Science.gov

Sample records for fast intracellular dynamics

  1. Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics

    PubMed Central

    Helassa, Nordine; Zhang, Xiao-hua; Conte, Ianina; Scaringi, John; Esposito, Elric; Bradley, Jonathan; Carter, Thomas; Ogden, David; Morad, Martin; Török, Katalin

    2015-01-01

    Faithful reporting of temporal patterns of intracellular Ca2+ dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca2+ signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca2+ affinities and accelerated kinetics by weakening the Ca2+-calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3fast is 40-fold faster than GCaMP3 with Ca2+ decay and rise times, t1/2, of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3fast revealed discreet transients with significantly faster Ca2+ dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca2+ at 940 nm, GCaMP3fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca2+ kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probes. PMID:26527405

  2. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  3. Dynamics of intracellular information decoding

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  4. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  5. The intracellular dynamic of protein palmitoylation

    PubMed Central

    Salaun, Christine; Greaves, Jennifer

    2010-01-01

    S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation. PMID:21187327

  6. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  7. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  8. Intracellular dynamics with the phase microscope Airyscan

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Kufal, Georgy E.

    1997-12-01

    Investigation of intracellular dynamics of Allium cepa inner epidermal cells are described. The applicability of the method for quantitative estimation of spatio-temporal phase fluctuations and the effect due to external factors is discussed. The analysis of time-sampled series allows one to detect the regions of various motility in cytoplasm. The intense Fourier-spectra harmonics in 0.2 - 8 Hz interval were observed inside a cell wall and cytoplasm. Regularly spaced 2- to 4-s long batches of 100-ms pulses at cell-wall sites are recorded. The phase-fluctuation intensity decreased and the frequencies of certain harmonics were shifted with lowering temperature. The advantages and specific features of the method are discussed.

  9. Fluorescence Ratio Imaging Of Dynamic Intracellular Signals

    NASA Astrophysics Data System (ADS)

    Harootunian, Alec T.; Kao, J. P.; Tsien, Roger Y.

    1989-12-01

    Traditional biochemical assays of cellular messengers require grinding up thousands or millions of cells for each data point. Such destructive measurements use up large amounts of tissue, have poor time resolution, and cannot assess heterogeneity between individual cells or dynamic spatial localizations. Recent technical advances now enable important ionic signals to be continuously imaged inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+. Binding of these ions shifts the fluorescence excitation spectrum of the corresponding indicator. The ratio of excitation amplitudes at two wavelengths measures the free ion concentration while canceling out intensity variations due to nonuniform cell thickness or dye content. By rapidly alternating between the two ion-sensitive excitation wavelengths, a fluorescence microscope equipped with a low-light television camera and digital image processor can produce dynamic images of intracellular messenger levels. In many populations of cells traditionally assumed to be homogeneous, we find that neighboring individual cells can differ enormously in their cytosolic Ca2+ response to agonist stimulation, some ignoring the stimulus, others raising cytosolic Ca2+ transiently, others showing oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of graded inputs; we are investigating the mechanism of their generation using light flashes to generate pulses of intracellular messengers. Spatial gradients of cytosolic Ca t+ within single cells have been observed in embryos during fertilization and development, neurons exposed to electrical or drug stimulation and in cytotoxic T lymphocytes during killing of target

  10. Backbone Dynamics Of Intracellular Lipid Binding Proteins

    NASA Astrophysics Data System (ADS)

    Gutiérrez-González, Luis H.

    2005-04-01

    The family of intracellular lipid binding proteins (iLBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein, cellular retinoic acid binding proteins and cellular retinoid binding proteins. As a contribution to understanding the structure-function relationship in this protein family, the solution structure and backbone dynamics of human epidermal-type FABP (E-FABP) determined by NMR spectroscopy are reported. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics discussed in the present study are compared with those obtained for other phylogenetically related proteins. A strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family is shown.

  11. Stochastic hybrid modeling of intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    Choi, TaiJung; Maurya, Mano Ram; Tartakovsky, Daniel M.; Subramaniam, Shankar

    2010-10-01

    Deterministic models of biochemical processes at the subcellular level might become inadequate when a cascade of chemical reactions is induced by a few molecules. Inherent randomness of such phenomena calls for the use of stochastic simulations. However, being computationally intensive, such simulations become infeasible for large and complex reaction networks. To improve their computational efficiency in handling these networks, we present a hybrid approach, in which slow reactions and fluxes are handled through exact stochastic simulation and their fast counterparts are treated partially deterministically through chemical Langevin equation. The classification of reactions as fast or slow is accompanied by the assumption that in the time-scale of fast reactions, slow reactions do not occur and hence do not affect the probability of the state. Our new approach also handles reactions with complex rate expressions such as Michaelis-Menten kinetics. Fluxes which cannot be modeled explicitly through reactions, such as flux of Ca2+ from endoplasmic reticulum to the cytosol through inositol 1,4,5-trisphosphate receptor channels, are handled deterministically. The proposed hybrid algorithm is used to model the regulation of the dynamics of cytosolic calcium ions in mouse macrophage RAW 264.7 cells. At relatively large number of molecules, the response characteristics obtained with the stochastic and deterministic simulations coincide, which validates our approach in the limit of large numbers. At low doses, the response characteristics of some key chemical species, such as levels of cytosolic calcium, predicted with stochastic simulations, differ quantitatively from their deterministic counterparts. These observations are ubiquitous throughout dose response, sensitivity, and gene-knockdown response analyses. While the relative differences between the peak-heights of the cytosolic [Ca2+] time-courses obtained from stochastic (mean of 16 realizations) and deterministic

  12. Fast quasiadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Martínez-Garaot, S.; Ruschhaupt, A.; Gillet, J.; Busch, Th.; Muga, J. G.

    2015-10-01

    We work out the theory and applications of a fast quasiadiabatic approach to speed up slow adiabatic manipulations of quantum systems by driving a control parameter as near to the adiabatic limit as possible over the entire protocol duration. We find characteristic time scales, such as the minimal time to achieve fidelity 1, and the optimality of the approach within the iterative superadiabatic sequence. Specifically, we show that the population inversion in a two-level system, the splitting and cotunneling of two-interacting bosons, and the stirring of a Tonks-Girardeau gas on a ring to achieve mesoscopic superpositions of many-body rotating and nonrotating states can be significantly speeded up.

  13. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  14. A Dual Wavelength Microfluorimeter for Measuring Fast Intracellular Calcium Signals

    NASA Astrophysics Data System (ADS)

    Hogan, Perry M.; Besch, Stephen R.

    1995-06-01

    A dual excitation microfluorimeter is described for measuring rapidly changing, intracellular calcium signals. A spinning sector wheel is used in conjunction with a beam masking device to provide rapid, efficient switching between the 2 excitation wavelengths. Exposure intervals as short as 120 [mu]s can be achieved, yielding ratio samples at a rate of 6 kHz. Emission photons are collected using a photomultiplier tube operating in counting mode. When tested using FURA-2 as the calcium reporting dye, throughput noise in the system is demonstrated to be due to the statistical fluctuation inherent in photon counting. An example of the operation of the system, using a guinea pig cardiac myocyte, demonstrates that sufficient ratio data may be acquires to fully characterize the fastest components of the intracellular calcium signal.

  15. Protein-coat dynamics and cluster phases in intracellular trafficking

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Wang, Hui; Mukhopadhyay, Ranjan

    2011-09-01

    Clustering of membrane proteins is a hallmark of biological membranes' lateral organization and crucial to their function. However, the physical properties of these protein aggregates remain poorly understood. Ensembles of coat proteins, the example considered here, are necessary for intracellular transport in eukaryotic cells. Assembly and disassembly rates for coat proteins involved in intracellular vesicular trafficking must be carefully controlled: their assembly deforms the membrane patch and drives vesicle formation, yet the protein coat must rapidly disassemble after vesiculation. Motivated by recent experimental findings for protein-coat dynamics, we study a dynamical Ising-type model for coat assembly and disassembly, and demonstrate how simple dynamical rules generate a robust, steady-state distribution of protein clusters (corresponding to intermediate budded shapes) and how cluster sizes are controlled by the kinetics. We interpret the results in terms of both vesiculation and the coupling to cargo proteins.

  16. Estimating the biophysical properties of neurons with intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    Ye, Jingxin; Rozdeba, Paul J.; Morone, Uriel I.; Daou, Arij; Abarbanel, Henry D. I.

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V (t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  17. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-03-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.

  18. Coexistence of amplitude and frequency modulations in intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    de Pittà, Maurizio; Volman, Vladislav; Levine, Herbert; Pioggia, Giovanni; de Rossi, Danilo; Ben-Jacob, Eshel

    2008-03-01

    The complex dynamics of intracellular calcium regulates cellular responses to information encoded in extracellular signals. Here we study the encoding of these external signals in the context of the Li-Rinzel model. We show that by control of biophysical parameters the information can be encoded in amplitude modulation (AM), frequency modulation (FM), or mixed (AM and FM) modulation. We briefly discuss the possible implications of this role of information encoding for astrocytes.

  19. Probing cytoskeleton dynamics by intracellular particle transport analysis

    NASA Astrophysics Data System (ADS)

    Götz, M.; Hodeck, K. F.; Witzel, P.; Nandi, A.; Lindner, B.; Heinrich, D.

    2015-07-01

    All cellular functions arise from the transport of molecules through a heterogeneous, highly dynamic cell interior for intracellular signaling. Here, the impact of intracellular architecture and cytoskeleton dynamics on transport processes is revealed by high-resolution single particle tracking within living cells, in combination with time-resolved local mean squared displacement (I-MSD) analysis. We apply the I-MSD analysis to trajectories of 200 nm silica particles within living cells of Dictyostelium discoideum obtained by high resolution spinning disc confocal microscopy with a frame rate of 100 fps and imaging in one fixed focal plane. We investigate phases of motor-driven active transport and subdiffusion, normal diffusion, as well as superdiffusion with high spatial and temporal resolution. Active directed intracellular motion is attributed to microtubule associated molecular motor driven transport with average absolute velocities of 2.8 μm s-1 for 200 nm diameter particles. Diffusion processes of these particles within wild-type cells are found to exhibit diffusion constants ranging across two orders of magnitude from subdiffusive to superdiffusive behavior. This type of analysis might prove of ample importance for medical applications, like targeted drug treatment of cells by nano-sized carriers or innovative diagnostic assays.

  20. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  1. Mitochondrial dynamics and their intracellular traffic in porcine oocytes.

    PubMed

    Yamochi, T; Hashimoto, S; Amo, A; Goto, H; Yamanaka, M; Inoue, M; Nakaoka, Y; Morimoto, Y

    2016-08-01

    Meiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes. PMID:26364763

  2. Intracellular calcium dynamics dependent on defined microtopographical features of titanium.

    PubMed

    Staehlke, Susanne; Koertge, Andreas; Nebe, Barbara

    2015-04-01

    Detailed insights into the complex cellular behavior at the biomaterial interface are crucial for the improvement of implant surfaces with respect to their acceptance and integration. The cells perceive microtopographical features and, in consequence, rearrange their adhesion structures like the actin cytoskeleton and adaptor proteins. But little is known about whether these altered cellular phenotypes have consequences for intracellular calcium signaling and its dynamics. To elucidate if an artificial, geometrical microtopography influences calcium ion (Ca(2+)) mobilization in osteoblasts, human MG-63 cells were stained with the calcium dye Fluo 3-acetoxymethyl ester and set on defined silicon-titanium (Ti) arrays with regular pillar structures (P5, 5 × 5 × 5 μm) and compared with planar Ti. To induce an immediate calcium signal, cells were stimulated with adenosine 5'-triphosphate (ATP). Interestingly, osteoblasts on micropillars expressing a shortened actin cytoskeleton were hampered in their calcium mobilization potential in signal height as well duration. Even the basal level of the intracellular Ca(2+) concentration was reduced, which was accompanied by a disturbed fibronectin synthesis. The expression of the voltage-sensitive calcium channels Cav1.2, Cav1.3 (L-type) and Cav3.1, Cav3.2, Cav3.3 (T-type) as well as the signaling proteins phospho-AKT and phospho-GSK3α/β remained unaffected on pillars. The topography-dependent calcium dynamics observed here provide new insights into how topographical cues alter cell functions - via the intracellular Ca(2+) signaling. PMID:25678115

  3. Fluorescence Lifetime Imaging Microscopy of Intracellular Glucose Dynamics

    PubMed Central

    Veetil, Jithesh V.; Jin, Sha; Ye, Kaiming

    2012-01-01

    Background One of the major hurdles in studying diabetes pathophysiology is the lack of adequate methodology that allows for direct and real-time determination of glucose transport and metabolism in cells and tissues. In this article, we present a new methodology that adopts frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) to visualize and quantify the dynamics of intracellular glucose within living cells using a biosensor protein based on fluorescence resonance energy transfer (FRET). Method The biosensor protein was developed by fusing a FRET pair, an AcGFP1 donor and a mCherry acceptor to N- and C- termini of a mutant glucose-binding protein (GBP), respectively. The probe was expressed and biosynthesized inside the cells, offering continuous monitoring of glucose dynamics in real time through fluorescence lifetime imaging microscopy (FLIM) measurement. Results We transfected the deoxyribonucleic acid of the AcGFP1-GBP-mCherry sensor into murine myoblast cells, C2C12, and continuously monitored the changes in intracellular glucose concentrations in response to the variation in extracellular glucose, from which we determined glucose uptake and clearance rates. The distribution of intracellular glucose concentration was also characterized. We detected a high glucose concentration in a region close to the cell membrane and a low glucose concentration in a region close to the nucleus. The monoexponential decay of AcGFP1 was distinguished using FD-FLIM. Conclusions This work enables continuous glucose monitoring (CGM) within living cells using FD-FLIM and a biosensor protein. The sensor protein developed offers a new means for quantitatively analyzing glucose homeostasis at the cellular level. Data accumulated from these studies will help increase our understanding of the pathology of diabetes. PMID:23294772

  4. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    PubMed Central

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-01-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening. PMID:27004604

  5. Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy.

    PubMed

    Cheng, Wan-Yun; Larson, Jeffrey M; Samet, James M

    2014-03-15

    There is increasing interest in using live cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of fluorescent signals from multiple probes is that emission spectra of many fluorophores overlap, often with maxima that are only a few nanometers apart. Spectral acquisition of mixed fluorescence signals captured within a dedicated scanning range can be used to quantitatively separate signals into component spectra. We report here the development of a novel live cell application of spectral unmixing for the simultaneous monitoring of intracellular events reported by closely-emitting fluorophores responding dynamically to external stimuli. We validate the performance of dynamic spectral unmixing microscopy (DynSUM) using genetically encoded sensors to simultaneously monitor changes in glutathione redox potential (Egsh) and H2O2 production in living cells exposed to oxidizing and reducing agents. We further demonstrate the utility of the DynSUM approach to observe the relationship between the increases in Egsh and H2O2 generation induced in airway epithelial cells exposed to an environmental electrophile. PMID:23816786

  6. Biomechanics and Intracellular Dynamics of Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. Daniel

    2004-03-01

    Understanding the internal mechanical properties of living cells is essential to gain insight to basic cellular functions ranging from cellular signal transduction, intracellular traffics to cell motility. Vascular endothelial cells form a single cell layer that lines all blood vessels and serves to regulate exchanges between the blood stream and the surrounding tissues. Endothelial cells are one of the most studied cell types because of their roles in cardiovascular diseases and the linkage between their growth control and strategies of cancer treatments. This talk reports the application of a novel methodology by which scientists can explore cellular functions and study cytoskeleton dynamics of living cells at the subcellular level with minimal invasion. The methodology is based on the realization that optical tweezers can be used to measure the mechanical properties of the cytoskeleton in the vicinity of organelles and cellular structures. Optical tweezers is a technique based on the physics that dielectric materials, such as silica beads, latex particles or protein aggregates are attracted to and thus trapped at the focal point of a tightly focused laser beam in an aqueous medium. It has been shown that viscoelasticity can be determined from the movements of the trapped object in an oscillating optical tweezers. Applying the oscillating tweezers to intracellular cellular structures, we were able to determine the frequency dependent mechanical properties of the interior of cultured bovine endothelial cells. In contrast to the viscoelastic behavior expected of a network of cytoskelatal proteins, we found unusually large fluctuations in both elastic and loss moduli of the cell interior. More surprisingly, both mechanical moduli showed rhythmic behavior with a periodicity in the range of 20 - 30 seconds in healthy living cells. The rhythm could be altered by drug treatments, and the amplitude of the fluctuations diminished when cells were depleted of nutrients

  7. Global intracellular slow-wave dynamics of the thalamocortical system.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2014-06-25

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like "modulator" EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs ("drivers") were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing "driver"- and "modulator"-like EPSPs, others showing "modulator"-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display "hub dynamics" and thus may contribute to the generation of cortical slow waves. PMID:24966387

  8. Understanding anomalous delays in a model of intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    Harvey, Emily; Kirk, Vivien; Osinga, Hinke M.; Sneyd, James; Wechselberger, Martin

    2010-12-01

    In many cell types, oscillations in the concentration of free intracellular calcium ions are used to control a variety of cellular functions. It has been suggested [J. Sneyd et al., "A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations," Proc. Natl. Acad. Sci. U.S.A. 103, 1675-1680 (2006)] that the mechanisms underlying the generation and control of such oscillations can be determined by means of a simple experiment, whereby a single exogenous pulse of inositol trisphosphate (IP3) is applied to the cell. However, more detailed mathematical investigations [M. Domijan et al., "Dynamical probing of the mechanisms underlying calcium oscillations," J. Nonlinear Sci. 16, 483-506 (2006)] have shown that this is not necessarily always true, and that the experimental data are more difficult to interpret than first thought. Here, we use geometric singular perturbation techniques to study the dynamics of models that make different assumptions about the mechanisms underlying the calcium oscillations. In particular, we show how recently developed canard theory for singularly perturbed systems with three or more slow variables [M. Wechselberger, "A propos de canards (Apropos canards)," Preprint, 2010] applies to these calcium models and how the presence of a curve of folded singularities and corresponding canards can result in anomalous delays in the response of these models to a pulse of IP3.

  9. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  10. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  11. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  12. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats

    PubMed Central

    Olivares-García, V; Torre-Villalvazo, I; Velázquez-Villegas, L; Alemán, G; Lara, N; López-Romero, P; Torres, N; Tovar, A R; Díaz-Villaseñor, A

    2015-01-01

    Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after

  13. Fast Parallel Computation Of Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Kwan, Gregory L.; Bagherzadeh, Nader

    1996-01-01

    Constraint-force algorithm fast, efficient, parallel-computation algorithm for solving forward dynamics problem of multibody system like robot arm or vehicle. Solves problem in minimum time proportional to log(N) by use of optimal number of processors proportional to N, where N is number of dynamical degrees of freedom: in this sense, constraint-force algorithm both time-optimal and processor-optimal parallel-processing algorithm.

  14. Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies

    PubMed Central

    O’Connell, Jeremy D.; Zhao, Alice; Ellington, Andrew D.; Marcotte, Edward M.

    2013-01-01

    Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci—such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis—to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality—and dysfunctionality—of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable. PMID:23057741

  15. Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy

    EPA Science Inventory

    There is increasing interest in using live-cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of multip...

  16. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  17. Fast Parallel Computation Of Manipulator Inverse Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.

  18. Live Imaging of Intracellular Dynamics During Meiotic Maturation in Mouse Oocytes.

    PubMed

    Yoshida, Shuhei; Sakakibara, Yogo; Kitajima, Tomoya S

    2016-01-01

    Fluorescence live imaging is a powerful approach to study intracellular dynamics during cellular events such as cell division. By applying automated confocal live imaging to mouse oocytes, in which meiotic maturation can be induced in vitro after the introduction of fluorescent proteins through microinjection, the meiotic dynamics of intracellular structures, such as chromosomes, can be monitored at high resolution. A combination of this method with approaches for the perturbation of specific proteins opens up opportunities for understanding the molecular and intracellular basis of mammalian meiosis. PMID:27557586

  19. Multistability and dynamic transitions of intracellular Min protein patterns.

    PubMed

    Wu, Fabai; Halatek, Jacob; Reiter, Matthias; Kingma, Enzo; Frey, Erwin; Dekker, Cees

    2016-01-01

    Cells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations. A new theoretical approach is developed for probing pattern stability under perturbations. Quantitative experiments and simulations show that, once established, Min oscillations tolerate a large degree of intracellular heterogeneity, allowing distinctly different patterns to persist in different cells with the same geometry. Min patterns maintain their axes for hours in experiments, despite imperfections, expansion, and changes in cell shape during continuous cell growth. Transitions between multistable Min patterns are found to be rare events induced by strong intracellular perturbations. The instances of multistability studied here are the combined outcome of boundary growth and strongly nonlinear kinetics, which are characteristic of the reaction-diffusion patterns that pervade biology at many scales. PMID:27279643

  20. Intracellular Dynamics of Synucleins: "Here, There and Everywhere".

    PubMed

    Surguchov, Andrei

    2015-01-01

    Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The synuclein family consists of three members: α-, β-, and γ-synucleins present only in vertebrates. Members of the synuclein family have high sequence identity, especially in the N-terminal regions. The synuclein gene family came into the spotlight, when one of its members, α-synuclein, was found to be associated with Parkinson's disease and other neurodegenerative disorders, whereas γ-synuclein was linked to several forms of cancer. There are a lot of controversy and exciting debates concerning members of the synuclein family, including their normal functions, toxicity, role in pathology, transmission between cells and intracellular localization. Important findings which remain undisputable for many years are synuclein localization in synapses and their role in the regulation of synaptic vesicle trafficking, whereas their presence and function in mitochondria and nucleus is a debated topic. In this review, we present the data on the localization of synucleins in two intracellular organelles: the nucleus and mitochondria. PMID:26614873

  1. Plasmodesmata dynamics are coordinated by intracellular signaling pathways

    PubMed Central

    Brunkard, Jacob O.; Runkel, Anne M.; Zambryski, Patricia C.

    2013-01-01

    Membrane-lined channels called plasmodesmata (PD) connect the cytoplasts of adjacent plant cells across the cell wall, permitting intercellular movement of small molecules, proteins, and RNA. Recent genetic screens for mutants with altered PD transport identified genes suggesting that chloroplasts play crucial roles in coordinating PD transport. Complementing this discovery, studies manipulating expression of PD-localized proteins imply that changes in PD transport strongly impact chloroplast biology. Ongoing efforts to find genes that control root and stomatal development reveal the critical role of PD in enforcing tissue patterning, and newly discovered PD-localized proteins show that PD influence development, intracellular signaling, and defense against pathogens. Together, these studies demonstrate that PD function and formation are tightly integrated with plant physiology. PMID:23978390

  2. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  3. Introduction to focus issue: intracellular Ca2+ dynamics--a change of modeling paradigm?

    PubMed

    Falcke, Martin

    2009-09-01

    Intracellular Ca(2+) concentration dynamics have been perceived as a prototypical deterministic intracellular reaction-diffusion system in biophysics for many years. Recent experimental findings challenge that view and suggest them to be fluctuation driven. That renders this system interesting for nonlinear physics, in general, since we can study the emergence of macroscopic behavior from mesoscopic dynamics. In particular, we can observe the random elemental events, called puffs, and the macroscopic pattern with the same experimental means. Here, we give a short introduction to the current discussion on theoretical and modeling concepts, and this Focus Issue reflecting it. PMID:19792027

  4. Use of Stable Isotopes to Follow Intracellular Water Dynamics in Living Cells

    SciTech Connect

    Kreuzer, Helen W.; Hegg, Eric L.

    2012-01-28

    Despite the importance of water to cell structure and function, intracellular water dynamics are poorly understood. A new method based on isotope ratio measurements has revealed that a substantial portion of the O and H atoms in the intracellular water of rapidly-dividing cultured cells is derived from metabolic activity, and not from environmental water. These findings have led to a dynamic model of intracellular water composition: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis. Data from gram-positive and gram-negative bacteria as well as cultured mammalian cells are consistent with the model.

  5. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor.

    PubMed

    Rawson, Frankie J; Hicks, Jacqueline; Dodd, Nicholas; Abate, Wondwossen; Garrett, David J; Yip, Nga; Fejer, Gyorgy; Downard, Alison J; Baronian, Kim H R; Jackson, Simon K; Mendes, Paula M

    2015-10-28

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  6. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  7. A fast dynamic mode in rare earth based glasses

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Ngai, K. L.; Wang, W. H.; Bai, H. Y.

    2016-05-01

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  8. A fast dynamic mode in rare earth based glasses.

    PubMed

    Zhao, L Z; Xue, R J; Zhu, Z G; Ngai, K L; Wang, W H; Bai, H Y

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed. PMID:27250316

  9. Extrinsic periodic information interpolates between monostable and bistable states in intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Duan, Wei-Long

    2015-06-01

    Extrinsic periodic information including physiological cyclical and circadian replacement would affect inevitably a real cell, in this paper we investigate the effect of extrinsic periodic information on intracellular calcium dynamics by means of second-order algorithm for stochastic simulation colored noises. By simulating time evolutions and stationary probability distribution of intracellular Ca2+ concentrations, the results show: (i) intracellular calcium oscillation between cytosol and calcium store shows synchronous and anti-synchronous oscillation as intensity and frequency of extrinsic periodic information vary; (ii) extrinsic periodic information interpolates stability from bistable state → monostable state → bistable state → monostable state as frequency of extrinsic periodic information increases; (iii) extrinsic periodic information interpolates stability from monostable state → bistable state as intensity of extrinsic periodic information increases.

  10. Microscopy tools for the investigation of intracellular lipid storage and dynamics

    PubMed Central

    Daemen, Sabine; van Zandvoort, Marc A.M.J.; Parekh, Sapun H.; Hesselink, Matthijs K.C.

    2015-01-01

    Background Excess storage of lipids in ectopic tissues, such as skeletal muscle, liver, and heart, seems to associate closely with metabolic abnormalities and cardiac disease. Intracellular lipid storage occurs in lipid droplets, which have gained attention as active organelles in cellular metabolism. Recent developments in high-resolution microscopy and microscopic spectroscopy have opened up new avenues to examine the physiology and biochemistry of intracellular lipids. Scope of review The aim of this review is to give an overview of recent technical advances in microscopy, and its application for the visualization, identification, and quantification of intracellular lipids, with special focus to lipid droplets. In addition, we attempt to summarize the probes currently available for the visualization of lipids. Major conclusions The continuous development of lipid probes in combination with the rapid development of microscopic techniques can provide new insights in the role and dynamics of intracellular lipids. Moreover, in situ identification of intracellular lipids is now possible and promises to add a new dimensionality to analysis of lipid biochemistry, and its relation to (patho)physiology. PMID:26977387

  11. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  12. Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics.

    PubMed

    Zimmerman, John F; Murray, Graeme F; Wang, Yucai; Jumper, John M; Austin, Jotham R; Tian, Bozhi

    2015-08-12

    Silicon nanowires (SiNWs) have emerged as a new class of materials with important applications in biology and medicine with current efforts having focused primarily on using substrate bound SiNW devices. However, developing devices capable of free-standing inter- and intracellular operation is an important next step in designing new synthetic cellular materials and tools for biophysical characterization. To demonstrate this, here we show that label free SiNWs can be internalized in multiple cell lines, forming robust cytoskeletal interfaces, and when kinked can serve as free-standing inter- and intracellular force probes capable of continuous extended (>1 h) force monitoring. Our results show that intercellular interactions exhibit ratcheting like behavior with force peaks of ∼69.6 pN/SiNW, while intracellular force peaks of ∼116.9 pN/SiNW were recorded during smooth muscle contraction. To accomplish this, we have introduced a simple single-capture dark-field/phase contrast optical imaging modality, scatter enhanced phase contrast (SEPC), which enables the simultaneous visualization of both cellular components and inorganic nanostructures. This approach demonstrates that rationally designed devices capable of substrate-independent operation are achievable, providing a simple and scalable method for continuous inter- and intracellular force dynamics studies. PMID:26192816

  13. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems.

    PubMed

    Navarro, Susanna; Carija, Anita; Muñoz-Torrero, Diego; Ventura, Salvador

    2016-10-01

    The aggregation of a large variety of amyloidogenic proteins is linked to the onset of devastating human disorders. Therefore, there is an urgent need for effective molecules able to modulate the aggregative properties of these polypeptides in their natural environment, in order to prevent, delay or halt the progression of such diseases. On the one hand, the complexity and cost of animal models make them inefficient at early stages of drug discovery, where large chemical libraries are usually screened. On the other hand, in vitro aggregation assays in aqueous solutions hardly reproduce (patho)physiological conditions. In this context, because the formation of insoluble aggregates in bacteria shares mechanistic and functional properties with amyloid self-assembly in higher organisms, they have emerged as a promising system to model aggregation in the cell. Here we show that bacteria provide a powerful and cost-effective system to screen for amyloid inhibitors using fluorescence spectroscopy and flow cytometry, thanks to the ability of the novel red fluorescent ProteoStat dye to detect specifically intracellular amyloid-like aggregates. We validated the approach using the Alzheimer's linked Aβ40 and Aβ42 peptides and tacrine- and huprine-based aggregation inhibitors. Overall, the present method bears the potential to replace classical in vitro anti-aggregation assays. PMID:26608003

  14. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises.

    PubMed

    Duan, Wei-Long; Zeng, Chunhua

    2016-01-01

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca(2+) is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store's Ca(2+) concentration, the results exhibit: (i) intracellular calcium dynamics's time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store's Ca(2+) concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store. PMID:27121687

  15. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. PMID:25268018

  16. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    PubMed Central

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan; Hansen, Per Lyngs; Stock, Roberto P.; Olsen, Lars F.; Bagatolli, Luis A.

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process. PMID:25705902

  17. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies). PMID:26280184

  18. k-space image correlation to probe the intracellular dynamics of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouzin, M.; Sironi, L.; Chirico, G.; D'Alfonso, L.; Inverso, D.; Pallavicini, P.; Collini, M.

    2016-04-01

    The collective action of dynein, kinesin and myosin molecular motors is responsible for the intracellular active transport of cargoes, vesicles and organelles along the semi-flexible oriented filaments of the cytoskeleton. The overall mobility of the cargoes upon binding and unbinding to motor proteins can be modeled as an intermittency between Brownian diffusion in the cell cytoplasm and active ballistic excursions along actin filaments or microtubules. Such an intermittent intracellular active transport, exhibited by star-shaped gold nanoparticles (GNSs, Gold Nanostars) upon internalization in HeLa cancer cells, is investigated here by combining live-cell time-lapse confocal reflectance microscopy and the spatio-temporal correlation, in the reciprocal Fourier space, of the acquired image sequences. At first, the analytical theoretical framework for the investigation of a two-state intermittent dynamics is presented for Fourier-space Image Correlation Spectroscopy (kICS). Then simulated kICS correlation functions are employed to evaluate the influence of, and sensitivity to, all the kinetic and dynamic parameters the model involves (the transition rates between the diffusive and the active transport states, the diffusion coefficient and drift velocity of the imaged particles). The optimal procedure for the analysis of the experimental data is outlined and finally exploited to derive whole-cell maps for the parameters underlying the GNSs super-diffusive dynamics. Applied here to the GNSs subcellular trafficking, the proposed kICS analysis can be adopted for the characterization of the intracellular (super-) diffusive dynamics of any fluorescent or scattering biological macromolecule.

  19. Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor

    PubMed Central

    2013-01-01

    Background To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 μs molecular dynamics (MD) simulation at 310 K. Results After around 600 ns, the loop model started a transition to a “very inactive” conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein’s binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies. Conclusions The essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the “very inactive” state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes. PMID:24206668

  20. Fast multipole methods for particle dynamics

    PubMed Central

    Kurzak, J.; Pettitt, B. M.

    2008-01-01

    The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of O(N) algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems. PMID:19194526

  1. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  2. Nonlinear Dynamic Modeling of Synaptically Driven Single Hippocampal Neuron Intracellular Activity

    PubMed Central

    Song, Dong; Berger, Theodore W.

    2011-01-01

    A high-order nonlinear dynamic model of the input–output properties of single hippocampal CA1 pyramidal neurons was developed based on synaptically driven intracellular activity. The purpose of this study is to construct a model that: 1) can capture the nonlinear dynamics of both subthreshold activities [postsynaptic potentials (PSPs)] and suprathreshold activities (action potentials) in a single formalism; 2) is sufficiently general to be applied to any spike-input and spike-output neurons (point process input and point process output neural systems); and 3) is computationally efficient. The model consisted of three major components: 1) feedforward kernels (up to third order) that transform presynaptic action potentials into PSPs; 2) a constant threshold, above which action potentials are generated; and 3) a feedback kernel (first order) that describes spike-triggered after-potentials. The model was applied to CA1 pyramidal cells, as they were electrically stimulated with broadband Poisson random impulse trains through the Schaffer collaterals. The random impulse trains used here have physiological properties similar to spiking patterns observed in CA3 hippocampal neurons. PSPs and action potentials were recorded from the soma of CA1 pyramidal neurons using whole-cell patch-clamp recording. We evaluated the model performance separately with respect to PSP waveforms and the occurrence of spikes. The average normalized mean square error of PSP prediction is 14.4%. The average spike prediction error rate is 18.8%. In summary, although prediction errors still could be reduced, the model successfully captures the majority of high-order nonlinear dynamics of the single-neuron intracellular activity. The model captures the general biophysical processes with a small set of open parameters that are directly constrained by the intracellular recording, and thus, can be easily applied to any spike-input and spike-output neuron. PMID:21233041

  3. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises

    PubMed Central

    Duan, Wei-Long; Zeng, Chunhua

    2016-01-01

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca2+ is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store’s Ca2+ concentration, the results exhibit: (i) intracellular calcium dynamics’s time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store’s Ca2+ concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store. PMID:27121687

  4. Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises

    NASA Astrophysics Data System (ADS)

    Duan, Wei-Long; Zeng, Chunhua

    2016-04-01

    Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca2+ is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store’s Ca2+ concentration, the results exhibit: (i) intracellular calcium dynamics’s time coherence disappears and stability strengthens as τ → 0.1s (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store’s Ca2+ concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.

  5. Fast Multipole Methods for Particle Dynamics.

    SciTech Connect

    Kurzak, Jakub; Pettitt, Bernard M.

    2006-08-30

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of O(N) algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems.

  6. Fast Dynamics for Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Zakrzewski, Jakub

    2013-02-01

    Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.

  7. FAST TRACK COMMUNICATION: Complexified dynamical systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.

    2007-08-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.

  8. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  9. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    PubMed Central

    Boudreau, Aaron

    2009-01-01

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ’s microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly ‘encoded’ by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra—to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic inter-actions go awry for an extended time. PMID:19160017

  10. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    SciTech Connect

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    2008-12-23

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.

  11. On the Role of Stochastic Channel Behavior in Intracellular Ca2+ Dynamics

    PubMed Central

    Falcke, Martin

    2003-01-01

    I present a stochastic model for intracellular Ca2+ oscillations. The model starts from stochastic binding and dissociation of Ca2+ to binding sites on a single subunit of the IP3-receptor channel but is capable of simulating large numbers of clusters for many oscillation periods too. I find oscillations with variable periods ranging from 17 s to 120 s and a standard deviation well in the experimentally observed range. Long period oscillations can be perceived as nucleation phenomenon and can be observed for a large variety of single channel dynamics. Their period depends on the geometric characteristics of the cluster array. Short periods are in the range of the time scale of channel dynamics. Both long and short period oscillations occur for parameters with a nonoscillatory deterministic regime. PMID:12524264

  12. Laser microspectrofluorometry for measuring dynamic changes of intracellular free Ca2+ in human airway gland cells

    NASA Astrophysics Data System (ADS)

    Millot, Jean-Marc; Merten, M.; Sharonov, S.; Figarella, C.; Jacquot, J.; Manfait, Michel

    1996-01-01

    Intracellular Ca2+ is a ubiquitous second messenger that regulates a wide variety of cellular functions including secretion, transepithelial solute and fluid transport. Laser confocal microspectrofluorometry (DILOR, Lille, France) was applied to visualize fluorescence emission spectra of the Indo-1 for measuring the intracellular free Ca2+ levels ([Ca2+]i) in a human tracheal gland immortalized cell line (MM39 cell line). Under a 351 nm laser excitation (0.5 (mu) W), the intracellular spectrum was analyzed as a ratio of the emission intensities at 420 and 500 nm. Previously, the intracellular Ca2+ calibration has been performed to define the relation between the intensity ratio and [Ca2+]i. Dynamic changes of single-cell [Ca2+]i were measured either from one substrate-attached cell or from different adjacent cells in monolayer culture. Measurements of [Ca2+]i are taken successively in different subcellular locations (up to 10 measurement points). Each measurement cycle was repeated 60 times. To do so, an (X,Y) motorized stage coupled with a computer allowed us to store the (X,Y) positions of several chosen points for the laser radiation. Cells were monitored for about 10 min. After agonist stimulation. Upon stimulating with calcium ionophore, 4BrA23187 (1 (mu) M), [Ca2+]i increased immediately up to 10 fold from a resting value of 31 plus or minus 6 nM (n equals 36). Histamine (1 to 100 (mu) M) increased [Ca2+]i in a concentration dependent manner with levels of up to 88 nM and 140 nM for 1 (mu) M and 100 (mu) M concentration, respectively, followed by a smooth decay back to baseline. Removal of extracellular Ca2+ did not abolish the histamine-stimulation [Ca2+]i rise, suggesting that a part of Ca2+ mobilization comes from intracellular Ca2+ stores. These results show that the combined use of the UV microspectrofluorometry and Indo-1 is well adapted and straight forward for the measurement of rapid responses of substrate-attached cells during experiments of long

  13. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  14. Zinc-Permeable Ion Channels: Effects on Intracellular Zinc Dynamics and Potential Physiological/Pathophysiological Significance

    PubMed Central

    Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang

    2015-01-01

    Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796

  15. Magneto-optical cellular chip model for intracellular orientational-dynamic-activity detection

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Iwasaka, M.; Kurita, S.; Owada, N.

    2012-04-01

    In the present study, a magneto-optical cellular chip model (MoCCM) was developed to detect intracellular dynamics in macromolecules by using magneto-optical effects. For the purpose of cell-measurement under strong static magnetic fields of up to 10 T, we constructed a cellular chip model, which was a thin glass plate with a well for a cell culture. A cell line of osteoblast MC3T3-E1 was incubated in the glass well, and the well, 0.3 mm in depth, was sealed by a cover glass when the MoCCM was set in a fiber optic system. An initial intensity change of the polarized light transmission, which dispersed perpendicular to the cell's attaching surface, was collected for 10 to 60 min, and then magnetic fields were applied parallel and perpendicular to the surface and light direction, respectively. The magnetic birefringence signals that originated from the magnetic orientation of intracellular molecules such as cytoskeletons apparently appeared when the magnetic fields were constant at 10 T. A statistical analysis with 15 experiments confirmed that the cellular components under 10 T magnetic fields caused a stronger alignment, which was transferred into polarizing light intensity that increased more than the case before exposure. Cellular conditions such as generation and cell density affected the magnetic birefringence signals.

  16. Dynamic pricing? Not so fast. a residential consumer perspective

    SciTech Connect

    Alexander, Barbara R.

    2010-07-15

    With the installation of smart metering, will residential customers be moved to ''dynamic'' pricing? Some supporters of changing residential rate design from a fixed and stable rate structure believe customers should be required to take electric service with time-variant price signals. Not so fast, though. There are real implications associated with this strategy. (author)

  17. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  18. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  19. Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Nguyen, A.; Sridhara, V.; Hu, Q.; Nuccitelli, R.; Beebe, S. J.; Kolb, J.; Schoenbach, K. H.

    2007-04-01

    Numerical simulations for electrically induced, intracellular calcium release from the endoplasmic reticulum are reported. A two-step model is used for self-consistency. Distributed electrical circuit representation coupled with the Smoluchowski equation yields the ER membrane nanoporation for calcium outflow based on a numerical simulation. This is combined with the continuum Li-Rinzel model and drift diffusion for calcium dynamics. Our results are shown to be in agreement with reported calcium release data. A modest increase (rough doubling) of the cellular calcium is predicted in the absence of extra-cellular calcium. In particular, the applied field of 15kV/cm with 60ns pulse duration makes for a strong comparison. No oscillations are predicted and the net recovery period of about 5min are both in agreement with published experimental results. A quantitative explanation for the lack of such oscillatory behavior, based on the density dependent calcium fluxes, is also provided.

  20. d-Amino Acid Chemical Reporters Reveal Peptidoglycan Dynamics of an Intracellular Pathogen

    PubMed Central

    2012-01-01

    Peptidoglycan (PG) is an essential component of the bacterial cell wall. Although experiments with organisms in vitro have yielded a wealth of information on PG synthesis and maturation, it is unclear how these studies translate to bacteria replicating within host cells. We report a chemical approach for probing PG in vivo via metabolic labeling and bioorthogonal chemistry. A wide variety of bacterial species incorporated azide and alkyne-functionalized d-alanine into their cell walls, which we visualized by covalent reaction with click chemistry probes. The d-alanine analogues were specifically incorporated into nascent PG of the intracellular pathogen Listeria monocytogenes both in vitro and during macrophage infection. Metabolic incorporation of d-alanine derivatives and click chemistry detection constitute a facile, modular platform that facilitates unprecedented spatial and temporal resolution of PG dynamics in vivo. PMID:23240806

  1. Multiple Model-Informed Open-Loop Control of Uncertain Intracellular Signaling Dynamics

    PubMed Central

    Perley, Jeffrey P.; Mikolajczak, Judith; Harrison, Marietta L.; Buzzard, Gregery T.; Rundell, Ann E.

    2014-01-01

    Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally

  2. Multiple model-informed open-loop control of uncertain intracellular signaling dynamics.

    PubMed

    Perley, Jeffrey P; Mikolajczak, Judith; Harrison, Marietta L; Buzzard, Gregery T; Rundell, Ann E

    2014-04-01

    Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally

  3. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  4. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading

    PubMed Central

    Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward

    2014-01-01

    Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610

  5. The intracellular dynamics of hepatitis B virus (HBV) replication with reproduced virion "re-cycling".

    PubMed

    Nakabayashi, Jun

    2016-05-01

    Hepatitis B virus (HBV) is a causative agent of hepatitis. Clinical outcome of hepatitis type B depends on the viral titer observed in the peripheral blood of the patient. In the chronic hepatitis patient, production of HBV virion remains low level. On the other hand, the viral load prominently increases in fulminant hepatitis patient as compared with that in the chronic hepatitis patient. We previously proposed a mathematical model describing the intracellular dynamics of HBV replication. Our model clarified that there are two distinguishable replication patterns of HBV named "arrested" and "explosive" replication. In the arrested replication, the amount of virion newly reproduced from an infected cell remains low level, while the amount of virion extremely increases in the explosive replication. Viral load is drastically changed by slight alteration of expression ratio of 3.5kb RNA to 2.4kb mRNA of HBV. Though our model provided the switching mechanism determining the replication pattern of HBV, HBV dynamics is determined by not only the expression pattern of viral genes. In this study, "recycling" of HBV virion in the replication cycle is investigated as a new factor affecting the intracellular dynamics of HBV replication. A part of newly produced virion of HBV is reused as a core particle that is a resource of HBV replication. This recycling of HBV virion lowers the threshold for the explosive replication when waiting time for the next cycle of the replication is large. It is seemingly contradicting that prominent production of HBV is caused by large recycling rate and small release rate of HBV virion from infected cell to extracellular space. But the recycling of HBV virion can contribute to the positive feedback cycle of HBV replication for the explosive replication to accumulate the core particle as a resource of HBV replication in an infected cell. Accumulation of core particle in the infected cell can be risk factor for the exacerbation of hepatitis rather

  6. A new technique for fast dynamic focusing law computing

    NASA Astrophysics Data System (ADS)

    Fritsch, C.; Cruza, J. F.; Brizuela, J.; Camacho, J.; Moreno, J. M.

    2012-05-01

    Dynamic focusing requires computing the individual delays for every element and every focus in the image. This is an easy and relatively fast task if the inspected medium is homogeneous. Nevertheless, some difficulties arise in presence of interfaces (i.e, wedges, immersion, etc.): refraction effects require computing the Snell's law for every focus and element to find the fastest ray entry point in the interface. The process is easy but takes a long time. This work presents a new technique to compute the focusing delays for an equivalent virtual array that operates in the second medium only, thus avoiding any interface. It is nearly as fast as computing the focal laws in the homogeneous case and an order of magnitude faster than Snell's or Fermat's principle based methods. Furthermore, the technique is completely general and can be applied to any equipment having dynamic focusing capabilities. In fact, the technique is especially well suited for real-time focal law computing hardware.

  7. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    SciTech Connect

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  8. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  9. Fast dynamics in glass forming systems: Vibrations vs relaxation

    SciTech Connect

    Sokolov, A.P.

    1997-12-31

    Two contributions specific for the spectra of the fast dynamics in glass forming systems, a broad quasielastic scattering and the boson peak, are analyzed. It is shown that the vibrational contribution (the boson peak) decreases strongly in fragile systems. Some speculations about dependence of the degree of fragility (a la Angell) on peculiarity of the spectrum of fast dynamics are presented. The existence of some intrinsic relation between the broad quasielastic contribution and the boson peak is demonstrated from analysis of the recent neutron and Raman scattering data. It is shown that this relation can be explained in framework of the model of damped oscillator. The model ascribes the quasielastic contribution to the scattering of light or neutrons on the vibrations around the boson peak, which are damped by some relaxation channel and have a quasielastic part in their response function. It is demonstrated that the model can explain many peculiar properties of the fast dynamics in the Raman, neutron and far-infrared absorption spectra.

  10. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  11. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    PubMed

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-12-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  12. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

    PubMed Central

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-01-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  13. Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells*

    PubMed Central

    Traenkle, Bjoern; Emele, Felix; Anton, Roman; Poetz, Oliver; Haeussler, Ragna S.; Maier, Julia; Kaiser, Philipp D.; Scholz, Armin M.; Nueske, Stefan; Buchfellner, Andrea; Romer, Tina; Rothbauer, Ulrich

    2015-01-01

    β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays. PMID:25595278

  14. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    PubMed

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. PMID:26435453

  15. Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90

    SciTech Connect

    Picard, Didier . E-mail: picard@cellbio.unige.ch

    2006-01-15

    p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the 'fluorescence recovery after photobleaching' (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions.

  16. Regulation of intracellular membrane trafficking and cell dynamics by syntaxin-6

    PubMed Central

    Jung, Jae-Joon; Inamdar, Shivangi M.; Tiwari, Ajit; Choudhury, Amit

    2012-01-01

    Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions. PMID:22489884

  17. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells.

    PubMed

    Traenkle, Bjoern; Emele, Felix; Anton, Roman; Poetz, Oliver; Haeussler, Ragna S; Maier, Julia; Kaiser, Philipp D; Scholz, Armin M; Nueske, Stefan; Buchfellner, Andrea; Romer, Tina; Rothbauer, Ulrich

    2015-03-01

    β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays. PMID:25595278

  18. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery.

    PubMed

    Yang, Qinglai; Tan, Lianjiang; He, Changyu; Liu, Bingya; Xu, Yuhong; Zhu, Zhenggang; Shao, Zhifeng; Gong, Bing; Shen, Yu-Mei

    2015-04-01

    Redox-responsive micelles self-assembled from dynamic covalent block copolymers with double disulfide linkage in the backbone have been developed successfully. The amphiphilic block copolymers PEG-PLA associated with complementary H-bonding sequences can self-assemble into spherical micelles in aqueous media with sizes from 34 nm to 107 nm with different molar mass of PEG and PLA. Moreover, in vitro drug release analyses indicate that reductive environment can result in triggered drug release profiles. The glutathione (GSH) mediated intracellular drug delivery was investigated against HeLa human cervical carcinoma cell line. Flow cytometry and fluorescence microscopy measurements demonstrated that the micelles exhibited faster drug release in glutathione monoester (GSH-OEt) pretreated HeLa cells than that in the nonpretreated cells. Cytotoxicity assay of DOX-loaded micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated HeLa cells than that of the nonpretreated ones. These reduction-responsive, biodegradable and biocompatibility micelles could provide a favorable platform to construct excellent drug delivery systems for cancer therapy. PMID:25662913

  19. Measuring intracellular calcium dynamics of HeLa cells exposed to nitric oxide by microplate fluorescence reader

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Chen, Jiangxu; Yang, Hongqin; Zheng, Liqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2012-12-01

    Nitric oxide (NO) has been reported to have the ability to promote or inhibit the proliferation and metastasis of cancer cells. It appears to have an effect on inducing calcium transient, which participates in essential cellular signaling in the physiological and pathological processes. Our work was intended to study the effects of exogenous NO on intracellular calcium dynamics of HeLa cells with Fluo-3, a calcium fluorescent indicator by microplate fluorescence reader. The results showed that after NO donor was injected into the wells, intracellular Ca2+ fluorescence intensity increased significantly compared with that of control group. Furthermore, the calcium transient activated by NO was mainly due to the calcium release from intracellular calcium stores. These would be helpful to further recognize the role of NO involved in cancer cell proliferation and metastasis.

  20. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics

    PubMed Central

    Li, Xinran; Wang, Xiang; Zhang, Xiaoli; Zhao, Mingkun; Tsang, Wai Lok; Zhang, Yanling; Yau, Richard Gar Wai; Weisman, Lois S.; Xu, Haoxing

    2013-01-01

    Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phosphoinositide presumed to be localized to endosomes and lysosomes, where it recruits cytoplasmic peripheral proteins and regulates endolysosome-localized membrane channel activity. Cells lacking PI(3,5)P2 exhibit lysosomal trafficking defects, and human mutations in the PI(3,5)P2-metabolizing enzymes cause lysosome-related diseases. The spatial and temporal dynamics of PI(3,5)P2, however, remain unclear due to the lack of a reliable detection method. Of the seven known phosphoinositides, only PI(3,5)P2 binds, in the low nanomolar range, to a cytoplasmic phosphoinositide-interacting domain (ML1N) to activate late endosome and lysosome (LEL)-localized transient receptor potential Mucolipin 1 (TRPML1) channels. Here, we report the generation and characterization of a PI(3,5)P2-specific probe, generated by the fusion of fluorescence tags to the tandem repeats of ML1N. The probe was mainly localized to the membranes of Lamp1-positive compartments, and the localization pattern was dynamically altered by either mutations in the probe, or by genetically or pharmacologically manipulating the cellular levels of PI(3,5)P2. Through the use of time-lapse live-cell imaging, we found that the localization of the PI(3,5)P2 probe was regulated by serum withdrawal/addition, undergoing rapid changes immediately before membrane fusion of two LELs. Our development of a PI(3,5)P2-specific probe may facilitate studies of both intracellular signal transduction and membrane trafficking in the endosomes and lysosomes. PMID:24324172

  1. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics.

    PubMed

    Chen, Li Qiang; Xiao, Sai Jin; Hu, Ping Ping; Peng, Li; Ma, Jun; Luo, Ling Fei; Li, Yuan Fang; Huang, Cheng Zhi

    2012-04-01

    Although nanoparticles have been widely used as optical contrasts for cell imaging, the complicated prefunctionalized steps and low labeling efficiency of nanoprobes greatly inhibit their applications in cellular protein imaging. In this study, we developed a novel and general strategy that employs an aptamer not only as a recognizer for protein recognition but also as a linker for nanoreporter targeting to specifically label membrane proteins of interest and track their endocytic pathway. With this strategy, three kinds of nanoparticles, including gold nanoparticles, silver nanoparticles, and quantum dots (QDs), have been successfully targeted to the membrane proteins of interest, such as nucleolin or prion protein (PrP(C)). The following investigations on the subcellular distribution with fluorescent immunocolocalization assay indicated that PrP(C)-aptamer-QD complexes most likely internalized into cytoplasm through a classical clathrin-dependent/receptor-mediated pathway. Further single-particle tracking and trajectory analysis demonstrated that PrP(C)-aptamer-QD complexes exhibited a complex dynamic process, which involved three types of movements, including membrane diffusion, vesicle transportation, and confined diffusion, and all types of these movements were associated with distinct phases of PrP(C) endocytosis. Compared with traditional multilayer methods, our proposed aptamer-mediated strategy is simple in procedure, avoiding any complicated probe premodification and purification. In particular, the new double-color labeling strategy is unique and significant due to its superior advantages of targeting two signal reporters simultaneously in a single protein using only one aptamer. What is more important, we have constructed a general and versatile aptamer-mediated protein labeling nanoplatform that has shown great promise for future biomedical labeling and intracellular protein dynamic analysis. PMID:22423600

  2. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography

    PubMed Central

    Lee, Jonghwan; Radhakrishnan, Harsha; Wu, Weicheng; Daneshmand, Ali; Climov, Mihail; Ayata, Cenk; Boas, David A

    2013-01-01

    This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS–OCT. The technique measures both the axial and transverse velocities of CBF, whereas conventional Doppler OCT measures only the axial one. In addition, the technique produces a three-dimensional map of the diffusion coefficient quantifying nontranslational motions. In the DLS–OCT diffusion map, we observed high-diffusion spots, whose locations highly correspond to neuronal cell bodies and whose diffusion coefficient agreed with that of the motion of intracellular organelles reported in vitro in the literature. Therefore, the present method has enabled, for the first time to our knowledge, label-free imaging of the diffusion-like motion of intracellular organelles in vivo. As an example application, we used the method to monitor CBF and IM during a brief ischemic stroke, where we observed an induced persistent reduction in IM despite the recovery of CBF after stroke. This result supports that the IM measured in this study represent the cellular energy metabolism-related active motion of intracellular organelles rather than free diffusion of intracellular macromolecules. PMID:23403378

  3. Fast-growing species and sustainability (productivity and site dynamics of three fast-growing species)

    SciTech Connect

    Reddy, A.N.; Sugur, G.V.

    1992-12-31

    Growth of three fast-growing species, raised in a high rainfall zone (2000-2500 mm per annum) has been compared, and the associated site dynamics studies in the Western Ghat area of Karnataka State. Two fast-growing exotics, Acacia auriculiformis and Castuarina equisitifolia, were planted on degraded, open sites at high planting densities (5000 plants ha{sup {minus}1}), and one native fast-growing species. Dendrocalamus strictus, was planted on a good site under seasonal irrigation and wider spacing (500 plants ha{sup {minus}1}). These were studies at the age of 5 years for their comparative productivity, quantity of litter fall and changes in nutrient and microbial status. Among these species, A. auriculiformis recorded the highest total productivity closely followed by D. strictus. However, the MAI after 5 years indicated a higher productivity for D. strictus, when culm production attained harvestable size. C. equisitifolia was a close third. It was also found that D. strictus produced higher biomass at lower planting densities, under better sites and management. The litter fall and changes in nutrient status indicated the highest efficiency in A. auriculiformis, followed by C. equisitifolia. It was concluded that the higher planting density was the major contributing factor; the values were comparatively low for D. strictus mainly owing to a lower stocking density of plants.

  4. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools

    PubMed Central

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate

  5. Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes

    PubMed Central

    Lane, D.D.; Su, F.Y.; Chiu, D.Y.; Srinivasan, S.; Wilson, J.T.; Ratner, D.M.; Stayton, P.S.; Convertine, A.J.

    2014-01-01

    Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of copolymers consisting of 2-hdroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methyl ether methacrylate (FWavg ~ 950 Da) (O950) with variable comonomer compositions and molecular weights for use as polymeric scaffolds. Reactivity ratios for the monomer pair were determined to be 1.37 and 0.290 respectively. To these scaffolds trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted using carbodiimide chemistry. The resultant graft chain transfer agents (gCTA) were subsequently employed to polymerize dimethylaminoethyl methacrylate (DMAEMA) and (HPMA) between degrees of polymerization (DP) of 25 and 200. Kinetic analysis for the polymerization of DMAEMA targeting a DP of 100 from a 34 arm graft gCTA show linear Mn conversion and pseudo first order rate plots with narrow molecular weight distributions that move toward lower elution volumes with monomer conversion. Đ values for these polymerizations remain low at around 1.20 at monomer conversions as high as 70 %. pH-responsive endosomalytic brushes capable of spontaneously self-assembling into polymersomes were synthesized and a combination of dynamic light scattering (DLS), cryoTEM, and red blood cell hemolysis were employed to evaluate the aqueous solution properties of the polymeric brush as a function of pH. Successful encapsulation of ceftazidime and pH-dependent drug release properties were confirmed by HPLC. Intracellular antibiotic activity of the drug-loaded polymersomes was confirmed in a macrophage coculture model of infection with B. thailandensis and RAW 264.7 cells. PMID:26097513

  6. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation

    PubMed Central

    Roszko, Isabelle; S. Sepich, Diane; Jessen, Jason R.; Chandrasekhar, Anand; Solnica-Krezel, Lilianna

    2015-01-01

    During vertebrate gastrulation, convergence and extension movements elongate embryonic tissues anteroposteriorly and narrow them mediolaterally. Planar cell polarity (PCP) signaling is essential for mediolateral cell elongation underlying these movements, but how this polarity arises is poorly understood. We analyzed the elongation, orientation and migration behaviors of lateral mesodermal cells undergoing convergence and extension movements in wild-type zebrafish embryos and mutants for the Wnt/PCP core component Vangl2 (Trilobite). We demonstrate that Vangl2 function is required at the time when cells transition to a highly elongated and mediolaterally aligned body. vangl2 mutant cells fail to undergo this transition and to migrate along a straight path with high net speed towards the dorsal midline. Instead, vangl2 mutant cells exhibit an anterior/animal pole bias in cell body alignment and movement direction, suggesting that PCP signaling promotes effective dorsal migration in part by suppressing anterior/animalward cell polarity and movement. Endogenous Vangl2 protein accumulates at the plasma membrane of mesenchymal converging cells at the time its function is required for mediolaterally polarized cell behavior. Heterochronic cell transplantations demonstrated that Vangl2 cell membrane accumulation is stage dependent and regulated by both intrinsic factors and an extracellular signal, which is distinct from PCP signaling or other gastrulation regulators, including BMP and Nodals. Moreover, mosaic expression of fusion proteins revealed enrichment of Vangl2 at the anterior cell edges of highly mediolaterally elongated cells. These results demonstrate that the dynamic Vangl2 intracellular distribution is coordinated with and necessary for the changes in convergence and extension cell behaviors during gastrulation. PMID:26062934

  7. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy.

    PubMed

    Murray, Richard A; Qiu, Yuan; Chiodo, Fabrizio; Marradi, Marco; Penadés, Soledad; Moya, Sergio E

    2014-07-01

    The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a "prebleaching" methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc-Au-Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media. PMID:24639360

  8. New connectionist control structure for fast robot dynamic learning

    NASA Astrophysics Data System (ADS)

    Katic, Dusko; Vukobratovic, Miomir

    1992-09-01

    A major objective in this paper is the application of connectionist architectures for fast and robust on-line learning of dynamic relations used in robot control at the executive hierarchical level. The proposed new connectionist robot controllers as a new feature use decomposition of robot dynamics. In this way, this method enables the training of neural networks on the simpler input/output relations with significant reduction of learning time. The proposed controller structure comprises a form of intelligent feedforward control in the frame of decentralized control algorithm with feedback-error learning method. The other important features of these new algorithms are fast and robust convergence properties, because the problem of adjusting the weights of internal hidden units is considered as a problem of estimating parameters by recursive least squares method. From simulation examples of robot trajectory tracking it is shown that when a sufficiently trained network is desired the learning speed of the proposed algorithms is faster than that of the traditional back propagation algorithm.

  9. Intracellular Phosphate Dynamics in Muscle Measured by Magnetic Resonance Spectroscopy during Hemodialysis.

    PubMed

    Lemoine, Sandrine; Fournier, Thomas; Kocevar, Gabriel; Belloi, Amélie; Normand, Gabrielle; Ibarrola, Danielle; Sappey-Marinier, Dominique; Juillard, Laurent

    2016-07-01

    Of the 600-700 mg inorganic phosphate (Pi) removed during a 4-hour hemodialysis session, a maximum of 10% may be extracted from the extracellular space. The origin of the other 90% of removed phosphate is unknown. This study tested the hypothesis that the main source of phosphate removed during hemodialysis is the intracellular compartment. Six binephrectomized pigs each underwent one 3-hour hemodialysis session, during which the extracorporeal circulation blood flow was maintained between 100 and 150 ml/min. To determine in vivo phosphate metabolism, we performed phosphorous ((31)P) magnetic resonance spectroscopy using a 1.5-Tesla system and a surface coil placed over the gluteal muscle region. (31)P magnetic resonance spectra (repetition time =10 s; echo time =0.35 ms) were acquired every 160 seconds before, during, and after dialysis. During the dialysis sessions, plasma phosphate concentrations decreased rapidly (-30.4 %; P=0.003) and then, plateaued before increasing approximately 30 minutes before the end of the sessions; 16 mmol phosphate was removed in each session. When extracellular phosphate levels plateaued, intracellular Pi content increased significantly (11%; P<0.001). Moreover, βATP decreased significantly (P<0.001); however, calcium levels remained balanced. Results of this study show that intracellular Pi is the source of Pi removed during dialysis. The intracellular Pi increase may reflect cellular stress induced by hemodialysis and/or strong intracellular phosphate regulation. PMID:26561642

  10. CaMKII regulates intracellular Ca²⁺ dynamics in native endothelial cells.

    PubMed

    Toussaint, Fanny; Charbel, Chimène; Blanchette, Alexandre; Ledoux, Jonathan

    2015-09-01

    Localized endothelial Ca(2+) signalling, such as Ca(2+) pulsars, can modulate the contractile state of the underlying vascular smooth muscle cell through specific endothelial targets. In addition to K(Ca)3.1 as a target, Ca(2+) pulsars, an IP3R-dependent pulsatile Ca(2+) release from the endoplasmic reticulum (ER) could activate a frequency-sensitive Ca(2+)-dependent kinase such as CaMKII. In the absence of extracellular Ca(2+), acetylcholine increased endothelial CaMKII phosphorylation and activation, thereby suggesting CaMKII activation independently of Ca(2+) influx. Herein, a reciprocal relation where CaMKII controls endothelial Ca(2+) dynamics has been investigated in mesenteric arteries. Both CaMKIIα and β isoforms have been identified in endothelial cells and close proximity (<40 nm) suggests their association in heteromultimers. Intracellular Ca(2+) monitoring with high speed confocal microscopy then showed that inhibition of CaMKII with KN-93 significantly increased the population of Ca(2+) pulsars active sites (+89%), suggesting CaMKII as a major regulator of Ca(2+) pulsars in native endothelium. Mechanistic insights were then sought through the elucidation of the impact of CaMKII on ER Ca(2+) store. ER Ca(2+) emptying was accelerated by CaMKII inhibition and ER Ca(2+) content was assessed using ionomycin. Exposure to KN-93 strongly diminished ER Ca(2+) content (-61%) by relieving CaMKII-dependent inhibition of IP3 receptors (IP3R). Moreover, in situ proximity ligation assay suggested CaMKII-IP3R promiscuity, essential condition for a protein-protein interaction. Interestingly, segregation of IP3R within myoendothelial projection (MEP) appears to be isoform-specific. Hence, only IP3R type 1 and type 2 are detected within fenestrations of the internal elastic lamina, sites of MEP, whilst type 3 is absent from these structures. In summary, CaMKII seems to act as a Ca(2+)-sensitive switch of a negative feedback loop regulating endothelial Ca(2

  11. Fast and Slow Wetting Dynamics on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  12. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  13. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  14. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling

    PubMed Central

    Paul, MK; Bisht, B; Darmawan, DO; Chiou, R; Ha, VL; Wallace, WD; Chon, AC; Hegab, AE; Grogan, T; Elashoff, DA; Alva-Ornelas, JA; Gomperts, BN

    2014-01-01

    SUMMARY Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal as well an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer. PMID:24953182

  15. Dynamic Mode Decomposition of Fast Pressure Sensitive Paint Data.

    PubMed

    Ali, Mohd Y; Pandey, Anshuman; Gregory, James W

    2016-01-01

    Fast-response pressure sensitive paint (PSP) is used in this work to measure and analyze the acoustic pressure field in a rectangular cavity. The high spatial resolution and fast frequency response of PSP effectively captures the spatial and temporal detail of surface pressure resulting in the acoustic pressure field. In this work, a high-speed camera is used to generate a continuous time record of the acoustic pressure fluctuations with PSP. Since the level of the acoustic pressure is near the resolution limit of the sensor system, advanced analysis techniques are used to extract the spatial modes of the pressure field. Both dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) are compared with phase averaging for data analysis. While all three techniques effectively extract the pressure field and reduce the impact of sensor noise, DMD and POD are more robust techniques that can be applied to aperiodic or multi-frequency signals. Furthermore, DMD is better than POD at suppressing noise in particular regions of the spectrum and at effectively separating spectral energy when multiple acoustic excitation frequencies are present. PMID:27294939

  16. Fast-slow climate dynamics and peak global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  17. Dynamic Mode Decomposition of Fast Pressure Sensitive Paint Data

    PubMed Central

    Ali, Mohd Y.; Pandey, Anshuman; Gregory, James W.

    2016-01-01

    Fast-response pressure sensitive paint (PSP) is used in this work to measure and analyze the acoustic pressure field in a rectangular cavity. The high spatial resolution and fast frequency response of PSP effectively captures the spatial and temporal detail of surface pressure resulting in the acoustic pressure field. In this work, a high-speed camera is used to generate a continuous time record of the acoustic pressure fluctuations with PSP. Since the level of the acoustic pressure is near the resolution limit of the sensor system, advanced analysis techniques are used to extract the spatial modes of the pressure field. Both dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) are compared with phase averaging for data analysis. While all three techniques effectively extract the pressure field and reduce the impact of sensor noise, DMD and POD are more robust techniques that can be applied to aperiodic or multi-frequency signals. Furthermore, DMD is better than POD at suppressing noise in particular regions of the spectrum and at effectively separating spectral energy when multiple acoustic excitation frequencies are present. PMID:27294939

  18. A fast-marching like algorithm for geometrical shock dynamics

    NASA Astrophysics Data System (ADS)

    Noumir, Y.; Le Guilcher, A.; Lardjane, N.; Monneau, R.; Sarrazin, A.

    2015-03-01

    We develop a new algorithm for the computation of the Geometrical Shock Dynamics (GSD) model. The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a Cartesian grid. The proposed algorithm is based on a first order upwind finite difference scheme and reduces to a local nonlinear system of two equations solved by an iterative procedure. Reference solutions are built for a smooth radial configuration and for the 2D Riemann problem. The link between the GSD model and p-systems is given. Numerical experiments demonstrate the efficiency of the scheme and its ability to handle singularities.

  19. Fast Point-Feature Label Placement for Dynamic Visualizations

    SciTech Connect

    Mote, Kevin D.

    2008-01-21

    This paper presents a brand new approach for automated feature-point label de-confliction. It outlines a method for labeling the point-features on dynamic maps in real time without a pre-processing stage. The algorithm described provides an efficient, scalable, and exceptionally fast method of labeling interactive charts and diagrams, offering interaction speeds at multiple frames per second on maps with tens of thousands of nodes. To accomplish this, the algorithm employs an efficient approach -- called the "trellis strategy" -- along with a unique label candidate cost analysis, to determine the “least expensive” label configuration. The speed and scalability of this approach makes it suitable for the complex and ever-accelerating demands of interactive visual analytic applications.

  20. Communications overlapping in fast multipole particle dynamics methods

    SciTech Connect

    Kurzak, Jakub; Pettitt, B. Montgomery . E-mail: pettitt@uh.edu

    2005-03-01

    In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods.

  1. Dynamics of the antibody-T.cruzi competition during Chagas infection: Prognostic relevance of intracellular replication

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.; Condat, C. A.; Isasi, S. Cossy

    2005-02-01

    A recently proposed model for the competitive parasite-antibody interactions in Chagas disease is extended by separately describing the parasitic intracellular and extracellular phases. The model solutions faithfully reproduce available population data and yield predictions for parasite-induced cardiac cell damage.

  2. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  3. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  4. NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs.

    PubMed

    Mineev, Konstantin S; Goncharuk, Sergey A; Kuzmichev, Pavel K; Vilar, Marçal; Arseniev, Alexander S

    2015-08-18

    P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work, we studied the spatial structure and mobility of the transmembrane and intracellular parts of p75NTR, incorporated into lipid-protein nanodiscs of various sizes and compositions, by solution NMR spectroscopy. Our data reveal a high level of flexibility and disorder in the juxtamembrane chopper domain of p75NTR, which results in the motions of the receptor death domain being uncoupled from the motions of the transmembrane helix. Moreover, none of the intracellular domains of p75NTR demonstrated a propensity to interact with the membrane or to self-associate under the experimental conditions. The obtained data are discussed in the context of the receptor activation mechanism. PMID:26287629

  5. Intracellular and extracellular pH dynamics in the human placenta from diabetes mellitus.

    PubMed

    Araos, Joaquín; Silva, Luis; Salsoso, Rocío; Sáez, Tamara; Barros, Eric; Toledo, Fernando; Gutiérrez, Jaime; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Sobrevia, Luis

    2016-07-01

    The placenta is a vital organ whose function in diseases of pregnancy is altered, resulting in an abnormal supply of nutrients to the foetus. The lack of placental vasculature homeostasis regulation causes endothelial dysfunction and altered vascular reactivity. The proper distribution of acid- (protons (H(+))) and base-equivalents through the placenta is essential to achieve physiological homeostasis. Several membrane transport mechanisms that control H(+) distribution between the extracellular and intracellular spaces are expressed in the human placenta vascular endothelium and syncytiotrophoblast, including sodium (Na(+))/H(+) exchangers (NHEs). One member of the NHEs family is NHE isoform 1 (NHE1), whose activity results in an alkaline intracellular pH (high intracellular pH (pHi)) and an acidic extracellular pH (pHo). Increased NHE1 expression, maximal transport activity, and turnover are reported in human syncytiotrophoblasts and lymphocytes from patients with diabetes mellitus type I (DMT1), and a positive correlation between NHEs activity and plasma factors, such as that between thrombin and platelet factor 3, has been reported in diabetes mellitus type II (DMT2). However, gestational diabetes mellitus (GDM) could result in a higher sensitivity of the human placenta to acidic pHo. We summarized the findings on pHi and pHo modulation in the human placenta with an emphasis on pregnancies in which the mother diagnosed with diabetes mellitus. A potential role of NHEs, particularly NHE1, is proposed regarding placental dysfunction in DMT1, DMT2, and GDM. PMID:27324099

  6. Intracellular calcium dynamics permit a Purkinje neuron model to perform toggle and gain computations upon its inputs

    PubMed Central

    Forrest, Michael D.

    2014-01-01

    Without synaptic input, Purkinje neurons can spontaneously fire in a repeating trimodal pattern that consists of tonic spiking, bursting and quiescence. Climbing fiber input (CF) switches Purkinje neurons out of the trimodal firing pattern and toggles them between a tonic firing and a quiescent state, while setting the gain of their response to Parallel Fiber (PF) input. The basis to this transition is unclear. We investigate it using a biophysical Purkinje cell model under conditions of CF and PF input. The model can replicate these toggle and gain functions, dependent upon a novel account of intracellular calcium dynamics that we hypothesize to be applicable in real Purkinje cells. PMID:25191262

  7. Fast passage dynamic nuclear polarization on rotating solids

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva

    2012-11-01

    Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.

  8. Analysis methods for fast impurity ion dynamics data

    SciTech Connect

    Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.

    1994-08-01

    A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 {mu}s temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ``MHD dynamo``) may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column.

  9. Communications Overlapping in Fast Multipole Particle Dynamics Methods

    SciTech Connect

    Kurzak, Jakub; Pettitt, Bernard M.

    2005-03-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods.

  10. Dynamics of the fast solar tachocline. II. Migrating field

    NASA Astrophysics Data System (ADS)

    Forgács-Dajka, E.

    2004-01-01

    We present detailed numerical calculations of the fast solar tachocline based on the assumption that the dynamo field dominates over the dynamics of the tachocline. In the present paper of the series, we focus on three shortfalls of the earlier models. First, instead of the simple oscillating dipole poloidal field we study the more general magnetic field structures reminiscent of the butterfly diagram. The migrating field is prescribed as the observed axisymmetric radial magnetic field \\citep{Stenflo:ASS88,Stenflo:SSM94}. Our results are in good agreement with our analytical estimate and our previous works in \\citet{FD+P:SolPhys01,FD+P:AA02}, but the polar ``dip'' in isorotational surfaces is strongly reduced in this case. On the other hand, a more realistic model should have a magnetic diffusivity decreasing significantly inside the radiative interior, so we also explore the effect of diffusivity and magnetic Prandtl number varying with depth. We found that the downwards decreasing magnetic diffusivity and Prandtl number have no significant effect on the solution, although the temporal variation of the tachocline thickness has decreased.

  11. Coordination of Molecular Motors: From in vitro Assays to Intracellular Dynamics

    PubMed Central

    Holzbaur, Erika L.F.; Goldman, Yale E.

    2010-01-01

    Summary New technologies have emerged that enable the tracking of molecular motors and their cargos with very high resolution both in vitro and in live cells. Classic in vitro motility assays are being supplemented with assays of increasing complexity that more closely model the cellular environment. In cells, the introduction of probes such as quantum dots allows the high resolution tracking of both motors and vesicular cargos. The “bottom up” enhancement of in vitro assays and the “top down” analysis of motility inside cells are likely to converge over the next few years. Together, these studies are providing new insights into the coordination of motors during intracellular transport. PMID:20102789

  12. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution.

    PubMed

    Millar, Andrew J

    2016-04-29

    A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms. PMID:26653934

  13. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells

    PubMed Central

    Jafarnejad, M.; Cromer, W. E.; Kaunas, R. R.; Zhang, S. L.; Zawieja, D. C.

    2015-01-01

    The shear stress applied to lymphatic endothelial cells (LEC) by lymph flow changes dramatically under normal conditions as well as in response to disease conditions and immune reactions. In general, LEC are known to regulate the contraction frequency and strength of lymphatic pumping in response to shear stress. Intracellular calcium concentration ([Ca2+]i) is an important factor that regulates lymphatic contraction characteristics. In this study, we measured changes in the [Ca2+]i under different shear stress levels and determined the source of this calcium signal. Briefly, human dermal LEC were cultured in custom-made microchannels for 3 days before loading with 2 µM fura-2 AM, a ratiometric calcium dye to measure [Ca2+]i. Step changes in shear stress resulted in a rapid increase in [Ca2+]i followed by a gradual return to the basal level and sometimes below the initial baseline (45.2 ± 2.2 nM). The [Ca2+]i reached a peak at 126.2 ± 5.6 nM for 10 dyn/cm2 stimulus, whereas the peak was only 71.8 ± 5.4 nM for 1 dyn/cm2 stimulus, indicating that the calcium signal depends on the magnitude of shear stress. Removal of the extracellular calcium from the buffer or pharmocological blockade of calcium release-activated calcium (CRAC) channels significantly reduced the peak [Ca2+]i, demonstrating a role of extracellular calcium entry. Inhibition of endoplasmic reticulum (ER) calcium pumps showed the importance of intracellular calcium stores in the initiation of this signal. In conclusion, we demonstrated that the shear-mediated calcium signal is dependent on the magnitude of the shear and involves ER store calcium release and extracellular calcium entry. PMID:25617358

  14. A novel optical intracellular imaging approach for potassium dynamics in astrocytes.

    PubMed

    Rimmele, Theresa S; Chatton, Jean-Yves

    2014-01-01

    Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution. PMID:25275375

  15. A Novel Optical Intracellular Imaging Approach for Potassium Dynamics in Astrocytes

    PubMed Central

    Rimmele, Theresa S.; Chatton, Jean-Yves

    2014-01-01

    Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution. PMID:25275375

  16. The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into Microsporidian Genome Dynamics and Reductive Evolution

    PubMed Central

    Heinz, Eva; Williams, Tom A.; Nakjang, Sirintra; Noël, Christophe J.; Swan, Daniel C.; Goldberg, Alina V.; Harris, Simon R.; Weinmaier, Thomas; Markert, Stephanie; Becher, Dörte; Bernhardt, Jörg; Dagan, Tal; Hacker, Christian; Lucocq, John M.; Schweder, Thomas; Rattei, Thomas; Hall, Neil; Hirt, Robert P.; Embley, T. Martin

    2012-01-01

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but

  17. Molecular Features Contributing to Virus-Independent Intracellular Localization and Dynamic Behavior of the Herpesvirus Transport Protein US9

    PubMed Central

    Pedrazzi, Manuela; Nash, Bradley; Meucci, Olimpia; Brandimarti, Renato

    2014-01-01

    Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining) this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts), defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36) have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport. PMID:25133647

  18. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  19. A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins

    PubMed Central

    Kuzin, Alexander P.; Lew, Scott; Seetharaman, Jayaraman; Acton, Thomas B.; Kornhaber, Gregory J.; Xiao, Rong; Montelione, Gaetano Thomas; Tong, Liang; Crews, Craig M.

    2014-01-01

    Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds. PMID:23978068

  20. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics.

    PubMed

    Hirokawa, Nobutaka; Noda, Yasuko

    2008-07-01

    Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules. PMID:18626067

  1. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation.

    PubMed

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-05-19

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion. PMID:21386438

  2. Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features

    PubMed Central

    Makadia, Hirenkumar K.; Schwaber, James S.; Vadigepalli, Rajanikanth

    2015-01-01

    Cell signaling dynamics and transcriptional regulatory activities are variable within specific cell types responding to an identical stimulus. In addition to studying the network interactions, there is much interest in utilizing single cell scale data to elucidate the non-random aspects of the variability involved in cellular decision making. Previous studies have considered the information transfer between the signaling and transcriptional domains based on an instantaneous relationship between the molecular activities. These studies predict a limited binary on/off encoding mechanism which underestimates the complexity of biological information processing, and hence the utility of single cell resolution data. Here we pursue a novel strategy that reformulates the information transfer problem as involving dynamic features of signaling rather than molecular abundances. We pursue a computational approach to test if and how the transcriptional regulatory activity patterns can be informative of the temporal history of signaling. Our analysis reveals (1) the dynamic features of signaling that significantly alter transcriptional regulatory patterns (encoding), and (2) the temporal history of signaling that can be inferred from single cell scale snapshots of transcriptional activity (decoding). Immediate early gene expression patterns were informative of signaling peak retention kinetics, whereas transcription factor activity patterns were informative of activation and deactivation kinetics of signaling. Moreover, the information processing aspects varied across the network, with each component encoding a selective subset of the dynamic signaling features. We developed novel sensitivity and information transfer maps to unravel the dynamic multiplexing of signaling features at each of these network components. Unsupervised clustering of the maps revealed two groups that aligned with network motifs distinguished by transcriptional feedforward vs feedback interactions. Our new

  3. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  4. Suppression of dynamics and frequency synchronization in coupled slow and fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Kajari; Ambika, G.

    2016-06-01

    We present our study on the emergent states of two interacting nonlinear systems with differing dynamical time scales. We find that the inability of the interacting systems to fall in step leads to difference in phase as well as change in amplitude. If the mismatch is small, the systems settle to a frequency synchronized state with constant phase difference. But as mismatch in time scale increases, the systems have to compromise to a state of no oscillations. We illustrate this for standard nonlinear systems and identify the regions of quenched dynamics in the parameter plane. The transition curves to this state are studied analytically and confirmed by direct numerical simulations. As an important special case, we revisit the well-known model of coupled ocean-atmosphere system used in climate studies for the interactive dynamics of a fast oscillating atmosphere and slowly changing ocean. Our study in this context indicates occurrence of multi stable periodic states and steady states of convection coexisting in the system, with a complex basin structure.

  5. Spatial stochastic modeling of intracellular Ca2+ dynamics using two-regime methods

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Robinson, Martin; Erban, Radek

    2014-03-01

    The signaling pathways in many cell types depend on the controlled release of calcium ions from the endoplasmatic reticulum (ER) into the cytoplasm, via clusters of inisitol triphosphate (IP3) receptor channels. At low concentrations, Ca2+ ions facilitate channel activation, while acting as inhibitory agents at high concentrations. An activation event causes the opening of other channels in a cluster, resulting in a calcium puff. We simulate calcium ion dynamics using a recently-developed hybrid two-regime technique, wherein the positions of calcium ions in the vicinity of a channel cluster are tracked by employing an off-lattice Brownian dynamics algorithm. An efficient compartment-based algorithm is used in the remainder of the computational domain to correctly capture the diffusive spread of ions. We characterize calcium puffs via the distributions of inter-puff times and amplitudes and investigate the influence of diffusive noise on the puff characteristics by comparing our results with data obtained from an effective non-spatial model. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 239870.

  6. Compression dynamics of an indirect drive fast ignition target

    SciTech Connect

    R.B. Stephens; S.P. Hatchett; R.E. Turner; K.A. Tanaka; R. Kodama; R. Kodama; J.M. Soures

    2002-11-12

    In an x-ray driven reentrant cone fast ignition target the x-ray spectrum contains a high energy component that cause preheating of the reentrant cone and mixing of its gold into the collapsing shell. Direct laser drive might avoid this problem.

  7. Dynamic speckle-interferometer for intracellular processes analyses at high optical magnification

    NASA Astrophysics Data System (ADS)

    Baharev, A. A.; Vladimirov, A. P.; Malygin, A. S.; Mikhailova, Y. A.; Novoselova, I. A.; Yakin, D. I.; Druzhinin, A. V.

    2015-05-01

    At present work dynamic of biospeckles is used for studying processes occurring in cells which arranged in the one layer. The basis of many diseases is changes in the structural and functional properties of the molecular cells components as caused by the influence of external factors and internal functional disorders. Purpose of work is approbation of speckle-interferometer designed for the analysis of cellular metabolism in individual cells. As a parameter, characterizing the metabolic activity of cells used the value of the correlation coefficient (η) of optical signals proportional to the radiation intensity I, recorded at two points in time t. At 320x magnification for the cell diameter of 20 microns value η can be determined in the area size of 6 microns.

  8. Dynamics of a plant RNA virus intracellular accumulation: stamping machine vs. geometric replication.

    PubMed

    Martínez, Fernando; Sardanyés, Josep; Elena, Santiago F; Daròs, José-Antonio

    2011-07-01

    The tremendous evolutionary potential of RNA viruses allows them to thrive despite host defense mechanisms and endows them with properties such as emergence, host switching, and virulence. The frequency of mutant viruses after an infectious process results from the interplay between the error rate of the viral replicase, from purifying mechanisms acting after transcription on aberrant RNAs, and from the amplification dynamics of virus RNA positive (+) and negative (-) strands. Two extreme scenarios describing viral RNA amplification are the geometric growth, in which each RNA strand serves as template for the synthesis of complementary strands with the same efficiency, and the stamping machine, where a strand is reiteratively used as template to synthesize multiple copies of the complementary. The resulting mutation frequencies are completely different, being geometric growth largely more mutagenic than stamping machine. In this work we evaluate the contribution of geometric growth and stamping machine to the overall genome amplification of the plant (+)-strand RNA virus turnip mosaic virus (TuMV). By means of transfection experiments of Nicotiana benthamiana protoplasts with a TuMV cDNA infectious clone and by using strand-specific quantitative real-time PCR, we determined the amplification dynamics of viral (+) and (-) RNA during a single-cell infectious process. A mathematical model describing the amplification of each viral strand was fitted to the data. Analyses of the model parameters showed that TuMV (+) and (-) RNA amplification occurs through a mixed strategy with ∼93% of genomes produced via stamping machine and only ∼7% resulting from geometric growth. PMID:21515574

  9. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells.

    PubMed

    Goode, Angela E; Gonzalez Carter, Daniel A; Motskin, Michael; Pienaar, Ilse S; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P; Shaffer, Milo S P; Dexter, David T; Porter, Alexandra E

    2015-11-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  10. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    PubMed Central

    Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.

    2016-01-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  11. Intracellular microlasers

    PubMed Central

    Humar, Matjaž; Yun, Seok Hyun

    2015-01-01

    Optical microresonators1 which confine light within a small cavity are widely exploited for various applications ranging from the realization of lasers2 and nonlinear devices3, 4, 5 to biochemical and optomechanical sensing6, 7, 8, 9, 10, 11. Here we employ microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explored two distinct types of microresonators: soft and hard, that support whispering-gallery modes (WGM). Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (~500 pN/μm2) and its dynamic fluctuations at a sensitivity of 20 pN/μm2 (20 Pa). In a second form, WGMs within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes. PMID:26417383

  12. Modeling the Intracellular Dynamics of Influenza Virus Replication To Understand the Control of Viral RNA Synthesis

    PubMed Central

    Frensing, Timo; Reichl, Udo

    2012-01-01

    Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation. PMID:22593159

  13. Intracellular dialysis disrupts Zn2+ dynamics and enables selective detection of Zn2+ influx in brain slice preparations.

    PubMed

    Aiba, Isamu; West, Adrian K; Sheline, Christian T; Shuttleworth, C William

    2013-06-01

    We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis. Release from oxidation-sensitive Zn(2+) pools was reduced by standard dialysis, when compared with responses in neurons with brief dialysis. The dialysis effects were partly reversed by inclusion of recombinant metallothionein-3 in the dialysis solution. These findings suggested that extensive dialysis could be exploited for selective detection of transmembrane Zn(2+) influx. Different dialysis conditions were then used to probe responses to synaptic stimulation. Under standard dialysis conditions, synaptic stimuli generated significant FluoZin-3 signals in wild-type (WT) preparations, but responses were almost absent in preparations lacking vesicular Zn(2+) (ZnT3-KO). In contrast, under brief dialysis conditions, intracellular Zn(2+) transients were very similar in WT and ZnT3-KO preparations. This suggests that both intracellular release and transmembrane flux can contribute to intracellular Zn(2+) accumulation after synaptic stimulation. These results demonstrate significant confounds and potential use of intracellular dialysis to investigate intracellular Zn(2+) accumulation mechanisms. PMID:23517525

  14. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  15. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device.

    PubMed

    Isobe, M; Ogawa, K; Miyake, H; Hayashi, H; Kobuchi, T; Nakano, Y; Watanabe, K; Uritani, A; Misawa, T; Nishitani, T; Tomitaka, M; Kumagai, T; Mashiyama, Y; Ito, D; Kono, S; Yamauchi, M; Takeiri, Y

    2014-11-01

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10(9) counts/s. Because a maximum total neutron emission rate over 1 × 10(16) n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design. PMID:25430293

  16. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect

    Isobe, M. Takeiri, Y.; Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T.; Nakano, Y.; Watanabe, K.; Uritani, A.; Misawa, T.; Nishitani, T.; Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S.; Yamauchi, M.

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  17. Influenza virus intracellular replication dynamics, release kinetics, and particle morphology during propagation in MDCK cells.

    PubMed

    Frensing, Timo; Kupke, Sascha Y; Bachmann, Mandy; Fritzsche, Susanne; Gallo-Ramirez, Lili E; Reichl, Udo

    2016-08-01

    Influenza viruses are respiratory pathogens and can cause severe disease. The best protection against influenza is provided by annual vaccination. These vaccines are produced in embryonated chicken eggs or using continuous animal cell lines. The latter processes are more flexible and scalable to meet the growing global demand. However, virus production in cell cultures is more expensive. Hence, further research is needed to make these processes more cost-effective and robust. We studied influenza virus replication dynamics to identify factors that limit the virus yield in adherent Madin-Darby canine kidney (MDCK) cells. The cell cycle stage of MDCK cells had no impact during early infection. Yet, our results showed that the influenza virus RNA synthesis levels out already 4 h post infection at a time when viral genome segments are exported from the nucleus. Nevertheless, virus release occurred at a constant rate in the following 16 h. Thereafter, the production of infectious viruses dramatically decreased, but cells continued to produce particles contributing to the hemagglutination (HA) titer. The majority of these particles from the late phase of infection were deformed or broken virus particles as well as large membranous structures decorated with viral surface proteins. These changes in particle characteristics and morphology need to be considered for the optimization of influenza virus production and vaccine purification steps. Moreover, our data suggest that in order to achieve higher cell-specific yields, a prolonged phase of viral RNA synthesis and/or a more efficient release of influenza virus particles is required. PMID:27129532

  18. Fast structural dynamics in reduced and oxidized cytochrome c.

    PubMed

    Liu, Weixia; Rumbley, Jon N; Englander, S Walter; Wand, A Joshua

    2009-03-01

    The sub-nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide (15)N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c. PMID:19241377

  19. A fast recursive algorithm for molecular dynamics simulation

    NASA Technical Reports Server (NTRS)

    Jain, A.; Vaidehi, N.; Rodriguez, G.

    1993-01-01

    The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.

  20. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

    SciTech Connect

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  1. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Salewski, M.; Bindslev, H.; Bürger, A.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Koslowski, H. R.; Krämer-Flecken, A.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; TEXTOR Team

    2011-06-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations interact strongly with the fast-ion population in a wide range of plasma parameters. Part of the ion phase space density oscillates out of phase with the sawtooth oscillation during hydrogen neutral beam injection (NBI). These oscillations most likely originate from fast hydrogen ions with energies close to the full injection energy. At lower energies passing fast ions in the plasma centre are strongly redistributed at the time of sawtooth collapse but no redistribution of trapped fast ions is observed. The redistribution of fast ions from deuterium NBI in the plasma centre is found to vary throughout velocity space. The reduction is most pronounced for passing ions. We find no evidence of inverted sawteeth outside the sawtooth inversion surface in the fast-ion distribution function.

  2. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  3. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  4. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  5. Ohm's law in the fast lane: general relatiivistic charge dynamics

    NASA Technical Reports Server (NTRS)

    Meier, D.

    2004-01-01

    Fully relativistic and causal equations for the flow of charge in curved spacetime are derived. It is believed that this is the first set of equations to be published that correctly describes the flow of charge, as well as the evolution of the electromagnetic field, in highly dynamical relativistic environments on timescales much shorter than the collapse time (GM/c3).

  6. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. PMID:26117286

  7. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  8. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering.

    PubMed

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2006-11-17

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown to be in close agreement with modeling results. PMID:17155690

  9. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  10. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  11. Nonadiabatic quantum state engineering driven by fast quench dynamics

    NASA Astrophysics Data System (ADS)

    Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.

    2014-02-01

    There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.

  12. Spatial Heat Maps from Fast Information Matching of Fast and Slow Degrees of Freedom: Application to Molecular Dynamics Simulations.

    PubMed

    Kovacs, Julio A; Wriggers, Willy

    2016-08-25

    We introduce a fast information matching (FIM) method for transforming time domain data into spatial images through handshaking between fast and slow degrees of freedom. The analytics takes advantage of the detailed time series available from biomolecular computer simulations, and it yields spatial heat maps that can be visualized on 3D molecular structures or in the form of interaction networks. The speed of our efficient mutual information solver is on the order of a basic Pearson cross-correlation calculation. We demonstrate that the FIM method is superior to linear cross-correlation for the detection of nonlinear dependence in challenging situations where measures for the global dynamics (the "activity") diverge. The analytics is applied to the detection of hinge-bending hot spots and to the prediction of pairwise contacts between residues that are relevant for the global activity exhibited by the molecular dynamics (MD) trajectories. Application examples from various MD laboratories include the millisecond bovine pancreatic trypsin inhibitor (BPTI) trajectory using canonical MD, a Gaussian accelerated MD folding trajectory of chignolin, and the heat-induced unfolding of engrailed homeodomain (EnHD). The FIM implementation will be freely disseminated with our open-source package, TimeScapes. PMID:27169521

  13. Fast parallel algorithms for short-range molecular dynamics

    SciTech Connect

    Plimpton, S.

    1993-05-01

    Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

  14. Flood Regime Dynamics with Slow-Fast Landscape-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Blöschl, Günter

    2015-04-01

    The dynamical evolution of flood regimes is evaluated in the general case whereby floods interact nonlinearly with coevolving climate and landscape factors at different scales. For that purpose, a spatiotemporal analysis of the dynamic flood response to precipitation changes is conducted and a slow-fast nonlinear dynamical model is built linking flood regime dynamics with climate, landscape and their feedbacks. These involve nonlinear scale interactions, with landform evolution processes taking place at the millennial scale (slow dynamics), and climate adjusting in years to decades (fast dynamics). A dynamic coevolution index is introduced relating spatiotemporal symmetry with relative characteristic celerities, which need to be taken into account in hydrological space-time trading. Coevolution is expressed here by the scale interaction between slow and fast dynamics, represented respectively by spatial and temporal characteristics of the hydroclimate dynamics. The spatiotemporal analysis shows that in general floods are more responsive to spatial (regional) than to temporal (decadal) variability in its dominant controls, except in stable hydroclimatic regions. In fact, on one hand catchments from stable dry lowlands and high wetlands exhibit similarity between spatial and temporal relative rates of change (spatiotemporal symmetry) and low landscape-climate codependence, suggesting they are not coevolving significantly. On the other hand, intermediate, dynamically evolving regions show differences between those sensitivities (symmetry breaks) and higher landscape-climate codependence, in line with undergoing coevolution. The break of symmetry is an emerging behaviour from nonlinear dynamic feedbacks within the hydroclimate system. The dynamical model captures emerging features of the flood regime dynamics and nonlinear landscape-climate feedbacks, supporting the assessment of spatiotemporally asymmetric flood change. Moreover, it informs on the precipitation and

  15. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    PubMed

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  16. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    PubMed Central

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  17. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  18. Hilbert phase microscopy for investigating fast dynamics in transparent systems

    NASA Astrophysics Data System (ADS)

    Ikeda, Takahiro; Popescu, Gabriel; Dasari, Ramachandra R.; Feld, Michael S.

    2005-05-01

    We introduce Hilbert phase microscopy (HPM) as a novel optical technique for measuring high transverse resolution quantitative phase images associated with optically transparent objects. Because of its single-shot nature, HPM is suitable for investigating rapid phenomena that take place in transparent structures such as biological cells. The potential of this technique for studying biological systems is demonstrated with measurements of red blood cells, and its ability to quantify dynamic processes on a millisecond scale is exemplified with measurements of evaporating micrometer-sized water droplets.

  19. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  20. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    PubMed

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  1. Heterogeneous Intracellular Trafficking Dynamics of Brain-Derived Neurotrophic Factor Complexes in the Neuronal Soma Revealed by Single Quantum Dot Tracking

    PubMed Central

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A.; Vu, Tania Q.

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  2. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  3. Fast Search for Dynamic Multi-Relational Graphs

    SciTech Connect

    Choudhury, Sutanay; Holder, Larry; Chin, George; Feo, John T.

    2013-06-23

    Acting on time-critical events by processing ever growing social media or news streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Continuous queries or techniques to search for rare events that typically arise in monitoring applications have been studied extensively for relational databases. This work is dedicated to answer the question that emerges naturally: how can we efficiently execute a continuous query on a dynamic graph? This paper presents an exact subgraph search algorithm that exploits the temporal characteristics of representative queries for online news or social media monitoring. The algorithm is based on a novel data structure called the that leverages the structural and semantic characteristics of the underlying multi-relational graph. The paper concludes with extensive experimentation on several real-world datasets that demonstrates the validity of this approach.

  4. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator.

    PubMed

    Zülke, Alana A; Varela, Hamilton

    2016-01-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks. PMID:27079514

  5. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator

    NASA Astrophysics Data System (ADS)

    Zülke, Alana A.; Varela, Hamilton

    2016-04-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks.

  6. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator

    PubMed Central

    Zülke, Alana A.; Varela, Hamilton

    2016-01-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks. PMID:27079514

  7. Fast rendering of forest ecosystems with dynamic global illumination

    NASA Astrophysics Data System (ADS)

    Steele, Jay Edward

    Real-time rendering of large-scale, forest ecosystems remains a challenging problem, in that important global illumination effects, such as leaf transparency and inter-object light scattering, are difficult to capture, given tight timing constraints and scenes that typically contain hundreds of millions of primitives. We propose a new lighting model, adapted from a model previously used to light convective clouds and other participating media, together with GPU ray tracing, in order to achieve these global illumination effects while maintaining near real-time performance. The lighting model is based on a lattice-Boltzmann method in which reflectance, transmittance, and absorption parameters are taken from measurements of real plants. The lighting model is solved as a preprocessing step, requires only seconds on a single GPU, and allows dynamic lighting changes at run-time. The ray tracing engine, which runs on one or multiple GPUs, combines multiple acceleration structures to achieve near real-time performance for large, complex scenes. Both the preprocessing step and the ray tracing engine make extensive use of NVIDIA's Compute Unified Device Architecture (CUDA).

  8. FAST TRACK COMMUNICATION: Local Hawking temperature for dynamical black holes

    NASA Astrophysics Data System (ADS)

    Hayward, S. A.; Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.

    2009-03-01

    A local Hawking temperature is derived for any future outer trapping horizon in spherical symmetry, using a Hamilton Jacobi variant of the Parikh Wilczek tunneling method. It is given by a dynamical surface gravity as defined geometrically. The operational meaning of the temperature is that Kodama observers just outside the horizon measure an invariantly redshifted temperature, diverging at the horizon itself. In static, asymptotically flat cases, the Hawking temperature as usually defined by the Killing vector agrees in standard cases, but generally differs by a relative redshift factor between the horizon and infinity, this being the temperature measured by static observers at infinity. Likewise, the geometrical surface gravity reduces to the Newtonian surface gravity in the Newtonian limit, while the Killing definition instead reflects measurements at infinity. This may resolve a long-standing puzzle concerning the Hawking temperature for the extremal limit of the charged stringy black hole, namely that it is the local temperature which vanishes. In general, this confirms the quasi-stationary picture of black-hole evaporation in early stages. However, the geometrical surface gravity is generally not the surface gravity of a static black hole with the same parameters.

  9. A fast inverse dynamics model of walking for use in optimisation studies.

    PubMed

    Salehi, Hadi; Ren, Lei; Howard, David

    2016-08-01

    Computer simulation of human gait, based on measured motion data, is a well-established technique in biomechanics. However, optimisation studies requiring many iterative gait cycle simulations have not yet found widespread application because of their high computational cost. Therefore, a computationally efficient inverse dynamics model of 3D human gait has been designed and compared with an equivalent model, created using a commercial multi-body dynamics package. The fast inverse dynamics model described in this paper led to an eight fold increase in execution speed. Sufficient detail is provided to allow readers to implement the model themselves. PMID:26745213

  10. A real-time dynamic holographic material using a fast photochromic molecule

    PubMed Central

    Ishii, Norihito; Kato, Tetsuya; Abe, Jiro

    2012-01-01

    We have developed a real-time, dynamic holographic material that exhibits rapid colouration upon irradiation with UV light and successive fast thermal bleaching within tens of milliseconds at room temperature. Photochromic polymer films were prepared by a simple solution-casting method from the benzene solution of the mixture of the photochromic molecule, poly(ethyl acrylate), and poly(phenoxyethyl acrylate). The real-time control of holographic images using the photochromic polymer film yields a speed equivalent to the time resolution of the human eye. This new type of dynamic holographic material based on fast photochromism opens up an exciting new area of research in the future development of a large dynamic 3D display. PMID:23139865

  11. A real-time dynamic holographic material using a fast photochromic molecule

    NASA Astrophysics Data System (ADS)

    Ishii, Norihito; Kato, Tetsuya; Abe, Jiro

    2012-11-01

    We have developed a real-time, dynamic holographic material that exhibits rapid colouration upon irradiation with UV light and successive fast thermal bleaching within tens of milliseconds at room temperature. Photochromic polymer films were prepared by a simple solution-casting method from the benzene solution of the mixture of the photochromic molecule, poly(ethyl acrylate), and poly(phenoxyethyl acrylate). The real-time control of holographic images using the photochromic polymer film yields a speed equivalent to the time resolution of the human eye. This new type of dynamic holographic material based on fast photochromism opens up an exciting new area of research in the future development of a large dynamic 3D display.

  12. Fast-track extreme event attribution: How fast can we disentangle thermodynamic (forced) and dynamic (internal) contributions?

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2016-04-01

    provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.

  13. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE PAGESBeta

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica A.; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2013-12-02

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specificmore » fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  14. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    SciTech Connect

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica A.; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2013-12-02

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes

  15. Fast photochromism in polymer matrix with plasticizer and real-time dynamic holographic properties

    NASA Astrophysics Data System (ADS)

    Ishii, Norihito; Abe, Jiro

    2013-04-01

    We have developed a photochromic polymer film for the use of real-time dynamic hologram, fabricated by the plasticized polymer doped with the fast photochromic molecule. The addition of a plasticizer into the conventional polymer is proved to be effective to improve the photochromic performances for the polymer film doped with the fast photochromic molecule that shows instantaneous coloration upon exposure to UV light and rapid fading in the dark. The plasticized photochromic polymers enable the real-time control of the writing and erasing of a holographic grating and show a higher recording sensitivity compared with other organic holographic materials.

  16. Real-Time Monitoring the Spatiotemporal Dynamics of Intracellular cGMP in Vascular Smooth Muscle Cells

    PubMed Central

    Held, Kara F.; Dostmann, Wolfgang R.

    2016-01-01

    Real-time and noninvasive imaging of intracellular second messengers in mammalian cells, while preserving their in vivo phenotype, requires biosensors of exquisite constitution. Here we provide the methodology for utilizing the single wavelength cGMP-biosensor δ-FlincG in aortic vascular smooth muscle cells. PMID:23709030

  17. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian.

    PubMed

    Pittman, S M; Tannenbaum, E; Heller, E J

    2016-08-01

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm(-1) peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol'd diffusion, which connects different regions of phase-space by a resonance network known as the Arnol'd web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep. Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol'd web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling. PMID:27497557

  18. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian

    NASA Astrophysics Data System (ADS)

    Pittman, S. M.; Tannenbaum, E.; Heller, E. J.

    2016-08-01

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm-1 peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol'd diffusion, which connects different regions of phase-space by a resonance network known as the Arnol'd web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep. Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol'd web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.

  19. Coordinated Action of Fast and Slow Reserves for Optimal Sequential and Dynamic Emergency Reserve Activation

    NASA Astrophysics Data System (ADS)

    Salkuti, Surender Reddy; Bijwe, P. R.; Abhyankar, A. R.

    2016-04-01

    This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency situation, using coordinated action of fast and slow reserves, for secure operation with minimum overall cost. This paper considers the reserves supplied by generators (spinning reserves) and loads (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The simulation studies are performed on IEEE 30, 57 and 300 bus test systems to demonstrate the advantage of proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

  20. System Dynamics and Control System for a High Bandwidth Rotary Actuator and Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2005-08-05

    This paper explores some of the system dynamics and control issues for a short-stroke rotary actuator that we designed and tested for a new fast tool servo referred to as the 10 kHz rotary fast tool servo. The use of a fast tool servo (FTS) with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. In a previous paper [1] the authors provide details on the mechanical design and trade-off issues that were considered during the design phase for the fast tool servo. At the heart of that machine is the normal-stress variable reluctance rotary actuator described in more detail in this paper. In addition to producing the torque that is needed for the 10 kHz rotary fast tool servo, the actuator produces a force and is therefore referred to as a hybrid rotary/linear actuator. The actuator uses bias and steering magnetic fluxes for linearizing the torque versus current relationship. Certain types of electric engraving heads use an actuator similar in principle to our hybrid actuator. In the case of the engraving heads, the actuator is used to produce and sustain a resonating mechanical oscillator. This is in sharp contrast to the arbitrary trajectory point-to-point closed-loop control of the tool tip that we demonstrate with our actuator and the 10 kHz FTS. Furthermore, we demonstrate closed-loop control of both the rotary and linear degrees of freedom for our actuator. We provide a brief summary of the demonstrated performance of the 10 kHz rotary fast tool servo, and discuss the magnetic circuit for the actuator and some of the related control issues. Montesanti [2] provides a more detailed and thorough discussion on the 10 kHz rotary fast tool servo, the hybrid actuator, and the pertinent prior art.

  1. An efficient scheme for sampling fast dynamics at a low average data acquisition rate

    NASA Astrophysics Data System (ADS)

    Philippe, A.; Aime, S.; Roger, V.; Jelinek, R.; Prévot, G.; Berthier, L.; Cipelletti, L.

    2016-02-01

    We introduce a temporal scheme for data sampling, based on a variable delay between two successive data acquisitions. The scheme is designed so as to reduce the average data flow rate, while still retaining the information on the data evolution on fast time scales. The practical implementation of the scheme is discussed and demonstrated in light scattering and microscopy experiments that probe the dynamics of colloidal suspensions using CMOS or CCD cameras as detectors.

  2. A fast chaotic cryptographic scheme with dynamic look-up table

    NASA Astrophysics Data System (ADS)

    Wong, K. W.

    2002-06-01

    We propose a fast chaotic cryptographic scheme based on iterating a logistic map. In particular, no random numbers need to be generated and the look-up table used in the cryptographic process is updated dynamically. Simulation results show that the proposed method leads to a substantial reduction in the encryption and decryption time. As a result, chaotic cryptography becomes more practical in the secure transmission of large multi-media files over public data communication network.

  3. Imaging Ultra-fast Molecular Dynamics in Free Electron Laser Field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Jiang, Y. H.

    The free electron laser (FEL) provides the coherent, brilliant and ultrashort light pulse in short wavelength (extreme ultraviolet and X-ray) regimes, opening up possibilities to study ultra-fast molecular dynamics in photo-induced chemical reactions with new methodologies. In this chapter, we introduce the time-resolved pump-probe experiments on gas-phase targets with FEL facilities to image the nuclear and electronic motions in molecular reactions, which serve as a benchmark for further FEL applications like coherent diffraction imaging and coherent control of functional dynamics in complex molecular reactions.

  4. Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation.

    PubMed

    Mitsis, G D; Zhang, R; Levine, B D; Marmarelis, V Z

    2002-04-01

    Dynamic autoregulation of cerebral hemodynamics in healthy humans is studied using the novel methodology of the Laguerre-Volterra network for systems with fast and slow dynamics (Mitsis, G. D., and V. Z. Marmarelis, Ann. Biomed. Eng. 30:272-281, 2002). Since cerebral autoregulation is mediated by various physiological mechanisms with significantly different time constants, it is used to demonstrate the efficacy of the new method. Results are presented in the time and frequency domains and reveal that cerebral autoregulation is a nonlinear and dynamic (frequency-dependent) system with considerable nonstationarities. Quantification of the latter reveals greater variability in specific frequency bands for each subject in the low and middle frequency range (below 0.1 Hz). The nonlinear dynamics are prominent also in the low and middle frequency ranges, where the frequency response of the system exhibits reduced gain. PMID:12086006

  5. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.

    PubMed

    Suzuki, Yuki; Higuchi, Yuji; Hizume, Kohji; Yokokawa, Masatoshi; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio

    2010-05-01

    Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within approximately 50nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein-DNA interaction in sub-seconds time scale. PMID:20236766

  6. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.

    PubMed

    Zhigalov, Alexander; Arnulfo, Gabriele; Nobili, Lino; Palva, Satu; Palva, J Matias

    2015-04-01

    A growing body of evidence suggests that the neuronal dynamics are poised at criticality. Neuronal avalanches and long-range temporal correlations (LRTCs) are hallmarks of such critical dynamics in neuronal activity and occur at fast (subsecond) and slow (seconds to hours) timescales, respectively. The critical dynamics at different timescales can be characterized by their power-law scaling exponents. However, insight into the avalanche dynamics and LRTCs in the human brain has been largely obtained with sensor-level MEG and EEG recordings, which yield only limited anatomical insight and results confounded by signal mixing. We investigated here the relationship between the human neuronal dynamics at fast and slow timescales using both source-reconstructed MEG and intracranial stereotactical electroencephalography (SEEG). Both MEG and SEEG revealed avalanche dynamics that were characterized parameter-dependently by power-law or truncated-power-law size distributions. Both methods also revealed robust LRTCs throughout the neocortex with distinct scaling exponents in different functional brain systems and frequency bands. The exponents of power-law regimen neuronal avalanches and LRTCs were strongly correlated across subjects. Qualitatively similar power-law correlations were also observed in surrogate data without spatial correlations but with scaling exponents distinct from those of original data. Furthermore, we found that LRTCs in the autonomous nervous system, as indexed by heart-rate variability, were correlated in a complex manner with cortical neuronal avalanches and LRTCs in MEG but not SEEG. These scalp and intracranial data hence show that power-law scaling behavior is a pervasive but neuroanatomically inhomogeneous property of neuronal dynamics in central and autonomous nervous systems. PMID:25834062

  7. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  8. Fast Imaging Technique to Study Drop Impact Dynamics of Non-Newtonian Fluids

    PubMed Central

    Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich

    2014-01-01

    In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena. PMID:24637404

  9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

    PubMed

    Wagnac, Eric; Arnoux, Pierre-Jean; Garo, Anaïs; El-Rich, Marwan; Aubin, Carl-Eric

    2011-10-01

    Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with

  10. Analysis of the Ultra-fast Switching Dynamics in a Hybrid MOSFET/Driver

    SciTech Connect

    Tang, T.; Burkhart, C.; /SLAC

    2011-08-17

    The turn-on dynamics of a power MOSFET during ultra-fast, {approx} ns, switching are discussed in this paper. The testing was performed using a custom hybrid MOSFET/Driver module, which was fabricated by directly assembling die-form components, power MOSFET and drivers, on a printed circuit board. By using die-form components, the hybrid approach substantially reduces parasitic inductance, which facilitates ultra-fast switching. The measured turn on time of the hybrid module with a resistive load is 1.2 ns with an applied voltage of 1000 V and drain current of 33 A. Detailed analysis of the switching waveforms reveals that switching behavior must be interpreted differently in the ultra-fast regime. For example, the gate threshold voltage to turn on the device is observed to increase as the switching time decreases. Further analysis and simulation of MOSFET switching behavior shows that the minimum turn on time scales with the product of the drain-source on resistance and drain-source capacitance, R{sub DS(on)}C{sub OSS}. This information will be useful in power MOSFET selection and gate driver design for ultra-fast switching applications.

  11. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma.

    PubMed

    Banerjee, Santanu; Zushi, H; Nishino, N; Mishra, K; Onchi, T; Kuzmin, A; Nagashima, Y; Hanada, K; Nakamura, K; Idei, H; Hasegawa, M; Fujisawa, A

    2015-03-01

    An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported. PMID:25832227

  12. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit

    NASA Astrophysics Data System (ADS)

    Liao, Jie

    2015-12-01

    A nonlinear kinetic chemotaxis model with internal dynamics incorporating signal transduction and adaptation is considered. This paper is concerned with: (i) the global solution for this model, and, (ii) its fast adaptation limit to Othmer-Dunbar-Alt type model. This limit gives some insight to the molecular origin of the chemotaxis behaviour. First, by using the Schauder fixed point theorem, the global existence of weak solution is proved based on detailed a priori estimates, under quite general assumptions. However, the Schauder theorem does not provide uniqueness, so additional analysis is required to be developed for uniqueness. Next, the fast adaptation limit of this model is derived by extracting a weak convergence subsequence in measure space. For this limit, the first difficulty is to show the concentration effect on the internal state. Another difficulty is the strong compactness argument on the chemical potential, which is essential for passing the nonlinear kinetic equation to the weak limit.

  13. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma

    NASA Astrophysics Data System (ADS)

    Banerjee, Santanu; Zushi, H.; Nishino, N.; Mishra, K.; Onchi, T.; Kuzmin, A.; Nagashima, Y.; Hanada, K.; Nakamura, K.; Idei, H.; Hasegawa, M.; Fujisawa, A.

    2015-03-01

    An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported.

  14. Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.

    PubMed

    Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M

    2015-01-01

    The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. PMID:25461588

  15. Numerical continuation of canard orbits in slow-fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Desroches, M.; Krauskopf, B.; Osinga, H. M.

    2010-03-01

    A trajectory of a system with two clearly separated time scales generally consists of fast segments (or jumps) followed by slow segments where the trajectory follows an attracting part of a slow manifold. The switch back to fast dynamics typically occurs when the trajectory passes a fold with respect to a fast direction. A special role is played by trajectories known as canard orbits, which do not jump at a fold but, instead, follow a repelling slow manifold for some time. We concentrate here on the case of a slow-fast system with two slow and one fast variable, where canard orbits arise geometrically as intersection curves of two-dimensional attracting and repelling slow manifolds. Canard orbits are intimately related to the dynamics near special points known as folded singularities, which in turn have been shown to explain small-amplitude oscillations that can be found as part of so-called mixed-mode oscillations. In this paper we present a numerical method to detect and then follow branches of canard orbits in a system parameter. More specifically, we define well-posed two-point boundary value problems (BVPs) that represent orbit segments on the slow manifolds, and we continue their solution families with the package AUTO. In this way, we are able to deal effectively with the numerical challenge of strong attraction to and strong repulsion from the slow manifolds. Canard orbits are detected as the transverse intersection points of the curves along which attracting and repelling slow manifolds intersect a suitable section (near a folded node). These intersection points correspond to a unique pair of orbits segments, one on the attracting and one on the repelling slow manifold. After concatenation of the respective pairs of orbit segments, all detected canard orbits are represented as solutions of a single BVP, which allows us to continue them in system parameters. We demonstrate with two examples—the self-coupled FitzHugh-Nagumo system and a three

  16. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach

    NASA Astrophysics Data System (ADS)

    Kimizuka, Hajime; Mori, Hideki; Ogata, Shigenobu

    2011-03-01

    Here we explicitly present the diffusion coefficients (D) and activation energies (Ea) of interstitial H in α-Fe over a temperature range of 100 to 1000 K. These values were predicted by applying path-integral molecular dynamics modeling based on first principles. The obtained D and Ea values exhibit clear non-Arrhenius temperature dependence and a transition from quantum to classical behavior at around 500 K. Our results show that the quantum effects not only significantly lower the diffusion barrier but also change the diffusion pathway even at room temperature; thus, fast diffusion becomes possible.

  17. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  18. Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical systems.

    PubMed

    Loh, Y L; Taraskin, S N; Elliott, S R

    2001-05-01

    We present a fast method for simulating the time evolution of any linear dynamical system possessing eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate to almost machine precision. Among its possible applications are harmonic classical mechanical systems, quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibrational wave-packet propagation in a disordered lattice. PMID:11415044

  19. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. PMID:26164626

  20. Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse

    PubMed Central

    Pozner, Amir; Xu, Ben; Palumbos, Sierra; Gee, J. Michael; Tvrdik, Petr; Capecchi, Mario R.

    2015-01-01

    Microglia, the resident immune cells of the brain parenchyma, are highly responsive to tissue injury. Following cell damage, microglial processes redirect their motility from randomly scouting the extracellular space to specifically reaching toward the compromised tissue. While the cell morphology aspects of this defense mechanism have been characterized, the intracellular events underlying these responses remain largely unknown. Specifically, the role of intracellular Ca2+ dynamics has not been systematically investigated in acutely activated microglia due to technical difficulty. Here we used live two-photon imaging of the mouse cortex ubiquitously expressing the genetically encoded Ca2+ indicator GCaMP5G and fluorescent marker tdTomato in central nervous system microglia. We found that spontaneous Ca2+ transients in microglial somas and processes were generally low (only 4% of all microglia showing transients within 20 min), but baseline activity increased about 8-fold when the animals were treated with LPS 12 h before imaging. When challenged with focal laser injury, an additional surge in Ca2+ activity was observed in the somas and protruding processes. Notably, coherent and simultaneous Ca2+ rises in multiple microglial cells were occasionally detected in LPS-treated animals. We show that Ca2+ transients were pre-dominantly mediated via purinergic receptors. This work demonstrates the usefulness of genetically encoded Ca2+ indicators for investigation of microglial physiology. PMID:26005403

  1. Intracellular kinetics of ATX-S10·Na(II) and its correlation with photochemical reaction dynamics during a pulsed photosensitization process: effect of pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Morimoto, Yuji; Kikuchi, Makoto

    2006-01-01

    Although photodynamic therapy with pulsed light excitation has interesting characteristics, its photosensitization mechanism has not been fully elucidated. In this study, we showed that the intracellular kinetics of ATX-S10.Na(II), a lysosomal sensitizer, was closely related to photochemical reaction dynamics during photodynamic treatment of A549 cells with nanosecond pulsed light. Fluorescence microscopy revealed that at high frequencies of 10 and 30 Hz the sensitizer initially localized mainly in lysosomes but that it started to be redistributed to the cytosol in certain ranges of radiant exposures. These ranges were found to coincide with a regime of fluorescence degradation with limited oxygen consumption. On the other hand, at 5 Hz, there was no such a discontinuous behavior in the sensitizer redistribution characteristics throughout the period of irradiation; this was consistent with the fact that no reaction switching was observed. Two possible reasons for the appearance of the regime with limited oxygen consumption are discussed: participation of an oxygen-independent reaction and change in the microenvironment for the sensitizer caused by lysosomal photodamage. The pulse frequency-dependent intracellular kinetics of the sensitizer also explains our previous results showing higher cytotoxicity at 5 Hz than at 10 and 30 Hz.

  2. Decay dynamics of N2O under the impact of fast electrons

    NASA Astrophysics Data System (ADS)

    Khan, Arnab; Misra, Deepankar

    2016-03-01

    We experimentally investigate the two- and three-body breakup dynamics of N2O{}q+ (q=2,3) under the impact of fast (5 keV) electrons using a coincidence momentum spectroscopy technique. The kinetic energy release (KER) distributions have been derived from the measured momenta for various breakup channels. The present values are found to be quite different from a previously reported high energy electron impact study. From the measured momentum vectors, the geometry of the precursor molecular ion prior to the fragmentation has been reconstructed. The three-body decay dynamics of N2O3+ has been studied using Dalitz plots and Newton diagrams with a view of concerted and sequential decay mechanisms. It is found that the sequential process is present along with the concerted process for the N2O3+ \\to N+ + NO2+ \\quad \\to N+ + N+ + O+ channel.

  3. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  4. Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy.

    PubMed

    Lee, Jeong Yong; Hwang, Ji Won; Jung, Hyun Wook; Kim, Sung Hyun; Lee, Seong Jae; Yoon, Kisun; Weitz, David A

    2013-01-22

    The fast dynamics generated by the Brownian motion of particles in colloidal drops, and the related relaxation during drying, which play key roles in suspension systems, were investigated incorporating multispeckle diffusing wave spectroscopy (MSDWS). MSDWS equipment was implemented to analyze the relaxation properties of suspensions under a nonergodic and nonstationary drying process, which cannot be elucidated by conventional light scattering methods, such as dynamic light scattering and diffusing wave spectroscopy. Rapid particle movement can be identified by the characteristic relaxation time, which is closely related to the Brownian motion due to thermal fluctuations of the particles. In the compacting stage of the drying process, the characteristic relaxation time increased gradually with the drying time because the particles in the colloidal drop were constrained by themselves. Moreover, variations of the initial concentration and particle size considerably affected the complete drying time and characteristic relaxation time, producing a shorter relaxation time for a low concentrated suspension with small particles. PMID:23281633

  5. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics.

    PubMed

    Dai, Jin; Niemi, Antti J; He, Jianfeng

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments. PMID:27475398

  6. Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation

    PubMed Central

    Hammond, Jennetta W.; Lu, Shao-Ming; Gelbard, Harris A.

    2016-01-01

    Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analog of PAF (cPAF) enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity. PMID:26778968

  7. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng

    2016-07-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  8. Fast-gated single-photon avalanche diode for extremely wide dynamic-range applications

    NASA Astrophysics Data System (ADS)

    Tosi, A.; Dalla Mora, A.; Zappa, F.; Cova, S.; Contini, D.; Pifferi, A.; Spinelli, L.; Torricelli, A.; Cubeddu, R.

    2009-02-01

    Near-Infrared (NIR) picosecond pulsed light shined in biological tissues (e.g. brain, breast, muscle) offers the opportunity for non-invasive quantitative spectroscopy and imaging. Tissue optical properties determine high attenuation levels of optical signals and nanosecond scale dynamics. Therefore high-performance set-ups are needed. We aimed at developing a winning photodetector-electronics pairing for a broad field of multiple-wavelengths faint-signal optical investigations, like brain functional imaging, optical mammography, in-vivo spectroscopy, drugs characterization, molecular imaging. We present an electronic instrumentation based on silicon Single-Photon Avalanche Diode (SPAD) and fast-gating frontend electronics, in a Time-Correlated Single-Photon Counting (TCSPC) set-up. Detection efficiency is very high (50% at 550 nm and 15% at 800 nm), allowing acquisition of very faint optical signals on a wide spectral range. Furthermore, the fast-gating circuitry enables the detector very quickly (500 ps) and for user-selectable (200 ps - 510 ns) durations, thus allowing the rejection of very intense optical signals (e.g. scattered light from more superficial layers of the tissue under investigation) preceding useful faint signals (e.g. scattered light from sub-cellular components or coming from "deep" tissue layers), which would be otherwise overwhelmed and made undetectable. We attain photon-counting dynamic ranges up to 107 with photon-timing resolutions of 95 ps.

  9. Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2.

    PubMed

    Gupta, Swati; Donati, Alessia; Reviakine, Ilya

    2016-06-01

    In this study, the activation of purified human platelets due to their adhesion on glass and TiO2 in the absence of extracellular calcium was investigated. Differences in α-granule secretion between platelets adhering on the two surfaces were detected by examining the expression and secretion of the α-granule markers P-selectin (CD62P) and β-thromboglobulin. Similarly, differences in the expression of phosphatidylserine (PS), and in the activation of the major integrin GPIIb/IIIa, on the surfaces of the adhering platelets, were also observed. While all of these activation markers were expressed in platelets adhering on glass, the surface markers were not expressed in platelets adhering on TiO2, and β-thromboglobulin secretion levels were substantially reduced. Differences in marker expression and secretion correlated with differences in the intracellular calcium dynamics. Calcium ionophore treatment triggered α-granule secretion and PS expression in TiO2-adhering platelets but had no effect on the activation of GPIIb/IIIa. These results demonstrate specificity in the way surfaces of artificial materials activate platelets, link differences in the intracellular calcium dynamics observed in the platelets adhering on the two surfaces to the differences in some of the platelet responses (α-granule secretion and PS expression), but also highlight the involvement of synergistic, calcium-independent pathways in platelet activation. The ability to control activation in surface-adhering platelets makes this an attractive model system for studying platelet signaling pathways and for tissue engineering applications. PMID:27124595

  10. Fast Dynamics of Cortical Functional and Effective Connectivity during Word Reading

    PubMed Central

    Bedo, Nicolas; Ribary, Urs; Ward, Lawrence M.

    2014-01-01

    We describe for the first time the fast dynamics of functional and effective (causal) connectivity during word reading. Independent component analysis of high-density EEG recorded during a word reading task recovered multiple sources of electrical brain activity previously identified by fMRI and PET. Results confirmed the ventral occipito-temporal cortex (vOT) as a central hub for word reading, showing a progression of theta-band (3–7 Hz) and gamma-band (30–50 Hz) phase synchronization and directed theta-band and gamma-band information flow with both early visual areas and high-level language-processing areas. These results highlight the interplay between local and long-distance neural dynamics involved at each stage of the reading process. Moreover, these measures of functional and causal connectivity dynamics may be used as a benchmark for comparison with clinical populations (e.g. individuals with developmental dyslexia), such that disturbances in connectivity dynamics may provide insight as to underlying neurological problems with language processing, and their potential remediation. PMID:24551193

  11. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.

    PubMed

    Gu, Taoli; Wei, Bingqing

    2015-07-21

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics. PMID:26090617

  12. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    SciTech Connect

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed

  13. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    PubMed

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. PMID:26831516

  14. Intracellular calcium dynamics and membrane conductance changes evoked by Deiters' cell purinoceptor activation in the organ of Corti.

    PubMed

    Lagostena, L; Mammano, F

    2001-03-01

    Deiters' cells function as supporting cells for the sensory-motor outer hair cells of the mammalian cochlea and are interconnected by gap junctions. Here the electrical and Ca2+ responses of Deiters' cells evoked by purinergic stimulation were investigated in the organ of Corti, the auditory sensory epithelium. Adenosine 59-triphosphate (ATP, 50-100 microM) applied focally by pressure increased the intracellular free Ca2+ concentration ([Ca2+]i). At the same time ATP evoked an early inward current that was followed by an outward component, reflecting a sustained Ca2+-dependent reduction of the pre-stimulus offset current. These responses were maintained when Ca2+ was removed from the extracellular medium (0 [Ca2+]o), indicating a contribution to Ca2+ signalling from P2Y metabotropic receptors. UV photolysis of caged inositol 1,4,5-triphosphate (InsP3, 16 microM) produced Ca2+ responses similar to those evoked by exogenous ATP, accompanied by reduction of the offset current. In Deiters' cells uncoupled by octanol (1mM), ATP activated only the early inward current, suggesting that functional gap junctions are required in the late phase of the current responses. Following the delivery of UV flashes to pairs of Deiters' cells loaded with caged InsP3, the electrical coupling ratio (CR), monitored by double patch-clamp recordings, was strongly attenuated. These data support the idea that, by promoting inflow of cations and by controlling gap-junction conductance in a Ca2+-and InsP3-dependent way, ATP might serve a protective role in the cochlea. PMID:11162856

  15. A surface ice module for wind turbine dynamic response simulation using FAST

    DOE PAGESBeta

    Yu, Bingbin; Karr, Dale G.; Song, Huimin; Sirnivas, Senu

    2016-06-03

    It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind

  16. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    PubMed Central

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  17. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    PubMed

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  18. A fast dynamic mode of the EF-G-bound ribosome

    PubMed Central

    Munro, James B; Altman, Roger B; Tung, Chang-Shung; Sanbonmatsu, Kevin Y; Blanchard, Scott C

    2010-01-01

    A key intermediate in translocation is an ‘unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control. PMID:20033061

  19. Fast space-filling molecular graphics using dynamic partitioning among parallel processors.

    PubMed

    Gertner, B J; Whitnell, R M; Wilson, K R

    1991-09-01

    We present a novel algorithm for the efficient generation of high-quality space-filling molecular graphics that is particularly appropriate for the creation of the large number of images needed in the animation of molecular dynamics. Each atom of the molecule is represented by a sphere of an appropriate radius, and the image of the sphere is constructed pixel-by-pixel using a generalization of the lighting model proposed by Porter (Comp. Graphics 1978, 12, 282). The edges of the spheres are antialiased, and intersections between spheres are handled through a simple blending algorithm that provides very smooth edges. We have implemented this algorithm on a multiprocessor computer using a procedure that dynamically repartitions the effort among the processors based on the CPU time used by each processor to create the previous image. This dynamic reallocation among processors automatically maximizes efficiency in the face of both the changing nature of the image from frame to frame and the shifting demands of the other programs running simultaneously on the same processors. We present data showing the efficiency of this multiprocessing algorithm as the number of processors is increased. The combination of the graphics and multiprocessor algorithms allows the fast generation of many high-quality images. PMID:1772836

  20. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    SciTech Connect

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-12-21

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  1. Charge state and stopping dynamics of fast heavy ions in dense matter

    SciTech Connect

    Rosmej, O. N.; Blazevic, A.; Korostiy, S.; Bock, R.; Hoffmann, D. H. H.; Pikuz, S. A. Jr.; Efremov, V. P.; Fortov, V. E.; Fertman, A.; Mutin, T.; Pikuz, T. A.; Faenov, A. Ya.

    2005-11-15

    K-shell radiation of fast heavy ions penetrating solid matter was used to analyze the stopping dynamics of ions over more than 80% of the stopping path. The most important advantage of this method is that the data is obtained with a high spatial resolution directly from the interaction volume. In experiments 11.4 MeV/u Ca projectile were slowed down in solid quartz and low-density SiO{sub 2} aerogel targets. Characteristic projectile and target spectra in the photon energy range of 1.5-4 keV were registered by means of spherically bent crystal spectrometers with high spectral and spatial resolution in the direction of the ion beam propagation. K-shell spectra of heavy ions induced by close collisions with target atoms provided information about the projectile charge state and velocity dynamics. The line intensity distribution of the K-shell transitions arising from ions with different ion charges represents the charge state distribution along the ion beam track. The variation of the line Doppler shift due to the ion deceleration in the target material was used to determine the ion velocity dynamics. The spectroscopic analysis of the stopping process was complemented by measurements of the energy loss and ion charge state distribution after the ion beam emerged from the target using a standard time-of-flight method and magnet spectrometer.

  2. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    NASA Astrophysics Data System (ADS)

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-12-01

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  3. Exploration of ultra-fast electron dynamics using time-dependent R-matrix theory

    NASA Astrophysics Data System (ADS)

    van der Hart, Hugo; Rey, Hector; Hassouneh, Ola; Brown, Andrew

    2014-05-01

    When an atom is subjected to an intense laser field, the full atomic response can involve a collective response involving several electrons. This collective response will be affected by electron-electron repulsion, coupling the overall electron dynamics. In order to investigate this dynamics for a multi-electron system from first principles, we have developed time-dependent R-matrix theory. The theory applies the basic principles of R-matrix theory, in which all interactions between all electrons are taken into account close to the nucleus, but exchange interactions are neglected when one electron has become distanced from the parent atom. In this contribution, we will explain the basic principles of this theory and demonstrate its application to ultra-fast dynamics in C+, and harmonic generation in singly ionised noble-gas atoms. Both studies demonstrate that it is important to go beyond the single-active-electron approximation. This research has been supported by EPSRC UK, and by the EU Initial Training Network CORINF.

  4. A fast dynamic mode of the EF-G-bound ribosome.

    PubMed

    Munro, James B; Altman, Roger B; Tung, Chang-Shung; Sanbonmatsu, Kevin Y; Blanchard, Scott C

    2010-02-17

    A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control. PMID:20033061

  5. Cortical oscillatory dynamics and benzodiazepine-site modulation of tonic inhibition in fast spiking interneurons.

    PubMed

    Prokic, Emma J; Weston, Cathryn; Yamawaki, Naoki; Hall, Stephen D; Jones, Roland S G; Stanford, Ian M; Ladds, Graham; Woodhall, Gavin L

    2015-08-01

    Tonic conductance mediated by extrasynaptic GABAA receptors has been implicated in the modulation of network oscillatory activity. Using an in vitro brain slice to produce oscillatory activity and a kinetic model of GABAA receptor dynamics, we show that changes in tonic inhibitory input to fast spiking interneurons underlie benzodiazepine-site mediated modulation of neuronal network synchrony in rat primary motor cortex. We found that low concentrations (10 nM) of the benzodiazepine site agonist, zolpidem, reduced the power of pharmacologically-induced beta-frequency (15-30 Hz) oscillatory activity. By contrast, higher doses augmented beta power. Application of the antagonist, flumazenil, also increased beta power suggesting endogenous modulation of the benzodiazepine binding site. Voltage-clamp experiments revealed that pharmacologically-induced rhythmic inhibitory postsynaptic currents were reduced by 10 nM zolpidem, suggesting an action on inhibitory interneurons. Further voltage-clamp studies of fast spiking cells showed that 10 nM zolpidem augmented a tonic inhibitory GABAA receptor mediated current in fast spiking cells whilst higher concentrations of zolpidem reduced the tonic current. A kinetic model of zolpidem-sensitive GABAA receptors suggested that incubation with 10 nM zolpidem resulted in a high proportion of GABAA receptors locked in a kinetically slow desensitized state whilst 30 nM zolpidem favoured rapid transition into and out of desensitized states. This was confirmed experimentally using a challenge with saturating concentrations of GABA. Selective modulation of an interneuron-specific tonic current may underlie the reversal of cognitive and motor deficits afforded by low-dose zolpidem in neuropathological states. PMID:25797493

  6. T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics.

    PubMed

    Brown, Genevieve N; Leong, Pui L; Guo, X Edward

    2016-07-01

    One of the earliest responses of bone cells to mechanical stimuli is a rise in intracellular calcium (Ca(2+)), and osteocytes in particular exhibit robust oscillations in Ca(2+) when subjected to loading. Previous studies implicate roles for both the endoplasmic reticulum (ER) and T-Type voltage-sensitive calcium channels (VSCC) in these responses, but their interactions or relative contributions have not been studied. By observing Ca(2+) dynamics in the cytosol (Ca(2+)cyt) and the ER (Ca(2+)ER), the focus of this study was to explore the role of the ER and T-Type channels in Ca(2+) signaling in bone cells. We demonstrate that inhibition of T-Type VSCC in osteocytes significantly reduces the number of Ca(2+)cyt responses and affects Ca(2+)ER depletion dynamics. Simultaneous observation of Ca(2+) exchange among these spaces revealed high synchrony between rises in Ca(2+)cyt and depressions in Ca(2+)ER, and this synchrony was significantly reduced by challenging T-Type VSCC. We further confirmed that this effect was mediated directly through the ER and not through store-operated Ca(2+) entry (SOCE) pathways. Taken together, our data suggests that T-Type VSCC facilitate the recovery of Ca(2+)ER in osteocytes to sustain mechanically-induced Ca(2+) oscillations, uncovering a new mechanism underlying the behavior of osteocytes as mechanosensors. PMID:27108342

  7. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses.

    PubMed

    Allers, Elke; Moraru, Cristina; Duhaime, Melissa B; Beneze, Erica; Solonenko, Natalie; Barrero-Canosa, Jimena; Amann, Rudolf; Sullivan, Matthew B

    2013-08-01

    Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages. PMID:23489642

  8. Dynamic measurements at THz frequencies with a fast rotary delay line

    NASA Astrophysics Data System (ADS)

    Guerboukha, Hichem; Markov, Andrey; Qu, Hang; Skorobogatiy, Maksim

    2016-02-01

    Fabrication, characterization, and applications of a fast rotary linear optical delay line (FRLODL) for THz time-domain spectroscopy are presented. The FRLODL features two reflective surfaces with spatially separated incoming and outgoing beams. It has been manufactured using CNC machining. A linear dependence of the optical delay on the rotation angle allows a straightforward extraction of the conversion factor between the acquisition time (in ms) and the terahertz pulse time (in ps). The FRLODL has been tested using rotation speeds of up to 48 Hz, corresponding to an acquisition rate of up to 192 Hz with four blades incorporated on the same disk. At high speeds we observe a decrease of the bandwidth due to the limitations of the electronics, in particular, the transimpedance amplifier. An error analysis is performed by experimentally evaluating the signal-to-noise ratio and the dynamic range. With regard to the applications of the FRLODL, we first present observation of the evaporation of liquids, namely water, acetone and methanol. We then demonstrate monitoring of the spray painting process. Finally, detection of fast moving objects at 1 m/s and their thickness characterization are presented.

  9. Pulsed holographic microscopy as a measurement method of dynamic fracture toughness for fast propagating cracks

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinichi; Homma, Hiroomi; Kusaka, Riichiro

    A METHOD OF pulsed holographic microscopy is applied to take instantaneous microscopic photographs of the neighborhoods of crack tips propagating through PMMA or through AISI 4340 steel specimens at a speed of several hundred meters per second. The cracks are in the opening mode. A fast propagating crack is recorded as a hologram at an instant during its propagation. A microscopic photograph of the crack is taken with a conventional microscope to magnify the reconstructed image from the hologram. From the microscopic photograph, crack opening displacement (COD) is measured along the crack in the vicinity of the crack tip. The COD is of the order often to one hundred microns, and in proportion to the square root of the distance from the crack tip. The dynamic fracture toughness KID is obtained using the formula for COD in the singular stress field of a fast propagating crack. Simultaneous KID measurement both through pulsed holographic microscopy and through the caustic method is furthermore carried out with PMMA specimens. The values of KID obtained through pulsed holographic microscopy are in agreement with those through the caustic method. Microcracks accompanied by a main crack are also photographed with the method of pulsed holographic microscopy.

  10. Phase Dynamics Criterion for Fast Relaxation of High-Confinement-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Xi, P. W.; Xu, X. Q.; Diamond, P. H.

    2014-02-01

    We derive a new nonlinear criterion for the occurrence of fast relaxation (crash) events at the edge of high-confinement-mode plasmas. These fast relaxation events called ELMs (edge-localized modes) evolve from ideal magnetohydrodynamics (MHD) instabilities, but the crash is not due only to linear physics. We show that for an ELM crash to occur, the coherence time of the relative phase between potential and pressure perturbations must be long enough to allow growth to large amplitude. This phase coherence time is determined by both linear and nonlinear dynamics. An ELM crash requires that the instability growth rate exceed a critical value, i.e., γ >γc, where γc is set by 1/τc and τc is the phase coherence time. For 0<γ <γc, MHD turbulence develops and drives enhanced turbulent transport. The results indicate that the shape of the growth rate spectrum γ(n) is important to whether the result is a crash or turbulence. We demonstrate that ELMs can be mitigated by reducing the phase coherence time without changing linear instability. These findings also offer an explanation of the occurrence of ELM-free H-mode regimes.

  11. FastSPECT II: A Second-Generation High-Resolution Dynamic SPECT Imager

    PubMed Central

    Furenlid, Lars R.; Wilson, Donald W.; Chen, Yi-chun; Kim, Hyunki; Pietraski, Philip J.; Crawford, Michael J.; Barrett, Harrison H.

    2010-01-01

    FastSPECT II is a recently commissioned 16-camera small-animal SPECT imager built with modular scintillation cameras and list-mode data-acquisition electronics. The instrument is housed in a lead-shielded enclosure and has exchangeable aperture assemblies and adjustable camera positions for selection of magnification, pinhole size, and field of view. The calibration of individual cameras and measurement of an overall system imaging matrix (1 mm3 voxels) are supported via a five-axis motion-control system. Details of the system integration and results of characterization and performance measurements are presented along with first tomographic images. The dynamic imaging capabilities of the instrument are explored and discussed. PMID:20877439

  12. Fast and reliable decisions for a dynamic song parameter in field crickets.

    PubMed

    Trobe, Daniela; Schuster, Richard; Römer, Heiner

    2011-01-01

    We investigated the choice of female crickets for a dynamic song parameter (chirp rate) on a walking compensator, and the underlying neuronal basis for the choice in the form of discharge differences in the pair of AN1-neurons driving the phonotactic steering behaviour. Our analysis reveals that decisions about chirp rate in a choice situation are made fast and reliably by female crickets. They steered towards the higher chirp rate after a delay of only 2.2-6 s, depending on the rate difference between the song alternatives. In this time period, the female experienced only one to two additional chirps in the song model with the higher rate. There was a strong correlation between the accumulated AN1 discharge difference and the amount of steering towards the side with the stronger response. PMID:20878165

  13. Fast and reliable decisions for a dynamic song parameter in field crickets

    PubMed Central

    Trobe, Daniela; Schuster, Richard; Römer, Heiner

    2014-01-01

    We investigated the choice of female crickets for a dynamic song parameter (chirp rate) on a walking compensator, and the underlying neuronal basis for the choice in the form of discharge differences in the pair of AN1-neurons driving the phonotactic steering behaviour. Our analysis reveals that decisions about chirp rate in a choice situation are made fast and reliably by female crickets. They steered towards the higher chirp rate after a delay of only 2.2–6 s, depending on the rate difference between the song alternatives. In this time period, the female experienced only one to two additional chirps in the song model with the higher rate. There was a strong correlation between the accumulated AN1 discharge difference and the amount of steering towards the side with the stronger response. PMID:20878165

  14. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  15. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGESBeta

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  16. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  17. Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2008-06-01

    Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7±0.9ps , and bond-overlap population analysis has been used to calculate reaction rates.

  18. Electronic processes in fast thermite chemical reactions: a first-principles molecular dynamics study.

    PubMed

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K; Vashishta, Priya

    2008-06-01

    Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7+/-0.9 ps , and bond-overlap population analysis has been used to calculate reaction rates. PMID:18643332

  19. Reduced dynamics in spin-boson models: A method for both slow and fast bath

    NASA Astrophysics Data System (ADS)

    Golosov, Andrei A.; Friesner, Richard A.; Pechukas, Philip

    2000-02-01

    We study a model for treating dissipative systems, a one dimensional quantum system coupled to a harmonic bath. The dynamics of such a system can be described by Feynman's path integral expression for the reduced density matrix. In this formulation the interaction of the system with the environment is stored in the influence functional. Recently we showed that fast environmental modes that give rise to correlations in the influence functional which are short range in time can be treated efficiently by a memory equation algorithm, which is a discretized version of a master equation. In this work we extend this approach to treat slow environmental modes as well, thereby efficiently linking adiabatic and nonadiabatic regimes. In this extended method the long range correlations in the influence functional arising from slow bath modes are taken into account through Stock's semiclassical self-consistent-field approach.

  20. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  1. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling.

    PubMed

    Dyson, Brian; Chang, Ni-Bin

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach--system dynamics modeling--for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool--Stella. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues. PMID:16009300

  2. SPH modeling of adhesion in fast dynamics: Application to the Cold Spray process

    NASA Astrophysics Data System (ADS)

    Profizi, Paul; Combescure, Alain; Ogawa, Kahuziro

    2016-04-01

    The objective of this paper is to show, in a specific case, the importance of modeling adhesive forces when simulating the bouncing of very small particles impacting a substrate at high speed. The implementation of this model into a fast-dynamics SPH code is described. Taking the example of an impacted elastic cylinder, we show that the adhesive forces, which are surface forces, play a significant role only if the particles are sufficiently small. The effect of the choice of the type of interaction law in the cohesive zone is studied and some conclusions on the relevance of the modeling of the adhesive forces for fast-dynamics impacts are drawn. Then, the adhesion model is used to simulate the Cold Spray process. An aluminum particle is projected against a substrate made of the same material at a velocity ranging from 200 to 1000 m ṡs-1. We study the effects of the various modeling assumptions on the final result: bouncing or sticking. Increasingly complex models are considered. At a 200 m ṡs-1 impact velocity, elastic behavior is assumed, the substrate being simply supported at its base and supplied with absorbing boundaries. The same absorbing boundaries are also used for all the other simulations. Then, plasticity is introduced and the impact velocity is increased up to 1000 m ṡs-1. At the highest velocities, the resulting strains are very significant. The calculations show that if the adhesion model is appropriately chosen, it is possible to reproduce the experimental observations: the particles stick to the substrate in a range of impact velocities surrounded by two velocity ranges in which the particles bounce.

  3. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration

    PubMed Central

    Platkiewicz, Jonathan; Brette, Romain

    2011-01-01

    Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200

  4. Dynamic relations between fast-food restaurant and body weight status: a longitudinal and multilevel analysis of Chinese adults

    PubMed Central

    Xu, Hongwei; Short, Susan E; Liu, Tao

    2013-01-01

    Background Mixed findings have been reported on the association between Western fast-food restaurants and body weight status. Results vary across study contexts and are sensitive to the samples, measures and methods used. Most studies have failed to examine the temporally dynamic associations between community exposure to fast-food restaurants and weight changes. Methods Bayesian hierarchical regressions are used to model changes in body mass index, waist-to-height ratio (WHtR) and waist-to-hip ratio (WHpR) as a function of changes in Western fast-food restaurants in 216 communities for more than 9000 Chinese adults followed up multiple times between 2000 and 2009. Results Number of Western fast-food restaurants is positively associated with subsequent increases in WHtR and WHpR among rural population. More fast-food restaurants are positively associated with a future increase in WHpR for urban women. Increased availability of fast food between two waves is related to increased WHtR for urban men over the same period. A past increase in number of fast-food restaurants is associated with subsequent increases in WHtR and WHpR for rural population. Conclusions The associations between community exposure to Western fast food and weight changes are temporally dynamic rather than static. Improved measures of exposure to community environment are needed to achieve more precise estimates and better understanding of these relationships. In light of the findings in this study and China’s rapid economic growth, further investigation and increased public health monitoring is warranted since Western fast food is likely to be more accessible and affordable in the near future. PMID:22923769

  5. Molecular dynamics and intracellular signaling of the TNF-R1 with the R92Q mutation.

    PubMed

    Agulló, Luis; Malhotra, Sunny; Fissolo, Nicolás; Montalban, Xavier; Comabella, Manuel

    2015-12-15

    The tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) gene encodes the TNF-R1, one of the main TNF receptors that mediates its inflammatory actions. In a recent study, serum levels of the soluble TNF-R1 and mRNA levels of the full-length receptor were found to be significantly increased in multiple sclerosis (MS) patients carrying the R92Q mutation. Interestingly, R92Q-mutated patients were younger at disease onset and progressed slower as compared to non-carriers. Building on these previous findings, here we aimed to investigate by means of both in silico and in vitro approaches the mechanisms relating the R92Q substitution with functional changes of the receptor and their potential effects modulating MS disease course. Models of the extracellular domains of the human TNF-R1 and human TNF-R1 carrying the R92Q mutation, alone or bound to TNF, were constructed and submitted to molecular dynamics. TRAF2 and CASP3 mRNA expression levels were determined by real-time PCR in peripheral blood mononuclear cells (PBMC) from 61 MS patients, 9 R92Q carriers and 52 non-carriers (CT and CC genotypes for SNP rs4149584, respectively). Molecular dynamic studies revealed that the R92Q mutation increased the contact area between receptor and TNF (1070 and 1388Å(2) for native and mutated receptor) and decreased the distance between them (28.7 to 27.9Å), while Van der Waals and electrostatic interaction energies were increased. In PBMC from MS patients carrying the R92Q mutation, CASP3 mRNA expression levels were significantly increased compared to non-carriers, whereas a trend was observed for TRAF2. These data suggest that the R92Q mutation gives rise to a stronger interaction between the receptor and its ligand, which results in the potentiation of TNF-mediated pathways. Although further studies are needed, these functional changes may be related with the modulation in disease course reported in MS patients carrying the R92Q mutation. PMID:26616867

  6. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death

    PubMed Central

    Gonçalves, A. Pedro; Cordeiro, J. Miguel; Monteiro, João; Muñoz, Alberto; Correia-de-Sá, Paulo; Read, Nick D.; Videira, Arnaldo

    2014-01-01

    ABSTRACT The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca2+ ([Ca2+]c) dynamics and a distinct Ca2+ signature that involves Ca2+ influx from the external medium and internal Ca2+ stores. We investigated the molecular basis of this Ca2+ response by using [Ca2+]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca2+ signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca2+ entry does not occur through the hitherto described high- and low-affinity Ca2+ uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca2+ release from internal stores following IP3 formation combines with the extracellular Ca2+ influx. PMID:25037570

  7. Characterization of the Effect of the Mitochondrial Protein Hint2 on Intracellular Ca2+ dynamics

    PubMed Central

    Ndiaye, Dieynaba; Collado-Hilly, Mauricette; Martin, Juliette; Prigent, Sylvie; Dufour, Jean-François; Combettes, Laurent; Dupont, Geneviève

    2013-01-01

    Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca2+ handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca2+ dynamics in this cell type. We found that in hepatocytes isolated from Hint2−/− mice, the frequency of Ca2+ oscillations induced by 1 μM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca2+ pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2−/− mice; we found that Hint2 accelerates Ca2+ pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca2+ in suspensions of mitochondria. This prediction was then confirmed experimentally. PMID:24010670

  8. 2-color photo bleaching experiments reveal distinct intracellular dynamics of two components of the Hsp90 complex

    SciTech Connect

    Picard, Didier . E-mail: didier.picard@cellbio.unige.ch; Suslova, Elena; Briand, Pierre-Andre

    2006-11-15

    The abundant molecular chaperone Hsp90 functions in association with co-chaperones including p23 to promote the folding and maturation of a subset of cytosolic proteins. 'Fluorescence recovery after photobleaching' (FRAP) experiments showed that the dynamics of p23 in live cells is dictated by Hsp90. Since Hsp90 is present in large excess over p23, the mobility of Hsp90 could conceivably be quite different. To facilitate the analysis and to allow a direct comparison with p23, we developed a 2-color FRAP technique. Two test proteins are expressed as fusion proteins with the two spectrally separable fluorescent proteins mCherry and enhanced green fluorescent protein (EGFP). The 2-color FRAP technique is powerful for the concomitant recording of two proteins located in the same area of a cell, two components of the same protein complex, or mutant and wild-type versions of the same protein under identical experimental conditions. 2-color FRAP of Hsp90 and p23 is virtually indistinguishable, consistent with the notion that they are both engaged in a multitude of large protein complexes. However, when Hsp90-p23 complexes are disrupted by the Hsp90 inhibitor geldanamycin, p23 moves by free diffusion while Hsp90 maintains its low mobility because it remains bound in remodeled multicomponent complexes.

  9. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  10. Fast, Accurate Simulation of Polaron Dynamics and Multidimensional Spectroscopy by Multiple Davydov Trial States.

    PubMed

    Zhou, Nengji; Chen, Lipeng; Huang, Zhongkai; Sun, Kewei; Tanimura, Yoshitaka; Zhao, Yang

    2016-03-10

    By employing the Dirac-Frenkel time-dependent variational principle, we study the dynamical properties of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling. A linear combination of the Davydov D1 (D2) ansatz, referred to as the "multi-D1 ansatz" ("multi-D2 ansatz"), is used as the trial state with enhanced accuracy but without sacrificing efficiency. The time evolution of the exciton probability is found to be in perfect agreement with that of the hierarchy equations of motion, demonstrating the promise the multiple Davydov trial states hold as an efficient, robust description of dynamics of complex quantum systems. In addition to the linear absorption spectra computed for both diagonal and off-diagonal cases, for the first time, 2D spectra have been calculated for systems with off-diagonal exciton-phonon coupling by employing the multiple D2 ansatz to compute the nonlinear response function, testifying to the great potential of the multiple D2 ansatz for fast, accurate implementation of multidimensional spectroscopy. It is found that the signal exhibits a single peak for weak off-diagonal coupling, while a vibronic multipeak structure appears for strong off-diagonal coupling. PMID:26871592

  11. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  12. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming.

    PubMed

    Levine, Benjamin G; Stone, John E; Kohlmeyer, Axel

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  13. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    SciTech Connect

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  14. Fast computation of statistical uncertainty for spatiotemporal distributions estimated directly from dynamic cone beam SPECT projections

    SciTech Connect

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2001-04-09

    The estimation of time-activity curves and kinetic model parameters directly from projection data is potentially useful for clinical dynamic single photon emission computed tomography (SPECT) studies, particularly in those clinics that have only single-detector systems and thus are not able to perform rapid tomographic acquisitions. Because the radiopharmaceutical distribution changes while the SPECT gantry rotates, projections at different angles come from different tracer distributions. A dynamic image sequence reconstructed from the inconsistent projections acquired by a slowly rotating gantry can contain artifacts that lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying regions of interest on the images. If cone beam collimators are used and the focal point of the collimators always remains in a particular transaxial plane, additional artifacts can arise in other planes reconstructed using insufficient projection samples [1]. If the projection samples truncate the patient's body, this can result in additional image artifacts. To overcome these sources of bias in conventional image based dynamic data analysis, we and others have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modeling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view [2-8]. In our previous work we developed a computationally efficient method for fully four-dimensional (4-D) direct estimation of spatiotemporal distributions from dynamic SPECT projection data [5], which extended Formiconi's least squares algorithm for reconstructing temporally static distributions [9]. In addition, we studied the biases that result from modeling various orders temporal continuity and using various time samplings [5]. the present work, we address computational issues associated with evaluating the statistical uncertainty of

  15. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    PubMed

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches. PMID:25840519

  16. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    NASA Astrophysics Data System (ADS)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-01

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  17. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    SciTech Connect

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  18. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    NASA Astrophysics Data System (ADS)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  19. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  20. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow.

    PubMed

    Alexandrova, Antonina Y; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M; Meister, Jean-Jacques; Bershadsky, Alexander D; Verkhovsky, Alexander B

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  1. Fast analytic simulation toolkit for generation of 4D PET-MR data from real dynamic MR acquisitions

    NASA Astrophysics Data System (ADS)

    Tsoumpas, C.; Buerger, C.; Mollet, P.; Marsden, P. K.

    2011-09-01

    This work introduces and evaluates a fast analytic simulation toolkit (FAST) for simulating dynamic PET-MR data from real MR acquisitions. Realistic radiotracer values are assigned to segmented MR images. PET data are generated using analytic forward-projections (including attenuation and Poisson statistics) with the reconstruction software STIR, which is also used to produce the PET images that are spatially and temporally correlated with the real MR images. The simulation is compared with the GATE Monte Carlo package, which has more accurate physical modelling but it is 150 times slower compared to FAST for ten respiratory positions and 7000× slower, when repeating the simulation. The region of interest for mean values and coefficients of variation obtained with FAST and GATE, from 65 million and 104 million coincidences, respectively, were compared. Agreement between the two different simulation methods is good. In particular, the percentage differences of the mean values are: 10% for liver, and 19% for the myocardium and a warm lesion. The utility of FAST is demonstrated with the simulation of multiple volunteers with different breathing patterns. The package will be used for studying the performance of reconstruction, motion correction and attenuation correction algorithms for dynamic simultaneous PET-MR data.

  2. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.

    PubMed

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. PMID:25770527

  3. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors.

    PubMed

    Christodoulou, Anthony G; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1mm spatial resolution but low imaging speed (10min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice. PMID:27498337

  4. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons

    PubMed Central

    Russo, Giovanni; Nieus, Thierry R.; Maggi, Silvia; Taverna, Stefano

    2013-01-01

    Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior. PMID:24294191

  5. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  6. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  7. Fast Folding Dynamics of an Intermediate State in RNase H Measured by Single-Molecule FRET.

    PubMed

    Stockmar, Florian; Kobitski, Andrei Yu; Nienhaus, Gerd Ulrich

    2016-02-01

    We have studied the folding kinetics of the core intermediate (I) state of RNase H by using a combination of single-molecule FRET (smFRET) and hidden Markov model analysis. To measure fast dynamics in thermal equilibrium as a function of the concentration of the denaturant GdmCl, a special FRET labeled variant, RNase H 60-113, which is sensitive to folding of the protein core, was immobilized on PEGylated surfaces. Conformational transitions between the unfolded (U) state and the I state could be described by a two-state model within our experimental time resolution, with millisecond mean residence times. The I state population was always a minority species in the entire accessible range of denaturant concentrations. By introducing the measured free energy differences between the U and I states as constraints in global fits of the GdmCl dependence of FRET histograms of a differently labeled RNase H variant (RNase H 3-135), we were able to reveal the free energy differences and, thus, population ratios of all three macroscopic state ensembles, U, I and F (folded state) as a function of denaturant concentration. PMID:26747376

  8. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  9. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    SciTech Connect

    Chou, W.; Tajima, C.T.; Matsumoto, R. |; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  10. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  11. Dynamics of fast pattern formation in porous silicon by laser interference

    SciTech Connect

    Peláez, Ramón J.; Kuhn, Timo; Afonso, Carmen N.; Vega, Fidel

    2014-10-20

    Patterns are fabricated on 290 nm thick nanostructured porous silicon layers by phase-mask laser interference using single pulses of an excimer laser (193 nm, 20 ns pulse duration). The dynamics of pattern formation is studied by measuring in real time the intensity of the diffraction orders 0 and 1 at 633 nm. The results show that a transient pattern is formed upon melting at intensity maxima sites within a time <30 ns leading to a permanent pattern in a time <100 ns upon solidification at these sites. This fast process is compared to the longer one (>1 μs) upon melting induced by homogeneous beam exposure and related to the different scenario for releasing the heat from hot regions. The diffraction efficiency of the pattern is finally controlled by a combination of laser fluence and initial thickness of the nanostructured porous silicon layer and the present results open perspectives on heat release management upon laser exposure as well as have potential for alternative routes for switching applications.

  12. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors

    NASA Astrophysics Data System (ADS)

    Christodoulou, Anthony G.; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J.; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1 mm spatial resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice.

  13. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    NASA Astrophysics Data System (ADS)

    Marinozzi, V.; Sorbi, M.; Manfreda, G.; Bellina, F.; Bajas, H.; Chlachidze, G.

    2015-03-01

    We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb3Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  14. Local conformational dynamics in α-helices measured by fast triplet transfer

    PubMed Central

    Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas

    2009-01-01

    Coupling fast triplet–triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix–coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in α-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 μs at 5 °C. Local helix formation occurs with a time constant of ≈400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of ≈50 ns for the addition and of ≈65 ns for the removal of an α-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search. PMID:19131517

  15. Different effect of serotonin on intracellular calcium ion dynamics in the smooth muscle cells between rat posterior ciliary artery and vorticose vein.

    PubMed

    Okubo, Masatoshi; Satoh, Yoh-Ichi; Hirakawa, Masato; Sasaki, Kana; Masu, Kazuki; J McHonde, Gabriel; Ikeda-Kurosawa, Chika; Kurosaka, Daijiro; Saino, Tomoyuki

    2016-01-01

    5-hydroxytriptamine (5-HT: serotonin) is an important transmitter that causes vessel constriction, although few studies have examined the effect of 5-HT on venous smooth muscles. The intracellular Ca(2+) concentration ([Ca(2+)]i) plays an essential role in stimulus-response coupling in numerous tissue/cells including vascular smooth muscle cells. The present study was performed to examine whether differences between arteries and veins in the response to 5-HT can be detected under confocal microscope with respect to [Ca(2+)]i dynamics. In posterior ciliary arteries of rats, 5-HT induced a [Ca(2+)]i increase. The 5-HT-induced responses were caused by both Ca(2+) influx and mobilization. Agonist and antagonist experiments revealed that arterial smooth muscles possess 5-HT1a, 1b, 2 (Gprotein-coupled type) and 5-HT3 (ion channel type) receptors, and that 5-HT2 in particular plays a major role in these responses. For vorticose veins, the 5-HT-induced responses were also caused by both Ca(2+) influx and mobilization. However, the cAMP dependent pathway (5-HT4-7) was found to be significant in vasocontraction with respect to 5-HT in these vessels. Thus, Ca(2+) mobilization was induced by 5-HT2 and 5-HT4-7 in a vessel-dependent manner, whereas Ca(2+) influx universally was induced by 5-HT3. These results indicate that the posterior ciliary arteries and vorticose veins in the same tissue might differ greatly in their responses to stimulus. PMID:27108880

  16. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  17. Dynamics of ULVZ-mantle interaction using fast multipole boundary element method

    NASA Astrophysics Data System (ADS)

    Drombosky, T.; Hier-Majumder, S.

    2012-12-01

    Seismic observations over the past two decades show evidence of areas immediately above the core-mantle boundary characterized by sharp, differential drops in seismic velocities. These aptly named UltraLow Velocity Zones (ULVZs) are typically localized (50-100km wide) and thin (10-40 km thick). High concentration of the observed ULVZ patches near the edges of Large Low Shear Velocity Provinces (LLSVPs) indicate that the shape and distribution of the dynamic ULVZ patches are strongly coupled with the flow in the adjacent mantle. Two important properties modulating the extent of this coupling are the contrasts in density and viscosity between the ULVZ patches and the surrounding mantle. This work explores the interaction, coalescence, and break-up of ULVZ patches excited by an imposed mantle flow using the Fast Multipole Boundary Element Method (FMBEM). We model the ambient mantle as a high viscosity medium containing viscous, deformable ULVZ patches. The ambient mantle and ULVZ patches are both homogeneous but may differ from each other in viscosity and density. Mass and momentum conservation within each patch and the mantle are governed by the Stokes flow equation. The governing partial differential equations, aided with stress jump and no-slip boundary conditions at the ULVZ-mantle interfaces, are converted into a set of Fredholm integral equations of the second kind. Unlike traditional Boundary Element Methods (BEM), discretization of this integral equation using FMBEM produces a system of linear equations solvable by iterative sparse solver methods. This work reports a set of numerical experiments over a range of viscosity and density contrasts.

  18. Extended Vofire algorithm for fast transient fluid-structure dynamics with liquid-gas flows and interfaces

    NASA Astrophysics Data System (ADS)

    Faucher, Vincent; Kokh, Samuel

    2013-05-01

    The present paper is dedicated to the simulation of liquid-gas flows with interfaces in the framework of fast transient fluid-structure dynamics. The two-fluid interface is modelled as a discontinuity surface in the fluid property. We use an anti-dissipative Finite-Volume discretization strategy for unstructured meshes in order to capture the position of the interface within a thin diffused volume. This allows to control the numerical diffusion of the artificial mixing between components and provide an accurate capture of complex interface motions. This scheme is an extension of the Vofire numerical solver. We propose specific developments in order to handle flows that involved high density ratio between liquid and gas. The resulting scheme capabilities are validated on basic examples and also tested against large scale fluid-structure test derived from the MARA 10 experiment. All simulations are performed using EUROPLEXUS fast transient dynamics software.

  19. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  20. A fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics

    PubMed Central

    Yang, Jianjun; Zhang, Tao; Yang, Hao; Jiang, Huabei

    2013-01-01

    We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration - our system can achieve 0.12ms per source per wavelength and up to 14Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated. PMID:22695584

  1. First measurements of D(α) spectrum produced by anisotropic fast ions in the gas dynamic trap.

    PubMed

    Lizunov, A; Anikeev, A

    2014-11-01

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  2. First measurements of D{sub α} spectrum produced by anisotropic fast ions in the gas dynamic trap

    SciTech Connect

    Lizunov, A.; Anikeev, A.

    2014-11-15

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  3. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  4. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  5. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    NASA Astrophysics Data System (ADS)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-12-01

    High-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  6. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGESBeta

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  7. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration

    PubMed Central

    Crowley, John J.; Fioravante, Diasynou; Regehr, Wade G.

    2011-01-01

    Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron type modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cell → granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. PMID:19778512

  8. Fast excited state dynamics in the isolated 7-azaindole-phenol H-bonded complex

    NASA Astrophysics Data System (ADS)

    Capello, Marcela C.; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A.

    2013-02-01

    The excited state dynamics of the H-bonded 7-azaindole-phenol complex (7AI-PhOH) has been studied by combination of picosecond pump and probe experiments, LIF measurements on the nanosecond time scale and ab initio calculations. A very short S1 excited state lifetime (30 ps) has been measured for the complex upon excitation of the 0_0^0 transition and the lifetime remains unchanged when the ν6 vibrational mode (0_0^0 + 127 cm-1) is excited. In addition, no UV-visible fluorescence was observed by exciting the complex with nanosecond pulses. Two possible deactivation channels have been investigated by ab initio calculations: first an excited state tautomerization assisted by a concerted double proton transfer (CDPT) and second an excited state concerted proton electron transfer (CPET) that leads to the formation of a radical pair (hydrogenated 7AIH• radical and phenoxy PhO• radical). Both channels, CDPT and CPET, seem to be opened according to the ab initio calculations. However, the analysis of the ensemble of experimental and theoretical evidence indicates that the excited state tautomerization assisted by CDPT is quite unlikely to be responsible for the fast S1 state deactivation. In contrast, the CPET mechanism is suggested to be the non-radiative process deactivating the S1 state of the complex. In this mechanism, the lengthening of the OH distance of the PhOH molecule induces an electron transfer from PhOH to 7AI that is followed by a proton transfer in the same kinetic step. This process leads to the formation of the radical pair (7AIH•ṡṡṡPhO•) in the electronically excited state through a very low barrier or to the ion pair (7AIH+ṡṡṡPhO-) in the ground state. Moreover, it should be noted that, according to the calculations the πσ* state, which is responsible for the H loss in the free PhOH molecule, does not seem to be involved at all in the quenching process of the 7AI-PhOH complex.

  9. Cooperative dynamics in coupled systems of fast and slow phase oscillators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Okita, Takayuki

    2016-02-01

    We propose a coupled system of fast and slow phase oscillators. We observe two-step transitions to quasiperiodic motions by direct numerical simulations of this coupled oscillator system. A low-dimensional equation for order parameters is derived using the Ott-Antonsen ansatz. The applicability of the ansatz is checked by the comparison of numerical results of the coupled oscillator system and the reduced low-dimensional equation. We investigate further several interesting phenomena in which mutual interactions between the fast and slow oscillators play an essential role. Fast oscillations appear intermittently as a result of excitatory interactions with slow oscillators in a certain parameter range. Slow oscillators experience an oscillator-death phenomenon owing to their interaction with fast oscillators. This oscillator death is explained as a result of saddle-node bifurcation in a simple phase equation obtained using the temporal average of the fast oscillations. Finally, we show macroscopic synchronization of the order 1 :m between the slow and fast oscillators.

  10. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  11. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint

    SciTech Connect

    Masciola, M.; Jonkman, J.; Robertson, A.

    2014-03-01

    Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

  12. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  13. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  14. Emergent Behavior in Slow-Fast Landscape-Climate Dynamics: Evidence from Spatiotemporal Flood Statistics and a Nonlinear Dynamical Model of Coevolution.

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.; Bloeschl, G.

    2014-12-01

    Emergent features of landscape-climate coevolution are evaluated on the basis of the sensitivity of floods to annual precipitation in space and time. For that purpose, a spatiotemporal sensitivity analysis is performed at regional scale using data from 804 catchments in Austria from 1976 to 2008. Results show that flood peaks are more responsive to spatial (regional) than to temporal (decadal) variability. Space-wise a 10% increase in precipitation leads to a 23% increase in flood peaks in Austria, whereas timewise a 10% increase in precipitation leads to an increase of just 6% in flood peaks. Catchments from dry lowlands and high wetlands exhibit similarity between the spatial and temporal sensitivities (spatiotemporal symmetry) and low landscape-climate codependence. This suggests that such regions are not coevolving significantly. However, intermediate regions show differences between those sensitivities (symmetry breaks) and higher landscape-climate codependence, suggesting undergoing coevolution. The break of symmetry is considered an emergent behavior of the coupled system. A new coevolution index is then proposed relating spatiotemporal symmetry with relative characteristic celerities. The descriptive assessment of coevolution is complemented by a simple nonlinear dynamical model of landscape-climate coevolution, in which landform evolution processes take place at the millennial scale (slow dynamics), and climate adjusts in years to decades (fast dynamics). Coevolution is expressed by the interplay between slow and fast dynamics, represented, respectively, by spatial and temporal characteristics. The model captures key features of the joint landscape-climate distribution, supporting the descriptive assessment. This paper ultimately brings to light signatures of coevolution that arise from the nonlinear coupling of the landscape-climate system at slow and fast time scales. The presented work builds on Perdigão and Blöschl (2014). Perdigão, R. A. P., and G

  15. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy. PMID:26238536

  16. Dynamics of water solutions of natural polysaccharides by fast field cycling nmr relaxometry

    NASA Astrophysics Data System (ADS)

    Prusova, Alena; Conte, Pellegrino; Kucerik, Jiri; de Pasquale, Claudio; Alonzo, Giuseppe

    2010-05-01

    Cryobiology studies the effect of low temperatures on living systems such as microorganisms and plants. In particular, plants growing in cold or frozen environments can survive such extreme conditions due to the cold hardening process. Hardening is a three step process during which, first, translocation of polysaccharides to the plant roots affects water structure in the cell-soil surface. For this reason, increase of cell-membrane permeability and resistance to temperatures from -5°C to -10°C is achieved. In a second step, chemical alteration of cell membrane arises and resistance to temperatures up to -20°C is obtained. The last hardening step consists in the vitrification of the plant tissues which allow plants to survive at temperatures as low as -50°C. Since polysaccharides play a very important role in the initial part of the cold hardening process, it is of paramount importance to study the effect of such natural biopolymers on water structure. Here, we present preliminary data obtained by fast field cycling NMR relaxometry on the effect of hyaluronan (an anionic, non-sulfated glycosaminoglycan) on water structure at different concentrations of the polysaccharide. Although hyaluronan is a polysaccharide found exceptionally in animal, human or bacterial bodies, in the present work it was used as a model "pilot" compound. In fact, it has an unique ability to hold water and it contains both polysaccharide and protein-like acetamido functionalities. For this reason, hyaluronan promotes the future research on other plant biopolymers such as, for instance, starch and other very specific proteins. Results revealed that different water-structure systems surround the molecule of hyaluronan in diluted and semidiluted systems. Namely, at the lowest hyaluronan concentration, three hydration shells can be recognized. The first hydration shell is made by bound water (BW) which is strongly fixed to the hyaluronan surface mainly through electrostatic interactions. A

  17. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  18. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles: A mechanistic insight.

    PubMed

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent; Vanvarenberg, Kevin; Vandermeulen, Gaëlle; Bouzin, Caroline; Marchand-Brynaert, Jacqueline; Feron, Olivier; Foged, Camilla; Préat, Véronique

    2015-08-10

    Integrin-targeted nanoparticles are promising for the delivery of small interfering RNA (siRNA) to tumor cells or tumor endothelium in cancer therapy aiming at silencing genes essential for tumor growth. However, during the process of optimizing and realizing their full potential, it is pertinent to gain a basic mechanistic understanding of the bottlenecks existing for nanoparticle-mediated intracellular delivery. We designed αvβ3 integrin-targeted nanoparticles by coupling arginine-glycine-aspartate (RGD) or RGD peptidomimetic (RGDp) ligands to the surface of poly(ethylene glycol) (PEG) grafted chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse transcription quantitative polymerase chain reaction (RT-qPCR) approach. Data demonstrated that the internalization of αvβ3-targeted nanoparticles was highly dependent on the surface concentration of the ligand. Above a certain threshold concentration, the use of targeted nanoparticles provided a two-fold increase in the number of siRNA copies/cell, subsequently resulting in as much as 90% silencing of EGFP at well-tolerated carrier concentrations. In contrast, non-targeted nanoparticles mediated low levels of gene silencing, despite relatively high intracellular siRNA concentrations, indicating that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards a more complete understanding of the delivery mechanism that can facilitate the future design of efficient siRNA delivery systems. PMID:25989603

  19. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  20. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  1. Validation of a Fast-Fluid-Dynamics Model for Predicting Distribution of Particles with Low Stokes Number

    SciTech Connect

    Zuo, Wangda; Chen, Qingyan

    2011-06-01

    To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.

  2. Comparison of the morphometric dynamics of fast-growing and slow-growing strains of turbot Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Wang, Xin'an; Ma, Aijun

    2015-07-01

    The dynamics of changes in body shape of fast-growing and slow-growing strains of turbot Scophthalmus maximus, and of the differences in body shape between the two strains, were evaluated from 3 to 27 months of age. The ratios of total length/body length, body width/body length and total length/body width were used as morphometric indices. The two strains exhibited different temporal trends in total length/body length but similar trends in body width/body length and total length/body width. Generally, body width/body length of the two strains increased with time and total length/body width decreased. Thus, the bodies of both fast-growing and slow-growing strains of turbot changed from a narrow to a more rounded shape. However, the ratio total length/body length was generally lower, body width/body length was mostly higher and total length/body width was consistently lower in the fast-growing strain than in the slow-growing strain. Correlation analysis of the three shape ratios with body weight showed that total length/body length and total length/body width were unsuitable, and that width/body length was suitable, for use as a phenotypic marker for selective breeding of turbot for growth in weight.

  3. Gas Dynamics, Characterization, and Calibration of Fast Flow Flight Cascade Impactor Quartz Crystal Microbalances (QCM) for Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.

    1997-01-01

    During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.

  4. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products. PMID:26927234

  5. LASER-driven fast electron dynamics in gaseous media under the influence of large electric fields

    NASA Astrophysics Data System (ADS)

    Batani, D.; Baton, S. D.; Manclossi, M.; Piazza, D.; Koenig, M.; Benuzzi-Mounaix, A.; Popescu, H.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.; Schiavi, A.

    2009-03-01

    We present the results of experiments performed at the LULI laboratory, using the 100 TW laser facility, on the study of the propagation of fast electrons in gas targets. The implemented diagnostics included chirped shadowgraphy and proton imaging. Proton images showed the presence of very large fields in the gas (produced by charge separation). In turn, these imply a strong inhibition of propagation, and a slowing down of the fast electron cloud as it penetrates in the gas. Indeed chirped shadowgraphy images show a reduction in time of the velocity of the electron cloud from the initial value, of the order of a fraction of c, over a time scale of a few picoseconds.

  6. A fast large dynamic range shaping amplifier for particle detector front-end

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo; Delaurenti, Paolo

    2007-03-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate.

  7. Fiber-optic system for monitoring fast photoactivation dynamics of optical highlighter fluorescent proteins

    PubMed Central

    Pei, Zhiguo; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Huang, Zhen-Li

    2011-01-01

    Characterizing the photoactivation performance of optical highlighter fluorescent proteins is crucial to the realization of photoactivation localization microscopy. In contrast to those fluorescence-based approaches that require complex data processing and calibration procedures, here we report a simple and quantitative alternative, which relies on the measurement of small absorption spectra changes over time with a fiber-optic system. Using Dronpa as a representative highlighter protein, we have investigated the capacity of this system in monitoring the fast photoactivation process. PMID:21833352

  8. Fast ignition in system Dynamic Hohlraum with Monte-Carlo simulations of fusion kinetic and radiation processes

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Platonov, Konstantin Y.; Zacharov, Sergey V.; Gus'kov, Sergei Y.; Rozanov, Vladimir B.; Il'in, Dmitrii V.; Levkovskii, Aleksey A.; Sherman, Vladimir E.

    2004-06-01

    The scheme of fast ignition by super-intense laser of DT target placed at a cavity of the radiate plasma liner, created in a "dynamic-hohlraum" system is considered. It is shown that this scheme can supply effective TN fusion. The process of compression and preheating of DT fuel of shell target by X-ray radiation of Dynamic Hohlraum is simulated by the code TRITON with parameters of Z-generator of Sandia National Laboratory. The optimum parameters of target are obtained. The mechanism of ignitor creation by protons, accelerated by ultra-shot laser radiation is considered and corresponding laser parameters are evaluated. The mathematical simulation of the following thermonuclear (TN) burn wave propagation in DT target is carried out with the use of TERA code based upon the direct statistical simulation of kinetics of fast charged particles and quantum of thermal radiation on each time step of hydrodynamics. The released TN energy is obtained as a function of ignition energy. The theoretical explanations of obtained dependencies are presented. The laser parameters necessary to produce G>>1 are determined.

  9. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    NASA Astrophysics Data System (ADS)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  10. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    NASA Astrophysics Data System (ADS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Oosterbeek, J. W.; de Baar, M. R.; van den Berg, M. A.; van Beveren, V.; Bürger, A.; Goede, A. P. H.; Graswinckel, M. F.; Hennen, B. A.; Schüller, F. C.

    2009-10-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  11. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization.

    PubMed

    Thoen, D J; Bongers, W A; Westerhof, E; Oosterbeek, J W; de Baar, M R; van den Berg, M A; van Beveren, V; Bürger, A; Goede, A P H; Graswinckel, M F; Hennen, B A; Schüller, F C

    2009-10-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200,000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range. PMID:19895061

  12. Slow-to-fast transition of hydrogen bond dynamics in acetamide hydration shell formation.

    PubMed

    D'Amico, Francesco; Rossi, Barbara; Camisasca, Gaia; Bencivenga, Filippo; Gessini, Alessandro; Principi, Emiliano; Cucini, Riccardo; Masciovecchio, Claudio

    2015-04-28

    The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models). PMID:25824617

  13. A sharp thermal transition of fast aromatic ring dynamics in ubiquitin

    PubMed Central

    Kasinath, Vignesh; Fu, Yinan; Sharp, Kim A.

    2015-01-01

    Aromatic amino acid side chains have a rich role within proteins and are often central to their structure and function. Suitable isotopic labelling strategies enable studies of sub-nanosecond aromatic ring dynamics using solution NMR relaxation methods. Surprisingly, we find that the three aromatic side chains in human ubiquitin show a sharp thermal dynamical transition at ~312 K. Hydrostatic pressure has little effect on the low temperature behaviour but decreases somewhat the amplitude of motion in the high temperature regime. Thus below the transition temperature ring motion is largely librational. Above it complete ring rotation that is most consistent with a continuous rotational diffusion not requiring transient creation of a large activated free volume occurs. Molecular dynamics simulations qualitatively corroborate this view and reinforce the notion that the dynamical character of the protein interior has a much more liquid alkane-like properties than previously appreciated. PMID:25476230

  14. Fast and flexible interpolation via PUM with applications in population dynamics

    NASA Astrophysics Data System (ADS)

    Cavoretto, Roberto; De Rossi, Alessandra; Perracchione, Emma

    2016-06-01

    In this paper a new fast and flexible interpolation tool is shown. The Partition of Unity Method (PUM) is performed using Radial Basis Functions (RBFs) as local approximants. In particular, we present a new space-partitioning data structure extremely useful in applications because of its independence from the problem geometry. An application of such algorithm, in the context of wild herbivores in forests, shows that the ecosystem of the considered natural park is in a very delicate situation, for which the animal population could become extinguished. The determination of the so-called sensitivity surfaces, obtained with the new versatile partitioning structure, indicates some possible preventive measures to the park administrators.

  15. Fast time-reversible algorithms for molecular dynamics of rigid-body systems.

    PubMed

    Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki

    2012-06-21

    In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579

  16. Effects of dynamic characters of the macro-micro fast coupling system in long stroke system

    NASA Astrophysics Data System (ADS)

    Wu, Jianwei; Yuan, Yong; Cui, Jiwen

    2015-02-01

    Macro-micro fast coupling system of dual-stage is used for the detachment and coupling of the macro-motion system and the wafer-stage. When the macro-motion system couples with the wafer-stage, the wafer-stage is driven by macro-motor to achieve long stroke motion. In this paper, the bottom air bearings of wafer stage are analyzed when the driving force of macro motor shifts the center of mass of wafer stage in Z direction. The X, Y, Z stiffness of the coupling system are obtained by using ANSYS.

  17. [Role of intracellular Ca2+ dynamics in the development of drug dependence--Participation of Inositol 1,4,5-trisphosphate receptors].

    PubMed

    Kurokawa, Kazuhiro; Mizuno, Koji; Ohkuma, Seitaro

    2015-04-01

    Inositol 1,4,5-trisphosphate receptors (IP3Rs) are classified to a multigene family of channel proteins that mediate Ca2+ release from endoplasmic reticulum, and are one of regulators to modify intracellular Ca2+ concentration. Little is known about functional relationship between rewarding effects due to drugs of abuse and IP3Rs. This report reviews the roles and regulatory mechanisms of intracellular Ca2+ channels, especially type 1 IP3Rs (IP3Rs-1), in brain of animals with rewarding effects produced by drugs of abuse. Our recent studies have reported that the blockade of IP3Rs suppresses the development of rewarding effects on methamphetamine or cocaine, suggesting that functional up-regulation of IP3R-1 occurs during the development of rewarding effects. Moreover, the critical expression of IP3R-1 in the development of methamphetamine- and cocaine-induced rewarding effects are regulated by Ca2+ participating in signal transduction pathways via both dopamine D1 and D2 receptors. Taken together these results it is suggested that the changes in IP3R-1 play an essential role in the development of drug dependence. PMID:26255430

  18. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain.

    PubMed

    Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl

    2016-04-01

    Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381

  19. Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL

    NASA Astrophysics Data System (ADS)

    Allahgholi, A.; Becker, J.; Bianco, L.; Delfs, A.; Dinapoli, R.; Ariño-Estrada, G.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Jack, S.; Klanner, R.; Klyuev, A.; Krueger, H.; Lange, S.; Marras, A.; Mezza, D.; Mozzanica, A.; Poehlsen, J.; Rah, S.; Xia, Q.; Schmitt, B.; Schwandt, J.; Sheviakov, I.; Shi, X.; Smoljanin, S.; Trunk, U.; Zhang, J.; Zimmer, M.

    2016-01-01

    The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range—from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >=4.5 MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.

  20. Dynamics of the Axial Melt Lens/Dike transition at fast spreading ridges: assimilation and hydrous partial melting

    NASA Astrophysics Data System (ADS)

    France, L.; Ildefonse, B.; Koepke, J.

    2009-04-01

    Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities, with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase. To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1 GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermalized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and 1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopyroxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic liquids would be

  1. A fast-moving copper-based molecular shuttle: synthesis and dynamic properties.

    PubMed

    Durola, Fabien; Lux, Jacques; Sauvage, Jean-Pierre

    2009-01-01

    Fast-track changes: The synthesis of a new copper-based molecular shuttle is described, with a coordinating macrocycle based on a nonhindering but endocyclic ligand (see scheme), which makes the ligand exchange easier, and thus the motions of the ring along the thread faster.The present report deals with the synthesis of a two-station [2]rotaxane consisting of a dpbiiq-incorporating macrocycle (dpbiiq: 8,8'-diphenyl-3,3'-biisoquinoline) threaded by a coordinating fragment whose complexing units are a dpp and a terpy ligand (dpp: 2,9-diphenyl-1,10-phenanthroline; terpy: 2,2',6',2"-terpyridine). The [2]rotaxane was prepared in 11 steps from commercially available or easy-to-make molecules, without taking into account the preparation of the dpbiiq-containing 39-membered ring, which was available in our group. The ring-incorporated bidentate chelate is at the same time endocyclic and sterically nonhindering, which is a specific property of the dpbiiq-coordinating unit. This unique feature has a profound influence on the rate of the ring-and-copper translation motion between the two stations of the axle. Based on an analogous multistep strategy, a related molecular shuttle has also been prepared that contains exactly the same axle and stoppers as the first compound but whose threaded ring incorporates the sterically hindering dpp chelate. The translation motions of this other system are several orders of magnitude slower than the corresponding movements of the dpbiiq-based compound. The motion corresponding to the rearrangement of the unstable five-coordinate copper(I) form of the compounds is relatively fast for both shuttles; the half lifetime of the five-coordinate Cu(I) species being below 20 ms for the dpbiiq-containing system and below 1 s for the dpp-based molecule. The reverse motion corresponding to the rearrangement of the four-coordinate copper(II) complexes is much slower, especially for the dpp-based system. It is of the order of several hours for the dpp

  2. High-resolution intracellular recordings using a real-time computational model of the electrode.

    PubMed

    Brette, Romain; Piwkowska, Zuzanna; Monier, Cyril; Rudolph-Lilith, Michelle; Fournier, Julien; Levy, Manuel; Frégnac, Yves; Bal, Thierry; Destexhe, Alain

    2008-08-14

    Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance and capacitance, which may cause significant measurement errors during current injection. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup. The characteristics of this model are first estimated using white noise current injection. The electrode and membrane contribution are digitally separated, and the recording is then made by online subtraction of the electrode contribution. Tests performed in vitro and in vivo demonstrate that AEC enables high-frequency recordings in demanding conditions, such as injection of conductance noise in dynamic-clamp mode, not feasible with a single high-resistance electrode until now. AEC should be particularly useful to characterize fast neuronal phenomena intracellularly in vivo. PMID:18701064

  3. Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS

    PubMed Central

    Ishii, Tomohiro; Sato, Koji; Kakumoto, Toshiyuki; Miura, Shigenori; Touhara, Kazushige; Takeuchi, Shoji; Nakata, Takao

    2015-01-01

    Ca2+ signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca2+ channel switch (BACCS), as an optogenetic tool for generating Ca2+ signals. BACCS opens Ca2+-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca2+ concentration more rapidly, such that Ca2+ elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca2+. Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca2+ signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies. PMID:26282514

  4. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  5. Dynamic NMR of low-sensitivity fast-relaxing nuclei: (17)O NMR and DFT study of acetoxysilanes.

    PubMed

    Fusaro, Luca; Mameli, Giulia; Mocci, Francesca; Luhmer, Michel; Cerioni, Giovanni

    2012-02-01

    (17)O NMR is not routinely used for structure characterization, and kinetic studies of fluxional organic compounds are seldom undertaken because poor sensitivity and fast quadrupole relaxation are frequently regarded as intractable issues. This work shows how, nowadays, quantitative (17)O dynamic NMR studies on small organic molecules are feasible without enrichment being needed. It reports on acetoxysilanes, a class of fluxional compounds whose structure and dynamics were to be clarified. Natural abundance (17)O NMR spectra were recorded over a wide range of temperatures using standard instrumentation. The analysis relies on simple linewidth measurements and directly provides the activation parameters. The activation enthalpy is found to decrease with increasing number of acetoxy groups bound to silicon. Density functional theory calculations properly predict this trend and show that a single oxygen atom of the acetoxy group is bound to silicon, excluding chelation as binding mode, and that the dynamic process involves the shift of the silicon atom between the two oxygen atoms of the acetoxy group. PMID:22374872

  6. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    NASA Astrophysics Data System (ADS)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~100 ns timescales.

  7. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    PubMed Central

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  8. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE PAGESBeta

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  9. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    SciTech Connect

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  10. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex.

    PubMed

    Wolf, M S; Badea, R; Berezovsky, J

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  11. Chronic impact of sulfamethoxazole on acetate utilization kinetics and population dynamics of fast growing microbial culture.

    PubMed

    Kor-Bicakci, G; Pala-Ozkok, I; Rehman, A; Jonas, D; Ubay-Cokgor, E; Orhon, D

    2014-08-01

    The study evaluated the chronic impact of sulfamethoxazole on metabolic activities of fast growing microbial culture. It focused on changes induced on utilization kinetics of acetate and composition of the microbial community. The experiments involved a fill and draw reactor, fed with acetate and continuous sulfamethoxazole dosing of 50 mg/L. The evaluation relied on model evaluation of the oxygen uptake rate profiles, with parallel assessment of microbial community structure by 454-pyrosequencing. Continuous sulfamethoxazole dosing inflicted a retardation effect on acetate utilization in a way commonly interpreted as competitive inhibition, blocked substrate storage and accelerated endogenous respiration. A fraction of acetate was utilized at a much lower rate with partial biodegradation of sulfamethoxazole. Results of pyrosequencing with a replacement mechanism within a richer more diversified microbial culture, through inactivation of vulnerable fractions in favor of species resistant to antibiotic, which made them capable of surviving and competing even with a slower metabolic response. PMID:24908607

  12. Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation

    NASA Astrophysics Data System (ADS)

    Wang, Yibin; Qin, Ning; Zhao, Ning

    2016-06-01

    A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.

  13. Structural rearrangement of the intracellular domains during AMPA receptor activation.

    PubMed

    Zachariassen, Linda G; Katchan, Ljudmila; Jensen, Anna G; Pickering, Darryl S; Plested, Andrew J R; Kristensen, Anders S

    2016-07-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  14. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    PubMed

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. PMID:26705906

  15. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  16. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization.

    PubMed

    Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon

    2011-02-23

    We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra. PMID:21280606

  17. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control. PMID:24417104

  18. Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.

    PubMed

    Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T

    2013-09-20

    We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system. PMID:24093278

  19. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    NASA Astrophysics Data System (ADS)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.

  20. Dynamics model of the IBR-2M pulsed reactor for analysis of fast transition processes

    NASA Astrophysics Data System (ADS)

    Pepelyshev, Yu. N.; Popov, A. K.; Sumkhuu, D.; Sangaa, D.

    2015-05-01

    A nonlinear model of the IBR-2M pulsed reactor dynamics relating values of variables at discreet instants of time (when power pulses appear) is developed on the basis of the MATLAB program system. The tests of the model by simulating calculated processes in the IBR-2M reactor proved the correctness of the model. A tentative estimate of the transfer coefficient for the linear part of the automatic regulator is obtained.

  1. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  2. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena. PMID:26943670

  3. Ten-Microsecond Molecular Dynamics Simulation of a Fast-Folding WW Domain

    PubMed Central

    Freddolino, Peter L.; Liu, Feng; Gruebele, Martin; Schulten, Klaus

    2008-01-01

    All-atom molecular dynamics (MD) simulations of protein folding allow analysis of the folding process at an unprecedented level of detail. Unfortunately, such simulations have not yet reached their full potential both due to difficulties in sufficiently sampling the microsecond timescales needed for folding, and because the force field used may yield neither the correct dynamical sequence of events nor the folded structure. The ongoing study of protein folding through computational methods thus requires both improvements in the performance of molecular dynamics programs to make longer timescales accessible, and testing of force fields in the context of folding simulations. We report a ten-microsecond simulation of an incipient downhill-folding WW domain mutant along with measurement of a molecular time and activated folding time of 1.5 microseconds and 13.3 microseconds, respectively. The protein simulated in explicit solvent exhibits several metastable states with incorrect topology and does not assume the native state during the present simulations. PMID:18339748

  4. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    SciTech Connect

    Atkinson, P. Eddrief, M.; Etgens, V. H.; Khemliche, H. Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P.; Momeni, A.

    2014-07-14

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  5. Dissociation dynamics of fast neutral molecules scattered under glancing incidence conditions from crystal surfaces

    NASA Astrophysics Data System (ADS)

    Snowdon, K. J.; Harder, R.; Nesbitt, A.

    1996-08-01

    When fast ( vthermal ≪ v < vFermi) neutral or ionised atoms or molecules are scattered under glancing incidence conditions from atomically smooth metal single crystal surfaces, translational energy losses of 0.1-1 eV per femtosecond or per Å of the trajectory in the near surface region are not atypical. A large fraction of this energy appears in the electron-hole pair excitation channel. In addition, the orientation distribution of the internuclear co-ordinate of dissociatively scattered molecules is often sharply peaked about the surface normal. Such a distribution could arise if, coincident with vibrational excitation of the intra-molecular co-ordinate, the molecules were preferentially aligned about the surface normal. Alternatively, such a distribution may arise if, following dissolution of the intra-molecular bond, the difference in the surface normal momentum transfer to the two unbound atoms considerably exceeds the difference in the surface parallel momentum transfer. We investigate these two possibilities within a classical simulation of energy transfer from the translational to internal degrees of freedom of the molecule via repeated transitions between different electronic states of the molecule-surface system. These simulations suggest that in general, the observed surface-normal aligned final orientation of dissociatively scattered molecules is caused by strong vibrational excitation in the entrance channel region of the adiabatic ground state potential energy surface describing the interaction of the neutral molecule with the surface.

  6. Lossless compression of very large volume data with fast dynamic access

    NASA Astrophysics Data System (ADS)

    Zhao, Rongkai; Tao, Tao; Gabriel, Michael; Belford, Geneva

    2002-09-01

    The volumetric data set is important in many scientific and biomedical fields. Since such sets may be extremely large, a compression method is critical to store and transmit them. To achieve a high compression rate, most of the existing volume compression methods are lossy, which is usually unacceptable in biomedical applications. We developed a new context-based non-linear prediction method to preprocess the volume data set in order to effectively lower the prediction entropy. The prediction error is further encoded using Huffman code. Unlike the conventional methods, the volume is divided into cubical blocks to take advantage of the data's spatial locality. Instead of building one Huffman tree for each block, we developed a novel binning algorithm that build a Huffman tree for each group (bin) of blocks. Combining all the effects above, we achieved an excellent compression rate compared to other lossless volume compression methods. In addition, an auxiliary data structure, Scalable Hyperspace File (SHSF) is used to index the huge volume so that we can obtain many other benefits including parallel construction, on-the-fly accessing of compressed data without global decompression, fast previewing, efficient background compressing, and scalability etc.

  7. ADAHELI: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Soffitta, Paolo; Velli, Marco; Sabatini, Paolo; Bigazzi, Alberto; Bellazzini, Ronaldo; Bellot Rubio, Luis Ramon; Brez, Alessandro; Carbone, Vincenzo; Cauzzi, Gianna; Cavallini, Fabio; Consolini, Giuseppe; Curti, Fabio; Del Moro, Dario; Di Giorgio, Anna Maria; Ermolli, Ilaria; Fabiani, Sergio; Faurobert, Marianne; Feller, Alex; Galsgaard, Klaus; Gburek, Szymon; Giannattasio, Fabio; Giovannelli, Luca; Hirzberger, Johann; Jefferies, Stuart M.; Madjarska, Maria S.; Manni, Fabio; Mazzoni, Alessandro; Muleri, Fabio; Penza, Valentina; Peres, Giovanni; Piazzesi, Roberto; Pieralli, Francesca; Pietropaolo, Ermanno; Pillet, Valentin Martinez; Pinchera, Michele; Reale, Fabio; Romano, Paolo; Romoli, Andrea; Romoli, Marco; Rubini, Alda; Rudawy, Pawel; Sandri, Paolo; Scardigli, Stefano; Spandre, Gloria; Solanki, Sami K.; Stangalini, Marco; Vecchio, Antonio; Zuccarello, Francesca

    2015-10-01

    Advanced Astronomy for Heliophysics Plus (ADAHELI) is a project concept for a small solar and space weather mission with a budget compatible with an European Space Agency (ESA) S-class mission, including launch, and a fast development cycle. ADAHELI was submitted to the European Space Agency by a European-wide consortium of solar physics research institutes in response to the "Call for a small mission opportunity for a launch in 2017," of March 9, 2012. The ADAHELI project builds on the heritage of the former ADAHELI mission, which had successfully completed its phase-A study under the Italian Space Agency 2007 Small Mission Programme, thus proving the soundness and feasibility of its innovative low-budget design. ADAHELI is a solar space mission with two main instruments: ISODY: an imager, based on Fabry-Pérot interferometers, whose design is optimized to the acquisition of highest cadence, long-duration, multiline spectropolarimetric images in the visible/near-infrared region of the solar spectrum. XSPO: an x-ray polarimeter for solar flares in x-rays with energies in the 15 to 35 keV range. ADAHELI is capable of performing observations that cannot be addressed by other currently planned solar space missions, due to their limited telemetry, or by ground-based facilities, due to the problematic effect of the terrestrial atmosphere.

  8. Dynamic response for thermal control and measurement and fast radiation thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Cezairliyan, A.

    1989-01-01

    A preliminary evaluation was made by ORNL of a two-color ratio pyrometer (TCRP) for temperature control in the Modular Electromagnetic Levitation (MEL) experiment. A discussion was presented by Eric Spjut at the 1987 NASA Non-Contact Temperature Measurement Workshop (NASA Conf. Publ. 2503, pp. 182-213) in which he described the non-linear characteristics of the time response of TCPs. Researchers replicated his model and results and note that the non-linear response behavior is minimized for small temperature steps at high temperatures. They then used the predicted response in a model for a proportional or integral feedback controller and predicted the control characteristics for heating and cooling a 5-mm diameter sphere of niobium at high (1500 to 2750 K) temperatures. The analysis shows that for a slow (25-ms) time response for a commercial RCRP, overshoots of several hundred kelvins will result from a 100-K decrease in the setpoint, and temperature tracking errors of 14 to 45 K will occur for control temperature ramps of 1000K/s. For a fast (greater than 0.1 ms) time response, the overshoot and ramp response errors are largely eliminated.

  9. Large dynamic light-matter entanglement from driving neither too fast nor too slow

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2015-09-01

    A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at intermediate velocities. This enhancement is far larger, broader ranged, and more experimentally accessible than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.

  10. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-01

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions. PMID:24514521

  11. Fast and slow dynamics in a discotic liquid crystal with regions of columnar order and disorder.

    PubMed

    Hansen, M R; Feng, X; Macho, V; Müllen, K; Spiess, H W; Floudas, G

    2011-12-16

    Aromatic disk-shaped molecules tend to self-organize into a herringbone packing where the disks are inclined at angles ±θ with respect to the axis of the column. In discotic liquid crystals this can introduce defects between stacks of limited length. In a C(3)-symmetric hexa-peri-hexabenzocoronene, solid-state NMR, x-ray scattering, and rheology identifies such a packing with θ=43° and stacks of about seven disks. Disordered regions containing defects fill the space in between the ordered stacks. Biaxial intra- and intercolumnar dynamics differing by eight decades are identified. PMID:22243114

  12. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response

    NASA Astrophysics Data System (ADS)

    Han, Wang; Maomao, Sun

    2014-04-01

    This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-μm CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and IQ of 113 μA. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 μV/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 μs respectively.

  13. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  14. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  15. Fast AdaBoost-Based Face Detection System on a Dynamically Coarse Grain Reconfigurable Architecture

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Zhang, Jinguo; Zhu, Min; Yang, Jun; Shi, Longxing

    An AdaBoost-based face detection system is proposed, on a Coarse Grain Reconfigurable Architecture (CGRA) named “REMUS-II”. Our work is quite distinguished from previous ones in three aspects. First, a new hardware-software partition method is proposed and the whole face detection system is divided into several parallel tasks implemented on two Reconfigurable Processing Units (RPU) and one micro Processors Unit (µPU) according to their relationships. These tasks communicate with each other by a mailbox mechanism. Second, a strong classifier is treated as a smallest phase of the detection system, and every phase needs to be executed by these tasks in order. A phase of Haar classifier is dynamically mapped onto a Reconfigurable Cell Array (RCA) only when needed, and it's quite different from traditional Field Programmable Gate Array (FPGA) methods in which all the classifiers are fabricated statically. Third, optimized data and configuration word pre-fetch mechanisms are employed to improve the whole system performance. Implementation results show that our approach under 200MHz clock rate can process up-to 17 frames per second on VGA size images, and the detection rate is over 95%. Our system consumes 194mW, and the die size of fabricated chip is 23mm2 using TSMC 65nm standard cell based technology. To the best of our knowledge, this work is the first implementation of the cascade Haar classifier algorithm on a dynamically CGRA platform presented in the literature.

  16. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach. PMID:18249744

  17. AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble

    PubMed Central

    2015-01-01

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854

  18. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  19. Fast optimization of binary clusters using a novel dynamic lattice searching method

    SciTech Connect

    Wu, Xia Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd){sub 79} clusters with DFT-fit parameters of Gupta potential.

  20. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-01-01

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291

  1. The advanced position compensation to improve the dynamic tracking ability for fast moving target in an optoelectronic tracking system

    NASA Astrophysics Data System (ADS)

    Wu, Nengwei; Zhao, Lirong; Zhou, Hui; Chen, Juan

    2005-12-01

    The servo control system of the optoelectronic tracking equipment usually is a kind of SISO. When the fast moving target is tracked, the over-tune of the servo system is the main representation for the dynamic tracking error. As the result, the tracking ability may be improved by limiting the over-tune. We put forward a method, the advanced position compensation (called as APC in short), which is to check the speed-overtune by applying the advanced position information. For the large accelerate target, small over-tune tracking is achieved, but it lowers the ability for tracking the sine signal at low frequency area. While the dynamic high-type can improve the tracking precision for the sine signal at low frequency area, we work out a brand-new method, which combines the advantages of the both. It increases the tracking precision in the whole frequency band at large scale for the optoelectronic tracking system. The simulation results show that when the target moves with the largest accelerate 120°/s2, 120°/s, the maximum static tracking error is about 0.6".

  2. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  3. Hamilton-Jacobi equation for the least-action/least-time dynamical path based on fast marching method

    NASA Astrophysics Data System (ADS)

    Dey, Bijoy K.; Janicki, Marek R.; Ayers, Paul W.

    2004-10-01

    Classical dynamics can be described with Newton's equation of motion or, totally equivalently, using the Hamilton-Jacobi equation. Here, the possibility of using the Hamilton-Jacobi equation to describe chemical reaction dynamics is explored. This requires an efficient computational approach for constructing the physically and chemically relevant solutions to the Hamilton-Jacobi equation; here we solve Hamilton-Jacobi equations on a Cartesian grid using Sethian's fast marching method [J. A. Sethian, Proc. Natl. Acad. Sci. USA 93, 1591 (1996)]. Using this method, we can—starting from an arbitrary initial conformation—find reaction paths that minimize the action or the time. The method is demonstrated by computing the mechanism for two different systems: a model system with four different stationary configurations and the H+H2→H2+H reaction. Least-time paths (termed brachistochrones in classical mechanics) seem to be a suitable chioce for the reaction coordinate, allowing one to determine the key intermediates and final product of a chemical reaction. For conservative systems the Hamilton-Jacobi equation does not depend on the time, so this approach may be useful for simulating systems where important motions occur on a variety of different time scales.

  4. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    PubMed Central

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  5. Dynamic Compressed HRRP Generation for Random Stepped-Frequency Radar Based on Complex-Valued Fast Sequential Homotopy

    PubMed Central

    You, Peng; Liu, Zhen; Wang, Hongqiang; Wei, Xizhang; Li, Xiang

    2014-01-01

    Compressed sensing has been applied to achieve high resolution range profiles (HRRPs) using a stepped-frequency radar. In this new scheme, much fewer pulses are required to recover the target's strong scattering centers, which can greatly reduce the coherent processing interval (CPI) and improve the anti-jamming capability. For practical applications, however, the required number of pulses is difficult to determine in advance and any reduction of the transmitted pulses is attractive. In this paper, a dynamic compressed sensing strategy for HRRP generation is proposed, in which the estimated HRRP is updated with sequentially transmitted and received pulses until the proper stopping rules are satisfied. To efficiently implement the sequential update, a complex-valued fast sequential homotopy (CV-FSH) algorithm is developed based on group sparse recovery. This algorithm performs as an efficient recursive procedure of sparse recovery, thus avoiding solving a new optimization problem from scratch. Furthermore, the proper stopping rules are presented according to the special characteristics of HRRP. Therefore, the optimal number of pulses required in each CPI can be sought adapting to the echo signal. The results using simulated and real data show the effectiveness of the proposed approach and demonstrate that the established dynamic strategy is more suitable for uncooperative targets. PMID:24815679

  6. Evaluation of nonlinear structural dynamic responses using a fast-running spring-mass formulation

    SciTech Connect

    Benjamin, A.S.; Altman, B.S.; Gruda, J.D.

    1995-03-01

    In today`s world, accurate finite-element simulations of large nonlinear systems may require meshes composed of hundreds of thousands of degrees of freedom. Even with today`s fast computers and the promise of ever-faster ones in the future, central processing unit (CPU) expenditures for such problems could be measured in days. Many contemporary engineering problems, such as those found in risk assessment, probabilistic structural analysis, and structural design optimization, cannot tolerate the cost or turnaround time for such CPU-intensive analyses, because these applications require a large number of cases to be run with different inputs. For many risk assessment applications, analysts would prefer running times to be measurable in minutes. There is therefore a need for approximation methods which can solve such problems far more efficiently than the very detailed methods and yet maintain an acceptable degree of accuracy. For this purpose, we have been working on two methods of approximation: neural networks and spring-mass models. This paper presents our work and results to date for spring-mass modeling and analysis, since we are further along in this area than in the neural network formulation. It describes the physical and numerical models contained in a code we developed called STRESS, which stands for ``Spring-mass Transient Response Evaluation for structural Systems``. The paper also presents results for a demonstration problem, and compares these with results obtained for the same problem using PRONTO3D, a state-of-the-art finite element code which was also developed at Sandia.

  7. Intracellular localization and induction of a dynamic RNA-editing event of macro-algal V-ATPase subunit A (VHA-A) in response to copper.

    PubMed

    Morris, C A; Owen, J R; Thomas, M C; El-Hiti, G A; Harwood, J L; Kille, P

    2014-01-01

    A V-ATPase subunit A protein (VHA-A) transcript together with a variant (C793 to U), which introduces a stop codon truncating the subunit immediately downstream of its ATP binding site, was identified within a Fucus vesiculosus cDNA from a heavy metal contaminated site. This is intriguing because the VHA-A subunit is the crucial catalytic subunit responsible for the hydrolysis of ATP that drives ion transport underlying heavy metal detoxification pathways. We employed a chemiluminescent hybridization protection assay to quantify the proportion of both variants directly from mRNA while performing quantification of total transcript using Q-PCR. Polyclonal antisera raised against recombinant VHA-A facilitated simultaneous detection of parent and truncated VHA-A and revealed its cellular and subcellular localization. By exploiting laboratory exposures and samples from an environmental copper gradient, we showed that total VHA-A transcript and protein, together with levels of the truncated variant, were induced by copper. The absence of a genomic sequence representing the truncated variant suggests a RNA editing event causing the production of the truncated VHA-A. Based on these observations, we propose RNA editing as a novel molecular process underpinning VHA trafficking and intracellular sequestration of heavy metals under stress. PMID:23738980

  8. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    PubMed

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century. PMID:21844601

  9. A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: with application to Francisella tularensis

    PubMed Central

    Wood, R. M.; Egan, J. R.; Hall, I. M.

    2014-01-01

    In a novel approach, the standard birth–death process is extended to incorporate a fundamental mechanism undergone by intracellular bacteria, phagocytosis. The model accounts for stochastic interaction between bacteria and cells of the immune system and heterogeneity in susceptibility to infection of individual hosts within a population. Model output is the dose–response relation and the dose-dependent distribution of time until response, where response is the onset of symptoms. The model is thereafter parametrized with respect to the highly virulent Schu S4 strain of Francisella tularensis, in the first such study to consider a biologically plausible mathematical model for early human infection with this bacterium. Results indicate a median infectious dose of about 23 organisms, which is higher than previously thought, and an average incubation period of between 3 and 7 days depending on dose. The distribution of incubation periods is right-skewed up to about 100 organisms and symmetric for larger doses. Moreover, there are some interesting parallels to the hypotheses of some of the classical dose–response models, such as independent action (single-hit model) and individual effective dose (probit model). The findings of this study support experimental evidence and postulations from other investigations that response is, in fact, influenced by both in-host and between-host variability. PMID:24671937

  10. Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-11-01

    We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO2. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it was dissipated in the crystal. We compared the obtained results with those of computer simulations for UO2 and found that CeO2 was more stable than UO2 when supplied with high thermal energy.

  11. A fast algorithm for parallel computation of multibody dynamics on MIMD parallel architectures

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Kwan, Gregory; Bagherzadeh, Nader

    1993-01-01

    In this paper the implementation of a parallel O(LogN) algorithm for computation of rigid multibody dynamics on a Hypercube MIMD parallel architecture is presented. To our knowledge, this is the first algorithm that achieves the time lower bound of O(LogN) by using an optimal number of O(N) processors. However, in addition to its theoretical significance, the algorithm is also highly efficient for practical implementation on commercially available MIMD parallel architectures due to its highly coarse grain size and simple communication and synchronization requirements. We present a multilevel parallel computation strategy for implementation of the algorithm on a Hypercube. This strategy allows the exploitation of parallelism at several computational levels as well as maximum overlapping of computation and communication to increase the performance of parallel computation.

  12. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

    PubMed Central

    Monzel, C.; Schmidt, D.; Kleusch, C.; Kirchenbüchler, D.; Seifert, U.; Smith, A-S; Sengupta, K.; Merkel, R.

    2015-01-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique—dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. PMID:26437911

  13. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy.

    PubMed

    Monzel, C; Schmidt, D; Kleusch, C; Kirchenbüchler, D; Seifert, U; Smith, A-S; Sengupta, K; Merkel, R

    2015-01-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. PMID:26437911

  14. Fast measurement of automotive headlamps based on high dynamic range imaging.

    PubMed

    Wu, Hsien-Huang P; Lee, Yi-Ping; Chang, Shih-Hsin

    2012-10-01

    The headlamp of the automobile is a very important device for the safety of driving in the dark. Therefore, the distribution of the light designed to provide forward and lateral illumination needs to meet the requirements of various regulations. Traditional measurement of the distribution has been based on a point-by-point approach using a goniophotometer. In this paper, an imaging photometer is developed by combining a regular digital camera and a high dynamic range imaging technique to achieve faster and more complete measurement of the entire distribution. The experimental results indicate that errors of the measurements are within 10% of the true values, which is better than the 20% requirements of the industry. PMID:23033105

  15. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

    NASA Astrophysics Data System (ADS)

    Monzel, C.; Schmidt, D.; Kleusch, C.; Kirchenbüchler, D.; Seifert, U.; Smith, A.-S.; Sengupta, K.; Merkel, R.

    2015-10-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes.

  16. Effects of ICRH on the Dynamics of Fast Particle Excited Alfven Eigenmodes

    SciTech Connect

    Bergkvist, T.; Hellsten, T.; Holmstroem, K.

    2007-09-28

    ICRH is often used in experiments to simulate destabilization of Alfven eigenmodes by thermonuclear {alpha}-particles. Whereas the slowing down distribution of {alpha}-particles is nearly isotropic, the ICRH creates an anisotropic distribution function with non-standard orbits. The ICRH does not only build up gradients in phase space, which destabilizes the AEs, but it also provides a strong phase decorrelation mechanism between ions and AEs. Renewal of the distribution function by thermonuclear reactions and losses of {alpha}-particles to the wall lead to a continuous drive of the AEs. Simulations of the non-linear dynamics of AEs and the impact they have on the heating profile due to particle redistribution are presented.

  17. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    SciTech Connect

    Jia, Weile; University of Chinese Academy of Sciences, Beijing ; Fu, Jiyun; University of Chinese Academy of Sciences, Beijing ; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai ; Wang, Lin-Wang

    2013-10-15

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP.

  18. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    SciTech Connect

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-15

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute

  19. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  20. Managing intracellular transport

    PubMed Central

    Chua, John J.E.; Jahn, Reinhard; Klopfenstein, Dieter R.

    2013-01-01

    Formation and normal function of neuronal synapses are intimately dependent on the delivery to and removal of biological materials from synapses by the intracellular transport machinery. Indeed, defects in intracellular transport contribute to the development and aggravation of neurodegenerative disorders. Despite its importance, regulatory mechanisms underlying this machinery remain poorly defined. We recently uncovered a phosphorylation-regulated mechanism that controls FEZ1-mediated Kinesin-1-based delivery of Stx1 into neuronal axons. Using C. elegans as a model organism to investigate transport defects, we show that FEZ1 mutations resulted in abnormal Stx1 aggregation in neuronal cell bodies and axons. This phenomenon closely resembles transport defects observed in neurodegenerative disorders. Importantly, diminished transport due to mutations of FEZ1 and Kinesin-1 were concomitant with increased accumulation of autophagosomes. Here, we discuss the significance of our findings in a broader context in relation to regulation of Kinesin-mediated transport and neurodegenerative disorders. PMID:24058857

  1. A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering

    NASA Astrophysics Data System (ADS)

    Suzuki, Ken-Ichi; Kaeriyama, Yoshiyuki; Komatsu, Kazuhiko; Egawa, Ryusuke; Ohba, Nobuyuki; Kobayashi, Hiroaki

    Ray tracing is one of the most popular techniques for generating photo-realistic images. Extensive research and development work has made interactive static scene rendering realistic. This paper deals with interactive dynamic scene rendering in which not only the eye point but also the objects in the scene change their 3D locations every frame. In order to realize interactive dynamic scene rendering, RTRPS (Ray Tracing based on Ray Plane and Bounding Sphere), which utilizes the coherency in rays, objects, and grouped-rays, is introduced. RTRPS uses bounding spheres as the spatial data structure which utilizes the coherency in objects. By using bounding spheres, RTRPS can ignore the rotation of moving objects within a sphere, and shorten the update time between frames. RTRPS utilizes the coherency in rays by merging rays into a ray-plane, assuming that the secondary rays and shadow rays are shot through an aligned grid. Since a pair of ray-planes shares an original ray, the intersection for the ray can be completed using the coherency in the ray-planes. Because of the three kinds of coherency, RTRPS can significantly reduce the number of intersection tests for ray tracing. Further acceleration techniques for ray-plane-sphere and ray-triangle intersection are also presented. A parallel projection technique converts a 3D vector inner product operation into a 2D operation and reduces the number of floating point operations. Techniques based on frustum culling and binary-tree structured ray-planes optimize the order of intersection tests between ray-planes and a sphere, resulting in 50% to 90% reduction of intersection tests. Two ray-triangle intersection techniques are also introduced, which are effective when a large number of rays are packed into a ray-plane. Our performance evaluations indicate that RTRPS gives 13 to 392 times speed up in comparison with a ray tracing algorithm without organized rays and spheres. We found out that RTRPS also provides competitive

  2. Dynamic quantification of intracellular calcium and protein tyrosine phosphorylation in cryopreserved boar spermatozoa during short-time incubation with oviductal fluid.

    PubMed

    Kumaresan, A; González, R; Johannisson, A; Berqvist, A-S

    2014-11-01

    Freshly ejaculated boar spermatozoa require several hours of exposure to capacitating conditions to undergo capacitation. We hypothesized that cryopreserved boar spermatozoa might elicit a capacitation response after a relatively shorter time of exposure to capacitating conditions. Washed, frozen-thawed boar spermatozoa were incubated separately with pre-ovulatory isthmic oviductal fluid (EODF), post-ovulatory ODF (MODF), capacitation medium (CM), and noncapacitating medium (NCM) for 60 minutes. Aliquots of spermatozoa were taken at 0, 5, 15, 30, and 60 minutes during incubation and sperm kinematics, intracellular calcium [Ca2(+)]i content, and protein tyrosine phosphorylation (PTP) were studied. The proportion of motile spermatozoa increased significantly after 5 minutes of incubation with EODF. A similar increase was not observed in the other groups. During the initial 5 minutes of incubation, the proportion of spermatozoa with high [Ca(2+)]i decreased significantly in all four groups. The proportion of tyrosine phosphorylated spermatozoa increased from 6.49 ± 1.93% to 15.42 ± 3.58% and 18.41 ± 1.57% in EODF and MODF groups, respectively, at 5 minutes of incubation. Neither CM nor NCM elicited any immediate effect on PTP in spermatozoa. There was a positive and significant correlation between [Ca(2+)]i and sperm motility (P = 0.009). It may be concluded that frozen-thawed boar spermatozoa undergo capacitation-associated changes after a relatively short exposure to EODF, and there are some subpopulations of spermatozoa that undergo PTP despite possessing low [Ca(2+)]i. PMID:25175760

  3. Carnivora Population Dynamics Are as Slow and as Fast as Those of Other Mammals: Implications for Their Conservation

    PubMed Central

    van de Kerk, Madelon; de Kroon, Hans; Conde, Dalia A.; Jongejans, Eelke

    2013-01-01

    Of the 285 species of Carnivora 71 are threatened, while many of these species fulfill important ecological roles in their ecosystems as top or meso-predators. Population transition matrices make it possible to study how age-specific survival and fecundity affect population growth, extinction risks, and responses to management strategies. Here we review 38 matrix models from 35 studies on 27 Carnivora taxa, covering 11% of the threatened Carnivora species. We show that the elasticity patterns (i.e. distribution over fecundity, juvenile survival and adult survival) in Carnivora cover the same range in triangular elasticity plots as those of other mammal species, despite the specific place of Carnivora in the food chain. Furthermore, reproductive loop elasticity analysis shows that the studied species spread out evenly over a slow-fast continuum, but also quantifies the large variation in the duration of important life cycles and their contributions to population growth rate. These general elasticity patterns among species, and their correlation with simple life history characteristics like body mass, age of first reproduction and life span, enables the extrapolation of population dynamical properties to unstudied species. With several examples we discuss how this slow-fast continuum, and related patterns of variation in reproductive loop elasticity, can be used in the formulation of tentative management plans for threatened species that cannot wait for the results of thorough demographic studies. We argue, however, that such management programs should explicitly include a plan for learning about the key demographic rates and how these are affected by environmental drivers and threats. PMID:23950922

  4. Analysis of Intracellular Glucose at Single Cells Using Electrochemiluminescence Imaging.

    PubMed

    Xu, Jingjing; Huang, Peiyuan; Qin, Yu; Jiang, Dechen; Chen, Hong-Yuan

    2016-05-01

    Here, luminol electrochemiluminescence was first applied to analyze intracellular molecules, such as glucose, at single cells. The individual cells were retained in cell-sized microwells on a gold coated indium tin oxide (ITO) slide, which were treated with luminol, triton X-100, and glucose oxidase simultaneously. The broken cellular membrane in the presence of triton X-100 released intracellular glucose into the microwell and reacted with glucose oxidase to generate hydrogen peroxide, which induced luminol luminescence under positive potential. To achieve fast analysis, the luminescences from 64 individual cells on one ITO slide were imaged in 60 s using a charge-coupled device (CCD). More luminescence was observed at all the microwells after the introduction of triton X-100 and glucose oxidase suggested that intracellular glucose was detected at single cells. The starvation of cells to decrease intracellular glucose produced less luminescence, which confirmed that our luminescence intensity was correlated with the concentration of intracellular glucose. Large deviations in glucose concentration at observed single cells revealed high cellular heterogeneity in intracellular glucose for the first time. This developed electrochemiluminescence assay will be potentially applied for fast analysis of more intracellular molecules in single cells to elucidate cellular heterogeneity. PMID:27094779

  5. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    PubMed Central

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-01-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system “UPMC Cam,” to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system. PMID:23822346

  6. Strong-field isomerization dynamics of fast beams of hydrocarbon ions

    NASA Astrophysics Data System (ADS)

    Jochim, Bethany; Rajput, Jyoti; Berry, Ben; Severt, T.; Zohrabi, M.; Feizollah, Peyman; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    Bond rearrangement and fragmentation of hydrocarbons in intense laser fields has been a topic of considerable interest in the strong-field community in recent years. We study the interactions of keV hydrocarbon ion beams with ultrafast, intense laser pulses, employing coincidence 3D momentum imaging to elucidate the fragmentation dynamics and identify laser parameters that might be used for controlling outcomes such as the branching ratios. We focus on dissociation to ensure that isomerization occurs on the particular electronic channels of the molecular ion investigated. In C2 H2+, for example, we measure the intensity-dependent branching ratios of the acetylene (CH++CH) and vinylidene (e . g . , C++ CH2) channels. The relative fragmentation rates between the acetylene and vinylidene channels change by a factor of ~ 2 over the range of experimental intensities (1013- 1015 W/ cm2). Other hydrocarbons of interest include not only cations but also anions, such as C2 H 2 -. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy. BJ was also supported in part by DOE-SCGF (DE-AC05-06OR23100).

  7. Dynamic time warping in phoneme modeling for fast pronunciation error detection.

    PubMed

    Miodonska, Zuzanna; Bugdol, Marcin D; Krecichwost, Michal

    2016-02-01

    The presented paper describes a novel approach to the detection of pronunciation errors. It makes use of the modeling of well-pronounced and mispronounced phonemes by means of the Dynamic Time Warping (DTW) algorithm. Four approaches that make use of the DTW phoneme modeling were developed to detect pronunciation errors: Variations of the Word Structure (VoWS), Normalized Phoneme Distances Thresholding (NPDT), Furthest Segment Search (FSS) and Normalized Furthest Segment Search (NFSS). The performance evaluation of each module was carried out using a speech database of correctly and incorrectly pronounced words in the Polish language, with up to 10 patterns of every trained word from a set of 12 words having different phonetic structures. The performance of DTW modeling was compared to Hidden Markov Models (HMM) that were used for the same four approaches (VoWS, NPDT, FSS, NFSS). The average error rate (AER) was the lowest for DTW with NPDT (AER=0.287) and scored better than HMM with FSS (AER=0.473), which was the best result for HMM. The DTW modeling was faster than HMM for all four approaches. This technique can be used for computer-assisted pronunciation training systems that can work with a relatively small training speech corpus (less than 20 patterns per word) to support speech therapy at home. PMID:26739104

  8. Fast packet switching algorithms for dynamic resource control over ATM networks

    SciTech Connect

    Tsang, R.P.; Keattihananant, P.; Chang, T.; Heieh, J.; Du, D.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types of schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.

  9. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    NASA Astrophysics Data System (ADS)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  10. Temporal dynamics of repetition suppression to individual faces presented at a fast periodic rate.

    PubMed

    Nemrodov, Dan; Jacques, Corentin; Rossion, Bruno

    2015-10-01

    Periodic presentation of visual stimuli leads to a robust electrophysiological response on the human scalp exactly at the periodic stimulation frequency, a response defined as a "steady-state visual evoked potential" (SSVEP, Regan, 1966). However, recent studies have shown that SSVEPs over the (right) occipito-temporal cortex are reduced when the same individual face is repeated at periodic rates of 3 to 9 Hz compared to when different faces are presented (Rossion, 2014). Here, we characterized the temporal dynamics of this repetition suppression effect. We presented different face identities at a rate of 5.88 Hz (stimulus onset asynchrony of 170 ms) for 15 s, followed by the repetition of the exact same face at this rate for 35 s. Compared to a stimulation sequence with different faces only, there was a large and specific decrease of the 5.88 Hz response when the same face was repeated at that rate. This effect was observed over the left and right occipito-temporal cortex, but not over medial occipital electrode sites where SSVEPs are typically measured. In the right hemisphere, this decrease occurred abruptly, i.e., within half a second following the introduction of the same-identity stimulation, with no further decrease until the end of the stimulation. These observations indicate that the SSVEP recorded over high-level visual areas to periodic stimulation is not steady but rather adapts immediately and fully following the repetition of the same individual face, supporting a bottom-up, stimulus-driven account of repetition suppression effects. PMID:26113059

  11. Melt detection of Fe-Ni at high-pressures using atomic dynamics measurements and a fast temperature readout spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M.; Toellner, T. S.

    2013-12-01

    significant for materials near their melting points. To accurately capture this effect and reduce uncertainties in melting temperatures, we have developed a Fast Temperature Readout (FasTeR) spectrometer in-line with nuclear resonance scattering measurements under extreme conditions at Sector 3-ID-B of the Advanced Photon Source. Dedicated to determining the sample's temperature near its melting point, FasTeR features a fast readout rate (~100 Hz), high sensitivity, large dynamic range and well-constrained focus. FasTeR may also be ideal for a variety of short time-scale measurements conducted at high-temperatures. FasTeR has been successfully combined with SMS measurements on compressed fcc-structured Fe alloyed with 10 wt% Ni to determine the melting curve by monitoring the dynamics of the atoms. References: Fei, Y., Bertka, C.M. (2005): The interior of Mars. Science 308, 1120-1121 Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150 Margot et al. (2007): Large longitude libration of Mercury reveals a molten core. Science 316, 710-714 McDonough, W.F., Sun, S.S. (1995): The composition of the Earth. Chem. Geol. 120, 223-253

  12. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    SciTech Connect

    Chen, J.; Zhuang, G. Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J.; Brower, D. L.; Ding, W. X.

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  13. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics

    PubMed Central

    Burke, Kelly S.; Parul, Dzmitry; Reddish, Michael J.; Dyer, R. Brian

    2013-01-01

    We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 µs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 µs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonapthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 µs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics. PMID:23760106

  14. Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming.

    PubMed

    Lingham-Soliar, Theagarten

    2005-05-01

    The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right

  15. Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Zong, Q.-G.

    2014-11-01

    We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a "test-kinetic model") with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energies between 500 keV and 1.5 MeV near geosynchronous orbit. We also demonstrate that electrons in this energy range satisfy the drift resonance condition for the ULF waves produced by the MHD model. This confirms the conclusions reached by Tan et al. (2011), that the energization process in this case is dominated by drift-resonant interactions between electrons and MHD fast mode waves, produced by fluctuations in solar wind dynamic pressure.

  16. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M.

    2016-07-01

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS- anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  17. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  18. Micelle dynamic simulation and physicochemical characterization of biorelevant media to reflect gastrointestinal environment in fasted and fed states.

    PubMed

    Xie, XiaoYu; Cardot, Jean-Michel; Garrait, Ghislain; Thery, Vincent; El-Hajji, Mohamed; Beyssac, Eric

    2014-10-01

    The characterization of biorelevant media simulating the upper part of the gastrointestinal tract in the fasted and fed states was investigated by classical determination of physicochemical parameters such as pH, osmolality, surface tension and results were compared to in vivo physiological data. Incorporation of fatty material, in order to better simulate the influence of high fat meal was also performed. Stability and characterization of this medium was studied and compared to classical FeSSIF. Micelle characterization and computer dynamic simulation were performed in order to understand the interaction between lecithin and taurocholate and possible interactions between mixed micelle and drugs. The addition of NaTc, lecithin, and/or fatty materials has no influence on pH and osmolality, whereas the presence of fatty material modifies the surface tension. Values of FaSSIF and FeSSIF are in accordance with in vivo parameters and the presence of micelles can simulate the gastrointestinal environment. Modelization of micelles by computer simulation led to a model of mixed micelles in which structures of NaTc interact either by their hydrophilic or hydrophobic phase to give a bilayer stable model in which the lecithin molecule can insert its long carbon chain. The micelle structure is stable and can enhance dissolution of hydrophobic molecules by hydrophobic interaction with the numerous hydrophobic spaces available in the multilayer hydrophilic/hydrophobic layer. PMID:24954150

  19. Label-free detection and dynamic monitoring of drug-induced intracellular vesicle formation enabled using a 2-dimensional matched filter

    PubMed Central

    Aftab, Obaid; Fryknäs, Mårten; Zhang, Xiaonan; De Milito, Angelo; Hammerling, Ulf; Linder, Stig; Larsson, Rolf; Gustafsson, Mats G

    2014-01-01

    Analysis of vesicle formation and degradation is a central issue in autophagy research and microscopy imaging is revolutionizing the study of such dynamic events inside living cells. A limiting factor is the need for labeling techniques that are labor intensive, expensive, and not always completely reliable. To enable label-free analyses we introduced a generic computational algorithm, the label-free vesicle detector (LFVD), which relies on a matched filter designed to identify circular vesicles within cells using only phase-contrast microscopy images. First, the usefulness of the LFVD is illustrated by presenting successful detections of autophagy modulating drugs found by analyzing the human colorectal carcinoma cell line HCT116 exposed to each substance among 1266 pharmacologically active compounds. Some top hits were characterized with respect to their activity as autophagy modulators using independent in vitro labeling of acidic organelles, detection of LC3-II protein, and analysis of the autophagic flux. Selected detection results for 2 additional cell lines (DLD1 and RKO) demonstrate the generality of the method. In a second experiment, label-free monitoring of dose-dependent vesicle formation kinetics is demonstrated by recorded detection of vesicles over time at different drug concentrations. In conclusion, label-free detection and dynamic monitoring of vesicle formation during autophagy is enabled using the LFVD approach introduced. PMID:24169509

  20. Characterization of dynamics in complex lyophilized formulations: II. Analysis of density variations in terms of glass dynamics and comparisons with global mobility, fast dynamics, and Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Chieng, Norman; Cicerone, Marcus T.; Zhong, Qin; Liu, Ming; Pikal, Michael J.

    2013-01-01

    Amorphous HES/disaccharide (trehalose or sucrose) formulations, with and without added polyols (glycerol and sorbitol) and disaccharide formulations of human growth hormone (hGH), were prepared by freeze drying and characterized with particular interest in methodology for using high precision density measurements to evaluate free volume changes and a focus on comparisons between “free volume” changes obtained from analysis of density data, fast dynamics (local mobility), and PALS characterization of “free volume” hole size. Density measurements were performed using a helium gas pycnometer, and fast dynamics was characterized using incoherent neutron scattering spectrometer. Addition of sucrose and trehalose to hGH decreases free volume in the system with sucrose marginally more effective than trehalose, consistent with superior pharmaceutical stability of sucrose hGH formulations well below Tg relative to trehalose. We find that density data may be analyzed in terms of free volume changes by evaluation of volume changes on mixing and calculation of apparent specific volumes from the densities. Addition of sucrose to HES decreases free volume, but the effect of trehalose is not detectable above experimental error. Addition of sorbitol or glycerol to HES/trehalose base formulations appears to significantly decrease free volume, consistent with the positive impact of such additions on pharmaceutical stability (i.e., degradation) in the glassy state. Free volume changes, evaluated from density data, fast dynamics amplitude of local motion, and PALS hole size data generally are in qualitative agreement for the HES/disaccharide systems studied. All predict decreasing molecular mobility as disaccharides are added to HES. Global mobility as measured by enthalpy relaxation times, increases as disaccharides, particularly sucrose, are added to HES. PMID:23623797

  1. Nanovehicular intracellular delivery systems.

    PubMed

    Prokop, Ales; Davidson, Jeffrey M

    2008-09-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  2. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  3. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    NASA Astrophysics Data System (ADS)

    Asano, M.; Özdemir, Ş. K.; Chen, W.; Ikuta, R.; Yang, L.; Imoto, N.; Yamamoto, T.

    2016-05-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  4. Use of the Dynamic Gastric Model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations.

    PubMed

    Mason, Laura M; Chessa, Simona; Huatan, Hiep; Storey, David E; Gupta, Pranav; Burley, Jonathan; Melia, Colin D

    2016-08-20

    The Dynamic Gastric Model (DGM) is an in-vitro system which aims to closely replicate the complex mixing, dynamic biochemical release and emptying patterns of the human stomach. In this study, the DGM was used to understand how the polymer content of hydrophilic matrices influences drug release in fasted and fed dissolution environments. Matrices containing a soluble model drug (caffeine) and between 10 and 30% HPMC 2208 (METHOCEL(®) K4M CR) were studied in the DGM under simulated fasted and fed conditions. The results were compared with compendial USP I and USP II dissolution tests. The USP I and II tests clearly discriminated between formulations containing different polymer levels, whereas the fasted DGM test bracketed drug release profiles into three groups and was not able to distinguish between some different formulations. DGM tests in the fed state showed that drug release was substantially influenced by the presence of a high fat meal. Under these conditions, there was a delay before initial drug release, and differences between matrices with different polymer contents were no longer clear. Matrices containing the typical amount of HPMC polymer (30% w/w) exhibited similar release rates under fed and fasted DGM conditions, but matrices with lower polymer contents exhibited more rapid drug release in the fasted state. In both the fasted and fed states erosion mechanisms appeared to dominate drug release in the DGM: most likely a consequence of the changing, cylindrical forces exerted during simulated antral cycling. This is in contrast to the USP tests in which diffusion played a significant role in the drug release process. This study is one of the first publications where a series of extended release (ER) formulations have been studied in the DGM. The technique appears to offer a useful tool to explore the potential sensitivity of ER formulations with respect to the gastric environment, especially the presence of food. PMID:27311354

  5. Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Fabian, Andrew C.; Quataert, Eliot; Murray, Norman

    2015-05-01

    It is typically assumed that radiation-pressure-driven winds are accelerated to an asymptotic velocity of v∞ ≃ vesc, where vesc is the escape velocity from the central source. We note that this is not the case for dusty shells and clouds. Instead, if the shell or cloud is initially optically thick to the UV emission from the source of luminosity L, then there is a significant boost in v∞ that reflects the integral of the momentum absorbed as it is accelerated. For shells reaching a generalized Eddington limit, we show that v∞ ≃ (4RUVL/Mshc)1/2, in both point-mass and isothermal-sphere potentials, where RUV is the radius where the shell becomes optically thin to UV photons, and Msh is the mass of the shell. The asymptotic velocity significantly exceeds vesc for typical parameters, and can explain the ˜1000-2000 km s-1 outflows observed from rapidly star-forming galaxies and active galactic nuclei (AGN) if the surrounding halo has low gas density. Similarly fast outflows from massive stars can be accelerated on ˜few-103 yr time-scales. These results carry over to clouds that subtend only a small fraction of the solid angle from the source of radiation and that expand as a consequence of their internal sound speed. We further consider the dynamics of shells that sweep up a dense circumstellar or circumgalactic medium. We calculate the `momentum ratio' dot{M} v/(L/c) in the shell limit and show that it can only significantly exceed ˜2 if the effective optical depth of the shell to re-radiated far-infrared photons is much larger than unity. We discuss simple prescriptions for the properties of galactic outflows for use in large-scale cosmological simulations. We also briefly discuss applications to the dusty ejection episodes of massive stars, the disruption of giant molecular clouds, and AGN.

  6. Compartmental analysis of technetium-99m-teboroxime kinetics employing fast dynamic SPECT at rest and stress

    SciTech Connect

    Chiao, P.C.; Ficaro, E.P.; Dayaniki, F.

    1994-08-01

    The authors have examined the feasibility of compartmental analysis of {sup 99m}Tc-teboroxime kinetics in measuring physiological changes in response to adenosine-induced coronary vasodilation. To evaluate the effect of tracer recirculation on {sup 99m}Tc-teboroxime kinetics in the myocardium, they also compared compartmental analysis with washout analysis (monoexponertial fitting), which does not account for this effect. Eight healthy male volunteers were imaged using fast dynamic SPECT protocols (5 sec per tomographic image) at rest and during adenosine infusion. A two-compartment model was used and compartmental parameters K1 and k2 (characterizing the diffusion of {sup 99m}Tc-teboroxime from the blood to the myocardium and from the myocardium to the blood, respectively) were fitted from myocardial time-activity curves and left ventricular input functions. Both K1 and washout estimates for the whole left ventricular myocardium changed significantly in response to coronary vasodilation. Mean stress-to-rest (S/R) ratios were almost two times higher for K1 (S/R = 2.7 {plus_minus} 1.1) than for washout estimates (S/R = 1.5 {plus_minus} 0.3). Estimation of K1 for all local regions, except the septal wall, is feasible because variations in K1 estimates for all local regions, except the septum during stress, are comparable with those for the global region. The authors conclude that quantitative compartmental analysis of {sup 99m}Tc-teboroxime kinetics provides a sensitive indicator for changes in response to adenosine-induced coronary vasodilation. 39 refs., 7 figs., 1 tab.

  7. Dual responsive nanogels for intracellular doxorubicin delivery.

    PubMed

    Asadi, Hamed; Khoee, Sepideh

    2016-09-10

    Nanosized polymeric delivery systems that encapsulate drug molecules and release them in response to a specific intracellular stimulus are of promising interest for cancer therapy. Here, we demonstrated a simple and fast synthetic protocol of redox-responsive nanogels with high drug encapsulation efficiency and stability. The prepared nanogels displayed narrow size distributions and versatility of surface modification. The polymer precursor of these nanogels is based on a random copolymer that contains oligoethyleneglycol (OEG) and pyridyldisulfide (PDS) units as side-chain functionalities. The nanogels were prepared through a lock-in strategy in aqueous media via self cross-linking of PDS groups. By changing polymer concentration, we could control the size of nanogels in range of 80-115nm. The formed nanogels presented high doxorubicin (DOX) encapsulation efficiency (70% (w/w)) and displayed pH and redox-controlled drug release triggered by conditions mimicking the reducible intracellular environment. The nanogels displayed an excellent cytocompatibility and were effectively endocytosed by A2780CP ovarian cancer cells, which make them promising nanomaterials for the efficient intracellular delivery of anticancer drugs. PMID:27444549

  8. Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy

    NASA Astrophysics Data System (ADS)

    Yau, Sung Hei; Abeyasinghe, Neranga; Orr, Meghan; Upton, Leslie; Varnavski, Oleg; Werner, James H.; Yeh, Hsin-Chih; Sharma, Jaswinder; Shreve, Andrew P.; Martinez, Jennifer S.; Goodson, Theodore, III

    2012-06-01

    Metal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA (``Ag NC on ssDNA'') that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing (``Ag NC on dsDNA''). Steady state fluorescence was observed at 540 nm for both Ag NC on ssDNA and dsDNA; emission at 650 nm is observed for Ag NC on dsDNA. The emission at 550 nm is eight times weaker than that at 650 nm. Fluorescence up-conversion was used to study the dynamics of the emission. Bi-exponential fluorescence decay was recorded at 550 nm with lifetimes of 1 ps and 17 ps. The emission at 650 nm was not observed at the time scale investigated but has been reported to have a lifetime of 3.48 ns. Two-photon excited fluorescence was detected for Ag NC on dsDNA at 630 nm when excited at 800 nm. The two-photon absorption cross-section was calculated to be ~3000 GM. Femtosecond transient absorption experiments were performed to investigate the excited state dynamics of DNA-Ag NC. An excited state unique to Ag NC on dsDNA was identified at ~580 nm as an excited state bleach that related directly to the emission at 650 nm based on the excitation spectrum. Based on the optical results, a simple four level system is used to describe the emission mechanism for Ag NC on dsDNA.

  9. Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy.

    PubMed

    Yau, Sung Hei; Abeyasinghe, Neranga; Orr, Meghan; Upton, Leslie; Varnavski, Oleg; Werner, James H; Yeh, Hsin-Chih; Sharma, Jaswinder; Shreve, Andrew P; Martinez, Jennifer S; Goodson, Theodore

    2012-07-21

    Metal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA ("Ag NC on ssDNA") that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing ("Ag NC on dsDNA"). Steady state fluorescence was observed at 540 nm for both Ag NC on ssDNA and dsDNA; emission at 650 nm is observed for Ag NC on dsDNA. The emission at 550 nm is eight times weaker than that at 650 nm. Fluorescence up-conversion was used to study the dynamics of the emission. Bi-exponential fluorescence decay was recorded at 550 nm with lifetimes of 1 ps and 17 ps. The emission at 650 nm was not observed at the time scale investigated but has been reported to have a lifetime of 3.48 ns. Two-photon excited fluorescence was detected for Ag NC on dsDNA at 630 nm when excited at 800 nm. The two-photon absorption cross-section was calculated to be ∼3000 GM. Femtosecond transient absorption experiments were performed to investigate the excited state dynamics of DNA-Ag NC. An excited state unique to Ag NC on dsDNA was identified at ∼580 nm as an excited state bleach that related directly to the emission at 650 nm based on the excitation spectrum. Based on the optical results, a simple four level system is used to describe the emission mechanism for Ag NC on dsDNA. PMID:22692295

  10. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12".

    PubMed

    Buschmann, Henrik; Dölle, Janis; Berendts, Stefan; Kuhn, Alexander; Bottke, Patrick; Wilkening, Martin; Heitjans, Paul; Senyshyn, Anatoliy; Ehrenberg, Helmut; Lotnyk, Andriy; Duppel, Viola; Kienle, Lorenz; Janek, Jürgen

    2011-11-21

    The solid lithium-ion electrolyte "Li(7)La(3)Zr(2)O(12)" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, (6)Li and (7)Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy E(a) characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10(-4) Scm(-1) to 4 × 10(-4) Scm(-1) depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10(-6) Scm(-1), E(a) = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number t(e-) is of the order of 10(-7). Thus, cubic LLZO is an almost exclusive

  11. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  12. Fast MS/MS acquisition without dynamic exclusion enables precise and accurate quantification of proteome by MS/MS fragment intensity

    PubMed Central

    Zhang, Shen; Wu, Qi; Shan, Yichu; Zhao, Qun; Zhao, Baofeng; Weng, Yejing; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    Most currently proteomic studies use data-dependent acquisition with dynamic exclusion to identify and quantify the peptides generated by the digestion of biological sample. Although dynamic exclusion permits more identifications and higher possibility to find low abundant proteins, stochastic and irreproducible precursor ion selection caused by dynamic exclusion limit the quantification capabilities, especially for MS/MS based quantification. This is because a peptide is usually triggered for fragmentation only once due to dynamic exclusion. Therefore the fragment ions used for quantification only reflect the peptide abundances at that given time point. Here, we propose a strategy of fast MS/MS acquisition without dynamic exclusion to enable precise and accurate quantification of proteome by MS/MS fragment intensity. The results showed comparable proteome identification efficiency compared to the traditional data-dependent acquisition with dynamic exclusion, better quantitative accuracy and reproducibility regardless of label-free based quantification or isobaric labeling based quantification. It provides us with new insights to fully explore the potential of modern mass spectrometers. This strategy was applied to the relative quantification of two human disease cell lines, showing great promises for quantitative proteomic applications. PMID:27198003

  13. Delay-Induced Bogdanov-Takens Bifurcation and Dynamical Classifications in a Slow-Fast Flexible Joint System

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Shanying

    A slow-fast delay-coupled flexible joint system is investigated in this paper. To understand the effects of time delay on the stability and oscillation of the manipulator, the geometric singular perturbation method is extended in dealing with delay differential equations. Bogdanov-Takens (BT) bifurcation of the fast subsystem is obtained, which leads to the existence of homoclinic orbits and is proved to be related to the formation of spiking. After the break of homoclinic orbits, Melnikov theory is introduced to predict the threshold curve indicating the occurrence of chaos. Numerical results show that with the increase of time delay, the stability of the system gets worse, and complicated oscillations including bursting, chaotic-bursting and complete chaos turn up. Besides, it is briefly summarized that the effect of the small parameter in the slow-fast system is to influence the convergence rate of solution trajectories, which is widely neglected in previous works.

  14. Quantitative Measurement of Blood-Brain Barrier Permeability in Human Using Dynamic Contrast-Enhanced MRI with Fast T1 Mapping

    PubMed Central

    Taheri, Saeid; Gasparovic, Charles; Shah, Nadim Jon; Rosenberg, Gary A.

    2016-01-01

    Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10−4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. PMID:21413067

  15. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    PubMed Central

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  16. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  17. Fast adaptive OFDM-PON over single fiber loopback transmission using dynamic rate adaptation-based algorithm for channel performance improvement

    NASA Astrophysics Data System (ADS)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2014-03-01

    In this paper, we propose a novel fast adaptive approach that was applied to an OFDM-PON 20-km single fiber loopback transmission system to improve channel performance in term of stabilized BER below 2 × 10-3 and higher throughput beyond 10 Gb/s. The upstream transmission is performed through light source-seeded modulation using 1-GHz RSOA at the ONU. Experimental results indicated that the dynamic rate adaptation algorithm based on greedy Levin-Campello could be an effective solution to mitigate channel instability and data rate degradation caused by the Rayleigh back scattering effect and inefficient resource subcarrier allocation.

  18. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    NASA Astrophysics Data System (ADS)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  19. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  20. A fast key generation method based on dynamic biometrics to secure wireless body sensor networks for p-health.

    PubMed

    Zhang, G H; Poon, Carmen C Y; Zhang, Y T

    2010-01-01

    Body sensor networks (BSNs) have emerged as a new technology for healthcare applications, but the security of communication in BSNs remains a formidable challenge yet to be resolved. The paper discusses the typical attacks faced by BSNs and proposes a fast biometric based approach to generate keys for ensuing confidentiality and authentication in BSN communications. The approach was tested on 900 segments of electrocardiogram. Each segment was 4 seconds long and used to generate a 128-bit key. The results of the study found that entropy of 96% of the keys were above 0.95 and 99% of the hamming distances calculated from any two keys were above 50 bits. Based on the randomness and distinctiveness of these keys, it is concluded that the fast biometric based approach has great potential to be used to secure communication in BSNs for health applications. PMID:21096428

  1. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  2. Side effects of fast-acting dynamic range compression that affect intelligibility in a competing speech task

    NASA Astrophysics Data System (ADS)

    Stone, Michael A.; Moore, Brian C. J.

    2004-10-01

    Using a cochlear implant simulator, Stone and Moore [J. Acoust. Soc. Am. 114, 1023-1034 (2003)] reported that wideband fast-acting compression led to poorer intelligibility than slow-acting compression in a competing speech task. Compression speed was varied by using different pairs of attack and release times. In the first experiment reported here, it is shown that attack times less than about 2 ms in a wideband compressor are deleterious to intelligibility. In experiment 2, fast wideband compression was applied to the target and background either before or after mixing. The former reduced the modulation depth of each signal but maintained the independence between the two signals, while the latter introduced ``comodulation.'' Using simulations with 6 and 11 channels, intelligibility was higher when compression was applied before mixing. In experiment 3, wideband compression was compared with multichannel compression; the latter led to reduced comodulation effects. For 6 channels, the position of the compressor, either wideband or within each channel, had no effect on intelligibility. For 11 channels, channel compression severely degraded intelligibility compared to wideband compression, presumably because of the greater reduction of across-channel contrasts. Overall, caution appears necessary in the use of fast-acting compression in cochlear implants, so as to preserve intelligibility. .

  3. Direct and indirect methods for studying the energetics and dynamics of the Auger Doppler effect in femtosecond ultra-fast dissociation

    NASA Astrophysics Data System (ADS)

    Björneholm, O.

    2001-09-01

    Molecules may fragment within a few femtoseconds after core-excitation, a phenomenon known as ultra-fast dissociation. With the aim of providing an understanding of the fundamental phenomenology of the Auger Doppler effect, two methods are presented to study the energetics and dynamics, i.e., the kinetic energy release and the fragment velocities in such processes. The first, direct, method is based on the shifts in kinetic energy of the Auger electrons due to the velocity acquired by the fragment in the ultra-fast dissociation process, i.e., the Auger Doppler effect. The second, indirect, method is based on total-energy arguments in a Born-Haber cycle for excitation, dissociation, and ionization. A combination of the two methods is shown to be able to reproduce experimental spectra well. Based on this, predictions are made for other, yet unstudied, molecular systems. It is also shown that the Auger Doppler effect is not static, but will exhibit dynamic photon energy dependence. The complete energetics of the three-body dissociation of a molecule into an electron, an ion, and a neutral fragment on a time-scale of a few femtoseconds can thus be accounted for.

  4. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system

  5. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (∼6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  6. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) neat transport system dynamics and steam generator control

    NASA Astrophysics Data System (ADS)

    Brukx, J. F. L. M.

    1982-06-01

    Loop type LMFBR heat transport system dynamics after reactor shutdown and during subsequent decay heat removal are considered with emphasis on steam generator dynamics including the development and evaluation of various post-scram steam generator control systems, and natural circulation of the sodium coolant, including the influence of superimposed free convection on forced convection heat transfer and pressure drop. The normal operating and decay heat removal functions of the overall heat transport system are described.

  7. Intracellular auxin transport in pollen

    PubMed Central

    Dal Bosco, Cristina; Dovzhenko, Alexander; Palme, Klaus

    2012-01-01

    Cellular auxin homeostasis is controlled at many levels that include auxin biosynthesis, auxin metabolism, and auxin transport. In addition to intercellular auxin transport, auxin homeostasis is modulated by auxin flow through the endoplasmic reticulum (ER). PIN5, a member of the auxin efflux facilitators PIN protein family, was the first protein to be characterized as an intracellular auxin transporter. We demonstrated that PIN8, the closest member of the PIN family to PIN5, represents another ER-residing auxin transporter. PIN8 is specifically expressed in the male gametophyte and is located in the ER. By combining genetic, physiological, cellular and biochemical data we demonstrated a role for PIN8 in intracellular auxin homeostasis. Although our investigation shed light on intracellular auxin transport in pollen, the physiological function of PIN8 still remains to be elucidated. Here we discuss our data taking in consideration other recent findings. PMID:22990451

  8. Damage detection in a cantilever beam under dynamic conditions using a distributed, fast, and high spatial resolution Brillouin interrogator

    NASA Astrophysics Data System (ADS)

    Motil, A.; Davidi, R.; Bergman, A.; Botsev, Y.; Hahami, M.; Tur, M.

    2016-05-01

    The ability of Brillouin-based fiber-optic sensing to detect damage in a moving cantilever beam is demonstrated. A fully computerized, distributed and high spatial resolution (10cm) Fast-BOTDA interrogator (50 full-beam Brillouin-gain-spectra per second) successfully directly detected an abnormally stiffened (i.e., `damaged') 20cm long segment in a 6m Aluminum beam, while the beam was in motion. Damage detection was based on monitoring deviations of the measured strain distribution along the beam from that expected in the undamaged case.

  9. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  10. Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint

    NASA Astrophysics Data System (ADS)

    Gardner, A. D.; Klein, C.; Sachs, W. E.; Henne, U.; Mai, H.; Richter, K.

    2014-09-01

    Dynamic stall on a pitching OA209 airfoil in a wind tunnel is investigated at Mach 0.3 and 0.5 using high-speed pressure-sensitive paint (PSP) and pressure measurements. At Mach 0.3, the dynamic stall vortex was observed to propagate faster at the airfoil midline than at the wind-tunnel wall, resulting in a "bowed" vortex shape. At Mach 0.5, shock-induced stall was observed, with initial separation under the shock foot and subsequent expansion of the separated region upstream, downstream and along the breadth of the airfoil. No dynamic stall vortex could be observed at Mach 0.5. The investigation of flow control by blowing showed the potential advantages of PSP over pressure transducers for a complex three-dimensional flow.

  11. Golden-Angle Radial Sparse Parallel MRI: Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling for Fast and Flexible Dynamic Volumetric MRI

    PubMed Central

    Feng, Li; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kim, Sungheon; Xu, Jian; Axel, Leon; Sodickson, Daniel K.; Otazo, Ricardo

    2013-01-01

    Purpose To develop a fast and flexible free-breathing dynamic volumetric MRI technique, iterative Golden-angle RAdial Sparse Parallel MRI (iGRASP), that combines compressed sensing, parallel imaging, and golden-angle radial sampling. Methods Radial k-space data are acquired continuously using the golden-angle scheme and sorted into time series by grouping an arbitrary number of consecutive spokes into temporal frames. An iterative reconstruction procedure is then performed on the undersampled time series where joint multicoil sparsity is enforced by applying a total-variation constraint along the temporal dimension. Required coil-sensitivity profiles are obtained from the time-averaged data. Results iGRASP achieved higher acceleration capability than either parallel imaging or coil-by-coil compressed sensing alone. It enabled dynamic volumetric imaging with high spatial and temporal resolution for various clinical applications, including free-breathing dynamic contrast-enhanced imaging in the abdomen of both adult and pediatric patients, and in the breast and neck of adult patients. Conclusion The high performance and flexibility provided by iGRASP can improve clinical studies that require robustness to motion and simultaneous high spatial and temporal resolution. PMID:24142845

  12. Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems

    PubMed Central

    2014-01-01

    RNA regulators are emerging as powerful tools to engineer synthetic genetic networks or rewire existing ones. A potential strength of RNA networks is that they may be able to propagate signals on time scales that are set by the fast degradation rates of RNAs. However, a current bottleneck to verifying this potential is the slow design-build-test cycle of evaluating these networks in vivo. Here, we adapt an Escherichia coli-based cell-free transcription-translation (TX-TL) system for rapidly prototyping RNA networks. We used this system to measure the response time of an RNA transcription cascade to be approximately five minutes per step of the cascade. We also show that this response time can be adjusted with temperature and regulator threshold tuning. Finally, we use TX-TL to prototype a new RNA network, an RNA single input module, and show that this network temporally stages the expression of two genes in vivo. PMID:24621257

  13. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems.

    PubMed

    Takahashi, Melissa K; Chappell, James; Hayes, Clarmyra A; Sun, Zachary Z; Kim, Jongmin; Singhal, Vipul; Spring, Kevin J; Al-Khabouri, Shaima; Fall, Christopher P; Noireaux, Vincent; Murray, Richard M; Lucks, Julius B

    2015-05-15

    RNA regulators are emerging as powerful tools to engineer synthetic genetic networks or rewire existing ones. A potential strength of RNA networks is that they may be able to propagate signals on time scales that are set by the fast degradation rates of RNAs. However, a current bottleneck to verifying this potential is the slow design-build-test cycle of evaluating these networks in vivo. Here, we adapt an Escherichia coli-based cell-free transcription-translation (TX-TL) system for rapidly prototyping RNA networks. We used this system to measure the response time of an RNA transcription cascade to be approximately five minutes per step of the cascade. We also show that this response time can be adjusted with temperature and regulator threshold tuning. Finally, we use TX-TL to prototype a new RNA network, an RNA single input module, and show that this network temporally stages the expression of two genes in vivo. PMID:24621257

  14. Slowing down of fast electrons as probe for charging and decharging dynamics of ion-irradiated insulators

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2011-06-01

    The slowing down of fast electrons emitted from insulators [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Kr, Ag, Xe; 20-64 MeV/u) was measured by the time-of-flight method at LNS, Catania and GANIL, Caen. The charge buildup, deduced from both convoy- and binary-encounter electron peak shifts, leads to target material-dependent potentials (6.0 kV for Mylar, 2.8 kV for PP). The number of projectiles needed for charging up (charging-up time constant) is inversely proportional to the electronic energy loss. After a certain time, a sudden decharging occurs. For low beam currents, charging-up time, energy shift corresponding to maximum charge buildup, and time of decharging are regular. For high beam currents, the time intervals become irregular (chaotic).

  15. A POSSIBLE DETECTION OF A FAST-MODE EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH A MINI CORONAL MASS EJECTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zheng Ruisheng; Jiang Yunchun; Hong Junchao; Yang Jiayan; Bi Yi; Yang Liheng; Yang Dan

    2011-10-01

    'Extreme ultraviolet (EUV) waves' are large-scale wavelike transients often associated with coronal mass ejections (CMEs). In this Letter, we present a possible detection of a fast-mode EUV wave associated with a mini-CME observed by the Solar Dynamics Observatory. On 2010 December 1, a small-scale EUV wave erupted near the disk center associated with a mini-CME, which showed all the low corona manifestations of a typical CME. The CME was triggered by the eruption of a mini-filament, with a typical length of about 30''. Although the eruption was tiny, the wave had the appearance of an almost semicircular front and propagated at a uniform velocity of 220-250 km s{sup -1} with very little angular dependence. The CME lateral expansion was asymmetric with an inclination toward north, and the southern footprints of the CME loops hardly shifted. The lateral expansion resulted in deep long-duration dimmings, showing the CME extent. Comparing the onset and the initial speed of the CME, the wave was likely triggered by the rapid expansion of the CME loops. Our analysis confirms that the small-scale EUV wave is a true wave, interpreted as a fast-mode wave.

  16. A New Integrated Lab-on-a-Chip System for Fast Dynamic Study of Mammalian Cells under Physiological Conditions in Bioreactor

    PubMed Central

    Bahnemann, Janina; Rajabi, Negar; Fuge, Grischa; Platas Barradas, Oscar; Müller, Jörg; Pörtner, Ralf; Zeng, An-Ping

    2013-01-01

    For the quantitative analysis of cellular metabolism and its dynamics it is essential to achieve rapid sampling, fast quenching of metabolism and the removal of extracellular metabolites. Common manual sample preparation methods and protocols for cells are time-consuming and often lead to the loss of physiological conditions. In this work, we present a microchip-bioreactor setup which provides an integrated and rapid sample preparation of mammalian cells. The lab-on-a-chip system consists of five connected units that allow sample treatment, mixing and incubation of the cells, followed by cell separation and simultaneous exchange of media within seconds. This microsystem is directly integrated into a bioreactor for mammalian cell cultivation. By applying overpressure (2 bar) onto the bioreactor, this setup allows pulsation free, defined, fast, and continuous sampling. Experiments evince that Chinese Hamster Ovary cells (CHO-K1) can be separated from the culture broth and transferred into a new medium efficiently. Furthermore, this setup permits the treatment of cells for a defined time (9 s or 18 s) which can be utilized for pulse experiments, quenching of cell metabolism, and/or another defined chemical treatment. Proof of concept experiments were performed using glutamine containing medium for pulse experiments. Continuous sampling of cells showed a high reproducibility over a period of 18 h. PMID:24709705

  17. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  18. Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint

    NASA Astrophysics Data System (ADS)

    Bitter, Martin; Hara, Tatsuya; Hain, Rainer; Yorita, Daisuke; Asai, Keisuke; Kähler, Christian J.

    2012-12-01

    This collaborative work discusses the results of time-resolved pressure-sensitive paint measurements performed on a model of a generic spacecraft under sub- and transonic test conditions. It is shown that optical pressure measurements using an active layer from platinum-porphyrin complexes (PtTFPP) in combination with a polymer-ceramic base layer are able to measure dynamic flow phenomena in the trisonic wind tunnel facility up to sampling rates of 2 kHz. Low amplitude fluctuations in the order of 0.1 kPa were determined by means of this measurement technique. The buffet dynamics, as well as the spatial extent of the recirculation area in the near-wake, compare well with numerical predictions and PIV measurements. Furthermore, characteristic coherent pressure modes on the base were resolved, which were predicted by large-eddy simulations.

  19. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Mukai, David; Brenner, Matthew

    2006-04-01

    In this manuscript, a GRIN (gradient index) lens rod based probe for endoscopic spectral domain optical coherence tomography (OCT) with dynamic focus tracking is presented. Current endoscopic OCT systems have a fixed focal plane or working distance. In contrast, the focus of this endoscopic OCT probe can dynamically be adjusted at a high speed (500 mm/s) without changing reference arm length to obtain high quality OCT images for contact or non-contact tissue applications, or for areas of difficult access for probes. The dynamic focusing range of the probe can be from 0 to 7.5 mm without moving the probe itself. The imaging depth is 2.8 mm and the lateral scanning range is up to 2.7 mm or 4.5 mm (determined by the diameter of different GRIN lens rods). Three dimensional imaging can be performed using this system over an area of tissue corresponding to the GRIN lens surface. The experimental results demonstrate that this GRIN lens rod based OCT system can perform a high quality non-contact in vivo imaging. This rigid OCT probe is solid and can be adapted to safely access internal organs, to perform front or side view imaging with an imaging speed of 8 frames per second, with all moving parts proximal to the GRIN lens, and has great potential for use in extremely compact OCT endoscopes for in vivo imaging in both biological research and clinical applications.

  20. Stochastic models of intracellular calcium signals

    NASA Astrophysics Data System (ADS)

    Rüdiger, Sten

    2014-01-01

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels-one of the most important cellular signaling mechanisms-feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction-diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker-Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  1. Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics Program for Generalized Ensemble and Fast Switching Alchemical Simulations.

    PubMed

    Procacci, Piero

    2016-06-27

    We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac . PMID:27231982

  2. Fast Carbon Isotope Analysis of CO2 Using Cavity Enhanced Laser Absorption: Water Effects and Extended Dynamic Range

    NASA Astrophysics Data System (ADS)

    McAlexander, W. I.; Fellers, R.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Fast, precise, and accurate measurement of δ13C (13C / 12C in CO2) of carbon dioxide is desirable for a number of applications including atmospheric chemistry and carbon sequestering. Recent advances in laser absorption spectroscopy, such as cavity enhanced techniques, have enabled field portable instruments which have a number of advantages over traditional, laboratory-based mass spectroscopy systems. We report on the continued development of an analyzer, based on a patented laser absorption technique (off-axis integrated cavity output spectroscopy or Off-Axis ICOS), which measures CO2 concentration, δ13C, and H2O concentration. The analyzer operates at 1Hz and achieves an isotope precision of 0.25‰ (standard deviation) for δ13C with less than one minute of averaging. In addition, recent advances have allowed for the simultaneous measurement of water during the carbon isotope measurement. The instrument reports a dry mole fraction for CO2 and compensates for water broadening in the spectroscopic measurement of δ13C. A multi-point calibration routine has been developed to allow the instrument to fully realize an operational range of 300ppmV to 10% CO2 with a minimal number of reference gases. Details concerning these advances will be discussed.

  3. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  4. Integrative Physiology of Fasting.

    PubMed

    Secor, Stephen M; Carey, Hannah V

    2016-04-01

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. PMID:27065168

  5. ROS and intracellular ion channels.

    PubMed

    Kiselyov, Kirill; Muallem, Shmuel

    2016-08-01

    Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function. PMID:26995054

  6. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-01

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility. PMID:21482768

  7. MASSIVE GALAXIES AT HIGH z: ASSEMBLY PATTERNS, STRUCTURE, AND DYNAMICS IN THE FAST PHASE OF GALAXY FORMATION

    SciTech Connect

    Onorbe, J.; Dominguez-Tenreiro, R.; Knebe, A.; Martinez-Serrano, F. J.; Serna, A.

    2011-05-10

    Relaxed, massive galactic objects have been identified at redshifts z = 4, 5, and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high-mass end of the galaxy distribution at these high z's, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms of the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previously involved in caustic formation and the mass dependence of the energy available to heat the gas.

  8. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  9. A fast Eulerian multiphase flow model for volcanic ash plumes: turbulence, heat transfer and particle non-equilibrium dynamics.

    NASA Astrophysics Data System (ADS)

    Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi

    2014-05-01

    We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well

  10. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry.

    PubMed

    Lugo-Morales, Leyda Z; Loziuk, Philip L; Corder, Amanda K; Toups, J Vincent; Roberts, James G; McCaffrey, Katherine A; Sombers, Leslie A

    2013-09-17

    Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates. PMID:23919631

  11. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  12. Destabilizing Effect of Dynamical Friction on Fast-Particle-Driven Waves in a Near-Threshold Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.

    2009-05-01

    The nonlinear evolution of waves excited by the resonant interaction with energetic particles, just above the instability threshold, is shown to depend on the type of relaxation process that restores the unstable distribution function. When dynamical friction dominates over diffusion in the phase space region surrounding the wave-particle resonance, an explosive evolution of the wave is found to be the only solution. This is in contrast with the case of dominant diffusion when the wave may exhibit steady-state, amplitude modulation, chaotic and explosive regimes near marginal stability. The experimentally observed differences between Alfvénic instabilities driven by neutral beam injection and those driven by ion-cyclotron resonance heating are interpreted.

  13. Molecular dynamics simulation of fast particle irradiation to the Gd2O3-doped CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-12-01

    The structural relaxation caused by the high-energy-ion irradiation of CeO2 with Gd2O3 addition was simulated by the molecular dynamics method. The amount of Gd2O3 was changed from 0 to 25 mol% by 5 mol%. As the initial condition, high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Inaba et al. was utilized to calculate interaction between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. By increasing the concentration of Gd2O3, more structural disorder was observed in the sample, which is consistent to the actual experiment.

  14. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a.

    PubMed

    Perumal, Vanathi; Krishnan, Kannan; Gratton, Enrico; Dharmarajan, Arun M; Fox, Simon A

    2015-07-01

    The Wnts are secreted, lipidated glycoproteins that play a role in cellular processes of differentiation, proliferation, migration, survival, polarity and stem cell self-renewal. The majority of Wnts biological effects are through binding to specific frizzled (Fzd) receptor complexes leading to activation of downstream pathways. Secreted frizzled-related proteins (sFRPs) were first identified as antagonists of Wnt signalling by binding directly to Wnts. They comprise two domains, a Fzd-like cysteine rich domain (CRD) and a netrin-like domain (NLD). Subsequently sFRPs have been shown to also interact with Fzd receptors and more diverse functions have been identified, including potentiation of Wnt signalling. Many aspects of the biology of this family remain to be elucidated. We used the number and brightness (N&B) method, a technique based on fluorescence fluctuation analysis, to characterise the intracellular aggregation and trafficking of sFRP4 domains. We expressed sFRP4 and its' domains as EGFP fusions and then characterised the effect of endogenous Wnt3a by fluorescence confocal imaging. We observed vesicular trafficking of sFRP4 and that the NLD domain has a vesicular association signal. We found that sFRP4 and the CRD formed oligomeric aggregates in the perinuclear region while the NLD was distributed evenly throughout the cell with a larger proportion of aggregates. Most significantly we observed intracellular redistribution of sFRP4 in response to Wnt3a suggesting that Wnt3a can modulate intracellular localisation and secretion of sFRP4. Our results reveal a number of novel findings regarding sFRP4 which are likely to have relevance to this wider family. PMID:25805505

  15. FeynDyn: A MATLAB program for fast numerical Feynman integral calculations for open quantum system dynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2013-12-01

    This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming

  16. Increased bioavailability of celecoxib under fed versus fasted conditions is determined by postprandial bile secretion as demonstrated in a dynamic gastrointestinal model.

    PubMed

    Lyng, Eric; Havenaar, Robert; Shastri, Prathap; Hetsco, Lucy; Vick, Andrew; Sagartz, John

    2016-08-01

    The objective of this study was to utilize physiologically relevant dynamic dissolution testing with the TNO intestinal model (TIM-1) in vitro gastrointestinal model to investigate the bioaccessibility of celecoxib. A single 200-mg dose of celecoxib was evaluated under average adult human physiological conditions simulated in the TIM-1 system. The in vitro data were compared with the clinically established pharmacokinetic data. When expressed as a percent of drug that progresses from the duodenum to the jejunum and ileum compartments (bioaccessible sites), the study demonstrated a 2-fold increase in the total bioaccessibility for celecoxib when co-administered with a high-fat meal as opposed to co-administration with a glass of water (fasted conditions). That increase in bioaccessibility was similar to a 1.2 to 1.6-fold increase in systemic exposure in adults and children following co-administration with a high-fat meal when compared to the exposure measured when celecoxib was co-administered with only water. Following that comparison, the flexibility of the TIM-1 system was used to more specifically investigate individual parameters of gastrointestinal conditions, such as the rate of bile secretion (emptying of the bile bladder) that accompanies high-fat meal consumption. We demonstrated that increased bile secretion after co-administration of a high-fat meal played a more important role in the increased celecoxib bioaccessibility than did the food matrix. This indicates that in humans without a bile bladder the exposure of celecoxib administered with food might be as low as under fasted state. PMID:26755336

  17. Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging

    SciTech Connect

    Hala, M.; Viau, N.; Zabeida, O.; Klemberg-Sapieha, J. E.; Martinu, L.

    2010-02-15

    Time- and space-resolved optical emission spectroscopy and fast imaging were used for the investigation of the plasma dynamics of high-power impulse magnetron sputtering discharges. 200 {mu}s pulses with a 50 Hz repetition frequency were applied to a Cr target in Ar, N{sub 2}, and N{sub 2}/Ar mixtures and in a pressure range from 0.7 to 2.66 Pa. The power density peaked at 2.2-6 kW cm{sup -2}. Evidence of dominating self-sputtering was found for all investigated conditions. Up to four different discharge phases within each pulse were identified: (i) the ignition phase, (ii) the high-current metal-dominated phase, (iii) the transient phase, and (iv) the low-current gas-dominated phase. The emission of working gas excited by fast electrons penetrating the space in-between the electrodes during the ignition phase spread far outwards from the target at a speed of 24 km s{sup -1} in 1.3 Pa of Ar and at 7.5 km s{sup -1} in 1.3 Pa of N{sub 2}. The dense metal plasma created next to the target propagated in the reactor at a speed ranging from 0.7 to 3.5 km s{sup -1}, depending on the working gas composition and the pressure. In fact, it increased with higher N{sub 2} concentration and lower pressure. The form of the propagating plasma wave changed from a hemispherical shape in Ar, to a droplike shape extending far from the target in N{sub 2}. An important N{sub 2} emission rise in the latter case was detected during the transition at the end of the metal-dominated phase.

  18. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby

  19. Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking.

    PubMed

    Nguyen, Mai Khanh; Kim, Cha Yeon; Kim, Jin Man; Park, Byung Ouk; Lee, Sangkyu; Park, Hyerim; Heo, Won Do

    2016-06-01

    Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane. We applied IM-LARIAT to specifically perturb several Rab-mediated trafficking processes, including receptor transport, protein sorting and secretion, and signaling initiated from endosomes. We finally used this tool to reveal different functions of local Rab5-mediated and Rab11-mediated membrane trafficking in growth cones and soma of young hippocampal neurons. Our results show that IM-LARIAT is a versatile tool that can be used to dissect spatiotemporal functions of intracellular membranes in diverse systems. PMID:27065232

  20. IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Spiegel, David S.

    2015-01-01

    We present IAS15, a 15th-order integrator to simulate gravitational dynamics. The integrator is based on a Gauß-Radau quadrature and can handle conservative as well as non-conservative forces. We develop a step-size control that can automatically choose an optimal timestep. The algorithm can handle close encounters and high-eccentricity orbits. The systematic errors are kept well below machine precision, and long-term orbit integrations over 109 orbits show that IAS15 is optimal in the sense that it follows Brouwer's law, i.e. the energy error behaves like a random walk. Our tests show that IAS15 is superior to a mixed-variable symplectic integrator and other popular integrators, including high-order ones, in both speed and accuracy. In fact, IAS15 preserves the symplecticity of Hamiltonian systems better than the commonly used nominally symplectic integrators to which we compared it. We provide an open-source implementation of IAS15. The package comes with several easy-to-extend examples involving resonant planetary systems, Kozai-Lidov cycles, close encounters, radiation pressure, quadrupole moment and generic damping functions that can, among other things, be used to simulate planet-disc interactions. Other non-conservative forces can be added easily.

  1. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  2. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  3. Intracellular ion channels and cancer.

    PubMed

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment. PMID:24027528

  4. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  5. Fast effects of biochar amendment on soil C and N dynamics, nutrient availability and fertility under controlled conditions

    NASA Astrophysics Data System (ADS)

    De la Rosa, J. M.; Knicker, H.

    2012-04-01

    The shift towards a biobased economy will probably trigger the application of bioenergy by-products and charred residues to the soil as either amendments or fertilizers. However, limited research has been done to determine how this will influence C and N dynamics and soil functioning. The aim of this work was to investigate the effects of 15N enriched pyrogenic organic matter (15N-PyOM) on C and N mineralisation, nutrient availability and fertility of amended soil. A typical Andalusian agricultural soil (calcareous Rhodoxeralf) was amended (0.1% w/w) with 15N enriched-biochar produced from Lolium perenne. The bioavailability and partitioning of the 15N from the biochars was tested by determining its content in the soil and the ray grass grown on this soil under controlled conditions for 72 days. After 30, 60 and 72 days of incubation, soil samples were analyzed for C, N, 15N, microbial biomass C. In addition, the chemical alteration of the 15N-containing organic structures during mobilization/immobilization was followed by solid-state 15N NMR spectroscopy. Soil amendment led to a general increase in the biomass production and N retention. After 72 days of incubation, 10 % of the 15N added in the soil with the PyOM had been degraded and available for grass growth. 15N and 13C NMR spectra confirmed that part of the pyrogenic heterocyclic N has been transformed into amide N, possibly by the use of microbiologically mobilized 15N from the char. Newer results indicate that PyOM can be microbially degraded, the efficiency of which depends on its chemical composition and properties. The chemical properties of the used material as well as the optimal conditions for microbial decay during the laboratory incubation experiments are likely to have augmented PyOM decomposition. In summary, our results indicate that: i) a re-evaluation of the potential of pyrogenic material as a sink of C and N is needed. ii) the characterization of the chemical composition of char material is

  6. Dynamic Evolution of Active Region Flux Tubes in the Turbulent Convective Envelope of a Young Sun: Solar-like Fast Rotators

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Brown, B. P.; Fan, Y.

    2012-05-01

    Our Sun rotated much more rapidly when it was younger, as is suggested by observations of rapidly rotating solar-like stars and the influence of the solar wind, which removes angular momentum from the Sun. By studying how flux emergence may have occurred on the young Sun, we are likely to learn more about the nature of the solar dynamo early in the Sun's history, as well as other solar-like stars. To investigate this, we embed a toroidal flux tube near the base of the convection zone of a rotating spherical shell of turbulent convection performed for solar-like stars that rotate 3, 5, and 10 times the current solar rate. Our objective is to understand how the convective flows of these fast rotators can influence the emergent properties of flux tubes which would rise to create active regions, or starspots, of a variety of magnetic flux strengths, magnetic fields, and initial latitudes. Flux tube properties we will discuss include rise times, latitude of emergence, and tilt angles of the emerging flux tube limbs with respect to the east-west direction. Also of interest is identifying the regimes where dynamics of the flux tube are convection dominated or magnetic buoyancy dominated, as well as attempting to identify active longitudes.

  7. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    PubMed

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. PMID:26017815

  8. Verification of the Plant Dynamics Analytical Code CERES Using the Results of the Plant Trip Test of the Prototype Fast Breeder Reactor MONJU

    SciTech Connect

    Yoshihisa Nishi; Nobuyuki Ueda; Izumi Kinoshita; Akira Miyakawa; Mitsuya Kato

    2006-07-01

    CERES is plant system analysis code for LMRs (liquid metal cooled reactors) developed by the Central Research Institute of Electric Power Industry (CRIEPI). To verify the CERES code, analyses were performed by using the result of the plant trip test of the prototype FBR (fast breeder reactor) 'MONJU' at 40% rated power. The verification work was performed as a joint research of CRIEPI and JAEA (Japan Atomic Energy Agency). Following three verification analyses were performed mainly. (I) Analysis concerning the primary/ secondary/auxiliary cooling system (the plenum in the reactor vessel (R/V) was modeled in R-Z 2-dimension). (II) Analysis concerning the thermal-hydraulic characteristics in the plenum of R/V (the plenum was modeled in 3-dimension). (III) Analysis concerning the flow characteristics inside the intermediate heat exchanger (IHX) (the plenum in the IHX was modeled in 3-dimension). Analytical results by the CERES code showed good agreement with the results of the test of the 'MONJU'. Fundamental abilities of the CERES as a plant dynamics calculation code had been verified through these analyses. Additionally, some characteristic flows in plenums of 'MONJU' became clear by these analyses. (authors)

  9. Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Chen, Jun; Zhang, Dong H.

    2016-04-01

    To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3 reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ˜20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.

  10. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  11. Molecular dynamics simulation of subnanometric tool-workpiece contact on a force sensor-integrated fast tool servo for ultra-precision microcutting

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Shimizu, Yuki; Ito, So; Gao, Wei; Zhang, Liangchi

    2016-04-01

    This paper investigates the contact characteristics between a copper workpiece and a diamond tool in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and in-process measurement of ultra-precision surface forms of the workpiece. Molecular dynamics (MD) simulations are carried out to identify the subnanometric elastic-plastic transition contact depth, at which the plastic deformation in the workpiece is initiated. This critical depth can be used to optimize the FS-FTS as well as the cutting/measurement process. It is clarified that the vibrations of the copper atoms in the MD model have a great influence on the subnanometric MD simulation results. A multi-relaxation time method is then proposed to reduce the influence of the atom vibrations based on the fact that the dominant vibration component has a certain period determined by the size of the MD model. It is also identified that for a subnanometric contact depth, the position of the tool tip for the contact force to be zero during the retracting operation of the tool does not correspond to the final depth of the permanent contact impression on the workpiece surface. The accuracy for identification of the transition contact depth is then improved by observing the residual defects on the workpiece surface after the tool retracting.

  12. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  13. Separation of extra- and intracellular metabolites using hyperpolarized (13)C diffusion weighted MR.

    PubMed

    Koelsch, Bertram L; Sriram, Renuka; Keshari, Kayvan R; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B; Wang, Zhen J; Larson, Peder E Z; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized (13)C magnetic resonance spectroscopy. Using b-values of up to 15,000smm(-2), a multi-exponential signal response was measured for hyperpolarized [1-(13)C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized (13)C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized (13)C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780

  14. Intracellular pH measurements using perfluorocarbon nanoemulsions.

    PubMed

    Patrick, Michael J; Janjic, Jelena M; Teng, Haibing; O'Hear, Meredith R; Brown, Cortlyn W; Stokum, Jesse A; Schmidt, Brigitte F; Ahrens, Eric T; Waggoner, Alan S

    2013-12-11

    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized in vitro and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for in vivo cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using (19)F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time. PMID:24266634

  15. Intracellular pH measurements using perfluorocarbon nanoemulsions

    PubMed Central

    Patrick, Michael J.; Janjic, Jelena M.; Teng, Haibing; O’Hear, Meredith R.; Brown, Cortlyn W.; Stokum, Jesse A.; Schmidt, Brigitte F.; Ahrens, Eric T.; Waggoner, Alan S.

    2014-01-01

    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon co-incubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions where characterized in vitro and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry, and displayed a steady decrease in pH to a level of 5.5 over 3 hours, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for in vivo cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using 19F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics and nanoemulsion stability and cell viability over time. PMID:24266634

  16. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery.

    PubMed

    Esteban-Fernández de Ávila, Berta; Angell, Chava; Soto, Fernando; Lopez-Ramirez, Miguel Angel; Báez, Daniela F; Xie, Sibai; Wang, Joseph; Chen, Yi

    2016-05-24

    An effective intracellular gene silencing strategy based on acoustically propelled nanowires modified with an interfering RNA's (siRNA) payload is described. The gold nanowires (AuNW) are wrapped with a Rolling Circle Amplification (RCA) DNA strand, which serves to anchor the siRNA therapy. The ultrasound (US)-powered propulsion of the AuNW leads to fast internalization and rapid intracellular movement and hence to an accelerated siRNA delivery and silencing response. To optimize the micromotor gene silencing procedure, the influence of motion, time, and siRNA dosage was investigated, leading up to a 94% silencing after few minutes treatment with US-propelled siRNA-AuNWs, and to a dramatic (∼13-fold) improvement in the silencing response compared to the static modified nanowires. The ability of the nanomotor-based method for gene silencing has been demonstrated by measuring the GFP silencing response in two different cell lines (HEK-293 and MCF-7) and using detailed control experiments. The viability of the cells after the nanomotors treatment was examined using the MCF-7 cancer cell line. The use of DNA structures carried by the US-propelled nanomotors for gene silencing represents an efficient tool that addresses the challenges associated with RNA transportation and intracellular delivery. Future implementation of nanomachines in gene therapy applications can be expanded into a co-delivery platform for therapeutics. PMID:27022755

  17. FAST2 Code validation

    SciTech Connect

    Wilson, R.E.; Freeman, L.N.; Walker, S.N.

    1995-09-01

    The FAST2 Code which is capable of determining structural loads of a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data at two wind speeds for the ESI-80 are given. The FAST2 Code models a two-bladed HAWT with degrees of freedom for blade flap, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffness, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms and azimuth averaged bin plots. It is concluded that agreement between the FAST2 Code and test results is good.

  18. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  19. Time-resolved study of the extreme-ultraviolet emission and plasma dynamics of a sub-Joule, fast capillary discharge

    SciTech Connect

    Valenzuela, J. C.; Wyndham, E. S.; Favre, M.

    2015-08-15

    In this work, we discuss experimental observations on the dynamics of a fast, low energy capillary discharge when operated in argon and its properties as an intense source of extreme-ultraviolet (EUV) radiation. The discharge pre-ionization and self-triggering were accomplished by the use of the hollow cathode effect. This allowed a compact size and low inductance discharge with multi-kA current level and a quarter-period of ∼10 ns at sub-Joule energy level. We used the novel moiré and schlieren diagnostics with a 12 ps laser to obtain the time evolution of the line electron density and to study the plasma dynamics. EUV spectroscopy and filtered diodes were also implemented to estimate the plasma temperature and density throughout the evolution of the discharge. EUV source size was measured by using a filtered slit-wire camera. We observed that EUV emission starts from a compressed plasma on axis during the second quarter-period of the current and continues until the fifth quarter-period. Ionization levels from Ar VII to X were observed. By comparing the EUV emission spectra with synthetic spectra, we found that at the onset of emission (∼7 ns), the plasma is well fitted by a single Maxwellian electron distribution function with T{sub e} ∼ 12 eV and n{sub e} ∼ 10{sup 17 }cm{sup −3}. Close to peak emission (∼13 ns), plasma temperature and density increase to ∼20 eV and n{sub e} ∼ 10{sup 18 }cm{sup −3}, respectively. However, in order to successfully match the experimental data, a two component electron distribution function was necessary. Later in time, a smaller fraction in the high energy component and higher temperature suggests homogenization of the plasma. The moiré and schlieren diagnostics showed multiple radial compression-waves merging on axis throughout the discharge; they are an important heating mechanism that leads to a period of severe turbulence at peak EUV emission. It was also observed that emission

  20. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratto, Gian Michele

    2014-01-01

    Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments. PMID:25221475