marshall, F. J.; McLean, H. S.; Mileham, C.; Patel, P. K.; Santos, J. J.; Sawada, H.; Stephens, R. B.; Yabuuchi, T.; Beg, F. N.

    2016-05-01

    Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires efficient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser-matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters affecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving efficiency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver.

  5. Event Plane Resolution Simulations for The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Sulaimon, Isiaka; Harton, Austin; Garcia, Edmundo; Alice-Fit Collaboration

    2016-03-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments of the LHC. ALICE is dedicated to the study of the transition of matter to Quark Gluon Plasma in heavy ion collisions. In the present ALICE detector there are two sub-detectors, (the T0 and V0), that provide minimum bias trigger, multiplicity trigger, beam-gas event rejection, collision time for other sub detectors, on line multiplicity and event plane determination. In order to adapt these functionalities to the collision rates expected for the LHC upgrade after 2020, it is planned to replace these systems by a single detector system, called the Fast Interaction Trigger (FIT). In this presentation we describe the performance parameters of the FIT upgrade; show the proposed characteristics of the T0-Plus and the simulations that support the conceptual design of this detector. In particular we describe the performance simulations of the event plane resolution. This material is based upon work supported by the National Science Foundation under Grants NSF-PHY-0968903 and NSF-PHY-1305280.

  6. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1993-01-01

    Research accomplished during the third 6-month period is summarized. Research covered the following: dual-horn antenna performance; high electron mobility transistors (HEMT) low-noise amplifiers; downconverters; fast Fourier transform (FFT) array; and backend 'feature recognizer' array.

  7. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  8. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed. PMID:20515164

  9. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    SciTech Connect

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-15

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  10. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  11. High resolution, high bandwidth global shutter CMOS area scan sensors

    NASA Astrophysics Data System (ADS)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  12. High resolution confocal polarimeter for the living human retina

    NASA Astrophysics Data System (ADS)

    Lara, D.; Paterson, C.

    2011-09-01

    There is strong evidence that the living human retina has polarization signatures that could be linked to the presence of Glaucoma, an ocular disease that is the second cause of blindness in the western world. In a polarization sensitive ophthalmoscope, the amount of light that can be used is limited for the safety of the subject, and the return is typically a small fraction of the light used for illumination, of the order of 10-6. Furthermore, the acquisition rates have to be sufficiently fast to avoid eye-movement artifacts. The light-budget available to produce a polarization image with a scanning laser ophthalmoscope is typically in the order of 10 nW, and pixel acquisition sampling rates are of several MHz. We are currently developing an imaging instrument for vision research and clinical vision applications and aim to introduce it to the medical and clinical environment using objective methods of image quality assessment. Here we discuss the stringent imaging requirements, polarimeter design, and show high resolution polarization retinal images.

  13. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  14. CASSIS, a software package to analyse high spectral resolution observations

    NASA Astrophysics Data System (ADS)

    Caux, E.; Bottinelli, S.; Vastel, C.; Glorian, J. M.

    2011-05-01

    CASSIS (Centre d'Analyse Scientifique de Spectres Infrarouges et Submillimetriques) is a software package aimed to speed-up the scientific analysis of high spectral resolution observations, particularly suited for broad-band spectral surveys. CASSIS is written in Java and can be ran on any platform. It has been extensively tested on Mac OSX, Linux and Windows operating systems. CASSIS is regularly enhanced, and can be easily installed and updated on any modern laptop. It uses a fast Sql-lite access to a local spectroscopic database made of the two molecular spectroscopic databases JPL and CDMS, as well as the atomic spectroscopic database NIST. The tools available in the currently distributed version (2.6) include a LTE model and the RADEX model connected to the LAMDA molecular collisional database. A module allows to build a line list fitting the various transitions of a given species and to directly produce rotational diagrams from these lists. CASSIS has been recently fully integrated into HIPE, the Herschel Interactive Processing Environment, as a plug-in (from version 5.1).

  15. Space instrument performance traceability for high resolution satellite systems

    NASA Astrophysics Data System (ADS)

    Eckardt, A.; Börner, A.; Jahn, H.; Reulke, R.

    2008-08-01

    Technology changes in detector development and the significant improvement of manufacturing accuracy in combination with the permanent engineering research influences the spaceborne sensor systems, which are focused on Earth observation and remote sensing. Developments in focal plane technology, e.g. the combination of large TDI lines, intelligent synchronisation control, fast readable sensors and new focal plane and telescope concepts are the key developments for new remote sensing instruments. This class of instruments disposes of high spatial and radiometric resolution for the generation of data products for mapping and 3D GIS VR applications. Systemic approaches are essential for the design of complex sensor systems based on dedicated tasks. The system-theoretical description of the instrument inside and a simulated environment is the basic approach for the optimisation process of the optical, mechanical and electrical designs and assembly. Single modules and the entire system have to be calibrated and verified. The traceability of the performance-related parameters from the single sensor up to the flight readiness of the instrument forms the main focus inside such complex systems. In the future it will also be possible to prove the sensor performance on wafer level before assembly. This paper gives an overview about current technologies for performance measurements on sensor, focal plane assembly (FPA) and instrument level without the optical performance of the telescope. The paper proposes also a technology, which can be used for sensor performance measurements on wafer level.

  16. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  17. Techniques for obtaining high vertical resolution formation capture cross sections from pulsed neutron logs

    SciTech Connect

    Smith, H.D. Jr.; Wyatt, D.F. Jr.; Smith, M.P.

    1991-02-05

    This patent describes a method for measuring high vertical resolution earth formation thermal neutron capture cross sections of earth formations in the vicinity of a well borehole. It comprises repetitively emitting in a well borehole relatively short duration bursts of fast neutrons; detecting, as a function of depth, in the borehole during time intervals between the repetitive bursts of fast neutrons; filtering count rate signals to reduce statistical fluctuations in subsequent computations; combining at least two filtered count rate signals; selecting at least one of the at least two filtered gate count rate signals.

  18. Medusae Fossae Formation - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.

    The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Large-Scale High-Resolution Simulations of High Gain Direct-Drive ICF targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.

    2003-10-01

    High gain directly-driven targets have been designed using new concepts that mitigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. Two-dimensional simulations of pellets using these techniques (e.g., "picket" laser pulses) show that high (>100) gain can survive in the face of the hydro instabilities seeded by laser and pellet imperfections. These new designs appear to be substantially more robust than earlier designs. We are using the highly-parallelized sliding-zone Eulerian FAST radiation hydrocode to study yield degradation in these designs. The special challenge in performing these simulations for direct-drive laser ICF is that both high resolution and large dynamic range are needed. High resolution of the whole target is needed to represent all of the scales important during the implosion. A large dynamic range is required to resolve the initially tiny surface and imprint perturbations that grow exponentially during acceleration. We find that the rapid growth of the shell perturbations during the acceleration phase is in good agreement with simple RT modeling before significant nonlinearity occurs. However, the Richtmyer-Meshkov growth during the early pellet compression phase poses a challenge particularly for multimode simulations because of the extremely small initial amplitude for each mode. We will present the results from large-scale pellet implosion simulations, and discuss the challenges and progress achieved in the numerical modeling of these high gain designs.

  20. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  1. High resolution IVEM tomography of biological specimens

    SciTech Connect

    Sedat, J.W.; Agard, D.A.

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  2. HIGH RESOLUTION PHOTOEMISSION STUDIES OF COMPLEX MATERIALS.

    SciTech Connect

    JOHNSON,P.D.

    1999-10-13

    Recent instrumentation developments in photoemission are providing new insights into the physics of complex materials. With increased energy and momentum resolution, it has become possible to examine in detail different contributions to the self-energy or inverse lifetime of the photohole created in the photoexcitation process, Employing momentum distribution and energy distribution curves, a detailed study of the optimally doped cuprate, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub g+{delta}}, shows that the material behaves like a non-Fermi liquid with no evidence for the quasi-particles characteristic of a Fermi liquid.

  3. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  4. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  5. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    SciTech Connect

    Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I.; Pedersen, T.; Hansen, O.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

  6. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    PubMed

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3). PMID:22852722

  7. High Resolution Chemical Study of ALH84001

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.

    2001-01-01

    We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.

  8. High-resolution X-ray Multilayers

    SciTech Connect

    Martynov, V.V.; Platonov, Yu.; Kazimirov, A.; Bilderback, D.H.

    2004-05-12

    Two new approaches are taken in multilayer fabrication to help bridge the gap in bandwidth between traditional multilayers (1 to 2%) and perfect crystals (0.01%). The first approach is based on creating many layers of low-contrast Al2O3/ B4C materials. The second approach is based on using multilayer structures with a small d-spacing using traditional W/B4C and Mo/B4C materials. With 8 keV x-rays on the Chess A2 beamline, we measured a bandwidth of 0.27% with a reflectivity of 40% and a Darwin width of 17 arc seconds from a 26 A d-spacing multilayer with 800 bi-layers of Al2O3/B4C using the low-contrast approach. On the other hand, the short period approach with a W/B4C multilayer and a 14.8 A d-spacing showed a resolution of 0.5 % and a reflectivity of 58.5%. Two more Mo/B4C samples with d-spacings of 15 A and 20 A showed energy resolutions of 0.25% and 0.52% with corresponding reflectivities of 39% and 66%. Thus we observe that both methods can produce useful x-ray optical components.

  9. High Resolution Millimeter Wavelength Polarimetry at BIMA

    NASA Astrophysics Data System (ADS)

    Rao, R.; Crutcher, R. M.; Plambeck, R. L.; Wright, M. C. H.

    1998-05-01

    Polarimetry at far-infrared, sub-millimeter and millimeter wavelengths is a useful probe of the magnetic field structure in regions of star formation. However, most previous polarization observations have been conducted with single dish telescopes (KAO, CSO, JCMT, NRAO 12-meter) with limited angular resolution (greater than 20arcsec ). Polarization observations with interferometer arrays can provide higher angular resolution (about 4arcsec ) images of star-forming regions. We present here the details of a polarimetry system constructed for the Berkeley-Illinois-Maryland Association (BIMA) millimeter array at Hat Creek (California) operating at wavelengths of 3.3 mm (90 GHz) and 1.3 mm (230 GHz). The polarizing element is a quarter wave plate made of Rexolite (cross-linked polystyrene) which has a diectric constant of approximately 2.55. The instrumental response, which is frequency-dependent since the polarizer is chromatic, has been determined to an accuracy of 0.3%. The polarimeter has also been used to monitor a select sample of quasars to determine their time variability. These quasar polarization data complement lower frequency monitoring surveys (less than 15 GHz) and constrain the emission models and magnetic field topology deduced for these objects.

  10. High Resolution LTS-SQUID Microscopes

    NASA Astrophysics Data System (ADS)

    Baudenbacher, Franz; Peters, Nicholas; Wikswo, John

    2000-03-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope for imaging magnetic fields of room-temperature samples with sub-millimeter resolution. In our design, hand wound niobium pickup coils were coupled to commercially available low-temperature SQUID sensors. The SQUID sensor and the pickup coil are in the vacuum space of the cryostat separated typically less than 50μm by a thin sapphire window from the room-temperature sample. A computerized non-magnetic scanning stage with sub-micron resolution in combination with a tripod leveling system allows samples to be scanned within 10μm of the sapphire window. For a 20-turn 500μm diameter pickup coil, we achieved a field sensitivity of 350fT\\cdotHz-1/2 for frequencies above 1 Hz, and 1pT\\cdotHz-1/2 for a 10-turn 250mm coil. The SQUID microscope was used to image the distribution of time-dependent stimulus and action currents in anisotropic cardiac tissue, the remanent magnetization of the Martian meteorite ALH84001 during thermal demagnetisation, and the magnetic susceptibility of biogenic magnetite in the beak of homing pigeons.

  11. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  12. Architecture and applications of a high resolution gated SPAD image sensor

    PubMed Central

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  13. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  14. High-resolution characterization of individual flood deposits

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Paasche, Øyvind; Hirt, Ann

    2014-05-01

    In most fluvial landscapes rivers transport sediments within and across catchments throughout the year. During flood events the capacity and competence of the river manifolds, and consequently more sediment are eroded and transported within the catchment. Whenever such sediment-laden rivers reach lakes, sediments are deposited at rate much faster than background sedimentation. For this reason alone, lakes can provide exceptionally rich archives of paleofloods. Flood sediments carry information not only about frequency variability through time, but also about source area(s), the time of the deposit (on a seasonal scale), as well as the evolution of the flood. In order to scrutinize the information that can be extracted from such pristine lake records we have developed an approach where high-resolution data are compared to high-precision measurements of selected samples. More specifically, data from high-resolution X-ray fluorescence (XRF) scanning (Itrax) and magnetic susceptibility (Bartington MS2 point sensor) can potentially provide information on annual to decadal resolution. These fast and effective surface scanning methods are subjected to well-known uncertainties, which can impact the interpretation of individual layers. To overcome this challenge - and obtain the highest possible precision and resolution - precise quantitative analysis of discrete flood layers using magnetic hysteresis measurements and First-order reversal curves (FORCs) as well as conventional X-ray fluorescence spectrometer (Philips PW1404) have been conducted. FORCs are obtained with an Alternating Gradient Force Magnetometer and have exceptional high sensitivity (1 x 10-11 A m2) that allows samples smaller than 200 milligrams to be measured. This means that sediments representing a band of less than a couple of millimeters in the lake sediment cores can be sampled without notable contamination from adjacent non-flood sediments, and analyzed with a high degree of precision (analytical

  15. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  16. The high spectral resolution (scanning) lidar (HSRL)

    SciTech Connect

    Eloranta, E.

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  17. High Spectral Resolution With Multilayer Gratings

    SciTech Connect

    Andre, J.-M.; Le Guen, K.; Jonnard, P.

    2010-04-06

    The improvement of spectral resolution brought about by the use of multilayer grating (MG) instead of multilayer mirror (MM) is analyzed. The spectrum of a complex sample containing various elements excited under electron irradiation is studied. This sample is a pellet made by pressing powders of Cu and compounds with Fe and F atoms. The MM is a Mo/B{sub 4}C periodic multilayer with a period of about 6 nm; for the MG a grating of 1 {mu}m period has been etched in the MM. It is shown that the MG can easily resolve the F Kalpha and Fe Lalpha emissions, separated by about 30 eV, whereas the MM is unable to give such a performance. A comparison with an EDS (SDD) detector is also given. It is also shown that the MG can improve the detection limit. Finally the role of the slit placed in front of the detector is discussed.

  18. Galileo high-resolution encoder system

    NASA Astrophysics Data System (ADS)

    Mancini, Dario; Cascone, Enrico; Schipani, Pietro

    1997-09-01

    The Galileo National Telescope (TNG) is a 3.6 meter Alt-Az telescope installed at the Astronomical Observatory of the Roque de Los Muchachos in La Palma, Canary Islands (Spain). The TNG motion control system, designed and realized by the Technology Working Group (TWG), is completely digital because of the versatility of this system topology. In a digital control system using an encoder as transducer means to have a digital feedback signal, therefore directly comparable with the reference without any conversion that is essential with other kinds of transducers. In the following the Galileo telescope (TNG) encoder system with its control electronics and the management software are described. It has been realized by a collaboration between the Heidenhain Company and the TWG. The TNG encoder system, at the state of the art, has one of the highest performances in the telescopes field, in terms of resolution, accuracy, readout time, reliability.

  19. Robust Tips for High Resolution Chemical Imaging

    NASA Astrophysics Data System (ADS)

    Barrios, Carlos; Malkovskiy, Andrey; Kisliuk, Alexander; Sokolov, Alexei; Foster, Mark

    2009-03-01

    Tip enhanced Raman spectroscopy (TERS) combines scanning probe microscopy with Raman spectroscopy, taking advantage of apertureless near-field optics. A plasmonic structure at the apex of a sharp tip provides signal amplification required for chemical imaging. Plasmonic structure characteristics such as roughness, shape, and radius determine the spatial resolution and signal enhancement. Unfortunately, noble metal nanostructures have limited lifetimes due to mechanical, chemical, and thermal degradation. Lifetime extension requires slowing degradation processes while minimizing unfavorable influences on the optical response. An ultrathin SiOx protective coating provides lifetime improvement of silver plasmonic nanostructures on SPM tips. Controlled physical vapor deposition (PVD) of Al can be used to create ultrathin (˜2-3 nm) Al2O3 coatings that improve significantly the stability and wear resistance of plasmonics structures without substantial degradation of optical properties. Such a coating completely prevented decay in plasmonic activity after 40 days of use.

  20. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  1. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  2. Plasma radiometry with 30 chord resolution for fast transients in the DIII-D tokamak

    SciTech Connect

    Gray, D.S.; Hollmann, E.M.; Luckhardt, S.C.; Chalfant, J.; Chousal, L.; Hernandez, R.; Jones, E.; Kellman, A.G.

    2004-10-01

    A diagnostic capable of providing time resolved measurements of plasma radiated power during disruptions and other fast transients, e.g., edge localized modes has been employed in the DIII-D tokamak. The radiation is detected with absolute extreme ultraviolet (AXUV) photodiode arrays. Thirty chords from a single port provide measurements from a full slice of the plasma at one toroidal location. The analog bandwidth is up to 1 MHz for the brightest events, i.e., disruptions. Active cooling of the diode arrays prevents damage during high temperature vessel baking. Effective responsivity values of 0.12-0.18 A/W are taken from previous work on the application of AXUV diodes in DIII-D. The total radiated energy in disruptions typically agrees with bolometer measurements within about 12%.

  3. Structures in Te profiles: High resolution Thomson scattering in the Rijnhuizen tokamak project

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Barth, C. J.; Lopes Cardozo, N. J.; van der Meiden, H. J.

    1999-01-01

    In the Rijnhuizen tokamak project, the double pulse multiposition Thomson scattering diagnostic is in full operation. Its high spatial resolution enables the measurement of small scale structures in Te, ne, and pe. Thomson scattering profiles during an ordinary sawtooth crash show the displacement of the hot core in great detail. Measurements on off-axis sawtoothing plasmas show that a small central part remains unaffected. Filaments are observed in plasmas which show a transient central temperature rise in response to fast edge cooling.

  4. GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning

    NASA Astrophysics Data System (ADS)

    Lu, Cuixian; Li, Xingxing; Li, Zhenhong; Heinkelmann, Robert; Nilsson, Tobias; Dick, Galina; Ge, Maorong; Schuh, Harald

    2016-01-01

    The tropospheric horizontal gradients with high spatiotemporal resolutions provide important information to describe the azimuthally asymmetric delays and significantly increase the ability of ground-based GNSS (Global Navigation Satellite Systems) within the field of meteorological studies, like the nowcasting of severe rainfall events. The recent rapid development of multi-GNSS constellations has potential to provide such high-resolution gradients with a significant degree of accuracy. In this study, we develop a multi-GNSS process for the precise retrieval of high-resolution tropospheric gradients. The tropospheric gradients with different temporal resolutions, retrieved from both single-system and multi-GNSS solutions, are validated using independent numerical weather models (NWM) data and water vapor radiometer (WVR) observations. The benefits of multi-GNSS processing for the retrieval of tropospheric gradients, as well as for the improvement of precise positioning, are demonstrated. The multi-GNSS high-resolution gradients agree well with those derived from the NWM and WVR, especially for the fast-changing peaks, which are mostly associated with synoptic fronts. The multi-GNSS gradients behave in a much more stable manner than the single-system estimates, especially in cases of high temporal resolution, benefiting from the increased number of observed satellites and improved observation geometry. The high-resolution multi-GNSS gradients show higher correlation with the NWM and WVR gradients than the low-resolution gradients. Furthermore, the precision of station positions can also be noticeably improved by multi-GNSS fusion, and enhanced results can be achieved if the high-resolution gradient estimation is performed, instead of the commonly used daily gradient estimation in the multi-GNSS data processing.

  5. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  6. High-resolution studies of atmospheric IR emission spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Goldman, A.; Blatherwick, R. D.; Murcray, D. G.

    1991-01-01

    Atmospheric emission spectra obtained with two different spectrometer systems are presented. The first system (the BOMEM Michelson interferometer) is designed for emission work. Spectra were obtained under adverse conditions in the Antarctic, and are still of good absolute accuracy. The second system (a modified Bruker Instruments IFS120 very high spectral resolution interferometer) demonstrates the sensitivity that can be achieved even at higher spectral resolution. This system shows that mid-IR atmospheric emission spectra can be obtained with a good SNR in a reasonable length of time at a relatively high resolution. A properly designed high resolution system should achieve high accuracy, sensitivity, and resolution, thereby permitting measurements of many atmospheric constituents when solar spectra cannot be obtained.

  7. Antipodally Invariant Metrics for Fast Regression-Based Super-Resolution.

    PubMed

    Perez-Pellitero, Eduardo; Salvador, Jordi; Ruiz-Hidalgo, Javier; Rosenhahn, Bodo

    2016-06-01

    Dictionary-based super-resolution (SR) algorithms usually select dictionary atoms based on the distance or similarity metrics. Although the optimal selection of the nearest neighbors is of central importance for such methods, the impact of using proper metrics for SR has been overlooked in literature, mainly due to the vast usage of Euclidean distance. In this paper, we present a very fast regression-based algorithm, which builds on the densely populated anchored neighborhoods and sublinear search structures. We perform a study of the nature of the features commonly used for SR, observing that those features usually lie in the unitary hypersphere, where every point has a diametrically opposite one, i.e., its antipode, with same module and angle, but the opposite direction. Even though, we validate the benefits of using antipodally invariant metrics, most of the binary splits use Euclidean distance, which does not handle antipodes optimally. In order to benefit from both the worlds, we propose a simple yet effective antipodally invariant transform that can be easily included in the Euclidean distance calculation. We modify the original spherical hashing algorithm with this metric in our antipodally invariant spherical hashing scheme, obtaining the same performance as a pure antipodally invariant metric. We round up our contributions with a novel feature transform that obtains a better coarse approximation of the input image thanks to iterative backprojection. The performance of our method, which we named antipodally invariant SR, improves quality (Peak Signal to Noise Ratio) and it is faster than any other state-of-the-art method. PMID:27046898

  8. Reduction of ring artefacts in high resolution micro-CT reconstructions.

    PubMed

    Sijbers, Jan; Postnov, Andrei

    2004-07-21

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed micro-CT images. PMID:15357205

  9. NOTE: Reduction of ring artefacts in high resolution micro-CT reconstructions

    NASA Astrophysics Data System (ADS)

    Sijbers, Jan; Postnov, Andrei

    2004-07-01

    High resolution micro-CT images are often corrupted by ring artefacts, prohibiting quantitative analysis and hampering post processing. Removing or at least significantly reducing such artefacts is indispensable. However, since micro-CT systems are pushed to the extremes in the quest for the ultimate spatial resolution, ring artefacts can hardly be avoided. Moreover, as opposed to clinical CT systems, conventional correction schemes such as flat-field correction do not lead to satisfactory results. Therefore, in this note a simple but efficient and fast post processing method is proposed that effectively reduces ring artefacts in reconstructed mgr-CT images.

  10. Laser induced breakdown spectroscopy of pure aluminum with high temporal resolution.

    PubMed

    Li, Yu-Tai; Liu, Tze-An; Chen, Chen-Wei; Lee, Yu-Hsien; Yabushita, Atsushi

    2013-09-01

    We report on a Laser Induced Breakdown Spectroscopy (LIBS) system with a very high temporal resolution, using femtosecond and picosecond pulse laser excitation of pure aluminum (Al). By using a 140 fs Ti:Sapphire laser in an ultrafast optical Kerr gate (OKG), we demonstrate LIBS sampling with a sub-ps time resolution (0.8 ± 0.08 ps) in a 14 ns window. The width of the gating window in this system was as narrow as 0.8 ps, owing to the inclusion of a carbon disulfide (CS(2)) cell, which has a fast response and a large nonlinear coefficient. Furthermore, when using a 100 ps pulsed Nd:YAG laser and a fast photomultiplier tube (PMT) we demonstrate a LIBS system with a nanosecond time resolution (2.20 ± 0.08 ns) in a microsecond window. With this sort of temporal resolution, a non-continuous decay in the Al signal could be observed. After 50 ns decay of the first peak, the second peak at 230 ns is started to perform. Experimental results with such short temporal windows in LIBS, in both nanosecond and microsecond ranges, are important for fast temporal evolution measurements and observations of early continuum emission in materials. PMID:24104032

  11. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  12. Towards high-resolution mantle convection simulations

    NASA Astrophysics Data System (ADS)

    Höink, T.; Richards, M. A.; Lenardic, A.

    2009-12-01

    The motion of tectonic plates at the Earth’s surface, earthquakes, most forms of volcanism, the growth and evolution of continents, and the volatile fluxes that govern the composition and evolution of the oceans and atmosphere are all controlled by the process of solid-state thermal convection in the Earth’s rocky mantle, with perhaps a minor contribution from convection in the iron core. Similar processes govern the evolution of other planetary objects such as Mars, Venus, Titan, and Europa, all of which might conceivably shed light on the origin and evolution of life on Earth. Modeling and understanding this complicated dynamical system is one of the true “grand challenges” of Earth and planetary science. In the past three decades much progress towards understanding the dynamics of mantle convection has been made, with the increasing aid of computational modeling. Numerical sophistication has evolved significantly, and a small number of independent codes have been successfully employed. Computational power continues to increase dramatically, and with it the ability to resolve increasingly finer fluid mechanical structures. Yet, the perhaps most often cited limitation in numerical modeling based publications is still the limitation of computing power, because the ability to resolve thermal boundary layers within the convecting mantle (e.g., lithospheric plates), requires a spatial resolution of ~ 10 km. At present, the largest supercomputing facilities still barely approach the power to resolve this length scale in mantle convection simulations that include the physics necessary to model plate-like behavior. Our goal is to use supercomputing facilities to perform 3D spherical mantle convection simulations that include the ingredients for plate-like behavior, i.e. strongly temperature- and stress-dependent viscosity, at Earth-like convective vigor with a global resolution of order 10 km. In order to qualify to use such facilities, it is also necessary to

  13. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  14. Eigenvector pruning method for high resolution beamforming.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2015-10-01

    This paper introduces an eigenvector pruning algorithm for the estimation of the signal-plus-interference eigenspace, required as a preliminary step to subspace beamforming. The proposed method considers large-aperture passive array configurations operating in environments with multiple maneuvering targets in background noise, in which the available data for estimation of sample covariances and eigenvectors are limited. Based on statistical properties of scalar products between deterministic and complex random vectors, this work defines a statistically justified threshold to identify target-related features embedded in the sample eigenvectors, leading to an estimator for the signal-bearing eigenspace. It is shown that data projection into this signal subspace results in sharpening of beamforming outputs corresponding to closely spaced targets and provides better target separation compared to current subspace beamformers. In addition, the proposed threshold gives the user control over the worst-case scenario for the number of false detections by the beamformer. Simulated data are used to quantify the performance of the subspace estimator according to the distance between estimated and true signal subspaces. Beamforming resolution using the proposed method is analyzed with simulated data corresponding to a horizontal line array, as well as experimental data from the Shallow Water Array Performance experiment. PMID:26520298

  15. Road Extraction from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Özkaya, M.

    2012-07-01

    Roads are significant objects of an infrastructure and the extraction of roads from aerial and satellite images are important for different applications such as automated map generation and change detection. Roads are also important to detect other structures such as buildings and urban areas. In this paper, the road extraction approach is based on Active Contour Models for 1-meter resolution gray level images. Active Contour Models contains Snake Approach. During applications, the road structure was separated as salient-roads, non-salient roads and crossings and extraction of these is provided by using Ribbon Snake and Ziplock Snake methods. These methods are derived from traditional snake model. Finally, various experimental results were presented. Ribbon and Ziplock Snake methods were compared for both salient and non-salient roads. Also these methods were used to extract roads in an image. While Ribbon snake is described for extraction of salient roads in an image, Ziplock snake is applied for extraction of non-salient roads. Beside these, some constant variables in literature were redefined and expressed in a formula as depending on snake approach and a new approach for extraction of crossroads were described and tried.

  16. Low-cost high-resolution diffractive position sensors for X-by-wire applications

    NASA Astrophysics Data System (ADS)

    Tupinier, L.; Marroux, O.; Ndao, M.; Kress, B.; Meyrueis, P.

    2006-04-01

    We are proposing a novel method to implement high resolution optical position sensors for automotive and other applications. Grating diffractive incremental encoders (both linear and rotation) are already becoming commodity products now, and include a read-out grating and a ruling grating [3]. We are implementing out high resolution incremental and/or absolute position encoders with a single diffractive substrate, replicated in mass in plastic. The diffractive structures are here much more complex than standard linear gratings. These new optical position sensors can achieve high absolute resolution without need of electronic interpolation, therefore being potentially very fast and accurate. Furthermore, due to the nature of these diffractive optical elements (surface relief elements), they are very cheaply replicated in mass by either polymers embossing or injection moulding.

  17. Fast ignition integrated experiments and high-gain point design

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-05-01

    Integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ˜kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analysed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  18. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  19. High-Resolution Entrainment in Stratocumulus During the POST Campaign

    NASA Astrophysics Data System (ADS)

    Gerber, H. E.

    2012-12-01

    In July and August of 2008 an NSF-supported field campaign called POST (Physics of Stratocumulus Top) was conducted off the California coast using the fully-instrumented Twin Otter aircraft from the Naval Post Graduate School. POST provided the first opportunity to closely co-locate on an aircraft high-rate and time synchronized microphysics (PVM; LWC and effective radius) and thermodynamics (UFT; Ultra-Fast Temperature) probes and a gust probe to produce measurements of entrainment fluxes and features over entrainment scales thought to be important in warm stratocumulus (Sc). This combination of probes permitted investigating the properties of individual entrained parcels Seventeen flights were conducted during POST in a quasi-Lagrangian fashion in largely unbroken stratocumulus. The horizontal fight path was adjusted to follow the mean air velocity in the Sc. The vertical flight path concentrated on flying between 100-m above and below the cloud-top interface; and some additional profiles were flown to various higher and lower levels where flux runs were made. This presentation describes the analysis of this unique and excellent data set including the following: The data permitted testing Lilly's classical theory for the entrainment velocity where its application requires strong jumps of temperature and moisture across the inversion located above cloud top, a linear flux of the entrained scalar below cloud top, and entrained parcels that descend. All flights showed Sc with wind shear and mixing at cloud top with some strong enough to dissipate the Sc. The relationship between shear and entrainment velocity is described. The pdf of the horizontal size of entrainment parcels vs entrainment flux is established for all flights to help in choosing grid-sizes for modeling. High -resolution in-cloud temperature and LWC measurements in entrained parcels reveal the relative importance of radiative cooling vs cooling by liquid water evaporation in causing buoyancy reversal

  20. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  1. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  2. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2014-05-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water

  3. High Resolution X-Ray Explorer (HIREX)

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1999-01-01

    SAO has carried out a study to determine the feasibility of building an orbiting telescope capable of resolving 7 km structure on the Sun. In order to achieve the required imaging the telescope must have a resolution 0.01 arcsec. This fact challenges the state of the art of orbiting telescopes in several areas: mirror figuring; optical metrology; optical mounting; mirror figure control; system alignment; optical stability; observatory pointing; and image stability image stability. The telescope design concept is based on a 0.6m Cassegrain-style telescope with a 240 meter effective focal length. This is achieved with 2 mirrors supported at opposite ends of a 27 m space-deployable boom. The telescope mirrors are coated with multilayers designed to reflect a broad XUV passband. A third, small mirror, near the focal plane performs the function of selecting the narrow band that is finally imaged. Image stabilization to the 0.005 a,rcsec level is achieved by active control of the secondary mirror. The primary mirror is held unadjustably to the spacecraft, its pointing set by the space- craft orientation. The secondary mirror is mounted on a 6-axis stage that permits its position to be changed to align the telescope in space. The stage is intended for intermittent adjustment, both because of its speed of travel, and the TBD alignment procedure. The third mirror is called the TXI (Tuneable X-ray Imager). It is mounted on a gimbal that permits it to be tipped over a 60 degree range, selecting between the individual wavelengths in the initial bandpass. It can also rotated completely out of the way to allow the full, broadband EUV flux to strike the focal plane.

  4. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  5. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  6. Ultrastable reference pulser for high-resolution spectrometers

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Lenkszus, F. R.; Sifter, L. L.; Strauss, M. G.

    1970-01-01

    Solid-state double-pulse generator for a high resolution semiconductor detector meets specific requirements for resolution /0.05 percent/, amplitude range /0.1-13 MeV/, and repetition rate /0.1-1000 pulses per second/. A tag pulse is generated in coincidence with each reference pulse.

  7. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  8. High-Resolution Fluorometer for Mapping Microscale Phytoplankton Distributions

    PubMed Central

    Doubell, Mark J.; Seuront, Laurent; Seymour, Justin R.; Patten, Nicole L.; Mitchell, James G.

    2006-01-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  9. High-resolution fluorometer for mapping microscale phytoplankton distributions.

    PubMed

    Doubell, Mark J; Seuront, Laurent; Seymour, Justin R; Patten, Nicole L; Mitchell, James G

    2006-06-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  10. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  11. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  12. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  13. Band-selective excited ultrahigh resolution PSYCHE-TOCSY: fast screening of organic molecules and complex mixtures.

    PubMed

    Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh

    2016-04-01

    Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley

  14. High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching

    PubMed Central

    Xu, Min; Beck, Martin; Alber, Frank

    2013-01-01

    Cryo-electron tomography allows the visualization of macromolecular complexes in their cellular environments in close-to-live conditions. The nominal resolution of subtomograms can be significantly increased when individual subtomograms of the same kind are aligned and averaged. A vital step for such a procedure are algorithms that speedup subtomogram alignment and improve accuracy for reference-free subtomogram classification, which will facilitate automation of tomography analysis and overall high throughput in the data processing. In this paper, we propose a fast rotational alignment method that uses the Fourier equivalent form of a popular constrained correlation measure that considers missing wedge corrections and density variances in the subtomograms. The fast rotational search is based on 3D volumetric matching, which significantly improves the rotational alignment accuracy in particular for highly distorted subtomograms with low SNR and tilt angle ranges in comparison to a fast rotational alignment based on matching of projected 2D spherical images. We further integrate our fast rotational alignment method in a reference free iterative subtomogram classification scheme, and propose a local feature enhancement strategy in the classification process. We can demonstrate that the automatic method can be used to successfully classify a large number of experimental subtomograms without the need of a reference structure. PMID:22420977

  15. Applications of high resolution inverse Raman spectroscopy

    SciTech Connect

    Owyoung, A.; Esherick, P.

    1980-01-01

    The use of high-power, narrow-band lasers has significantly improved the resolving power and sensitivity of inverse Raman spectroscopy of gases. In this paper we shall describe this technique, illustrate its capabilities by showing some Q-branch spectra of heavy spherical tops, and survey some possible future applications.

  16. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. PMID:24439698

  17. Fast IMRT with narrow high energy scanned photon beams

    SciTech Connect

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  18. High time resolution studies of upstream ions

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Levedahl, W. K.; Lin, R. P.; Parks, G. K.

    1984-01-01

    The influence of phi, the angle between the interplanetary magnetic field and the earth-sun vector on ions and electrons in the earth's bow shock, was investigated in terms of ISEE 2 data. A small phi was associated with intermediate energy upstream ions and reduced populations of low energy, about 1.6 keV, ion fluxes. The magnitude of phi was closely related to particular, constant energy levels, e.g., a phi of 40 deg and an energy of 30 keV and a phi of 75 deg and an energy of 6 keV. Ion fluxes are high in the angles form 60-80 deg and feature energies of 55-280 keV. The acceleration process up to the high energy levels in the 1-3 min interval from upstream to downstream occurs more rapidly than could be accounted for by a first-order Fermi process.

  19. Super high-resolution mesoscale weather prediction

    NASA Astrophysics Data System (ADS)

    Saito, K.; Tsuyuki, T.; Seko, H.; Kimura, F.; Tokioka, T.; Kuroda, T.; Duc, L.; Ito, K.; Oizumi, T.; Chen, G.; Ito, J.; the Spire Field 3 Mesoscale Nwp Group

    2013-08-01

    A five-year research project of high performance regional numerical weather prediction is underway as one of the five research fields of the Strategic Programs for Innovative Research (SPIRE). The ultimate goal of the project is to demonstrate feasibility of precise prediction of severe weather phenomena using the K-computer. Three sub-themes of the project are shown with achievements at the present and developments in the near future.

  20. High resolution survey for topographic surveying

    NASA Astrophysics Data System (ADS)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.

    2014-02-01

    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  1. Fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn for foliar diagnosis using high-resolution continuum source flame atomic absorption spectrometry: Feasibility of secondary lines, side pixel registration and least-squares background correction

    NASA Astrophysics Data System (ADS)

    de Oliveira, Silvana Ruella; Raposo, Jorge Luiz, Jr.; Gomes Neto, José Anchieta

    2009-06-01

    The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min - 1 sample flow-rate, calibration curves in the 0.1-0.5 mg L - 1 Cu, 0.5-4.0 mg L - 1 Fe, 0.5-4.0 mg L - 1 Mn, 0.2-1.0 mg L - 1 Zn, 10.0-100.0 mg L - 1 Ca, 5.0-40.0 mg L - 1 Mg and 50.0-250.0 mg L - 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L - 1 Ca, 0.4 mg L - 1 Mg, 0.4 mg L - 1 K, 7.7 µg L - 1 Cu, 7.7 µg L - 1 Fe, 1.5 µg L - 1 Mn and 5.9 µg L - 1 Zn.

  2. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  3. Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions

    PubMed Central

    Liu, Weidong; Luo, Xi

    2014-01-01

    This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463

  4. Measurement of residual stresses on ceramic materials with high spatial resolution

    SciTech Connect

    Kozaczek, K.J.; Ruud, C.O.; Fitting, J.D.

    1993-12-31

    A fast x-ray diffraction technique has been developed for measuring the residual stresses with high spatial resolution in ceramic materials. This resolution is limited by the mean size of grains and the radiation type. The effective diffraction elastic constants were experimentally determined for alumina as (E/l+{nu})){sub (1016)} = 200 GPa. The accuracy of XRD measurement of residual stresses with the spatial resolution of 170 {mu}m and precision {plus_minus} 15 MPa was verified experimentally by strain gauge measurements. The stress field around a singular Kovar pin brazed to alumina was asymmetric with high tangential stresses in the vicinity of the pin decreasing with the distance from the pin.

  5. Folding of a large protein at high structural resolution.

    PubMed

    Walters, Benjamin T; Mayne, Leland; Hinshaw, James R; Sosnick, Tobin R; Englander, S Walter

    2013-11-19

    Kinetic folding of the large two-domain maltose binding protein (MBP; 370 residues) was studied at high structural resolution by an advanced hydrogen-exchange pulse-labeling mass-spectrometry method (HX MS). Dilution into folding conditions initiates a fast molecular collapse into a polyglobular conformation (<20 ms), determined by various methods including small angle X-ray scattering. The compaction produces a structurally heterogeneous state with widespread low-level HX protection and spectroscopic signals that match the equilibrium melting posttransition-state baseline. In a much slower step (7-s time constant), all of the MBP molecules, although initially heterogeneously structured, form the same distinct helix plus sheet folding intermediate with the same time constant. The intermediate is composed of segments that are distant in the MBP sequence but adjacent in the native protein where they close the longest residue-to-residue contact. Segments that are most HX protected in the early molecular collapse do not contribute to the initial intermediate, whereas the segments that do participate are among the less protected. The 7-s intermediate persists through the rest of the folding process. It contains the sites of three previously reported destabilizing mutations that greatly slow folding. These results indicate that the intermediate is an obligatory step on the MBP folding pathway. MBP then folds to the native state on a longer time scale (~100 s), suggestively in more than one step, the first of which forms structure adjacent to the 7-s intermediate. These results add a large protein to the list of proteins known to fold through distinct native-like intermediates in distinct pathways. PMID:24191053

  6. Folding of a large protein at high structural resolution

    PubMed Central

    Walters, Benjamin T.; Mayne, Leland; Hinshaw, James R.; Sosnick, Tobin R.; Englander, S. Walter

    2013-01-01

    Kinetic folding of the large two-domain maltose binding protein (MBP; 370 residues) was studied at high structural resolution by an advanced hydrogen-exchange pulse-labeling mass-spectrometry method (HX MS). Dilution into folding conditions initiates a fast molecular collapse into a polyglobular conformation (<20 ms), determined by various methods including small angle X-ray scattering. The compaction produces a structurally heterogeneous state with widespread low-level HX protection and spectroscopic signals that match the equilibrium melting posttransition-state baseline. In a much slower step (7-s time constant), all of the MBP molecules, although initially heterogeneously structured, form the same distinct helix plus sheet folding intermediate with the same time constant. The intermediate is composed of segments that are distant in the MBP sequence but adjacent in the native protein where they close the longest residue-to-residue contact. Segments that are most HX protected in the early molecular collapse do not contribute to the initial intermediate, whereas the segments that do participate are among the less protected. The 7-s intermediate persists through the rest of the folding process. It contains the sites of three previously reported destabilizing mutations that greatly slow folding. These results indicate that the intermediate is an obligatory step on the MBP folding pathway. MBP then folds to the native state on a longer time scale (∼100 s), suggestively in more than one step, the first of which forms structure adjacent to the 7-s intermediate. These results add a large protein to the list of proteins known to fold through distinct native-like intermediates in distinct pathways. PMID:24191053

  7. Strategies for Interpreting High Resolution Coherent Multidimensional Spectra

    NASA Astrophysics Data System (ADS)

    Wells, Thresa A.; House, Zuri R.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The electronic spectra of certain molecules can be very complex and consist of a high density of peaks. The high density of peaks results in severe spectral congestion, making conventional data analysis techniques extremely difficult to use. One solution to this problem is to use high resolution coherent 2D spectroscopy (HRC2DS), which can improve resolution and sort peaks into recognizable clusters. This technique requires new data analysis techniques to accurately assign peaks. Even though HRC2DS can improve spectral resolution, some regions of the spectra may still remain congested. The ability to solve this problem using even higher dimensional techniques (e.g., high resolution coherent 3D spectroscopy) with 3D pattern recognition and data analysis techniques will be discussed.

  8. High Resolution Imaging of Circumstellar Disks at Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize progress on our program to use high angular resolution imaging of thermal dust continuum emission at millimeter and submillimeter wavelengths to probe the structure of protoplanetary disks and debris disks around nearby stars.

  9. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  10. The Advanced X-ray Astrophysics Facility high resolution camera

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Chappell, Jon H.

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the X-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft X-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15th ergs/sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  11. A compact, light weight, high resolution electron monochromator

    NASA Astrophysics Data System (ADS)

    Goembel, L.; Doering, J. P.

    1995-06-01

    A high resolution electron monochromator that incorporates Vespel polyimide plastic in its construction is described. A great saving in bulk can be realized by mounting the electron optical elements in Vespel tubes rather than mounting them by traditional means.

  12. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  13. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  14. High resolution difference schemes for compressible gas dynamics

    SciTech Connect

    Woodward, P.; Colella, P.

    1980-07-30

    The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)

  15. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  16. Fast high-temperature superconductor switch for high current applications

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang

    2013-07-01

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity.

  17. High resolution simulation of the South Asian monsoon using a variable resolution global climate model

    NASA Astrophysics Data System (ADS)

    P Sabin, T.; Krishnan, R.; Ghattas, Josefine; Denvil, Sebastien; Dufresne, Jean-Louis; Hourdin, Frederic; Pascal, Terray

    2013-07-01

    This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics

  18. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  19. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  20. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  1. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  2. Beamline I11 at Diamond: A new instrument for high resolution powder diffraction

    NASA Astrophysics Data System (ADS)

    Thompson, S. P.; Parker, J. E.; Potter, J.; Hill, T. P.; Birt, A.; Cobb, T. M.; Yuan, F.; Tang, C. C.

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, α-quartz, and LaB6 are used to characterize instrumental performance.

  3. High spectral resolution image of Barnacle Bill

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  4. High Resolution Infrared Spectra of Triacetylene

    NASA Astrophysics Data System (ADS)

    Doney, Kirstin D.; Zhao, Dongfeng; Linnartz, Harold

    2015-06-01

    Triacetylene, HC6H, is the longest poly-acetylene chain found in space, and is believed to be involved in the formation of longer chain molecules and polycyclic aromatic hydrocarbons (PAHs). However, abundances are expected to be low, and observational confirmation requires knowledge of the gas-phase spectra, which up to now has been incomplete with only the weak, low lying bending modes being known. We present new infrared (IR) spectra in the C-H stretch region obtained using ultra-sensitive and highly precise IR continuous wave cavity ring-down spectroscopy (cw-CRDS), combined with supersonic plasma expansions The talk reviews the accurate determination of the rotational constants of the asymmetric fundamental mode, νb{5}, including discussion on the perturber state, and associated hot bands. The determined molecular parameters are accurate enough to aid astronomical searches with such facilities as ALMA (Atacama Large Millimeter Array) or the upcoming JWST (James Webb Space Telecscope), which can now probe even trace molecules (abundances of ˜ 10-6 - 10-10 with respect to H2). D. Zhao, J. Guss, A. Walsh, H. Linnartz, Chem. Phys. Lett., 565, 132 (2013) K.D. Doney, D. Zhao, H. Linnartz, in preparation

  5. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  6. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  7. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. PMID:26931650

  8. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S.; Williams, W.J.

    1993-03-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued ``square-root`` of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  9. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S. ); Williams, W.J. . Dept. of Electrical Engineering and Computer Science)

    1993-01-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued square-root'' of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  10. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  11. Microbeam High Angular Resolution Diffraction Applied to Optoelectronic Devices

    SciTech Connect

    Kazimirov, A.; Bilderback, D. H.; Sirenko, A. A.; Cai, Z.-H.; Lai, B.

    2007-01-19

    Collimating perfect crystal optics in a combination with the X-ray focusing optics has been applied to perform high angular resolution microbeam diffraction and scattering experiments on micron-size optoelectronic devices produced by modern semiconductor technology. At CHESS, we used capillary optics and perfect Si/Ge crystal(s) arrangement to perform X-ray standing waves, high angular-resolution diffraction and high resolution reciprocal space mapping analysis. At the APS, 2ID-D microscope beamline, we employed a phase zone plate producing a beam with the size of 240 nm in the horizontal plane and 350 nm in the vertical (diffraction) plane and a perfect Si (004) analyzer crystal to perform diffraction analysis of selectively grown InGaAsP and InGaAlAs-based waveguides with arc sec angular resolution.

  12. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    SciTech Connect

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  13. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  14. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  15. Fast-time Simulation of an Automated Conflict Detection and Resolution Concept

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Erzberger, Heinz

    2006-01-01

    This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.

  16. Earthquake Damage Assessment Using Very High Resolution Satelliteimagery

    NASA Astrophysics Data System (ADS)

    Chiroiu, L.; André, G.; Bahoken, F.; Guillande, R.

    Various studies using satellite imagery were applied in the last years in order to assess natural hazard damages, most of them analyzing the case of floods, hurricanes or landslides. For the case of earthquakes, the medium or small spatial resolution data available in the recent past did not allow a reliable identification of damages, due to the size of the elements (e.g. buildings or other structures), too small compared with the pixel size. The recent progresses of remote sensing in terms of spatial resolution and data processing makes possible a reliable damage detection to the elements at risk. Remote sensing techniques applied to IKONOS (1 meter resolution) and IRS (5 meters resolution) imagery were used in order to evaluate seismic vulnerability and post earthquake damages. A fast estimation of losses was performed using a multidisciplinary approach based on earthquake engineering and geospatial analysis. The results, integrated into a GIS database, could be transferred via satellite networks to the rescue teams deployed on the affected zone, in order to better coordinate the emergency operations. The methodology was applied to the city of Bhuj and Anjar after the 2001 Gujarat (India) Earthquake.

  17. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  18. High resolution, high rate X-ray spectrometer

    DOEpatents

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  19. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  20. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  1. Dual camera system for acquisition of high resolution images

    NASA Astrophysics Data System (ADS)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  2. [Extracting municipal solid waste dumps based on high resolution images].

    PubMed

    Zhang, Fang-Li; Du, Shi-Hong; Guo, Zhou

    2013-08-01

    The dramatically increasing informal MSW dumps are endangering the urban environment. Remote sensing (RS) technologies are more efficient to monitor and manage municipal solid wastes (MSW) than traditional survey-based methods. In high spatial resolution remotely sensed images, these irregularly distributed dumps have complex compositions and strong heterogeneities, thus it is still hard to extract them automatically no matter the pixel-or object-based image analysis method is used. Therefore, based on the analysis of MSW characteristics, the present study develops a multiresolution strategy to extract MSW dumps by combining image features at both high resolution and resampled low heterogeneity images, while the high resolution images can provide detailed information and the low resolution images can suppress the strong heterogeneities of informal MSW dumps. Taking the QuickBird image covering part of Beijing as an example, this multi-resolution strategy produced a high accuracy (75%), indicating that this multi-resolution strategy is quite effective for extracting the open-air informal MSW dumps. PMID:24159838

  3. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  4. High-resolution climate simulation of the last glacial maximum

    SciTech Connect

    Erickson III, David J

    2008-01-01

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have

  5. High-energy resolution alpha spectrometry using cryogenic detectors.

    PubMed

    Leblanc, E; Coron, N; Leblanc, J; de Marcillac, P; Bouchard, J; Plagnard, J

    2006-01-01

    Applications such as environment monitoring implying alpha emitters activity measurement associated with isotope identification, require high-energy resolution detectors. Conventional silicon detectors are inexpensive therefore widely used, although intrinsically limited in energy resolution. Thermal detection principle of cryogenic detectors introduces a breakthrough in alpha particle measurement. For the first time, spectra with 5.5 keV FWHM energy resolution have been obtained for several external alpha emitting sources using a copper-germanium bolometer specially developed for alpha spectrometry. PMID:16618545

  6. High-contrast and fast electrochromic switching enabled by plasmonics

    DOE PAGESBeta

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-27

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less

  7. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.

  8. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Talin, Albert; Xu, Ting; Walter, Erich; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri

    With vibrant colors and simple, room-temperature processing methods, electrochromic polymers have long attracted attention as active materials for flexible, low-power consuming devices such as smart windows and displays. However, despite their many advantages, slow switching speed and complexity of combining several separate polymers to achieve full-color gamut has limited electrochromic materials to niche applications. Here we exploit the enhanced light-matter interaction associated with the deep-subwavelength mode confinement of surface plasmon polaritons propagating in metallic nanoslit arrays coated with ultra-thin electrochromic polymers to build a novel configuration for achieving high-contrast and fast electrochromic switching. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films while maintaining the high optical-contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-color response with high-contrast and fast switching-speeds while relying on just one electrochromic polymer.

  9. High-contrast and fast electrochromic switching enabled by plasmonics.

    PubMed

    Xu, Ting; Walter, Erich C; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J; Talin, A Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  10. High-contrast and fast electrochromic switching enabled by plasmonics

    PubMed Central

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  11. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  12. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  13. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  14. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-01

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging. PMID:25969190

  15. Identifying new opportunities for exoplanet characterisation at high spectral resolution

    NASA Astrophysics Data System (ADS)

    de Kok, R. J.; Birkby, J.; Brogi, M.; Schwarz, H.; Albrecht, S.; de Mooij, E. J. W.; Snellen, I. A. G.

    2014-01-01

    Context. Recently, there have been a series of detections of molecules in the atmospheres of extrasolar planets using high spectral resolution (R ~ 100 000) observations, mostly using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) on the Very Large Telescope. These measurements are able to resolve molecular bands into individual absorption lines. Observing many lines simultaneously as their Doppler shift changes with time allows the detection of specific molecules in the atmosphere of the exoplanet. Aims: We aim to identify new ways of increasing the planet signal in these kinds of high-resolution observations. First of all, we wish to determine what wavelength settings can best be used to target certain molecules. Furthermore, we want to simulate exoplanet spectra of the day-side and night-side to see whether night-side observations are feasible at high spectral resolution. Methods: We performed simulations of high-resolution CRIRES observations of a planet's thermal emission and transit between 1 and 5 μm and performed a cross-correlation analysis on these results to assess how well the planet signal can be extracted. These simulations take into account telluric absorption, sky emission, realistic noise levels, and planet-to-star contrasts. We also simulated day-side and night-side spectra at high spectral resolution for planets with and without a day-side temperature inversion, based on the cases of HD 189733b and HD 209458b. Results: Several small wavelength regions in the L-band promise to yield cross-correlation signals from the thermal emission of hot Jupiters of H2O, CH4, CO2, C2H2, and HCN that can exceed those of the current detections by up to a factor of 2-3 for the same integration time. For transit observations, the H-band is also attractive, with the H, K, and L-bands giving cross-correlation signals of similar strength. High-resolution night-side spectra of hot Jupiters can give cross-correlation signals as high as the day

  16. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  17. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Astrophysics Data System (ADS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.; Maran, S. P.; Savage, B. D.; Smith, A. M.; Trafton, L. M.; Walter, F. M.; Weymann, R. J.; Ake, T. B.; Bruhweiler, F.; Cardelli, J. A.; Lindler, D. J.; Malumuth, E.; Randall, C. E.; Robinson, R.; Shore, S. N.; Wahlgren, G.

    1994-08-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 103, 2 x 104, and 1 x 103. The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  18. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  19. Infrared emission high spectral resolution atlas of the stratospheric limb

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  20. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.