Science.gov

Sample records for fast ion wall

  1. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    SciTech Connect

    Turco, F. Hanson, J. M.; Navratil, G. A.; Turnbull, A. D.

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  2. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  3. Fast ion loss diagnostic plans for NSTX

    SciTech Connect

    D. S. Darrow; R. Bell; D. W. Johnson; H. Kugel; J. R. Wilson; F. E. Cecil; R. Maingi; A. Krasilnikov; A. Alekseyev

    2000-06-13

    The prompt loss of neutral beam ions from the National Spherical Torus Experiment (NSTX) is expected to be between 12% and 42% of the total 5 MW of beam power. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most of the lost ions will strike the HHFW antenna or the neutral beam dump. To measure these losses in the 2000 experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion probe will be employed. The probe will measure loss of fast ions with E > 1 keV at three radial locations, giving the scrape-off length of the fast ions.

  4. Fast-ion Dα measurements of the fast-ion distribution (invited).

    PubMed

    Heidbrink, W W

    2010-10-01

    The fast-ion Dα (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-α light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of Dα light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of ∼1 ms, ∼10 keV, and ∼2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of ∼50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities. PMID:21033920

  5. Fast Ion Beam Microscopy of Whole Cells

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika Nb; Ren, Minqin; Pastorin, G.; Bettiol, Andrew

    2013-08-01

    The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the

  6. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  7. Fast Ion Instability in Real Lattice

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. The original theory of the Fast Ion Instability was developed assuming both a constant external focusing and the beam size. The theory predicts an instability in which an initial perturbation grows as {approx} exp({alpha}{radical}t). In the present paper we consider a more realistic model that takes into account variation of the beta function in the lattice and associated with it variation of the beam size. We find that, in combination with ion decoherence effect, the spatial inhomogeneity can result in (1) purely exponential growth, {approx} exp({Lambda}t); and (2) typically smaller growth rates. Detailed calculations are performed for the lattice of the Advanced Light Source at the LBL.

  8. Spectroscopy of ions using fast beams and ion traps

    SciTech Connect

    Pinnington, E H; Trabert, E

    2004-10-01

    A knowledge of the spectra of ionized atoms is of importance in many fields. They can be studied in a wide variety of light sources. In recent years techniques coming under the broad heatings of fast beams and ion traps have been used extensively for such investigations. This article considers the advantages that various techniques have for particular applications.

  9. Investigating the performance of an ion luminescence probe as a multichannel fast-ion energy spectrometer using pulse height analysis

    SciTech Connect

    Zurro, B.; Baciero, A.; Jimenez-Rey, D.; Rodriguez-Barquero, L.; Crespo, M. T.

    2012-10-15

    We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

  10. Anomalous thermalization of fast ions in magnetized plasma

    SciTech Connect

    Chen, K.R.

    1993-11-01

    A novel anomalous process causing the perpendicular energy of fast ions to be thermalized and lost on average to bulk ion heating, instead of classical slowing down and bulk electron heating, is investigated with PIC simulations. More than half of the fast ions are slowed down to the thermal ion level, although some are heated to twice their birth energy. The fast ion density perturbation is large. This process is excited by a new two-gyro-stream instability and may continually occur in a burning plasma. The implications for fusion ignition and fast ion confinement are assessed.

  11. Ion-induced gamma-ray detection of fast ions escaping from fusion plasmas

    SciTech Connect

    Nishiura, M. Mushiake, T.; Doi, K.; Wada, M.; Taniike, A.; Matsuki, T.; Shimazoe, K.; Yoshino, M.; Nagasaka, T.; Tanaka, T.; Kisaki, M.; Fujimoto, Y.; Fujioka, K.; Yamaoka, H.; Matsumoto, Y.

    2014-11-15

    A 12 × 12 pixel detector has been developed and used in a laboratory experiment for lost fast-ion diagnostics. With gamma rays in the MeV range originating from nuclear reactions {sup 9}Be(α, nγ){sup 12}C, {sup 9}Be(d, nγ){sup 12}C, and {sup 12}C(d, pγ){sup 13}C, a high purity germanium (HPGe) detector measured a fine-energy-resolved spectrum of gamma rays. The HPGe detector enables the survey of background-gamma rays and Doppler-shifted photo peak shapes. In the experiments, the pixel detector produces a gamma-ray image reconstructed from the energy spectrum obtained from total photon counts of irradiation passing through the detector's lead collimator. From gamma-ray image, diagnostics are able to produce an analysis of the fast ion loss onto the first wall in principle.

  12. ITER fast ion confinement in the presence of the European test blanket module

    NASA Astrophysics Data System (ADS)

    Äkäslompolo, Simppa; Kurki-Suonio, Taina; Asunta, Otto; Cavinato, Mario; Gagliardi, Mario; Hirvijoki, Eero; Saibene, Gabriella; Sipilä, Seppo; Snicker, Antti; Särkimäki, Konsta; Varje, Jari

    2015-09-01

    This paper addresses the confinement of thermonuclear alpha particles and neutral beam injected deuterons in the 15 MA Q = 10 inductive scenario in the presence of the magnetic perturbation caused by the helium cooled pebble bed test blanket module using the vacuum approximation. Both the flat top phase and plasma ramp-up are studied. The transport of fast ions is calculated using the Monte Carlo guiding center orbit-following code ASCOT. A detailed three-dimensional wall, derived from the ITER blanket module CAD data, is used for evaluating the fast ion wall loads. The effect of the test blanket module is studied for both overall confinement and possible hot spots. The study indicates that the test blanket modules do not significantly deteriorate the fast ion confinement.

  13. Testing Time Dilation on Fast Ion Beams

    NASA Astrophysics Data System (ADS)

    Saathoff, G.; Reinhardt, S.; Bernhardt, B.; Holzwarth, R.; Udem, T.; Hänsch, T. W.; Bing, D.; Schwalm, D.; Wolf, A.; Botermann, B.; Karpuk, S.; Novotny, C.; Nörtershäuser, W.; Huber, G.; Geppert, C.; Kühl, T.; Stöhlker, T.; Rempel, T.; Gwinner, G.

    2011-12-01

    We report the status of an experimental test of special-relativistic time dilation. Following an idea of Ives and Stilwell in 1938, we measure the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these Doppler shifts both the ion velocity β = υ/c and the time dilation factor γ = γ {SR} (1 + hat α β 2 ) can be derived for testing Special Relativity. From measurements based on saturation spectroscopy on lithium ions stored at β = 0.03 and β = 0.06, we achieved an upper limit for deviation from Special Relativity of <=ft| {hat α } ; | \\underline < 8 × 10{ - 8} . Recent measurements on a β = 0.338 Li+ beam show similar sensitivity and promise an improvement by at least one order of magnitude. Finally we discuss present sensitivities to various coefficients in the photon and particle sector of the Standard-Model Extension, as well as possible modifications of the experiment for the test of further, hitherto unbounded, coefficients.

  14. Atomic wall recombination and volume negative ion production

    SciTech Connect

    Pagano, Damiano; Gorse, Claudine; Capitelli, Mario

    2006-03-15

    The development of a numerical code for the modeling of negative ion sources requires the knowledge of a lot of processes occurring both in the gas phase and at the surface. The present work concerns the effect of surface processes (in particular atomic wall recombination) on the kinetics of production/destruction of negative ions. Especially in the pressure regimes useful to produce negative hydrogen ions for thermonuclear applications, wall processes can strongly affect the negative ion production acting on the vibrational distribution of molecular hydrogen.

  15. Investigation of fast ion instability in SSRF

    NASA Astrophysics Data System (ADS)

    Jiang, Bocheng; Xia, Guoxing; Han, Lifeng; Liu, Guimin; Dai, Zhimin; Zhao, Zhentang

    2010-03-01

    The Shanghai Synchrotron Radiation Facility (SSRF) is a new third generation storage ring based light source located at Zhangjiang High-Tech Park Shanghai China. The storage ring started commissioning in December 2007. During early commissioning, the fast ion instability (FII) was observed when multi-bunches were injected, which was strongly dependent on the vacuum pressure and filling patterns. In this paper, a weak-strong simulation code is employed to simulate the FII in the SSRF storage ring for various filling patterns and gas pressures. In addition, experimental study on cures of the FII has also been carried out. The results show that introducing gaps in between the bunch trains and increasing the ring chromaticity are very effective to suppress the growth of the FII.

  16. Ion adsorption mechanism of bundled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Tsutsui, M.; Al-zubaidi, A.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    In order to elucidate ion adsorption mechanism of bundled single-walled carbon nanotubes (SWCNTs), in situ synchrotron XRD measurements of SWCNT electrode in alkali halide aqueous electrolyte at several applied potentials were performed. It was found that the surface inside SWCNT is the important ion adsorption site.

  17. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  18. Measuring Fast Ion Losses in a Reversed Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.

    2015-11-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.

  19. Fast Ion Redistribution and Implications for the Hybrid Regime

    SciTech Connect

    Nazikian, R; Austin, M E; Budny, R V; Chu, M S; Heidbrink, W W; Makowski, M A; Petty, C C; Politzer, P A; Solomon, W M; Van Zeeland, M A

    2007-06-26

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  20. Assessment of Potential for Ion Driven Fast Ignition

    SciTech Connect

    Logan, B. Grant; Bangerter, Roger O.; Callahan, Debra A.; Tabak, Max; Roth, Markus; Perkins, L. John; Caporaso, George

    2004-12-01

    Critical issues and ion beam requirements are explored for fast ignition using ion beams to provide fuel compression using indirect drive and to provide separate short pulse ignition heating using direct drive. Several ion species with different hohlraum geometries are considered for both accelerator-produced and laser-produced ion ignition beams. Ion-driven fast ignition targets are projected to have modestly higher gains than with conventional heavy-ion fusion, and may offer some other advantages for target fabrication and for use of advanced fuels. However, much more analysis and experiments are needed before conclusions can be drawn regarding the feasibility for meeting the ion beam transverse and longitudinal emittances, focal spots, pulse lengths, and target standoff distances required for ion-driven fast ignition.

  1. Assessment of Potential for Ion Driven Fast Ignition

    SciTech Connect

    Logan, B. Grant; Bangerter, Roger O.; Callahan, Debra A.; Tabak,Max; Roth, Markus; Perkins, L. John; Caporaso, George

    2005-05-01

    Critical issues and ion beam requirements are explored for fast ignition using ion beams to provide fuel compression using indirect drive and to provide separate short pulse ignition heating using direct drive. Several ion species with different hohlraum geometries are considered for both accelerator-produced and laser-produced ion ignition beams. Ion-driven fast ignition targets are projected to have modestly higher gains than with conventional heavy-ion fusion, and may offer some other advantages for target fabrication and for use of advanced fuels. However, much more analysis and experiments are needed before conclusions can be drawn regarding the feasibility for meeting the ion beam transverse and longitudinal emittances, focal spots, pulse lengths, and target stand-off distances required for ion-driven fast ignition.

  2. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior.

    PubMed

    Clary, R; Smirnov, A; Dettrick, S; Knapp, K; Korepanov, S; Ruskov, E; Heidbrink, W W; Zhu, Y

    2012-10-01

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses. PMID:23126887

  3. Scaling of Kinetic Instability Induced Fast Ion Losses in NSTX

    SciTech Connect

    E.D. Fredrickson; D. Darrow; S. Medley; J. Menard; H. Park; L. Roquemore; D. Stutman; K. Tritz; S. Kubota; K.C. Lee

    2005-06-24

    During neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX), a wide variety of fast ion driven instabilities is excited by the large ratio of fast ion velocity to Alfven velocity, together with the relatively high fast ion beta, beta(sub)f. The fast ion instabilities have frequencies ranging from a few kilohertz to the ion cyclotron frequency. The modes can be divided roughly into three categories, starting with Energetic Particle Modes (EPM) in the lowest frequency range (0 to 120 kHz), the Toroidal Alfven Eigenmodes (TAE) in the intermediate frequency range (50 to 200 kHz) and the Compressional and Global Alfven Eigenmodes (CAE and GAE, respectively) from approximately equal to 300 kHz up to the ion cyclotron frequency. Each of these categories of modes exhibits a wide range of behavior, including quasi-continuous oscillation, bursting, chirping and, except for the lower frequency range, turbulence.

  4. Stripping Cross Sections of Fast Ions in Ion-Atom

    NASA Astrophysics Data System (ADS)

    Kecskemeti, S. R.; Kaganovich, I. D.; Startsev, E. A.; Davidson, R. C.

    2004-11-01

    Knowledge of ion-atom ionization cross sections is of great importance for many accelerator applications. We have recently investigated theoretically and experimentally the stripping of more than 18 different pairs of projectile and target particles in the range of 3-38 MeV/amu to study the range of validity of both the Born approximation and the classical trajectory calculation. In most cases, both approximations give similar results. However, for fast projectile velocities and low ionization potentials, the classical approach is not valid and can overestimate the stripping cross sections by neutral atoms by an order-of-magnitude [1]. Therefore, a hybrid approach has been developed, which automatically chooses between the Born approximation and the classical mechanics approximation depending on the parameters of the collision. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. Based on experimental data and theoretical predictions, a new fit formula for ionization cross sections by fully stripped ions is proposed. [1] I. D. Kaganovich, E. A. Startsev and R. C. Davidson, Phys. Rev. A 68, 022707 (2003). [2] I. D. Kaganovich, E. A. Startsev and R. C. Davidson, Physics of Plasmas 11, 1229 (2004).

  5. Charged fusion product and fast ion loss in TFTR

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M.; Boivin, R.; Machuzak, J.S.; Woskov, P.; Fisher, R.; McChesney, J.; Fonck, R.; McKee, G.; Tuszewski, M.

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip < 1.4 MA, except near the outer midplane where stochastic TF ripple loss dominates when Ip > I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P {ge} 25 MW. The MHD induced loss of 100 KeV neutron beam ions and {approximately}0.5 MeV ICRF minority tail tons has also been measured {le} 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described.

  6. Charged fusion product and fast ion loss in TFTR

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M. (Princeton Univ., NJ (United Sta

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip < 1.4 MA, except near the outer midplane where stochastic TF ripple loss dominates when Ip > I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P [ge] 25 MW. The MHD induced loss of 100 KeV neutron beam ions and [approximately]0.5 MeV ICRF minority tail tons has also been measured [le] 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described.

  7. Measurements of classical fast ion confinement with fusion product diagnostics

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Clary, Ryan; Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; the TAE Team

    2014-10-01

    Neutral beam injected fast ions play a critical role in the C-2 field reversed configuration plasma, helping to sustain magnetic flux against resistive decay and heating the plasma via Coulomb collisions. The fast ions are well confined; due to the relatively low magnetic field strength the fast ions have large, machine-size orbits that permit them to average over otherwise deleterious fluctuations. These same orbits however, have large radial excursions that result in greater interaction of fast ions with edge neutrals and a greater potential for charge exchange losses. In this presentation, the fast ion slowing down time is determined from the decay in neutron flux following beam termination. It is found that the slowing down scaling is close to classical (i.e., τ ~Te3/2/ne) and that charge exchange losses are only significant for ions with 1.5× the nominal injection energy. We will also present initial data from a newly installed proton detector, which complements the temporal resolution of the neutron detector with spatial resolution. The detector will be used to diagnose the axial profile of confined fast ions.

  8. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  9. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  10. Integrated simulations for ion beam assisted fast ignition

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-03-01

    Although the energy conversion efficiency from the heating laser to fast electrons is high, the coupling efficiency from fast electrons to the core is estimated to be very low due to large divergence angle of fast electrons in fast ignition experiments at ILE, Osaka University. To mitigate this problem, a plastic thin film or low-density foam, which can generate not only proton (H+) but also carbon (C6+) beams, is combined with currently used cone-guided targets and additional core heating by ions is expected. According to integrated simulations, it is found that these ion beams can enhance the core heating by 20∼60% and it shows a possibility of ion beam assisted fast ignition.

  11. Neutralization of a fast negative-ion beam

    SciTech Connect

    Schlachter, A.S.; Mowat, J.R.; Stearns, J.W.; Gohil, P.; Pyle, R.V.

    1986-01-01

    Neutralization of a fast negative-ion beam, primarily H/sup -/, is discussed in terms of competing one- and two-electron detachment processes in a variety of media: gas (vapor), plasma, liquid sheet, solid foil.

  12. KOH etched graphite for fast chargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Yuge, Ryota; Nakahara, Kentaro; Tamura, Noriyuki; Miyamoto, Shigeyuki

    2015-06-01

    Graphite is the most widely used anode material for lithium ion (Li-ion) batteries, although it has limited power performance at high charging rates (Li-ion input). Alternative materials such as silicon and tin alloys, however, have an even more inferior rate capability. We describe here a multi-channel structure with a graphite surface etched with pores that can greatly increase the number of sites for Li-ion intercalation/de-intercalation and reduce the Li-ion diffusion distance for fast chargeable Li-ion batteries by etching the graphite surface with pores. As a result, the multi-channel structure graphite anode shows better charging and discharging rate capability, cyclability, and higher coulombic efficiency than pristine graphite materials. The multi-channel anode material is proposed for use in fast chargeable Li-ion batteries for electric vehicles and plug-in hybrid vehicles.

  13. Collective effects in electronic sputtering of organic molecular ions by fast incident cluster ions

    SciTech Connect

    Salehpour, M.; Fishel, D.L.; Hunt, J.E.

    1988-07-15

    The collective sputtering effect of fast primary cluster ions on the yield of secondary molecular ions has been demonstrated for the first time. Results show that the sputtering yield of valine negative molecular ions per incident carbon atom, in a C/sup +//sub n/ incident cluster ion, increases with increasing n. The yield results are interpreted as a direct effect of the enhancement in the electronic stopping power per atom in cluster ions compared to atomic ions.

  14. Effect of fast positive ions incident on caesiated plasma grid of negative ion source

    SciTech Connect

    Bacal, M.

    2012-02-15

    This paper describes the effect on negative ion formation on a caesiated surface of the backscattering of positive ions approaching it with energy of a few tens of eV. For a positive ion energy of 45 eV, the surface produced negative ion current density due to these fast positive ions is 12 times larger than that due to thermal atoms, thus dominating the negative ion surface production instead of the thermal atoms, as considered until now.

  15. Fast Ion Non-adiabaticity in Spherical Tokamaks

    SciTech Connect

    V.A. Yavorskij; D. Darrow; V.Ya. Goloborod'ko; S.N. Reznik; U. Holzmueller-Steinacker; N. Gorelenkov; K. Schoepf

    2002-08-01

    Transport processes of fast ions in axisymmetric low-aspect-ratio spherical torus (ST) plasmas are investigated, which are induced by the non-conservation of the magnetic moment {mu}. The reason for non-conservation of {mu} of fast ions in ST's is the relatively large adiabaticity parameter epsilon typically exceeding the value 0.1 (epsilon = ratio of ion gyroradius to the gradient scale length of the magnetic field). Both analytical and numerical evaluations of the magnitude of nonadiabatic variations of {mu} are performed. Nonadiabaticity effects are shown to be most significant for fast ions for which the bounce oscillations are in resonance with the gyromotion, i.e., for ions with omega(subscript)B - lomega(subscript)b = 0, where omega(subscript)B and omega(subscript)b represent the bounce-averaged gyrofrequency and the bounce frequency, respectively, and l is an integer. The critical threshold of the adiabaticity parameter, epsilon(subscript)cr, to be exceeded for the transition to stochastic behavior of fast ions in axisymmetric ST's is inspected. Nonadiabatic variations of {mu} are shown to lead to collisionless transformation of trapped orbits into circulating ones and vice versa. For the case of strong nonadiabaticity, epsilon > epsilon(subscript)cr, we assess the transport coefficients describing intense collisionless pitch-angle diffusion, whereas, in the case of weak nonadiabaticity, epsilon > epsilon(subscript)cr, the more substantial coefficients of enhanced collisional radial diffusion and convection of fast ions gyrating resonantly with the bounce oscillations are estimated.

  16. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  17. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  18. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  19. Fast-ion losses induced by ELMs and externally applied magnetic perturbations in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Garcia-Munoz, M.; Äkäslompolo, S.; de Marne, P.; Dunne, M. G.; Dux, R.; Evans, T. E.; Ferraro, N. M.; Fietz, S.; Fuchs, C.; Geiger, B.; Herrmann, A.; Hoelzl, M.; Kurzan, B.; Lazanyi, N.; McDermott, R. M.; Nocente, M.; Pace, D. C.; Rodriguez-Ramos, M.; Shinohara, K.; Strumberger, E.; Suttrop, W.; Van Zeeland, M. A.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.

    2013-12-01

    Phase-space time-resolved measurements of fast-ion losses induced by edge localized modes (ELMs) and ELM mitigation coils have been obtained in the ASDEX Upgrade tokamak by means of multiple fast-ion loss detectors (FILDs). Filament-like bursts of fast-ion losses are measured during ELMs by several FILDs at different toroidal and poloidal positions. Externally applied magnetic perturbations (MPs) have little effect on plasma profiles, including fast-ions, in high collisionality plasmas with mitigated ELMs. A strong impact on plasma density, rotation and fast-ions is observed, however, in low density/collisionality and q95 plasmas with externally applied MPs. During the mitigation/suppression of type-I ELMs by externally applied MPs, the large fast-ion bursts observed during ELMs are replaced by a steady loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection (NBI) prompt loss signal without MPs. Multiple FILD measurements at different positions, indicate that the fast-ion losses due to static 3D fields are localized on certain parts of the first wall rather than being toroidally/poloidally homogeneously distributed. Measured fast-ion losses show a broad energy and pitch-angle range and are typically on banana orbits that explore the entire pedestal/scrape-off-layer (SOL). Infra-red measurements are used to estimate the heat load associated with the MP-induced fast-ion losses. The heat load on the FILD detector head and surrounding wall can be up to six times higher with MPs than without 3D fields. When 3D fields are applied and density pump-out is observed, an enhancement of the fast-ion content in the plasma is typically measured by fast-ion D-alpha (FIDA) spectroscopy. The lower density during the MP phase also leads to a deeper beam deposition with an inward radial displacement of ≈2 cm in the maximum of the beam emission. Orbit simulations are used to test different models for 3D

  20. FAST CHOPPER BUILDING, TRA665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER BUILDING, TRA-665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL NEGATIVE NO. HD42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Measurement and Simulation of First-Orbit Fast-Ion D-Alpha Emission and the Application to Fast-Ion Loss Detection in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan; Heidbrink, W. W.; Pace, D. C.; van Zeeland, M. A.; Chen, X.

    2015-11-01

    A new fast-ion diagnostic method uses passive emission of D-alpha radiation to determine fast-ion losses quantitatively. The passive fast-ion D-alpha simulation (P-FIDAsim) forward models the Doppler-shifted spectra of first-orbit fast ions that charge exchange with edge neutrals. Simulated spectra are up to 80 % correlated with experimental spectra. Calibrated spectra are used to estimate the 2D neutral density profile by inverting simulated spectra. The inferred neutral density shows the expected increase toward each x-point and an average value of 8 × 10 9 cm-3 at the plasma boundary and 1 × 10 11 cm-3 near the wall. Measuring and simulating first-orbit spectra effectively ``calibrates'' the system, allowing for the quantification of more general fast-ion losses. Sawtooth crashes are estimated to eject 1.2 % of the fast-ion inventory, in good agreement with a 1.7 % loss estimate made by TRANSP. Sightlines sensitive to passing ions observe larger sawtooth losses than sightlines sensitive to trapped ions. Supported by US DOE under SC-G903402, DE-FC02-04ER54698.

  2. Fast ion behavior during neutral beam injection in ATF

    SciTech Connect

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H.; Aceto, S.C.

    1993-09-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970`s. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations.

  3. Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR

    SciTech Connect

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-12-01

    A strong interaction of fast ions with ion Bernstein waves has been observed in TFTR. It results in a large increase in the fast ion loss rate, and heats the lost particles to several MeV. The lost ions are observed at the passing/trapped boundary and appear to be either DD fusion produced tritons or accelerated D neutral beam ions. Under some conditions, enhanced loss of DT alpha particles is also seen. The losses provide experimental support for some of the elements required for alpha energy channeling.

  4. Ion beam requirements for fast ignition of inertial fusion targets

    SciTech Connect

    Honrubia, J. J.; Murakami, M.

    2015-01-15

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core, ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point has been analyzed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  5. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Kogut, D.; Lyssoivan, A.; Brezinsek, S.; Belonohy, E.; Blackman, T.; Bobkov, V.; Crombé, K.; Drenik, A.; Graham, M.; Joffrin, E.; Lerche, E.; Loarer, T.; Lomas, P. L.; Mayoral, M.-L.; Monakhov, I.; Oberkofler, M.; Philipps, V.; Plyusnin, V.; Sergienko, G.; Van Eester, D.

    2015-08-01

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1-7.5 × 10-3 Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H2-ICWC at ITER half field conditions on the JET-ILW preloaded by D2 tokamak operation is estimated to be 7.3 × 1022 hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  6. Linear induction accelerator requirements for ion fast ignition

    SciTech Connect

    Logan, G.

    1998-01-26

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  7. Wall-less ion-counting nanodosimetry applied to protons.

    PubMed

    Garty, G; Shchemelinin, S; Breskin, A; Chechik, R; Orion, I; Guedes, G P; Schulte, R; Bashkirov, V; Grosswendt, B

    2002-01-01

    A wall-less ion-counting nanodosemeter, conceived for precise ionisation-cluster measurements in an accelerator environment, is described. The technique provides an accurate means for counting single radiation-induced ions, in dilute gas models of condensed matter. The sensitive volume dimensions, a few tissue-equivalent nm in diameter by a few tens of nm, are tunable by a proper choice of the gas pressure and electric fields; nanometric sub-sections can be electronically selected. Detailed ion-cluster distributions are presented for protons of 7.15, 13.6 and 19.3 MeV, in biologically relevant DNA-like sensitive volumes of low-pressure propane. Experimental results are compared to model simulations. PMID:12194316

  8. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  9. Characterization of the fast ions distribution from ion cyclotron emission measurements

    NASA Astrophysics Data System (ADS)

    D'Inca, R.; Noterdaeme, J.-M.; ASDEX Upgrade Team

    2014-02-01

    The ion cyclotron emission (ICE) is triggered by the free energy from an anisotropic distribution of fast ions in cyclotron resonance with plasma waves. Several theories have been developed in the hope of using the spectrum featured by this emission to extract information on the fast ion population [3], but the strong coupling between the fast ions orbits, their energy profile and the plasma waves properties makes it difficult to disentangle the role of each actor in the emission. We present here the three main results which, once combined, have improved our understanding of ICE on ASDEX Upgrade: (1) the measurement of all the main types of ICE which enables a comparison of their properties and of their interactions, (2) the use of a fast acquisition system with an increased accuracy in the time and frequency processing of the signal where the fine structure of the emission is resolved and (3) the use of the Hamiltonian theoretical framework developed for ICRF heating. It unifies the analysis of large extension orbits and of their interactions with the plasma waves and reveals the respective roles of the fast ions (through their velocities) and of the waves (through their frequencies and wave numbers) in the resonance condition. If these results are confirmed on other machines, they could lead to the development of a non intrusive diagnostic for fast ions.

  10. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  11. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  12. Wave Driven Fast Ion Loss in the National Spherical Torus Experiment

    SciTech Connect

    E.D. Fredrickson; C.Z. Cheng; D. Darrow; G. Fu; N.N. Gorelenkov; G. Kramer; S.S. Medley; J. Menard; L. Roquemore; D. Stutman; R.B. White

    2003-01-28

    Spherical tokamaks, with their relatively low toroidal field, extend fast-ion-driven instability physics to parameter ranges not normally accessed in conventional tokamaks. The low field means that both the fast-ion Larmor radius normalized to the plasma minor radius and the ratio of the fast-ion velocity to the Alfven speed are relatively large. The large Larmor radius of the ions enhances their interaction with instability modes, influencing the structure of the unstable mode spectrum. The relatively large fast-ion velocity allows for a larger population of fast ions to be in resonance with the mode, increasing the drive. It is therefore an important goal of the present proof-of-principle spherical tokamaks to evaluate the role of fast-ion-driven instabilities in fast-ion confinement. This paper presents the first observations of fast-ion losses resulting from toroidal Alfven eigenmodes and a new, fishbone-like, energetic particle mode.

  13. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  14. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  15. A Description of the Full Particle Orbit Following SPIRAL Code for Simulating Fast-ion Experiments in Tokamaks

    SciTech Connect

    Kramer, G.J.; Budny, R.V.; Bortolon, A.; Fredrickson, E.D.; Fu, G.Y.; Heidbrink, W.W.; Nazikian, R.; Valeo, E.; Van Zeeland, M.A.

    2012-07-27

    The numerical methods used in the full particle-orbit following SPIRAL code are described and a number of physics studies performed with the code are presented to illustrate its capabilities. The SPIRAL code is a test-particle code and is a powerful numerical tool to interpret and plan fast-ion experiments in Tokamaks. Gyro-orbit effects are important for fast ions in low-field machines such as NSTX and to a lesser extent in DIII-D. A number of physics studies are interlaced between the description of the code to illustrate its capabilities. Results on heat loads generated by a localized error-field on the DIII-D wall are compared to measurements. The enhanced Triton losses caused by the same localized error-field are calculated and compared to measured neutron signals. MHD activity such as tearing modes and Toroidicity-induced Alfven Eigenmodes (TAEs) have a profound effect on the fast-ion content of Tokamak plasmas and SPIRAL can calculate the effects of MHD activity on the confined and lost fast-ion population as illustrated for a burst of TAE activity in NSTX. The interaction between Ion Cyclotron Range of Frequency (ICRF) heating and fast ions depends solely on the gyro-motion of the fast ions and is captured exactly in the SPIRAL code. A calculation of ICRF absorption on beam ions in ITER is presented. The effects of high harmonic fast wave heating on the beam-ion slowing-down distribution in NSTX is also studied.

  16. Coincidence ion imaging with a fast frame camera

    SciTech Connect

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  17. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  18. Fast and efficient transport of large ion clouds

    NASA Astrophysics Data System (ADS)

    Kamsap, M. R.; Pedregosa-Gutierrez, J.; Champenois, C.; Guyomarc'h, D.; Houssin, M.; Knoop, M.

    2015-10-01

    The manipulation of trapped charged particles by electric fields is an accurate, robust, and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of an ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 80 000 ions over a distance of 20 mm inside a linear radio-frequency trap. Ion transport is controlled by a transfer function, which is designed taking into account the local electric potentials. We observe that the ion response is very sensitive to the details of the description of the electric potential. Nevertheless, we show that fast transport—with a total duration of 100 μ s —results in transport efficiencies attaining values higher than 90% of the ion number, even with large ion clouds. For clouds smaller than 2000 ions, a 100% transfer efficiency is observed. Transport induced heating, which depends on the transport duration, is also analyzed.

  19. Design and development of a fast ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1983-01-01

    Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.

  20. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  1. The behavior of ions near a charged wall - dependence on ion size, concentration and surface charge

    PubMed Central

    Howard, Jesse J.; Perkyns, John S.

    2010-01-01

    A renormalization of the 3D-RISM-HNC integral equation is used to study the solvent and ion distributions at neutral and negatively charged planar atomistic surfaces. The charge density of the surfaces ranged from 0.0 to 0.4116 C/m2 and the modeled electrolyte solutions consist of the salts NaCl, KCl, and CsCl at concentrations of 0.1M, 0.25M and 1.0M in SPC/E water. The results are qualitatively compared to the results from other integral equation methods and simulations for similar models. We find that the 3D-IEs predict an electric multilayer screening behavior in the solvent and ion distributions in contrast to the double layer anticipated from Poisson-Boltzmann theory. It is observed that the cation size has a significant effect on the distributions near the surface up to 3 solvation layers beyond which the behavior is the same among the different cations. The response of the distributions to the charged surface is described as an increase in ion and solvent density near the wall. The higher concentration solutions screen the electrostatic source more strongly at the wall as expected. The importance of ion-solvent and ion-ion correlations near the surface are shown through 3-body correlation functions which are obtainable from the 3D-IEs in this study. PMID:20405885

  2. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  3. Fast ion profiles during neutral beam and lower hybrid heating

    SciTech Connect

    Heidbrink, W.W.; Strachan, J.D.; Bell, R.E.; Cavallo, A.; Motley, R.; Schilling, G.; Stevens, J.; Wilson, J.R.

    1985-07-01

    Profiles of the d(d,p)t fusion reaction are measured in the PLT tokamak using an array of collimated 3 MeV proton detectors. During deuterium neutral beam injection, the emission profile indicates that the beam deposition is at least as narrow as predicted by a bounce-averaged Fokker-Planck code. The fast ion tail formed by lower hybrid waves (at densities above the critical density for current drive) also peaks strongly near the magnetic axis.

  4. CALCULATION OF STOPPING POWER VALUES AND RANGES OF FAST IONS.

    Energy Science and Technology Software Center (ESTSC)

    2003-03-18

    STOPOW calculates a set of stopping power values and ranges of fast ions in matter for any materials. Furthermore STOPOW can calculate a set of values for one special auxiliary function (e.g. kinematic factors, track structure parameters, time of flight or correction factors in the stopping function) . The user chooses the physical units for stopping powers and ranges and the energy range for calculations.

  5. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  6. Electrical studies on silver based fast ion conducting glassy materials

    NASA Astrophysics Data System (ADS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-04-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz-3MHz by Impedance Analyzer in the temperature range 303-423K. The DC conductivity measurements were also carried out in the temperature range 300-523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10-2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  7. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  8. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  9. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  10. Enhancements to the Compact Helical System fast ion loss probe

    SciTech Connect

    Darrow, D.S.; Isobe, M.; Kondo, T.; Sasao, M.; the CHS Group

    1999-01-01

    A scintillator-based fast ion loss probe has been used to measure 40 keV neutral beam ion loss from Compact Helical System plasmas. Modifications have recently been made to the probe to expand the range of gyroradius covered and to increase the probe acceptance at low pitch angles. In addition, a lamp has been installed inside the probe to facilitate calibration of the scintillator position within the field of view of the video camera. Finally, a Faraday cup structure, integral with the scintillator, has been added to allow direct measurement of the ion current to the probe. This last feature allows much easier absolute calibration of the diagnostic. {copyright} {ital 1999 American Institute of Physics.}

  11. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    SciTech Connect

    Pace, D. C. Fisher, R. K.; Van Zeeland, M. A.; Pipes, R.

    2014-11-15

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  12. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  13. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  14. Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage.

    PubMed

    Hu, Jia-Mian; Yang, Tiannan; Momeni, Kasra; Cheng, Xiaoxing; Chen, Lei; Lei, Shiming; Zhang, Shujun; Trolier-McKinstry, Susan; Gopalan, Venkatraman; Carman, Gregory P; Nan, Ce-Wen; Chen, Long-Qing

    2016-04-13

    Magnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity. An analytical theory is derived to describe the strain dependence of average magnetic domain-wall velocity. Moreover, one 180° domain-wall cycle around the ring dissipates an ultrasmall amount of heat, as small as 0.2 fJ, approximately 3 orders of magnitude smaller than those in current-driven cases. These findings suggest a new route toward developing high-speed, low-power-dissipation domain-wall spintronics. PMID:27002341

  15. Fast ion beta limit measurements by collimated neutron detection in MST plasmas

    NASA Astrophysics Data System (ADS)

    Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie

    2015-11-01

    Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.

  16. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  17. Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster

    SciTech Connect

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2013-01-14

    We demonstrate by numerical simulations and experiments that the unmagnetized ion beam formed in a Hall thruster can be controlled by an applied magnetic field in a manner that reduces by 2-3 orders of magnitude deleterious ion bombardment of the containing walls. The suppression of wall erosion in Hall thrusters to such low levels has remained elusive for decades.

  18. Measurements of Prompt and MHD-Induced Fast Ion Loss from National Spherical Torus Experiment Plasmas

    SciTech Connect

    D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod'ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij

    2002-10-15

    A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.

  19. Optimal spin current pattern for fast domain wall propagation in nanowires

    NASA Astrophysics Data System (ADS)

    Yan, P.; Sun, Z. Z.; Schliemann, J.; Wang, X. R.

    2010-10-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed.

  20. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  1. Measurement and Simulation of Deuterium Balmer-Alpha Emission from First-Orbit Fast Ions and the Application to Neutral Density and General Fast-Ion Loss Detection in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Bolte, Nathan Glynn

    Spectra of the Balmer-alpha radiation of first-orbit fast ions after charge exchange with edge neutrals have been measured in the DIII-D tokamak. Several collimated optics systems view the edge region---while avoiding any active beams---and carry light to a spectrometer tuned to the region of the 656.1 nm deuterium-alpha line. Viewing geometry and the high energy of the lost ions produce Doppler shifts, which effectively separate the fast-ion contributions from the bright, cold edge light. Modulation of the fast-ion source allows for time-evolving background subtraction. A model has been developed for the spectra of these first-orbit fast ions. The passive fast-ion D-alpha simulation (P-FIDAsim) is a forward model consisting of an experimentally- validated beam model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Eighty-six experimental spectra were obtained using 6 different neutral beam fast-ion sources and 13 different viewing chords. Parameters such as plasma current, toroidal field, electron density, plasma cross-sectional shape, and number of x-points were varied. Uncalibrated experimental spectra have an overall Spearman rank correlation coefficient with the shape of simulated spectra of 0.58 with subsets of cases rising to a correlation of 0.80. A single set of calibrated spectra (shot 152817) was measured and is used to estimate the neutral density throughout the cross-section of the tokamak. This is done by inverting the simulated spectra in order to find the best neutral density (in a least squares sense) required to best match the experimental spectra. The resulting 2D neutral density shows the expected increase toward each x-point. The average neutral density is found to be 3.3 x 105cm -3 a the magnetic axis, 2.3 x 108cm -3 in the core, 8.1 x 109 cm-3 at the plasma boundary, and 1.1 x 10 11cm-3 near the wall. A technique is developed which--after us first-orbit light to calibrate the system--can quantify

  2. Secondary ion emission from ethanol microdroplets induced by fast heavy ions

    NASA Astrophysics Data System (ADS)

    Majima, T.; Kitajima, K.; Nishio, T.; Tsuchida, H.; Itoh, A.

    2015-09-01

    We have developed a new experimental setup that allowed us to study collision interactions between fast ions and liquid microdroplets under a high vacuum condition. Microdroplets of ethanol are irradiated with 1.0-MeV H+ and 2.0-MeV C2+ ions. The size distribution of the droplets is evaluated from energy-loss measurements of projectile ions penetrating through the microdroplets. We obtain time-of-flight mass spectra of secondary ions from ethanol droplets. It is demonstrated that coincidence measurements with secondary electrons can distinguish specific ions produced in collisions with the droplets. Production mechanisms of H3O+, C4H9O+, (C2H5)2OH+ in the liquid ethanol are discussed.

  3. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  4. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  5. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Salewski, M.; Bindslev, H.; Bürger, A.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Koslowski, H. R.; Krämer-Flecken, A.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; TEXTOR Team

    2011-06-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations interact strongly with the fast-ion population in a wide range of plasma parameters. Part of the ion phase space density oscillates out of phase with the sawtooth oscillation during hydrogen neutral beam injection (NBI). These oscillations most likely originate from fast hydrogen ions with energies close to the full injection energy. At lower energies passing fast ions in the plasma centre are strongly redistributed at the time of sawtooth collapse but no redistribution of trapped fast ions is observed. The redistribution of fast ions from deuterium NBI in the plasma centre is found to vary throughout velocity space. The reduction is most pronounced for passing ions. We find no evidence of inverted sawteeth outside the sawtooth inversion surface in the fast-ion distribution function.

  6. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    SciTech Connect

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  7. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    SciTech Connect

    Sowa, Mark J.

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  8. Fast-Ion Physics in Burning Toroidal Plasmas

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.

    2001-10-01

    What are the key scientific issues for energetic-particle physics in magnetically confined plasma? Which of these issues can be effectively addressed in a burning tokamak experiment? Single-particle effects are well understood and provide a firm basis for extrapolation to a burning plasma. Effects in this category include the production of alpha particles, their deceleration due to classical Coulomb scattering, particle losses in the static magnetic field structure, and turbulent transport caused by fluctuations of the background plasma. In contrast, collective effects involving fast ions are more poorly understood and extrapolations are unreliable. Collective modes of concern include toroidicity-induced and ellipticity-induced Alfvén eigenmodes (TAE and EAE), kinetic ballooning modes, and internal kink modes. When weakly damped by the background plasma, the stability of these modes can be altered by the alpha-particle population. In some projections to burning experiments, a ``sea'' of TAEs are unstable. The nonlinear saturation and consequent fast-ion transport of many, closely-spaced, modes is expected to differ from existing experiments, where fewer modes are typically excited. In high-temperature burning plasmas (T ~20 keV), the alpha-particle pressure is comparable to the background plasma pressure. In this ``energetic-particle mode'' regime, the MHD normal modes are modified and frequency chirping and other complicated phenomena are observed. Another issue is the possibility of exploiting instabilities such as compressional Alfvén eigenmodes to transfer energy from alpha particles to thermal ions without heating electrons. >From the standpoint of energetic-particle physics, the ideal burning plasma experiment is well diagnosed and can vary the alpha pressure to span both stable and unstable operating regimes.

  9. Foil dissociation of fast molecular ions into atomic excited states

    SciTech Connect

    Berry, H.G.; Gay, T.J.; Brooks, R.L.

    1980-01-01

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH/sup +/ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, /sup 1/ /sup 3/P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman ..cap alpha.. emission after dissociation of H/sub 2//sup +/ amd H/sub 3//sup +/ show rapid variations in light yield for small internuclear separations at the foil surface.

  10. Vibrational relaxation in H/sub 2/ molecules by wall collisions: applications to negative ion source processes

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; Hardy, R.J.

    1984-10-01

    In the volume of a hydrogen discharge, H/sub 2/ molecules, excited to high vibrational levels (v'' > 6), are formed either by fast-electron collisions or from H/sub 2//sup +/ ions that are accelerated across the discharge-wall potential that undergo Auger neutralization prior to impact with the discharge chamber wall. We have used computer molecular dynamics to study the de-excitation and re-excitation of vibrationally-excited H/sub 2/ molecules undergoing repeated wall collisions. The initial translational energies range from thermal to 100 eV and the initial vibrational states range from v'' = 2 to v'' = 12. The average loss or gain of vibrational, rotational, translational, and total molecular energies and the survival rates of the molecules have been evaluated. At thermal energies vibrational de-excitation is the predominant process, and a consistent picture emerges of rapid energy redistribution into all the molecular degrees of freedom and a slower rate of loss of total molecular energy to the wall. At higher translational energies (1 to 100 eV) a substantial fraction of the molecules survive with large (v'' > 6) vibrational energy. This vibrational population provides a contribution to the total excited vibrational population comparable to that from the fast-electron collision process.

  11. Optimization of Cone Wall Thickness to Reduce High Energy Electron Generation for Fast-Ignition Scheme

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Zhe, Zhang; Sawada, Hiroshi; Firex Team

    2015-11-01

    In Fast Ignition Inertial Confinement Fusion, optimization of relativistic electron beam (REB) accelerated by a high-intensity laser pulse is critical for the efficient core heating. The high-energy tail of the electron spectrum is generated by the laser interaction with a long-scale-length plasma and does not efficiently couple to a fuel core. In the cone-in-shell scheme, long-scale-length plasmas can be produced inside the cone by the pedestal of a high-intensity laser, radiation heating of the inner cone wall and shock wave from an implosion core. We have investigated a relation between the presence of pre-plasma inside the cone and the REB energy distribution using the Gekko XII and 2kJ-PW LFEX laser at the Institute of Laser Engineering. The condition of an inner cone wall was monitored using VISAR and SOP systems on a cone-in-shell implosion. The generation of the REB was measured with an electron energy analyzer and a hard x-ray spectrometer on a separate shot by injecting the LFEX laser in an imploded target. The result shows the strong correlation between the preheat and high-energy tail generation. Optimization of cone-wall thickness for the fast-ignition will be discussed. This work is supported by NIFS, MEXT/JSPS KAKENHI Grant and JSPS Fellows (Grant Number 14J06592).

  12. Entanglement and fast quantum thermalization in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man; Hsu, Stephen D. H.

    2016-06-01

    Let A be subsystem of a larger system A ∪ B and ψ be a typical state from the subspace of the Hilbert space ℋAB satisfying an energy constraint. Then ρA(ψ) = TrB|ψ><ψ| is nearly thermal. We discuss how this observation is related to fast thermalization of the central region ( ≈ A) in heavy ion collisions (HIC), where B represents other degrees of freedom (soft modes, hard jets, collinear particles) outside of A. Entanglement between the modes in A and B play a central role: the entanglement entropy SA increases rapidly in the collision. In gauge-gravity duality, SA is related to the area of extremal surfaces in the bulk, which can be studied using gravitational duals.

  13. Developments of fast emittance monitors for ion sources at RCNP

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  14. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  15. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  16. A Hybrid Ion/Electron Beam Fast Ignition Concept

    NASA Astrophysics Data System (ADS)

    Albright, B. J.

    2009-11-01

    Fast ignition (FI) inertial confinement fusion is an approach to high-gain inertial fusion, whereby a dense core of deuterium/tritium fuel is assembled via direct or indirect drive and then a hot spot within the core is heated rapidly (over a time scale of order 10 ps) to ignition conditions by beams of fast charged particles. These particle beams are generated outside the capsule by the interaction of ultra-intense laser pulses with solid density targets. Most study of FI to date has focused on the use of electron [Tabak et al., Phys. Plasmas 1, 1696 (1994)] or ion [Fern'andez et al., Nuclear Fusion 49, 065004 (2009)] beams, however a hybrid approach involving both may have advantages. This paper will describe recent work in this arena. Work performed under the auspices of the U. S. Dept. of Energy by the Los Alamos National Security, Los Alamos National Laboratory. This work was supported by LANL Laboratory Directed Research and Development (LDRD).

  17. Design and initial operation of lost fast-ion probe based on thin Faraday films in CHS

    SciTech Connect

    Isobe, M.; Goto, K.; Toi, K.; Nagaoka, K.; Suzuki, C.; Yoshimura, Y.; Akiyama, T.; Nishimura, S.; Shimizu, A.; Nishiura, M.; Matsuoka, K.; Okamura, S.; Darrow, D. S.; CHS Team

    2006-10-15

    The purpose of this work is to measure lost fast ions as an ion current so as to make quantitative argument on flux of fast-ion loss possible. We have designed and constructed a lost fast-ion probe based on combination of thin Faraday films and small rectangular apertures, called FLIP, for the Compact Helical System. The current generated by escaping fast ions has been successfully measured with the FLIP in neutral-beam-heated plasmas. The FLIP detected increased flux of escaping fast ions while fast-ion-driven magnetohydrodynamics instabilities appear.

  18. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering.

    PubMed

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2006-11-17

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown to be in close agreement with modeling results. PMID:17155690

  19. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    SciTech Connect

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-15

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  20. Fast Ion Profiles in Plasmas With Alfvén Instabilities

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Luo, Y.; Ruskov, E.; Kramer, G. J.; Gorelenkov, N. N.; Nazikian, R.; White, R.; van Zeeland, M. A.

    2006-10-01

    Fast-ion redistribution is observed in plasmas with many different types of Alfvén eigenmode (AE) activity: toroidicity-induced (TAE), reversed shear (RSAE), elongation induced (EAE), and beta-induced (BAE). AE wave fields calculated by the NOVA code and benchmarked against experimental measurements are used to predict the modification of the fast-ion distribution function. These predictions are compared with profiles measured by the fast-ion Dα diagnostic, as well as fast-ion profiles inferred from the equilibrium. Neutron, neutral particle, and beam-ion loss detector diagnostics are also employed. In cases with strong AE activity, the central fast-ion profile is often flat.

  1. Analysis methods for fast impurity ion dynamics data

    SciTech Connect

    Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.

    1994-08-01

    A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 {mu}s temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ``MHD dynamo``) may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column.

  2. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  3. Fast domain wall propagation under an optimal field pulse in magnetic nanowires.

    PubMed

    Sun, Z Z; Schliemann, J

    2010-01-22

    We investigate field-driven domain wall (DW) propagation in magnetic nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by using an optimal space-dependent field pulse synchronized with the DW propagation. Depending on the damping parameter, the DW velocity can be increased by about 2 orders of magnitude compared to the standard case of a static uniform field. Moreover, under the optimal field pulse, the change in total magnetic energy in the nanowire is proportional to the DW velocity, implying that rapid energy release is essential for fast DW propagation. PMID:20366681

  4. Optimal spin current pattern for fast domain wall propagation in nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong

    2011-03-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.

  5. Using the column wall itself as resistive heater for fast temperature gradients in liquid chromatography.

    PubMed

    De Pauw, Ruben; Pursch, Matthias; Desmet, Gert

    2015-11-13

    A new system is proposed for applying fast temperature gradients in liquid chromatography. It consists of a 0.7 mm × 150 mm fused-silica column coated with a 50 μm Nickel-layer, which is connecting with a power source and a temperature control system to perform fast and reproducible temperature gradients using the column wall itself as a resistive heater. Applying a current of 4A and passive cooling results in a maximal heating and cooling rate of, respectively, 71 and -21 °C/min. Multi-segment temperature gradients were superimposed on mobile phase gradients to enhance the selectivity for three sets of mixtures (pharmaceutical compounds, a highly complex mixture and an insecticide sample). This resulted in a higher peak count or better selectivities for the various mixtures. PMID:26476853

  6. Characterization of Fast Ion Absorption of the High Harmonic Fast Wave in the National Spherical Torus Experiment

    SciTech Connect

    A.L. Rosenberg; J.E. Menard; J.R. Wilson; S. Medle; C.K. Phillips; R. Andre; D.S. Darro; R.J. Dumont; B.P. LeBlanc; M.H. Redi; T.K. Mau; E. F. Jaeger; P.M. Ryan; D.W. Swain; R.W. Harvey; J. Egedal; the NSTX Team

    2003-08-19

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment (NSTX) shots has revealed that under some conditions when neutral beam and radio-frequency (RF) power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger beta profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k(sub)||, surprisingly little variation in the tail was observed, along with a small neutron rate enhancement with higher k(sub)||. Data from the neutral particle analyzer, neutron detectors, X-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasi-linear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  7. Consistency between real and synthetic fast-ion measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Geiger, B.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; The ASDEX Upgrade Team

    2015-07-01

    Internally consistent characterization of the properties of the fast-ion distribution from multiple diagnostics is a prerequisite for obtaining a full understanding of fast-ion behavior in tokamak plasmas. Here we benchmark several absolutely-calibrated core fast-ion diagnostics at ASDEX Upgrade by comparing fast-ion measurements from collective Thomson scattering, fast-ion {{\\text{D}}α} spectroscopy, and neutron rate detectors with numerical predictions from the TRANSP/NUBEAM transport code. We also study the sensitivity of the theoretical predictions to uncertainties in the plasma kinetic profiles. We find that theory and measurements generally agree within these uncertainties for all three diagnostics during heating phases with either one or two neutral beam injection sources. This suggests that the measurements can be described by the same model assuming classical slowing down of fast ions. Since the three diagnostics in the adopted configurations probe partially overlapping regions in fast-ion velocity space, this is also consistent with good internal agreement among the measurements themselves. Hence, our results support the feasibility of combining multiple diagnostics at ASDEX Upgrade to reconstruct the fast-ion distribution function in 2D velocity space.

  8. Effect of Ion Cyclotron Heating on Fast Ion Transport and Plasma Rotation in Tokamaks

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Omelchenko, Y. A.; Chiu, S. C.

    2000-10-01

    Minority ion cyclotron heating can produce energetic ions with banana orbits which are finite compared with the minor radius of a tokamak. The radial transport of the fast ions in the presence of Coulomb collisions results in a radial current and a corresponding JxB torque density on the bulk plasma. Collisions with the bulk ions provides an additional frictional torque that adds to or opposes the magnetic torque. This study clarifies the various mechanisms which can contribute to the torque components including collision-induced finite orbit particle diffusion, wave-induced asymmetry in canonical momentum when doppler resonance is accounted for, and orbit asymmetry created by magnetic geometry. Ion dynamics are calculated with a Monte-Carlo code in which wave-induced energy diffusion is accounted for by a quasilinear operator. The code follows particle drift trajectories in a tokamak geometry under the influence of RF fields and collisions with the background plasma. Questions on the direction of plasma rotation under different conditions and validity of the Green's function approach in modeling RF-induced rotation will be addressed.

  9. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    SciTech Connect

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-15

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  10. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  11. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  12. Observations of fast ion losses due to toroidal Alfven eigenmodes in TFTR

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1993-08-01

    In a tokamak, knowledge of the rate of fast ion loss is of importance in determining the energy balance of the discharge. Heating of the discharge may be diminished if losses are significant, since neutral beam ions, ICRF heating tail ions, and alpha particles all heat the plasma and may all be lost through processes which expel fast ions. In addition, a loss of fast ions which is sufficiently intense and localized may damage plasma facing components in the vacuum vessel. For these reasons, knowledge of the fast ion loss mechanisms is desirable. Loss processes for fast ions in a tokamak fit into two broad categories: single particle and collective. Single particle losses are those, such as first orbit loss, which are independent of the number of fast ions present. These have been seen in numerous instances on TFIR with DD fusion products, and are reported elsewhere. Collective losses arise when the fast ion density is sufficient to drive instabilities which then cause loss. The drive can come from {partial_derivative}f{sub fi}/{partial_derivative}{psi} (where f{sub fi} is the fast ion distribution function), {partial_derivative}f{sub fi}/{partial_derivative}E, and resonances. Examples of collective instabilities include the toroidal Alfven eigenmode (TAE), the kinetic ballooning mode, alpha driven sawteeth, alpha driven fishbones, Alfven waves, and ion cyclotron waves. This paper limits itself to the presentation of observations made during what are believed to be TAEs which were excited under two conditions in TFTR: at low field (1.5 T), with neutral beam ions driving the mode, and at intermediate field (3.4 T) with the hydrogen minority ICRF tail ions driving the mode.

  13. Metal ion bombardment of onion skin cell wall

    SciTech Connect

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L.D.; Verdaguer, A.; Ratera, I.; Ogletree, D.F.; Monteiro, O.R.; Brown, I.G.

    2004-05-10

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30keV, and the implantation fluence was in the range 1014 1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  14. Dispersion relations for slow and fast resistive wall modes within the Haney-Freidberg model

    SciTech Connect

    Lepikhin, N. D.; Pustovitov, V. D.

    2014-04-15

    The dispersion relation for the resistive wall modes (RWMs) is derived by using the trial function for the magnetic perturbation proposed in S. W. Haney and J. P. Freidberg, Phys. Fluids B 1, 1637 (1989). The Haney-Freidberg (HF) approach is additionally based on the expansion in d{sub w}/s≪1, where d{sub w} is the wall thickness and s is the skin depth. Here, the task is solved without this constraint. The derivation procedure is different too, but the final result is expressed in a similar form with the use of the quantities entering the HF relation. The latter is recovered from our more general relation as an asymptote at d{sub w}≪s, which proves the equivalence of the both approaches in this case. In the opposite limit (d{sub w}≫s), we obtain the growth rate γ of the RWMs as a function of γ{sub HF} calculated by the HF prescription. It is shown that γ∝γ{sub HF}{sup 2} and γ≫γ{sub HF} in this range. The proposed relations give γ for slow and fast RWMs in terms of the integrals calculated by the standard stability codes for toroidal systems with and without a perfectly conducting wall. Also, the links between the considered and existing toroidal and cylindrical models are established with estimates explicitly showing the relevant dependencies.

  15. Fast ion loss diagnostic plans for the National Spherical Torus Experiment

    SciTech Connect

    Darrow, D. S.; Bell, R.; Johnson, D. W.; Kugel, H.; Wilson, J. R.; Cecil, F. E.; Maingi, R.; Krasilnikov, A.; Alekseyev, A.

    2001-01-01

    The prompt loss of neutral beam ions from the National Spherical Torus Experiment is expected to be between 12% and 42% of the total 5 MW of beam power. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most of the lost ions will strike the HHFW antenna or the neutral beam dump. To measure these losses in the 2000 experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion probe will be employed. The probe will measure loss of fast ions with E>1 keV at three radial locations, giving the scrape-off length of the fast ions.

  16. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  17. Fast ion charge exchange spectroscopy adapted for tangential viewing geometry in LHD

    SciTech Connect

    Ito, T.; Osakabe, M.; Ida, K.; Yoshinuma, M.; Kobayashi, M.; Goto, M.; Isobe, M.; Toi, K.; Takeiri, Y.; Okamura, S.; Murakami, S.; Kobayashi, S.; Ogawa, K.

    2010-10-15

    A tangential Fast Ion Charge eXchange Spectroscopy is newly applied on a Large Helical Device (LHD) for co/countercirculating fast ions, which are produced by high energy tangential negative-ion based neutral beam injection. With this new observation geometry, both the tangential-neutral beam (NB) and a low-energy radial-NB based on positive ions can be utilized as probe beams of the measurement. We have successfully observed Doppler-shifted H-alpha lights due to the charge exchange process between the probing NB and circulating hydrogen ions of around 100 keV in LHD plasmas.

  18. Fast-ion Energy Loss During TAE Avalanches in the National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E D; Darrow, D S; Gorelenkov, N N; Kramer, G J; Kubota, S; Podesta, M; White, R B; Bortolon, A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-07-11

    Strong TAE avalanches on NSTX, the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] are typically correlated with drops in the neutron rate in the range of 5% - 15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modeled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈ 6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for the bulk of the drop in neutron rate, even in the absence of fast ion losses. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfven wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code.

  19. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  20. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR.

    PubMed

    Nielsen, S K; Bindslev, H; Porte, L; Hoekzema, J A; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Van Wassenhove, G; Westerhof, E; Woskov, P

    2008-01-01

    Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently reported [Bindslev, Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150kW of 110-GHz gyrotron probing radiation which scatters off the collective plasma fluctuations driven by the fast-ion motion. The technique measures the projected one-dimensional velocity distribution of confined fast ions in the scattering volume where the probe and receiver beams cross. By shifting the scattering volume a number of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4ms while the spatial resolution is approximately 10cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations. PMID:18351944

  1. Interaction of Tearing Modes and Fast Ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Anderson, J. K.; Eilerman, S.; Falk, J.; Koliner, J. J.; Nornberg, M. D.; Waksman, J.; Lin, L.; Liu, D.; Tsidulko, Y.

    2013-10-01

    Energetic ions sourced by a 1 MW, 25 keV, tangential neutral-beam injector (NBI) are well confined in RFP discharges in MST. In beam blip experiments, classical slowing and charge exchange loss can often account for the measured neutron flux decay. While these experiments give a sense of the global fast ion confinement, there are many important details that are lost in such an analysis. To gain insight into the effects of tearing modes on the fast ion distribution, a full orbit particle tracing code (RIO) has been used. RIO is capable of taking as input the 3D time varying electric and magnetic field output from the nonlinear resistive MHD code DEBS. While the tearing modes present in MST do not appear to cause significant direct loss of the highest energy ions due to drift orbit averaging, the ions do begin to interact with the tearing modes as they slow down, leading to a flattening of the ion density profile and an enhancement in the fast ion loss rate. While RIO allows the study of the effect of tearing modes on the fast ions we have also observed, in a separate set of long pulse NBI experiments, that the fast ions affect the tearing modes. Specifically, the core-most tearing mode amplitude is suppressed during NBI with the degree of suppression tracking directly with neutral particle analyzer measurements of the core localized circulating fast ions. The interaction of fast ions with the tearing modes in both beam blip and long pulse experiments will be presented. This work supported by the US DOE and NSF.

  2. Parametric Dependence Of Fast-ion Transport Events On The National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, Erik; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.

    2014-03-31

    Neutral-beam heated tokamak plasmas commonly have more than one third of the plasma kinetic energy in the non-thermal energetic beam ion population. This population of fast ions heats the plasma, provides some of the current drive, and can affect the stability (positively or negatively) of magnetohydrodynamic instabilities. This population of energetic ions is not in thermodynamic equilibrium, thus there is free-energy available to drive instabilities, which may lead to redistribution of the fast ion population. Understanding under what conditions beam-driven instabilities arise, and the extent of the resulting perturbation to the fast ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U, as well as the performance of future fusion plasma experiments such as ITER. This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities seen on NSTX.

  3. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  4. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared. PMID:26931910

  5. Dynamic polarization effects in ion channeling through single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Da-Peng; Wang, You-Nian; Wei, Li; Mišković, Z. L.

    2005-08-01

    Ion channeling through a single-wall carbon nanotube is simulated by solving Newton’s equations for ion motion at intermediate energies, under the action of both the surface-atom repulsive forces and the polarization forces due to the dynamic perturbation of the nanotube electrons. The atomic repulsion is described by a continuum potential based on the Thomas-Fermi-Moliere model, whereas the dynamic polarization of the nanotube electrons is described by a two-dimensional hydrodynamic model, giving rise to the transverse dynamic image force and the longitudinal stopping force. In the absence of centrifugal forces, a balance between the image force and the atomic repulsion is found to give rise to ion trajectories which oscillate over peripheral radial regions in the nanotube, provided the ion impact position is not too close to the nanotube wall, the impact angle is sufficiently small, and the incident speed is not too high. Otherwise, the ion is found to oscillate between the nanotube walls, passing over a local maximum of the potential in the center of the nanotube, which results from the image interaction. The full statistical analysis of 103 ion trajectories has been made to further demonstrate the actual effect of dynamic polarization on the ion channeling.

  6. FAST TRACK COMMUNICATION: Mechanical properties of non-reconstructed defective single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Scarpa, F.; Adhikari, S.; Wang, C. Y.

    2009-07-01

    This paper describes the equivalent homogeneous uniaxial mechanical properties of defective single-wall carbon nanotubes. In particular, non-reconstructed defects that can be produced by ion or electronic irradiation have been considered. A discrete nonlinear finite-element approach based on the mechanical properties of individual carbon-carbon (C-C) bonds has been used. The individual C-C bonds in turn were simulated as beam structural elements. Extensive Monte Carlo based numerical simulation has been reported in the paper. The results show that the homogeneous elastic properties of the defective nanotubes can be qualitatively and quantitatively different from the pristine configurations. The defective nanotubes show a slight reduction in axial stiffness (Young's modulus), but large variations of Poisson's ratio outside the elastic bounds for isotropic materials, depending on the locations of the vacancies. The large fluctuations of Poisson's ratio can lead to extreme positive transversal contractions or to auxetic behaviour when the nanotubes are subjected to tensile loading.

  7. Single-walled carbon nanotube growth from ion implanted Fe catalyst

    SciTech Connect

    Choi, Yongho; Sippel-Oakley, Jennifer; Ural, Ant

    2006-10-09

    The authors present experimental evidence that single-walled carbon nanotubes can be grown by chemical vapor deposition from ion implanted iron catalyst. They systematically characterize the effect of ion implantation dose and energy on the catalyst nanoparticles and nanotubes formed at 900 deg. C. They also fabricate a micromachined silicon grid for direct transmission electron microscopy characterization of the as-grown nanotubes. This work opens up the possibility of controlling the origin of single-walled nanotubes at the nanometer scale and of integrating them into nonplanar three-dimensional device structures with precise dose control.

  8. Mode conversion of fast Alfv{acute e}n waves at the ion{endash}ion hybrid resonance

    SciTech Connect

    Ram, A.K.; Bers, A.; Schultz, S.D.; Fuchs, V.

    1996-05-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion{endash}ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfv{acute e}n waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B {bold 3}, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfv{acute e}n waves in the immediate vicinity of the ion{endash}ion hybrid resonance is extended to include the propagation and reflection of the fast Alfv{acute e}n waves on the high magnetic-field side of the ion{endash}ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfv{acute e}n wave power incident on the ion{endash}ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfv{acute e}n waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion{endash}ion hybrid resonance to the high magnetic-field cutoff. The condition for 100{percent} mode conversion corresponds to a critical coupling of the fast Alfv{acute e}n waves to this internal resonator. As an example, the appropriate plasma conditions for 100{percent} mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski {ital et} {ital al}., {ital Proceedings} {ital of} {ital the} 11{ital th} {ital Topical} {ital Conference} {ital on} {ital RF} {ital Power} {ital in} {ital Plasmas}, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters. {copyright} {ital 1996 American Institute of Physics.}

  9. Wave Driven Fast Ion Loss in the National Spherical Torus Experiment

    SciTech Connect

    E.D. Fredrickson; C.Z. Cheng; D. Darrow; G. Fu; N.N. Gorelenkov; G. Kramer; S.S. Medley; J. Menard; L. Roquemore; D. Stutman; R.B. White

    2003-08-05

    The study of fast ion instabilities in conventional aspect ratio tokamaks is motivated in large part by their potential to negatively impact the ignition threshold in fusion reactors by causing fast ion losses. Spherical tokamak's (ST), with intrinsically low magnetic fields, are particularly susceptible to fast ion driven instabilities. The 3.5 MeV alpha's from the D-T [deuterium-tritium] fusion reaction in proposed ST reactors will have velocities much higher than the Alfven speed. The Larmor radius of the fusion alphas, normalized to the plasma size, will also be larger than for conventional aspect ratio tokamak reactors. The resulting longer wavelengths of the *AE instabilities will be more effective in driving fast ion loss. The change in magnetic topology also influences the mode structure, as in the case of the Compressional Alfven Eigenmodes (CAE) seen on NSTX.

  10. Near midplane scintillator-based fast ion loss detector on DIII-D

    SciTech Connect

    Chen, X.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Chavez, J. A.; Van Zeeland, M. A.; Garcia-Munoz, M.

    2012-10-15

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities ({<=}500 kHz). Combined with the first FILD at {approx}45 Degree-Sign below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r{sub L}{approx}[1.5-8] cm and pitch angle {alpha}{approx}[35 Degree-Sign -85 Degree-Sign ]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  11. Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail

    SciTech Connect

    Daglis, I.A.; Axford, I.A.

    1996-03-01

    The authors look at the question of the ionosphere feeding ions into the magnetosphere/magnetotail, in response to magnetic storm activity, or coupling of the solar wind into the system. They are concerned with fast response, not the question of whether the ionosphere feeds ions in general. The dynamics which results in the inner magnetosphere in response to the input of cold ions from the ionosphere is of interest to the authors. They review recent and older data which has shed light on this question. They look at outflow data, and heating mechanisms for these cold ions, as well as the impact such ions may have on the dynamics of magnetic storms. They observe that fast feeding of ions out of the ionosphere may leave the inner magnetosphere heavily populated with heavy ions such as O{sup +}, which can have a definite impact on the dynamic development of the magnetosphere.

  12. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  13. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    SciTech Connect

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target

  14. Effect of low frequency MHD instability on fast ion distribution in NSTX

    NASA Astrophysics Data System (ADS)

    Hao, G.; Liu, D.; Heidbrink, W. W.; Podesta, M.; Fredrickson, E. D.; Bortolon, A.; White, R.; Darrow, D.; Fu, G. Y.; Wang, Z. R.; Kramer, G. J.; Liu, Y. Q.; Tritz, K.

    2015-11-01

    In NSTX spherical tokamak plasmas, the onset of low-frequency MHD modes cause a rapid ~ 25% reduction in the fast-ion D-alpha (FIDA) signal. These, 5-20 kHz instabilities are commonly observed in the early phase of neutral beam heated plasmas that often have reversed magnetic shear in the plasma core. The collapse of the core fast ion density is measured by the vertical FIDA diagnostic. Although the profile flattens, changes in spectral shape are modest, suggesting that much of the distribution function is affected. Meanwhile, a modest increase of fast-ion losses is indicated by the measurements from neutron and fast-ion loss detectors. Moreover, this mode is always accompanied by Compressional Alfven Eigenmode (CAE). This suggests that low-f MHD instabilities can cause the redistribution of fast ions in both real and velocity space. Preliminary simulation results from the MARS-F code suggest that the low-f instability is a coupled infernal-peeling mode. The dependence of the mode's onset on the equilibrium parameters and its effect on the fast ion distribution will be computed, and compared with experimental measurements. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  15. Imaging key aspects of fast ion physics in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Yu, J. H.; Heidbrink, W. W.; Brooks, N. H.; Burrell, K. H.; Chu, M. S.; Hyatt, A. W.; Muscatello, C.; Nazikian, R.; Pablant, N. A.; Pace, D. C.; Solomon, W. M.; Wade, M. R.

    2010-08-01

    Visible imaging has been used to provide the 2D spatial structure and temporal evolution of the profile of high-energy neutrals introduced by neutral beam injection, the fast ion profile and a variety of plasma instabilities in DIII-D plasmas; the combination of these techniques form a comprehensive fast ion physics diagnostic suite. The injected neutral profile is imaged in Doppler shifted Dα light induced by collisional excitation. Fast ion profile information was obtained through imaging of Doppler shifted fast ion Dα light (FIDA) emitted by re-neutralized energetic ions. Imaging of FIDA emission during sawtooth events shows a large central depletion following sawtooth crashes—indicative of a broad redistribution of fast ions. Two examples of instability structure measurements are given. Measurements of the detailed 2D poloidal structure of rotating tearing modes were obtained using spectrally filtered fast imaging of broadband visible bremsstrahlung emission, a method which is capable of imaging with high resolution the structure of coherent oscillations in the core of current and next-step fusion plasma experiments and can be applied to virtually any mode with a finite perturbed bremsstrahlung emissivity and frequency in the laboratory frame. Measurements are also presented of the n = 0 energetic particle geodesic acoustic mode which were made by observing fluctuations in active emission.

  16. Reactor Chamber and Balance-of-Plant Characteristics for a Fast-Ignition Heavy-Ion Fusion Power Plant

    SciTech Connect

    Medin, Stanislav; Churazov, Mikhail; Koshkarev, Dmitri; Sharkov, Boris; Orlov, Yurii; Suslin, Viktor; Zemskov, Eugeni

    2003-05-15

    The concept of a fast-ignition heavy-ion fusion (FIHIF) power plant involves a cylindrical target and superhigh energy ion beams. The driver produces one plus/minus charge state multimass platinum ions with energy of 100 GeV. The driver efficiency and the target gain are taken as 0.25 and 100, respectively. The preliminary data on the energy fluxes delivered to the reactor chamber wall by the 500-MJ fusion yield are presented. The reactor chamber designed has two sections. In the first section, the microexplosions occur, and in the second section of bigger volume the expansion and condensation of vapors take place. The response of the blanket and the thin liquid film at the first-wall surface is evaluated. Lithium-lead eutectic is taken as a coolant. The evaporated mass and the condensation time are estimated, taking into account major thermophysical effects. The estimated neutron spectrum from the FIHIF target gives an average neutron energy of 11.9 MeV. The mechanical stresses in the construction material due to neutron energy release are evaluated. The outlet coolant chamber temperature is taken as 550 deg. C. The heat conversion system consisting of three coolant loops provides a net efficiency of the FIHIF power plant of 0.37.

  17. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  18. Interaction of minor ions with fast and slow shocks

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1990-01-01

    The coronal slow shock was predicted to exist embedded in large coronal holes at 4 to 10 solar radii. A three-fluid model was used to study the jumps in minor ions propertes across the coronal slow shock. The jump conditions were formulated in the de Hoffmann-Teller frame of reference. The Rankine-Hugoniot solution determines the MHD flow and the magnetic field across the shocks. For each minor ion species, the fluid equations for the conservation of mass, momentum, and energy can be solved to determine the velocity and the temperature of the ions across the shock. A simularity solution was also obtained for heavy ions. The results show that on the downstream side of the coronal slow shock the ion temperatures are nearly proportional to the ion masses for He, O, Si, and Fe in agreement with observed ion temperatures in the inner solar wind. This indicates that the possibly existing coronal slow shock can be responsible for the observed heating of minor ions in the solar wind.

  19. Scintillator-based diagnostic for fast ion loss measurements on DIII-D.

    PubMed

    Fisher, R K; Pace, D C; García-Muñoz, M; Heidbrink, W W; Muscatello, C M; Van Zeeland, M A; Zhu, Y B

    2010-10-01

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfvén eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed. PMID:21033833

  20. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  1. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    NASA Astrophysics Data System (ADS)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  2. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  3. Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade

    SciTech Connect

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; Collaboration: ASDEX Upgrade Team

    2014-08-21

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.

  4. Characterization of Fast Ion and Neutral Debris from Laser-Produced Lithium Plasmas

    NASA Astrophysics Data System (ADS)

    Sekioka, Tsuguhisa; Nagano, Akihisa; Ohtani, Nobuyuki; Miyamoto, Shuji; Amano, Sho; Inoue, Takahiro; Mochizuki, Takayasu

    2007-03-01

    Emissions of fast ion and neutral debris from laser-produced lithium plasmas have been investigated. We found that Li+, Li2+, and Li3+ ion energy spectra look similar. The peak positions and maximum energies in their energy spectra were about 700-800 eV and about 800-900 eV, respectively, which were much lower than those of such high-Z targets as Xe and Sn. These indicate that most of the fast Li+ and Li2+ ions were produced by the recombination of Li3+ ions while the plasma expanded, and that they were not accelerated to a high energy range as much as the high-Z targets. We did not observe any fast neutral Li atoms. These results suggest that the use of the Li target for the extreme ultraviolet (EUV) source would be advantageous for practical applications.

  5. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  6. Desorption yield for valine as induced by fast heavy ions

    SciTech Connect

    Beining, P.; Scheer, J.; Nieschler, E.; Nees, B.; Voit, H.

    1988-11-01

    The dependence of the desorption yield for the amino acid valine on the energy of different MeV primary ions has been measured. The primary-ion energies cover a relatively large range with corresponding energy losses between 2 and 55 keV/(..mu..g/cm/sup 2/). The observed energy dependence can be understood in the framework of a simple macroscopic model.

  7. Fast Monte Carlo for ion beam analysis simulations

    NASA Astrophysics Data System (ADS)

    Schiettekatte, François

    2008-04-01

    A Monte Carlo program for the simulation of ion beam analysis data is presented. It combines mainly four features: (i) ion slowdown is computed separately from the main scattering/recoil event, which is directed towards the detector. (ii) A virtual detector, that is, a detector larger than the actual one can be used, followed by trajectory correction. (iii) For each collision during ion slowdown, scattering angle components are extracted form tables. (iv) Tables of scattering angle components, stopping power and energy straggling are indexed using the binary representation of floating point numbers, which allows logarithmic distribution of these tables without the computation of logarithms to access them. Tables are sufficiently fine-grained that interpolation is not necessary. Ion slowdown computation thus avoids trigonometric, inverse and transcendental function calls and, as much as possible, divisions. All these improvements make possible the computation of 107 collisions/s on current PCs. Results for transmitted ions of several masses in various substrates are well comparable to those obtained using SRIM-2006 in terms of both angular and energy distributions, as long as a sufficiently large number of collisions is considered for each ion. Examples of simulated spectrum show good agreement with experimental data, although a large detector rather than the virtual detector has to be used to properly simulate background signals that are due to plural collisions. The program, written in standard C, is open-source and distributed under the terms of the GNU General Public License.

  8. Experimental study of unsteady aerothermodynamic phenomena on shock-tube wall using fast-response temperature-sensitive paints

    NASA Astrophysics Data System (ADS)

    Ozawa, Hiroshi

    2016-04-01

    This paper describes an experimental study that used a fast-response temperature-sensitive paint (TSP) to investigate the unsteady aerothermodynamic phenomena occurring on a shock-tube wall. To understand these phenomena in detail, a fast-response TSP with high temperature sensitivity developed for transient temperature measurement was applied to the wall. The shock-tube experiment was carried out under the over-tailored condition, with a pressure ratio of 110 for test gases of air in driver/driven tubes. The following aspects were clarified using the TSP: (a) the TSP could be used to visualize the unsteady aerothermodynamic phenomena and estimate the quantitative heat flux on the shock-tube wall; (b) an x-t diagram based on the TSP response showed shock-tube wall characteristics that included the incident/reflected shocks, laminar-to-turbulent boundary-layer transition, streaks in the turbulent boundary layer, reflected shock/turbulent boundary layer interaction, and waves reflected from a contact surface; (c) the TSP graphically showed that a transition front from the plate's leading edge and turbulent spots moved with 80% of the free-stream velocity behind the incident shock. In addition, the TSP could track the growth of the turbulent spots on the wall.

  9. Direct spectroscopic observation of ion deceleration accompanying laser plasma-wall interaction

    NASA Astrophysics Data System (ADS)

    Renner, O.; Krouský, E.; Liska, R.; Šmíd, M.; Larroche, O.; Dalimier, E.; Rosmej, F. B.

    2010-08-01

    Interactions of plasma jets with solid surfaces are extensively studied in context with development of future fusion devices. In experiments carried out on the iodine laser system PALS, the energetic ions were produced at double-foil Al/Mg targets irradiated by one or two counter-propagating laser beams. The plasma jets from the rear surface of the laser-exploded Al foil streamed towards the Mg target representing the wall preheated by the action of the high-energy photons, particle and/or laser beams. Instead of being trapped by the cold secondary-target material, the forward-accelerated Al ions collided with the counter-propagating matter ejected from the wall. The environmental conditions in near-wall plasmas were analyzed with the high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. The deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized via Doppler shifts of the J-satellite from the Al Lya spectral group. The interaction scenario was modelled using the 2D arbitrary Lagrangian Eulerian hydrocode PALE and the multifluid code MULTIF.

  10. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  11. Gyrokinetic particle simulations of reversed shear Alfven eigenmode excited by antenna and fast ions

    SciTech Connect

    Deng Wenjun; Holod, Ihor; Xiao Yong; Lin Zhihong; Wang Xin; Zhang Wenlu

    2010-11-15

    Global gyrokinetic particle simulations of reversed shear Alfven eigenmode (RSAE) have been successfully performed and verified. We have excited the RSAE by initial perturbation, by external antenna, and by energetic ions. The RSAE excitation by antenna provides verifications of the mode structure, the frequency, and the damping rate. When the kinetic effects of the background plasma are artificially suppressed, the mode amplitude shows a near-linear growth. With kinetic thermal ions, the mode amplitude eventually saturates due to the thermal ion damping. The damping rates measured from the antenna excitation and from the initial perturbation simulation agree very well. The RSAE excited by fast ions shows an exponential growth. The finite Larmor radius effects of the fast ions are found to significantly reduce the growth rate. With kinetic thermal ions and electron pressure, the mode frequency increases due to the elevation of the Alfven continuum by the geodesic compressibility. The nonperturbative contributions from the fast ions and kinetic thermal ions modify the mode structure relative to the ideal magnetohydrodynamic (MHD) theory. The gyrokinetic simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations.

  12. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade

    SciTech Connect

    Geiger, B.; Dux, R.; McDermott, R. M.; Potzel, S.; Reich, M.; Ryter, F.; Weiland, M.; Wünderlich, D.; Garcia-Munoz, M.; Collaboration: ASDEX Upgrade Team

    2013-11-15

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D{sub 2}-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  13. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    NASA Astrophysics Data System (ADS)

    Sampaio, Joao; Lequeux, Steven; Metaxas, Peter J.; Chanthbouala, Andre; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-12-01

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 107 A/cm2. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  14. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  15. Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries.

    PubMed

    Qu, Jie; Cloud, Jacqueline E; Yang, Yongan; Ding, Jianning; Yuan, Ningyi

    2014-12-24

    A one-step hydrothermal method, followed by calcination at 300 °C in an argon atmosphere, has been developed to synthesize TiO2-B nanoparticles/double-walled nanotubes (NP/DWNT) and TiO2-B nanoparticles/multiple-walled nanotubes (NP/MWNT). To the best of our knowledge, this is the first synthesis of TiO2-B NP/NT hierarchical structures. Both NP/DWNT and NP/MWNT show high performance as anode materials for lithium-ion batteries, superior to their counterparts of DWNT and MWNT, respectively. Among all the four materials studied herein, NP/DWNT demonstrates the highest discharge-charge capacity, rate capability, and cycling stability. The enhancement due to the NP loading results from the increased surface areas, the improved kinetics, and the decreased transport distance for both electrons and Li ions. The charge capacity at high rates lies in the intercalation pseudocapacitance originating from fast Li-ion transport through the infinite channels in TiO2-B. The superiority of DWNT materials versus MWNT materials is ascribed to the thinner walls, which provide a shorter distance for Li-ion transport through the radial direction. PMID:25419639

  16. Numerical study of the characteristics of the ion and fast atom beams in an end-Hall ion source

    SciTech Connect

    Oudini, N.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.

    2012-10-15

    An end-Hall ion source is a cylindrical magnetized device of few centimeters in length able to generate an ion beam with a current of typically 1 A and ion energies in the range of 100 eV. This ion source does not use acceleration grids, has a relatively large ion beam divergence, and is well suited for ion assisted deposition processes. In this paper, a self-consistent two-dimensional quasi-neutral model of an end-Hall ion source is used to understand the parameters controlling the characteristics of the extracted. The model results underline the role of charge exchange collisions on beam properties. The calculated energy distribution functions reveal the existence of groups of slow ions and fast neutrals. Ion mean energy corresponds to roughly 60% of the discharge voltage, while the root mean square deviation from the mean energy corresponds to about 33% of the discharge voltage, as in experiments. The influence of the position of the electron emitting source on the ion angular distribution is also shown.

  17. Investigation on the electron flux to the wall in the VENUS ion source.

    PubMed

    Thuillier, T; Angot, J; Benitez, J Y; Hodgkinson, A; Lyneis, C M; Todd, D S; Xie, D Z

    2016-02-01

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall. PMID:26931954

  18. Investigation on the electron flux to the wall in the VENUS ion source

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.

    2016-02-01

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.

  19. Collective fast ion instability-induced losses in National Spherical Tokamak Experiment

    SciTech Connect

    Fredrickson, E.D.; Bell, R.E.; Darrow, D.S.; Fu, G.Y.; Gorelenkov, N.N.; LeBlanc, B.P.; Medley, S.S.; Menard, J.E.; Park, H.; Roquemore, A.L.; Heidbrink, W.W.; Sabbagh, S.A.; Stutman, D.; Tritz, K.; Crocker, N.A.; Kubota, S.; Peebles, W.; Lee, K.C.; Levinton, F.M.

    2006-05-15

    A wide variety of fast ion driven instabilities are excited during neutral beam injection (NBI) in the National Spherical Torus Experiment (NSTX) [Nucl. Fusion 40, 557 (2000)] due to the large ratio of fast ion velocity to Alfven velocity, V{sub fast}/V{sub Alfven}, and high fast ion beta. The ratio V{sub fast}/V{sub Alfven} in ITER [Nucl. Fusion 39, 2137 (1999)] and NSTX is comparable. The modes can be divided into three categories: chirping energetic particle modes (EPM) in the frequency range 0 to 120 kHz, the toroidal Alfven eigenmodes (TAE) with a frequency range of 50 kHz to 200 kHz, and the compressional and global Alfven eigenmodes (CAE and GAE, respectively) between 300 kHz and the ion cyclotron frequency. Fast ion driven modes are of particular interest because of their potential to cause substantial fast ion losses. In all regimes of NBI heated operation we see transient neutron rate drops, correlated with bursts of TAE or fishbone-like EPMs. The fast ion loss events are predominantly correlated with the EPMs, although losses are also seen with bursts of multiple, large amplitude TAE. The latter is of particular significance for ITER; the transport of fast ions from the expected resonance overlap in phase space of a 'sea' of large amplitude TAE is the kind of physics expected in ITER. The internal structure and amplitude of the TAE and EPMs has been measured with quadrature reflectometry and soft x-ray cameras. The TAE bursts have internal amplitudes of n-tilde/n=1% and toroidal mode numbers 21 and can have a toroidal mode number n>1. The range of the frequency chirp can be quite large and the resonance can be through a fishbone-like precessional drift resonance, or through a bounce resonance.

  20. Fast Analysis of Potential Scintillators Using Ion Time Of Flight

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian; Zhang, Yanwen

    2008-05-01

    The development of scintillators for radiation applications such as national security, medical imaging, and experimental nuclear/particle physics has historically been rather slow, principally due to the developmental time necessary for large crystal growth. Scintillator crystals must achieve dimensions of a few mm before important characterizations, such as gamma ray energy resolution, can be performed. In order to facilitate accelerated discovery, we developed a time of flight (TOF) telescope for use on an ion beam. This allows individual determination of the ion energies prior to impinging the crystal, which may be a very thin prototype material. With such a technique, the scintillator performance in terms of energy resolution, light yield, decay time, and spectrum, can be determined quickly over a broad energy range. Though the analysis is performed using ions rather than the gamma-rays whose detection is the ultimate aim of the materials investigated, we have found useful correlations between the ion and gamma responses of the materials we have investigated (CaF2:Eu, YAP:Ce, BGO, CsI:Tl, and plastic scintillator). The technique appears to be able to rapidly determine whether a scintillator material has promise for further development.

  1. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  2. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  3. Stability properties and fast ion confinement of hybrid tokamak plasma configurations

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.

    2015-11-01

    In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.

  4. Effect of pulsed ion irradiation on the electronic structure of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bolotov, V. V.; Korusenko, P. M.; Nesov, S. N.; Povoroznyuk, S. N.

    2014-04-01

    The effect of pulsed ion irradiation and vacuum annealing on the ratio of sp 2- and sp 3-hybridized orbitals of carbon atoms in the layers of oriented multi-walled carbon nanotubes has been studied by analyzing the photoemission spectra of the C1 s core level and the valence band of carbon, which were obtained using the equipment of the BESSY II Russian-German beamline of synchrotron radiation and a Riber analytical system. It has been shown that the ion irradiation leads to a significant decrease in the fraction of atoms with the sp 3 hybridization of electrons. On the contrary, the annealing reduces the fraction of the sp 3-component in the spectra of carbon. Typical features of the valence band of multi-walled carbon nanotubes in the annealed and irradiated states have been established.

  5. Nitrogen removal from plasma-facing components by ion cyclotron wall conditioning in TEXTOR

    NASA Astrophysics Data System (ADS)

    Carrasco, A. G.; Wauters, T.; Petersson, P.; Drenik, A.; Rubel, M.; Crombé, K.; Douai, D.; Fortuna, E.; Kogut, D.; Kreter, A.; Lyssoivan, A.; Möller, S.; Pisarek, M.; Vervier, M.

    2015-08-01

    The efficiency of ion cyclotron wall conditioning (ICWC) in the removal of nitrogen from plasma-facing components in TEXTOR was assessed. In two experiments the wall was loaded with nitrogen and subsequently cleaned by ICWC in deuterium and helium. The retention and removal of nitrogen was studied in-situ by means of mass spectrometry, and ex-situ by surface analysis of a set of graphite, tungsten and TZM plates installed on test limiter systems. 15N rare isotope was used as a marker. The results from the gas balance showed that about 25% of the retained nitrogen was removed after ICWC cleaning, whereas surface analysis of the plates based on ToF-HIERDA showed an increase of the deposited species after the cleaning. This indicates that during ICWC operation on carbon devices, nitrogen is not only pumped out but also transported to other locations on the wall. Additionally, deuterium surface content was studied before and after ICWC cleaning.

  6. Nonlinear effects in desorption of valine with fast incident molecular ions

    SciTech Connect

    Salehpour, M.; Fishel, D.L.; Hunt, J.E.

    1988-12-15

    Fast molecular ions as primary particles have been used to study secondary-ion desorption from organic layers. The secondary molecular-ion yield of the amino acid valine (molecular weight, 117) has been measured as a function of the velocity of primary atomic and molecular incident ions. The primary ions used were C/sup +/, O/sup +/, Ar/sup +/, C/sub 2//sup +/, O/sub 2//sup +/ , CO/sup +/, CO/sub 2//sup +/, CH/sup +/, CH/sub 3//sup +/, CF/sup +/, CF/sub 3//sup +/, C/sub 3/F/sub 5//sup +/, and C/sub 4/F/sub 7//sup +/ in the energy range 600 keV--3.7 MeV. The secondary molecular-ion yields, when compared to yields for atomic constituents, unambiguously show that collective effects exist in desorption with incident molecular ions. Results are discussed in the framework of enhancement in the electronic stopping power per atom for molecular ions due to the vicinage of the fast-moving charges in the material. The resulting high-yield enhancements, especially with the use of large incident ions such as C/sub 3/F/sub 5//sup +/ and C/sub 4/F/sub 7//sup +/, are very encouraging for the future of mass spectrometry of large organic molecules.

  7. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  8. Comparison of fast ion confinement during on-axis and off-axis neutral beam experiments on NSTX-U

    NASA Astrophysics Data System (ADS)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.; Medley, S. S.

    2015-11-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good fast ion confinement is essential to achieve the anticipated improvements in performance. In a planed ``sanity check'' experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses with different source mixes will be injected into quiescent L-mode plasmas to characterize the fast ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the fast ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The newly installed Solid State Neutral Particle Analyzer (SSNPA) and Fast-Ion D-Alapha (FIDA) diagnostics will be described and will be used to measure fast ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Fast ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental techniques, measurements of fast ion confinement time and distribution function, and comparisons with classical predictions from NUBEAM modeling will be presented in detail. Work supported by US DOE.

  9. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  10. Precision Fast Ion Beam Laser Spectroscopy of Ar{sup +}

    SciTech Connect

    Lioubimov, V.; Kolomenskii, A. A.; Schuessler, H. A.; Wada, M.; Nakamura, T.; Schury, P.; Ogawa, M.; Takamine, A.; Yamazaki, Y.; Iimura, H.; Okada, K.

    2009-03-17

    Absolute measurements of spectral lines of Ar{sup +} ions using collinear and anticollinear geometries were performed. To provide a precise reference for the laser wavelength, iodine saturation spectroscopy was applied. The precision of this reference is effected by observing the beat node between the spectroscopy laser and the corresponding mode of a femtosecond laser frequency comb. Laser-induced fluorescence allowed to perform precision frequency measurements of an Ar{sup +} transition in collinear and anticollinear geometries simultaneously; then an exact relativistic formula for the absolute transition frequency V{sub 0} = {radical}(V{sub c}V{sub a}) was used. In this geometry the influence of ion source instabilities due to pressure and anode voltage fluctuations was minimized. The result is v{sub 0} = 485,573,619.7(3) MHz, which corresponds to {delta}v/v = 6*10{sup -10}. This represents an improvement of two orders of magnitude over the previous NIST published value.

  11. Precision Fast Ion Beam Laser Spectroscopy of Ar+

    NASA Astrophysics Data System (ADS)

    Lioubimov, V.; Wada, M.; Ogawa, M.; Takamine, A.; Nakamura, T.; Schury, P.; Iimura, H.; Okada, K.; Kolomenskii, A. A.; Schuessler, H. A.; Yamazaki, Y.

    2009-03-01

    Absolute measurements of spectral lines of Ar+ ions using collinear and anticollinear geometries were performed. To provide a precise reference for the laser wavelength, iodine saturation spectroscopy was applied. The precision of this reference is effected by observing the beat node between the spectroscopy laser and the corresponding mode of a femtosecond laser frequency comb. Laser-induced fluorescence allowed to perform precision frequency measurements of an Ar+ transition in collinear and anticollinear geometries simultaneously; then an exact relativistic formula for the absolute transition frequency V0= √VcVa was used. In this geometry the influence of ion source instabilities due to pressure and anode voltage fluctuations was minimized. The result is v0 = 485,573,619.7(3) MHz, which corresponds to Δv/v = 6*10-10. This represents an improvement of two orders of magnitude over the previous NIST published value.

  12. Use of Fast Ion D-Alpha diagnostics for understanding ICRF effects

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Liu, D.; Luo, Y.; Ruskov, E.; Bell, R. E.; Fredrickson, E. D.; Hosea, J. C.; Medley, S. S.; Burrell, K. H.; Choi, M.; Pinsker, R. I.; Harvey, R. W.

    2009-11-26

    Combined neutral beam injection and fast wave heating at cyclotron harmonics accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX) and in the DIII-D tokamak. Acceleration above the injected energy is evident in fast-ion D-alpha (FIDA) and volume-average neutron data. The FIDA diagnostic measures spatial profiles of the accelerated fast ions. In DIII-D, the acceleration is at a 4th or 5th cyclotron harmonic; the maximum enhancement in the high-energy FIDA signal is 8-10 cm beyond the resonance layer. In NSTX, acceleration is observed at five harmonics (7-11) simultaneously; overall, the profile of accelerated fast ions is much broader than in DIII-D. The energy distribution predicted by the CQL3D Fokker-Planck code agrees fairly well with measurements in DIII-D. However, the predicted profiles differ from experiment, presumably because the current version of CQL3D uses a zero-banana-width model.

  13. Fast ion measurement using a hybrid directional probe in the large helical device

    SciTech Connect

    Nagaoka, Kenichi; Watanabe, Kiyomasa Y.; Osakabe, Masaki; Takeiri, Yasuhiko; Minami, Takashi; Toi, Kazuo; Isobe, Mitsutaka; Nishiura, Masaki; Ito, Takafumi; Ogawa, Kunihiro

    2008-10-15

    A hybrid directional probe was newly installed in the large helical device for fast ion measurement. The collector of the probe mounts a thermocouple to estimate local power flux and can be also utilized as a collector of a conventional Langmuir probe; therefore, the hybrid directional probe can simultaneously measure both local power density flux and current flux at the same collector surface. The concept and design of the hybrid directional probe, the calibration of the power density measurement, and preliminary result of the fast ion measurement are presented.

  14. Power deposition by neutral beam injected fast ions in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-08-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision.

  15. Prediction of engine performance and wall erosion due to film cooling for the 'fast track' ablative thrust chamber

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.

    1994-01-01

    Efforts have been made at the Propulsion Laboratory (MSFC) to design and develop new liquid rocket engines for small-class launch vehicles. Emphasis of the efforts is to reduce the engine development time with the use of conventional designs while meeting engine reliability criteria. Consequently, the engine cost should be reduced. A demonstrative ablative thrust chamber, called 'fast-track', has been built. To support the design of the 'fast-track' thrust chamber, predictions of the wall temperature and ablation erosion rate of the 'fast-track' thrust chamber have been performed using the computational fluid dynamics program REFLEQS (Reactive Flow Equation Solver). The analysis is intended to assess the amount of fuel to be used for film cooling so that the erosion rate of the chamber ablation does not exceed its allowable limit. In addition, the thrust chamber performance loss due to an increase of the film cooling is examined.

  16. Responses of different ion species to fast plasma flows and local dipolarization in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nosé, M.; Miyashita, Y.; Lui, A. T. Y.

    2015-01-01

    investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with steeper Vx dependence for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows, the ion energy density initially increases, then it decreases to below the preceding levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background Bz, X distance, and Vx; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport in the presence of the earthward gradient of the background O+-to-H+ ratio. Results (2) and (4) suggest that ion energization at local dipolarization is not mass dependent in the energy range of our interest because the ions are not magnetized irrespective of species. Result (3) can be attributed to the thinning of the plasma sheet and the preferable field-aligned escape of the H+ ions on the tailward side of the reconnection site. Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  17. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  18. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  19. Charge state and stopping dynamics of fast heavy ions in dense matter

    SciTech Connect

    Rosmej, O. N.; Blazevic, A.; Korostiy, S.; Bock, R.; Hoffmann, D. H. H.; Pikuz, S. A. Jr.; Efremov, V. P.; Fortov, V. E.; Fertman, A.; Mutin, T.; Pikuz, T. A.; Faenov, A. Ya.

    2005-11-15

    K-shell radiation of fast heavy ions penetrating solid matter was used to analyze the stopping dynamics of ions over more than 80% of the stopping path. The most important advantage of this method is that the data is obtained with a high spatial resolution directly from the interaction volume. In experiments 11.4 MeV/u Ca projectile were slowed down in solid quartz and low-density SiO{sub 2} aerogel targets. Characteristic projectile and target spectra in the photon energy range of 1.5-4 keV were registered by means of spherically bent crystal spectrometers with high spectral and spatial resolution in the direction of the ion beam propagation. K-shell spectra of heavy ions induced by close collisions with target atoms provided information about the projectile charge state and velocity dynamics. The line intensity distribution of the K-shell transitions arising from ions with different ion charges represents the charge state distribution along the ion beam track. The variation of the line Doppler shift due to the ion deceleration in the target material was used to determine the ion velocity dynamics. The spectroscopic analysis of the stopping process was complemented by measurements of the energy loss and ion charge state distribution after the ion beam emerged from the target using a standard time-of-flight method and magnet spectrometer.

  20. Investigation of interaction between fast ions and tearing modes in MST plasmas using full orbit tracing

    NASA Astrophysics Data System (ADS)

    Kim, Jungha; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Sears, Stephanie; Tsidulko, Yuri

    2015-11-01

    Under proper conditions, global reconnection events generate an anisotropic runaway ion distribution in MST plasmas. Full orbit tracing with time-dependent fluctuating fields, calculated by the nonlinear resistive MHD code DEBS, is used to inform a refined model of ion heating to explain this phenomenon, where tearing modes and ions interact on two distinct scales. There is anisotropic heating of thermal ions (T⊥>T∥), likely through a stochastic heating mechanism that requires high diffusivity and a tearing mode induced radial electric field with correlation length of a few cm. This process does not, however, continuously energize ions into the runaway regime. At sufficient energy, the ion guiding center deviates from the background magnetic field, which reduces the effective diffusivity to classical levels even in a stochastic magnetic field. These ``fast'' ions are accelerated by a parallel electric field (length scale of meters) induced by the equilibrium change accompanying tearing modes. This process relies on multiple global tearing modes; here we focus on a single tearing mode. This is compared to an experimental state where a transition to a single, dominant tearing mode is observed to accelerate fast ions and alter their confinement properties. Work supported by US DOE.

  1. Absorption of Fast Waves at Moderate to High Ion Cyclotron Harmonics on DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Prater, R.; Choi, M.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Baity, F.W.; Murakami, M.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Van Zeeland, M.A.

    2005-09-26

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from fourth to eighth is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on Maxwellian ion species is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the eighth harmonic if the fast ion beta and the background plasma density are both high enough. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. Possible explanations of the discrepancy are discussed.

  2. The Cusp Ion Outflow up to 6 Re: Statistical Study on Polar and FAST Conjunction Events

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; McFadden, J. P.; Mozer, F.; Russell, C. T.

    2015-12-01

    We examine Polar and FAST conjunction events along the cusp magnetic flux tubes to study the energization process of ion outflows in the mid- and low-altitude cusp, after these ions leave the upper ionosphere. FAST provides information on the boundary conditions at low-altitudes (~1.6 Re geocentric distance). Polar traverses cusp flux tubes at radial distances of 2 to 9 Re, providing good coverage of the low- and mid-altitude cusp. We compare the wave Poynting flux in the 1 mHz to 1 Hz range and the kinetic energy fluxes of the electrons and ions. The comparisons of these quantities between Polar and FAST determine the energy gain of the particles, especially the ion outflows between the two spacecraft. The Poynting flux is binned into major frequency bands, because it is important to understand the frequency spectrum of the wave energy, and which frequency bands energize the ions. Based on the conjunction events, altitude profiles of various quantities can be obtained. These altitude profiles will reveal the energy conversion between wave and particle in the low- and mid-altitude cusp. Determining the altitude where the most intense energy conversion occurs and what wave frequency bands provide the energy are important to explaining the physics of the heating and acceleration of the ion outflows.

  3. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport

    NASA Astrophysics Data System (ADS)

    Collins, C. S.; Heidbrink, W. W.; Austin, M. E.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; White, R. B.; Zhu, Y. B.

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion D α spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  4. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices. PMID:26991180

  5. On the origin of microcraters on the surface of ion beam bombardedplant cell walls

    SciTech Connect

    Salvadori, M.C.; Teixeira, F.S.; Brown, I.G.

    2005-06-01

    Ion bombardment of plant and bacterial cellular material has recently been used as a tool for the transfer of exogenous DNA macromolecules into the cell interior region. The precise mechanism that leads to the transfer of macromolecules through the cell envelope is not yet clear, however it has been observed that the ion bombardment is accompanied by the formation of ''microcraters'' on the cell wall, and it is possible that these features provide channels for the macromolecule transfer. Thus the nature and origin of the microcraters is of importance to understanding the DNA transfer phenomenon as well as being of fundamental interest. We report here on some scanning electron microscope observations we have made of onion skin cells that have been subjected to electron beam bombardment of sufficiently high power density to damage the cell wall. The damage seen is much less than and different from the microcraters formed subsequent to ion bombardment. We speculate that the microcraters may originate from the explosive release of gas generated in the biomaterial by ion bombardment.

  6. Energy losses of fast heavy multiply charged structural ions in collisions with complex atoms

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Sidorov, D. B.

    2007-07-01

    A nonperturbatve theory of energy losses of fast heavy multiply charged structural ions in collisions with neutral complex atoms is elaborated with allowance for simultaneous excitations of ionic and atomic electron shells. Formulas for the effective deceleration that are similar to the well-known Bethe-Bloch formulas are derived. By way of example, the energy lost by partially stripped U q+ ions (10 ≤ q ≤ 70) colliding with argon atoms and also the energy lost by Au, Pb, and Bi ions colliding with various targets are calculated. The results of calculation are compared with experimental data.

  7. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  8. Preface: Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON)

    NASA Astrophysics Data System (ADS)

    Kövér, László

    2016-02-01

    This Special Issue contains selected papers of contributions presented in the International Workshop on Photon and fast Ion induced Processes in Atoms, MOlecules and Nanostructures (PIPAMON), held between March 24 and 26, 2015 in Debrecen, Hungary. The venue, the Aquaticum Thermal and Wellness Hotel provided a pleasant "all-under-one-roof" environment for the event.

  9. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  10. Modeling the longitudinal wall impedance instability in heavy ion beams using an R-Z PIC code

    SciTech Connect

    Callahan, D.A.; Langdon, A.B.; Friedman, A.; Grote, D.P. ); Haber, I. )

    1991-02-22

    The effects of the longitudinal wall impedance instability in a heavy ion beam are of great interest for heavy ion fusion drivers. We are studying this instability using the R-Z thread of the WARP PIC code. We describe the code and our model of the impedance due to the accelerating modules of the induction LINAC as a resistive wall. We present computer simulations which illustrate this instability. 2 refs., 2 figs., 1 tab.

  11. Single electron capture in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  12. Radial Transport Characteristics of Fast Ions Due to Energetic-Particle Modes inside the Last Closed-Flux Surface in the Compact Helical System

    SciTech Connect

    Nagaoka, Kenichi; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Fujisawa, Akihide; Ohshima, Shunsuke; Nakano, Haruhisa; Osakabe, Masaki; Todo, Yasushi; Akiyama, Tsuyoshi; Suzuki, Chihiro; Nishimura, Shin; Yoshimura, Yasuo; Matsuoka, Keisuke; Okamura, Shoichi; Nagashima, Yoshihiko

    2008-02-15

    The internal behavior of fast ions interacting with magnetohydrodynamic bursts excited by energetic ions has been experimentally investigated in the compact helical system. The resonant convective oscillation of fast ions was identified inside the last closed-flux surface during an energetic-particle mode (EPM) burst. The phase difference between the fast-ion oscillation and the EPM, indicating the coupling strength between them, remains a certain value during the EPM burst and drives an anomalous transport of fast ions.

  13. Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    SciTech Connect

    Van Zeeland, M; Heidbrink, W; Nazikian, R; Austin, M; Berk, H; Gorelenkov, N; Holcomb, C; Kramer, G; Lohr, J; Luo, Y; Makowski, M; McKee, G; Petty, C; Prater, R; Solomon, W; White, R

    2008-10-14

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

  14. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2015-09-15

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  15. Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Zmitrenko, N. V.; Il'in, D. V.; Sherman, V. E.

    2015-09-01

    The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

  16. Fast acceleration of ions at quasi-perpendicular shocks

    SciTech Connect

    Balogh, A. ); Erdos, G. )

    1991-09-01

    Acceleration of low-energy protons by quasi-perpendicular shocks is investigated. The pitch angle distribution of ions in the energy range 35 keV to 1 MeV has been determined across the interplanetary shock that passed through the ISEE 3 spacecraft on November 30, 1979. Upstream of the shock a bidirectional angular distribution was observed. It is suggested that multiple crossings of the field line with the surface of the shock, forming a magnetic bottle, may account for such an unusual angular distribution. The shock event was modeled by integrating particle trajectories numerically. Qualitative agreement between observations and simulations supports the idea of magnetic bottle field line formation. A detailed numerical study of particle acceleration has shown that in the bottle topology the particle flux is enhanced close to the shock front, contrary to the original scatter-free model, i.e., assuming homogeneous magnetic fields on both sides of the shock. It is suggested that multiple crossings of the field line with the shock may explain shock spike events.

  17. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented. PMID:25430314

  18. Mode conversion and absorption of fast waves at high ion cyclotron harmonics in inhomogeneous magnetic fields

    SciTech Connect

    Cho, Suwon; Kwak, Jong-Gu

    2014-04-15

    The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where λ{sub i}=k{sub ⊥}{sup 2}ρ{sub i}{sup 2}/2≳1 (where k{sub ⊥} is the perpendicular wave number and ρ{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.

  19. Current fast ion collective Thomson scattering diagnostics at TEXTOR and ASDEX Upgrade, and ITER plans (invited)

    SciTech Connect

    Korsholm, S. B.; Bindslev, H.; Meo, F.; Leipold, F.; Michelsen, P. K.; Michelsen, S.; Nielsen, S. K.; Tsakadze, E. L.; Woskov, P.; Westerhof, E.; Oosterbeek, J. W.; Hoekzema, J.; Leuterer, F.; Wagner, D

    2006-10-15

    Fast ion physics will play an important role on ITER where confined alpha particles will affect plasma dynamics and overall confinement. Fast ion collective Thomson scattering (CTS) using gyrotrons has the potential to meet the need for measuring the spatially localized velocity distributions of confined fast ions in ITER. Currently, CTS experiments are performed at TEXTOR using a 150 kW, 0.2 s, 110 GHz gyrotron and a receiver upgraded at the Risoe National Laboratory. The gyrotron and receiver optics have also been upgraded for rapid scanning during a plasma shot. The receiver consists of a nine-mirror quasioptical transmission line including a universal polarizer and a 42-channel data acquisition system, which allows complete coverage of the double sideband scattered spectrum for localized ({approx}10 cm) time resolved (4 ms) measurements of the ion velocity distribution. At ASDEX Upgrade (AUG) a similar 50-channel CTS receiver has been installed. This CTS system will use the 105 GHz frequency of a dual frequency gyrotron. The gyrotron is presently being commissioned. CTS campaigns are scheduled for the summer of 2006 with a probe power of up to 1 MW for 10 s. This report presents the alignment of the quasioptical transmission line, calibration, and gyrotron tuning of the TEXTOR and AUG CTS systems. We will also review the progress on the design of the proposed fast ion CTS diagnostic for ITER. It is envisaged that scattered radiation from two 60 GHz probe beams launched from the low field side midplane port will be received by two arrays of receivers located on the low and high field sides of the plasma. This geometry will allow the ion velocity distribution near perpendicular and near parallel to the magnetic field to be measured in ten or more spatial locations covering the full plasma cross section. The temporal resolution can be significantly better than the required 100 ms.

  20. Finite ion Larmor radius effects and wall effects on m = 1 instabilities

    SciTech Connect

    Cayton, T.E.

    1980-12-01

    A set of fluid-like equations that simultaneously includes effects due to geometry and finite ion gyroradii is used to examine the stability of a straight, radially diffuse screw pinch in the regime where the poloidal magnetic field is very small compared with the axial magnetic field. It is shown that this pinch may be rendered completely stable through a combination of finite Larmor radius effects and wall effects. Many of the m = 1 modes of the diffuse pinch can be stabilized by finite ion Larmor radius effects, just as all flute modes can be stabilized. Because of the special nature of the m = 1 eigenfunctions, finite ion gyroradius effects are negligible for the kink modes of very large wavelength. This special nature of the eigenfunctions, however, makes these modes good candidates for wall stabilization. The finite Larmor radius stabilization of m = 1 modes of a diffuse pinch is contrary to the conventional wisdom that has evolved from studies of sharp-boundary, skin-current models of the pinch.

  1. Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Giroud, C.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Moulton, D.; O'Mullane, M.; Stamp, M.

    2015-08-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the ‘Free-Streaming’ kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.

  2. Benchmark and combined velocity-space tomography of fast-ion D-alpha spectroscopy and collective Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, A. S.; Salewski, M.; Geiger, B.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Weiland, M.; the ASDEX Upgrade Team

    2016-04-01

    We demonstrate the combination of fast-ion D-alpha spectroscopy (FIDA) and collective Thomson scattering (CTS) measurements to determine a common best estimate of the fast-ion velocity distribution function by velocity-space tomography. We further demonstrate a benchmark of FIDA tomography and CTS measurements without using a numerical simulation as common reference. Combined velocity-space tomographies from FIDA and CTS measurements confirm that sawtooth crashes reduce the fast-ion phase-space densities in the plasma center and affect ions with pitches close to one more strongly than those with pitches close to zero.

  3. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  4. A comparative study of argon ion irradiated pristine and fluorinated single-wall carbon nanotubes

    SciTech Connect

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Vyalikh, D. V.; Fonseca, A.

    2010-12-14

    Effect of Ar{sup +} ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.

  5. Kinetics of reactive ion etching upon single-walled carbon nanotubes

    SciTech Connect

    Kato, Toshiaki; Hatakeyama, Rikizo

    2008-01-21

    The remarkable etching reaction of single-walled carbon nanotubes (SWNTs) has been observed in their growth of the parameter-controlled plasma chemical vapor deposition (CVD). The time evolution study of the SWNTs growth leads to establishing a growth equation which can completely express the growth kinetics of SWNTs in the plasma CVD. The growth equation is found to reveal that there are several key parameters which directly affect the etching reaction of SWNTs. Furthermore, such kinetics of the SWNT etching in plasmas can perfectly be explained with a reactive ion etching model.

  6. ICF APPLICATIONS OF FAST IONS GENERATED BY FOCUSING SHORT LASER PULSES ON ULTRA-THIN CAUSALLY ISOLATED TARGETS

    SciTech Connect

    Strangio, C.; Caruso, A.

    2009-07-26

    MeV low-Z ions are expected to find application in starting ignition in high gain ICF targets. Quite stringent conditions in terms of power density and total energy are required to start fast ignition in a pre-compressed fuel by light-ion beams, this setting corresponding constraints on the design of adequate sources. In this paper are reported studies performed at ENEA (theory and experiments) on an ion source possibly suitable for fast ignition or entropy injection.

  7. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    SciTech Connect

    T.M. Biewer; R.E. Bell; S.J. Diem; C.K. Phillips; J.R. Wilson; P.M. Ryan

    2004-12-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma.

  8. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  9. Modification of Sawteeth Periods By Trapped Fast Ions in DIII-D

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Turnbull, A. D.

    2006-10-01

    The main auxiliary heating methods for ITER are neutral beam and ion cyclotron wave heating. Sawtooth physics is very important in optimizing the heating efficiency for ITER. This requires understanding of the interaction between fast ions and fast Alfvén wave (FW) on MHD stability. Experimentally, the DIII-D discharges have demonstrated strong acceleration of deuterium beam ions above the injected beam energy from measurements of enhanced neutron emissions during FW heating. Theory predicts that high pressure from fast ions in the center of plasma may act as a stabilizing kinetic effect on ideal internal kink mode. However, the DIII-D experimental results showed that sawteeth characteristics strongly depend on a combination of plasma and wave conditions. We apply a Monte-Carlo orbit code (ORBIT-RF) and ideal MHD code (GATO) to model existing DIII-D experiments and explore the triggering and stabilization mechanisms for sawteeth. The analytical model by Bussac and Porcelli will be compared with NOVA-K calculations.

  10. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect

    Shurygin, R. V. Morozov, D. Kh.

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of

  11. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  12. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Vishalli; Raina, K. K.; Avasthi, D. K.; Srivastava, Alok; Dharamvir, Keya

    2016-04-01

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir-Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (Se) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV-Vis-NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  13. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.; Avasthi, D. K.; Jeet, Kiran

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  14. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes.

    PubMed

    Ishii, Yosuke; Tashiro, Kosuke; Hosoe, Kento; Al-Zubaidi, Ayar; Kawasaki, Shinji

    2016-04-21

    We investigated the electrochemical lithium-ion storage properties of 9,10-anthraquinone (AQ) and 9,10-phenanthrenequinone (PhQ) molecules encapsulated in the inner hollow core of single-walled carbon nanotubes (SWCNTs). The structural properties of the obtained encapsulated systems were characterized by electron microscopy, synchrotron powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. We found that almost all quinone molecules encapsulated in the SWCNTs can store Li-ions reversibly. Interestingly, the undesired capacity fading, which comes from the dissolution of quinone molecules into the electrolyte, was suppressed by the encapsulation. It was also found that the overpotential of AQ was decreased by the encapsulation, probably due to the high-electric conductivity of SWCNTs. PMID:27030581

  15. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  16. Mobile ion distribution and anharmonic thermal motion in fast ion conducting Cu/sub 2/S

    SciTech Connect

    Cava, R.J.; Reidinger, F.; Wuensch, B.J.

    1981-01-01

    A unique model was determined for the mobile copper ion disorder in hexagonal Cu/sub 2/S between 120/sup 0/ and 325/sup 0/C via single crystal neutron diffraction. The copper ions partially occupy two sets of three-coordinated sites within the HCP sulfur array and display anharmonic thermal motion. The results suggest that the conductivity is two dimensional in nature.

  17. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Jacobsen, A. S.; Stagner, L.; Salewski, M.; Geiger, B.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Thomsen, H.; Weiland, M.; the ASDEX Upgrade Team

    2016-04-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth- and first-order Tikhonov regularization. The inversion methods are applied to fast-ion {{\\text{D}}α} measurements taken just before and just after a sawtooth crash in the ASDEX Upgrade tokamak as well as to synthetic measurements from different test distributions. We find that the methods regularizing by penalizing steep gradients or maximizing entropy perform best. We assess the uncertainty of the calculated inversions taking into account photon noise, uncertainties in the forward model as well as uncertainties introduced by the regularization which allows us to distinguish regions of high and low confidence in the tomographies. In high confidence regions, all methods agree that ions with pitch values close to zero, as well as ions with large pitch values, are ejected from the plasma center by the sawtooth crash, and that this ejection depletes the ion population with large pitch values more strongly.

  18. Measurements of Fast-Ion Transport by Resonant Interaction at a Sawtooth Crash

    NASA Astrophysics Data System (ADS)

    Muscatello, C. M.; Heidbrink, W. W.

    2011-10-01

    Tokamak sawteeth consist of a reorganization of the plasma magnetic field and various plasma parameters. Observations indicate that distributions of superthermal ions can also be affected at the crash event. The bulk of energetic ions experiencing redistribution have passing orbits and low to moderate energies (<=100 keV) where transport due to flux-attachment is valid. Sawtooth experiments at DIII-D employing the fast-ion deuterium-alpha (FIDA) diagnostic suite indicate that even high-energy ions (>100 keV) can experience appreciable redistribution. The transport mechanism, in this case, is different; a class of trapped particles with near zero toroidal precession velocity and narrow orbit width can satisfy the nonlinear wave-particle resonance condition. Trapped within the magnetic well of the helical perturbation, the particle transforms to a ``superbanana'' orbit through the resonant interaction. The effect manifests as a plateau in the trapped fast-ion profile at the resonance layer. Work supported by the US DOE under SC-G903402 and DE-FC02-04ER54698.

  19. On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.

    2015-03-01

    We report on a very efficient ion-cyclotron-resonance-frequency (ICRF) absorption scheme (Z)-Y-X, which hinges on the presence of three ion species residing in the plasma. A mode conversion (cutoff-resonance) layer is well known to appear in two-ion species plasmas. If the location of the L-cutoff in Y-X plasmas, which can be controlled by varying the Y : X density ratio, almost coincides with the fundamental cyclotron resonance of the third ion species Z (resonant absorber), the latter—albeit present only in trace quantities—is shown to absorb almost all the incoming RF power. A quantitative criterion for the resonant Y : X plasma composition is derived and a few numerical examples are given. Since the absorbed power per resonant particle is much larger than for any other ICRF scheme, the here discussed scenarios are particularly promising for fast particle generation. Their possible application as a source of high-energy ions for the stellarator W7-X and to mimic alpha particles during the non-activated phase of ITER tokamak is briefly discussed.

  20. Fast multigrid fluorescent ion chamber with 0.1 ms time response.

    PubMed

    Suzuki, Motohiro; Kawamura, Naomi; Lytle, Farrel W; Ishikawa, Tetsuya

    2002-03-01

    A fast multigrid ion chamber for the detection of fluorescent X-rays has been developed. The structure of 17 grids with close separation was employed to maximize the time response as well as to give sufficient detection efficiency. The measured rise/fall response time to cyclic X-rays was shorter than that of an existing three-grid ion chamber by more than one order of magnitude. A 0.13 ms time response was obtained at the 500 V applied voltage, where the detector can stably operate without any discharge. The available frequency range is as high as 1 kHz with a practical amplitude response. PMID:11872931

  1. Demonstration of Effective Control of Fast-Ion-Stabilized Sawteeth by Electron-Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Lennholm, M.; Eriksson, L.-G.; Turco, F.; Bouquey, F.; Darbos, C.; Dumont, R.; Giruzzi, G.; Jung, M.; Lambert, R.; Magne, R.; Molina, D.; Moreau, P.; Rimini, F.; Segui, J.-L.; Song, S.; Traisnel, E.

    2009-03-01

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies ≥0.5MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  2. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  3. Sawtooth-induced Fast-ion Transport in the DIII-D Tokamak: Observations and Comparison to Theory

    NASA Astrophysics Data System (ADS)

    Muscatello, C. M.; Heidbrink, W. W.; Pace, D. C.; Zhu, Y. B.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; Yakovenko, Yu. V.; van Zeeland, M. A.; Fisher, R. K.; Tobias, B. J.

    2010-11-01

    Tokamak sawteeth consist of a reorganization of the plasma magnetic field and various plasma parameters. The extent to which the fast-ion distribution function F(x,v) is influenced can depend on the ions' distribution of pitch and energy as well as the nature of the crash. Recent sawtooth experiments at DIII-D employed the newly extended fast-ion deuterium-alpha (FIDA) diagnostic, 2D FIDA imaging, and the newly commissioned fast-ion loss detector. Consistent with theoretical predictions, the FIDA diagnostic indicates that passing particles are more strongly affected by a sawtooth crash than the trapped population. Furthermore, FIDA imaging reports a depletion of up to 50% of the central fast-ion density. Extensive experimental data provide a rigorous test bed of theoretical models.

  4. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Gorini, G.; Jacobsen, A. S.; Kiptily, V. G.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2016-04-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magnetized fusion plasmas. The weight functions suggest that GRS resolves the energies of fast ions directly without the need for tomographic inversion for selected one-step reactions at moderate plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy resolution. We illustrate our general formalism using reactions with and without intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

  5. Fast ion surface energy loss and straggling in the surface wake fields.

    PubMed

    Nandi, T; Haris, K; Hala; Singh, Gurjeet; Kumar, Pankaj; Kumar, Rajesh; Saini, S K; Khan, S A; Jhingan, Akhil; Verma, P; Tauheed, A; Mehta, D; Berry, H G

    2013-04-19

    We have measured the stopping powers and straggling of fast, highly ionized atoms passing through thin bilayer targets made up of metals and insulators. We were surprised to find that the energy losses as well as the straggling depend on the ordering of the target and have small but significantly different values on bilayer reversal. We ascribe this newly found difference in energy loss to the surface energy loss field effect due to the differing surface wake fields as the beam exits the target in the two cases. This finding is validated with experiments using several different projectiles, velocities, and bilayer targets. Both partners of the diatomic molecular ions also display similar results. A comparison of the energy loss results with those of previous theoretical predictions for the surface wake potential for fast ions in solids supports the existence of a self-wake. PMID:23821777

  6. Studies of the fast ion energy spectra in TJ-II

    NASA Astrophysics Data System (ADS)

    Bustos, A.; Fontdecaba, J. M.; Castejón, F.; Velasco, J. L.; Tereshchenko, M.; Arévalo, J.

    2013-02-01

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E ∈(1-45) keV.

  7. Studies of the fast ion energy spectra in TJ-II

    SciTech Connect

    Bustos, A.; Fontdecaba, J. M.; Arevalo, J.; Castejon, F.; Velasco, J. L.; Tereshchenko, M.

    2013-02-15

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E Element-Of (1-45) keV.

  8. FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model

    NASA Astrophysics Data System (ADS)

    Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert

    2010-12-01

    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.

  9. Simple fast noninvasive technique for measuring brachial wall mechanics during flow mediated vasodilatation analysis

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Stapleton, Phoebe A.; Frisbee, Jefferson C.; D'Audiffret, Alexandre; Mukdadi, Osama M.

    2009-02-01

    Measurement of flow-mediated vasodilatation (FMD) in brachial and other conduit arteries has become a common method to asses the status of endothelial function in vivo. In spite of the direct relationship between the arterial wall multi-component strains and FMD responses, direct measurement of wall strain tensor due to FMD has not yet been reported in the literature. In this work, a noninvasive direct ultrasound-based strain tensor measuring (STM) technique is presented to assess changes in the mechanical parameters of the vascular wall during FMD. The STM technique utilizes only sequences of B-mode ultrasound images, and starts with segmenting a region of interest within the artery and providing the acquisition parameters. Then a block matching technique is employed to measure the frame to frame local velocities. Displacements, diameter change, multi-component strain tensor and strain rates are then calculated by integrating or differentiating velocity components. The accuracy of the STM algorithm was assessed using a phantom study, and was further validated using in vivo data from human subjects. Results indicate the validity and versatility of the STM algorithm, and describe how parameters other than the diameter change are sensitive to pre- and post-occlusion, which can then be used for accurate assessment of atherosclerosis.

  10. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    SciTech Connect

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  11. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    SciTech Connect

    Burn, D. M. Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  12. Experimental investigations of helium ion implantation in the first wall of JET

    NASA Astrophysics Data System (ADS)

    Zhu, J.; McCracken, G. M.; Coad, J. P.

    1991-07-01

    3.5 MeV alpha particles will be produced in fusion reactors. Although they will be slowed down in the plasma, they will still retain some energy upon diffusing out to the wall and therefore will be expected to become implanted there. We have developed a technique for measuring the depth distribution of helium implanted in metals. The technique has been applied to the analysis of Ni and inconel samples exposed in the JET tokamak for ˜ 5000 discharges during 1987-1988 with ion cyclotron resonance heating (ICRH). Significant quantities of 3He and 4He atoms have been detected due to the use of helium both as a plasma fuel and as a minority species for ICRH. The energy distribution of the ions heated by ICRH in the plasma is expected to be similar to that characterizing the alpha particles in a reactor. The analysis shows a broad range distribution in the samples up to at least 1.0 μm in depth. Calibration of the technique has been performed using implants of monoenergetic 3He and 4He at energies of 2-50 keV and fluences of (1-5) × 10 16 ions cm -2. The results are in quite good agreement with predictions from the TRIM code. The sensitivity of the system is such that concentrations of 5 ×10 18 atoms cm˜3 ( ˜ 50 ppm) are detectable.

  13. Chemical damage in poly(phenylene sulphide) from fast ions: Dependence on the primary-ion stopping power

    NASA Astrophysics Data System (ADS)

    Papaléo, R. M.; Hallén, A.; Sundqvist, B. U. R.; Farenzena, L.; Livi, R. P.; de Araujo, M. A.; Johnson, R. E.

    1996-02-01

    Thin poly(phenylene sulphide) foils were bombarded with fast atomic ions (4He, 12C, 16O, 32S, 79Br, 127I) in the energy range between 2.5 to 78 MeV. In order to maintain the same ion track size for all impacting ions, their initial velocity was kept constant at 1.1 cm/ns. Under these conditions the deposited energy density in a single ion track changes as a result of the varying stopping power (dE/dx) of the projectiles in the material. Fourier transform infrared spectroscopy and UV-visible spectroscopy were used to characterize the irradiated targets. Damage cross sections (σ) for different chemical bonds, such as C-S and ring C-C bonds, are extracted from the IR data. For all analyzed IR bands, the values of σ scale roughly with the square of dE/dx (energy density in a single ion track). The absorption of the irradiated samples in the visible and UV region increases as a function of fluence. The rate of increase of absorption at a particular wavelength scales also as (dE/dx)n with n~=2. The observed nonlinear dependence of the damage cross sections on the deposited energy density is considered in the light of two models: a statistical model based on the fluctuations of the energy deposited by the primary ions (hit theory) and an activation (thermal spike) model. It is found that the damage cross section is not determined directly by the initial deposited energy density distribution. The best agreement between experiment and theory is obtained when transport of the deposited energy occurs.

  14. Coherent Events and Spectral Shape at Ion Kinetic Scales in the Fast Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-06-01

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  15. Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.

    2009-05-15

    Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.

  16. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  17. Challenging the wall of fast rotating asteroids - constraining internal cohesive strength for MBAs and NEAs

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas; Binzel, Richard P.; DeMeo, Francesca E.; Aharonson, Oded; Thomas, Cristina; Lockhart, Matthew; Thirouin, Audrey; Mommert, Michael; Trilling, David; Burt, Brian

    2015-11-01

    We report an observation of a 2 km size main belt asteroid (MBA), (60716) 2000 GD65, with a lightcurve indicating a rotation period of 1.9529±0.0002 hours, i.e. challenging the ‘rubble pile spin barrier’. This adds to a handful of MBAs, recently observed by the Palomar Transient Factory (PTF) survey (Chang et al. 2014, 2015), with diameters between 0.5-1.5 km and lightcurves indicating rotation periods of 1.2-1.9 hours. These asteroids are relatively large compared to the population of small near-Earth asteroids (NEAs; D<300 m) that can reach rotation periods as fast as 15.797 seconds as is the case of NEA 2014 RC (Moskovitz and MANOS team).We apply the Holsapple (2007) model to these two distinct populations in order to constrain the cohesion within these objects and to search for monolithic asteroids. We use the lightcurve’s amplitude as indication of the triaxial shape ratio a/b, and assume b/c=1 (i.e. a>b=c). While the density is a free parameter, the given cohesion is the average of values for density ranges between 1.5 to 2.5 gr cm^-3, which are measured density values for asteroids (Carry 2012).We find that the fast rotating MBAs must have internal cohesive strength of at least ~25 to ~250 Pa in order to prevent disruption against centrifugal acceleration. Similar cohesion values have been found within lunar soils (100-1000 Pa; Mitchell et al. 1974). However, since only a few MBAs rotate so quickly, such internal cohesive strength might be rare within the population of km-size MBAs. Among NEAs, about 25% have minimal constrained cohesion values similar to those found for the fast rotating MBAs. Approximately 65% have no need for substantial cohesion values >25 Pa. Only ~10% of NEAs must have substantial internal cohesion of over 1000 Pa to prevent disruption, however none of them are rotating fast enough to require a fully monolithic body, i.e. cohesion >10 kPa.

  18. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam

    SciTech Connect

    Mills, Andrew A.; Siller, Brian M.; Porambo, Michael W.; Perera, Manori; Kreckel, Holger; McCall, Benjamin J.

    2011-12-14

    Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of {approx}2 x 10{sup -11} cm{sup -1} Hz{sup -1/2} has been used to observe several transitions of the Meinel 1-0 band of N{sub 2}{sup +} with linewidths of {approx}120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within {approx}8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.

  19. Numerical study of the plasma wall-bias effect on the ion flux through acceleration grid hole

    SciTech Connect

    Park, Seung-Hoon; Chang, C. S.

    2010-07-15

    In the extraction of ion beams from a source plasma through a grid acceleration structure, one of the key improvement issues is the fluence of the ion flux. Theoretical research has usually been focused on the structure of the grid system and the distribution of the electrostatic voltages over the grid layers. In the present work, using a self-consistent computer simulation between the plasma source, sheath potential, and the grid system, the effect of the source-wall biasing on the fluence of the ion flux through a three-grid acceleration system has been examined. It is found that a strongly positive wall-biasing can significantly enhance the ion flux by improving the shape of the plasma sheath potential meniscus at the entrance to the grid hole structure.

  20. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  1. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor.

    PubMed

    Leipold, F; Furtula, V; Salewski, M; Bindslev, H; Korsholm, S B; Meo, F; Michelsen, P K; Moseev, D; Nielsen, S K; Stejner, M

    2009-09-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic using gyrotrons operated at 60 GHz will meet the requirements for spatially and temporally resolved measurements of the velocity distributions of confined fast alphas in ITER by evaluating the scattered radiation (CTS signal). While a receiver antenna on the low field side of the tokamak, resolving near perpendicular (to the magnetic field) velocity components, has been enabled, an additional antenna on the high field side (HFS) would enable measurements of near parallel (to the magnetic field) velocity components. A compact design solution for the proposed mirror system on the HFS is presented. The HFS CTS antenna is located behind the blankets and views the plasma through the gap between two blanket modules. The viewing gap has been modified to dimensions 30x500 mm(2) to optimize the CTS signal. A 1:1 mock-up of the HFS mirror system was built. Measurements of the beam characteristics for millimeter-waves at 60 GHz used in the mock-up agree well with the modeling. PMID:19791936

  2. LSP simulations of fast ions slowing down in cool magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.

    2015-11-01

    In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.

  3. Effect of plasma response on the fast ion losses due to ELM control coils in ITER

    NASA Astrophysics Data System (ADS)

    Varje, Jari; Asunta, Otto; Cavinato, Mario; Gagliardi, Mario; Hirvijoki, Eero; Koskela, Tuomas; Kurki-Suonio, Taina; Liu, Yueqiang; Parail, Vassili; Saibene, Gabriella; Sipilä, Seppo; Snicker, Antti; Särkimäki, Konsta; Äkäslompolo, Simppa

    2016-04-01

    Mitigating edge localized modes (ELMs) with resonant magnetic perturbations (RMPs) can increase energetic particle losses and resulting wall loads, which have previously been studied in the vacuum approximation. This paper presents recent results of fusion alpha and NBI ion losses in the ITER baseline scenario modelled with the Monte Carlo orbit following code ASCOT in a realistic magnetic field including the effect of the plasma response. The response was found to reduce alpha particle losses but increase NBI losses, with up to 4.2% of the injected power being lost. Additionally, some of the load in the divertor was found to be shifted away from the target plates toward the divertor dome.

  4. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    PubMed

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents. PMID:27470942

  5. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface

    NASA Astrophysics Data System (ADS)

    Feng, Zhuoluo A.; El Gabaly, Farid; Ye, Xiaofei; Shen, Zhi-Xun; Chueh, William C.

    2014-07-01

    Electrochemical incorporation reactions are ubiquitous in energy storage and conversion devices based on mixed ionic and electronic conductors, such as lithium-ion batteries, solid-oxide fuel cells and water-splitting membranes. The two-way traffic of ions and electrons across the electrochemical interface, coupled with the bulk transport of mass and charge, has been challenging to understand. Here we report an investigation of the oxygen-ion incorporation pathway in CeO2-δ (ceria), one of the most recognized oxygen-deficient compounds, during hydrogen oxidation and water splitting. We probe the response of surface oxygen vacancies, electrons and adsorbates to the electrochemical polarization at the ceria-gas interface. We show that surface oxygen-ion transfer, mediated by oxygen vacancies, is fast. Furthermore, we infer that the electron transfer between cerium cations and hydroxyl ions is the rate-determining step. Our in operando observations reveal the precise roles of surface oxygen vacancy and electron defects in determining the rate of surface incorporation reactions.

  6. Power transfer and current generation of fast ions with large-{ital k}{sub {theta}} waves in tokamak plasmas

    SciTech Connect

    Heikkinen, J.A.; Sipilae, S.K.

    1995-10-01

    The direction and magnitude of power and momentum exchange between fast ions and electrostatic waves in slab and toroidal systems are obtained from global Monte Carlo simulations that include the quasilinear wave-induced ion diffusion both in velocity space and through a radially localized (lower hybrid) wave structure with propagation in one preferential poloidal direction in tokamaks. The model considers a full linearized collision model, finite fast ion orbits, and losses in toroidal geometry, and can properly treat the boundary effects on the particle--wave interaction in the configuration space. For an isotropic steady ion source, reduction of wave Landau damping but no wave amplification by wave localization is found for a Gaussian wave intensity distribution in radius, irrespective of the steepness of the radial gradient of the fast ion source rate. Enhanced wave-driven fast ion current, with magnitude, direction, and profile determined by the boundary conditions, net power transfer, and fast ion radial transport, is found to follow from the asymmetry in the parallel wave number spectrum created by the finite poloidal magnetic field. In the presence of intense well-penetrated waves the current carried by fusion {alpha} particles can be controlled by the choice of the poloidal wave number spectrum and the total current can greatly exceed the neoclassical bootstrap current of the {alpha} particles in a reactor. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    SciTech Connect

    Kramer, G J; Ellis, R; Gorelenkova, M; Heidbrink, W W; Kurki-Suonio, T; Nazikian, R; Salmi, A; Schaffer, M J; Shinohara, K; Snipes, J A; Spong, D A; Koskela, T

    2011-06-03

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  8. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  9. Towards a fast-running method for blast-wave mitigation by a prismatic blast wall

    NASA Astrophysics Data System (ADS)

    Éveillard, Sébastien; Lardjane, Nicolas; Vinçont, Jean-Yves; Sochet, Isabelle

    A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane-oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.

  10. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Londrillo, P.; Liseykina, T. V.; Macchi, A.; Sgattoni, A.; Turchetti, G.

    2009-07-01

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities ( I˜1021 W/cm2), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100 μm2 area of a 20 nm thick carbon